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Preliminary Design of Spacecraft Trajectories for

Missions to Outer Planets and Small Bodies

Demyan Vasilyevich Lantukh, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Ryan P. Russell

Multiple gravity assist (MGA) spacecraft trajectories can be difficult

to find, an intractable problem to solve completely. However, these trajecto-

ries have enormous benefits for missions to challenging destinations such as

outer planets and primitive bodies. Techniques are presented to aid in solving

this problem with a global search tool and additional investigation into one

particular proximity operations option is discussed.

Explore is a global grid-search MGA trajectory pathsolving tool. An

efficient sequential tree search eliminates v∞ discontinuities and prunes trajec-

tories. Performance indices may be applied to further prune the search, with

multiple objectives handled by allowing these indices to change between tra-

jectory segments and by pruning with a Pareto-optimality ranking. The MGA

search is extended to include deep space maneuvers (DSM), v∞ leveraging

transfers (VILT) and low-thrust (LT) transfers. In addition, rendezvous or nπ

sequences can patch the transfers together, enabling automatic augmentation

of the MGA sequence.

Details of VILT segments and nπ sequences are presented: A boundary-

value problem (BVP) VILT formulation using a one-dimensional root-solve

enables inclusion of an efficient class of maneuvers with runtime comparable
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to solving ballistic transfers. Importantly, the BVP VILT also allows the cal-

culation of velocity-aligned apsidal maneuvers (VAM), including inter-body

transfers and orbit insertion maneuvers. A method for automated inclusion

of nπ transfers such as resonant returns and back-flip trajectories is intro-

duced: a BVP is posed on the v∞ sphere and solved with one or more nπ

transfers – which may additionally fulfill specified science objectives. The nπ

sequence BVP is implemented within the broader search, combining nπ and

other transfers in the same trajectory.

To aid proximity operations around small bodies, analytical methods

are used to investigate stability regions in the presence of significant solar radi-

ation pressure (SRP) and body oblateness perturbations. The interactions of

these perturbations allow for heliotropic orbits, a stable family of low-altitude

orbits investigated in detail. A novel constrained double-averaging technique

analytically determines inclined heliotropic orbits. This type of knowledge is

uniquely valuable for small body missions where SRP and irregular body shape

are very important and where target selection is often a part of the mission

design.
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Chapter 1

Introduction

Constraints from the required orbital energy and from the necessary

navigation tolerances make certain celestial bodies more challenging to visit.

Advances in spacecraft propulsion, in launch vehicles, in trajectory design

methods, and in navigation capabilities have led to an expansion of the types

of missions proposed and flown and in the destinations which are achievable

for an acceptable cost.

In this chapter, multiple gravity assist (MGA) trajectories are intro-

duced, including a history of the use of gravity assists. An overview of the

historical and state of the art methods for calculating such trajectories follows

as context for the method which is described in Chapter 2. These MGA trajec-

tories are particularly useful for missions to asteroids and to the outer planets

and also for moon tours around the outer planets. Note that Appendix A

provides a list of acronyms and notation used throughout.

Two particular trajectory types are also introduced in preparation for

detailed discussion later in this dissertation. An efficient class of maneuvers is

introduced via v∞ leveraging transfers (VILT). Basic background is provided

which is then expanded upon in Chapter 3 where a particular method for the

inclusion of VILTs in a broad trajectory search is introduced. Resonant or nπ

transfers are also introduced in this chapter then further detailed and applied

in Chapter 4
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A brief introduction to proximity operations around asteroids follows,

focusing on the orbital perturbations experienced by a spacecraft operating

in the vicinity of a small body. These challenges introduce the context and

motivation for the analytic and numerical studies of a class of orbits around

asteroids presented in Chapter 5.

1.1 Multiple gravity assist trajectories

Gravity assist flybys are essentially the intentional use of gravitational

perturbations from minor bodies along a trajectory. Although perturbations

to comets (and spacecraft) caused by planetary bodies had been known and

observed, their systematic implementation as a means to benefit spacecraft

missions was enabled by a mathematical framework which later developed into

the patched conics model [1]. Further study has expanded the understanding

and mathematical modeling of gravity assist flybys with the aim of easier

inclusion in trajectory design [2, 3]. Modern astrodynamics texts regularly

include the basic principles of gravity assists and MGA trajectories [4, 5, 6].

1.1.1 History of gravity assist missions

The application of gravity assist flybys has enabled missions which

would have otherwise required too much ∆V . A gravity assist (or flyby or

swing-by) uses a close passage to a massive body to exchange momentum

between the flyby body and spacecraft, potentially significantly altering the

spacecraft trajectory while altering the trajectory of the much more massive

body by a negligible amount. Gravity assist flybys were first used by Mariner

10, which used a gravity assist at Venus to pass by Mercury [7], and Pioneer

11, which flew by Jupiter on the way to a flyby of Saturn [8]. After navigation
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of a gravity assist was demonstrated, gravity assists became a critical part of

many space missions; Table 1.1 gives some key details on some selected flown

and planned space missions which utilize gravity assists. Table 1.1 notably

does not include any missions which did not successfully navigate any gravity

assists or which only used the Moon as a gravity assist body.

Beginning with the Galileo mission to Jupiter, MGA trajectories have

been used to create moon tours which use repeated flybys of one or more

natural satellites of a planet to shape the spacecraft trajectory and achieve the

desired science objectives. The final tour trajectory chosen for Galileo came

after a series of studies [35, 36, 37, 38]; its calculation was the first major

implementation of specialized computational aids for MGA trajectories [13].

The Cassini-Huygens mission implemented a moon tour at Saturn [19] which

has been so successful at conserving spacecraft consumables and also effective

at delivering valuable science that it has been extended twice like Galileo, but

with the second extension lasting seven years [21]. Such an ambitious extension

indicates the improvement in tools available to determine MGA trajectories.

The inclusion of targeted low-altitude passes of small moons – namely because

of interest in Enceladus – also shows the improvement of MGA trajectory

methods since such small bodies provide little bending ability for effective

gravity assists.

In addition to the many programs of record shown in Table 1.1, many

other studies of potential missions have been conducted which include MGA

trajectories to the outer planets [39, 40] as well as to Pluto and beyond [41,

42]. New moon tours at Jupiter [43, 44, 45] and Neptune [40] have also been

studied, with a particular recent focus on missions to study Europa [46, 47, 48].

Similar methods have also been applied to gain the benefits of gravity assists
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Table 1.1: Selected flown and planned space missions utilizing one or more
gravity assist flybys.a

Mission Destination(s) Launch/ Sequence Ref.
Start

Mariner 10 Venus/Mercury 1973 EVMe [7]
Pioneer 11 Jupiter/Saturn 1973 EJS [8]
Voyager 1 Jupiter/Saturn/Titan 1977 JSTi [9]
Voyager 2 ”grand tour” 1977 JSUN [9]
Vega 1 & 2 Venus/Halley 1984 EVHa [10]
Giotto Halley/Grigg-Skjellerup 1985 EHaEGr [11]
Galileo (IP) Jupiter 1989 EVEEJ [12]
Galileo (moon tour) Jupiter 1995 {12 flybys} [13]
Galileo (GEM tour) Jupiter 1997 {+17 flybys} [14]
Galileo (GMM tour) Jupiter 2000 {+4 flybys} [15]

Ulysses Sun 1990 EJSun [16]
NEAR-Shoemaker Eros 1996 EEEros [17]
Cassini-Huygens (IP) Saturn/Titan 1997 EVVEJS [18]
Cassini (moon tour) Saturn 2004 {54 flybys} [19]
Cassini (Equinox) Saturn 2008 {+35 flybys} [20]
Cassini (Solstice) Saturn 2010 {+7 years tour} [21]

Stardust/NExT Wild-2/Tempel-1 1999 EEWiETe [22]
Hayabusa Itokawa 2003 EEIt-ItE [23]
Rosetta Churyumov-Gerasimenko 2004 EEMEECh [24]
MESSENGER Mercury 2004 EEVVMe3Me [25]
Deep Impact/EPOXI Tempel-1/Hartley-2 2005 ETeEEEHar [26]
New Horizons Pluto 2006 EJP [27]
Dawn Vesta/Ceres 2007 EMVe-VeCe [28]
Juno Jupiter 2011 EEJ [29]
Hayabusa2 1999 JU3 2014 EEJu-JuE [30]

OSIRIS-REx Bennu 2016 EEBe-BeE [31]
BepiColombo Mercury 2017 EEVVMe5Me [32]
Solar Probe+ Sun 2018 EV7Sun [33]
JUICE (IP) Jupiter 2022 EVEEJ [34]
JUICE (moon tour) Jupiter 2030 {27 flybys} [34]

a Mission information updated using online resources as needed: nasa.gov, esa.int,
jaxa.jp, [Accessed April 4, 2015]
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for deflecting near-earth asteroids [49] and for getting to Mars via one-way

transfers [50] or cycler trajectories [51] as well as for satellite-aided capture at

Jupiter [52, 53].

1.1.2 Methods for solving multiple gravity assist trajectories

With all the advantages of MGA trajectories, they are also difficult to

calculate because the solution space can involve many continuous parameters

with nonlinear constraints and many local optima, as investigated by [54, 55,

56]. As noted by these authors as well as those from [57], the models used

for the MGA trajectory and the inclusion of more trajectory options such as

maneuvers and low-thrust arcs affects the solution space and complicates the

search for trajectories.

A variety of methods have been proposed to solve for MGA trajectories,

with continuing active research in the topic, as described in the following

sections. This introduction to methods is focused on global search (GS) and

global optimization (GO) methods; there also exist local search [58] and local

optimization methods for MGA trajectories [59] and spacecraft trajectories

in general [60]. In addition, commercially available software and black-box

optimizers are available for the local problem, as described by [61], and often

applied to optimize a trajectory found by a global search tool. By contrast,

global MGA trajectory search is generally conducted with specialized methods

or by heavily modifying general GO codes.

1.1.2.1 Global search versus global optimization

A GS seeks to map a solution space within a set of constraints. A GO

is aimed at locating global minimizers of a performance index. When there
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are multiple objectives and a single performance index cannot be defined, the

Pareto front of the solution space is often sought by a GO method. In the mul-

tiobjective case, a GS and GO can provide similar end results, though a search

will generally provide more solutions. Thorough and helpful introductions to

MGA global optimization can be found in [57, 62].

An optimizer generally returns superior solutions to a search, though

a properly performed search will have one or more solutions in the vicinity

of the minimizers, which can then be found by a local optimization method.

As a result, many GS and GO techniques also implement a local optimization

portion. Finding the local minimizers is extra computational effort, but opti-

mizing reduces the number of solutions within one basin of attraction, which

can reduce total compute time for the search as a whole. In addition, the

minimizers are the solutions of interest, so GO provides a more accurate view

of the Pareto front than GS methods without a local optimization.

Promising solutions returned from a GS are almost always optimized

in some way later (e.g. the work of [59] applied to refine original trajectory

searches for Galileo [13]), but this optimization is only performed on relatively

few individual solutions. As a result of this postprocessing, GS and GO may

be functionally interchangeable for well-posed multiobjective problems, so a

clear distinction between the methods is not maintained in this chapter except

where differences between GS and GO are being noted.

1.1.2.2 Pathfinding versus pathsolving

Solution methods fall into three categories based on which part of the

MGA trajectory problem they aim to solve. One subproblem of the MGA tra-

jectory problem consists of determining a sequence of events where countable
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sets of categorical variables combine to outline a sequence. Such variables can

include the number of gravity assists and the order of bodies in the gravity

assist sequence. This sequence subproblem is called pathfinding or more gener-

ally planning [57]. The pathfinding problem results in a combinatorially large

number of options for all but the simplest problems – and pathfinding is com-

plicated by the need to solve for each of these paths to determine feasibility

and/or optimality. Solving for particular solutions of a given sequence is path-

solving or scheduling and generally involves choosing values for continuous or

mixed integer free parameters to meet constraints and/or minimize an objec-

tive function. Solution methods may focus on pathfinding, pathsolving, or be

applicable to both. Techniques designed to handle both pathfinding and path-

solving may be called hybrid methods and may or may not be a combination of

distinct GO methods. Such hybrid methods may separate the pathfinding and

pathsolving into two subproblems or may be handle both as a single problem.

Global solution methods for MGA trajectories may be systematic or

stochastic or a mixture of both types. Each approach has advantages and

disadvantages; the following sections lay out the different methods, but details

of implementations are often unpublished or vague. Because many people

engaged in calculating MGA and other complex spacecraft trajectories are

practitioners and interested in potentially flying the results of their search

and optimization tools, the results are often published with only a cursory

mention (or no mention at all) of the methodology used to discover them.

Figure 1.1 breaks down some of the types of methods and different references

which utilize them. Additional insight is gathered by personal correspondence

regarding unpublished methods and prototype tools [63, 64]. Institution of

the Global Trajectory Optimisation Competition (GTOC) which has been
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occurring every year or two since 2005 [65] has helped encourage dialog on

different techniques and their effectiveness. However, GTOC problems are

often solved by one-off solution methods which lean heavily on intuition and

may not be more broadly applicable to other spacecraft trajectory problems.

1.1.2.3 Graphical methods

The earliest MGA design techniques were the combination of intuition

and mathematical formulas and intensive manual processes. As the number of

gravity assists increased, graphical approaches to laying out the solution space

were introduced. Planning the Galileo moon tour options introduced some

graphical methods for visualizing the mission as a whole and for visualizing

what orbits are achievable by one or more gravity assists [37]. These graphical

methods are systematic in nature but generally work in a reduced number of

dimensions and level of fidelity compared to the systematic automatic path-

solving methods discussed in the next section.

Isoline graphs are one graphical-analytic tool; the graphs plot contours

against two variables which fully define an orbit so that every point on the

graph represents an orbit of given size and shape but arbitrary phasing [5].

These isoline graphs have been further refined for MGA trajectories as Tis-

serand graphs [66]. Tisserand graphs are limited to MGA trajectory pathfind-

ing because they do not provide any information about phasing and so require

another method to do the pathsolving for a given sequence. There is also a

limit to how much information may be effectively portrayed and processed at

once and the method for gravity assists is not suitable for eccentric body orbits

or non-coplanar orbits [66]. Nevertheless, Tisserand graphs have been refined

to include various information in a standardized way and to incorporate addi-
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Figure 1.1: Several global search and optimization methods applied to MGA
trajectories, along with associated references. Boxes with solid edges are
named tools and boxes with dotted edges categorize the remaining references.
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tional types of transfers [67] and recently extended beyond traditional patched

conics models to Tisserand-leveraging transfers [68, 48].

Another graphical and numerical method for both pathfinding and

pathsolving is the v∞ sphere [5, 3]. This method for casting the problem

has been used to study moon tours [69, 40] where it is particularly adept at

mapping resonant transfers. Chapter 4, which presents automated methods for

pathfinding and pathsolving nπ subsequences, utilizes v∞ spheres and provides

more details on the v∞ sphere.

Graphical methods have continued to be used as part of the trajectory

search process even as other more automated methods have been developed

[66, 43]. Recent MGA search results have continued to effectively utilize graph-

ical methods as part of the process [46, 48]. Graphical methods provide the

designer insight into the entire design space, albeit in a limited number of di-

mensions, and allow significant reduction in needed pathsolving efforts where

solving the problem globally might otherwise be computationally intractable.

1.1.2.4 Systematic methods

Systematic methods use grid or tree search techniques to predictably

explore the design space, or at least the portions of it expected to harbor de-

sirable solutions [70, 71]. These methods, also called deterministic approaches,

are advantageous because they can be exhaustive and can be proven to con-

verge globally and map the entire space. However, if the methods require

discretization they are highly sensitive to resolution. Additionally, the time

required to fully map the solution space of complex MGA trajectories is gen-

erally computationally prohibitive [54, 55, 72].

One of the earliest and most used MGA search tools is STOUR (Satel-
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lite Tour Design Program) originally developed at JPL for the Galileo mission

[13]. This tool functions by sequentially progressing through a trajectory one

leg at a time, where a leg is the trajectory between two body encounters. Along

the way, the mission analyst makes decisions about the path and which trajec-

tory to keep following. This process was subsequently automated [73, 74] and

the tool has been improved to include aerogravity assists (AGA) [75, 76, 77],

powered flybys [78], v∞ leveraging maneuvers [39], and approximate low thrust

transfers [79, 80]. STOUR has been the pathsolving component of several pub-

lished trajectory searches, where the pathfinding was generally conducted with

graphical tools [41, 39, 43].

Other deterministic methods for pathsolving have also been introduced,

such as AGA tours using PAMSIT [81] and independent search algorithms

similar to STOUR [82, 46] or based on linear programming [83]. Another

simple though potentially inefficient approach is to apply a sophisticated local

optimizer over a suitable grid of initial conditions [84]. A more recent tool,

SOURCE, seeks to overcome the runtime limitations of previous systematic

pathsolving methods by precomputing trajectory phases and applying fast

vectorized filters to trajectory segments before any optimization is performed

[71]. These innovations, along with specific separation of different types of

solutions to preserve variety, has led to competitive results in several trajectory

searches [40, 85, 86].

Deterministic algorithms have also been applied to aiding the search

process without necessarily performing the pathsolving. These pruning or

branch and bound (BB) methods include stand-alone methods like GASP

(Gravity Assist Space Pruning) [70] and its follow-up pruning studies [87,

72, 88] which can be applied to limit the search bounds of a separate GO al-
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gorithm. Pruning may also be incorporated into the main search tool, as with

SOURCE [71]. Some stochastic search tools – described in the next section

– also utilize deterministic branching or pruning strategies [56, 89, 57, 45].

Explore, the MGA pathsolving tool described in Chapter 2 and in [90], is an

automated deterministic method which performs the pathsolving using a grid

search while also progressively pruning the search space.

1.1.2.5 Stochastic methods

A variety of stochastic methods have been applied to the MGA search

problem as well, beginning with the application of genetic algorithms (GA)

[91]. Stochastic methods use probability and a set of rules to decide where to

search next within the design space, potentially providing them some adapt-

ability and better scaling with number of parameters than grid search methods.

However, such methods often rely on heuristics with their own tuning parame-

ters and there is no general proof of exhaustiveness or convergence to a global

optimum with stochastic methods [57, 92]. Both deterministic and stochastic

methods may rely on heuristics, but stochastic methods specifically utilize one

or more random variables in the search process such that the search itself and

its results are dependent on random numbers (or, in practice, the seed of the

pseudorandom number generator).

Several different stochastic methods have been applied to the search

for MGA trajectories, as shown in Figure 1.1. Stochastic methods have often

been paired with one or more deterministic or other stochastic methods to

achieve faster convergence or more global coverage [93, 94]. Other types of

challenging spacecraft trajectories have also been approached using stochastic

methods (e.g. [95] use of GA) but the work described in this dissertation
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focuses specifically on MGA applications.

Even within a single stochastic method there are various types of each

method. For example, a GA may be multi-objective [95] or variable population

size [96] or niching [91] or a combination of the above [97]. There is a wide

variety of refinements of methods and of variations on a given theme. This

occurs because stochastic methods rely on heuristics which can be tuned or

altered to achieve different results [93]. While tuning can help specialize a

method to a particular problem – such as generating the best known solution

to the challenging GTOC4 problem [92] – the tuning is a challenging and

time-consuming process.

One way to work around tuning for a specific problem is to run multiple

stochastic methods in parallel, using a cooperative method that can involve

several populations with different constraints, tuning, or even different opti-

mization methods [98, 99, 100]. Cooperative combinations have been shown to

improve results even when the individual methods are not necessarily optimally

tuned to the problem. Improvements in evolutionary methods for trajectory

optimization have recently been showcased by providing one of the best-known

solutions to the GTOC6 problem, albeit not in time for the competition itself

[45, 97]. Nevertheless this method was recognized for automatically producing

results competitive with those a human could produce, earning a Humies gold

medal in genetic programming in 2013 [101].

Dividing the GS and GO methodologies between stochastic and system-

atic types is an imperfect distinction because many solution methods involve

both a deterministic and a stochastic component, hence the overlapping area

in Figure 1.1. As mentioned above, deterministic BB and pruning is applied to

reduce the search space for some stochastic methods. In addition, Monotonic
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Basin Hopping (MBH) assumes a local optimization level to locate the graph

of minimizers, so MBH is usually paired with a standard deterministic local

optimizer [102, 62, 103]. Several studies have paired a GA with a local opti-

mizer in a two-level approach to find many local minima [104, 105, 106]. This

pairing of a GA or other GO method with a local optimizer is often applied

for LT MGA trajectories [107, 108, 109, 110]. In such cases, each optimization

can take significant computation time and attempting an exhaustive grid or

BB search is even less tractable than the ballistic or impulsive ∆V cases.

1.2 Parameter reduction of complex trajectories

One common theme for speeding up the search for and optimization

of trajectories is to cleverly design the routines at the innermost loops which

are called the most. The current section introduces the idea of reducing the

number of parameters which must be decided or searched over and so reducing

search time. The reduction is accomplished by combining the appropriate set

of assumptions with a solution algorithm. Introductions to the trajectory types

follow, with algorithms presented in their respective chapters.

1.2.1 Models and assumptions

For the methods and implementations developed in the current disser-

tation, the following general assumptions are used throughout unless other-

wise stated: two-body dynamics govern the spacecraft motion about the pri-

mary body; the maneuvers are instantaneous, impulsive, occur at an apse, and

are aligned with the spacecraft velocity; and instantaneous zero-radius sphere

of influence gravity-assist flybys occur at the minor body locations. All the

stated approximations are consistent with several previous studies [2, 56, 73].
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Although these preliminary model assumptions generally work better for in-

terplanetary trajectories than intermoon trajectories, they are also applicable

to high-energy moon tours.

1.2.2 v∞ leveraging transfers

The ability to include instantaneous maneuvers efficiently in a search

is valuable, and many of the pathsolving methods introduced above aim to

achieve this end. By specifying a particular type of maneuver, it is possible

to greatly reduce the search space and so the computation time required to

locate maneuvers. Choosing v∞ leveraging transfers (VILTs) as the subset

of maneuvers is advantageous as these transfers have been demonstrated to

enable reduced launch mass, ∆V , or flight time.

Beginning with the ∆V -Earth gravity assist (∆V -EGA), various studies

and papers have laid the theoretical framework for VILTs and shown their

utility [111, 112, 113]. VILT techniques have been extended to more general

interplanetary transfers, including example preliminary design cases [112, 114,

115]. The same techniques also apply to moon tours [116, 117, 118]. These

methods extend beyond theory and have been implemented for several flight

missions, including Cassini, NEAR, Juno, and MESSENGER [18, 17, 119, 25].

Implementing a VILT method effectively in the conceptual design stage

requires both making the correct set of assumptions and also creating an im-

plementation that is fast and robust. Previous approaches to this problem

have looked at both choosing the sequence of flyby bodies (the pathfind-

ing problem with VILTs) and the method of implementing the VILT itself

[112, 113, 114, 115, 116, 117, 118, 18]. The VILT method formulation is the

focus of the Chapter 3: the assumptions, the inputs/outputs, the function
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behavior, and some example applications. The inclusion of VILTs into the

search process is accomplished by formulating them as similarly as possible to

the Lambert problem. The motivation for such a formulation is to be com-

patible with existing broad multi-flyby trajectory search techniques that are

fundamentally based on Lambert solutions [3, 2, 56, 73]. Chapter 2 presents

just such an algorithm, implemented in the search tool Explore. This simi-

larity to the traditional Lambert problem enables the same search algorithm

to handle both the Lambert and VILT methods, so both ballistic and VILT

segments can be included in the search in any combination. In effect, the pre-

sented VILT formulation provides a straight-forward and efficient mechanism

to include maneuvers in broad trajectory searches or any other application

where computation time is important.

Similar to the Lambert solution, the VILT method developed is a func-

tion primarily of boundary position vectors and connecting flight time. There-

fore, the assumed circular orbit of the flyby body of previous VILT formula-

tions is not required and ephemeris or arbitrary locations can be used for the

bodies. The formulation developed also handles both tangent and non-tangent

body encounters for the VILTs, as defined in the Types of VILTs subsection

in Chapter 3.

Furthermore, since the VILT method is decoupled from the bodies, a

VILT-like transfer that originates and ends at different flyby bodies is pos-

sible, which is termed an interbody VILT (IB-VILT). Although the IB-VILT

has been used by both Cassini and MESSENGER, the connection of these ma-

neuvers to VILTs has only recently been explored systematically [120] using

the method described in detail in this dissertation. Chapter 3, where a specific

solution method is proposed and explored, further highlights the advantages of
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choosing this class of maneuvers since the method extends beyond traditional

VILTs to more general velocity-aligned apsidal maneuvers (VAMs).

1.2.3 nπ transfers

The next category of trajectories to be incorporated into the MGA GS

are nπ transfers. Free return coasting trajectories whose transfer angle is an

integer multiple of π (nπ transfers) present unique advantages and challenges

in the context of the pathfinding and pathsolving problems because of the extra

degrees of freedom associated with the planes of the transfers [3, 121, 122, 123].

While this makes an nπ transfer extremely useful for overcoming phasing and

flyby altitude constraints and enabling interesting science orbits, selecting the

correct degree of freedom (DOF) is not trivial, especially in the case of broad

searches where this selection must be repeated many times [123, 124, 114, 125,

126, 127].

This process of choosing the correct DOF is further complicated when

combining multiple nπ transfers in a sequence, where each transfer has its own

DOF and the selection of these DOFs is dependent of each other. Despite these

complications, the resulting trajectories have helped enable difficult missions

like Galileo, Cassini and MESSENGER [13, 19, 25]. A fast and robust way to

include sequences of nπ transfers and determine the corresponding DOFs is the

motivation of presented method, detailed in Chapter 4. The implementations

of nπ sequences within STOUR [13] SOURCE [71] follow similar principles

but do not include automated resonance-hopping like the one detailed in this

dissertation, a method first presented in 2012 [128].

Other published [73] and commercially available methods [129] can also

include nπ transfers in the trajectory search process, but they currently require
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some knowledge about the sequence DOFs or the number and type of transfers

in a sequence, or they impose other limits such as the number of transfers.

Increasing the flexibility of the trajectory search by lifting these restrictions is

a primary motivation of the nπ sequence methods presented in Chapter 4.

In addition to the assumptions made in the broad search, each segment

of the spacecraft trajectory that is an nπ transfer is a ballistic conic section

with the same encounter body at both ends. Also, the gravity assist flybys

are instantaneous changes in spacecraft velocity by rotations of the v∞ vector.

These zero-radius patched conics assumptions are consistent with previously

published methods and studies, as indicated above [66, 56, 73].

The flybys themselves are constrained by the maximum angle that the

v∞ vector can be rotated by one flyby: δMAX . For the zero-radius patched

conics approximation, δ is determined as a function of the periapse distance

of the flyby, allowing the maximum turn angle (δMAX) to be specified by the

minimum allowed altitude of the flyby. This relation, a simple substitution of

equations for a hyperbolic trajectory from [4], is given in Equation (1.1).

δ = 2 sin−1
(

µB
µB + rPv2∞

)
(1.1)

In general, the segments in the search can encounter the same body at both

ends of the segment or two different flyby bodies. When the encounter body is

the same, the trajectory is described as a ballistic return or a free return. Free

returns can be subdivided into nπ transfers and generic returns, where generic

returns are all non-nπ transfers. In this generic return case, the transfer plane

is well defined by the position of the flyby bodies at the initial and final times,

so a Lambert solution can lead to a connecting transfer. On the other hand,

the plane of an nπ transfer is not defined, so a different approach is required

[3, 121].
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Because nπ transfers can provide inclined trajectories with respect to

the flyby body and because their regular, repeating encounter locations can

enable a kind of loitering at a body, their inclusion in the GS described Chap-

ter 2 is a primary motivation for the development of the method. Including nπ

transfers requires a means of choosing the transfer plane. Because the flyby

v∞ is often known from previous segments of the search or targeted by mission

constraints, the problem of choosing the plane is simplified by considering a

given v∞ at a particular flyby body. If both bounding v∞ vectors are known

(in the context of a tour search algorithm), the nπ transfer problem can be re-

duced to a boundary value problem on the v∞ sphere (see Chapter 4 for more

details). This approach also allows the inclusion of a sequence of successive

nπ transfers whose DOFs are optimized together.

