
Copyright

by

Nima Dini

2016

The Thesis Committee for Nima Dini
certifies that this is the approved version of the following thesis:

MKorat: A Novel Approach for Memoizing the Korat

Search and Some Potential Applications

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid, Supervisor

Milos Gligoric

MKorat: A Novel Approach for Memoizing the Korat

Search and Some Potential Applications

by

Nima Dini, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2016

Dedicated to my beloved parents, Gita Mostafizi and Mohammand Dini, and

my supportive brother Navid.

Acknowledgments

I wish to express my sincere gratitude to my supervisor Dr. Sarfraz

Khurshid, for his continuous support and encouragement in drafting this the-

sis, for his patience, motivation, and immense knowledge. His guidance helped

me all the time in graduate school. Further, I would like to thank Dr. Mi-

los Gligoric for taking the time to review this work, and providing helpful

feedback.

I would like to thank The University of Texas at Austin Cockrell School

of Engineering and the Cockrell Foundation for their encouragement and fi-

nancial support. In addition, this work was funded in part by the National

Science Foundation (NSF Grant Nos. CCF-0845628 and CNS-1239498).

v

MKorat: A Novel Approach for Memoizing the Korat

Search and Some Potential Applications

Nima Dini, M.S.E

The University of Texas at Austin, 2016

Supervisor: Sarfraz Khurshid

Writing logical constraints that describe properties of desired inputs

enables an effective approach for systematic software testing, which can find

many bugs. The key problem in systematic constraint-based testing is effi-

ciently exploring very large spaces of all possible inputs to enumerate desired

valid inputs. The Korat technique provides an effective solution to this prob-

lem. Korat uses desired input properties written as imperative predicates and

implements a backtracking search that prunes large parts of the input space

and enumerates all non-isomorphic inputs within a given bound on input size.

Despite the effectiveness of Korat’s pruning, systematically creating and run-

ning large numbers of tests can be costly in practice. Previous work introduced

parallel test generation and execution using Korat to make it more practical.

We build on a specific algorithm, SEQ-ON, introduced in previous work for

equi-distancing candidate inputs, which allows re-execution of Korat for input

vi

generation using parallel workers with evenly distributed workload. Our key

insight is that the Korat search typically encounters many consecutive candi-

dates that are all invalid inputs and such invalid ranges of candidates can be

memoized succinctly to optimize re-execution of Korat. We introduce a novel

approach for memoizing Korat’s checking of consecutive invalid candidates,

embody the approach into three new techniques based on SEQ-ON, evaluate

the techniques using a standard suite of data structure subjects to show the

efficacy of our approach, and show some potential applications of it in two

new application domains for Korat. We believe our work opens a promising

new direction to optimize solving of imperative constraints and using them in

novel application domains.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xii

Chapter 1. Introduction 1

Chapter 2. Example 6

Chapter 3. Techniques 13

3.1 Equi-distancing for SEQ-ON 13

3.2 Techniques . 14

3.2.1 MKoratinf . 16

3.2.2 MKoratequ . 16

3.2.3 MKorat . 17

3.2.4 Properties . 17

3.3 Implementation . 20

3.3.1 Command-line options 20

3.3.2 Limitations of parallel execution 20

Chapter 4. Evaluation 23

4.1 Study . 23

4.2 Results . 24

4.3 Answers to research questions 34

4.3.1 Q1. How do our techniques compare in terms of effective-
ness? . 34

viii

4.3.2 Q2. Does any of our techniques achieve optimal reduction? 36

4.3.3 Q3. Does the relation of # of valid to explored candi-
dates, affect reduction? 36

4.3.4 Q4. How does the work each slave performs on average
vary across our techniques and the SEQ-ON algorithm? 37

4.4 Execution platform . 37

4.5 Threats to validity . 37

4.5.1 External . 37

4.5.2 Internal . 38

Chapter 5. Potential applications 39

5.1 Online next-valid-neighbor problem 39

5.1.1 Problem . 39

5.1.2 Solution . 40

5.2 Game play . 40

5.2.1 Constraint-driven game play 41

5.3 Data structure repair . 43

5.3.1 Constraint-driven data structure repair 44

5.3.2 Example . 45

Chapter 6. Related work 48

6.1 Parallel Korat . 48

6.2 Parallel symbolic execution . 49

6.3 Parallel model checking . 50

Chapter 7. Conclusion 51

Appendices 53

Appendix A. Evaluation Appendix 54

References 67

Vita 73

ix

List of Tables

3.1 Korat extended options . 22

4.1 Subjects used in the study . 24

4.2 BinaryTree - Korat default . 25

4.3 DoublyLinkedList - Korat default 25

4.4 RedBlackTree - Korat default 25

4.5 BinaryTree reduction [%] . 27

4.6 DoublyLinkedList reduction [%] 28

4.7 RedBlackTree reduction [%] 29

4.8 BinaryTree - reduction [%], Finitization = 8 30

4.9 DoublyLinkedList - reduction [%], Finitization = 8 30

4.10 RedBlackTree - reduction [%], Finitization = 8 31

4.11 BinaryTree - AVG workload per worker 32

4.12 DoublyLinkedList - AVG workload per worker 33

4.13 RedBlackTree - AVG workload per worker 34

4.14 BinaryTree - AVG workload per worker, Finitization = 8 . . 35

4.15 DoublyLinkedList - AVG workload per worker, Finitization = 8 35

4.16 RedBlackTree - AVG workload per worker, Finitization = 8 . 36

A.1 SinglyLinkedList - Korat default 54

A.2 BinomialHeap - Korat default 54

A.3 SearchTree - Korat default . 54

A.4 HeapArray - Korat default . 55

A.5 SinglyLinkedList reduction [%] 55

A.6 BinomialHeap reduction [%] 56

A.7 SearchTree reduction [%] . 57

A.8 HeapArray reduction [%] . 58

A.9 SinglyLinkedList - reduction [%], Finitization = 8 59

x

A.10 BinomialHeap - reduction [%], Finitization = 8 59

A.11 SearchTree - reduction [%], Finitization = 8 60

A.12 HeapArray - reduction [%], Finitization = 8 60

A.13 SinglyLinkedList - AVG workload per worker 61

A.14 BinomialHeap - AVG workload per worker 62

A.15 SearchTree - AVG workload per worker 63

A.16 HeapArray - AVG workload per worker 64

A.17 SinglyLinkedList - AVG workload per worker, Finitization = 8 65

A.18 BinomialHeap - AVG workload per worker, Finitization = 8 . 65

A.19 SearchTree - AVG workload per worker, Finitization = 8 . . . 66

A.20 HeapArray - AVG workload per worker, Finitization = 8 . . . 66

xi

List of Figures

2.1 RedBlackTree example. 6

2.2 Finitization description for the RedBlackTree example 7

2.3 Valid red-black trees with 4 nodes 8

2.4 Candidates explored for finRedBlackTree(2, 2, 2, 2) 9

2.5 Candidates explored for finRedBlackTree(4, 4, 4, 4). 11

3.1 Equi-distancing for SEQ-ON [20]. 15

3.2 Korat test generation algorithm 21

5.1 Next-valid-neighbor . 41

5.2 Automated game play . 42

5.3 Automated game play using infeasible range caching 43

5.4 Data structure repair . 44

5.5 Data structure repair using infeasible range caching 46

5.7 Red-black trees a and b . 47

5.8 Red-black tree c . 47

xii

Chapter 1

Introduction

Systematic software testing (aka bounded exhaustive testing), i.e., test-

ing against all inputs within a given bound on input size, is an effective method-

ology for finding many bugs in programs [1, 2, 10–12, 15, 19]. A particularly

effective approach for systematic testing is constraint-based testing where log-

ical constraints characterize desired inputs and expected program behaviors

as preconditions and postconditions respectively [1, 19]. A number of different

techniques embody this approach and support constraints written in differ-

ent languages, including a variety of declarative languages [19] and imperative

languages [1].

Our work focuses on the constraints written as imperative predicates,

which are executable checks that characterize desired properties using an im-

perative language, e.g. Java, and likely pose minimal learning burden on users

because of the wide use of such languages. The foundation of our work is the

Korat technique for test input generation using imperative constraints [1, 20].

Given a predicate, termed repOK [18], which characterizes desired inputs,

and a finitization, i.e., a bound on the input size, Korat enumerates each non-

isomorphic input within the bound such that executing repOK on the input

1

returns true. Thus, the inputs generated by Korat form bounded exhaustive

tests and include every valid input with respect to the given repOK and fini-

tization.

The space of all candidates to consider as inputs to repOK is usually

very large, e.g., > 272, even for small bounds on input size, e.g., 10 nodes in a

binary search tree [1]. The Korat algorithm performs pruning and isomorph-

breaking to exhaustively explore such large input spaces. However, the ap-

plication of Korat in practice is limited by two key factors: the size of the

underlying state spaces and the number of valid inputs created. To mitigate

these factors, previous work by Misailovic et al. introduced the idea of parallel

test generation and execution using Korat [20]. Conceptually, parallel execu-

tion of tests generated using Korat is relatively straightforward: distribute the

tests evenly among the parallel workers. However, parallel generation of tests

using Korat is a non-trivial problem because Korat’s pruning is inherently se-

quential : what to prune depends on what was explored and cannot simply

be determined a priori. Specifically, Korat considers one candidate input at a

time, checks the validity of the current candidate by executing repOK against

it, and uses the execution as a basis of creating the next candidate, and by

doing so pruning many candidates from the search. Thus, evenly distributing

the test generation workload among parallel Korat workers is challenging.

One technique that Misailovic et al. introduce, named SEQ-ON, to

mitigate the two limiting factors, addresses the scenario where Korat is used

to create inputs for testing a number of different methods under test but the

2

inputs are not stored: for each method under test, inputs are created and the

method executed against each input as it is created. A key property of the

SEQ-ON algorithm is that it uses the first execution of Korat for input gener-

ation to create equidistant candidates, which allows all subsequent executions

of Korat on the same constraint solving problem to be performed in parallel

such that each parallel worker only explores the range defined by two consecu-

tive equidistant candidates, and the workload is evenly distributed among the

parallel workers.

Our thesis is that Korat’s exploration often encounters many consec-

utive invalid candidates, which form invalid ranges that can be memoized [4]

succinctly (using just two candidates as end-points) during the first execu-

tion of Korat for input generation, and re-used for more efficient exploration

in the subsequent executions of Korat for input generation – the subsequent

executions are able to prune invalid candidates that the initial Korat search

was unable to prune and had to explicitly check using repOK. We introduce

a novel approach for memoizing Korat’s checking of consecutive invalid candi-

dates, embody the approach into three new techniques that build on SEQ-ON,

evaluate the techniques using a standard suite of subjects to show the efficacy

of our approach.

We make the following contributions:

• Infeasible ranges. We introduce the idea of infeasible ranges, which

succinctly represent consecutive invalid candidates that the standard Ko-

rat search is unable to prune and must explicitly check using repOK.

3

• Memoization approach. We introduce a novel approach for re-using

results from one execution of Korat in subsequent executions of Korat

for input generation using fixed repOK and finitization when all inputs

generated by Korat cannot be stored for re-use later.

• Techniques. We introduce three techniques that embody our approach

and build on the SEQ-ON algorithm from previous work [20] for more

efficient input generation.

• Evaluation. We use a suite of standard subjects to evaluate our ap-

proach. Evaluation results show that our approach provides substantial

reduction in the number of candidates to consider.

• Abstract search problem. We introduce an abstract search problem,

named online next-valid-neighbor, which maps any given invalid input

structure to the first valid structure that Korat finds after inspecting the

input. We provide a solution to this problem and apply it in two novel

application domains.

• Constraint-based game play. We introduce the idea of using logi-

cal constraints written as imperative predicates to define rules for sim-

ple 2-player games, apply Korat for automated game play, and use our

memoization approach to optimize our solution for repeated game play.

• Constraint-based data structure repair. We apply Korat for repair

of erroneous program states (specifically, data structures) with respect

4

to given expected structural constraints that are written as imperative

predicates, and use our memoization approach to provide an efficient

solution for repeated data structure repair.

5

Chapter 2

Example

In this chapter, we discuss the motivation of our technique by a simple

example taken from Korat project’s source code1. The Java code in Figure 2.1,

defines a red-black tree and specifies its repOK method.

1 public class RedBlackTree {
2 private Node root = null;
3 private int size = 0;
4 private static final int RED = 0;
5 private static final int BLACK = 1;
6

7 public static class Node {
8 int key;
9 int value;

10 Node left = null;
11 Node right = null;
12 Node parent;
13 int color = BLACK;
14 }
15

16 public boolean repOK() { ... }
17 }

Figure 2.1: RedBlackTree example.