All nπ transfers can be categorized as even nπ and odd nπ transfers

based on whether the transfer angle is an even or odd multiple of π, respec-

tively. For the purposes of this discussion, transfer angle always refers to the

angle that the flyby body sweeps out in its orbit between the two encounters

of a transfer. Even nπ transfers (often called resonant or full-rev transfers)

encounter the body in the same location at both ends of the transfer. Iden-

tical r at both encounters also results in identical v∞ at both encounters [3].

Odd nπ transfers are an extension of the back-flip transfer (π-transfer) into

multiple spacecraft revolutions and also are referred to as half-rev transfers.

For non-circular body orbits, half-rev transfers with r1 6= r2, have different

spacecraft v∞ at each encounter [3]. Examples of an even nπ transfer and an

odd nπ transfer are shown in Figure 1.2.
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Figure 1.2: Examples of an even nπ transfer (top, n = 2) and an odd nπ
transfer (bottom, n = 1)

1.3 Primitive body proximity operations

Orbital dynamics are particularly challenging for missions to small bod-

ies, not only because of the ∆V and timing of reaching the body, but also

because perturbations lead to non-Keplerian proximity orbits at these bodies.

Solar Radiation Pressure (SRP) and irregular central body gravity distribu-

tion are often two of the most significant perturbations to spacecraft orbital

dynamics in close proximity to small primitive bodies [130]. Several solutions

for stable spacecraft orbits have been developed for orbit altitudes where one

of these two is the dominant perturbation. When SRP is dominant, then the
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terminator, equatorial Sun-frozen, and quasi-terminator orbits may be possi-

ble [131, 132, 133]. When body oblateness is dominant, then Sun-synchronous

and precessing orbits provide potential solutions of interest [6, ch. 11]. When

an irregular gravity field is the dominant perturbation, frozen orbits and body-

fixed periodic orbits are of particular interest [134, 135].

1.3.1 Introduction to Sun-frozen and heliotropic orbits

Where SRP and irregular central body gravity distribution are com-

parable perturbations and primary drivers of orbital motion, both need to be

taken into account to find orbit families. Sun-frozen orbits and heliotropic or-

bits are two categories of orbits which can exist stably in this dynamic regime

by taking advantage of SRP and body oblateness perturbations. These two

categories of orbits and especially heliotropic orbits are the focus of presented

investigations – other perturbations, orbit families, and dynamical regimes

around small bodies are rich areas of research as well but are outside the

scope of this dissertation. These two categories overlap: Heliotropic orbits in

the equatorial plane are Sun-frozen if the body has no obliquity.

In general, a frozen-eccentricity orbit requires that the eccentricity vec-

tor be constant in time [6, p. 802]. By analogy, a Sun-frozen orbit requires

that the eccentricity vector is constant with respect to the Sun line. Inclined

(3D) heliotropic orbits are, by definition, Sun-frozen in an averaged sense;

However, in the 3D case, the instantaneous eccentricity vector circulates, thus

preventing 3D heliotropic orbits from technically being Sun-frozen.

In the context of strong SRP and body oblateness perturbations he-

liotropic orbits are particularly attractive for low-altitude science orbits. He-

liotropic orbits are a class of orbits which maintain long orbit lifetimes by
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combining these perturbations to keep the apoapsis pointed towards the Sun

on average, as shown in Figure 1.3. The name “heliotropic” comes from botany,

where the term was coined in 1832 and describes the tendency of plant stems,

leaves, and flowers to bend toward the Sun [136, p. 36]. There are also antihe-

liotropic orbits with periapsis in the direction of the Sun [137, 138], but these

orbits are not explored further in the analyses presented within the current

dissertation.

Figure 1.3: A heliotropic orbit uses SRP and zonal gravity perturbations to
keep its apoapsis pointed towards the Sun on average. See Chapter 5 for
definitions of angles and additional discussion of heliotropic orbits.

Heliotropic orbits are part of an orbit class that was discovered in the

context of studying the dynamics of orbiting planetary dust, with the term

coined for orbits in the study of Saturnian ring dynamics [139, 140]. Heliotropic

orbits were identified as Sun-frozen orbits in the equatorial dynamics of cir-

cumplanetary dust, with some study of the behavior of inclined orbits as well

[137, 141, 142]. The resulting orbits were then proposed for high area-to-mass

ratio (HAMR) spacecraft orbiting Earth, necessitating improved methods to
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investigate out-of-plane and non-zero obliquity characteristics [143, 138, 144].

Past studies have only included the second-degree zonal gravity harmonic (J2)

in calculating heliotropic orbits [137, 141, 142, 143, 138], with a recent ex-

tension of these orbits to non-equatorial cases and application to small-body

missions [145] as also described in this dissertation. Using only SRP and J2

works well for finding heliotropic orbits at planets and large moons and aster-

oids, but most small bodies have sufficiently non-spherical shape that higher

degree zonal terms contribute significantly to the oblateness perturbation.

When considering the effect of non-spherical body perturbations, the

even zonal gravity harmonics are particularly important because they domi-

nate the secular change of the orbital elements [146]. The secular effects of

zonal harmonics are determined by averaging the corresponding terms of the

disturbing potential, first over one period of the spacecraft mean anomaly and

then over one period of the argument of periapsis [147, 148]. The averag-

ing leaves only the even terms to impact the secular change of the elements

[149]. The resulting disturbing potentials are applied to the Lagrange Plan-

etary Equations (LPE) to determine the averaged dynamics of the orbital

elements [150].

1.3.2 Applying heliotropic orbits to asteroids

As explained further in Chapter 5, heliotropic orbits require body obliq-

uity to be near zero or 180◦. They also require a generally oblate spheroidal

shape for the body, so heliotropic orbits are not applicable at all primitive

bodies.

Although in general primitive bodies span the full range of shapes and

obliquities, the Yarkovsky-O’Keefe-Radzievskii-Paddack effect (YORP) torque
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[151, 152] drives a disproportionate number of smaller bodies to have spin vec-

tors closer to the ecliptic ±z-axis [153]. These statistics, along with the shapes

of about half of known asteroids being mostly oblate [154], lead to the prelim-

inary estimate that roughly 25% of small asteroids may meet the assumptions

used here in development of the heliotropic orbits [145]. No systematic method

has been applied to find maximum acceptable deviations from the assumptions,

but specific application to Bennu parameters is demonstrated in Chapter 5 and

for Earth parameters in [143, 138, 144].

Bennu is particularly conducive to supporting heliotropic orbits because

the asteroid is approximately an oblate spheroid and has a pole approximately

88 deg from the ecliptic plane [155]. Radar and lightcurve data for Bennu have

been used to estimate the shape and corresponding constant-density gravity

model as well as the gravitational parameter [155, 156]. In addition, Bennu

is scientifically interesting, as evidenced by its selection as the primary target

for the OSIRIS-REx sample return mission.

Heliotropic orbits are investigated in depth in Chapter 5. Averaging

techniques and the Lagrange Planetary Equations (LPE) are used together to

isolate secular effects of the perturbations [147, 148, 149, 146, 150]. First, a

singly-averaged Sun-frozen orbit analysis is performed. This analysis identifies

several orbit families, including the equatorial heliotropic orbits. The inclusion

of higher degree zonal gravity terms and the search for heliotropic orbits out

of the equatorial plane are accomplished by preforming a constrained second

average on the SRP disturbing potential. In addition, preliminary studies are

conducted on the effect of body gravity uncertainty and the robustness of the

heliotropic orbits to a complex gravity field. An estimate of Bennu’s gravity

field is used for this purpose.
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1.4 Summary of contributions and dissertation struc-
ture

A variety of topics have been introduced in the current chapter to set up

for the detailed descriptions provided in the following chapters. Publications

resulting from and planned for the material presented within this dissertation

are summarized in Appendix B, which also connects the publications to the

different chapters. Some of this dissertation – notably work relating to GTOC6

and certain examples – is not planned for any separate publications.

Chapter 2 focuses on the MGA global search, presenting an effective

algorithm which is implemented as Explore, a GS pathsolving tool. The search

algorithm is a cascade of boundary value subproblems with similarities to

existing methods. This problem decomposition enables the incorporation of

different trajectory types and patch point types.

• Original pruning strategies are discussed beyond what has been pub-

lished before, including the pruning conditions and when in the search

process they are applied. Although the time required to exhaustively

solve a given problem is generally unknown, performance index based

pruning is introduced to limit the search space to that which fits within

computational resources. Additionally, multi-objective pruning using

Pareto ranking of solution candidates is introduced as a practical way to

judiciously choose a subset of the space to search.

• An efficient implementation is described, including details of the memory

structure and the flow of the search process that have not been provided

in other literature.
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These important details meet some of the challenges associated with a GS,

helping keep the run time tractable for presented problems of interest.

Chapter 3 presents an original and unique boundary value formulation

for solving VILTs. Setting it apart from other methods in the literature, the

presented method is independent of the encounter body orbit parameters and

can be applied more broadly as a means to calculate VAMs.

• The mathematical basis of the VILT BVP and an implementation algo-

rithm which can solve the VILT with a similar solution structure and run

time to solving the multi-revolution Lambert problem are provided. This

solution algorithm is characterized and several VILT cases are examined.

• The presented VILT method is applied in an MGA GS (Explore) and

trajectory searches including VILTs in traditional and novel (VAM) roles

are presented. Specifically, the effects of using ephemeris locations, the

effects of applying an inter-body VILT, and the use of VAMs for plane-

tary capture and LT initial guesses are discussed.

Chapter 4 develops an original and unique method for automatically

determining nπ sequences by solving a boundary value problem on the v∞

sphere. This extension of past v∞ sphere applications provides an automated

method for performing both pathfinding and pathsolving on the v∞ sphere.

• The BVP is defined by a novel gap calculator that allows the search

to proceed to the next leg of the trajectory and determine the second

boundary condition.

• Two methods for solving the BVP are introduced, implemented, and dis-

cussed: A new two-level approach that combines an exhaustive pathfind-
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ing method with fast feasibility pathsolving using box flyby altitude con-

straints is developed in detail. An alternative hybrid stochastic pathfind-

ing/pathsolving sphere-walking method – which was used to solve the

GTOC6 problem – is also described; in this method a random variable

and a weighted performance index are used to take each step along the

sphere, with MS providing multiple options to choose between for each

set of boundary conditions.

The focus of Chapter 4 is on applications to an MGA GS. Examples of solutions

of the BVP are presented along with examples of application within Explore.

Chapter 5 considers Sun-frozen and heliotropic orbits to asteroid orbiter

missions.

• As part of the first published application of heliotropic orbits to small

body orbiters, orbit characteristics and limits are explored, including the

derivation of an inclination limit for heliotropic orbits.

• Particular focus is placed on extending heliotropic orbit theory to 3D

orbits and to orbits utilizing high degree zonal harmonics, two aspects

of these orbits that are new in the literature.

• The analytical theory of 3D heliotropic orbits is enabled by an innovative

application of constrained averaging to the SRP disturbing potential.

• Applications focus on orbits around a model of Bennu (the target for the

planned mission OSIRIS-REx), including preliminary uncertainty anal-

ysis calculating the probability of existence of heliotropic orbits at the

Bennu model given the uncertainty of the gravity and SRP parameters.
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Chapter 6 provides a summary of the dissertation with a focus on ap-

plicability of the methods and implications of the results. Considerations for

future work are also discussed.
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Chapter 2

Trajectory search algorithm

A pathsolving tool called Explore is introduced in this chapter1. The

systematic grid search and pruning algorithm at the core of Explore is de-

scribed, with some qualitative comparison to other methods mentioned in

Chapter 1. Pruning methods implemented in the search are described, includ-

ing multi-objective Pareto ranking. The flexibility of the pathsolving algo-

rithm is demonstrated by the inclusion of different trajectory and patch point

types. Comparative performance is given for the different trajectory types in-

cluded in a broad global search (GS). The presented pathsolving algorithm has

some unique characteristics, but the detailed implementation description and

the discussion on pruning strategies with multiple objectives are the primary

contributions of this chapter to the state of the art in MGA GS.

2.1 Posing the pathsolving problem

The pathsolving problem involves the implementation of a mission con-

cept to the initial trajectory design, answering the basic questions of when the

1The presented tool has also been published in:
• Demyan Lantukh and Ryan P. Russell. “Multi-Objective Search for Multiple Gravity
Assist Trajectories,” AAS/AIAA Astrodynamics Specialist Conference, 9-13 August 2015,
Vail, CO

Ryan P. Russell contributed proof-of-concept and the ballistic Lambert solver used in Explore
as well as development of various modules of the tool not presented here. He also provided
general development guidance and management.
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spacecraft will go where, how it will get there, and what the cost (e.g. ∆V )

will be. As described in Chapter 1, the pathfinding problem determines the se-

quence of events in a trajectory and outlines the spacecraft path categorically.

The pathsolving problem then attempts to find a trajectory which corresponds

to this set of categorical parameter choices, possibly with the added require-

ment that it be a locally or globally optimal trajectory. In the general case,

exhaustive pathsolving is intractable, but specific problems can be solved at

sufficient resolution. In such cases, reduced algorithm run time and number of

parameters to discretize enables the investigation of larger and more complex

solution spaces. In this chapter, a systematic GS method for pathsolving is

developed in detail with specific focus on addressing run time, problem scaling,

and dimensionality issues associated with its implementation.

The complexity of the problem and the infinite options motivate soft-

ware tools to aid in the pathsolving problem. In the current chapter, the focus

is on the “suggested-sequence” pathsolving problem, where the pathsolving al-

gorithm may be allowed to change categorical variables like path length within

certain specified parameters or limitations. The software (here Explore specif-

ically) receives as input a desired sequence of important events such as flybys

and maneuvers in addition to all relevant start, end, and path constraints.

Figure 2.1 illustrates the concept of the suggested-sequence pathsolving tool.

The sequence provided for pathsolving is an ordered list of nodes (Bi)

and legs (Li) connecting them, up to a specified number of legs (l). Equa-

tion (2.1) shows this sequence definition with the nodes defined by their in-

bound (I) and outbound (O) times as needed. Note that the definition of a

node by two times allows more flexibility in node types and makes the pre-

sented GS implementation distinct from previously published algorithms such
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Figure 2.1: Schematic of how a mission concept – turned into a specific se-
quence – is passed to the suggested-sequence pathsolving tool to determine
appropriate details of implementation. The suggested sequence is EVEJ.

as those given by [73, 74, 71, 83, 82, 46].

B1(t
O
1 )→ L1 → B2(t

I
2, t

O
2 )→ L2 → B3(t

I
3, t

O
3 ) · · · → Ll → Bl+1(t

I
l+1) (2.1)

Table 2.1 outlines the definition of the scheduling problem for a given sequence.

This high-level definition is implemented in Explore, where it is also extended

for other kinds of pruning, leg types, and node types as described below.

Each node is associated with an ephemeris object b (nominally a celes-

tial body), so a given time allows the state of b to be determined. The set of

all bodies which may be used in a sequence is {b}, each with its corresponding

parameters. Given an inbound and outbound time for each node, the legs are

bounded by known body states and each leg is a boundary value subproblem.

The first and last nodes in a sequence have only one associated time and v∞

but all other nodes have two times and a pair of vI∞ and vO∞, defining each

of these nodes as a boundary value subproblem as well.2 In addition, each

leg has particular options and pruning conditions which apply to it, and each

2Explore also allows the user to optionally specify vI
∞ for B1; the first node is then solved

like other nodes.
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Table 2.1: Definition of MGA pathsolving as a node scheduling problem in-
cluding some feasibility constraints

GIVEN:
Problem definition: m0 (initial mass), l (number of legs),

bi, Ri ∀ i = 1, 2, 3, · · · , l + 1
System definition: µPr, {b}: µbody, rbody, ephemeris ∀ b ∈ {b}
Constraint definition: box (MIN and MAX defined for each parameter)

Sequence: TOFmission, ∆Vmission
Nodes:

vO∞i, t
O
i , ∆V O

i ∀ i = 1, 2, 3, · · · , l
vI∞i, t

I
i , ∆V I

i ∀ i = 2, 3, 4, · · · , l + 1
∆ti (dwell time) ∀ i = 2, 3, 4, · · · , l
hi∀ i ∈ {flyby}

Legs: TOFi, ∆Vi, Ni ∀ i = 1, 2, 3, · · · , l

FIND:
ALL set(s):
tOi ∀ i = 1, 2, 3, · · · , l
tIi ∀ i = 2, 3, 4, · · · , l + 1
Additional information needed define Li ∀ i = 1, 2, 3, · · · , l:

e.g. ballistic transfers: Ni, type (short or long period)
Additional information needed define Bi ∀ i = 1, 2, 3, · · · , l + 1
Other outputs of interest: e.g. vI∞ ∀ i = 2, 3, 4, · · · , l + 1

SUBJECT TO:
All defined box constraints

node has particular options and pruning conditions which apply to it. These

conditions may apply to all nodes (or legs) of a particular type (e.g. all flybys),

all nodes at a particular body b (e.g. at Venus), or to a specific element in the

ordered set (e.g. B3 or L2).

Figure 2.1 provides an example sequence where EVEJ is the set of nodes

(B1−B4) of a three-leg trajectory. This set of nodes and the applicable timing

constraints are input by the user. This sequence is one of multiple possible

ways to perform a mission concept (e.g. interplanetary trajectory to Jupiter).
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Segments are patched together by nodes with patch constraints; in the EVEJ

gravity assists make the logical patch constraints, but a different mission may

perform multiple-body rendezvous and have rendezvous and stay times as a

patch constraint. The nπ sequence algorithm developed in Chapter 4 is also a

patch constraint, albeit a complicated one, with respect to the broader MGA

GS. In the case shown in Figure 2.1 the designer is leaving the trajectory type

free, allowing the search to investigate ballistic, VILT, DSM, and LT options.

Leaving all options free to consider may make a search intractable, but one

advantage of a systematic method is the option to do so.

The sequence provided is called suggested because, ideally, the software

tool should be able to calculate and evaluate modifications such as adding ma-

neuvers or removing flybys within the set parameters. The current algorithm

described here and implemented in Explore is a step towards that end, with the

ability to efficiently calculate a given sequence of flybys. Methods described

in the Chapter 3 add the ability to include maneuvers and some capability to

suggest removal of a maneuver by driving ∆V near zero. The nπ sequence

method in Chapter 4 includes the addition of flybys via multiple linked reso-

nant transfers. There is currently no implemented capability to remove a flyby

from the suggested sequence list.

2.2 Sequential path search algorithm

The presented search algorithm – also described in [90] – decomposes

the problem into a cascade of subproblems where each subproblem connects

two encounters in the MGA sequence, similar to the problem decomposition

done by [74, 70, 157] with favorable results. As described above, legs and

nodes alternate as different BVPs in this cascade of subproblems. For the
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case of ballistic transfers such a sequential decomposition can be pruned in

polynomial time, though the exhaustive GS itself is still NP-hard but on a

smaller domain [70].

The presented GS method has the following key features to aid in effi-

cient computation of trajectories:

1. Breadth-first implementation enables straightforward low-level paralleliza-

tion and solution evaluation against comparable candidate trajectories

as well as efficient, scalable memory handling

2. Discretization of body orbits with a grid search and discontinuity correc-

tor algorithm for matching flyby constraints keeps only feasible trajec-

tories and allows pruning conditions based on physical quantities with

straightforward interpretations

3. Feed-forward search simplifies the search process and reduces total com-

putations by only allowing change on one leg of the trajectory at a time

4. Cascade of BVPs allows straightforward implementation of different tra-

jectory types without major modifications to the GS algorithm

5. Search tree pruning based both on hard constraints and on solution

desirability counter the exponential nature of the search process

Note that points 2 and 4, and to some extent point 3, fall in the heritage of

[73, 74, 78, 81] for MGA GS. The specifics of memory handling on a modern

computer for problem scalability, however, are new to this dissertation. The

detailed discussion of pruning with multiple objectives and multiple levels of

pruning within the search – details which have proven extremely helpful in use
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– are also new to the literature. These beneficial characteristics come out of

the algorithm described as follows:

2.2.1 Discretization

The search process begins by defining a set of nodes the spacecraft

will visit and the possible range of times at which the spacecraft may be at

each node. Each node must have a means of defining the state of its cor-

responding ephemeris object within that range of times. For simplicity, the

nodes are all assumed to be natural bodies within the Solar System with de-

fined ephemerides, but the concept extends to rendezvous with spacecraft or

single-point or path equality constraints, as described later.

Each of these nodes is discretized in time along its path according

to user-specified resolution parameters Ri. For celestial bodies, the number

of discretization points per body orbit revolution (n) is a convenient metric

for resolution that spans across different instances of a search. In this case,

discretization is done with equal steps in time; for highly eccentric bodies

a different discretization may be preferable, but using time keeps ephemeris

calculations relatively fast and simple. Using an anomaly for discretization

was considered as an alternative and would make a useful future extension.

However, using time allows a straightforward implementation of TOF box

constraints and avoids root-solving for the anomalies which correspond to par-

ticular times. Figure 2.2 shows a notional search for an EVEJ trajectory from

a particular epoch. For visualization purposes the grid discretization is much

coarser than an actual search would use. The first leg of the search, Earth to

Venus, is also shown in Figure 2.2 and discussed below.
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Figure 2.2: Notional EVEJ search: discretized grid and first leg all-to-all search

2.2.2 First Leg: all-to-all grid search

The first leg of the trajectory L1 is calculated by attempting to connect

each discretized point from B1 to each discretized point from B2 which occurs

later in time and satisfies all other user-specified constraints which can be

evaluated (e.g. flight time). This attempt to connect the first two nodes is

termed the all-to-all grid search. Apart from the application of constraints,

number of computations for the first leg grows with the square of discretization

point density, so properly constraining the search can provide great benefits in

computation time. Further constraints can be applied once the leg is evaluated,

and these constraints will help reduce the computation time of subsequent legs.

Additional details on constraint implementation are discussed in the section

devoted to that topic. Figure 2.2 shows the resulting connection points for the

first leg of the example EVEJ sequence without any additional constraints.

As mentioned before, discretization resolution has intentionally been set low

in Figure 2.2 so that the individual discretization points are clearly visible.
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Since knowing the discretization points on B1 and B2 fully defines the

set of BVP for L1, the solution process for these BVPs is readily parallelizable.

A parallel ballistic Lambert solver which utilizes the Graphics Processor Unit

(GPU) has been implemented by colleagues and incorporated into Explore.

Parallel computation for solving the set of BVPs at each leg or node can also

be implemented using multiple CPUs as an area for future work. There is also

an opportunity for parallelization based on problem subdivision in memory as

described in the section below devoted to memory management.

For the initial implementation of the algorithm, two nodes are con-

nected by a ballistic two-body transfer between a discretization point on each

of the two nodes. Since each discretization point has associated time and po-

sition data, the resulting connection is a well-defined Lambert problem. To

help make the search more applicable to a broad range of spacecraft missions,

a multi-revolution Lambert solver using universal variables is implemented,

based on the method provided by [4].

2.2.3 nth Leg, part 1: one-to-all grid search

The first leg of the trajectory requires special treatment in the search

algorithm, but every following leg is treated identically. Each leg begins with

a set of discrete valid points on the preceding node, where each valid point is

connected to the first node by a candidate trajectory encompassing all inter-

mediate nodes.

A grid search is implemented which attempts to connect each valid

point from the preceding node to each discretized point on the current node

which is later in time and satisfies all constraints which can be evaluated. The

number of search computations scales with product of the number of preceding

37



0 500 1000 1500 2000

Earth

Venus

Earth

Jupiter

time (days past epoch)

Figure 2.3: Notional EVEJ search: continuing the search for the Venus-Earth
leg from all points still valid at Venus. One particular EV trajectory with its
VE branches is highlighted.

node points and number of discretization points on the current nodes. As a

result, pruning the search on any applicable constraints is extremely helpful

for reducing the downstream search time. Figure 2.3 shows the calculation of

L2 (Venus-Earth) leg of the example EVEJ sequence. One candidate L1 tra-

jectory and the resulting fan of candidate L2 trajectories stemming from it are

highlighted to illustrate the search process. In Figure 2.3, some discretization

points at Venus are not considered in calculating L2 because they have been

pruned out – that is, they are not part of any valid candidate trajectories in

the search going forward.

2.2.4 nth Leg, part 2: patch constraint root solve

With a grid search from the preceding to current node complete, the

resulting trajectories are not necessarily valid because positions align at the

patch point but there may be a patching condition at the previous node. When
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there is no dwell time at the preceding node, an instantaneous maneuver may

be used to patch the two legs of the trajectory or a zero sphere of influence

gravity assist flyby may be used. A powered flyby combines both of these into

a single patch point.

In the case of a ballistic flyby, two conditions need to be met: vI∞ = vO∞

for the flyby and the turn angle of the flyby must be achievable with an

allowed flyby altitude. With a particular set of trajectories from a single

preceding node like that highlighted in Figure 2.3, none of the discretization

points on the current node (e.g. second Earth in Figure 2.3) may satisfy the

flyby conditions at the preceding node (Venus in Figure 2.3), but there still

may exist one or more valid points between discretization points.

The equality v∞ constraint is met by root-finding for a valid trajectory.

This root-finding procedure is designed to alter only one leg of the candidate

trajectory, leaving unchanged all preceding legs. Equation (2.2) provides the

specific equation zeroed when calculating Li:

∆v∞,i = vO∞,i(t
I
i+1)− vI∞,i = 0 (2.2)

In Equation (2.2), vI∞,i is determined by solving Li−1 and is fixed for each can-

didate trajectory since tOi is fixed at this point in the search process. Choosing

to keep tOi fixed when meeting the equality v∞ constraint keeps both the root-

finding process and candidate solution storage relatively simple. The only

remaining free parameter for a given trajectory type (e.g. ballistic, N = 1,

short-period transfer) is tIi+1; as it varies, so does the vO∞,i to reach the corre-

sponding state at Bi+1 with the given trajectory type.

Figure 2.4 shows the ∆v∞ function in Equation (2.2) for a Venus-Earth

leg of the EVEJ trajectory; only the tIi+1 and corresponding arrival location of
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Earth are being varied along the ∆v∞ function. As Figure 2.4 shows, there may

be more than one solution for a given starting node and given trajectory type.

The required tIi+1 (or equivalently TOF ) to satisfy Equation (2.2) are each

bounded and an initial guess for each set of bounds is generated by comparing

the ∆v∞ of comparable trajectories: if there is a sign change in ∆v∞ of two

trajectories from the same preceding node point to adjacent discretization

points on the current node, then those two trajectories bound a root-finding

search for a trajectory which meets the v∞ constraint in Equation (2.2). Two

trajectories must be otherwise identical to bound a root-finding search: for

the ballistic case they must have identical number of revolutions and be the

same family of solutions (short or long period).

The high points in ∆v∞ seen in Figure 2.4 correspond to the nπ trans-

fers, here seen in the interplanetary (Venus-Earth) case instead of the tradi-

tional single-body case. The two steep spikes correspond to odd nπ transfers,

which have a high ∆v∞ because small differences in body planes lead the bal-

listic connection to occur near polar inclination. Small correction maneuvers

near these ballistic solutions can lead to much lower inclination transfers and

generate interesting solutions [71]. Although these trajectories can be found

with Explore using the optimized DSM transfer (described below), the de-

scription of these trajectories is beyond the scope of the current investigation.

The other two high ∆v∞ points in Figure 2.4 (which only have one steep side)

correspond to even nπ transfers. The high ∆v∞ in these cases comes from

an unfavorable geometry associated with limiting all shown trajectories to a

fixed number of orbit revolutions. The resulting ballistic connections at and

somewhat beyond the even nπ transfer point require much higher flight path

angle at the departure body (here Venus) and a corresponding higher v∞.
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Figure 2.4: Example of the ∆v∞ function defined in Equation (2.2). Black
stars show discretization points which fall on both sides of the zero crossing;
these pairs of points bound the root-finding which removes the v∞ discontinu-
ity.
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In all cases, the steep ∆v∞ areas can cause solutions to be missed if body

discretization is not sufficiently high.

Neighboring grid points where ∆v∞ crosses zero are identified with

stars in Figure 2.4. The identification of neighboring grid points can be com-

putationally expensive if performing an all-to-all pairwise comparison (O(n2)

algorithm) of candidate trajectories. Alternatively, this comparison can take

significant memory if solutions are stored in a structure by trajectory type to

make comparison faster. If the order of solutions in memory is unknown, the

comparison remains O(n2) but with n greatly reduced by only comparing like

trajectories. Knowledge of solution order in the array can be used to check

each candidate solution only against its neighbors in memory, reducing run

time to O(n) but requiring a solution array or helper array of solution indices

with (maximum possible solutions) × (maximum possible solution types) el-

ements. An effective compromise of the two comparison methods was found

by taking advantage of solution order and using a helper array of integers to

keep track of the last solution index of each trajectory type that has been

checked. The result is a single O(n) pass of the solution list with each candi-

date solution first compared against the solution of like type referenced in the

helper array. After the comparison, the candidate solution takes the place in

the helper array of the solution it was compared against.

Once the bounding pairs of trajectories are identified, root-finding is

performed on each pair. In Explore a bounded secant method3 is the primary

method used for this process. Internal to the root-finding routine is a Lam-

bert problem solution, which is itself iterative. Although satisfying this flyby

3A customized variant of root.f available from http://netlib.org/napack/root.f (ac-
cessed September 24, 2010) is utilized in Explore
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constraint is relatively expensive computationally, it the ability to use flyby

parameters instead of Cartesian states in a subsequent trajectory optimization

can provide run time and convergence benefits for the optimizer [59]. An addi-

tional advantage of satisfying the flyby constraint is the ability to find ballistic

solutions with a relatively course discretization. The alternative – leaving a

v∞ discontinuity at the flyby point to be optimized later – also requires the

user to provide a maximum size for these discontinuities and to estimate their

effect on any ∆V constraints since they are expected to be reduced to near

zero once optimized.

Once the v∞ constraint is met, the flyby altitude constraint can be

checked for the resulting trajectory. Since the process of meeting the v∞ con-

straint is computationally intensive a heuristic pre-pruning can be performed:

the pair of solutions bounding the root-finding problem can be checked against

the altitude constraint, v∞ magnitude constraint, and other pruning condi-

tions: if neither of the bounding solutions meets the same constraint and the

points are close enough that the solution space and constraint functions can

be approximated as linear between them, then the root-finding can be skipped

entirely since the resulting solution with matching v∞ will also not meet the

constraint. This pruning idea is suggested as a heuristic only; in practice it

is difficult to establish how close trajectories need to be for the solution space

between them to be approximately linear. The required discretization can

change with different problem and trajectory types.

Completing the v∞ matching for a leg of the trajectory effectively cre-

ates a new grid at the current node as shown in Figure 2.5. This new grid

enables valid candidate solutions leading up to it. Once the trajectories are

valid, they can be pruned according to any applicable leg or node constraints.
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Figure 2.5: Notional EVEJ search: the search to the second Earth encounter
after v∞ matching at the Venus gravity assist. One particular trajectory with
its branches is highlighted.

As Figure 2.5 shows conceptually, performing the v∞ matching greatly re-

duces the valid candidate trajectories and so reduces the search space for the

following leg.

2.3 Search tree pruning

As mentioned in the search description above, pruning out solutions

which will not yield favorable candidate solutions is a critical part of the pro-

cess. If computing resources and sufficient runtime exist, an unconstrained

trajectory search can map the solution space and constraints can be applied

on the resulting solutions to filter them to the best candidates. However, for all

but the simplest trajectories, some kind of pruning needs to be performed dur-

ing the trajectory search to keep it computationally tractable in a reasonable

time.
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Two types of pruning conditions are implemented. First, feasibility

constraints set boundaries outside which solutions are not considered. These

constraints are defined by the designer, so satisfying them does not necessarily

correspond to a flyable trajectory, but the constraints do have physical signif-

icance (e.g. flyby altitude, v∞ magnitude, etc.). The second type of pruning

conditions are performance-index based conditions. In these conditions the

designer specifies the desirable direction of a particular quantity of interest

and how the search space should be pruned when there are many trajectory

options. Figure 2.6 provides an overview of the search process for each trajec-

tory leg with the pruning included. The following sections describe in more

detail these two types of pruning conditions.

2.3.1 Feasibility constraint pruning

Feasibility constraint pruning removes trajectories from consideration

when they violate a given constraint. For example, a designer may specify that

launch C3 ≤ 50 km2/s2 so any solutions that do not meet this constraint are

immediately pruned out. In the presented feed-forward approach, eliminating

candidate solutions early in the search process with effective pruning leads

to significant reductions in trajectory computations and so in search runtime.

Note from Figure 2.6 that feasibility pruning is done before discontinuity han-

dling to reduce computations needed for this matching and then this pruning

is done again on the valid continuous trajectories.

Alternatively, a designer can specify that a subsurface flyby is allowed

even though this is physically infeasible. The freedom to violate physical

constraints allows the designer to broaden the search in the hope that a higher

resolution search or an optimizer can later tweak the outputs to make the
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Figure 2.6: Flowchart for the calculation of one memory batch of a trajectory
leg in Explore. Note the application of various pruning techniques: effectively
pruning the search space can be critical to keeping the search tractable. More
detailed descriptions of the search process are provided in Algorithms 2.1-2.2.
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resulting trajectories feasible. This relaxation of physical constraints can also

be helpful when no trajectories are found which are feasible so that the designer

can get an idea of how far from feasibility the trajectories are and which

physical constraints they violate. Similarly, keeping track of which constraints

are active (e.g. how many trajectories are pruned by each constraint) can

provide valuable feedback about the solution space.

In this view, constraints can be used as “tuning parameters” for the

search and can provide significant speedups when implemented well. One

advantage of tuning a search with these types of values is their physical signif-

icance: the values for constraints and the value for body discretization required

to find a particular trajectory reflects on the physical characteristics of that

trajectory neighborhood. For example, if a particular search yields many more

solutions in one family than in another, the family with more solutions is likely

more robust to changes in initial conditions or constraints. Alternatively, a

subsurface ballistic flyby can indicate that a powered flyby or deep space ma-

neuver is needed to make the trajectory feasible and the ∆V of the powered

flyby can be estimated using the difference in achievable and required bend

angles.

2.3.2 Performance-index based Pareto pruning

In optimization, performance indices are used as the target for opti-

mization, with the trajectory (or other free parameters) varied to minimize

(or maximize) the given indices. In the context of the trajectory search al-

gorithm presented, the trajectory is not changed once calculated and so the

performance indices do not provide this kind of feedback. Instead, the indices

are figures of merit which are useful for comparing similar trajectories. One
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way to use performance indices is to keep up to a user specified maximum

(nMAX) number of solutions; if the number of solutions exceeds nMAX then

only the best nMAX solutions according to a performance index are kept and

the remaining solutions are pruned out of the search. This type of pruning is

termed absolute filtering because a hard cutoff is used to keep a fixed number

of trajectories.

A single performance index can be an aggregate of different quantities

such as launch C3 and spacecraft ∆V , but it is more useful to be able to com-

pare trajectories without the need to aggregate and provide relative weights.

Pareto optimality provides one means for comparison of different solutions

across multiple performance indices in a scale-invariant way, eliminating the

need for user-specified weights on performance quantities [95]. A solution is

said to be Pareto optimal if, when it is compared with a set of candidate so-

lutions, it cannot be made strictly better in any performance index without

being made strictly worse in another performance index [158].

The basic principle of Pareto optimality is applied recursively to deter-

mine a Pareto rank (k) as shown in Figure 2.7 and described below. Note that

Figure 2.7 highlights the eleven nondominated solutions with distinct letters;

the corresponding trajectories are shown in Figure 2.8.

Pareto sorting separates solutions into two categories: dominated solu-

tions and non-dominated solutions. Non-dominated solutions have no other so-

lutions which are better in any of the active performance indices. When Pareto

sorting is applied to the whole solution space, the resulting non-dominated so-

lutions are assigned Pareto rank k = 1. The remaining (dominated) solutions

are then sorted again by the same process and the non-dominated solutions

in this set are given k = 2. The process can be repeated with the dominated
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Figure 2.7: Pareto front of arrival v∞ vs launch v∞ along an EVEJ trajec-
tory search with the flexibility to include extra resonant flybys. The darker
solutions have lower Pareto rank (closer to the front), with all solutions of
rank ≥ 10 being the same shade of light grey. The eleven Pareto optimal
(rank = 1) solutions are marked by distinct letters with the corresponding
trajectories shown in Figure 2.8.

49



solutions until all solutions are ranked or a user-specified maximum rank is

reached, as shown in Figure 2.7 (where all solutions with rank of 10 or more

have the same shade).

A user-specified number of Pareto ranks may be then kept for contin-

uing the search and all remaining solutions pruned out. Since there is no way

to know in advance how many solutions Pareto ranks will actually entail (the

number of solutions in each rank is heavily dependent on the distribution), it

is difficult to know what Pareto rank will not stifle the search but still pro-

vide enough of a limitation of the search space to keep computation time low.

As shown in Figure 2.6, successively applying the Pareto-based pruning and

then absolute filtering based on a single performance index can help provide

the best of both types of performance-index based pruning since the nMAX

solutions kept will have lowest Pareto ranks within the solution space.

As with many forms of search tree pruning, the pruning by performance

index is performed before the entire trajectory is evaluated, so a solution that

has k = 2 on a particular leg of the search may have k = 1 or k = 100 when

considering the whole trajectory or may have no corresponding solutions at

all, having become infeasible at a later leg of the trajectory search. The choice

of performance indices also greatly affects the effectiveness of pruning. For

example, arrival or final v∞ is not defined until the last leg of the trajectory

so it is not useful for pruning until the entire trajectory is calculated. As

another example, accumulated ∆V , being monotonically nondecreasing, is a

useful comparison metric at any leg. As a result of these difficulties with

pruning, choosing performance indices and how much of the solution space to

search is often an art guided by experience. Appendix C provides a solution to

the GTOC6 problem that was found using Explore and the methods described
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in this chapter, including carefully chosen performance indices which varied

leg-to-leg along the different phases of the trajectory.

3,4

2

1

A

5

3,4

2

1

B

5

3,4

2
1

C

5

2

3,4

D

1

5

2

3,4

E

1

5

2

3,4

F

1

5
5,6

1

2,3,4

G

7

5,6
1

2,3,4

H

7

1
4,5

2,3

I

6
3,4

2

1

J

5

4,51

2,3

K

6

Figure 2.8: Example trajectories from the Pareto front of the EVEJ search
shown in Figure 2.7, identified by their corresponding letters. Gravity assists
are numbered sequentially, showing the inclusion of additional resonant flybys:
Trajectories A–F, J follow the sequence EVEEJ; trajectories G–H follow the
sequence EVVVEEJ, and trajectories I and K use the sequence EVVEEJ.
Resonant transfers are shown with thicker lines.
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2.4 Including non-ballistic legs

The trajectory search algorithm has been described assuming that dis-

cretization points on adjacent nodes are connected with ballistic two-body

transfers. It is also possible to use a different method to connect these points,

including low-thrust arcs or impulsive maneuvers. Any method to connect

the different nodes needs to solve the boundary value problem inherent in

the Lambert problem: connecting two positions with a specified TOF . The

method may introduce a velocity discontinuity, as the Lambert problem does,

but then a patching constraint must be solved in an additional step.

One of the powerful advantages of the presented algorithm for search

and pruning is that it does not limit how the nodes may be connected as long

as the quantities used for pruning can be determined. Some customization is

required for each type of trajectory implemented to connect nodes, but unlike

methods which rely on the structure of the problem, the presented algorithm

and architecture do not significantly limit what those trajectory types may be

or how they are connected at the nodes. One example of the benefits of such

flexibility is shown in Figure 2.8; in this figure, example trajectories that used

resonant flybys to augment the suggested EVEJ sequence are shown. These

eleven trajectories are the approximate Pareto front within the constraints of

their search, as shown in Figure 2.7.

Specifically, the following types of trajectory legs or transfers have been

incorporated into the developed trajectory search tool. Most of these have been

developed or implemented by colleagues, but all required system integration

by the author.

• Ballistic: multi-revolution Lambert algorithm using a variation of uni-
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versal variables – including hyperbolic, parabolic, and retrograde trajec-

tories

• Parallelized ballistic: multi-revolution Lambert algorithm implemented

on a GPU for faster computation taking advantage of the parallelizable

nature of the search algorithm

• VILT: v∞-leveraging based method that enables general velocity-aligned

apsidal maneuvers (VAM)

• Optimized impulsive maneuver: local gradient-based optimizer with stochas-

tic multi-start initialization to find multiple local minima. Can be con-

strained to place maneuver inside a specific time range within the leg

• Low-thrust: shape-based multi-revolution technique for feasible sub-

optimal low-thrust trajectories with fast computation times

2.5 Including other node types

The different trajectory legs may be patched with different types of

nodes. The nodes themselves may be planets, moons, spacecraft, or anything

which can be defined by an ephemeris, including arbitrary points in space,

as long as a patched conics assumption remains valid. Node patching can be

accomplished in multiple ways, with implemented methods including:

• Flyby (nominal case): instantaneous patched-conics ballistic gravity as-

sist enforcing v∞ matching and altitude bounds

• Rendezvous: instantaneous rendezvous and departure maneuvers with

a dwell time in between for staying at an intermediate body. Multi-
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ple models are available for determining the ∆V required based on the

concept of operations at the body

• nπ flyby sequence: addition of nπ transfers and required flybys, filling

in time gaps, taking the trajectory out of the plane, and adding flybys

as needed to satisfy turn angle constraints. An internal DOF optimizer

can be used accomplish a specified goal with the nπ sequence; such as

minimizing the maximum turn angle of n flybys, or mapping the body

with periapse passages, as was done for GTOC6.

The two following chapters are devoted to derivation and demonstration

of the VAM/VILT method and the nπ sequence patching node.

2.6 Search performance

The multi-leg trajectory search is intended to be efficient and scalable

to different types and classes of missions, including interplanetary and moon

tour missions which operate on very different time scales. The architecture

is also intended to scale to multiple types of transfers and different patching

conditions. Several of these different transfers and patching conditions have

been implemented within the search architecture described, with timing per-

formance summarized in Table 2.2. This table is focused on run times. Both

run time and solution quality are highly dependent on the problem chosen

and the constraints used, but run time can be accurately reflected even if no

solutions generated are feasible.

Search parameters for the different cases described are given in Ta-

ble 2.3. The body locations are provided by the NAIF SPICE database de421
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Table 2.2: Comparison of trajectory searches with different trajectory types.
Note that adding nπ sequences does change the MGA sequence. Empty spaces
indicate cases which are not applicable or were not tested.

Trajectories EM EVEJ

considered run time (norm.) # solns. run time (norm.) # solns.

Ballistic 1.00 1810 11.86 1
Ballistic+VILT 1.830 2814 101.36 1
Ballistic+LT 56.10 17200 2147.74 1
Ballistic+VILT (nontangent) 58.52 20105
Ballistic+DSM (optimized) 228.69 7810
Ballistic+nπ Seq. 53.43 208
Ballistic+VILT+nπ Seq. 558.99 235

available online. The search architecture is also scalable in terms of the com-

puter used; in this case searches are conducted on a desktop workstation but

timing is provided in relative units assuming only single-core processing. The

same Explore software has also been used on more powerful servers and much

less powerful laptops. With the provided parameters on the machine used for

the test, a single unit of normalized search time in Table 2.2 is 1.56 seconds.

2.7 Explore architecture and implementation details

The algorithm presented in this chapter is coded in Fortran 95 and

compiled with Intel Fortran as the tool Explore. The software tool provides

a variety of inputs, outputs, diagnostics, and utilities to the main algorithms

it hosts: The v∞ matching (one-dimensional root-finding) is conducted with

a bounded secant method4 which has been found to work very well for the

problems Explore encounters. There are also other zeroth and first order

4A customized variant of root.f available from http://netlib.org/napack/root.f (ac-
cessed September 24, 2010)
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Table 2.3: Parameters for the searches timed in Table 2.2

Parameter EM EVEJ

Launch window 01/01/2018-12/31/2021 01/01/2020-12/31/2021
max TOF (days) 730.5 2920
max launch v∞ (km/s) 6 6
max revs. per leg 2 2
max resonant loiter (revs per leg) 2
max mission ∆V (km/s) 2 2
max ∆V per leg 2 1
discretization

nontangent VILT (deg) 5
Earth (ppr) 55 36
Mars (ppr) 65
Venus (ppr) 30
Jupiter (ppr) 60

root-finders and minimizers within the code as well as basic astrodynamics

calculators and interoperability with the SPICE toolkit. One of the major im-

plementation challenges has been interoperability of the different parts within

Explore as the tool complexity has increased, requiring a balance between

writing fast code and code that is easy to maintainable.

2.7.1 Architecture and algorithm

Figure 2.9 shows a basic architectural diagram of Explore, which also

includes a helpful user interface developed in MATLAB. Algorithms 2.1-2.2

spell out the specific steps and loops in the pathsolving process: Algorithm 2.2

is the memory batch algorithm used within Algorithm 2.1 where the solution

space subdivided and solved in batches that each fit into available memory. In

these algorithms, s is used to indicate a solution counter, where the subscript

distinguishes the various solution counters. A indicates an array of data for

candidate trajectories: Aprev stores pertinent data of the candidate trajectories
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generated by pathsolving to the preceding node (the candidate trajectories

themselves are stored in unformatted binary files which are referenced by Aprev

as described below), Ainput defines the set of BVPs to be solved and Aoutput

contains data pertaining to the solutions of the BVPs.

Figure 2.9: Summary of the architecture and components of Explore, the path-
solving tool presented in this dissertation.

2.7.2 Memory management: problem subdivision

Some of the other challenges with implementing Explore have been stor-

ing and tracking solutions and managing memory use. Solutions are stored in

structures to help with maintainability, but the number of solutions investi-

gated at one time can be as high as tens or hundreds of millions, so special

care needs to be taken with how solutions are handled.
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Algorithm 2.1 Process for pathsolving the suggested-path scheduling prob-
lem outlined in Table 2.1 as implemented in Explore using innovative pruning
and available RAM
1: Read input files
2: Interpret inputs and initialize search
3: Create list of discretized encounter body states at B1

4: svalid = number of discretized points in B1 list
5: Save B1 list to corresponding file as valid candidate solutions
6: L = 1
7: while L ≤ l do
8: Solve leg L using Algorithm 2.2 to subdivide solution space to available

memory, returning nbatch
9: if nbatch > 1 then Redo performance index pruning for all solutions:

10: Load all valid solutions to node BL+1

11: Rank and prune valid solutions by Pareto optimality
12: Prune to specified nMAX solutions (absolute filtering)
13: Save remaining solutions to file for node BL+1, overwriting previous file
14: end if
15: svalid = Valid candidate solutions to node BL+1 saved in file
16: L = L+ 1
17: end while
18: Create output files
19: for i = 1 · · · svalid do
20: Load solution i from files starting with Bl+1 and following linked list to B1

21: Recalculate solution i to regenerate data not stored in files
22: Write solution i data to output files
23: end for
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Algorithm 2.2 Memory batch loop for solving leg L within Algorithm 2.1
Input: svalid from calling Algorithm 2.1
1: sstart = 1; send = svalid; sdone = 0; nbatch = 0
2: while sdone < svalid do
3: nbatch = nbatch + 1
4: while Ainput and Aoutput unallocated do
5: Load solutions sstart to send to previous-node array Aprev

6: if nbatch == 1 then
7: Create list of discretized states at BL+1, bounded using Aprev

8: end if
9: Estimate memory needed for solving all branches from Aprev

10: if Sufficient RAM or send − sstart = 1 then
11: Allocate input array Ainput, output array Aoutput and helper arrays
12: else
13: send = send × {memory reduction factor}
14: end if
15: end while
16: Generate input set list and store in Ainput

17: • Zero-dwell time cases for flybys
18: • nπ dwell cases for nπ sequences (if included in search)
19: • Discretized dwell cases for rendezvous (if included in search)
20: Solve BVPs in Ainput using desired methods, storing solutions in Aoutput

21: • Ballistic Lambert solver
22: • VILT BVP solver
23: • General single ∆V transfer optimizer
24: • LT BVP shape-based solver
25: if L > 1 OR vI

∞ for B1 provided by user then
26: Split solutions into solver bin sets
27: • No v∞ discontinuity or rendezvous: solutions valid
28: • Other solutions binned by zero-crossing pairs of like type
29: Pre-prune solutions by feasibility before v∞ continuity root solve (heuristic)
30: Root-solve to enforce v∞ matching at BL on valid solution pairs
31: Prune by feasibility of leg (transfer) data for valid solutions
32: Apply nπ sequence solver to nπ dwell solutions (enforce patching at node BL)
33: Prune by feasibility of patching node BL: e.g. flyby h, rendezvous ∆V , etc.
34: else
35: Prune by feasibility of leg (transfer): e.g. VILT ∆V , LT thrust, etc.
36: end if
37: Calculate performance indices of remaining valid solutions
38: Rank and prune remaining valid solutions by Pareto optimality
39: Prune to specified nMAX solutions by one performance index (absolute filtering)
40: Save remaining valid solutions to file for node BL+1 (Append if file already exists)
41: Deallocate Ainput, Aoutput, and helper arrays
42: sdone = send; send = (send − sstart)× {memory increase factor}; sstart = sdone + 1
43: end while
Output: nbatch to calling Algorithm 2.1
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In the interest of speed, all data which are currently being manipulated

are stored in random access memory (RAM). This reduces latency associated

with reading from or writing to the hard drive, which is only accessed at the

beginning and end of each leg calculation, and then using unformatted binary

files for improved read and write speed. However, the RAM available is gener-

ally much more limited than hard drive space. To circumvent this limitation,

Explore is built to be flexible with how much RAM it uses, subdividing the

solution space to fit part of it in RAM as explained in Algorithm 2.2. The

algorithm dynamically allocates the amount of RAM it needs or the amount

available (or set by the user), whichever is smaller. When the entire leg of the

trajectory being calculated cannot fit into RAM, the leg is split into batches

by subsets of start time on the leg (that is, the preceding node). None of the

search space is lost in this batch processing, but underestimating the RAM

requirements for a memory batch can lead to solutions being discarded from

lack of storage for them. Memory can be allocated to the maximum possible

number solutions to avoid the risk of discarding solutions, but this strategy

leads to the allocation of much more memory than needed in most practical

problems.

Alternatively, the solution subdivision into batches can be used to allo-

cate the different batches to different CPUs for parallel computation. Although

there would still be a sequential bottleneck in that each leg would need to be

fully evaluated before progressing to the next leg, this method for potentially

speeding up computation is worth further study.

This subdivision also keeps hard drive writes low because the batch can

be evaluated entirely to completion and written to the hard drive before the

next batch of the same leg is set up to be solved. The batches are therefore
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treated as independent except for performance index pruning: Performance

indices are calculated in each batch and performance index pruning is per-

formed within each batch. If more than one memory batch was necessary,

performance index pruning is done again once all the solutions for the leg are

evaluated. This two-stage pruning can be done without any loss of solutions

from the batching process because the Pareto rank of a solution can only in-

crease when it is compared against solutions of other batches. Similarly, the

ordinal ranking of a solution for absolute filtering can only increase once the

solution is compared against all batches.

2.7.3 Memory management: solution representation and storage

One way memory requirements are reduced is by storing less data for

each solution. At the end of the search the solutions are recalculated from this

reduced set of data as shown in Algorithm 2.1, but since the number of final

solutions is relatively small compared to the investigated candidate solutions,

this process does not add significantly to the run time of a search.

Solution data for each candidate trajectory are stored in “derived-type”

vectors. What data are stored within a derived type is carefully chosen so that

the search process runs smoothly and solutions are reproducible, but beyond

that aim, extra data are not stored but rather recalculated at the end of the

search process and printed for output. For example, the single ∆V vector of an

optimized DSM is stored because it is calculated with a stochastic MS but the

maximum thrust along a LT arc is not stored in memory but is recalculated

and printed in the output files. One major exception is made in storing body

states – although these can be repeatably reproduced from the time alone,

the full body state is stored to aid in run time. Care has also been taken in
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the number of bytes used for logicals and integers so as to reduce the memory

footprint for storing each solution.

In terms of storage, each trajectory is a linked list of these derived-type

memory structures as shown below. Bracketed terms are each one level of the

list and the j’s in parentheses are the reference number that the next element

uses to link to the previous one:

{N1}(j1) ← {L1 → N2}(j2) ← · · · ← {Ln−2 → Nn−1}(jn−1) ← {{Ln−1 → Nn}}(jn)

Only the list element at the end, here the nth node referenced by jn, is

stored in RAM. In practice this has to be a special list element and is imple-

mented in Explore as a three-level reverse tree structure to reduce duplication

of data in RAM. Algorithm 2.2 indicates when each of these three arrays is

created and filled:

Aprev ← Ainput ← Aoutput

This structure is a reverse tree because, as the arrows show, the leaves know

from which branch they originate, but the branches do not have access to the

leaves which stem from them.

All other elements of the trajectory linked list are identical, single-

level structures with data pertaining to their node and preceding leg, where

applicable. This method of storage also provides implicit backwards pruning;

if a particular trajectory does not continue in the search, its past elements are

still stored on the hard drive but there are no longer any list elements pointing

to them from the current node. As a result, when the trajectories are read

for output, the incomplete trajectories will not be included because they no

longer have a pointer to them.
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Chapter 3

V-Infinity Leveraging Transfers and

Velocity-Aligned Apsidal Maneuvers

The boundary value v∞ leveraging transfer formulation is presented in

this chapter1. First, VILTs are described in general, including types of trans-

fers, basic assumptions, and input parameters used for their definition. This

general discussion is followed by presentation of the specific VILT formulation

under consideration, including an introduction to the method, the derivation of

the time-of-flight (TOF ) equation, and discussion of determining outputs, i.e.

the solve-for parameters of the transfer solution. Next the function behavior

of TOF is investigated, including the bounds, observed function shapes, and

possible number of solutions. An algorithm for the presented VILT method is

given, along with various notes on implementation.

Several different kinds of examples follow. First, four examples are

investigated for tangent VILTs to demonstrate some of the solution families.