Figure 2.2 shows the finitization description that Korat search algo-

rithm requires to generate red-black trees of a given size. For instance, given

1https://korat.svn.sourceforge.net/svnroot/korat/trunk, revision 12

6

1 public static IFinitization finRedBlackTree(int numEntries,
2 int minSize, int maxSize, int numKeys) {
3 IFinitization f = FinitizationFactory.create(
4 RedBlackTree.class);
5 IClassDomain entryDomain =
6 f.createClassDomain(Node.class, numEntries);
7 IObjSet entries = f.createObjSet(Node.class, true);
8 entries.addClassDomain(entryDomain);
9

10 IIntSet sizes = f.createIntSet(minSize, maxSize);
11 IIntSet keys = f.createIntSet(-1, numKeys - 1);
12 IIntSet values = f.createIntSet(0);
13 IIntSet colors = f.createIntSet(0, 1);
14

15 f.set("root", entries);
16 f.set("size", sizes);
17 f.set("Node.left", entries);
18 f.set("Node.right", entries);
19 f.set("Node.parent", entries);
20 f.set("Node.color", colors);
21 f.set("Node.key", keys);
22 f.set("Node.value", values);
23

24 return f;
25 }

Figure 2.2: Finitization description for the RedBlackTree example

finRedBlackTree(4, 4, 4, 4), Korat automatically generates all non-isomorphic

red-black trees with exactly 4 nodes. The total number of candidate vectors

explored is 961, out of which only 8 satisfy the repOK method, which means

there are 8 valid red-black tree structures containing 4 nodes. Figure 2.3 shows

all such structures2.

2The root of a red-black tree should be colored black. However, this rule can be relaxed,
as in the provided repOK, because the root can always be changed from red to black.

7

Figure 2.3: Valid red-black trees with 4 nodes

Given --printCandVects as the command-line option3, Korat is able

to print all candidate vectors explored. For instance, Figure 2.4 shows all

explored candidates for finRedBlackTree(2, 2, 2, 2).

In this example, based on the attributes in the RedBlackTree Java class

provided, the layout of a candidate vector is an array of 14 integers that repre-

sent values of the following fields in order: T0.root, T0.size, N0.left, N0.right,

N0.parent, N0.color, N0.key, N0.value, N1.left, N1.right, N1.parent, N1.color,

N1.key, and N1.value. Korat starts the search from a candidate vector con-

taining all zeros (0,0,0,0,0,0,0,0,0,0,0,0,0,0) and runs the user-provided repOK

method on it. During each repOK execution, Korat monitors the fields being

accessed and uses it to form the next candidate that needs to be explored.

For the initial candidate vector in this example, only the first and the second

fields are being accessed during repOK execution. Korat backtracks on the

last accessed field, which is the second field and selects the next possible value

3list of other options can be found here: http://korat.sourceforge.net/manual.html

8

Candidate vector : : Index of fields accessed in repOK

tabsizetabsize

tabsizetabsize tabsize1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 :: 0 1

tabsizetabsize tabsize2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 :: 0 4 2 3 1

tabsizetabsize tabsize3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 :: 0 4 2 3

tabsizetabsize tabsize4 1 0 0 2 0 0 0 0 0 0 0 0 0 0 :: 0 4 2 3 10

tabsizetabsize tabsize5 1 0 0 2 0 0 0 0 0 0 1 0 0 0 :: 0 4 2 3 10 8 9 1 5 11

tabsizetabsize tabsize6 1 0 0 2 0 0 0 0 0 0 1 1 0 0 :: 0 4 2 3 10 8 9 1 5 11

tabsizetabsize tabsize7 1 0 0 2 0 1 0 0 0 0 1 0 0 0 :: 0 4 2 3 10 8 9 1 5 11 6

tabsizetabsize tabsize8 1 0 0 2 0 1 1 0 0 0 1 0 0 0 :: 0 4 2 3 10 8 9 1 5 11 6 12

tabsizetabsize tabsize9 1 0 0 2 0 1 1 0 0 0 1 0 1 0 :: 0 4 2 3 10 8 9 1 5 11 6 12
tabsizetabsize

1

showtabsshowtabs showtabs10 1 0 0 2 0 1 1 0 0 0 1 0 2 0 :: 0 4 2 3 10 8 9 1 5 11 6 12 ***

tabsizetabsize

tabsizetabsize tabsize11 1 0 0 2 0 1 2 0 0 0 1 0 0 0 :: 0 4 2 3 10 8 9 1 5 11 6 12

tabsizetabsize tabsize12 1 0 0 2 0 1 2 0 0 0 1 0 1 0 :: 0 4 2 3 10 8 9 1 5 11 6 12

tabsizetabsize tabsize13 1 0 0 2 0 1 2 0 0 0 1 0 2 0 :: 0 4 2 3 10 8 9 1 5 11 6 12

tabsizetabsize tabsize14 1 0 0 2 0 1 0 0 0 0 1 1 0 0 :: 0 4 2 3 10 8 9 1 5 11

tabsizetabsize tabsize15 1 0 0 2 0 0 0 0 0 1 1 0 0 0 :: 0 4 2 3 10 8 9

tabsizetabsize tabsize16 1 0 0 2 0 0 0 0 0 2 1 0 0 0 :: 0 4 2 3 10 8 9

tabsizetabsize tabsize17 1 0 0 2 0 0 0 0 1 0 1 0 0 0 :: 0 4 2 3 10 8

tabsizetabsize tabsize18 1 0 0 2 0 0 0 0 2 0 1 0 0 0 :: 0 4 2 3 10 8

tabsizetabsize tabsize19 1 0 0 2 0 0 0 0 0 0 2 0 0 0 :: 0 4 2 3 10

tabsizetabsize tabsize20 1 0 1 0 0 0 0 0 0 0 0 0 0 0 :: 0 4 2

tabsizetabsize tabsize21 1 0 2 0 0 0 0 0 0 0 0 0 0 0 :: 0 4 2 10

tabsizetabsize tabsize22 1 0 2 0 0 0 0 0 0 0 1 0 0 0 :: 0 4 2 10 3 8 9 1 5 11

tabsizetabsize tabsize23 1 0 2 0 0 0 0 0 0 0 1 1 0 0 :: 0 4 2 10 3 8 9 1 5 11

tabsizetabsize tabsize24 1 0 2 0 0 1 0 0 0 0 1 0 0 0 :: 0 4 2 10 3 8 9 1 5 11 6

tabsizetabsize tabsize25 1 0 2 0 0 1 1 0 0 0 1 0 0 0 :: 0 4 2 10 3 8 9 1 5 11 6 12

tabsizetabsize tabsize26 1 0 2 0 0 1 1 0 0 0 1 0 1 0 :: 0 4 2 10 3 8 9 1 5 11 6 12

tabsizetabsize tabsize27 1 0 2 0 0 1 1 0 0 0 1 0 2 0 :: 0 4 2 10 3 8 9 1 5 11 6 12

tabsizetabsize tabsize28 1 0 2 0 0 1 2 0 0 0 1 0 0 0 :: 0 4 2 10 3 8 9 1 5 11 6 12
tabsizetabsize

2

showtabsshowtabs showtabs29 1 0 2 0 0 1 2 0 0 0 1 0 1 0 :: 0 4 2 10 3 8 9 1 5 11 6 12 ***

tabsizetabsize

tabsizetabsize tabsize30 1 0 2 0 0 1 2 0 0 0 1 0 2 0 :: 0 4 2 10 3 8 9 1 5 11 6 12

tabsizetabsize tabsize31 1 0 2 0 0 1 0 0 0 0 1 1 0 0 :: 0 4 2 10 3 8 9 1 5 11

tabsizetabsize tabsize32 1 0 2 0 0 0 0 0 0 1 1 0 0 0 :: 0 4 2 10 3 8 9

tabsizetabsize tabsize33 1 0 2 0 0 0 0 0 0 2 1 0 0 0 :: 0 4 2 10 3 8 9

tabsizetabsize tabsize34 1 0 2 0 0 0 0 0 1 0 1 0 0 0 :: 0 4 2 10 3 8

tabsizetabsize tabsize35 1 0 2 0 0 0 0 0 2 0 1 0 0 0 :: 0 4 2 10 3 8

tabsizetabsize tabsize36 1 0 2 1 0 0 0 0 0 0 1 0 0 0 :: 0 4 2 10 3

tabsizetabsize tabsize37 1 0 2 2 0 0 0 0 0 0 1 0 0 0 :: 0 4 2 10 3

tabsizetabsize tabsize38 1 0 2 0 0 0 0 0 0 0 2 0 0 0 :: 0 4 2 10

tabsizetabsize tabsize39 1 0 0 0 1 0 0 0 0 0 0 0 0 0 :: 0 4

tabsizetabsize tabsize40 1 0 0 0 2 0 0 0 0 0 0 0 0 0 :: 0 4
tabsizetabsize

3

Figure 2.4: Candidates explored for finRedBlackTree(2, 2, 2, 2)

9

(which is 1) for the first field and the search continues. Overall, the explored

space contains 40 candidates; 2 of them are valid (marked with *** in Fig-

ure 2.4), and they separate the space into 3 infeasible ranges: [1, 10), (10, 29),

and (29, 40], labeled as 1 , 2 , and 3 respectively in Figure 2.4.

Korat supports ranging the search, i.e., bounding it to explore a subset

of candidates [20]. Specifically, given a pair of start and end candidate vectors,

such that the standard Korat search would explore start before end, Korat can

be ranged to only search for valid structures between start and end. Ranging

allows the distribution of Korat execution across several individual workers.

Prior work [20] presented SEQ-ON equi-distancing algorithm, which aims to

distribute Korat execution for future runs of the same search. The technique

only keeps a bounded number of equidistant candidate vectors during the first

sequential run, which enables the distribution of the explored space among

workers in a load-balanced fashion.

For instance, in the red-black tree example with 4 workers, the equi-

distancing algorithm splits the explored domain into 4 partitions, each with

the same approximate size of 256 candidate vectors4. As shown in Figure 2.5,

there are 8 valid candidates among 961 explored, i.e., 99.16% of the candidates

explored are invalid and represent redundant search. The explored indexes of

the valid candidate vectors in this example are: 366, 434, 517, 585, 671, 738,

829, and 896.

4In this example, the last range has 961-768=193 elements.

10

0 100 200 300 400 500 600 700 800 900

x = 256 x = 512 x = 768

960

Figure 2.5: Candidates explored for finRedBlackTree(4, 4, 4, 4).

The main pitfall with the SEQ-ON algorithm is that while it paral-

lelizes the executions, the overall number of explored candidate vectors across

all slaves remains the same as the sequential run. Since re-exploring invalid

candidates is redundant, and they will not be generated by Korat, it is desir-

able to prune them from the search altogether if possible.

We introduce the concept of infeasible range, which is a sequence of

consecutive invalid candidates considered by Korat search, i.e., repOK method

returns false for all these candidates and they appear in consecutive order.

Our goal is to reduce exploration of infeasible ranges. We present three tech-

niques to remove a bounded number of such ranges, prior to distribution among

workers. Next, we briefly describe each technique and show how it performs

for finRedBlackTree(4, 4, 4, 4):

1. Our first technique, MKoratinf , keeps track of the m ≥ 1 largest infea-

sible ranges, in addition to using SEQ-ON algorithm to find the k ≥ 1

equidistant candidates. To distribute, it removes an equidistant range if

it is a subrange of any infeasible range. The key idea is that no worker

needs to take an equidistant range, if it is an infeasible range, since it

11

contains no valid candidates. In our red-black tree example with 4 work-

ers, MKoratinf results in 44.74% (430/961) reduction5 for any m ≥ 1, by

running these ranges: [366, 512), [512, 768), and [768, 897).

2. Our second technique, MKoratequ, calculates the m ≥ 1 equidistant can-

didate vectors using SEQ-ON algorithm. In addition, for each equidis-

tant candidate Ci, it finds a pair of valid candidates (Vs, Vt), if any, that

(1) Vs ≤ Ci ≤ Vt, based on the exploration order, and (2) no valid can-

didate is in the range (Vs, Vt). By definition, this range is infeasible,

and can be removed safely. Further, note that if Ci is a valid candidate,

this range becomes (Ci, Ci), which is an empty range and will not be

removed. For our red-black tree example with 4 workers, MKoratequ,

results in 62.64% (602/961) reduction by selecting these ranges to run:

[366, 435), [517, 739), and [829, 897).

3. Our third technique, MKorat, removes the m ≥ 1 largest infeasible

ranges and distributes the remaining tasks among the workers with re-

spect to k ≥ 1 equidistant candidates maintained by SEQ-ON algorithm.

In the red-black tree example with 4 workers, MKorat results in the

highest reduction of 71.48% (687/961), for m = 3 infeasible ranges, by

running the ranges: [366, 435), [517, 586), [671, 739), and [829, 897).

5Note that all our three techniques remove the head and tail infeasible ranges, if any. This
optimization and a more formal definition of reduction, will be discussed later in Section 3.2.

12

Chapter 3

Techniques

In this chapter, we recall the original SEQ-ON algorithm [20] (Sec-

tion 3.1) and present our three techniques MKoratinf , MKoratequ, and MKo-

rat, which build on SEQ-ON (Section 3.2). Further, we discuss several key

properties of our techniques and some implementation details (Section 3.3).

3.1 Equi-distancing for SEQ-ON

The key novelty of the original parallel test generation and execution

algorithm using Korat [20], SEQ-ON, is to not store all inputs for creating

equidistant candidates. The design goal behind this algorithm is to store

sufficient information during the first sequential run, so that all future runs

can be parallelized and load-balanced. Specifically, this algorithm obtains a

sequence of equidistant candidate vectors 〈C1, C2, ..., Cn〉, i.e., Korat explores

the same number of candidates in any range [Ci, Ci+1) for 0 ≤ i ≤ n, and

the union of all ranges, is the entire search space
⋃n

i=0
[Ci, Ci+1) = [C0, Cn+1],

where C0 and Cn+1 are the initial and last candidate vector explored in Korat

search respectively.