1This chapter contains information also published in:
• Demyan Lantukh, Ryan P. Russell, and Stefano Campagnola. “The V-Infinity Leverag-
ing Boundary Value Problem and Application in Spacecraft Trajectory Design,” Journal
of Spacecraft and Rockets, Volume 52, Issue 3, pp 697–710, 2015. DOI: 10.2514/1.A32918
• Demyan Lantukh, Ryan P. Russell, and Stefano Campagnola. “Automated Inclusion
of v-infinity Leveraging Maneuvers in Gravity-Assist Flyby Tour Design,” AIAA/AAS
Astrodynamics Specialist Conference, 13-16 August 2012, Minneapolis, MN

Ryan P. Russell provided initial problem formulation and implementation as well as def-
inition of function bounds. Stefano Campagnola contributed to initial formulation and
independent verification.
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Next, two example sequences to Jupiter are presented, including the use of an

inter-body VILT (IBVILT). Two flyby-aided capture examples at Jupiter are

presented, one which requires nontangent VILTs to solve and a second which

uses the VILT method to place the Jupiter Orbit Insertion (JOI) maneuver.

The last example demonstrates the use of the VILT method as an initial guess

for LT transfers as part of a solution to the GTOC6 problem.

3.1 v∞ leveraging in a trajectory search

In the context of pathsolving or a broad trajectory search, formulating

a v∞ leveraging transfer (VILT) as a boundary value problem provides some

distinct advantages. The resulting transfer is broader than a VILT, enabling

the calculation of a velocity-aligned apsidal maneuver (VAM) which can occur

in instances not generally classified as VILTs – instances such as inter-body

transfers and orbit insertion maneuvers.

Since the form of the problem parallels the ballistic Lambert prob-

lem, inclusion in Lambert-based pathsolving algorithms is straightforward.

The boundary value formulation adds a single continuous degree of freedom

(DOF) and a few binary and countable DOFs, helping reduce the dimensional

increases normally associated with maneuver inclusion. A method for deter-

mining VAMs (and the subset of VILTs) is developed and demonstrated in the

remainder of the current chapter.

3.2 Models and assumptions for v∞ leveraging

VILTs employ a specialized class of maneuver whose purpose is to ef-

ficiently change v∞ at a flyby body, providing advantages for gravity assist
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Figure 3.1: The different types of VILTs

Figure 3.2: Pump angle (α)

or orbit insertion. The v∞ leveraging maneuver (VILM) is performed near an

apse to accomplish this favorable trade-off, usually as part of a VILT sequence.

Figure 3.1 shows four types of VILTs based on the maneuver location and di-

rection as described below. If the minor body has a circular orbit, then the

VILM increases v∞ when the maneuver increases spacecraft orbit eccentricity

and decreases v∞ when the maneuver decreases spacecraft orbit eccentricity

[116]. The traditional advantage of VILTs is their ability to change v∞ with a

relatively small maneuver at or near the leveraging apse, an apse opposite the

flyby: the change in v∞ can be an order of magnitude greater than the ∆V

[117, 18].

3.2.1 Types of VILTs

There are several different ways to describe or characterize VILTs: gen-

erally, one continuous parameter, three integers, and three binary descriptors
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are sufficient. For example, consider an interior, tangent d2:3+
1 VILT, which

fully describes the transfer. Here tangent is a special case of the continu-

ous parameter, which is zero by the definition used in the current thesis, as

given below. The three integers relate the VILT to orbit resonances, where an

N :MK VILT performs approximately N revolutions in the time it takes the

flyby body to perform approximately M revolutions, with 0 ≤ K < N indi-

cating the number of complete spacecraft orbit revolutions before the VILM.

The example 2:31 VILT therefore has the spacecraft completing approximately

two revolutions in the same time that the flyby body completes approximately

three revolutions, with the maneuver happening on the second spacecraft rev-

olution.

The first binary descriptor for VILTs indicates the location of the lever-

aging apse: when the VILM is at spacecraft apoapse (periapse), the VILT is

termed exterior (interior). Whether a VILT is exterior or interior specifies

the domain (D) of the leveraging apse, were D = 1 and D = −1 for exterior

and interior VILTs, respectively. This convention assumes a circular minor

body orbit, an assumption this study does not enforce, but the terminology is

maintained for simplicity and consistency with literature. The second binary

descriptor, represented by the d in d2:3+
1 , deals with the direction of the trans-

fer. One convenient way to describe direction is its effect on the spacecraft

eccentricity, with one encounter designated the Low Encounter and the other

the High Encounter according to eccentricity as shown in Fig. 3.1. The direc-

tion, or change (C), of the VILT is then either increasing (C = 1) or decreasing

(C = −1) spacecraft eccentricity (and v∞ for the case of circular body orbit

or tangent VILTs at one body). The third descriptor, represented by the +

in the superscript of d2:3+
1 , indicates the location of the high encounter flyby
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of the VILT with respect to the non-leveraging (vacant) apse, called Minus or

Plus, as illustrated in Fig. 3.1. This description of relative geometry extends

to multiple-revolution VILTs as well. However, since the spacecraft position

at the beginning and end of the VILT are inputs to the method developed

here, whether the VILT is plus or minus is implicitly specified in the inputs.

The four resulting combinations of VILTs are illustrated in Fig. 3.1.

The continuous parameter is the one remaining DOF once all of the

assumptions are applied for a VILT. Because historically VILTs have been

classified into two subsets by this free parameter, it is convenient to define a

fourth binary descriptor that a VILT can be either tangent or non-tangent.

In this study we take the liberty of defining a tangent VILT as a VILT where

the low encounter occurs at a spacecraft apse, and any VILT that does not

satisfy this condition is non-tangent. In the case of a circular flyby body

orbit, the low encounter of a tangent VILT has a v∞ tangent to the minor

body velocity, providing consistency with the traditional definition of a tangent

VILT in literature. If a VILT is non-tangent then the value of the continuous

parameter must be specified to fully define the VILT, with a definition of this

free input parameter used in the current study given below. Tangent VILTs

have the advantage of being easier to compute and having a simpler design

space because they have one fewer free parameter, but they can be limiting

in certain problems, such as those which use flyby bodies with small masses

[117, 18]. The nomenclature described in the current work seeks to retain

consistency with the literature while also being extensible to non-circular body

orbits and general VAMs
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3.2.2 Assumptions

Many previous studies and the current work assume a velocity-aligned

maneuver at the spacecraft orbit apse, a good approximation of the true op-

timal solution [112, 117]. This assumption provides a way to patch the two

ballistic segments of the VILT with only one free dimension parameter, where

a positive ∆V aligns with the local spacecraft velocity and a negative ∆V

aligns directly opposite the local spacecraft velocity.

Many previous methods rely on two assumptions that are abandoned

here: First, there are no restrictions on the body orbit or even that the space-

craft return to the same body, whereas other methods often require both flybys

to be at the same body with a circular orbit. Also, there is no need to know

v∞ at either encounter. As a result, the inputs match those of the traditional

Lambert boundary value problem – two position vectors and TOF between

them – along with some additional integer parameters to take care of the

VILM type and a single remaining free parameter that disappears in the case

of tangent VILTs.

3.2.3 Free Input Parameter for Non-tangent VILTs

The remaining free parameter for non-tangent VILTs is the result of

an under-constrained general problem formulation. The most natural free

parameters would relate to one of the two encounters. The angle between the

low encounter and the vacant apse is used because of its simple relationship

to true anomaly and straightforward implementation. Choosing v∞ as a free

parameter is avoided because there is no clear a priori relationship between

efficiency of the VILT and v∞, but using v∞ may have some advantages in the

context of the trajectory search. Another natural choice would be spacecraft
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(a) (b)

Figure 3.3: Nontangent (a) and tangent (b) VILTs are calculated by deter-
mining the tE of the two constituent ballistic arcs of each VILT and solving for
the rC which provides the desired total TOF . These examples are decreasing
(C = −1), interior (D = −1) VILTs.

Φ, which has the advantage of being easily related to the body Φ. This latter

choice provides a different method to extend the concept of tangent and non-

tangent VILTs to non-circular body orbits since having a pump angle of 0

or π radians maximizes or minimizes, respectively, the central body velocity

resulting from a flyby. The definition for pump angle is illustrated in Fig. 3.2.

However, relating to the true anomaly results in a significantly simpler and

better-behaved function that is easier to implement than the Φ method.
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Therefore, a modification of the true anomaly is used: the angle to the

vacant apse (the non-leveraging apse), as shown in Fig. 3.3. This angle has the

advantage of being easy to relate to the true anomaly and leads to a relatively

simple function space, as shown in the Function Behavior Investigation section

below. A value of zero for this angle at the low encounter (ξL = 0) results in

a tangent VILT. If the body orbit is circular or the encounter occurs at the

body orbit apse, then the spacecraft Φ is also 0 or π radians when ξL = 0.

3.3 Boundary-Value VILT Formulation the Parallels the
Lambert Problem

The VILT is composed of two coplanar ballistic arcs connecting the

encounters and the VILM, as shown in Fig. 3.3. The initial and final positions

and the TOF are given, together with the free parameter (ξL). For a given

VILT type, these parameters are sufficient to compute the initial and final

velocities and the VILM. To ease analysis, the leveraging apse radius rC is in-

troduced as the solve-for parameter and determined using a phasing constraint

equation, as explained in the next section.

Once in the plane of the transfer, the VILT formulation is defined

entirely in terms of scalar parameters and gives the TOF by splitting the

VILT into its two ballistic arcs and calculating the time of flight of each of

those arcs (tE). Input position vectors are transformed into the plane of the

VILT where the transfer lies in the plane of the vectors, except when θ is

a multiple of π radians. In such cases, the transfer plane is undefined, as

with the Lambert algorithm. These resonant and odd-nπ return cases are not

explored in this study. The outputs of the VILT calculation can similarly be

transformed into vectors in the original reference frame.
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3.3.1 Time-of-Flight Equation

The time of flight is separated into the time for each ballistic arc as

shown in Fig. 3.3 with the maneuver assumed to be instantaneous. This section

develops the time of flight for each ballistic arc as a function of leveraging apse

distance rC as well as the boundary conditions and VILT type. The subscripts

for the low and high arcs (L and H respectively) are replaced by the subscript

E where the equations are to be applied to both arcs or encounters separately.

Using D and taking advantage of the knowledge that one end of the arc must

be the spacecraft periapse or apoapse, the transfer parameters can be defined

by simultaneously solving Eqs. (3.1) and (3.2) to get Eqs. (3.4) and (3.5).

All Eqs. (3.1) through (3.15), except Eqs. (3.3) through (3.5), are common in

astrodynamics texts or simple combinations thereof [4].

r =
a (1− e2)
1 + e cos ν

(3.1)

rC = a(1 +D e) (3.2)

νE = ξE +
π

2
(1−D) (3.3)

eE =
rC − rE

rE cos |νE|+D rC
(3.4)

aE =
rC (rE cos |νE|+D rC)

rE cos |νE|+D (2rC − rE)
(3.5)

Provided the arc semi-major axis and eccentricity, the spacecraft eccentric

anomaly at the encounter is determined, and the Kepler equation defines time

since periapse. Valid true anomaly values can be either positive or negative,

but the absolute value is used so that the correct eccentric anomaly is cal-

culated in Eq. (3.6), with the sign of the true anomaly accounted for by the

geometric parameter O in Eq. (3.10), which is defined below. The absolute

value operation on νE in Eqs. (3.4) and (3.5) is not necessary because it does
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not affect the cosine but the absolute value is maintained throughout for con-

sistency.

EE = 2 tan−1
[
tan

(
|νE|

2

)√
1− eE
1 + eE

]
(3.6)

n∗E =

√
µ

a3E
(3.7)

TE =
2π

n∗E
(3.8)

tPE =
EE − eE sinEE

n∗E
(3.9)

The number of full orbit revolutions in a ballistic arc is KE. N is the total

approximate revolutions of the VILT so N = KL + KH , but the number of

actual complete spacecraft revolutions may be either N or N + 1 depending

on the values of OL and OH . For O = 1, the spacecraft passes through at least

K + 1/2 revolutions and for O = −1 the spacecraft passes through fewer than

K+ 1/2 but more than K full revolutions in the arc. This information is used

to determine tE for each arc and these times are combined into TOF .

tE = tPE DOE + TE

[
KE +

1

2
− OE

4
(D − 1)

]
(3.10)

TOF = tL + tH (3.11)

Because the true anomaly is specified only at the low encounter through the

free parameter ξL, applying the above method requires determining the true

anomaly at the high encounter.

ν∗H = νL + θ (3.12)

The parameter θ is the angle from the initial spacecraft position vector before

the VILT to the final spacecraft position vector after the VILT, as shown in
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Fig. 3.3, and is readily determined from the vector inputs. This equation

comes from the fact that the two transfers of the VILT share the leveraging

apse, which is also called the common apse. Here ν∗H may not necessarily be in

the correct domain and νH should be set to the equivalent of ν∗H in the domain

[−π, π], which is also the domain of νL.

3.3.2 Determining Outputs

Equation (3.11) provides a relation of TOF as function of (rC , ξL) and

other known parameters. For a choice of the free parameter ξL, Eq. (3.11)

can be numerically solved for rC , as explained in the Implementation section.

Once rC is known, the other dependent variables are computed with Eqs. (3.4)-

(3.12). In addition, the velocity at both encounters and right before and after

the maneuver is computed using the energy equation, Eq. (3.13).

V =

√
µ

2a− r
a r

(3.13)

Subscripts are left off of Eqs. (3.13) through (3.15) because they are general

in nature and can be applied to any transfer. Maneuver size and direction is

calculated from the velocity magnitudes on the low and high end of rC since

the direction C is also given. With this information and flight path angle of

the spacecraft at both encounters as given in Eq. (3.15), the outputs can be

converted to vectors in the original reference frame.

p = a (1− e2) (3.14)

Φ = cos−1
√
p µ

r V
(3.15)
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3.4 TOF Function Behavior Investigation

The boundary value VILT is calculated by setting up a one-dimensional

root-solve based on Eq. (3.11) and solving G = TOF −TOF ∗ = 0, given with

explicit dependencies in Eq. (3.16). This function is investigated to determine

the number of possible roots, convexity, singularities, and any other charac-

teristics which would affect implementation.

G(µ,D,N,θ,TOF ∗,rL,ξL,KL,OL,rH ,OH)(rC) = tL (µ,D,rL,ξL,KL,OL)(rC)+tH (µ,D,N,θ,rH ,OH)(rC)−TOF ∗

(3.16)

Specifically, an investigation is performed on the mapping from rC to TOF (rC)

from Eq. (3.16), with all other inputs systematically varied as constants for

any one case. Both rC and TOF (rC) are physical quantities that are only

considered valid when they are real, positive, and finite.

3.4.1 Bounds

The function domain can be divided into two sub-domains: exterior

and interior VILTs. When calculating an interior VILT, 0 < rC ≤ rE and for

an exterior VILT, rE ≤ rC < ∞, although a more reasonable but still large

upper bound is used in implementation. If the body orbit is circular, then

rH = rL and the separation of the two sub-domains is clear. Otherwise, when

rC falls between rL and rH the VILT is not well defined even though a VAM

can still exist. In this case, one of the primary purposes of the maneuver is to

change the spacecraft energy, but gravity assists are much more efficient for

this task; it is unlikely an optimal trajectory would employ such a maneuver

except for targeting or as a trajectory correction. For this reason, the solutions

where rL < rC < rH or rL > rC > rH have been left out of the current study

of VILTs, where it effectively becomes a maneuver exclusion zone as shown
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Figure 3.4: The annulus in which the leveraging apse is excluded because
optimal trajectories are not expected to have maneuvers within it, shown for
the case described in Fig. 3.3.

in Fig. 3.4. This exclusion zone can be quite large for highly eccentric bodies

and for inter-body transfers, but maneuvers in this region can be included by

accounting for the fact that one ballistic arc is part of an interior VILT while

the other is part of an exterior VILT.

For interior VILTs, Eq. (3.11) can have a singularity and an associated

region of the function domain which is invalid. The function becomes invalid

when rC ≤ rC,LB where rC,LB is the maximum of the singularity function given

in Eq. (3.18) evaluated at the low and high encounters.

rC,LB = max(rC,singular|L, rC,singular|H) (3.17)

rC,singular =
rE
2

(1−D cos |νE|) (3.18)

For practical implementation, the bounds on which the function is evaluated
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are offset in the direction of the valid domain by a small parameter.

3.4.2 Observed Function Behaviors

The behavior for the function TOF (rC) is investigated by systemat-

ically varying the other parameters and evaluating TOF as the dependent

variable and rC as the independent variable. This TOF is essentially the

function that the root solver evaluates, with an offset by the target TOF so

that the zero corresponds to the target. All investigations and the conclusions

from them are based on numerical studies.

Figure 3.5 shows the basic function shapes observed for TOF (rC), with

the horizontal dashed line indicating a target TOF . Table 3.1 provides the

inputs used to generate Figure 3.5. Distances and times are given in normal-

ized length and time units. Figures 3.5a and 3.5b show exterior VILTs with

one solution and two solutions for the target TOF , respectively. Figures 3.5c

and 3.5d show interior VILTs with one and two solutions respectively. Fig-

ure 3.5 shows cases where ξL = 0 (Figs. 3.5a-3.5d) and also shows that the

same type of function shapes result in cases where ξL 6= 0 (Figs. 3.5e-3.5l).

Among the nontangent (ξL 6= 0) cases, Figs. 3.5i-3.5l repeat Figs. 3.5e-3.5h

except with the opposite sign of ξL. VILTs have been observed to have one

of two distinct function behaviors: either TOF increases monotonically with

increasing rC and there is at most one solution, or TOF has one minimum and

there are one or two solutions (no cases with more than two solutions were en-

countered). Cases can be found where the second derivative d2(tE)/d(rC)2 < 0,

but no complete VILT input set evaluated was found to have more than two

possible solutions.

Whether the solution space is monotonic or not is a function of the
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(i) (j) (k) (l)

Figure 3.5: Examples of the different function shapes for different VILTs, with
rC as the independent variable. ξL = 0 for parts a-d and ξL 6= 0 for parts e-l.
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Table 3.1: Inputs for example TOF (rC) functions (µ = 1, normalized units,
angles in radians)‘

Figure D C N K S rL rH θ TOF ξL

a 1 1 2 1 1 0.9000 0.9018 6.0751 18.680 0.0000
b 1 1 2 1 2 0.9000 1.0502 4.1016 16.839 0.0000
c -1 1 3 2 1 0.9000 0.9000 6.2600 12.548 0.0000
d -1 1 3 1 1 0.9000 0.9026 6.0290 12.359 0.0000
e 1 1 2 1 1 0.9000 0.9002 6.2446 18.818 -0.7854
f 1 1 2 1 2 0.9000 0.9924 4.6883 17.455 -0.7854
g -1 1 3 3 1 0.9000 0.9217 5.5466 11.597 -0.2618
h -1 1 3 1 1 0.9000 0.9000 6.2677 12.554 -0.2618
i 1 1 2 1 1 0.9000 0.9002 6.2446 18.818 0.7854
j 1 1 2 1 1 0.9000 0.9924 4.6883 17.455 0.7854
k -1 1 3 3 1 0.9000 0.9217 5.5466 11.597 0.2618
l -1 1 3 1 1 0.9000 0.9000 6.2677 12.554 0.2618

other inputs and is determined by evaluating the derivative d(TOF )/d(rC) at

the bounds of the solution space. For the monotonic cases evaluating TOF at

the lower bound allows the existence of a solution to be verified. In the other

cases (similar to the multi-revolution Lambert problem function space) the

minimum of TOF (rC) must be found to determine whether or not a solution

exists for a desired TOF , and the solution number (S) is specified to determine

whether the lower or higher value of rC is desired. In order to distinguish

the two solutions, first the minimum of TOF (rC) is found: in this case, a

one-dimensional root-solve of the first derivative is employed, but a direct,

derivative-free minimizer is used instead if that root solve fails to converge in

a reasonable number of iterations. A derivative-free approach is occasionally

found to be preferable for both finding the minimum and for solving for the

desired TOF because the slope of TOF (rC) can be exceedingly steep as the

function approaches the singularity (e.g. the left side of Fig. 3.5d). Such steep
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changes are known to cause problems for gradient-based root solvers. When

the function TOF (rC) has a minimum in the sub-domain of interest, then

cases with zero, one, or two solutions have been observed. The algorithm as

implemented below for determining the VILT is designed to account for the

possibility of up to two solutions.

3.5 Implementation

The implementation of the VILT solver is designed to be as close as

possible to a plug-and-play addition for any outer loop search that relies on the

classic Lambert problem as the inner loop such as the algorithm described in

the previous chapter. However, a few key differences require special handling

in the context of trajectory search software. First, additional inputs are needed

to specify the type of VILT which are not needed for a Lambert solution. Also,

maneuver magnitude and direction are desirable as outputs in addition to the

spacecraft velocities. Taking these differences into account, a basic search

algorithm that patches ballistic Lambert legs together can also be used to

patch VILTs into a trajectory sequence, as implemented in this dissertation.

The algorithm presented in Algorithm 3.1 is already cast in the plane of

the transfer. As mentioned previously, there may be cases where a derivative-

free minimizer or root-solver may be preferred. Algorithm 3.2 presents the nu-

merical root-finding of the TOF to find rC , as called for within Algorithm 3.1.

3.6 Tangent VILT Design Space Exploration

Several examples cases are considered next, beginning with simple single-

transfer cases. A coplanar model is used for the minor bodies in the current
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Algorithm 3.1 Algorithm used to solve for VILT in a way that enables the
use of inputs and outputs that parallel the traditional Lambert boundary value
problem.

Input: rL, rH , TOF
∗, ξL, µ, θ,N,K,D,C, S

Determine νL from Eq. (3.3) and νH from Eq. (3.12) and OL, OH from
geometry using C and θ.
Bound the domain of interest

case (D = 1): rC,LB = max(rL, rH), rC,UB = U, where U is sufficiently
large
case (D = −1): Determine rC,LB from Eq. (3.17), rC,UB = min(rL, rH)

Determine the number of solutions (F ) and adjust bounds as needed for S
if d(TOF )/d(rC)|rC,LB

≥ 0 then
if TOF |rC,LB

> TOF ∗ then F = 0, EXIT
else F = 1
end if

else if d(TOF )/d(rC)|rC,UB
> 0 then

Minimize Eq. (3.11) between rC,LB and rC,UB to find rC,min
if TOF |rC,min

> TOF ∗ then F = 0, EXIT
else if TOF |rC,min

= TOF ∗ then F = 1, rC = rC,min is the
solution

else F = 2
Adjust the bounds to encapsulate the desired solution

case (S = 1): rC,UB = rC,min
case (S = 2): rC,LB = rC,min

end if
else

ERROR: this case should not occur unless F > 2, which has not
been observed, or U is not sufficiently large

end if
Pick an initial guess r

(0)
C such that rC,LB < r

(0)
C < rC,UB

Numerically solve for rC using Algorithm 3.2
Output: rC , F (with resulting VL, VH , ΦL, and ΦH)
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Algorithm 3.2 Numerically solving for rC of a VILT with given TOF .

Input: r
(0)
C ,TOF ∗,rL,rH ,νL,νH ,OL,OH ,KL,KH ,D,µ

function tE(rC ,rE,νE,OE,KE,D,µ)
Sequentially apply Equations (3.4)-(3.10)

end function
i = 0
repeat

Calculate G for the iteration i from Eqn. (3.16) using

tL = tE(r
(i)
C ,rL,νL,OL,KL,D,µ)

tH = tE(r
(i)
C ,rH ,νH ,OH ,KH ,D,µ)

i← i+ 1
Update r

(i)
C using a suitable root-finding technique.

Method for the current study: Newton-Raphson with trust region
bounded by rC,LB and rC,UB determined in Algorithm 3.1

d(tE)/d(rC) determined by differentiation of Eq. (3.10) using the
symbolic manipulator software, Maple

until G < tolerance
rC = r

(i)
C

Output: rC
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section, but additional examples with ephemeris locations are shown in Ap-

pendix D and discussed in Ref. [159]. Following sections will also utilize non-

coplanar and ephemeris models. In the cases presented in the current section

ξL = 0, therefore VILTs are tangent.

Simple one-transfer cases are generated by choosing one launch time

and solving for many values of TOF from that time, leading to families of

VILTs. Because the bodies are defined by their orbital elements, the initial

and final body position vectors are entirely determined by the launch time and

TOF , making this sweep slightly different from parameter sweeps often used

to characterize ballistic solutions where the position vectors are fixed. Five

distinct examples are presented, with all bodies assumed in circular orbits ex-

cept Mercury; orbital elements for the bodies are given in Table 3.2, with two

different initial true anomalies used in Mercury examples. The parameters

used for the trajectory search for each case are given in Table 3.3. Design

space figures for all five presented cases show VILTs as black points and bal-

listic solutions as gray points. VILT families are labeled by their associated

resonance as described previously, but the subscript for the maneuver revolu-

tion is left off because it is always zero for these examples. Ballistic families

of solutions are labeled by the number of complete spacecraft revolutions and

which transfer solution (short-period or long-period) if there are more than

zero revolutions. For example, a two-revolution long-period ballistic family is

labeled 2L.

3.6.1 Studying the ∆V -EGA

The original VILT proposed – a classic example for study – is the ∆V

Earth gravity assist (∆V -EGA) where Earth is the encounter body at both
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Table 3.2: Orbital elements for bodies used by examples of the VILT design
space

Earth Mercury Mars Venus

Semimajor axis (AU) 1.0000 0.38710 1.5237 0.72333
Eccentricity 0 0.20563 0 0
Inclination (rad) 0 0 0 0
Argument of periapsis (rad) 0 0 0 0
Longitude of the Asc. Node (rad) 0 0 0 0
Mean Anomaly (rad) 0 0, π/2 π 0

The epoch of the orbits is at launch (t = 0)

Table 3.3: Constraints for the five example cases of the VILT design space

Earth-
Earth

Mercury-Mercury
(both cases)

Earth-
Venus

Max Revolutions 2 2 1
Resolution (points per body rev) 1000 1000 1000
Max TOF (Earth days) 1461 264 674
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Figure 3.6: TOF of exterior (a) and interior (b) ∆V -EGA solutions, as well
as ballistic transfers.

ends of the VILT and the first encounter is often spacecraft launch [111, 113,

114]. Among other interplanetary missions, ∆V -EGAs have been flown by

NEAR and Juno [119, 25]. Trajectories may also use a flyby with a different

body instead of a maneuver to accomplish the same result as a VILT; for

example, the Venus flyby at the start of many trajectories to the outer planets

could be replaced with a maneuver, making the first part of the sequence a ∆V -

EGA. Figures 3.6 and 3.7 present the ballistic and VILT (∆V -EGA) solutions

for an Earth-Earth transfer. This Earth-Earth case satisfies the constraints in

Table 3.3, with Earth’s orbit propagated as Keplerian with the orbital elements

provided in Table 3.2. Because the sweep is discretized, the resolution is given

in sample points per body revolution (ppr) in Table 3.3.

Figures 3.6-3.7 show each ballistic transfer and VILT as a point, where

collections of points are families labeled by resonance or by number of revo-
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lutions. The points within a family are often closely spaced and appear as a

continuous line; in fact, each family would be truly continuous if the problem

were not discretized. The VILT solutions center on resonances as shown in

Fig. 3.6, with the resonant trajectories occurring between the plus and minus

families of each resonance. These resonant VILT solutions also intersect ballis-

tic solution families and so have maneuver sizes which approach zero, as shown

in Fig. 3.7. In such cases, the ballistic Lambert solution happens to satisfy the

tangent departure constraint that the VILM solver explicitly enforces. The

resonant intersections happen for exterior VILT families when N < M as seen

in Fig. 3.6a and for interior VILT families when N > M as seen in Fig. 3.6b.

Note that N for VILTs is, by convention, defined differently than for ballistic

transfers; N gives the number of complete spacecraft revolutions for ballistic

transfers but the nearest (associated) resonance for VILTs. As a result, the

resonant solutions in the ballistic families occur between the NS and (N − 1)L

families. For the VILT families, associated resonances are determined from

knowing N and computing the nearest M from TOF and the body period

while also respecting the continuity of the families. The associated resonances

are labeled on the figures.

For VILTs at a body in a circular orbit, each increasing VILT has a

corresponding decreasing VILT which shares most of the same inputs and

outputs. The outputs of the corresponding VILTs share the same values of

v∞L and v∞H , except that v∞L corresponds to the initial v∞ for the increasing

VILT but the final v∞ for the decreasing VILT. The only difference in the

inputs is Kdec = N − (1 + Kinc). Because of this correspondence in VILT

families, all VILTs shown for the ∆V -EGA are increasing VILTs, with the

independent variable in Figs. 3.6 and 3.7 being v∞L.
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The solution number S for VILTs is analogous to the distinction be-

tween short-period and long-period ballistic transfers. The existence of both

S = 1 and S = 2 solutions happens whenever a single VILT family is not

monotonic in TOF vs. v∞L such as the 2:1+ exterior VILT family in Fig. 3.6a

and the 2:1+ interior VILT family in Fig. 3.6b. When a ballistic family of so-

lutions with the same spacecraft revolutions is not monotonic in Fig. 3.6, the

extremum in TOF is the transition between the long-period and short-period

solutions for that revolution number; the VILT S value performs a similar

function of distinguishing two solutions of the same input set. The transition

between S = 1 and S = 2 families along a given resonance is also visible

in Fig. 3.7 as a gap in that resonance with a lower density of solutions near

the gap. The lower density of solutions near the transition results from the

discretization of the inputs, and the discretization resolution is chosen so that

the families of VILT solutions are still visible in this sparser region. The S = 1

solutions occupy the higher v∞L portion of the family in the exterior VILTs

and the lower v∞L portion of the family in the interior VILTs. In addition,

all the VILT families with N ≤ M in Figs. 3.6b and 3.7b are S = 2 solutions

whose corresponding S = 1 solutions are degenerate v∞ = 0 cases that shadow

the body orbit (not shown in Figs. 3.6 or 3.7). Figure 3.7 also shows that for a

given v∞L, if both the plus and minus families exist for a particular resonance,

then the plus family will have the lower ∆V .

Trajectories for some of the solutions are shown in Fig. 3.8, with the

letter of the figure part used to show where that particular solution falls in

the search space figures. For example, Fig. 3.8A is the trajectory pointed out

by the annotation A in Figs. 3.6a and 3.7a. Note that the maneuver arrows in

Fig. 3.8 are sized for visibility and do not correspond to the maneuver magni-
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Figure 3.7: ∆V of exterior (a) and interior (b) ∆V -EGA solutions.

tudes. Figures 3.8B and 3.8C give examples of resonant trajectories where the

maneuver magnitude approaches zero for an external and an internal VILT

respectively. Figs. 3.8A-3.8D shows four examples of ∆V -EGA solutions as

traditional tangent VILTs; they are used for comparison in the following sec-

tions that investigate VILTs at eccentric bodies and between different bodies.

3.6.2 Mercury-Mercury VILTs: the effect of eccentricity

Repeating the same type of trajectory search with Mercury allows an

investigation of VILTs when applied to a body with significant eccentricity.

Trajectory search constraints are given in Table 3.3 and the orbital elements

for Mercury are given in Table 3.2. The VILT trajectory families are shown in

Figs. 3.9 and 3.10 for the initial condition at Mercury ν = 0 and in Figs. 3.11

and 3.12 for the initial condition at Mercury ν = π/2. In these figures, part
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Figure 3.8: Some example VILTs from the Earth-Earth (A-D), Mercury-
Mercury (E-L), and Earth-Venus (M-P) cases. The VILTs progress from an
initial encounter (square) through a maneuver (arrow) to another encounter
(diamond).
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Figure 3.9: TOF of exterior (a) and interior (b) Mercury-Mercury VILTs and
ballistic transfers from launch ν = 0.

a only shows VILTs with one spacecraft revolution (1:M resonances) in order

to keep the figures more readable. The other major difference with data vi-

sualization as compared to the ∆V -EGA is that the independent variable is

initial (launch) v∞, which does not necessarily correspond to v∞L as in the

∆V -EGA examples. Since the second encounter of each VILT in the family

occurs at a different Mercury true anomaly and Mercury’s orbit is not cir-

cular, the corresponding families of increasing and decreasing VILTs do not

overlap like they do in the circular orbit case. One very visible result of the

change in independent variable is the much greater domain of v∞ in Fig. 3.9

for decreasing VILTs, for which initial v∞ corresponds to v∞H .

Having an eccentric body orbit allows exterior VILTs for which rC falls

inside the orbit or interior VILTs where rC falls outside the body orbit. One

result of this kind of geometry can be seen by comparing Figs. 3.8D and 3.8F:
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both show 1:1+ transfers and are geometrically similar but Fig. 3.8D is an

interior VILT at Earth and Fig. 3.8F is an exterior VILT at Mercury. Although

the maneuver location in Fig. 3.8F is clearly inside Mercury’s orbit, Mercury’s

eccentricity makes the Sun distance at the maneuver location (rC) greater than

the Sun distance at either of the two Mercury encounters, so the transfer is an

exterior VILT. Another effect of body orbit eccentricity is that the minimum

launch v∞ (v∞L for the increasing VILTs) in a VILT family does not necessarily

occur at one end of the family as is the case for the circular body orbit, as seen

in Fig. 3.6a, but rather it may occur at a point in the interior of the family.

For example, the i1:1+ family has a minimum launch v∞ ≈ 0 at TOF ≈ 110

days, corresponding to the case where the VILT shadows the body orbit, but

this point is neither the minimum nor maximum TOF possible for the i1:1+

VILT family.

Since the initial condition is not at apoapsis of the body orbit there

are possible values of rC inside the body orbit which are still exterior VILTs

like Fig. 3.8F. Reaching such orbits requires a deviation from the body orbit

and so a nonzero v∞L and ∆V are required, as shown in Fig. 3.10a. Similarly,

eccentricity of the body orbit and the location of the initial condition at body

periapsis also prevent the interior VILT families in Figs. 3.9b and 3.10b from

extending to very low initial v∞.

An eccentric body orbit also allows there to be VILTs which approach

nonresonant ballistic transfers, as shown in Fig. 3.10b by the dip to zero ∆V

along the d2:2+ family. There are additional families of solutions where the

entire family shadows the body and has ∆V = 0 and v∞ = 0 but these

degenerate solutions are left out of the presented results.

Figures 3.11 and 3.12 demonstrate how changing the initial condition
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Figure 3.10: ∆V of exterior (a) and interior (b) Mercury-Mercury VILTs from
launch ν = 0.
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Figure 3.11: TOF of exterior (a) and interior (b) Mercury-Mercury VILTs and
ballistic transfers from launch ν = π/2.
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Figure 3.12: ∆V of exterior (a) and interior (b) Mercury-Mercury VILTs from
launch ν = π/2.

along the eccentric body orbit can affect the VILT families as compared to

those shown in Figs. 3.9 and 3.10. Figures 3.8I-3.8L show example cases for

Mercury ν = π/2. Figure 3.8L is similar to Fig. 3.8F but shows the opposite

effect: where the leveraging apse falls outside the body orbit for an interior

VILT. This example again highlights that the body orbits are for reference

only while the presented boundary value VILT method depends on TOF and

the two given position vectors only.

Changing the true anomaly of the initial condition shifts all of the

families of ballistic and VILT solutions. Since the body velocity is lower at

ν = π/2, each particular resonance requires a higher initial v∞. In addition, the

minimum v∞ VILTs along resonance-crossing families are not located at the

resonances as they were in the circular body orbit and ν = 0 cases. Figure 3.8J

is an example of a VILT which has the minimum initial v∞ in its family but
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which is not the resonant solution. As with the previous cases, the resonant

VILT solutions occur at the intersection of increasing and decreasing VILTs

of the same resonance in Fig. 3.11. These resonant intersections do approach

a maneuver size of zero, as shown in Fig. 3.12. However, these resonant VILT

solutions do not occur at the same initial v∞ as the corresponding ballistic

resonance the way they did in the circular body orbit and ν = 0 cases. This

difference arises from the use of tangent VILTs which require that one of the

two encounters be at a spacecraft apse.

Figure 3.13 illustrates how, for a given body velocity, there exists a

range of v∞ which can reach the velocity associated with a specific resonance,

and each v∞ in the valid range corresponds to a particular pump angle, with

the minimum v∞ for the resonance occurring at α = 0. The tangent VILT

constraint requires the spacecraft velocity to be perpendicular to the position

vector at the low encounter, but along the eccentric body orbit the body

velocity is not perpendicular to the position vector except at the body orbit

apsides. As a result the tangent VILT constraint requires a nonzero pump

angle at the low encounter which leads to a nonminimum resonance v∞. In

the circular body orbit case, the convergence of VILT and ballistic families to

the same resonant v∞ requires (from geometry) that this v∞ be the minimum

of the possible range of resonant v∞.

In the previous examples whenever there were both S = 1 and S = 2

VILTs associated with a particular resonance, the different S values existed

in non-overlapping domains of v∞. However, there are two families of interior

d2:2+ VILTs (Figs. 3.11b and 3.12b) which exist within an overlapping range

of initial v∞, showing that this overlap is possible when the body orbit is

eccentric. Figure 3.8L is an example of a point where a VILT family intersects
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Figure 3.13: Different v∞ magnitudes that can give the same resonant velocity,
with the minimum v∞ occurring when α = 0.

a nonresonant ballistic family, another possible situation with an eccentric

body orbit.

3.6.3 Earth-Venus Transfer Example: Bielliptic transfers as a sub-
set of interbody leveraging

As the presented VILT boundary value method is capable of inter-body

leveraging, the next example is an Earth-Venus transfer. Relative geometry of

the two bodies is important, so for simplicity the launch occurs at opposition

in this case, with body orbital elements provided in Table 3.2 and search con-

straints in Table 3.3. Unlike the case where a VILT returns to the same body

it departed, there is no clear definition of resonances for IB-VILTs. However,

since in this search the launch time is fixed, resonances can conveniently be

defined relative to the arrival body, Venus, maintaining resonance notation for

the IB-VILTs.

Figure 3.14 shows that increasing and decreasing VILT families con-
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verge when Venus at arrival is in opposition with where the Earth was at

launch time. This relative geometry leads to the expected and interesting re-

sult that the convergence of increasing and decreasing exterior VILT families

corresponds to the classic bi-elliptic transfer case, an example of which is given

in Fig. 3.8M. This convergence implies that both the encounter at Earth and

the encounter at Venus occur at a true anomaly of zero or π radians and so

they are tangent to their respective planet velocities for planets in circular

orbits. Although bi-elliptic transfers are traditionally defined with the maneu-

ver (leveraging) apse exterior to the initial and final positions of the transfer,

there is an equivalent geometry for interior IB-VILTs, shown by Fig. 3.8O.

The bi-elliptic solutions have low initial v∞ in their families but non-negligible

maneuver magnitudes, as seen in Fig. 3.15.

As seen in previous cases, the transitions between the different values

of S are visible as extrema in Fig. 3.14 and as reduced solution density near

the transition in Figs. 3.14-3.16. Figure 3.8N gives an example trajectory near

one of these transitions. Additionally, similar to the eccentric single-body

VILT examples, there are intersections with nonresonant ballistic families of

solutions, occurring in exterior decreasing VILTs and interior increasing VILTs

as shown in Fig. 3.15. The fact that ballistic families of transfers connect to

the families of VILT solutions, showing some ballistic solutions to be zero-

maneuver subsets of VILT families, has been documented before for circular-

orbit, single-body VILTs [117, 18]. However, the VILT families extend into

much lower ranges of initial v∞ than the ballistic families, demonstrating one

of the potential advantages of the general formulation VILT solutions. In this

particular case, the ∆V of VILTs is prohibitively expensive anywhere far from

the resonances, but for an intermoon case the same families of solution exist
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Figure 3.14: TOF of ballistic as well as exterior (a) and interior (b) IB-VILT
Earth-Venus transfers.

with much lower ∆V .

Figure 3.16 shows how the IB-VILTs change v∞, with the bi-elliptic

Figs. 3.8M and 3.8O occurring at the minima of their families in v∞H . Each bi-

elliptic VILT actually appears twice in Fig. 3.16, once between the increasing

families and once between the decreasing families of its resonance. v∞L and

v∞H are on opposite ends of the transfer between these two families, so while

the intersections of the increasing and decreasing families overlap in Fig. 3.14,

they are distinct points in Fig. 3.16. Similar maps of the change in v∞ from

single-body circular-orbit VILTs have been published before [116]. It is also

noteworthy that v∞L can approach zero, a case in which one half of the VILT

shadows one of the body orbits and the VILM provides all of the required

change in energy to transfer to the other body.
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Figure 3.15: ∆V of exterior (a) and interior (b) IB-VILT Earth-Venus trans-
fers.

3.7 VILTs within an MGA sequence: some trajectories
to Jupiter

The VILT formulation presented is incorporated into the MGA search

algorithm described in Chapter 2 to investigate more complex trajectory op-

tions. A broad search of the path Earth-Earth-Jupiter using ephemeris states2

shows how the expected ∆V -EGA trajectories appear, with launch dates given

in Fig. 3.17 and resulting arrival v∞ for different launch energies in Fig. 3.18a

and corresponding ∆V in Fig. 3.18b. The search is constrained to closely

match one of the searches done by [39] with maximum arrival v∞ of 8 km/s,

maximum spacecraft maneuvers of 1.25 km/s, and maximum mission time of

2JPL Database: de405.bsp Available online: ftp://ssd.jpl.nasa.gov/pub/eph/ [Ac-
cessed 10 January 2012]
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Figure 3.16: v∞ mapping of exterior (a) and interior (b) IB-VILT Earth-Venus
transfers.
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Figure 3.17: Opportunities from 1999 to 2032 for an Earth-Earth-Jupiter path,
including VILT cases

Table 3.4: Symbol and color scheme for FIGURES

Case Shape Color

Ballistic × Green
VILT – 1 rev., exterior + Red
VILT – 2 revs., exterior ♦ Blue

2600 days (7.1 years). Additional constraints include maximum Earth launch

v∞ of 10 km/s and, for just the first leg, a maximum of five complete spacecraft

revolutions and a five year time of flight. Ballistic cases of the path Earth-

Earth-Jupiter, which are not truly ∆V -EGAs, are included in the trajectory

search for comparison. Discretization resolutions for this search are set to 55

and 75 points per orbit period (ppr) for Earth and Jupiter respectively. Ta-

ble 3.4 provides the marker and color scheme used in Fig. 3.17-3.20, where the

solutions are distinguished by their first leg: Earth-Earth in Fig. 3.17-3.18;

Earth-Mars in Figs. 3.19-3.20.

Figure 3.18 shows how the VILT enables significantly reduced launch
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Figure 3.18: Characteristics of trajectories on the path Earth-Earth-Jupiter,
including VILTs

energies for the same arrival energies even for a reasonable maneuver size.

The solutions fall into distinct VILT families, or rather groups of families. This

example trajectory search demonstrates that the formulation presented can be

used in a broad search using ephemeris states. With sufficient discretization

on the search, multiple solutions per family are found, providing a global view

of the options available for this sequence and constraints.

The sequence Earth-Mars-Jupiter is also investigated by [39] and they

find at least one promising ballistic solution in the time range searched. This

search is repeated, with the same constraints as the ∆V -EGA case described

above, but now with the ability to perform IB-VILTs to expand the design

space. The discretization at Mars is 65 ppr. This ability to expand the design

space by considering VILT-like transfers between bodies is one of the primary

contributions of this work.
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Figure 3.19: Opportunities from 1999 to 2032 for an Earth-Mars-Jupiter path,
including IB-VILT cases

Figures 3.19 and 3.20 show launch opportunities and energies for launch

and arrival for the period 1999 to 2032, with VILM solutions generally lining

up in timing with ballistic solutions, but with lower launch and arrival energies.

Although the VILT families are not as clearly distinguishable in Fig. 3.20 as in

the Earth-Earth-Jupiter case, it is still clear the VILTs provide lower arrival

as well as launch v∞, generally at the expense of longer TOF .

Figure 3.21 shows one example of a trajectory found directly in this

search, without further optimizing, that demonstrates a balance of good char-

acteristics described in Table 3.5.

3.8 A case for Nontangent VILTs

For many cases tangent VILTs are preferred to nontangent VILTs be-

cause they tend to be more efficient; However, there are cases where other

constraints make nontangent VILTs preferable or required. Leveraging using

low-mass moons is one situation where non-tangent VILTs can be mission
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Figure 3.20: Characteristics of trajectories on the path Earth-Mars-Jupiter,
including IB-VILTs

Figure 3.21: An example trajectory that utilizes an IB-VILT (Triangle indi-
cates VILM). Trajectory characteristics are given in Table 3.5
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Table 3.5: Characteristics for the Earth-Mars-Jupiter trajectory in Fig. 3.21.

Parameter Value

Launch Date 6 Sept. 2020
Launch v∞ 7.654 km/s
Maneuver Time 649.0 days after launch
DSM ∆V 0.396 km/s
Flyby Time 1238 days after launch
Flyby Altitude 158.6 km
Arrival v∞ 4.989 km/s
Total Time of Flight 2471 days

enabling [116, 118]. Another such case is when v∞ is relatively high and ap-

proach geometry is tightly constrained, such as a flyby-assisted capture at

Jupiter. An illustrative example follows: Beginning with a double-flyby cap-

ture, a VILT is appended after capture to reduce v∞ at Ganymede. This case

is based on the 6th Global Trajectory Optimization Competition (GTOC6)

problem,3 but with the orbital elements of the moons and their gravitational

parameters provided in Table 3.7. The full sequence of encounters and maneu-

vers is then∞-Io-Ganymede-VILM-Ganymede, where∞ is a point sufficiently

distant so as to approximate Jupiter’s sphere of influence. The VILM in this

sequence is also a Perijove Raise Maneuver (PRM) common in many Jupiter

capture scenarios, except that solar radiation pressure is not accounted for.

The ∆V would need to be adjusted accordingly if this important perturba-

tion were taken into account. This sequence is shown in Fig. 3.22, with the

VILT indicated by the dashed line. Table 3.6 provides details on the VILT in

Fig. 3.22.

3Data available online at http://sophia.estec.esa.int/gtoc_portal/wp-content/

uploads/2012/11/gtoc6_problem_stmt-2.pdf [retrieved 15 Feb. 2015]
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Figure 3.22: Flyby-assisted capture trajec-
tory at Jupiter followed by a nontangent
VILT (dashed line), with moons labeled by
their first letter.

Table 3.6: Parameters for the
VILT in Fig. 3.22.

Parameter Value

v∞1 14.1617 km/s
v∞2 6.16534 km/s
TOF 108.534 days
∆V 0.401698 km/s
ξL -0.761599 rad
efficiency 19.9064

In this particular case, there are no tangent VILTs that can generate the

same sequence. Having a high initial v∞ limits the possible feasible trajectories

in two ways: First, higher v∞ reduces the available turn angle from a flyby

at a given altitude. Second, sufficiently high v∞ can make ranges of pump

angle infeasible because the trajectories which correspond to them would lead

to escape or impact with the primary. Because these trajectories represent the

extremes of orbital energy possible at a given v∞, the regions of pump angle

near α = 0 and α = π radians, which correspond to tangent VILTs for circular

body orbits, are first to become infeasible at high v∞. As a result, having

the extra free parameter to include non-tangent VILTs allows for solutions

that, otherwise, simply do not exist. On the other hand, if tangent VILTs are

expected to be possible and most efficient, then the search can be reduced by

setting the continuous parameter ξL = 0.
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Table 3.7: Orbital elements and parameters for Jovian moons used in the
capture trajectory in Fig. 3.22

Parameter Io Ganymede

Semimajor axis (km) 422030 1070590
Eccentricity 0 0
Inclination (radians) 0 0
Arg. of periapsis (radians) 0 0
Long. of the Asc. Node (radians) 0 0
Mean Anomaly (radians) 4.279603 2.215313
Epoch (Modified Julian Date) 58849 58849
Gravitational Param. (km3/s2) 5959.92 9887.83

3.9 VAMs for Orbit Insertion and Flyby-Assisted Cap-
ture

The boundary-value VILT method can not only place VILMs in a flyby

sequence as Perijove Raise Maneuvers (PRM) as in Fig. 3.22 but also the

Jupiter Orbit Insertion Maneuvers (JOI). Figure 3.23 shows just such an

example, where the sequence ∞-Io-JOI-PRM-Ganymede is calculated using

ephemeris states4 and patched conics trajectories. Again ∞ here is a point

near Jupiter’s sphere of influence (SOI), distant from the planet. Table 3.8

provides important trajectory details for this example, setting the spacecraft

up for a tour to follow. The maneuvers in this trajectory are not optimized,

but are the result of a grid search, so using a local optimizer to refine the

trajectory should produce a superior trajectory in terms of ∆V or arrival v∞

or both.

In this case, the JOI is determined by the VILT method, but is more

4JPL Database: jup230l.bsp Available online: ftp://ssd.jpl.nasa.gov/pub/eph/ [Ac-
cessed 10 January 2012]
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Figure 3.23: Flyby-aided capture at Jupiter with JOI placed by the VILT
routine and PRM location found by grid search. This is one trajectory from
the Pareto front in Fig. 3.24. Circles show encounters with the Jovian moons
and triangles indicate maneuver locations. Sequence details are provided in
Table 3.8

Table 3.8: Details of the flyby-assisted Jovian capture trajectory in Fig. 3.23

Event Time from dist. to center v∞ Flyby ∆V
JOI (days) of Jupiter (km) (km/s) alt. (km) (km/s)

Start at ∞ (SOI) -83.87 4.8200e7 5.806
Io Gravity Assist -0.1712 4.2185e5 14.05 358.24
JOI ∆V 0.00 2.9546e5 0.452
PRM ∆V 159.95 2.1999e7 0.342
Ganymede Arrival 260.71 1.0732e6 4.271

.
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accurately a VAM since the maneuver itself is not intended to leverage v∞.

The PRM is a node in the trajectory search algorithm and is placed by a grid

search. Although this significantly slows computation, placing the PRM as a

node in the search is required by the limits of the search architecture and the

fact that the VILT method presented requires that there be only one maneuver

between two nodes. The tradeoff between v∞ at Ganymede and ∆V for this

sequence is shown in Fig. 3.24 with the example marked, again showing the

utility of the presented methods: Not only do these methods enable an analysis

of the trade space at this portion of the trajectory, but they can also be used

calculate and continue the tour from whole families of solutions.

The same method could equivalently be used to find a sequence like

∞-GA-JOI-GA-tour, where ”GA” is a gravity assist and ”tour” is the rest

of the moon tour which follows the capture. This kind of sequence would

remove the grid search for the PRM, but such a sequence is undesirable because

unless SRP is accounted for in the search, a DSM will be required on the first

orbit and raising the perijove with a ∆V significantly reduces radiation dose

experienced by the spacecraft as compared to using gravity assists to both

reduce orbital energy and raise perijove. Another possible sequence which

would make the most advantage of the VILT method is∞-GA-JOI-GA-PRM-

GA-tour; with a gravity assist between the two maneuvers, both the JOI and

PRM can be found using two instances of the described VILT method. This

sequence is operationally undesirable because the gravity assist following the

JOI happens very shortly after the insertion maneuver and would magnify

the maneuver dispersion errors. This gravity assist would also have limited

effectiveness because the flyby altitude would have to be high to minimize

chance of impact after the uncertainty introduced by the JOI.
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Figure 3.24: Example Jupiter capture trade space for sequence ∞-Io-JOI-
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method. Figure 3.23 shows the highlighted trajectory.
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3.10 VAMs as initial guesses for low-thrust transfers

Since calculating low thrust (LT) trajectories is generally much more

time-consuming than ballistic transfers of VILT transfers using the boundary

value formulation, there are cases where an impulsive VAM can be used as a

proxy and initial guess for a LT transfer.

In particular, exterior VILTs with high eccentricities have been success-

fully used as initial guesses for LT transfers in the pump-down phase of the

GTOC6 trajectory, where the final result is an LT-VILT that greatly reduces

mission time needed to reduce the spacecraft energy from the initial capture

orbit to fast tours of the inner Jovian moons. The maneuver placement at

apoapsis and high eccentricity allows time for the LT engine to build up the

∆V estimated by the VILT. For the GTOC6 case, the entire mission is gen-

erated by a single run of the search tool, so the conversion to LT is done to

enforce the same encounter constraints as well as minimize the ∆V so that the

remainder of the mission is not recalculated after the conversion. By limiting

the impulsive ∆V based on the flight time of the transfer, only trajectories

which were likely to convert to LT were kept in the search. Figure 3.25 shows

the capture and pump-down sequence with LT VILTs in a Sims-Flanagan ap-

proximation; the initial guess for this trajectory was generated using a single

impulsive VAM between each pair of flybys. The highlighted sequence incor-

porating capture and the LT VILTs is ∞-Io-Ganymede-LTVILT-Ganymede-

LTVILT-Ganymede-LTVILT-Ganymede.

Additional information on this solution to GTOC6 is provided in Ap-

pendix C.
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Figure 3.25: Low thrust VILTs for a Jovian pump-down as part of a solution
to GTOC6. Impulsive VILTs were used as initial guesses for the LT optimizer.
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Chapter 4

Automated Inclusion of nπ Sequences in the

Global MGA Trajectory Search

Defined in Chapter 1, the special class of spacecraft transfers known as

nπ transfers are further detailed and investigated in this chapter1. An auto-

mated method for performing both pathfinding and pathsolving for a sequence

of nπ transfers is presented. A gap-fill algorithm enables the nπ sequence to

be posed as a BVP, greatly simplifying its solution. The problem is cast on

the v∞ sphere to compactly present the solution options.

4.1 The v∞ Sphere

The nπ sequence problem is computed and visualized using the v∞

sphere [3, 121], which represents the locus of possible spacecraft velocity vec-

tors preceding or following a gravity assist flyby as shown in Figure 4.1. Free

return trajectories that are nπ transfers appear as intersections of velocity

spheres or velocity circles with this v∞ sphere (depending on whether they are

even nπ or odd nπ transfers, respectively), as shown in Figure 4.1.

1This chapter contains information also published in:
• Demyan Lantukh and Ryan P. Russell. “Automated Inclusion of n-pi Transfers in
Gravity-Assist Flyby Tour Design,” In Advances in the Astronautical Sciences, volume
143, 2012

Ryan P. Russell developed the two BVP pathfinding/pathsolving algorithms on the v∞
sphere described herein. He also provided implementations to be integrated into Explore.
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Each of these intersecting spheres or circles corresponds to a particular

body-to-spacecraft resonance (M :N), with the full-rev 5:9 resonance shown by

the black circle in Figure 4.1a. In this figure, the smaller sphere represents all

velocities which return to the body after a 5:9 resonance, so the intersection of

the two spheres meets both the resonance and the v∞ constraints. Similarly,

the large circle in Figure 4.1b shows all possible velocities which would return

to encounter the body after a 3π transfer angle using a 1:1 pseudoresonance,

so the two intersections of this circle with the v∞ sphere form the possible

transfers (above and below plane) that meet the v∞ constraint for the given

resonance.

The intersections between the velocity surface of the resonance and the

v∞ sphere are therefore circles and pairs of points on the v∞ sphere: they

represent the feasible nπ transfers to consider for a given spacecraft v∞. Note

that for each resonance considered, the free-return solutions only exist for a

range of v∞. Details for determining v∞ ranges and computing the resonant

intersections can be found in [3] .