Figure 3.1 shows the pseudo-code of the SEQ-ON algorithm. The

13

equiDistantCandidates function keeps an array of candidates, with size twice

as large as the number of maximum workers. As the number of explored can-

didates in Korat search is not known beforehand, this technique records each

candidate being explored in the first round. When the array capacity is full,

it moves the candidates at even indexes in the array to left half, and continues

recording every second candidate in the right half. In the next round, it records

every fourth candidate being explored. This process recursively continues, and

at the end, the function returns the candidates to keep for the future parallel

executions.

3.2 Techniques

This section presents our three main techniques that build on Korat’s

SEQ-ON algorithm. We first introduce the concept of an infeasible range,

i.e., a sequence of consecutive candidate vectors 〈Ci, Ci+1, ..., Cj〉 explored in

Korat search such that each Ck, where i ≤ k ≤ j, is invalid based on the user-

provided repOK method. The motivation is to speed-up future executions

of Korat search, by not running repOK method on known infeasible ranges,

because it is known a-priori that the returned repOK result would be false for

each candidate. More precisely, removing the infeasible range 〈Ci, Ci+1, ..., Cj〉

results in j − i+ 1 fewer number of repOK executions.

The original SEQ-ON algorithm requires re-exploration of the entire

space of candidate vectors explored by the standard Korat search. We in-

troduce 3 extended versions of this technique that store a bounded number

14

tabsizetabsize tabsize1 // input: m is the maximum number of workers
tabsizetabsize tabsize2 // output: an array of equidistant candidates,
tabsizetabsize tabsize3 // with the array length between m and 2 * m
tabsizetabsize tabsize4

tabsizetabsize tabsize5 Candidate[] equiDistantCandidates(int m) {
tabsizetabsize tabsize6 Candidate[] candidates = new Candidate[2 * m];
tabsizetabsize tabsize7 int distance = 1;
tabsizetabsize tabsize8 int index = 0;
tabsizetabsize tabsize9 while (Korat.hasNext()) {
tabsizetabsize tabsize10 for (int i = 0; i < distance; i++) {
tabsizetabsize tabsize11 candidates[index] = Korat.next();
tabsizetabsize tabsize12 if (!Korat.hasNext()) break;
tabsizetabsize tabsize13 }
tabsizetabsize tabsize14 index++;
tabsizetabsize tabsize15 if (index == candidates.length) {
tabsizetabsize tabsize16 // half the array and double the distance
tabsizetabsize tabsize17 for (int j = 0; j < candidates.length / 2; j++)
tabsizetabsize tabsize18 candidates[j] = candidates[2 * j + 1];
tabsizetabsize tabsize19 distance = distance * 2;
tabsizetabsize tabsize20 index = m;
tabsizetabsize tabsize21 }
tabsizetabsize tabsize22 }
tabsizetabsize tabsize23

tabsizetabsize tabsize24 // resize the output length to valid indexes
tabsizetabsize tabsize25 Candidate[] result = new Candidate[index];
tabsizetabsize tabsize26 for (int i = 0; i < index; i++)
tabsizetabsize tabsize27 result[i] = candidates[i];
tabsizetabsize tabsize28 return result;
tabsizetabsize tabsize29 }

Figure 3.1: Equi-distancing for SEQ-ON [20].

of infeasible ranges during the first sequential run, and skip executing them

for future runs. As a result, only a subset of the entire space of candidates

explored by sequential Korat is re-explored. The three main techniques are

built on top of the SEQ-ON algorithm. All three techniques share the same

goal, which is removing infeasible ranges prior to distribution for future runs,

and all techniques provide the same time and space complexity as the original

15

technique does. Moreover, each of the three techniques removes the head and

tail infeasible ranges if they exist, where:

• head infeasible range is the range [C0, Cv) where C0 is the initial candi-

date vector and Cv is the first valid candidate generated by the Korat

search. Note in case that C0 is equal to Cv, the range [C0, Cv) contains

no element, and head infeasible range does not exist.

• tail infeasible range is the range (Cw, Cn] where Cn is the last candidate

vector and Cw is the last valid candidate generated by the Korat search.

If Cw is equal to Cn, the range (Cw, Cn] is empty and tail infeasible range

does not exist.

3.2.1 MKoratinf

This is the simplest technique presented, which stores the m ≥ 1 largest

infeasible ranges during the first sequential run. These infeasible ranges are

maintained in addition to and independently of the k ≥ 1 equidistant candi-

dates that SEQ-ON maintains. For future Korat runs, any equidistant range

that is a subrange of an infeasible range will be omitted. The remaining ranges

will be distributed among workers.

3.2.2 MKoratequ

This technique keeps the k ≥ 1 equidistant candidate vectors that

SEQ-ON maintains. In addition, for each equidistant candidate vector Ci,

the technique finds the largest infeasible range [Cs, Ct) containing Ci, if any,

16

and removes it prior to distribution. Note that MKoratequ does not take a

separate argument for infeasible ranges; this number is determined based on

the number of equidistant candidates.

3.2.3 MKorat

This technique removes the m ≥ 1 largest infeasible ranges, if any, and

finds the ranges 〈r1, r2, ..., rs〉 that should be run. Further, the distribution

will be with respect to the k ≥ 1 equidistant candidate vectors maintained

in SEQ-ON. Specifically, if any equidistant candidate vector Cy falls into a

range ri = [Cx, Cz), the algorithm breaks the range to [Cx, Cy), [Cy, Cz). The

splitting phase continues recursively, until no range in the final collection of

ranges 〈q1, q2, ..., qt〉 contains an equidistant candidate vector.

3.2.4 Properties

Given a Korat search problem (repOK and finitization), we define the

following general metrics, which enable us to compare our techniques with the

original SEQ-ON algorithm:

• The effectiveness of a technique is defined by reduction as follows:

reduction =
of invalid explored candidates skipped

of explored candidates

The denominator of the equation above is the total number of candidates

that workers need to explore in the SEQ-ON algorithm. The numerator

is the number of invalid candidates our techniques skip for future runs.

17

Hence, conceptually, reduction is the subset of the explored space that

can be pruned for the future runs in the original SEQ-ON algorithm.

Further, reductionopt(EQU, INF) is the optimal reduction achievable

given the number of equidistant candidates (EQU) and infeasible ranges

(INF). reductionmax is the maximum achievable reduction, given large

enough values for input parameters EQU and INF .

• The average work each worker has to perform is:

AV G work per worker =
Total length of the intervals to run

of equidistant candidates

• The maximum work each worker needs to undertake is the maximum

length of the intervals selected by a technique for the future runs.

Our techniques have the following properties:

1. Maximum work performed by each worker, is no more than the maximum

work in the original SEQ-ON algorithm. Correctness argument follows.

• MKoratinf removes a range, with two consecutive equidistant candi-

dates as end-points, if this range falls into a known infeasible range;

hence, the remaining ranges to run are a subset of the ranges the

original SEQ-ON selects, and the size of maximum range in our

technique would not be larger than the maximum range selected in

SEQ-ON.

18

• MKoratequ removes infeasible ranges surrounding equidistant can-

didates, and selects the remaining ranges to run, which makes each

remaining range to be at most as big as the original range.

• MKorat removes the m-largest infeasible ranges from the explored

space, and then breaks the remaining ranges with respect to equidis-

tant candidates; so, this property holds here as well.

2. Average work performed by every worker, is at most the same as average

work in the original SEQ-ON algorithm. The correctness argument for

this property is similar to the Maximum work discussed above.

3. Our techniques work based on removing infeasible ranges for future runs.

Specifically, in cases that the number of explored invalid candidates are

larger than the number of valid ones, a higher reduction will be achieved.

As an extreme case, for the constant returning repOK, i.e, returning

true or false, all techniques achieve reductionmax, which is 0% and %100

respectively.

4. MKorat achieves reductionopt, as it removes the given m largest infea-

sible ranges from the explored search space. Further, for large enough

values of m, i.e., m > # of infeasible ranges, this technique provides

reductionmax.

19

3.3 Implementation

Figure 3.2 shows the core test generation algorithm of Korat. Within

the while (true) loop, Korat explores the state space for valid candidates. We

first extended integrated this algorithm with the SEQ-ON algorithm. Next,

we implemented each technique using this extension. Our design maintains

the time and space complexity of SEQ-ON and only requires one sequential

run of Korat.

3.3.1 Command-line options

Table 3.1 shows the new run-time options we added to Korat. --version

allows selecting between the original Korat and our 3 techniques. --equi rep-

resents the number of equidistant candidates. Note that this number cannot

be greater than the number of total explored candidates. Our current imple-

mentations consider min(equi, totalExplored) as the number of equidistant

candidates, in which equi is the number provided by user and totalExplored

is the total candidates explored in a sequential run. Finally, --infeasible is the

number of infeasible ranges to consider. Similar to the --equi option, if this

number exceeds the total number of infeasible ranges, the minimum of the two

will be selected.

3.3.2 Limitations of parallel execution

Korat, provided with the command-line option --cvWrite, writes all ex-

plored candidate vectors to a serialized file f. Further, Korat has two other

20

tabsizetabsize tabsize1 void startTestGeneration(IFinitization fin) {
tabsizetabsize tabsize2 /* Set up */
tabsizetabsize tabsize3 IKoratSearchStrategy stateSpaceExplorer =
tabsizetabsize tabsize4 new StateSpaceExplorer(fin);
tabsizetabsize tabsize5 StateSpace stateSpace = ((Finitization)fin).getStateSpace();
tabsizetabsize tabsize6 initStartAndEndCVs(stateSpaceExplorer);
tabsizetabsize tabsize7

tabsizetabsize tabsize8 long totalExplored = 0;
tabsizetabsize tabsize9 long validCasesGenerated = 0;
tabsizetabsize tabsize10

tabsizetabsize tabsize11 Object testCase = null;
tabsizetabsize tabsize12 Class testCaseClass = fin.getFinClass();
tabsizetabsize tabsize13

tabsizetabsize tabsize14 Method pred = getPredicateMethod(testCaseClass);
tabsizetabsize tabsize15 IIntList accessedFields =
tabsizetabsize tabsize16 stateSpaceExplorer.getAccessedFields();
tabsizetabsize tabsize17

tabsizetabsize tabsize18 /* Main search */
tabsizetabsize tabsize19 while (true) {
tabsizetabsize tabsize20 testCase = stateSpaceExplorer.nextTestCase();
tabsizetabsize tabsize21 if (testCase == null)
tabsizetabsize tabsize22 break;
tabsizetabsize tabsize23

tabsizetabsize tabsize24 totalExplored++;
tabsizetabsize tabsize25 predicateOK = checkPredicate(testCase, pred);
tabsizetabsize tabsize26

tabsizetabsize tabsize27 if (predicateOK) {
tabsizetabsize tabsize28 validCasesGenerated++;
tabsizetabsize tabsize29 stateSpaceExplorer.reportCurrentAsValid();
tabsizetabsize tabsize30 }
tabsizetabsize tabsize31 }
tabsizetabsize tabsize32 }

Figure 3.2: Korat test generation algorithm

options, --cvStart <num1> and --cvEnd <num2>, which limit the exploration

from <num1>-th to <num2>-th candidate from file f. Our techniques gen-

erate executable Java commands based on this high level black-box API to

be distributed among workers. However, we know that it might be infeasible

21

Option Values

--version 0: Default, 1: MKoratinf , 2: MKoratequ, 3: MKorat
--equi # of equidistant candidates
--infeasible # of infeasible ranges

Table 3.1: Korat extended options

to generated tests of a single sequential run to a file. Hence, ideally, our ex-

ecutable Java commands should take actual start and end candidate vectors

instead of indexes to them written in file f. While this is not an inherent lim-

itation of our techniques, the current implementations work based on Korat

API and require reading the candidate vectors from the file f.

22

Chapter 4

Evaluation

We designed a study to evaluate the effectiveness of our techniques, i.e.,

MKoratinf , MKoratequ, and MKorat, for a suite of standard subjects in Korat.

This section describes the experiment procedure we designed to answer the

following questions:

Q1. How do our techniques compare in terms of effectiveness?

Q2. Does any of our techniques achieve optimal reduction?

Q3. Does the relation of # of valid to explored candidates, affect reduction?

Q4. How does the work each slave performs on average vary across our tech-

niques and the SEQ-ON algorithm?

4.1 Study

Table 4.1 shows the 7 subjects used in our study, which are taken

from Korat’s open-source repository1. Prior studies used similar subjects in

their evaluation [1, 20, 26]. Due to the bounded exhaustive nature of Korat

search, running these subjects does not scale for large finitization values. For

1https://korat.svn.sourceforge.net/svnroot/korat/trunk, revision 12

23

Subject

BinaryTree

BinomialHeap

DoublyLinkedList

HeapArray

RedBlackTree

SearchTree

SinglyLinkedList

Table 4.1: Subjects used in the study

instance, given finRedBlackTree(12, 12, 12, 12) for the red-black tree example

in Chapter 2, Korat explores 205,512,574 candidates in 4 minutes and finds

1,296 valid structures. We evaluated the effectiveness of our techniques for

each subject, and compared it with the original SEQ-ON algorithm discussed

in 3.1, with respect to the reduction definition from Subsection 3.2.4.