An example v∞ sphere with views from different angles is given in Fig-

ure 4.2. This sphere, and specifically from the view shown in the bottom

right of Figure 4.2 is reiterated in Figure 4.3a: Figure 4.3 gives two example

v∞ spheres showing the locations of several different nπ transfers with their

associated body to spacecraft (M :N) resonances labeled. The N of the reso-

nance for odd nπ transfers can be either positive or negative, indicating that

the transfer is the long period or short period Lambert solution, respectively.

When N = 0 the transfer has less than one full spacecraft revolution and

there is only one possible solution, so the sign of N is not significant. The pa-

rameters used to generate Figure 4.3b are {µPr, µB, aB, eB, iB,ΩB, ωB, νBI} =
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(a) (b)

Figure 4.1: Example nπ elements from the intersections with a v∞ sphere (v∞
= 1.2 LU/TU): (a) 5:9 resonant even nπ sphere (b) the 1:1 odd nπ circle

{1.0, 7.0×10−9, 1.0, 0.1, 0.0, π/2, π/4, 4π/3}, with part (a) using the same con-

ditions except eB = 0. Here the orbital elements follow the definitions provided

in Appendix A, and νBI is the body true anomaly at the time of the incoming

vI∞. In Figure 4.3, the horizontal lines are even nπ resonances viewed from

their edge and the x’s and o’s are pairs of odd nπ transfers, with each pair
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Figure 4.2: An example v∞ sphere with even nπ transfers (circles) and odd nπ
transfers (x’s and o’s) mapped onto it, shown from different angles to capture
the three-dimensional structure of the v∞ sphere

overlaid in the given view. The axes in Figure 4.2 and Figure 4.3 and for all v∞

spheres presented are oriented such that Z parallels the instantaneous body

velocity, Y parallels the body orbit angular momentum, and X = Y × Z. In

this coordinate system, the even nπ returns are circles of constant latitude on

the sphere. Similarly, the odd nπ transfers are pairs of points which reflect

each other over the X−Z plane leading to opposing longitudes on the sphere.

In addition to the nπ transfers, all generic free-return trajectories can
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(a) (b)

Figure 4.3: v∞ spheres with even nπ transfers (lines) and odd nπ transfers
(x’s and o’s) mapped onto them and labeled with their respective resonances.
The difference between the two spheres is the body eccentricity.

also be mapped to the v∞ sphere since every point on the sphere represents a

particular velocity vector and therefore a particular trajectory. More specifi-

cally, all transfers which return to the same body map to two points on the

v∞ sphere, one for the departure v∞ vector and the other for the arrival v∞

vector. In the case of even nπ transfers, these two points coincide. In the

odd nπ case with a circular flyby body orbit, the return vector is the opposite

point in the pair as the departure point [121].

The differences between Figure 4.3a and Figure 4.3b come from the

body eccentricity effects. A non-zero eccentricity usually leads to differences

in spacecraft v∞ at the two encounters of an odd nπ transfer. Therefore, two

v∞ spheres must be considered in the eccentric body odd nπ case, which is

also true for generic returns at a flyby body with a non-circular orbit. The

implications of this effect are discussed in more detail below.
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4.2 The v∞ Pathfinding Problem

The goal is to automatically choose a sequence of nπ transfers that

effectively navigates from one given inbound v∞ vector (vI∞) to another given

outbound v∞ vector (vO∞) in the context of a MGA trajectory GS or GO.

As described in Chapter 2, the trajectory search is a sequence of Lambert

problems. The nπ transfers are then treated as gaps in time, or loiters, allowing

existing algorithms and software like Explore to handle the non-nπ Lambert

problems.

Using time gaps is illustrated in a simplified manner in Figure 4.4. Since

the time gaps can be well defined before the DOFs for the nπ transfers are

selected, the Lambert problems following the nπ transfers can be evaluated

first, allowing both boundary v∞ vectors to be available for the nπ sequence

pathfinding and pathsolving problems on the v∞ sphere. Having both bound-

ary values available aids in developing a strategy for choosing DOFs and helps

keep the problem numerically tractable, as described in the Choosing the De-

grees of Freedom section.

Pathfinding on the v∞ sphere is accomplished with these steps, which

are each described more fully below:

1. Create a gap (discontinuity) in the trajectory search to be filled by the

nπ sequence

2. Solve the trajectory segment following the nπ sequence, including v∞

matching so that vO∞ from the gap calculator matches v∞ of the transfer

following the nπ sequence. Now a BVP is defined on the gap: vI∞ on the

inbound v∞ sphere and vO∞ on the outbound v∞ sphere.
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(a) (b)

Figure 4.4: Qualitative description of how non-chronological calculation in the
search algorithm enables the implementation of the pathfinding problem as a
boundary value problem for both odd (a) and even (b) nπ sequences.

3. Populate the v∞ sphere(s) on each bound of the gap with nπ transfers

associated with the bounding v∞ value(s)

4. Pathfinding: Enumerate potential sequences (paths) connecting vI∞ to

vO∞.

5. Pathsolving: Select any degrees of freedom and evaluate sequence feasi-

bility

Even and odd nπ cases have some distinct differences and the odd nπ cases are

more difficult to evaluate because the transfer can change the v∞ if the body

eccentricity is non-zero. Also, evaluating the TOF associated with the odd nπ

case is more difficult than the even nπ case. Because of these complications,

odd nπ sequences are limited to one odd nπ transfer, with nπ sequences defined

below. Even nπ sequences are limited to only have even nπ transfers. These

limitations could be lifted with little change to the algorithm but would require
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significant implementation efforts to properly account for all the trajectory

possibilities.

4.2.1 Defining the Problem

Define a transfer as the ballistic coast between two flyby body encoun-

ters and define a sequence as a set of transfers (at least one) for which the

boundary conditions (v∞ vectors) are prescribed. Note that the v∞ in be-

tween transfers within one sequence are not prescribed: determining these v∞

is one goal of the presented method. A sequence is therefore an ordered series

of elements, where the first and last are nominally prescribed v∞ vectors and

there are j − 1 transfers in between as depicted in Eqn. (4.1):

v∞I → ε1 → ε2 → · · · → εj−1 → v∞O

δ1 δ2 δ3 δj−1 δj
(4.1)

In this description, each arrow represents a gravity-assist flyby that navigates

along the v∞ sphere. Then there are a total of j gravity assists and j − 1

transfers in a sequence. For an even nπ sequence, j falls in the range 2 ≤

j ≤ MS + 1. For an odd nπ sequence, j falls in the range 2 ≤ j ≤ 2MS + 2.

With the assumption of no more than one odd nπ transfer, the maximum j

corresponds to MS single-rev 2π transfers and one half-rev π transfer. Note

that in general j is not specified, so the number of elements in a sequence is

also to be selected in the pathfinding process.

Each of the elements (εi) in the sequence is an nπ transfer with a

particular resonance Mi:Ni. The set of possible even nπ elements on the v∞

sphere is defined as {Enπ} and each even nπ element has a DOF: longitude

(λ) on the v∞ sphere. Also define the set of possible odd nπ elements on the

v∞ sphere as {Onπ}. The two possible discreet types of odd nπ elements for a
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given M :N are above-plane (a) and below-plane (b). These types are treated

as separate elements of {Onπ}, so {∃M :Na ∈ {Onπ}} ⇐⇒ {∃M :Nb ∈

{Onπ}}. Define the set of available elements on the v∞ sphere as {nπ}, so

that:

If {odd nπ sequence}

Then {{nπ} = {Enπ} ∪ {Onπ}}

Else {{nπ} = {Enπ}}

With the definitions provided, the pathfinding problem is laid out in Table 4.1

Table 4.1: Definition of the nπ sequence pathfinding/pathsolving problem on
the v∞ sphere

GIVEN:
Problem definition: vI∞, vO∞,* MS, NS,MAX , νBI

System definition: µPr, aB, eB, iB, ΩB, ωB
Constraint definition: MMAX , NMAX , δMAX , δMIN

FIND:
ANY or ALL set(s):

εi ∈ {nπ} ∀ i = 1, 2, 3, · · · , j − 1
λi ∀ εi ∈ {Enπ}

j

SUBJECT TO:
MMAX ≥Mi

NMAX ≥ Ni

}
∀ i = 1, 2, 3, · · · , j − 1

δMAX ≤ δi
δMIN ≥ δi

}
∀ i = 1, 2, 3, · · · , j

MS =
∑j−1

i=1 Mi

NS,MAX ≥
∑j−1

i=1 Ni

*|v∞O| = v∞O not an independent input, but depends on

the transfers in sequence, as explained in the text

119



4.2.2 Creating the gap and determining the second boundary con-
dition

The magnitude of vO∞ is not independent: it is a function of the trans-

fers used in the nπ sequence. The direction of vO∞, however, is an independent

input to the algorithm. This direction is determined by completely solving (i.e.

root-solving for encounter times such that all incoming and outgoing flyby v∞

values match) the segment of the trajectory following the nπ sequence, making

vO∞ a valid and fixed part of the MGA trajectory being calculated before the

nπ sequence path finding problem is solved. In order for the segment following

the nπ sequence to be calculated, the TOF of the nπ sequence (denoted tS)

and vO∞ must be known beforehand. A gap-filling routine provides the neces-

sary information and the different cases to solve for the next segment in the

trajectory (labeled Segment 3 in Figure 4.4).

For even nπ sequences, the gap is straightforward: the magnitude of

v∞ does not change (v∞O = v∞I). Also, the tS is a multiple of the body

orbit period, as indicated in Eqn. (4.2). Table 4.2 provides an algorithm for

calculating the gap.

tS = 2πMS

√
a3B
µpr

(4.2)

Although even nπ transfers have the same v∞ at both ends of a sequence,

odd nπ transfers can change the v∞ at the flyby body when the body orbit

is non-circular. Although this change can be useful, possibly providing a v∞

leveraging effect without a maneuver, it complicates the process of navigating

the v∞ sphere. This complication results from the fact that when r1 6= r2 and

eB 6= 0 then the v∞ after the odd nπ return is not only different from v∞ before

the transfer, but each different odd nπ transfer (different M :N) changes v∞

by a different amount.
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Table 4.2: Gap calculator algorithm which allows the MGA search to proceed
before fully solving the nπ sequence. The search proceeding on to the next
segment provides the second boundary value for solving the nπ sequence.

INPUTS OUTPUTS
Problem def: vI

∞, MS , νBI

System def: µPr, aB , eB , iB , ΩB , ωB

Constraint def: MMAX , NMAX

Seq. time: tS (∀ branches)
Outbound: rO, vBO, v∞O (∀ branches)

# branches: p

IF even nπ sequence: Even nπ Gap Calculator
1 COMPUTE sequence time (tS) from Eqn. (4.2)
2 COMPUTE initial body state (rI,vBI) from given body orbital elements
3 COMPUTE body state after sequence: rO = rI,vBO = vBI

4 COMPUTE outbound v∞: v∞O = v∞I

5 SPECIFY number of branches: p = 1

ELSE IF odd nπ sequence: Odd nπ Gap Calculator
1. FOR EACH M = 1 . . .MMAX

1.1. COMPUTE sequence time (tS) from Eqn. (4.5)
1.1.1. The intermediate variable tHR is determined by solving Eqns. (4.3) and (4.4)

2. COMPUTE initial body state (rI,vBI) from given body orbital elements
3. COMPUTE body state after sequence (rO,vBO) by advancing the body true anomaly

by nπ and using the f and g functions or an orbital element transformation
4. POPULATE list of feasible odd nπ transfers defined by M :±N(a/b)

4.1. PERMUTE a list of eligible resonances that meet the M and N constraints
4.1.1. The upper bound of N may be lower than the given NMAX . This upper bound

can be found from the multi-revolution Lambert algorithm used to solve for v∞
below

4.2. FOR EACH eligible resonance M :N
4.2.1. SOLVE multi-revolution Lambert problem with inputs {rI, rO, tS , N} to deter-

mine a
4.2.2. IF at least one solution exists

4.2.2.1. ADD Solution(s) to a list of Lambert-feasible solutions: M :±N
4.3. FOR EACH Lambert-feasible solution M :±N

4.3.1. COMPUTE odd nπ transfer latitude and longitude on the inbound v∞ sphere
for the pair of odd nπ points, using equations in [3]

4.3.2. IF the points exist on the inbound v∞ sphere
4.3.2.1. ADD both above and below plane solutions to the feasible transfer list

5. COMPUTE p = number of feasible odd nπ transfers
6. FOR EACH feasible odd nπ transfer

6.1. COMPUTE spacecraft velocity at start of transfer: v1 = vBI + v∞1; and the end of
transfer (v2) using the equations 17 and 22 respectively in [160].

6.2. COMPUTE spacecraft v∞2 at end of transfer: v∞2 = v2 − vBO

6.3. COMPUTE sequence outbound v∞: v∞O = |v∞2|
7. STORE inbound v∞ sphere information to prevent recalculation in sequence algorithm
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For odd nπ sequences, the gap is a change both in time and in position,

as illustrated in the lower part of Figure 1.2 and qualitatively in Figure 4.4b.

The final position for an odd nπ sequence is on the opposite side of the body

orbit from the initial position, corresponding to a change in true anomaly of

π radians (assuming only one odd nπ transfer per sequence). Knowing the

structure of the odd nπ transfer and the body true anomaly at one of the

encounters, it is possible to use Kepler’s equation and a true anomaly relation

(Eqns. (4.3) and (4.4), respectively) to determine the TOF required for the

flyby body to traverse the π radians of true anomaly, which is denoted tHR.

This time (tHR) is the same for all transfers for a given departure body location

because it is a function only of the flyby body. For a circular body orbit, this

time will be half of the orbital period. The total odd nπ sequence tS is given

by Eqn. (4.5). √
µpr
a3B

tHR = EO − EI − eB(sinEO − sinEI) (4.3)

tan
ν

2
=

√
1 + eB
1− eB

tan
E

2
(4.4)

tS = tHR + 2πMS

√
a3B
µpr

(4.5)

The spacecraft v∞ at the second encounter is determined by first creating a list

of eligible odd nπ transfers based on the givenMMAX and each possibleN . The

eligible values of N can be explicitly determined from the Lambert algorithm

used below, where the upper bound of N is dependent on M(Nupper bound(M)).

To reduce the number of cases to evaluate, a user-specified NMAX is used, but

a minimum periapse distance with respect to the primary could also be used to
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determine the upper bound of N . As an example, for MMAX = 2 the eligible

transfers would be:

Example: {Onπ}eligible =


0:0 0:1 · · · 0:Nupper bound(0)
1:0 1:1 · · · 1:Nupper bound(1)
2:0 2:1 · · · 2:Nupper bound(2)


Each eligible transfer is used as the input to a Lambert solver with the previ-

ously determined tS and the initial and final body positions, where the Lam-

bert solver determines semimajor axis of the transfer but the transfer plane

is still undefined. When N = 0 there will be either zero or one solutions and

when N > 0 there will be either zero or two solutions (short period and long

period). The Lambert solutions found populate a new list of Lambert odd

nπ transfers where the sign of N is used to specify which of the two possible

Lambert solutions is used.
N < 0→ long period transfer with |N | spacecraft revolutions

Define notation: N > 0→ short period transfer with |N | spacecraft revolutions
N = 0→ only transfer with zero complete spacecraft revolutions

With the semimajor axis known, equations in [3] are used to map the

transfers to pairs of points (above and below plane) on the v∞ sphere. Not

every Lambert solution will map to the v∞ sphere for a given v∞, but every

Lambert solution that does map to the v∞ sphere will map to two points, or

transfers. All transfers that map to the v∞ sphere form the list of feasible odd

nπ transfers: {Onπ}.

Each feasible odd nπ transfer is now completely defined on the sphere,

and so the departure and arrival velocities for each transfer can be found using

equations 17 and 22 in [160]. This velocity and the previously determined flyby

body velocity at this point together can be used to determine v∞O, completing

the information needed to continue the trajectory search after the gap. Each

different possible value of M : ± N for the odd nπ transfer of the odd nπ
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sequence corresponds to a particular v∞ at the end of the sequence, and so

care must be taken to keep track of the differences (i.e. different potential

branches) when interfacing with the broader trajectory search. The number

of branches (p) is one of the outputs of the gap filling algorithm in Table 4.2.

Because the TOF of the nπ sequences is well defined and the v∞ after

the sequence can be determined, nπ sequences can be left as gaps and the

search can be allowed to proceed into the future without knowing all the

details of the nπ sequence. Then a later check on the feasibility of the nπ

sequence determines feasibility of the entire trajectory. This approach means

that the MGA GS needs only to correctly handle this gap and then the nπ

sequences can be readily included in existing software.

4.2.3 Populating the v∞ Sphere

Once the gap calculator is completed and the trajectory segment fol-

lowing the gap is solved (v∞ matched), then the pathfinding of the nπ sequence

can proceed. The pathfinding problem is begun by first computing the pos-

sible nπ transfers and mapping them onto the v∞ sphere as described in [3].

This process populates the sets {Enπ} and {Onπ} defined above and used in

Table 4.1. The resulting mapping of intersections is the elements on the v∞

sphere, and they may be either even nπ circles or odd nπ points as shown

in Figure 4.2 and Figure 4.3. The given boundary value v∞ vectors are also

treated as elements on the v∞ sphere, but the magnitude of v∞O is not inde-

pendent, as discussed above.

Specifically, the sequence time tS, the semimajor axes of all the possible

odd nπ transfers, and the required v∞O magnitude(s) are found in the gap

calculator. This information and the known vI∞ are used to determine the
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latitude of the even nπ circles and the latitude and longitude of the odd nπ

above-plane and below-plane points on the v∞ sphere [3]. See [3, 121] for more

details on the parameters and degrees of freedom of nπ transfers and the v∞

vectors of an nπ transfer. With the possible nπ transfers mapped to the v∞

sphere(s), candidate sequences that navigate the v∞ sphere can be determined.

4.2.4 Pathfinding: Enumerating Potential Sequences

Once the v∞ sphere is populated with all nπ transfers up to some

given MMAX (generally MS), all of the possible combinations of sequences

that add up to MS are determined. The number of candidate sequences can

be combinatorially large for large MS and large v∞, since a larger v∞ sphere

will in general intersect more resonant spheres and half-rev circles, though a

larger v∞ normally provides less turn angle per gravity-assist flyby. As a result

of the many potential combinations, it is useful to filter the available set of

transfers {nπ} to exclude ones which are not reachable under any circumstance

with the given δMAX , vI∞, and vO∞.

In order to aid in describing and distinguishing sequences, define B as

the total number of half-revolutions that the body passes through to reach MS

so that the sequence angle is Bπ.

If {odd nπ sequence}

Then {B = 2MS + 1}

Else {B = 2MS}
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4.2.4.1 Enumerating Even nπ Sequences

First generate a list of permutations of all the available transfers so

that each permutation has a total body-revolution sequence angle of Bπ (i.e.

the flyby body completes a total of B half revolutions). Note that the order

of the transfers matters and that the same transfer angle can be repeated

in a sequence. The third column of Table 4.3 demonstrates this process for

B ≤ 6 using the v∞ sphere map in Figure 4.3b. For example, setting B = 6

(MS = 3), the possible combinations of even nπ transfers by transfer angle are

[6π], [4π 2π], [2π 4π], and [2π 2π 2π].

When there is more than one even nπ circle on the v∞ sphere for a

given M (each having a different N), then each of these permutations is fur-

ther expanded to include all possible permutations of the different candidate

even nπ circles. Again, order is important and repeating the same transfer is

allowed. This enumeration is demonstrated in the fourth column of Table 4.3.

For example, choosing the transfer angle set [4π 2π] for B = 6, there are two

different 4π transfers (2:1 or 2:3) and two different 2π transfers (1:1 or 1:2)

from which to choose. The 14th sequence in Table 4.3 shows one of the result-

ing sequences, which consists of a 2:3 resonance followed by a 1:1 resonance.

Note that each of the resonant circles is labeled in Figure 4.3b.

4.2.4.2 Enumerating Odd nπ Sequences

In order to simplify the combinatorial nature of the problem and to re-

duce difficulties associated with changing v∞, it is assumed that the spacecraft

performs exactly one odd nπ transfer in an odd nπ sequence (a sequence where

B is odd). Therefore, the single odd nπ transfer divides the sequence into two

even nπ subsequences, where subsequences encounter the flyby body on oppo-
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Table 4.3: Enumeration of even nπ sequences for B ≤ 6 for the v∞ sphere in
Figure 4.2 and labeled in Figure 4.3b

Sequence B Transfer angle Candidate sequences
number permutation

1 2 [2π] [ vI∞ 1:1 vO∞ ]
2 2 [2π] [ vI∞ 1:2 vO∞ ]
3 4 [4π] [ vI∞ 2:1 vO∞ ]
4 4 [4π] [ vI∞ 2:3 vO∞ ]
5 4 [2π 2π] [ vI∞ 1:1 1:1 vO∞ ]
6 4 [2π 2π] [ vI∞ 1:1 1:2 vO∞ ]
7 4 [2π 2π] [ vI∞ 1:2 1:1 vO∞ ]
8 6 [6π] [ vI∞ 3:1 vO∞ ]
9 6 [6π] [ vI∞ 3:2 vO∞ ]
10 6 [6π] [ vI∞ 3:4 vO∞ ]
11 6 [6π] [ vI∞ 3:5 vO∞ ]
12 6 [4π 2π] [ vI∞ 2:1 1:1 vO∞ ]
13 6 [4π 2π] [ vI∞ 2:1 1:2 vO∞ ]
14 6 [4π 2π] [ vI∞ 2:3 1:1 vO∞ ]
15 6 [4π 2π] [ vI∞ 2:3 1:2 vO∞ ]
16 6 [2π 4π] [ vI∞ 1:1 2:1 vO∞ ]
17 6 [2π 4π] [ vI∞ 1:2 2:1 vO∞ ]
18 6 [2π 4π] [ vI∞ 1:1 2:3 vO∞ ]
19 6 [2π 4π] [ vI∞ 1:2 2:3 vO∞ ]
20 6 [2π 2π 2π] [ vI∞ 1:1 1:1 1:1 vO∞ ]
21 6 [2π 2π 2π] [ vI∞ 1:2 1:1 1:1 vO∞ ]
22 6 [2π 2π 2π] [ vI∞ 1:1 1:2 1:1 vO∞ ]
23 6 [2π 2π 2π] [ vI∞ 1:1 1:1 1:2 vO∞ ]
24 6 [2π 2π 2π] [ vI∞ 1:2 1:2 1:1 vO∞ ]
25 6 [2π 2π 2π] [ vI∞ 1:2 1:1 1:2 vO∞ ]
26 6 [2π 2π 2π] [ vI∞ 1:1 1:2 1:2 vO∞ ]
27 6 [2π 2π 2π] [ vI∞ 1:2 1:2 1:2 vO∞ ]
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site sides of the primary (illustrated in the lower part of Figure 1.2). Either or

both of these even nπ subsequences may be collapsed into a single flyby if the

odd nπ transfer is the first, last, or only transfer in the sequence. The process

for enumerating the odd nπ sequences follows. This process described below

is illustrated in Tables 4.4-4.5 for the v∞ sphere given in Figure 4.3b, with

sequences 17 and 18 corresponding to the specific example mentioned below.

1. List the possible odd nπ transfers on the inbound v∞ sphere with Mi ≤

MS, taking into account that each one has an above-plane and a below-

plane solution and that there can be two solutions for a given Mi:Ni when

Ni > 0. For example, using the v∞ sphere in Figure 4.3b with MS = 2

(B = 5), the possible odd nπ transfers are {0:0a, 0:0b, 1:−1a, 1:−1b, 2:2a, 2:2b}.

2. Split the given MS into subsequences with each odd nπ transfer placed in

every possible combination. For example, using B = 5 and Figure 4.3b

with the below plane, odd nπ transfer angle of 3π (resonance 1:−1),

the possible ways to split the 5π transfer angle with the 3πb transfer

are [3πb {2π}] or [{2π} 3πb] where {2π} is an even nπ subsequence with

total transfer angle of 2π

3. Enumerate any even nπ subsequences that may result from this place-

ment, accounting from the resulting v∞ change. Continuing the example

given above, the transfer angle permutation [3πb {2π}] can yield the se-

quences [vI∞ 1:−1b 1:1 vO∞ ] or [vI∞ 1:−1b 1:2 vO∞ ].