The tables we include in this chapter, present an illustrative subset of

our experimental results; the full set of tables are in the Appendix A.

4.2 Results

Tables 4.2, 4.3, and 4.4 show some information for BinaryTree, Dou-

blyLinkedList, and RedBlackTree subjects respectively. Each table contains

number of candidates explored, number of valid instances found, and num-

ber of infeasible ranges for 5 different finitizations. Recall from section 3.2

that all the 3 presented techniques safely remove the head and tail infeasible

ranges from the explored range; hence, the number of infeasible ranges in ta-

bles 4.2, 4.3, 4.4 excludes these two infeasible ranges. There are several key

24

Finitization

2 4 6 8 10

Candidates explored 16 245 3653 54418 815100
Instances found 2 14 132 1430 16796
Infeasible ranges 1 13 131 1429 16795

Table 4.2: BinaryTree - Korat default

Finitization

2 4 6 8 10

Candidates explored 27 94 776 17166 562823
Instances found 3 37 674 17007 562595
Infeasible ranges 0 0 0 0 0

Table 4.3: DoublyLinkedList - Korat default

Finitization

2 4 6 8 10

Candidates explored 40 961 16487 322806 7530712
Instances found 2 8 20 64 260
Infeasible ranges 1 7 19 63 259

Table 4.4: RedBlackTree - Korat default

points obtained from these tables:

• The number of candidates explored grows considerably as the finitiza-

tion increases, which shows Korat’s bounded exhaustive testing tech-

nique does not scale with the finitization growth. For example, when

finitization increases from 2 to 10, the number of explored candidates

grows from 40 to 7,530,712 in RedBlackTree.

25

• Given a finitization, the number of infeasible ranges for BinaryTree and

RedBlackTree is always one greater than instances found (including the

head and tail infeasible ranges). We investigated this case and realized

there is no consecutive valid candidates in the explored state. On the

other hand, the same number is always 0 for DoublyLinkedList, and our

further experiments showed that all the valid candidates are consecutive

and the only 2 infeasible ranges are the head and tail. For instance,

given finitization = 4, indexes of valid candidates are all the integers in

this range: [31, 68), which makes the only infeasible ranges to be [0, 31)

and [68, 94).

• For a fixed finitization, The number of infeasible ranges in each of these

tables indicates the maximum ranges we can remove from the explored

space. For instance, for the BinaryTree subject of size 6, at most 131 in-

feasible ranges can be removed and running our techniques for any num-

ber of infeasible ranges greater than 131, does not increase the pruned

space. This threshold is called finitizationmax.

• RedBlackTree has the smallest ratio of valid candidates to explored ones,

which means most of the explored state is invalid based on the provided

repOK. DoublyLinkedList, on the contrary, falls into the other extreme

and has the largest ratio of valid to explored candidates. The BinaryTree

example falls in between. Recall that our techniques aim to remove

infeasible ranges; hence, we expect them to work more efficiently when

there are more invalid explored candidates than valid ones.

26

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 56.25 12.24 1.72 0.19 0.02
4 56.25 12.24 1.72 0.19 0.02
16 87.50 28.57 1.72 0.19 0.02
64 87.50 77.55 2.60 0.19 0.02

M
K

o
ra

t i
n
f

256 87.50 94.28 45.96 0.19 0.02
1024 87.50 94.28 86.42 6.25 0.02

1 87.50 16.73 2.35 0.31 0.02
4 87.50 39.18 4.16 0.48 0.04
16 87.50 85.30 13.82 1.49 0.11
64 87.50 94.28 52.94 5.88 0.46

M
K

o
ra

t e
q
u

256 87.50 94.28 96.38 19.03 1.78
1024 87.50 94.28 96.38 69.65 6.79

1 87.50 22.04 3.23 0.37 0.03
4 87.50 46.12 7.33 0.88 0.09
16 87.50 94.28 21.07 2.71 0.29
64 87.50 94.28 61.10 8.91 1.01

M
K

o
ra

t

256 87.50 94.28 96.38 28.48 3.49
1024 87.50 94.28 96.38 80.25 11.72

Table 4.5: BinaryTree reduction [%]

Tables 4.5, 4.6, and 4.7 show the reduction achieved for BinaryTree,

DoublyLinkedList, and RedBlackTree subjects respectively, using our tech-

niques MKoratinf , MKoratequ, and MKorat. Every table row shows the number

of equidistant candidates and infeasible ranges (both set to the same value),

and each column shows the size of the finitization. Note that in MKoratequ, the

number of infeasible ranges is determined based on the number of equidistant

candidates. Hence, we considered these two parameters to be equal for the

other two techniques as well, to make the comparison fair. In all the 3 tables:

• Given a finitization, reduction increases as the number of equidistant

27

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 88.88 60.63 13.14 0.92 0.04
4 88.88 60.63 13.14 0.92 0.04

16 88.88 60.63 13.14 0.92 0.04
64 88.88 60.63 13.14 0.92 0.04

M
K

o
ra

t i
n
f

256 88.88 60.63 13.14 0.92 0.04
1024 88.88 60.63 13.14 0.92 0.04

1 88.88 60.63 13.14 0.92 0.04
4 88.88 60.63 13.14 0.92 0.04

16 88.88 60.63 13.14 0.92 0.04
64 88.88 60.63 13.14 0.92 0.04

M
K

o
ra

t e
q
u

256 88.88 60.63 13.14 0.92 0.04
1024 88.88 60.63 13.14 0.92 0.04

1 88.88 60.63 13.14 0.92 0.04
4 88.88 60.63 13.14 0.92 0.04

16 88.88 60.63 13.14 0.92 0.04
64 88.88 60.63 13.14 0.92 0.04

M
K

o
ra

t

256 88.88 60.63 13.14 0.92 0.04
1024 88.88 60.63 13.14 0.92 0.04

Table 4.6: DoublyLinkedList reduction [%]

candidates and infeasible ranges grow until it reaches a threshold, called

reductionmax. For instance, in the BinaryTree subject, give finitization

= 2, the maximum reduction is 87.50% and all the 3 techniques can

achieve that for a large enough number of equidistant candidates and

infeasible ranges.

• Given the same number of equidistant candidates and infeasible ranges,

as finitization increases, reduction may increase or decrease for all tech-

niques. For example, using MKorat for BinaryTree, with equidistant

candidates and infeasible ranges equal to 16, reduction increases from

28

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 22.50 44.74 39.15 41.36 50.09
4 70.00 44.74 39.15 41.36 50.09
16 95.00 54.73 39.15 41.36 50.09
64 95.00 88.86 69.33 52.78 58.80

M
K

o
ra

t i
n
f

256 95.00 96.98 92.63 80.06 63.15
1024 95.00 99.16 98.16 95.04 76.36

1 50.00 53.27 41.39 42.00 57.76
4 95.00 69.92 52.26 42.75 50.37
16 95.00 99.16 74.98 62.10 63.74
64 95.00 99.16 99.87 81.70 68.14

M
K

o
ra

t e
q
u

256 95.00 99.16 99.87 99.98 79.51
1024 95.00 99.16 99.87 99.98 99.99

1 95.00 54.11 49.20 48.34 57.76
4 95.00 78.45 62.80 58.45 64.62
16 95.00 99.16 93.04 69.22 66.63
64 95.00 99.16 99.87 99.98 73.36

M
K

o
ra

t

256 95.00 99.16 99.87 99.98 99.59
1024 95.00 99.16 99.87 99.98 99.99

Table 4.7: RedBlackTree reduction [%]

finitization 2 to 4, and decreases from finitization 4 to 6. This point in-

dicates that the number of equidistant candidates and infeasible ranges

should be adjusted properly based on the size of finitization to achieve

the highest reduction.

Tables 4.8, 4.9, and 4.10 show the reduction for BinaryTree, Dou-

blyLinkedList, and RedBlackTree subjects respectively. Each table is generated

for finitization = 8. The rows are equidistant candidates and the columns are

infeasible ranges. There are several points to discuss about these tables:

29

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 0.19 0.19 0.19 0.19 0.19 0.19
4 0.19 0.19 0.19 0.19 0.19 0.19

16 0.19 0.19 0.19 0.19 0.19 0.19
64 0.19 0.19 0.19 0.19 0.19 0.19

M
K

o
ra

t i
n
f

256 0.19 0.19 0.19 0.19 0.19 0.19
1024 0.11 0.35 1.11 2.54 4.77 6.25

1 0.37 0.88 2.71 8.91 28.48 80.25
4 0.37 0.88 2.71 8.91 28.48 80.25

16 0.37 0.88 2.71 8.91 28.48 80.25
64 0.37 0.88 2.71 8.91 28.48 80.25

M
K

o
ra

t

256 0.37 0.88 2.71 8.91 28.48 80.25
1024 0.37 0.88 2.71 8.91 28.48 80.25

Table 4.8: BinaryTree - reduction [%], Finitization = 8

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 0.92 0.92 0.92 0.92 0.92 0.92
4 0.92 0.92 0.92 0.92 0.92 0.92
16 0.92 0.92 0.92 0.92 0.92 0.92
64 0.92 0.92 0.92 0.92 0.92 0.92

M
K

o
ra

t i
n
f

256 0.92 0.92 0.92 0.92 0.92 0.92
1024 0.63 0.92 0.92 0.92 0.92 0.92

1 0.92 0.92 0.92 0.92 0.92 0.92
4 0.92 0.92 0.92 0.92 0.92 0.92
16 0.92 0.92 0.92 0.92 0.92 0.92
64 0.92 0.92 0.92 0.92 0.92 0.92

M
K

o
ra

t

256 0.92 0.92 0.92 0.92 0.92 0.92
1024 0.92 0.92 0.92 0.92 0.92 0.92

Table 4.9: DoublyLinkedList - reduction [%], Finitization = 8

30

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 41.36 41.36 41.36 41.36 41.36 41.36
4 41.36 41.36 41.36 41.36 41.36 41.36

16 41.36 41.36 41.36 41.36 41.36 41.36
64 41.36 52.78 52.78 52.78 52.78 52.78

M
K

o
ra

t i
n
f

256 40.75 55.66 62.32 79.45 80.06 80.06
1024 40.75 56.38 66.69 94.44 95.04 95.04

1 48.34 58.45 69.22 99.98 99.98 99.98
4 48.34 58.45 69.22 99.98 99.98 99.98

16 48.34 58.45 69.22 99.98 99.98 99.98
64 48.34 58.45 69.22 99.98 99.98 99.98

M
K

o
ra

t

256 48.34 58.45 69.22 99.98 99.98 99.98
1024 48.34 58.45 69.22 99.98 99.98 99.98

Table 4.10: RedBlackTree - reduction [%], Finitization = 8

• MKoratequ does not take the number of infeasible ranges into account;

hence, the rows for this technique is not present in our tables.

• Given the number of infeasible ranges, MKoratinf and MKorat show

different behavior as the number of equidistant candidates increase: In

MKoratinf , the reduction will increase, because equidistant ranges will

have smaller size and more of them may fit in an infeasible range. How-

ever, MKorat is agnostic as to the number of infeasible ranges in terms

of achieved reduction as it removes the given m-largest infeasible ranges.

• Given the number of equidistant candidates, for both techniques, re-

duction increases as the number of infeasible ranges grows, until it gets

saturated.

31

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 3.5 107.5 1795.0 27155.0 407467.5
4 1.4 43.0 718.0 10862.0 162987.0
16 0.1 10.2 211.1 3194.7 47937.3
64 0.1 0.8 54.7 835.5 12537.4

M
K

o
ra

t i
n
f

256 0.1 0.0 7.6 211.3 3170.9
1024 0.1 0.0 0.4 49.7 795.0

1 1.0 102.0 1783.5 27122.5 407443.5
4 0.4 29.8 700.2 10830.4 162950.6
16 0.1 2.1 185.1 3153.2 47889.6
64 0.1 0.2 26.4 787.9 12481.4

M
K

o
ra

t e
q
u

256 0.1 0.0 0.5 171.4 3114.9
1024 0.1 0.0 0.1 16.1 741.1

1 1.0 95.5 1767.5 27106.0 407391.0
4 0.4 26.4 677.0 10786.8 162867.8
16 0.1 0.8 169.5 3114.1 47806.2
64 0.1 0.2 21.8 762.5 12413.2

M
K

o
ra

t

256 0.1 0.0 0.5 151.4 3060.8
1024 0.1 0.0 0.1 10.4 702.0

SEQ-ON 8.0 122.5 1826.5 27209.0 407550.0

Table 4.11: BinaryTree - AVG workload per worker

The next interesting study to perform is to measure the amount of work

each worker has to perform on average, defined in Subsection 3.2.4, in each

technique.