In the sequences given in Tables 4.4-4.5, the odd nπ transfers always

have an “a” or “b” to specify whether they are above or below plane, and

the even nπ transfers are described by only the resonance numbers with no
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Table 4.4: Enumeration of odd nπ sequences: one odd nπ transfer, B ≤ 5, v∞
sphere in Figure 4.3b. Enumeration of sequences continued in Table 4.5

Seq. B Odd nπ Odd nπ xfer tS v∞O, Candidate
num. transfer placement TU LU/TU sequences

1 1 [1πa] [1πa] 2.795184 0.552632 [ vI
∞ 0:0a vO

∞ ]
2 1 [1πb] [1πb] 2.795184 0.552632 [ vI

∞ 0:0b vO
∞ ]

3 3 [3πa] [3πa] 9.078369 0.549842 [ vI
∞ 1:-1a vO

∞ ]
4 3 [3πb] [3πb] 9.078369 0.549842 [ vI

∞ 1:-1b vO
∞ ]

5 3 [1πa] [1πa 2π*] 9.078369 0.552632 [ vI
∞ 0:0a 1:1* vO

∞ ]
6 3 [1πa] [1πa 2π*] 9.078369 0.552632 [ vI

∞ 0:0a 1:2* vO
∞ ]

7 3 [1πb] [1πb 2π*] 9.078369 0.552632 [ vI
∞ 0:0b 1:1* vO

∞ ]
8 3 [1πb] [1πb 2π*] 9.078369 0.552632 [ vI

∞ 0:0b 1:2* vO
∞ ]

9 3 [1πa] [2π 1πa] 9.078369 0.552632 [ vI
∞ 1:1 0:0a vO

∞ ]
10 3 [1πa] [2π 1πa] 9.078369 0.552632 [ vI

∞ 1:2 0:0a vO
∞ ]

11 3 [1πb] [2π 1πb] 9.078369 0.552632 [ vI
∞ 1:1 0:0b vO

∞ ]
12 3 [1πb] [2π 1πb] 9.078369 0.552632 [ vI

∞ 1:2 0:0b vO
∞ ]

13 5 [5πa] [5πa] 15.361554 0.552631 [ vI
∞ 2:2a vO

∞ ]
14 5 [5πb] [5πb] 15.361554 0.552631 [ vI

∞ 2:2b vO
∞ ]

15 5 [3πa] [3πa 2π**] 15.361554 0.549842 [ vI
∞ 1:-1a 1:1** vO

∞ ]
16 5 [3πa] [3πa 2π**] 15.361554 0.549842 [ vI

∞ 1:-1a 1:2** vO
∞ ]

17 5 [3πb] [3πb 2π**] 15.361554 0.549842 [ vI
∞ 1:-1b 1:1** vO

∞ ]
18 5 [3πb] [3πb 2π**] 15.361554 0.549842 [ vI

∞ 1:-1b 1:2** vO
∞ ]

19 5 [3πa] [2π 3πa] 15.361554 0.549842 [ vI
∞ 1:1 1:-1a vO

∞ ]
20 5 [3πa] [2π 3πa] 15.361554 0.549842 [ vI

∞ 1:2 1:-1a vO
∞ ]

21 5 [3πb] [2π 3πb] 15.361554 0.549842 [ vI
∞ 1:1 1:-1b vO

∞ ]
22 5 [3πb] [2π 3πb] 15.361554 0.549842 [ vI

∞ 1:2 1:-1b vO
∞ ]

23 5 [1πa] [1πa 4π*] 15.361554 0.552632 [ vI
∞ 0:0a 2:1* vO

∞ ]
24 5 [1πa] [1πa 4π*] 15.361554 0.552632 [ vI

∞ 0:0a 2:3* vO
∞ ]

25 5 [1πa] [1πa 4π*] 15.361554 0.552632 [ vI
∞ 0:0a 1:1* 1:1* vO

∞ ]
26 5 [1πa] [1πa 4π*] 15.361554 0.552632 [ vI

∞ 0:0a 1:2* 1:1* vO
∞ ]

27 5 [1πa] [1πa 4π*] 15.361554 0.552632 [ vI
∞ 0:0a 1:1* 1:2* vO

∞ ]
28 5 [1πa] [1πa 4π*] 15.361554 0.552632 [ vI

∞ 0:0a 1:2* 1:2* vO
∞ ]

29 5 [1πb] [1πb 4π*] 15.361554 0.552632 [ vI
∞ 0:0b 2:1* vO

∞ ]
30 5 [1πb] [1πb 4π*] 15.361554 0.552632 [ vI

∞ 0:0b 2:3* vO
∞ ]

31 5 [1πb] [1πb 4π*] 15.361554 0.552632 [ vI
∞ 0:0b 1:1* 1:1* vO

∞ ]
32 5 [1πb] [1πb 4π*] 15.361554 0.552632 [ vI

∞ 0:0b 1:2* 1:1* vO
∞ ]

33 5 [1πb] [1πb 4π*] 15.361554 0.552632 [ vI
∞ 0:0b 1:1* 1:2* vO

∞ ]
34 5 [1πb] [1πb 4π*] 15.361554 0.552632 [ vI

∞ 0:0b 1:2* 1:2* vO
∞ ]

* Evaluated on a different v∞ sphere with v∞ = 0.552632
** Evaluated on a different v∞ sphere with v∞ = 0.549842
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Table 4.5: Continuation of Table 4.4 giving enumeration of odd nπ sequences:
one odd nπ transfer, B ≤ 5, v∞ sphere in Figure 4.3b

Seq. B Odd nπ Odd nπ xfer tS v∞O, Candidate
num. transfer placement TU LU/TU sequences

35 5 [1πa] [2π 1πa 2π*] 15.361554 0.552632 [ vI
∞ 1:1 0:0a 1:1* vO

∞ ]
36 5 [1πa] [2π 1πa 2π*] 15.361554 0.552632 [ vI

∞ 1:2 0:0a 1:1* vO
∞ ]

37 5 [1πa] [2π 1πa 2π*] 15.361554 0.552632 [ vI
∞ 1:1 0:0a 1:2* vO

∞ ]
38 5 [1πa] [2π 1πa 2π*] 15.361554 0.552632 [ vI

∞ 1:2 0:0a 1:2* vO
∞ ]

39 5 [1πb] [2π 1πb 2π*] 15.361554 0.552632 [ vI
∞ 1:1 0:0b 1:1* vO

∞ ]
40 5 [1πb] [2π 1πb 2π*] 15.361554 0.552632 [ vI

∞ 1:2 0:0b 1:1* vO
∞ ]

41 5 [1πb] [2π 1πb 2π*] 15.361554 0.552632 [ vI
∞ 1:1 0:0b 1:2* vO

∞ ]
42 5 [1πb] [2π 1πb 2π*] 15.361554 0.552632 [ vI

∞ 1:2 0:0b 1:2* vO
∞ ]

43 5 [1πa] [4π 1πa] 15.361554 0.552632 [ vI
∞ 2:1 0:0a vO

∞ ]
44 5 [1πa] [4π 1πa] 15.361554 0.552632 [ vI

∞ 2:3 0:0a vO
∞ ]

45 5 [1πa] [4π 1πa] 15.361554 0.552632 [ vI
∞ 1:1 1:1 0:0a vO

∞ ]
46 5 [1πa] [4π 1πa] 15.361554 0.552632 [ vI

∞ 1:2 1:1 0:0a vO
∞ ]

47 5 [1πa] [4π 1πa] 15.361554 0.552632 [ vI
∞ 1:1 1:2 0:0a vO

∞ ]
48 5 [1πa] [4π 1πa] 15.361554 0.552632 [ vI

∞ 1:2 1:2 0:0a vO
∞ ]

49 5 [1πb] [4π 1πb] 15.361554 0.552632 [ vI
∞ 2:1 0:0b vO

∞ ]
50 5 [1πb] [4π 1πb] 15.361554 0.552632 [ vI

∞ 2:3 0:0b vO
∞ ]

51 5 [1πb] [4π 1πb] 15.361554 0.552632 [ vI
∞ 1:1 1:1 0:0b vO

∞ ]
52 5 [1πb] [4π 1πb] 15.361554 0.552632 [ vI

∞ 1:2 1:1 0:0b vO
∞ ]

53 5 [1πb] [4π 1πb] 15.361554 0.552632 [ vI
∞ 1:1 1:2 0:0b vO

∞ ]
54 5 [1πb] [4π 1πb] 15.361554 0.552632 [ vI

∞ 1:2 1:2 0:0b vO
∞ ]

* Evaluated on a different v∞ sphere with v∞ = 0.552632

130



letters. All of the sequences have the same tHR because this time is determined

by propagating the body orbit and all sequences use the same flyby body initial

and final conditions.

Overall, this example in Tables 4.4-4.5 produces 54 candidate sequences

to evaluate, but the number of possible sequences to evaluate can be reduced

by applying filters that consider reachability or some heuristic methods to

choose between the above and below plane solutions without evaluating both.

Since the flyby body orbit is non-circular, any even nπ subsequences

following an odd nπ transfer need to be mapped on a different v∞ sphere

based on the new v∞O as indicated in the table footnotes. Since the [1π]

and the [3π] transfers each change the v∞ by different amounts, each one

requires a different v∞ sphere for even nπ subsequences following them. The

[5π] transfers also produce a small change in v∞O but there are no even nπ

subsequences following the [5π] transfers, so they do not require an additional

v∞ sphere. For the example given in Tables 4.4-4.5, the change to different v∞

spheres is assumed to not affect available even nπ transfers to choose from. For

large changes in v∞ or when the v∞ sphere is densely populated, the two v∞

spheres used in an odd nπ sequence may not have the same transfers available

for enumerating candidate sequences.

Therefore, when an odd nπ transfer changes the spacecraft v∞, it

changes the sphere on which to navigate successive transfers in the sequence.

In addition to the change from the magnitude of v∞, the change in body flight

path angle shifts the location of the odd nπ circles. As a result, a total of

three v∞ spheres would be required to enumerate candidate sequences for the

same conditions as in Tables 4.4-4.5, although no more than two v∞ spheres

would be needed for evaluating any one sequence.
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By splitting the odd nπ transfer sequence into two even nπ sequences

patched with a single odd nπ transfer, the boundary value problem is well

defined allowing for rapid inclusion in a broad search. The limitation of con-

sidering just one odd nπ transfer is not very restrictive as each leg in the

overall sequence can also include up to one odd nπ transfer. The restriction

essentially limits back to back odd nπ transfers to the same body. Although

it would be a rare find, back to back odd nπ transfers could provide a change

in v∞ at the original location if the back to back transfers utilized different M

or N .

4.2.5 Pathsolving: Choosing the Degrees of Freedom

The process of mapping the v∞ sphere and enumerating the candidate

sequences satisfies all of the constraints given in Table 4.1 except the turn

angle constraints. Although enumerating the sequences chooses the number of

elements and the elements for any one candidate sequence, the DOFs of the

even nπ transfers are not yet determined in the candidate sequence enumera-

tion. What remains is a pathsolving problem for each candidate sequence to

determine its feasibility and/or optimality. There may exist many (infinitely

many) solved paths (choices for DOFs) for a given sequence.

The DOF for even nπ transfers is longitude on the v∞ sphere (λi),

which is continuous on [0, 2π) where zero and 2π are equivalent. There are

many ways to choose the DOFs, based on science objectives or other mission

constraints. One approach is a minimax optimization on δi that would min-

imize the maximum turn angle required [126]. For the purposes of an initial

design space search, an exact optimum may not be necessary, and instead the

goal is initially to choose the DOFs such that a sequence is feasible with re-
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spect to the flyby constraints in Table 4.1: δi ≤ δMAX and δi ≥ δMIN for all

i = 1 . . . j

Determining feasibility is equivalent to choosing DOFs such that the

sequence is feasible, and considering infeasible any sequence for which the

selection process fails to give a feasible turn angle. There may be many choices

of DOF that make a sequence feasible, but in this study the goal is just to

determine feasibility and not initially to pick optimum values for the DOFs.

Because all transfers are ballistic and further optimization would take time,

the algorithm only determines one set of feasible DOFs for a given sequence

and moves on to the next sequence when one feasible set of DOFs is found.

Further computational speedup is possible if only one sequence is required

for a given set of boundary conditions. For post processing different feasible

sequences for science or other purposes, the algorithm can stop after finding the

qth feasible sequence instead, where q is a given integer less than or equal to the

number of feasible sequences. The resulting set of DOFs does not necessarily

minimize any performance index like a traditional optimization problem, but

an optimization could be applied instead.

In order to choose DOFs and determine sequence feasibility, the value

for each successive λi is chosen to reach the next element and also minimize

the remaining distance on the v∞ sphere to the next half-rev point (if it exists)

or the final condition (vO∞). If this terminal point cannot be reached, then a

step of maximum size is taken in its direction. This algorithm may lead to one

or more of the flybys towards the end of the sequence violating the δi < δMIN

when two successive elements are on the same resonant circle. Violating this

constraint is an undesirable condition because very small turn angle flybys are

not possible in an integrated trajectory with a massive body (without being too
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far from the body, in essence violating the patched conic position assumption).

This problem is rectified by postprocessing complete sequences solutions that

are feasible with respect to δMAX . By resolving the problem in reverse (starting

at vO∞ and working backwards) and requiring δMIN steps, some or all of the

earlier steps will be relaxed from their δi = δMAX boundaries: therein making

the entire solution sequence feasible. However, the basic premise of first taking

the maximum step possible leads to rapid filtering of infeasible solutions, and

accordingly leads to implementation speedups.

Implementation speedups are also possible by filtering out sequences

that will always be infeasible: A sequence will always be infeasible if the

minimum angle between any of its successive elements on the v∞ sphere (e.g.

given v∞ vectors, even nπ circles, and odd nπ points) is greater than δMAX .

This minimum flyby altitude feasibility requirement allows for simple checks

that reduce the number of calculations in practical implementation, especially

when δMAX is small (due to large minimum flyby altitudes, small gravitational

parameter, or high v∞). For example, if at least one of the v∞ vectors has no

other elements on the v∞ sphere within a cone of half-angle δMAX , then all of

the nπ transfers are unreachable, and that entire sequence can be discarded.

4.2.6 Algorithm summary

The implementation process described in the preceding sections is sum-

marized as a pseudocode algorithm in Tables 4.6-4.7. Many of the special

considerations for odd nπ sequences are not required if the flyby body orbit

is circular, but the algorithm still handles this circular subset of the elliptic

orbit case.

134



Table 4.6: Algorithm outline for the nπ sequence pathfinding problem on the
v∞ sphere. Algorithm continued in Table 4.7

INPUTS OUTPUTS
Problem: vI

∞, vO
∞ *, MS , NS,MAX , νBI

System: µPr, aB , eB , iB , ΩB , ωB

Constraint: MMAX , NMAX , δMAX , δMIN

Set of xfers: εi ∈ {nπ} ∀ i = 1, 2, · · ·, j−1
DOFs: λi ∀ εi ∈ {Enπ}

# flybys: j

Set Up Boundary Value Problem
-1. GAP CALCULATOR using algorithm in Table 4.2: find number of branches and tS ,
v∞O for each branch

0. FOR each branch
0.1. SOLVE completely the trajectory segment following the nπ sequence

0.1.1. Satisfy v∞ matching constraint by root solving to meet the v∞O for the branch
0.2. IF no feasible solutions for branch THEN remove branch from consideration

IF even nπ sequence (only one branch): Even nπ Sequence Calculator
1. POPULATE the set of even nπ elements {Enπ} using the given body orbit and v∞I as

described in [3]
1.1. Use the transfer constraints to limit the elements mapped to the v∞ sphere:

1.1.1. MMAX ≥Mi, NMAX ≥ Ni

2. FILTER ELEMENTS, removing any which cannot be reached by a step of δMAX from
any other elements
2.1. FOR each element εi

2.1.1. IF min(angle between εi and εj ∀ i 6= j) > δMAX THEN remove εi from {Enπ}
3. ENUMERATE candidate sequences by all permutations of remaining elements

3.1. Use the sequence constraints to bound the set of candidate sequences:
3.1.1. MS =

∑j−1
i=1 Mi, NS,MAX ≥

∑j−1
i=1 Ni

4. FILTER SEQUENCES, removing any which cannot be feasible due to the choice/order
of elements
4.1. FOR each candidate sequence

4.1.1. FOR each element in the sequence except vO
∞

4.1.1.1. IF min(angle between εi and εi+1) > δMAX THEN discard candidate se-
quence and move to next candidate sequence

5. CHOOSE DEGREES OF FREEDOM (λ for each even nπ return) in order to make
feasible sequences or reject sequences as infeasible
5.1. FOR each candidate sequence

5.1.1. FOR each element
5.1.1.1. λ∗i is nearest point to vO

∞ on εi
5.1.1.2. IF required δi to reach λ∗i ≤ δMAX THEN λi = λ∗i
5.1.1.3. ELSE λi is a δMAX step from εi−1 towards λ∗i

5.1.2. POSTPROCESS starting from the last element
5.1.2.1. WHILE δi < δMIN DO {δi = δMIN}
5.1.2.2. Recalculate last δi ≥ δMIN to match the chronologically first of the postpro-

cessed εi

* |v∞O| = v∞O is not an independent input, but depends on the transfers in the sequence,
as explained in the text
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Table 4.7: Continuation of algorithm outline for the nπ sequence pathfinding
problem on the v∞ sphere. Algorithm begins in Table 4.6

· · ·
ELSE IF odd nπ sequence: Odd nπ Sequence Calculator
1. POPULATE the sets {Enπ} and {Onπ} using the given body orbit and v∞I

1.1. Use {Onπ} stored from the Gap Calculator
1.2. {Enπ} calculated using equations in [3, 121]
1.3. Use transfer constraints to limit the elements mapped to the v∞ sphere (as with even

nπ sequence)
2. FILTER ELEMENTS, removing any which cannot be reached by a step of δMAX from

any other elements
2.1. Same filter process as for even nπ transfers

3. FOR each branch with solutions
3.1. POPULATE the v∞ sphere for v∞O for the branch with the set of even nπ elements
{Enπ} using the given body orbit and v∞O for the particular branch, as described
in [3, 121]

3.2. ENUMERATE THE ODD nπ OPTIONS using the odd nπ transfer that corresponds
to the branch

3.2.1. Enumerate options such that each option has a distinct even nπ subsequence
following the odd nπ transfer, including a single gravity-assist flyby as one sub-
sequence

3.3. FOR each odd option
3.4. SOLVE PRECEDING EVEN nπ SUBSEQUENCE, if it exists, using the v∞ sphere

for v∞I

3.4.1. Follow even nπ sequence algorithm starting at step 2, with odd nπ point at
terminal condition

3.5. SOLVE FOLLOWING EVEN nπ SUBSEQUENCE if it exists, using the v∞ sphere
for v∞O which corresponds to the odd nπ transfer in the sequence (the branch)

3.5.1. Follow even nπ sequence algorithm starting at step 2

* |v∞O| = v∞O is not an independent input, but depends on the transfers in the sequence,
as explained in the text
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4.3 Some Example Trajectory Searches

Starting from the same flyby body condition as that used to generate

the v∞ sphere shown in Figure 4.3b, several example cases are presented. Note

that the problem is posed in normalized quantities such that µPr = 1. The

search constraints for the four examples are given in Table 4.8. A summary

of the number of solutions and run times are given in Table 4.9. The odd

nπ sequences are further broken down by which odd nπ transfer they use.

Run times are calculated on a desktop machine with an Intel Xeon W3550

processor, using one processor core at 3.07 GHz for the program performing

the search. The routine itself is written in Fortran and compiled with Intel

Fortran Composer XE 2011 using the O2 optimization flag. In Examples

A, C, E, G, and I, the combination of gravitational parameter and periapse

radius allows for large turn angles, so the turn angle constraint is not binding.

Examples B, D, F, H, and J have more realistic turn angle constraints.

Table 4.8: Constraints for the sequence search examples

Ex. νBI MS NS,MAX rP,MIN vI
∞ vO

∞

v∞I Lon Lat v∗∞O Lon Lat

A π/6 6 10 1.0e-8 0.18 −π/10 −π/4 0.18 3π/2 π/3
B π/6 6 10 1.0e-7 0.18 −π/10 −π/4 0.18 3π/2 π/3
C π/6 6 10 1.0e-8 0.25 −π/10 −π/4 0.25 3π/2 π/3
D π/6 6 10 1.0e-7 0.25 −π/10 −π/4 0.25 3π/2 π/3
E 2π/3 3 6 1.0e-8 0.18 π/4 π/6 0.25 −3π/4 π/3
F 2π/3 3 6 1.0e-7 0.18 π/4 π/6 0.25 −3π/4 π/3
G 2π/3 3 6 1.0e-8 0.25 π/4 π/6 0.25 −3π/4 π/3
H 2π/3 3 6 1.0e-7 0.25 π/4 π/6 0.25 −3π/4 π/3
I π/3 10 10 1.0e-8 0.25 π/8 π/10 0.25 −3π/4 −π/3
J π/3 10 10 1.0e-7 0.25 π/8 π/10 0.25 −3π/4 −π/3

*The magnitude of v∞O can be changed by odd nπ transfers

Because the evaluation of all sequences can be computationally expen-

sive, the algorithm can be run to just find a single solution for any set of
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Table 4.9: The number of nπ sequences with solutions in the example search,
with odd nπ sequences distinguished by which particular odd nπ transfer is
used

Ex. Total Even nπ Odd nπ solns. Even nπ run time, s Odd nπ run time, s

solns. solns. 0:0 (1π) Other 1st soln. All solns. 1st soln. All solns.

A 331 103 222 6 3.17e-5 2.63e-3 3.28e-4 3.28e-2
B 190 51 139 0 3.43e-5 2.63e-3 2.34e-4 3.12e-2
C 1350 166 1120 64 3.59e-5 8.31e-3 4.84e-4 4.79e-1
D 376 28 348 0 3.75e-5 5.77e-3 4.68e-4 2.71e-1
E 47 7 40 0 1.09e-5 4.37e-5 5.46e-5 1.61e-3
F 23 4 19 0 1.09e-5 3.58e-5 5.62e-5 1.23e-3
G 56 8 48 0 1.09e-5 5.77e-5 4.68e-5 1.95e-3
H 5 1 4 0 1.09e-5 3.57e-5 6.24e-5 1.22e-3
I 9508 3774 5734 6 7.33e-5 4.87e0 7.05e-4 1.39e1
J 5851 1835 4016 6 7.64e-5 2.95e0 7.18e-4 1.44e1

constraints. The first sequence found may not be the preferred solution for

the given constraints (for some science or flyby geometry reasons) but just

finding the first solution allows the existence of a sequence from an orbit me-

chanics only perspective to be quickly verified. The different run times for just

finding the first solution as compared to finding all solutions are also shown

in Table 4.9. When finding just one solution, the run time of the algorithm is

further improved by ordering the most likely sequences first. Sequences that

have a B = 1 transfer or mostly B = 2 transfers are good candidates for

evaluating first because these transfers have short flight times, allowing more

flybys, and so these trajectories are not as bound by turn angle constraints.

Figure 4.5 through Figure 4.8 provide visuals of some of the sequences

calculated in the four examples defined in Table 4.8. Each of these figures

shows four views of the trajectory and four views of the v∞ sphere, a view

along each axis and a three-dimensional view. In all plots, the spacecraft

initial condition is a diamond and the spacecraft final condition is an asterisk
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(*). In the trajectory plots, the body orbit is a dotted line and the spacecraft

orbit is a solid line. On the v∞ spheres, the even nπ elements are circles around

the surface of the sphere and odd nπ elements are x’s and o’s. The spacecraft

v∞ states are given by black shapes connected by a dotted black line. The

initial and final conditions are a diamond and an asterisk and intermediate

flyby v∞ vectors are squares.

Figure 4.5 shows a sequence that uses only 1:1 resonances, with succes-

sive flybys moving along the 1:1 circle until reaching the closest point on the

circle to vO∞. As described previously, the flybys along this resonant circle have

been distributed so that none of them has a turn angle of zero. The resulting

trajectory is a series of orbits of constant energy but different inclinations.

Performing the same search, but allowing for the inclusion of one odd nπ

transfer and updating the sequence TOF with Eqn. (4.5), yields many more

solutions, as indicated in Table 4.9. Figure 4.6 shows an example sequence

from this search. There are actually two v∞ spheres: one before the odd nπ

transfer and one after it. The sequence uses the 0:0 resonance and the resulting

change in v∞ is very noticeable. Each of the two v∞ spheres in each figure

is aligned with its own local planet velocity vector, so the two spheres have a

relative rotation about the Y -axis.

Figure 4.7 shows an odd nπ sequence from Example B, which enforces

a smaller turn angle (larger periapse radius) than Example A. This particu-

lar sequence also demonstrates the use of an even nπ transfer on the second

(smaller) v∞ sphere after the odd nπ transfer. A sequence from Example

C is displayed in Figure 4.8, showing a relatively simple even nπ sequence.

These four different sequences demonstrate pictorially that the nπ sequence

algorithm can find many different types of trajectories, essentially providing
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Figure 4.5: Four views of trajectory and of v∞ sphere for an even nπ sequence
from Example A that uses a sequence of many 1:1 transfers (refer to the text
for the definitions of symbols)
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Figure 4.6: Four views of trajectory and of v∞ sphere for an odd nπ sequence
from Example A that that demonstrates the change in v∞ caused by the odd
nπ transfer (refer to the text for the definitions of symbols)
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many options for loiter orbits which can vastly increase the design space for

the ballistic tour problem.

4.4 Mapping bodies with flybys using nπ sequences: al-
gorithm for the GTOC6 problem

The pathsolving method presented above aims to quickly evaluate se-

quence feasibility with the box constraints of flyby altitude, but other methods

for pathsolving may be more suitable for a particular problem. As an exam-

ple, the GTOC6 problem [65] is considered, where the goal is to map the four

Galilean moons using flybys. In this problem, mapping is done by placing pe-

riapse over elements on a grid of each moon, with each grid element mapped

contributing a specified amount to the score. The grid, shown in Figure 4.9, is

patterned after a soccer ball. Since each moon is tidally locked with Jupiter,

the surface grid maps directly to the v∞ sphere aligned with the body velocity

with no time-dependent rotation. Because of time constraints on implemen-

tation, only even nπ sequences are considered but odd nπ sequences could

potentially contribute in an important way.

Once the v∞ sphere is mapped with the possible nπ sequences, pathfind-

ing and pathsolving is guided by performance indices instead of by simply at-

taining feasibility. The nπ sequences can be long – 31 flybys for the final Io

sequence used, for example – so an enumeration of paths becomes combinato-

rially large. Also, reaching vO∞ is generally possible and not the only goal for

such a long sequence. Instead, pathfinding and pathsolving are accomplished

simultaneously and sequentially by the following process:

1. Start at vI∞
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Figure 4.7: Four views of trajectory and of v∞ sphere for an odd nπ sequence
from Example B, like Example A but with a tighter turn angle constraint
(refer to the text for the definitions of symbols)
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Figure 4.9: Flyby mapping sphere and v∞ sphere used for the GTOC6 problem.
The turquoise arrowhead is the inbound v∞ vector and the dark red circles are
discretized candidate points for the post-flyby v∞. The x’s show the different
periapse locations possible for these candidate v∞. The different colors of the
grid patches correspond to point values and help the pathfinding algorithm
pick which of candidate post-flyby points to rotate the v∞ to (the filled red
circle)
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2. Map a discretized set of options on resonant circles between δMIN and

δMAX . These are the large circles around the current v∞ in Figure 4.9.

3. Choose one option based on a weighted sum of performance index gain

(mapping new face), TOF , and radiation penalty as well as a random

number makes the search stochastic. Note that which faces have already

been mapped needs to be tracked for each sequence.

4. Repeat steps 2-3 from the current v∞ until no options in step 2 provide

gains in performance index because all the faces that can be mapped

next have already been mapped.

5. Repeat steps 1-4 a specified number of times, storing sequences that can

reach vO∞ with one flyby at the end and are nondominated in performance

index, TOF , and radiation penalty. The random number used in the

decision in step 3 makes this equivalent to a stochastic multistart.

6. All the stored sequences become distinct branches in the MGA search

and are continued onwards or pruned by the MGA GS (Explore in this

case).

Application of this pathfinding/pathsolving method was effective for gener-

ating many promising sequences. The geometry of periapse placement led

to many tours that hopped between different resonances. Because the nπ se-

quence terminates when no further increase in score is possible, most sequences

do not map the entire moon. As a result, the final MGA tour path used two

nπ sequences at both Ganymede and Europa. Appendix C provides details of

the University of Texas solution to the GTOC6 problem.
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Chapter 5

Heliotropic orbits as low altitude science

orbits at asteroids

The goal of this chapter is to locate and characterize heliotropic orbits

as potential low-altitude science orbits for asteroid exploration1. Heliotropic

orbits and their characteristics are introduced in Chapter 1. Heliotropic orbits

are located in three dynamic models of increasing complexity. Then a prelim-

inary analysis of the robustness of these orbits to gravity model uncertainty is

presented.

The first model for locating heliotropic orbits in the presence of signif-

icant SRP and J2 perturbations applies a singly-averaged potential in the La-

grange Planetary Equations (LPE). This process yields families of Sun-frozen

orbits that maintain a frozen average eccentricity vector with respect to the

Sun line. Equatorial heliotropic orbits are one of the families of Sun-frozen

1This chapter contains information also published in:
• Demyan Lantukh, Ryan P. Russell, and Stephen B. Broschart. “Heliotropic Orbits at
Oblate Asteroids: Balancing Solar Radiation Pressure and J2 Perturbations,” Celestial
Mechanics and Dynamical Astronomy, Volume 121, Issue 2, pp 171-190, 2015. DOI:
10.1007/s10569-014-9596-x
• Demyan Lantukh, Ryan P. Russell, and Stephen B. Broschart. “Heliotropic Orbits
at Asteroids: Zonal Gravity Perturbations and Application at Bennu,” 25th AAS/AIAA
Space Flight Mechanics Meeting, 11-15 January 2015, Williamsburg, VA

Ryan P. Russell contributed critical insight into averaging and developed high-degree gravity
modeling extension. Stephen B. Broschart conducted original numerical studies that found
heliotropic orbits at Bennu model and also provided higher-fidelity simulations.
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orbits calculated with this process.

Nonequatorial heliotropic orbits are found from a constrained doubly-

averaged potential derived to enforce the heliotropic constraint. This doubly-

averaged potential is used to develop an analytical formulation for the average

orbital elements of inclined heliotropic orbits, enabling a fast, global approach

to map zero-obliquity2 inclined heliotropic orbits. The limits of these inclined

heliotropic orbits in the mean elements are investigated and some example

orbits are presented.

The third model extends the zonal gravity perturbation beyond J2 to

include higher degree even zonal terms, applied with the constrained doubly-

averaged SRP disturbing potential. A model of asteroid Bennu is used to

investigate the existence of heliotropic orbits in the presence of some parameter

uncertainty.