Tables 4.11, 4.12, 4.13 and tables 4.14, 4.15, and 4.16 show the average

length of feasible ranges distributed among workers for our BinaryTree, Dou-

blyLinkedList, and RedBlackTree subjects. The last row of each table shows

the average workload in the original SEQ-ON algorithm. Note that not all

the ranges in the SEQ-ON algorithm has the exact same length, as it may

32

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 1.5 18.5 337.0 8503.5 281297.5
4 0.6 7.4 134.8 3401.4 112519.0

16 0.1 2.1 39.6 1000.4 33093.8
64 0.1 0.5 10.3 261.6 8655.3

M
K

o
ra

t i
n
f

256 0.1 0.3 2.6 66.1 2189.0
1024 0.1 0.3 0.8 16.5 548.8

1 1.5 18.5 337.0 8503.5 281297.5
4 0.6 7.4 134.8 3401.4 112519.0

16 0.1 2.1 39.6 1000.4 33093.8
64 0.1 0.5 10.3 261.6 8655.3

M
K

o
ra

t e
q
u

256 0.1 0.3 2.6 66.1 2189.0
1024 0.1 0.3 0.8 16.5 548.8

1 1.5 18.5 337.0 8503.5 281297.5
4 0.6 7.4 134.8 3401.4 112519.0

16 0.1 2.1 39.6 1000.4 33093.8
64 0.1 0.5 10.3 261.6 8655.3

M
K

o
ra

t

256 0.1 0.3 2.6 66.1 2189.0
1024 0.1 0.3 0.8 16.5 548.8

SEQ-ON 13.5 47.0 388.0 8583.0 281411.5

Table 4.12: DoublyLinkedList - AVG workload per worker

be infeasible to break an arbitrary explored space into a set of desired ranges

with equal length. There are several points to discuss about these tables:

• The average value is always lower in our techniques compared to the orig-

inal SEQ-ON algorithm, which empirically shows our point from Sub-

section 3.2.4, that workers do less work on average in our techniques.

• In most of the cases, MKorat works better than MKoratequ, and MKoratequ

works better than MKoratinf .

33

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 15.5 265.5 5016.0 94646.0 1878983.0
4 2.4 106.2 2006.4 37858.4 751593.2
16 0.1 25.5 590.1 11134.8 221056.8
64 0.0 1.6 77.7 2345.0 47732.4

M
K

o
ra

t i
n
f

256 0.0 0.1 4.7 250.4 10797.3
1024 0.0 0.0 0.3 15.5 1736.1

1 10.0 224.5 4831.5 93607.5 1590464.5
4 0.4 57.8 1574.0 36957.2 747464.6
16 0.1 0.4 242.5 7195.4 160584.7
64 0.0 0.1 0.3 908.4 36905.0

M
K

o
ra

t e
q
u

256 0.0 0.0 0.0 0.2 6002.5
1024 0.0 0.0 0.0 0.0 0.2

1 1.0 220.5 4187.5 83379.5 1590464.5
4 0.4 41.4 1226.6 26824.8 532835.0
16 0.1 0.4 67.4 5843.8 147781.2
64 0.0 0.1 0.3 0.9 30854.4

M
K

o
ra

t

256 0.0 0.0 0.0 0.2 118.5
1024 0.0 0.0 0.0 0.0 0.2

SEQ-ON 20.0 480.5 8243.5 161403.0 3765356.0

Table 4.13: RedBlackTree - AVG workload per worker

4.3 Answers to research questions

We started this chapter with several research questions. In this section

we can answer them, based on the previous sections:

4.3.1 Q1. How do our techniques compare in terms of effective-

ness?

MKorat has shown to be the most effective technique, followed by MKoratequ
and MKoratinf . Further, as the pruning of our approaches is based on remov-
ing infeasible ranges, the most achievable reduction, i.e., reductionmax happens
when all the infeasible ranges are removed.

34

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 27155.0 27155.0 27155.0 27155.0 27155.0 27155.0
4 10862.0 10862.0 10862.0 10862.0 10862.0 10862.0

16 3194.7 3194.7 3194.7 3194.7 3194.7 3194.7
64 835.5 835.5 835.5 835.5 835.5 835.5

M
K

o
ra

t i
n
f

256 211.3 211.3 211.3 211.3 211.3 211.3
1024 53.0 52.9 52.5 51.7 50.5 49.7

1 27106.0 26967.0 26470.0 24783.5 19457.5 5372.5
4 10842.4 10786.8 10588.0 9913.4 7783.0 2149.0

16 3188.9 3172.5 3114.1 2915.7 2289.1 632.0
64 834.0 829.7 814.4 762.5 598.6 165.3

M
K

o
ra

t

256 210.9 209.8 205.9 192.8 151.4 41.8
1024 52.8 52.6 51.6 48.3 37.9 10.4

SEQ-ON 27209.0 27209.0 27209.0 27209.0 27209.0 27209.0

Table 4.14: BinaryTree - AVG workload per worker, Finitization = 8

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 8503.5 8503.5 8503.5 8503.5 8503.5 8503.5
4 3401.4 3401.4 3401.4 3401.4 3401.4 3401.4
16 1000.4 1000.4 1000.4 1000.4 1000.4 1000.4
64 261.6 261.6 261.6 261.6 261.6 261.6

M
K

o
ra

t i
n
f

256 66.1 66.1 66.1 66.1 66.1 66.1
1024 16.6 16.5 16.5 16.5 16.5 16.5

1 8503.5 8503.5 8503.5 8503.5 8503.5 8503.5
4 3401.4 3401.4 3401.4 3401.4 3401.4 3401.4
16 1000.4 1000.4 1000.4 1000.4 1000.4 1000.4
64 261.6 261.6 261.6 261.6 261.6 261.6

M
K

o
ra

t

256 66.1 66.1 66.1 66.1 66.1 66.1
1024 16.5 16.5 16.5 16.5 16.5 16.5

SEQ-ON 8583.0 8583.0 8583.0 8583.0 8583.0 8583.0

Table 4.15: DoublyLinkedList - AVG workload per worker, Finitization = 8

35

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 94646.0 94646.0 94646.0 94646.0 94646.0 94646.0
4 37858.4 37858.4 37858.4 37858.4 37858.4 37858.4
16 11134.8 11134.8 11134.8 11134.8 11134.8 11134.8
64 2912.1 2345.0 2345.0 2345.0 2345.0 2345.0

M
K

o
ra

t i
n
f

256 744.1 556.8 473.1 258.0 250.4 250.4
1024 186.5 137.3 104.9 17.4 15.5 15.5

1 83379.5 67062.0 49672.5 32.0 32.0 32.0
4 33351.8 26824.8 19869.0 12.8 12.8 12.8
16 9809.3 7889.6 5843.8 3.7 3.7 3.7
64 2565.5 2063.4 1528.3 0.9 0.9 0.9

M
K

o
ra

t

256 648.8 521.8 386.5 0.2 0.2 0.2
1024 162.6 130.8 96.9 0.0 0.0 0.0

SEQ-ON 161403.0 161403.0 161403.0 161403.0 161403.0 161403.0

Table 4.16: RedBlackTree - AVG workload per worker, Finitization = 8

4.3.2 Q2. Does any of our techniques achieve optimal reduction?

MKorat provides the optimal reduction (reductionopt(EQU, INF) from Sub-
section 3.2.4), by removing the m-largest infeasible ranges. Neither MKoratinf ,
nor MKoratequ achieve the optimal reduction, as they do not necessarily re-
move the largest infeasible ranges.

4.3.3 Q3. Does the relation of # of valid to explored candidates,

affect reduction?

Our techniques are more effective when the space explored is sparse, i.e., the
number of invalid candidate vectors explored is considerably larger than valid
ones. As an extreme case, a repOK method returning a constant, achieves 0%
or 100% reduction for the constant values true and false respectively, in all
the 3 proposed techniques.

36

4.3.4 Q4. How does the work each slave performs on average vary

across our techniques and the SEQ-ON algorithm?

Our experiments show that the amount of average work performed by each
slave in our techniques, is at most the same as the original SEQ-ON algo-
rithm, and in most cases considerably smaller. Further, in most cases, MKorat
performs better than MKoratequ, and MKoratequ outperforms MKoratinf .

4.4 Execution platform

We run all the experiments on a machine with 4-cores, IntelR© Core
TM

i7-4770HQ CPU at 2.20GHz, with 16GB of RAM, running OS X 10.10.5. We

used Java 1.8.0 60 from OracleR©.

4.5 Threats to validity

4.5.1 External

The subjects used in our study may not be representative. To mitigate

this threat, we considered 7 subjects shipped with Korat source code that vary

in code size, and complexity of repOK. Some of these projects have also been

used in prior studies on Korat. The results may vary for different finitizations,

number of equidistant candidates, and number of infeasible ranges. Exploring

all the combinations is not feasible. Yet, to attenuate this threat, we considered

several combinations to show the existing relation between different values of

parameters. Further, the finitizations and number of equidistant candidates

considered in our study is on a par with prior work [1, 20, 26].

37

4.5.2 Internal

Korat, our extended version of Korat that implements the techniques,

and our automation scripts, may contain bugs that can impact our conclusions.

We are mostly confident in the correctness of Korat, as is a robust tool used

in several prior studies. To increase the confidence in our implementations, we

developed the core parts of our techniques twice with two different algorithms:

(1) efficient and (2) inefficient, in terms of time and space complexity, and

observed that they produce the same result for several examples. Further, to

increase the confidence in our scripts, we reviewed our code, tested it on a

number of subjects manually, and inspected several results.

38

Chapter 5

Potential applications

The chapter first introduces an abstract search problem, called on-

line next-valid-neighbor problem (Section 5.1) and describes how our approach

solves this problem, and then describes two concrete domains – constraint-

driven game play (Section 5.2) and constraint-driven data structure repair

(Section 5.3) – where this problem arises and discusses the potential our ap-

proach holds for providing more efficient solutions in these domains.

5.1 Online next-valid-neighbor problem

5.1.1 Problem

Consider input generation based on input constraint repOK and fini-

tization f . Let S denote the set of all structures (valid or invalid) that are

explored by the Korat search with respect to f . Given a candidate structure

s ∈ S, the next-valid-neighbor problem is the problem to generate structure t,

if any, such that either (1) s is valid and s = t or (2) s is invalid and running

Korat search starting at the candidate vector that represents s creates t as the

first valid structure.

The online next-valid-neighbor problem is the problem where the next-

39

valid-neighbor is repeatedly solved for different input structures with respect

to fixed finitization f and input constraint repOK. Thus, Korat search is re-

peatedly run starting at different initial candidate vectors.

5.1.2 Solution

A straightforward solution to the online next-valid-neighbor problem

is to directly apply the problem definition and run the Korat search on each

input structure and return the first valid structure created by Korat.

Our approach of using infeasible ranges provides the basis for defining a

novel solution that is likely more efficient. Figure 5.1 contains the pseudocode

of our solution:

5.2 Game play

Consider a 2-player game played on a k× k grid where k ≥ 1 is a fixed

integer, such as tic-tac-toe, where:

• Each grid cell is empty or contains one token from a finite set of tokens

• One player starts the game by making a legal move

• The 2 players take turns making legal moves

• The game ends when some player wins or there is a tie

40

tabsizetabsize tabsize1 // infeasible ranges maintained in program state
tabsizetabsize tabsize2 Map<Structure, Structure> ranges =
tabsizetabsize tabsize3 new HashMap<Structure, Structure>();
tabsizetabsize tabsize4

tabsizetabsize tabsize5 // assuming s is an invalid structure
tabsizetabsize tabsize6 Structure onlineNextValidNeighbor(Structure s) {
tabsizetabsize tabsize7 for (Map.Entry<Structure, Structure> e: ranges.entrySet())
tabsizetabsize tabsize8 // if structure s falls in a known infeasible range
tabsizetabsize tabsize9 // e=(p, n), then the next-valid-neighbor of s is n
tabsizetabsize tabsize10 if (inRange(s, e))
tabsizetabsize tabsize11 return e.getValue(); // n
tabsizetabsize tabsize12

tabsizetabsize tabsize13 Structure n = Korat.findFirstValid(s);
tabsizetabsize tabsize14

tabsizetabsize tabsize15 // if no valid structure found starting from s
tabsizetabsize tabsize16 if (n == null) return null;
tabsizetabsize tabsize17

tabsizetabsize tabsize18 // if our map has an infeasible range x=(s’, n), we need
tabsizetabsize tabsize19 // to expand the beginning of the range by updating it to
tabsizetabsize tabsize20 // x=(s, n). Note that s < s’ as the function has not yet
tabsizetabsize tabsize21 // returned and the if branch is taken
tabsizetabsize tabsize22 if (ranges.values().contains(n))
tabsizetabsize tabsize23 updateRanges(ranges, s, n);
tabsizetabsize tabsize24

tabsizetabsize tabsize25 // else a new infeasible range is found and should be
tabsizetabsize tabsize26 // added in the map
tabsizetabsize tabsize27 else
tabsizetabsize tabsize28 ranges.put(s, n);
tabsizetabsize tabsize29

tabsizetabsize tabsize30 return n;
tabsizetabsize tabsize31 }

Figure 5.1: Next-valid-neighbor

5.2.1 Constraint-driven game play

We introduce constraint-driven game play, an approach to 2-player

games where the game rules are defined by two logical constraints, namely

gameOver and validMove, which define the rules that govern when the game

is over and the rules that govern legal moves respectively, and are written in

41

tabsizetabsize tabsize1 void play() {
tabsizetabsize tabsize2 Game g = new Game(); // empty board
tabsizetabsize tabsize3 boolean turn = toss(); // choose turn randomly
tabsizetabsize tabsize4

tabsizetabsize tabsize5 while (!g.gameOver()) {
tabsizetabsize tabsize6 if (turn)
tabsizetabsize tabsize7 // auto-generated next move
tabsizetabsize tabsize8 g = Korat.findFirstValidMove(g, turn);
tabsizetabsize tabsize9 else
tabsizetabsize tabsize10 // ask human user for a gameplay
tabsizetabsize tabsize11 g = getHumanMove(g, turn);
tabsizetabsize tabsize12

tabsizetabsize tabsize13 turn = !turn;
tabsizetabsize tabsize14 }
tabsizetabsize tabsize15 }

Figure 5.2: Automated game play

the spirit of repOK methods.

To illustrate, consider modeling tic-tac-toe using two user-provided

predicates, gameOver and validMove, that show if a game state is final, and if

a transition between two game states is valid respectively. A direct application

of Korat provides a solution for automated game play. As an example, con-

sider the scenario where computer is playing tic-tac-toe, with a human player.

Figure 5.2 provides the game play pseudocode for this scenario:

Now, consider repeated game play where the game is played multiple

times, each time starting at the game’s initial state and terminating when

the game is over. A straightforward solution to this problem is provided by

invoking the play method repeatedly. Our approach of utilizing infeasible

ranges as embodied in the onlineNextValidNeighbor algorithm provides the

basis for a novel solution that is likely more efficient. Figure 5.3 presents our

42

tabsizetabsize tabsize1 // infeasible ranges maintained in the program state
tabsizetabsize tabsize2 Map<Game, Game> ranges = HashMap<Game, Game>();
tabsizetabsize tabsize3

tabsizetabsize tabsize4 // finds the first valid game play coming after g
tabsizetabsize tabsize5 Game findFirstValidMove(Game g, boolean turn) {
tabsizetabsize tabsize6 // if the next game state is known from prior game plays
tabsizetabsize tabsize7 if (ranges.values().contains(g)) {
tabsizetabsize tabsize8 return ranges.get(g);
tabsizetabsize tabsize9 }
tabsizetabsize tabsize10

tabsizetabsize tabsize11 // use Korat to search for the next valid game play
tabsizetabsize tabsize12 Game updated = Korat.findFirstValidMove(g, turn);
tabsizetabsize tabsize13 ranges.put(g, updated); // update the cache
tabsizetabsize tabsize14

tabsizetabsize tabsize15 return updated;
tabsizetabsize tabsize16 }
tabsizetabsize tabsize17

tabsizetabsize tabsize18 void play() {
tabsizetabsize tabsize19 Game g = new Game();
tabsizetabsize tabsize20 boolean turn = toss();
tabsizetabsize tabsize21

tabsizetabsize tabsize22 while (!g.gameOver()) {
tabsizetabsize tabsize23 if (turn)
tabsizetabsize tabsize24 g = findFirstValidMove(g, turn);
tabsizetabsize tabsize25 else
tabsizetabsize tabsize26 g = getHumanMove(g, turn);
tabsizetabsize tabsize27

tabsizetabsize tabsize28 turn = !turn;
tabsizetabsize tabsize29 }
tabsizetabsize tabsize30 }

Figure 5.3: Automated game play using infeasible range caching

approach.

5.3 Data structure repair

Data structure repair [5, 6, 8, 13, 14, 21] is an approach for error recovery,

where the error may be in program state, such as memory, or persistent data,

43

tabsizetabsize tabsize1 void repair(Structure s) {
tabsizetabsize tabsize2 // build the candidate vector that corresponds
tabsizetabsize tabsize3 // to the broken data structure s
tabsizetabsize tabsize4 CandidateVector cv = canonicalizeWRTRepOk(s);
tabsizetabsize tabsize5

tabsizetabsize tabsize6 // find the next valid candidate using Korat search
tabsizetabsize tabsize7 cv = Korat.findFirstValidCV(cv);
tabsizetabsize tabsize8

tabsizetabsize tabsize9 // update structure s based on the new valid
tabsizetabsize tabsize10 // candidate vector found
tabsizetabsize tabsize11 updateStructure(s, cv);
tabsizetabsize tabsize12 }

Figure 5.4: Data structure repair

such as the file system.

5.3.1 Constraint-driven data structure repair

Constraint-driven data structure repair [5, 6] uses given logical con-

straints as specifications for repairing erroneous program states. Juzi [8, 14]

introduced the use of imperative constraints, in the form of repOK methods,

in data structure repair.

The constraint-driven data structure repair problem is defined as fol-

lows [8]. Given a repOK method that describes expected structural constraints

and an erroneous structure s such that !s.repOk(), mutate s into t such that

t.repOK() and t is “similar” to s. Similarity is a heuristic notion and is intended

to restrict repair to avoid unnecessary mutations and to preserve as much of

the original structure as possible while satisfying the structural constraints.

Figure 5.4 shows the basis that Korat provides to solve this problem:

44

The method canonicalizeWRTRepOk translates the structure s to a

candidate vector, which has all fields set to 0 except for the ones accessed

by repOK, which are set to canonical values that are created using lineariza-

tion [30]. The repair algorithm borrows the spirit of Juzi but differs in the

way that repair is faithful to the Korat search whereas Juzi modifies the Ko-

rat search. Specifically, when Korat backtracks, the last field accessed in the

candidate vector gets the next value according to field domain ordering, how-

ever, Juzi considers all values other than the original value of that field when

backtracking.

Now, consider repeated data structure repair where the repair is per-

formed multiple times, possibly on different erroneous states as inputs conform

to a fixed finitization. A straightforward solution to this problem is provided

by invoking the repair method repeatedly. Our approach of utilizing infea-

sible ranges as embodied in the onlineNextValidNeighbor algorithm provides

the basis for a novel solution that is likely more efficient. Figure 5.5 presents

our algorithm.

5.3.2 Example

Recall Figure 2.3 which shows the candidates explored in Korat search

given finRedBlackTree(2, 2, 2, 2). The range (10, 29) is one infeasible range in

the explored space. Figure 5.7 shows two invalid structures a and b, within this

range, corresponding to candidates in lines 14 and 22 respectively. Figure 5.8

shows the valid structure c, our repair algorithm in Figure 5.4, selects for

45

tabsizetabsize tabsize1 // infeasible ranges maintained in program state
tabsizetabsize tabsize2 Map<CandidateVector, CandidateVector> ranges =
tabsizetabsize tabsize3 new HashMap<CandidateVector, CandidateVector>();
tabsizetabsize tabsize4

tabsizetabsize tabsize5 CandidateVector findFirstValidCV(CandidateVector cv) {
tabsizetabsize tabsize6 for (Map.Entry<CandidateVector, CandidateVector> e:
tabsizetabsize tabsize7 ranges.entrySet())
tabsizetabsize tabsize8 // if candidate cv falls in a known infeasible range
tabsizetabsize tabsize9 // e=(p, n), then the next-valid-neighbor of cv is n
tabsizetabsize tabsize10 if (inRange(cv, e))
tabsizetabsize tabsize11 return e.getValue(); // n
tabsizetabsize tabsize12

tabsizetabsize tabsize13 CandidateVector n = Korat.findFirstValidCV(cv);
tabsizetabsize tabsize14

tabsizetabsize tabsize15 // if no valid structure found starting from cv
tabsizetabsize tabsize16 if (n == null) return null;
tabsizetabsize tabsize17

tabsizetabsize tabsize18 // if our map has an infeasible range x=(cv’, n), we need
tabsizetabsize tabsize19 // to expand the beginning of the range by updating it to
tabsizetabsize tabsize20 // x=(cv, n). Note that cv < cv’ as the function has not yet
tabsizetabsize tabsize21 // returned and the if branch is taken
tabsizetabsize tabsize22 if (ranges.values().contains(n))
tabsizetabsize tabsize23 updateRanges(ranges, cv, n);
tabsizetabsize tabsize24

tabsizetabsize tabsize25 // else a new infeasible range is found and should be
tabsizetabsize tabsize26 // added in the map
tabsizetabsize tabsize27 else
tabsizetabsize tabsize28 ranges.put(cv, n);
tabsizetabsize tabsize29

tabsizetabsize tabsize30 return n;
tabsizetabsize tabsize31 }
tabsizetabsize tabsize32

tabsizetabsize tabsize33 void repair(Structure s) {
tabsizetabsize tabsize34 CandidateVector cv = canonicalizeWRTRepOk(s);
tabsizetabsize tabsize35 cv = findFirstValidCV(cv);
tabsizetabsize tabsize36 updateStructure(s, cv);
tabsizetabsize tabsize37 }

Figure 5.5: Data structure repair using infeasible range caching

46

a b

Figure 5.7: Red-black trees a and b Figure 5.8: Red-black tree c

both of these invalid structures, as it corresponds to the first valid candidate

explored after them (line 29 of Figure 2.3). Imagine the following two repair

scenarios using our algorithm described in Figure 5.5:

1. repair(a); repair(b); The first call, repair(a), makes a direct invocation

to Korat search and finds the valid structure c. In addition, it records

the explored infeasible range r=(CV(a), CV(c)). Next, repair(b) does

not invoke Korat search as the first valid structure for b is already known,

i.e., inRange(CV(b), r) returns true.

2. repair(b); repair(a); The first repair(b) finds c by directly invoking Korat,

plus storing the range r=(CV(b), CV(c)). Next, repair(a) cannot find

CV(a) in r, and makes another direct call to Korat search starting from

a, and it updates the the range r to (CV(a), CV(c)).

47

Chapter 6

Related work

This chapter presents related work on parallel analysis for system-

atic testing. Specifically, we consider two approaches for testing sequential

programs, including one black-box testing technique, namely Korat [1], and

one white-box testing technique, namely symbolic execution [16], and one ap-

proach, namely model checking [3], for testing multi-threaded programs.

6.1 Parallel Korat

The idea of parallel test generation and execution in the context of

Korat was introduced by Misailovic et al. [20]. The idea of infeasible ranges is

rooted in their discussion on potential optimizations [20] where they observe

the potential usefulness of creating sub-ranges that start and end at valid can-

didates. Our second technique, MKoratequ, embodies this observation whereas

our other two techniques build on it.

PKorat [26] introduced a different approach for parallel test generation

using Korat. The key idea in PKorat is to explore Korat’s non-deterministic

field assignments in parallel. Thus, PKorat does not require a previous exe-

cution of Korat search but can still explore the space of candidate structures

48

in parallel. However, re-running PKorat in the online test generation setting

does not utilize any information about any previous execution of Korat; specif-

ically, re-running PKorat does not utilize infeasible ranges and re-explores all

candidates that sequential Korat explores by default. Our approach is orthog-

onal to PKorat and can be integrated with PKorat. For example, PKorat can

be used to explore each range that our approach creates based on the first

execution of Korat search.

6.2 Parallel symbolic execution

ParSym [24] applies the PKorat approach to symbolic execution – a

classic program analysis based on systematic exploration of the program’s

bounded execution paths. Simple Static Partitioning [27] for parallel sym-

bolic execution first performs a shallow depth execution to build a set of

preconditions based on the number of available workers who perform deeper

exploration with respect to their individual preconditions.

Ranged symbolic execution [25] defines ranges for symbolic execution

and uses them for distributing the symbolic exploration of bounded execution

paths; each range is defined by a pair of in-order concrete inputs where the first

input represents the path where symbolic execution starts and the second input

represents the path where symbolic execution ends; moreover, work stealing is

used for dynamic load balancing.

Most recent work by Qiu [23] introduces the idea of feasible ranges for

succinctly memoizing symbolic execution results where the path conditions for

49

all paths in a feasible range are satisfiable. Our idea of infeasible ranges for

Korat is inspired by Qiu’s idea of feasible ranges for symbolic execution and

complements it. We could extend our work and support feasible ranges for

Korat, so the cost of running it to generate valid inputs in a feasible range is

reduced; for example, any candidate within a feasible range is known to be

valid and therefore its validity does not need to be checked again; however,

repOK may still need to be partially (and in some case fully) executed on it

to determine what the next candidate (which is also known to be feasible) is.

Likewise, we could introduce the use of infeasible ranges in symbolic execution.

6.3 Parallel model checking

Funes et al. [9] introduced the idea of ranging for software model check-

ing using Java PathFinder (JPF) [29], an explicit state model checker; specif-

ically, the exploration by the model checker is ranged by a pair of in-order

paths that define the start and end of the model checking run. Previous work

on parallel randomized state space search used multiple randomly generated

start configurations for JPF and ran them in parallel with the expectation

that one of them would find an errorneous state faster than the sequential run

of the model checker [7]. One of the earliest techniques for parallel search for

explicit state checking was parallel Murφ, introduced by Stern and Dill [28],

and shown to provide approximately linear speedups.

50

Chapter 7

Conclusion

We introduced a novel approach for memoizing Korat – a systematic

testing technique based on backtracking search that explores large spaces of

candidate inputs to find desired inputs that are described by imperative pred-

icates given by the user. Our approach builds on previous work on parallel

test generation using Korat, specifically the SEQ-ON algorithm, which allows

efficient re-execution of Korat for input generation using parallel workers with

evenly distributed workloads. Our key insight is that the Korat search typi-

cally encounters and inspects many consecutive candidates that are all invalid

inputs, and such invalid ranges of candidates can be memoized succinctly to

optimize re-execution of Korat, so it can simply prune those candidates when

the search re-executes. We presented three new techniques that embody our

insight and build on SEQ-ON, evaluated the algorithms using a standard suite

of subjects to show the efficacy of our approach, and showed how it enables

Korat to be applied in two new application domains, namely for game play

and data structure repair.

We believe our work opens a promising new direction to optimize solv-

ing of imperative constraints. In future work, we plan to explore the use of

51

feasible ranges [23] for memoization in Korat, develop techniques for utilizing

infeasible and feasible ranges for incremental solving [17, 22, 31] in Korat, e.g.,

when it is re-run after a change to finitization or repOK, as well as other novel

applications of memoized constraint solving.

52

Appendices

53

Appendix A

Evaluation Appendix

Finitization

2 4 6 8 10

Candidates explored 17 139 2194 52567 1702171
Instances found 2 15 203 4140 115975
Infeasible ranges 1 14 202 4139 115974

Table A.1: SinglyLinkedList - Korat default

Finitization

2 4 6 8 10

Candidates explored 58 1666 42815 1323194 150727471
Instances found 6 120 7602 603744 117157172
Infeasible ranges 3 23 941 33555 6628009

Table A.2: BinomialHeap - Korat default

Finitization

2 4 6 8 10

Candidates explored 22 875 45233 2606968 155455872
Instances found 2 14 132 1430 16796
Infeasible ranges 1 13 131 1429 16795

Table A.3: SearchTree - Korat default

54

Finitization

2 4 6 8 10

Candidates explored 45 1425 64533 5231385 583317405
Instances found 15 320 13139 1005075 111511015
Infeasible ranges 8 179 6082 423977 TBA

Table A.4: HeapArray - Korat default

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 47.05 17.98 1.91 0.11 0.00
4 70.58 17.98 1.91 0.11 0.00
16 88.23 35.25 1.91 0.11 0.00
64 88.23 79.85 1.91 0.11 0.00

M
K

o
ra

t i
n
f

256 88.23 89.20 23.06 0.11 0.00
1024 88.23 89.20 79.48 0.24 0.00

1 70.58 21.58 2.59 0.17 0.00
4 88.23 44.60 5.24 0.22 0.00
16 88.23 78.41 11.48 0.52 0.01
64 88.23 89.20 37.51 1.78 0.06

M
K

o
ra

t e
q
u

256 88.23 89.20 88.83 7.18 0.24
1024 88.23 89.20 90.74 26.46 0.95

1 88.23 29.49 3.41 0.22 0.00
4 88.23 53.23 7.24 0.50 0.02
16 88.23 89.20 18.64 1.45 0.06
64 88.23 89.20 46.71 4.54 0.23

M
K

o
ra

t

256 88.23 89.20 90.74 13.84 0.80
1024 88.23 89.20 90.74 38.79 2.70

Table A.5: SinglyLinkedList reduction [%]

55

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 20.68 7.08 10.17 1.55 0.66
4 75.86 22.44 10.17 1.55 0.66
16 82.75 72.38 38.87 11.45 0.66
64 89.65 84.87 63.98 31.26 0.66

M
K

o
ra

t i
n
f

256 89.65 88.95 71.45 41.79 2.05
1024 89.65 92.19 73.10 44.42 5.88

1 84.48 45.61 10.17 1.55 0.66
4 84.48 72.92 52.24 15.82 0.66
16 87.93 89.91 64.92 38.46 1.87
64 89.65 90.75 73.92 45.73 1.75

M
K

o
ra

t e
q
u

256 89.65 92.13 74.33 45.75 6.09
1024 89.65 92.79 75.84 45.79 7.35

1 84.48 45.61 28.06 12.77 1.87
4 87.93 90.03 67.01 34.21 4.73
16 87.93 92.31 74.19 45.76 7.35
64 87.93 92.73 75.53 45.84 7.35

M
K

o
ra

t

256 87.93 92.73 78.61 46.10 7.36
1024 87.93 92.73 82.24 46.79 7.38

Table A.6: BinomialHeap reduction [%]

56

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 18.18 7.20 0.73 0.06 0.00
4 68.18 7.20 0.73 0.06 0.00
16 90.90 14.51 0.73 0.06 0.00
64 90.90 77.59 0.73 0.06 0.00

M
K

o
ra

t i
n
f

256 90.90 94.28 42.90 0.06 0.00
1024 90.90 98.40 85.55 0.06 0.00

1 50.00 13.94 1.49 0.13 0.01
4 90.90 35.31 3.71 0.35 0.02
16 90.90 98.40 12.87 1.18 0.10
64 90.90 98.40 49.21 4.56 0.38

M
K

o
ra

t e
q
u

256 90.90 98.40 99.70 18.01 1.52
1024 90.90 98.40 99.70 71.81 6.10

1 90.90 17.14 1.80 0.17 0.01
4 90.90 40.57 4.65 0.43 0.03
16 90.90 98.40 14.87 1.40 0.12
64 90.90 98.40 51.86 5.01 0.43

M
K

o
ra

t

256 90.90 98.40 99.70 18.81 1.63
1024 90.90 98.40 99.70 72.54 6.31

Table A.7: SearchTree reduction [%]

57

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00

16 44.44 0.00 0.00 0.00 0.00
64 66.66 0.00 0.00 0.00 0.00

M
K

o
ra

t i
n
f

256 66.66 26.38 0.00 0.00 0.00
1024 66.66 71.08 0.00 0.00 0.00

1 15.55 0.35 0.01 0.00 0.00
4 40.00 1.54 0.06 0.00 0.00

16 66.66 8.07 0.28 0.00 0.00
64 66.66 29.26 0.96 0.01 0.00

M
K

o
ra

t e
q
u

256 66.66 73.26 3.98 0.05 0.00
1024 66.66 77.54 15.82 0.20 0.00

1 17.77 1.54 0.06 0.00 0.00
4 46.66 5.05 0.23 0.00 0.00

16 64.44 16.98 0.88 0.01 0.00
64 64.44 45.19 3.01 0.07 0.00

M
K

o
ra

t

256 64.44 77.47 9.54 0.24 0.00
1024 64.44 77.47 28.52 0.88 0.01

Table A.8: HeapArray reduction [%]

58

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 0.11 0.11 0.11 0.11 0.11 0.11
4 0.11 0.11 0.11 0.11 0.11 0.11

16 0.11 0.11 0.11 0.11 0.11 0.11
64 0.11 0.11 0.11 0.11 0.11 0.11

M
K

o
ra

t i
n
f

256 0.11 0.11 0.11 0.11 0.11 0.11
1024 0.01 0.11 0.18 0.24 0.24 0.24

1 0.22 0.50 1.45 4.54 13.84 38.79
4 0.22 0.50 1.45 4.54 13.84 38.79

16 0.22 0.50 1.45 4.54 13.84 38.79
64 0.22 0.50 1.45 4.54 13.84 38.79

M
K

o
ra

t

256 0.22 0.50 1.45 4.54 13.84 38.79
1024 0.22 0.50 1.45 4.54 13.84 38.79

Table A.9: SinglyLinkedList - reduction [%], Finitization = 8

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 1.55 1.55 1.55 1.55 1.55 1.55
4 1.55 1.55 1.55 1.55 1.55 1.55

16 11.45 11.45 11.45 11.45 11.45 11.45
64 11.45 26.31 31.26 31.26 31.26 31.26

M
K

o
ra

t i
n
f

256 11.14 30.33 41.79 41.79 41.79 41.79
1024 11.14 32.03 44.42 44.42 44.42 44.42

1 12.77 34.21 45.76 45.84 46.10 46.79
4 12.77 34.21 45.76 45.84 46.10 46.79

16 12.77 34.21 45.76 45.84 46.10 46.79
64 12.77 34.21 45.76 45.84 46.10 46.79

M
K

o
ra

t

256 12.77 34.21 45.76 45.84 46.10 46.79
1024 12.77 34.21 45.76 45.84 46.10 46.79

Table A.10: BinomialHeap - reduction [%], Finitization = 8

59

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 0.06 0.06 0.06 0.06 0.06 0.06
4 0.06 0.06 0.06 0.06 0.06 0.06

16 0.06 0.06 0.06 0.06 0.06 0.06
64 0.06 0.06 0.06 0.06 0.06 0.06

M
K

o
ra

t i
n
f

256 0.06 0.06 0.06 0.06 0.06 0.06
1024 0.06 0.06 0.06 0.06 0.06 0.06

1 0.17 0.43 1.40 5.01 18.81 72.54
4 0.17 0.43 1.40 5.01 18.81 72.54

16 0.17 0.43 1.40 5.01 18.81 72.54
64 0.17 0.43 1.40 5.01 18.81 72.54

M
K

o
ra

t

256 0.17 0.43 1.40 5.01 18.81 72.54
1024 0.17 0.43 1.40 5.01 18.81 72.54

Table A.11: SearchTree - reduction [%], Finitization = 8

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00
64 0.00 0.00 0.00 0.00 0.00 0.00

M
K

o
ra

t i
n
f

256 0.00 0.00 0.00 0.00 0.00 0.00
1024 0.00 0.00 0.00 0.00 0.00 0.00

1 0.00 0.00 0.01 0.07 0.24 0.88
4 0.00 0.00 0.01 0.07 0.24 0.88
16 0.00 0.00 0.01 0.07 0.24 0.88
64 0.00 0.00 0.01 0.07 0.24 0.88

M
K

o
ra

t

256 0.00 0.00 0.01 0.07 0.24 0.88
1024 0.00 0.00 0.01 0.07 0.24 0.88

Table A.12: HeapArray - reduction [%], Finitization = 8

60

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 4.5 57.0 1076.0 26252.0 851041.5
4 1.0 22.8 430.4 10500.8 340416.6
16 0.1 5.2 126.5 3088.4 100122.5
64 0.1 0.4 33.1 807.7 26185.8

M
K

o
ra

t i
n
f

256 0.1 0.1 6.5 204.3 6622.8
1024 0.1 0.1 0.4 51.1 1660.5

1 2.5 54.5 1068.5 26238.0 851036.0
4 0.4 15.4 415.8 10489.8 340407.8
16 0.1 1.7 114.2 3076.0 100108.7
64 0.1 0.2 21.0 794.2 26170.5

M
K

o
ra

t e
q
u

256 0.1 0.1 0.9 189.8 6606.8
1024 0.1 0.1 0.2 37.7 1644.7

1 1.0 49.0 1059.5 26225.0 851002.0
4 0.4 13.0 407.0 10460.6 340356.4
16 0.1 0.8 105.0 3047.1 100057.6
64 0.1 0.2 17.9 771.9 26125.4

M
K

o
ra

t

256 0.1 0.1 0.7 176.2 6569.9
1024 0.1 0.1 0.2 31.3 1615.7

SEQ-ON 8.5 69.5 1097.0 26283.5 851085.5

Table A.13: SinglyLinkedList - AVG workload per worker

61

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 23.0 774.0 19230.0 651335.5 74861949.0
4 2.8 258.4 7692.0 260534.2 29944779.6

16 0.5 27.0 1539.5 68917.5 8807288.1
64 0.1 3.8 237.2 13991.6 2303444.5

M
K

o
ra

t i
n
f

256 0.1 0.7 47.5 2996.8 574423.1
1024 0.1 0.1 11.2 717.4 138399.5

1 4.5 453.0 19230.0 651335.5 74861949.0
4 1.8 90.2 4089.2 222764.0 29944778.8

16 0.4 9.8 883.2 47899.0 8699784.3
64 0.1 2.3 171.7 11045.6 2278270.6

M
K

o
ra

t e
q
u

256 0.1 0.5 42.7 2793.1 550727.5
1024 0.1 0.1 10.0 699.8 136230.4

1 4.5 453.0 15399.0 577065.5 73948185.5
4 1.4 33.2 2824.4 174084.2 28719235.8

16 0.4 7.5 649.9 42215.2 8213947.1
64 0.1 1.8 161.1 11024.2 2148216.5

M
K

o
ra

t

256 0.1 0.4 35.6 2774.6 543284.6
1024 0.1 0.1 7.4 686.8 136188.3

SEQ-ON 29.0 833.0 21407.5 661597.0 75363735.5

Table A.14: BinomialHeap - AVG workload per worker

62

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 9.0 406.0 22450.0 1302607.5 77723578.5
4 1.4 162.4 8980.0 521043.0 31089431.4

16 0.1 44.0 2641.1 153247.9 9143950.4
64 0.0 3.0 690.7 40080.2 2391494.7

M
K

o
ra

t i
n
f

256 0.0 0.1 100.5 10137.0 604852.7
1024 0.0 0.0 6.3 2541.6 151655.7

1 5.5 376.5 22278.5 1301692.0 77718956.0
4 0.4 113.2 8710.6 519559.2 31082023.4

16 0.1 0.8 2318.0 151536.2 9135226.2
64 0.0 0.2 353.4 38275.0 2382398.3

M
K

o
ra

t e
q
u

256 0.0 0.0 0.5 8316.1 595637.3
1024 0.0 0.0 0.1 716.8 142407.9

1 1.0 362.5 22207.5 1301253.0 77716779.0
4 0.4 104.0 8625.2 519117.4 31079611.0

16 0.1 0.8 2264.8 151195.7 9133443.9
64 0.0 0.2 335.0 38096.6 2381223.3

M
K

o
ra

t

256 0.0 0.0 0.5 8235.1 594967.6
1024 0.0 0.0 0.1 698.2 142085.9

SEQ-ON 11.0 437.5 22616.5 1303484.0 77727936.0

Table A.15: SearchTree - AVG workload per worker

63

Equidistant candidates Finitization

Infeasible ranges 2 4 6 8 10

1 22.5 712.5 32266.5 2615692.5 291658702.5
4 9.0 285.0 12906.6 1046277.0 116663481.0
16 1.4 83.8 3796.0 307728.5 34312788.5
64 0.3 21.9 992.8 80482.8 8974113.9

M
K

o
ra

t i
n
f

256 0.3 4.0 251.1 20355.5 2269717.5
1024 0.3 0.4 62.9 5103.7 569090.1

1 19.0 710.0 32263.0 2615689.0 291658690.0
4 5.4 280.6 12898.6 1046267.8 116663467.2
16 0.8 77.0 3785.0 307718.6 34312775.0
64 0.3 15.5 983.2 80472.9 8974100.7

M
K

o
ra

t e
q
u

256 0.3 1.4 241.0 20344.7 2269704.1
1024 0.3 0.3 53.0 5093.3 569076.8

1 18.5 701.5 32244.5 2615655.5 291658646.5
4 4.8 270.6 12876.0 1046223.6 116663398.4
16 0.9 69.5 3762.4 307668.3 34312694.3
64 0.3 12.0 962.8 80425.6 8974021.2

M
K

o
ra

t

256 0.3 1.2 227.1 20304.9 2269631.2
1024 0.3 0.3 45.0 5058.5 569010.8

SEQ-ON 22.5 712.5 32266.5 2615692.5 291658702.5

Table A.16: HeapArray - AVG workload per worker

64

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 26252.0 26252.0 26252.0 26252.0 26252.0 26252.0
4 10500.8 10500.8 10500.8 10500.8 10500.8 10500.8

16 3088.4 3088.4 3088.4 3088.4 3088.4 3088.4
64 807.7 807.7 807.7 807.7 807.7 807.7

M
K

o
ra

t i
n
f

256 204.3 204.3 204.3 204.3 204.3 204.3
1024 51.2 51.2 51.1 51.1 51.1 51.1

1 26225.0 26151.5 25900.5 25088.5 22643.5 16087.5
4 10490.0 10460.6 10360.2 10035.4 9057.4 6435.0

16 3085.2 3076.6 3047.1 2951.5 2663.9 1892.6
64 806.9 804.6 796.9 771.9 696.7 495.0

M
K

o
ra

t

256 204.0 203.5 201.5 195.2 176.2 125.1
1024 51.1 51.0 50.5 48.9 44.1 31.3

SEQ-ON 26283.5 26283.5 26283.5 26283.5 26283.5 26283.5

Table A.17: SinglyLinkedList - AVG workload per worker, Finitization = 8

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 651335.5 651335.5 651335.5 651335.5 651335.5 651335.5
4 260534.2 260534.2 260534.2 260534.2 260534.2 260534.2
16 68917.5 68917.5 68917.5 68917.5 68917.5 68917.5
64 18024.6 14999.8 13991.6 13991.6 13991.6 13991.6

M
K

o
ra

t i
n
f

256 4574.8 3586.7 2996.8 2996.8 2996.8 2996.8
1024 1147.0 877.3 717.4 717.4 717.4 717.4

1 577065.5 435210.5 358829.5 358287.0 356535.5 352019.5
4 230826.2 174084.2 143531.8 143314.8 142614.2 140807.8
16 67890.0 51201.2 42215.2 42151.4 41945.3 41414.0
64 17755.8 13391.0 11040.9 11024.2 10970.3 10831.3

M
K

o
ra

t

256 4490.7 3386.8 2792.4 2788.2 2774.6 2739.4
1024 1125.9 849.1 700.1 699.1 695.6 686.8

SEQ-ON 661597.0 661597.0 661597.0 661597.0 661597.0 661597.0

Table A.18: BinomialHeap - AVG workload per worker, Finitization = 8

65

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 1302607.5 1302607.5 1302607.5 1302607.5 1302607.5 1302607.5
4 521043.0 521043.0 521043.0 521043.0 521043.0 521043.0
16 153247.9 153247.9 153247.9 153247.9 153247.9 153247.9
64 40080.2 40080.2 40080.2 40080.2 40080.2 40080.2

M
K

o
ra

t i
n
f

256 10137.0 10137.0 10137.0 10137.0 10137.0 10137.0
1024 2541.6 2541.6 2541.6 2541.6 2541.6 2541.6

1 1301253.0 1297793.5 1285164.0 1238141.0 1058220.0 357867.0
4 520501.2 519117.4 514065.6 495256.4 423288.0 143146.8
16 153088.5 152681.5 151195.7 145663.6 124496.4 42102.0
64 40038.5 39932.1 39543.5 38096.6 32560.6 11011.2

M
K

o
ra

t

256 10126.4 10099.5 10001.2 9635.3 8235.1 2784.9
1024 2539.0 2532.2 2507.6 2415.8 2064.8 698.2

SEQ-ON 1303484.0 1303484.0 1303484.0 1303484.0 1303484.0 1303484.0

Table A.19: SearchTree - AVG workload per worker, Finitization = 8

Equidistant Infeasible ranges

candidates 1 4 16 64 256 1024

1 2615692.5 2615692.5 2615692.5 2615692.5 2615692.5 2615692.5
4 1046277.0 1046277.0 1046277.0 1046277.0 1046277.0 1046277.0
16 307728.5 307728.5 307728.5 307728.5 307728.5 307728.5
64 80482.8 80482.8 80482.8 80482.8 80482.8 80482.8

M
K

o
ra

t i
n
f

256 20355.5 20355.5 20355.5 20355.5 20355.5 20355.5
1024 5103.7 5103.7 5103.7 5103.7 5103.7 5103.7

1 2615655.5 2615559.0 2615181.0 2613835.0 2609186.0 2592521.5
4 1046262.2 1046223.6 1046072.4 1045534.0 1043674.4 1037008.6
16 307724.1 307712.8 307668.3 307510.0 306963.0 305002.5
64 80481.7 80478.7 80467.1 80425.6 80282.6 79769.8

M
K

o
ra

t

256 20355.3 20354.5 20351.6 20341.1 20304.9 20175.2
1024 5103.7 5103.5 5102.7 5100.1 5091.0 5058.5

SEQ-ON 2615692.5 2615692.5 2615692.5 2615692.5 2615692.5 2615692.5

Table A.20: HeapArray - AVG workload per worker, Finitization = 8

66

References

[1] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:

Automated testing based on Java predicates. In ISSTA, pages 123–133,

2002.

[2] Cristian Cadar and Dawson R. Engler. Execution generated test cases:

How to make systems code crash itself. In Model Checking Software, 12th

International SPIN Workshop, San Francisco, CA, USA, August 22-24,

2005, Proceedings, pages 2–23, 2005.

[3] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model

Checking. MIT Press, 1999.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd

edition, 2009.

[5] Brian Demsky and Martin C. Rinard. Automatic detection and repair

of errors in data structures. In Proceedings of the 2003 ACM SIG-

PLAN Conference on Object-Oriented Programming Systems, Languages

and Applications, OOPSLA 2003, October 26-30, 2003, Anaheim, CA,

USA, pages 78–95, 2003.

67

[6] Brian Demsky and Martin C. Rinard. Data structure repair using goal-

directed reasoning. In 27th International Conference on Software Engi-

neering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, pages

176–185, 2005.

[7] Matthew B. Dwyer, Sebastian Elbaum, Suzette Person, and Rahul Puran-

dare. Parallel randomized state-space search. In 29th International Con-

ference on Software Engineering (ICSE 2007), Minneapolis, MN, USA,

May 20-26, 2007, ICSE ’07, pages 3–12, 2007.

[8] Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid.

Assertion-based repair of complex data structures. In 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE 2007),

November 5-9, 2007, Atlanta, Georgia, USA, pages 64–73, 2007.

[9] Diego Funes, Junaid Haroon Siddiqui, and Sarfraz Khurshid. Ranged

model checking. ACM SIGSOFT Software Engineering Notes, pages 1–

5, 2012.

[10] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Vik-

tor Kuncak, and Darko Marinov. Test generation through programming

in UDITA. In Proceedings of the 32nd ACM/IEEE International Confer-

ence on Software Engineering - Volume 1, ICSE 2010, Cape Town, South

Africa, 1-8 May 2010, pages 225–234, 2010.

[11] Patrice Godefroid. Model checking for programming languages using

68

verisoft. In Conference Record of POPL’97: The 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, Papers

Presented at the Symposium, Paris, France, 15-17 January 1997, pages

174–186, 1997.

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed

automated random testing. In Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago,

IL, USA, June 12-15, 2005, pages 213–223, 2005.

[13] G. Haugk, F. M. Lax, R. D. Royer, and J. R. Williams. The 5ess switching

system: Maintenance capabilities. AT T Technical Journal, pages 1385–

1416, 1985.

[14] Sarfraz Khurshid, Iván García, and Yuk Lai Suen. Repairing structurally

complex data. In Model Checking Software, 12th International SPIN

Workshop, San Francisco, CA, USA, August 22-24, 2005, Proceedings,

pages 123–138, 2005.

[15] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized

symbolic execution for model checking and testing. In Tools and Algo-

rithms for the Construction and Analysis of Systems, 9th International

Conference, TACAS 2003, Held as Part of the Joint European Confer-

ences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland,

April 7-11, 2003, Proceedings, pages 553–568, 2003.

69

[16] James C. King. Symbolic execution and program testing. Commun.

ACM, pages 385–394, 1976.

[17] Xiaoming Li, Daryl Shannon, Jabari Walker, Sarfraz Khurshid, and Darko

Marinov. Analyzing the uses of a software modeling tool. Electr. Notes

Theor. Comput. Sci., pages 3–18, 2006.

[18] Barbara Liskov and John Guttag. Program Development in Java: Ab-

straction, Specification, and Object-Oriented Design. Addison-Wesley

Longman Publishing Co., Inc., 2000.

[19] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for

automated testing of Java programs. In 16th IEEE International Confer-

ence on Automated Software Engineering (ASE 2001), 26-29 November

2001, Coronado Island, San Diego, CA, USA, page 22, 2001.

[20] Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khur-

shid, and Darko Marinov. Parallel test generation and execution with

Korat. In Proceedings of the 6th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia,

September 3-7, 2007, pages 135–144, 2007.

[21] Samiha Mourad and Dorothy Andrews. On the reliability of the IBM

MVS/XA operating. IEEE Trans. Software Eng., pages 1135–1139,

1987.

70

[22] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Di-

rected incremental symbolic execution. In Proceedings of the 32nd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 504–515,

2011.

[23] Rui Qiu. Scaling and certifying symbolic execution. Unpublished PhD

thesis proposal, 2016.

[24] J. H. Siddiqui and S. Khurshid. ParSym: Parallel symbolic execution.

pages V1–405–V1–409, Oct.

[25] Junaid Haroon Siddiqui and Sarfraz Khurshid. Scaling symbolic exe-

cution using ranged analysis. In Proceedings of the 27th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson,

AZ, USA, October 21-25, 2012, OOPSLA ’12, pages 523–536.

[26] Junaid Haroon Siddiqui and Sarfraz Khurshid. PKorat: Parallel genera-

tion of structurally complex test inputs. In Second International Confer-

ence on Software Testing Verification and Validation, ICST 2009, Denver,

Colorado, USA, April 1-4, 2009, pages 250–259, 2009.

[27] Matt Staats and Corina Pǎsǎreanu. Parallel symbolic execution for struc-

tural test generation. In Proceedings of the Nineteenth International Sym-

posium on Software Testing and Analysis, ISSTA 2010, Trento, Italy, July

12-16, 2010, ISSTA ’10, pages 183–194.

71

[28] Ulrich Stern and David L. Dill. Parallelizing the murphi verifier. Formal

Methods in System Design, pages 117–129, 2001.

[29] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park.

Model checking programs. In The Fifteenth IEEE International Confer-

ence on Automated Software Engineering, ASE 2000, Grenoble, France,

September 11-15, 2000, pages 3–12, 2000.

[30] Tao Xie, Darko Marinov, and David Notkin. Rostra: A framework for

detecting redundant object-oriented unit tests. In Automated Software

Engineering, 2004. Proceedings. 19th International Conference on, pages

196–205, 2004.

[31] Guowei Yang, Corina S. Pasareanu, and Sarfraz Khurshid. Memoized

symbolic execution. In International Symposium on Software Testing

and Analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012,

pages 144–154, 2012.

72

Vita

Nima Dini was born in Tehran, Iran. He received his Bachelors of Sci-

ence degree in Software Engineering from University of Tehran. He applied to

The University of Texas at Austin graduate program and started his graduate

studies in Software Engineering in Fall 2014.

Email address: nima.dini@gmail.com

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

73