5.1 Models

The central body is an asteroid around which the significant forces on

a spacecraft are the gravity from the small body and SRP. The small body

is considered to be an axisymmetric spheroid with its spin axis as its axis

of symmetry. This body’s gravity is modeled by a point-mass and the zonal

gravity terms (J). Solar gravity is neglected because the orbits of interest –

where J has an effect comparable to SRP – have sufficiently low altitudes; in

terms of relative magnitude, the solar gravity acceleration is often greater than

the small body gravity acceleration, but since its effect is almost identical on

2For axisymmetric bodies like those assumed in the current study, zero obliquity is equiv-
alent to 180◦ obliquity.
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both the small body and the spacecraft, it has minimal effect on the relative

motion of the two bodies when they are very near each other. However, the

motion of the small body about the Sun is included because the Sun line

direction is important for the SRP. The body obliquity is zero (or equivalently

180◦): the equatorial plane is the body orbit plane, and, since the body is

axisymmetric, the body spin direction does not affect the spacecraft orbit.

Solar gravity and nonzero obliquity are reintroduced as perturbations in the

end of this chapter, where a full 12 × 12 spherical harmonics gravity field is

also used to perturb the heliotropic orbit solutions.

Orbit conditions are developed in terms of a constant SRP acceleration

(γ) which is directed away from the Sun. This is equivalent numerically to a

spherical spacecraft assumption but the actual spacecraft shape is not needed

as long as the SRP acceleration can be assumed constant[143, 132, 161, pp.

55–57]. The actual SRP experienced by a spacecraft contributes uncertainty as

well as constraints and controls, but those are neglected in the derivation. The

shadowing of the spacecraft from the Sun is also not modeled, but the sym-

metric orientation of heliotropic orbits with respect to the Sun line means that

the perturbation from shadowing has no secular effect on orbital element rates

[162]. As a result, the effect of shadowing shifts the location of the heliotropic

orbit conditions but otherwise does not affect average orbit behavior.

When the ratio of spacecraft semi-major axis to body semi-major axis

is small, the Sun-spacecraft distance (d) is approximately the body semi-major

axis. Although the averaging process described below does not require a cir-

cular body orbit, for the current study a circular orbit with semi-major axis d

is assumed for the central body. With these assumptions, the Sun line moves

counterclockwise in the plane of the small body orbit with constant rate ḟ
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Table 5.1: List of parameters for the representative SRP+J2 case in this section

Parameter Symbol Value Units

Body semi-major axis d 1.684× 108 km
Body impact (Brouillon sphere) radius R0 0.2887 km
Body gravitational parameter GMbody 4.057× 10−9 km3/s2

Body oblateness: 2nd order zonal gravity J2 0.1
√

5
Body oblateness (normalized) 0.1

Sun gravitational parameter GMSun 1.327× 1011 km3/s2

SRP acceleration γ 1.2762× 10−10 km/s2

given by Equation (5.1). Definitions of the other parameters in Equation (5.1)

are provided in Table 5.1, which also gives the values of parameters used for

the example case presented below.

ḟ =

√
GMSun

d3
(5.1)

Spacecraft orbits are defined by orbital elements in a non-rotating reference

frame centered at the small body as shown in Figure 5.1. Orbits are visualized

in a body-centered Sun-synodic reference frame where the Sun remains in the

negative x-direction even though the propagation itself is in the non-rotating

reference frame (heliotropic orbits rotate with the Sun line, as shown in Fig-

ure 1.3). The orbital elements used in this investigation are the classic set

{a, e, i, ω,Ω, ν}, with the angles defined in Figure 5.1 (except ν, which is the

angle from ê to spacecraft position). The angle λ from the anti-Sun line (d̂)

to the line of nodes (n̂) is also shown in Figure 5.1. The LPE for applying a

disturbing potential R to this element set are well-known and can be found,

among other texts, in [163, pp. 288–289]. These equations of motion and other

equations throughout use the intermediates: n∗ =
√
GMbody/a3; p = a(1−e2);

M∗ = n∗t, where M∗ is the mean anomaly.

Unless otherwise specified, the parameter values used in this chapter
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Figure 5.1: Reference frame definition and orbit geometry for asteroid prox-
imity operations discussion

are given in Table 5.1, where the body impact radius is the minimum allowed

spacecraft periapse, which is assumed equal to the Brouillon sphere radius.

These parameters approximate a spacecraft around a body similar to Bennu

but with higher J2. This simplification is used to better characterize the

heliotropic orbit space, and a more accurate Bennu model is then used to find

the heliotropic orbit space at Bennu.

5.2 Single averaging and resulting Sun-frozen orbits

Sun-frozen orbit solutions in the presence of J2 and SRP – of which

equatorial heliotropic orbits are a subset – are investigated by first applying

a singly-averaged disturbing potential to the LPE. The disturbing potential

applied to the LPE is the sum of the averaged potential from J2 and the

averaged potential from the SRP, with the singly-averaged potentials given in

Equations (5.2) and (5.3) respectively [133, 161, 142, pp. 293–294]. These

disturbing potentials are averaged over a single spacecraft orbit and are valid
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assuming the change in the remaining orbital elements over a single orbit is

sufficiently small.

R̄J2 =
µR2

0J2
2a3(1− e2)3/2

(
1− 3

2
sin2 i

)
(5.2)

R̄SRP = −3aeγ

2
d̂ · ê = −3aeγ

2
[cosω cos (Ω− f)− sinω sin (Ω− f) cos i]

(5.3)

These disturbing potentials are applied to the LPE to generate equations of

motion equivalent to Equations (11) to (14) of [142] with zero obliquity. [142]

further convert these dynamics to nonsingular, nondimensional elements but

the current investigation keeps the classical elements for their simple physical

interpretation.

5.2.1 Sun-synodic equations of motion

The resulting equations of motion can be expressed more concisely and

intuitively by applying the auxiliary element λ = Ω− f (shown in Figure 5.1).

These equations of motion of the orbital elements and dynamics of λ are given

in Equation (5.4).

ȧ = 0

ė = − 3γ

2n∗a

√
1− e2 [sinω cosλ+ cosω sinλ cos i]

i̇ = − 3γ

2n∗a

e√
1− e2

cosω sinλ sin i

ω̇ = − 3γ

2n∗a

1

e
√

1− e2
[
(1− e2) cosω cosλ− sinω sinλ cos i

]
+

3n∗R2
0J2

2p2

[
2− 5

2
sin2 i

]
Ω̇ = − 3γ

2n∗a

e√
1− e2

sinω sinλ− 3n∗R2
0J2

2p2
cos i

λ̇ = Ω̇− ḟ
(5.4)
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5.2.2 Sun-frozen orbit conditions

The Sun-frozen condition applied in the singly-averaged dynamics and

translated to the orbital element rates results in Equation (5.5).

λ̇ = ė = i̇ = ω̇ = 0 (5.5)

For equatorial orbits, the Sun-frozen orbit conditions are modified to account

for the fact that Ω and ω cannot be defined individually. Following the example

of Vallado, a retrograde factor is defined: δdir = 1 for prograde orbits and

δdir = −1 for retrograde orbits [6, p. 116]. Using the retrograde factor, the

undefined elements are replaced by Equation (5.6).

Π = ω + δdirλ (5.6)

With this substitution, the frozen orbit conditions for equatorial orbits are

given by Equation (5.7).

Π̇ = ė = i̇ = 0 (5.7)

Although requiring ȧ = 0 is not necessary for an orbit to be frozen with respect

to the eccentricity vector, the LPE dictate that all orbits under SRP and J2

perturbations without shadowing will indeed have a constant mean semi-major

axis.

5.2.2.1 Equatorial orbits

For equatorial orbits, sin i = 0 and cos i = δdir. With these simplifi-

cations, i̇ = 0 and the equatorial dynamics simplify to Equations (5.8) and

(5.9).

ė = − 3γ

2n∗a

√
1− e2 sin Π (5.8)

Π̇ =
3n∗R2

0J2
2p2

− 3γ

2n∗a

√
1− e2
e

cos Π− δdirḟ (5.9)
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Using Equation (5.8), the corresponding Sun-frozen condition in Equation

(5.7) is satisfied by either Π = 0 or Π = π. These two possible values of Π

correspond to the “heliotropic” and “antiheliotropic” orbits, respectively, as

described in past studies [139, 138].

Looking at Equation (5.9), Π̇ can be considered a sum of a J2 term,

an SRP term, and −δdirḟ ; The J2 term has the sign of J2 (J2 > 0 for most

bodies) and the SRP term has the sign opposite of cos Π. As a result, if J2 > 0

and Π = π, then the Sun-frozen solution can only exist when the body orbit

direction is the same as the spacecraft orbit direction: for an oblate body in

prograde motion, the Π = π solution must be prograde and for an oblate body

in retrograde motion, the Π = π solution must be retrograde.
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Figure 5.2: Sample contours of the Π̇ rate equation (deg/day) solved for equa-
torial prograde orbits with Π = 0, using parameters from Table 5.1

The equatorial frozen orbit families are enumerated for each of the four

possible cases {δdir = ±1, cos Π = ±1} by choosing one of the two unknowns
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Figure 5.3: Sun-frozen orbit families from the singly-averaged analysis.
Nonequatorial orbit case numbers (Ci) correspond to those given in Table 5.2.

(a or e) as the independent variable and solving for the other with Π̇ = 0

within a specified range of the independent variable. Using e as the indepen-

dent variable is convenient because it is bounded. Evaluating the frozen orbit

families for the representative case in the current study results in one prograde

family of equatorial orbits and one retrograde family of equatorial orbits for

Π = 0. Figure 5.2 gives the contour plot of Π̇ for the prograde, Π = 0 case.

No solutions with Π = π exist for this case, though such solutions can exist
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Table 5.2: Possible Sun-frozen orbit cases for nonequatorial orbits

Case cosω cosλ sinω sinλ Possible Pairs of {ω, λ}

C1 0 -1 { −π/2, π/2}, { π/2,−π/2}
C2 0 1 { π/2, π/2}, { −π/2,−π/2}
C3 -1 0 { 0, π}, { π, 0}
C4 1 0 { 0, 0}, { π, π}

when the perturbations are smaller relative to the body gravitational param-

eter [138, 141]. The resulting Sun-frozen families for the presented case are

given in Figure 5.3.

5.2.2.2 Nonequatorial orbits

For nonequatorial orbits, finding frozen orbit families also begins with

ė = 0 and i̇ = 0; these two conditions together lead to Equation (5.10), the

primary frozen orbit requirement for nonequatorial orbits.

(cosω = 0 AND cosλ = 0) OR (sinω = 0 AND sinλ = 0) (5.10)

The trigonometric functions of ω and λ always exist in a product of two such

terms in the LPE. The frozen orbit condition then leads to sinω cosλ = 0

and sinλ cosω = 0. Further, the other products of trigonometric functions

of ω and λ can be restricted to a small set: cosω cosλ = {−1, 0, 1} and

sinω sinλ = {−1, 0, 1}. The resulting feasible combinations allow four possible

cases of frozen orbit conditions, enumerated in Table 5.2.

Of the four cases in Table 5.2, C1 is considered first: In this case the line

of nodes begins normal to the Sun line and periapsis begins on the night side

of the body. Applying the Sun-frozen orbit conditions maintains this geometry

relative to the Sun: Using the rates from Equation (5.4) in Equation (5.5), and
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applying all the simplifications that C1 allows, leads to the Sun-frozen orbit

conditions given in Equation (5.11).

ω̇C1 = 0 = − 3γ

2n∗a

1

e
√

1− e2
cos i+

3n∗R2
0J2

4p2
[
4− 5 sin2 i

]
λ̇C1 = 0 =

3γ

2n∗a

e√
1− e2

− 3n∗R2
0J2

2p2
cos i− ḟ

(5.11)

Equation (5.11) provides two equations with three unknowns, {a, e, i}, for a

given body. Solving λ̇C1 = 0 for cos i and using sin2 i = 1− cos2 i reduces the

Sun-frozen orbit conditions to one equation in two unknowns: {a, e}. Choos-

ing one of these as an independent variable, the other can be solved as the

dependent variable to generate families of solutions, taking into account that

the dependent variable may be undefined or may not be single-valued. (For

example, F2 and F3 in Figure 5.3 are two distinct solutions of Equation (5.11).)

The solution process is repeated for the other three cases, resulting in

a pair of non-equatorial frozen orbit equations that can be reduced to one

equation in two parameters for each case. Each set of equations is mapped

globally to bound solution regions, then solved locally using a numerical root-

finding technique to find the frozen orbit families. Note that this process

yielded no solutions for C4 (with the given parameters). The resulting Sun-

frozen families are shown in Figure 5.3.

5.2.3 Stability of Sun-frozen orbit families

To aid in determining practically useful orbits, the Sun-frozen families

can be categorized by evaluating their stability. The LPE can be written in

vector form as Ẋ = f(X) where X is the vector of the orbital elements. Then,

if the state for a frozen orbit is X∗, the frozen orbit conditions are Ẋ∗ =
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Figure 5.4: Characteristics of the Sun-frozen families from the singly-averaged
equations of motion

f(X∗) = 0. Considering a small perturbation around X∗ where X = X∗+ δX,

the dynamics of δX to first order are:

δẊ = AδX (5.12)

A =
∂f(X)

∂X

∣∣∣∣∣
X∗

(5.13)

The linear stability of a particular frozen orbit X∗ (i.e. an equilibrium solution

to the nonlinear equations of motion) is determined using the eigenvalues of

A. If any eigenvalue has a positive real part then the orbit is unstable. If

all eigenvalues have nonpositive real parts then the orbit is linearly stable.

For the singly-averaged equations of motion given in Equation (5.4) applied

at the Sun-frozen conditions, the partial derivatives in X are simplified be-
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cause sinω cosλ = 0 and cosω sinλ = 0. For the equatorial case, derivative

calculation is simplified by the condition sin Π = 0.

Evaluating the derivatives shows that one of the eigenvalues of A is

always zero. For unstable orbits, the size of the real component of the eigen-

values gives some indication of the characteristic time for an orbit to leave the

neighborhood of its initial condition. Therefore, the stability metric for orbits

in the current study is the supremum of the real parts of the eigenvalues of A.

Figure 5.4b shows this supremum for each of the families of frozen orbits. The

result is that most of the nonequatorial orbits are unstable and all the equato-

rial orbits are linearly stable. The low-eccentricity terminator family becomes

stable for very small J2, which is expected since terminator orbits are linearly

stable with only SRP. The point where the unstable family F2 approaches the

equatorial F1 is designated {a = a∗, e = e∗, i = 0} for use as a reference point

in studying nonequatorial orbits from a doubly-averaged potential.

5.2.4 Discussion on the Sun-frozen orbit families

The prograde equatorial orbit family F1 in Figure 5.3 corresponds to

the planar heliotropic types of orbits presented and analyzed in literature. The

current analysis verifies that the retrograde equatorial family F6 exists and can

be determined by the process described above. The families F1 and F6 do not

coincide in a and e, as shown in Figure 5.3.

The two near-polar families correspond to J2-perturbed frozen orbit

families that exist with SRP alone. F2 and F5 span a wide range of inclinations

and, at first glance, appear to make good candidate science orbits. However,

for the specific case of parameters considered, these two families have large

impacting regions and the regions that do not impact are unstable.
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Figure 5.4a shows the average expected periapse radius along the dif-

ferent Sun-frozen families in Figure 5.3. Comparing these average periapse

distances to the impact radius bounds the usable regions of the Sun-frozen

families. The semi-major axis for F1 that marks the border between impacting

and nonimpacting orbits is defined as amax, as shown in Figure 5.4a. Further

analysis in the following sections shows that inclined Sun-frozen orbits do not

exceed amax.

5.3 Constrained double averaging for inclined heliotropic
orbits

The stable heliotropic orbits from past analytical studies (verified with

the current singly-averaged Sun-frozen orbit analysis) are equatorial [143, 141].

Past work [138] has looked at numerically following families of orbits to find

inclined heliotropic orbits, but a more systematic and global means to find

inclined heliotropic orbits is desirable. In pursuit of this goal, consider Fig-

ure 5.5 which shows an orbit perturbed by twenty degrees in inclination from

the equatorial family of heliotropic orbits. Although simply changing the ini-

tial inclination from the equatorial family can produce long-lifetime orbits like

the one presented in Figure 5.5, this method is based on trial and error and

provides little understanding about the design space. However, observing the

resulting inclined heliotropic orbit provides at least one path forward: the sec-

ular rates of both Ω and ω appear to be constant (and so the rate of λ is also

constant). In addition, these angles are approximately related to each other

by Equation (5.14), which maintains the heliotropic geometry of the orbit (see

Figure 1.3).

Π = 0 (5.14)
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Observing these characteristics of inclined heliotropic orbits motivates the de-

termination of the secular rates of λ and ω. Since the rates in both λ and ω

have small oscillations about a mean, a second average can isolate the secular

components (assuming, rather liberally, that the typical averaging assumptions

still apply: i.e. all elements except the argument of the average are approx-

imately constant over the averaging period). Since the angular condition in

Equation (5.14) keeps the eccentricity vector in the anti-Sun hemisphere, no

additional constraints are needed to find families of heliotropic inclined orbits.
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Figure 5.5: Example A: Heliotropic orbit found by perturbing the equatorial
family of solutions. Initial conditions for the orbit are given in Table 5.3
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5.3.1 Constrained doubly-averaged LPE

Double-averaging the potential is achieved by averaging the constrained

singly-averaged potential over one period of λ as detailed below. For the

example in Figure 5.5, the second averaging period is approximately 11 days.

Note that Ω̇ is thirty times greater than ḟ and so contributes primarily to λ̇.

This averaging assumes that the change in a, e, and i over one period of λ is

small, an assumption that may not hold with the large perturbations under

consideration. Even with this limitation, the results in the following section

demonstrate cases of practical use for the doubly-averaged results, validated by

simulations in the unaveraged dynamics. Figure 5.6 shows how the averaged

and unaveraged dynamics compare in the evolution of the eccentricity vector

from the same initial conditions. Furthermore, it is noted that doubly-averaged

potentials have been successfully applied to the other dynamical systems, such

as the restricted three body problem [164] and Hill’s model [135]. In the

problem investigated here, the constrained doubly-averaged potentials are used

to provide the mean values for λ̇ and ω̇ as well as estimates of initial conditions

for inclined heliotropic orbits in the full dynamics.

The process for calculating heliotropic orbits is summarized in Algo-

rithm 5.1 and detailed below. The process is first conducted with only J2 of

the zonal gravity terms and then expanded to include higher degree terms.

Starting with only J2 allows for a simple solution that lends itself to analy-

sis; the higher degree zonal fields are needed for accurate modeling of highly

nonspherical bodies.
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Figure 5.6: Eccentricity vector evolution of a heliotropic orbit propagated for
one body orbit around the Sun. Spherical coordinates for the eccentricity
vector show that it remains near the anti-Sun line (0,0). Initial conditions are
Example B in Table 5.3.

Algorithm 5.1 Generating a heliotropic orbit using constrained double aver-
aging

1: Determine ¯̄R∗SRP , the constrained doubly-averaged disturbing potential
from SRP. For the assumptions in this chapter ¯̄R∗SRP is given in Equa-
tion (5.16)

2: Determine averaged secular disturbing potential from zonal gravity har-
monics ( ¯̄RJ,sec) using Algorithm 5.2

3: Assemble the doubly-averaged disturbing potential ¯̄R∗ = ¯̄R∗SRP + ¯̄RJ,sec

4: Use ¯̄R∗ in the Lagrange Planetary Equations to set up Eq. (5.17)
5: Pick values for independent variables (nominally a and e)
6: solve Eq. (5.17) numerically for remaining unknown (nominally i) . A

solution may not exist for every pair of independent variable values

5.3.2 The constrained doubly-averaged SRP disturbing potential

Performing a simple average of R̄SRP from Equation (5.3) over either

λ or ω would give zero as a result. However, by applying a constraint based

on the heliotropic condition given by Equation (5.14), the resulting doubly-
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averaged potential is nonzero: Using this heliotropic constraint leads to the

substitution λ = −ω (for prograde orbits) in R̄SRP . The resulting constrained

disturbing potential for SRP is shown in Equation (5.15), where the * super-

script indicates the constraint is active.

R̄∗SRP = −3aeγ

2

[
cos2 λ+ sin2 λ cos i

]
(5.15)

The one-period averages over λ of sin2 λ and cos2 λ in Eq. (5.15) are both 1/2,

leading to Equation (5.16).

¯̄R∗ = −3aeγ

4
[1 + cos i] (5.16)

The heliotropic geometry is maintained by applying the rate constraint given

in Equation (5.17). Note that Equation (5.17) is the time derivative of Equa-

tion (5.14) and is equivalent to Equation (5.7) for prograde orbits.

Π̇ = ω̇ + δdir(Ω̇− ḟ) = 0 (5.17)

The angular heliotropic constraint, given in Eq. (5.14), only affects the SRP

portion of the disturbing potential because the zonal gravity portion is already

independent of ω and Ω after it is averaged to isolate the secular effects. As

a result, the LPE can be split into a sum of SRP terms and gravity terms;

expanding Eq. (5.17) leads to:(
ω̇SRP + δdirΩ̇SRP

)
+
(
ω̇J,sec + δdirΩ̇J,sec

)
− δdirḟ = 0 (5.18)

5.3.3 Heliotropic orbits with SRP and J2

For the simplified case where the small body is modeled by only a point

mass and J2 zonal gravity term, the LPE with the constrained doubly-averaged

164



disturbing potential are given in Equation (5.19)

ȧ∗ = ė∗ = i̇∗ = 0

ω̇∗ = − 3γ

4n∗a

1

e
√

1− e2
[
1− e2 + cos i

]
+

3n∗R2
0J2

2p2

[
−1

2
+

5

2
cos2 i

]
λ̇∗ =

3γ

4n∗a

e√
1− e2

− 3n∗R2
0J2

2p2
cos i− ḟ

(5.19)

A surface of orbit conditions for heliotropic orbits can be developed from the

constrained doubly-averaged LPE. In the doubly-averaged problem there re-

main three unknowns and one constraint; solving Equations (5.19) and (5.17)

for prograde orbits leads to a quadratic equation in cos i given by Equa-

tion (5.20).

−4

3
ḟ =

[
KJ2 + (1− 2e2)KSRP

]
+ [2KJ2 +KSRP ] cos i− 5KJ2 cos2 i

KJ2 =
n∗R2

0J2
p2

KSRP =
γ

n∗ae
√

1− e2

(5.20)

One of the solutions to this quadratic, Equation (5.21), is the defining equa-

tion for this constrained doubly-averaged system. Equation (5.21) gives the

solution for inclination at a given pair {a, e} where such inclination exists.

The other solution to the quadratic equation violates the prograde assumption

made in the derivation. An inclination exists that enables a doubly-averaged

heliotropic orbit when B4 ≥ 0 and −1 ≤ cos i ≤ 1.

cos i =
1

5
+
B2 +

√
B4

30B1B3

B1 = n∗2R2
0J2

B2 = 3 γ p2

B3 = ae
√

1− e2

B4 = 120
(
3/5− e2

)
B1B2B3 + 216B2

1B
2
3 + 240np2B1B

2
3 ḟ +B2

2

(5.21)
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Table 5.3: Initial conditions for the integrated orbit examples. All examples
begin at f = 0. Table notes provide further information for periodic orbits.

Ex. a (body radii) e i (deg) ω (deg) λ (deg) ν (deg)

A 2.8987341 0.46481127 20 -90 90 180
B 2.7454004 0.52314381 28.715568 -90 90 180

BP
a 3.1417561 0.51510321 30.626542 -68.4474 77.5531 68.4474

C 4.2500558 0.73173913 20.429662 -90 90 180
D 4.9121042 0.77478261 11.734502 -90 90 0
Eb 1.9048110 0.25724790 18.635145 -146.268 -157.517 146.268

a Repeat period: 12.995380 days, 18 spacecraft revolutions. Largest eigenvalue
magnitude: 1.0000027. Initial conditions are given at the x-y plane crossing.

b Repeat period: 4.1014777 days, 11 spacecraft revolutions. Largest eigenvalue
magnitude: 1.0255871. Initial conditions are given at the x-y plane crossing.

Equation (5.21) leads to a surface of mean orbital element conditions that

produce heliotropic orbits. The resulting surface of orbit conditions, shown

in Figure 5.7, is bounded on its low-eccentricity end by the equatorial family

of frozen heliotropic orbits. On the high-eccentricity end of the surface, the

orbits impact the body. Figure 5.7 is similar to the surface of inclined he-

liotropic orbits for an Earth-orbiting spacecraft, found numerically by [144],

which is also bounded by the equatorial solutions and extends into the region

of impacting orbits.

5.4 Orbit design considerations for heliotropic orbits at
small bodies

Because the doubly-averaged solutions do not account for the possibility

of impact or escape, defining the useful portion of the surface of heliotropic

conditions is desirable. The heliotropic surface and its bounds are shown

in Figure 5.7. In addition, the doubly-averaged solutions assume that the
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orbital elements do not change significantly over the course of one orbit or one

period of λ circulation, so there may be cases where the surface is not a good

predictor of the full dynamics. Examples B and C from Table 5.3, shown in

Figures 5.8 and 5.9, respectively, illustrate this possibility: Both examples use

initial conditions from the heliotropic surface, but B stays well bounded for 60

days in a heliotropic orbit while C departs from the heliotropic condition and

impacts the body. Figure 5.6 shows the evolution of the eccentricity vector

of Example B with respect to the anti-Sun line (d̂). The orbit maintains its

heliotropic character, with periapse confined to an angular region around d̂.

The low-eccentricity boundary of the heliotropic surface is the Sun-

frozen orbit equatorial case (F1) from the singly-averaged analysis. Orbits

along this boundary are stable in the singly-averaged elements. However,

there exists a bifurcating unstable family of frozen orbits (F2), and orbits near

this unstable family are likely unstable. This unstable family provides a useful

boundary, as discussed below. For a given value of a there is a range of possible

e for heliotropic orbits, as defined by the heliotropic surface. Each of these

possible {a, e} pairs also corresponds to a particular inclination.

The high-eccentricity end of the heliotropic surface consists of body-

impacting orbits. This impact boundary can be approximated as the point

where the periapse distance is the Brouillon sphere radius: a(1 − e) = R0.

(In practice a higher minimum radius limit may be desirable.) Substituting

this maximum eccentricity into Equation (5.21) allows the calculation of the

maximum inclination for a given value of a, a function defined as iimpact since

this high eccentricity boundary is also the high-inclination boundary for he-

liotropic orbits. The boundary iimpact begins along the low-e boundary at

{a = R0, e = 0, i = 0}, then rises steeply in inclination to a maximum value
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Figure 5.7: The heliotropic orbit surface in three dimensions and from two pro-
jections. The shaded region of interest is bounded by F1 and iimpact, the impact
boundary. This region is divided by F2. Specific cases are defined in Table 5.3
(Case E is behind the semi-transparent surface in the three-dimensional view).

(imax), and then returns to the equatorial family (the low-e boundary) again

at {a = amax, e = 1 − R0/amax, i = 0}. For a particular case, the value of

imax can be found numerically by solving diimpact/da for aimax and then calcu-

lating iimpact(aimax). Bounding cases for maximum possible inclination for all
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Figure 5.8: Example B: Long-lifetime heliotropic orbit found using the surface
of doubly-averaged heliotropic conditions. Initial conditions for the orbit are
given in Table 5.3

heliotropic orbits are discussed below.

5.4.1 Limiting cases for heliotropic orbits

Although amax provides an upper bound on a based on impact, the un-

stable Sun-frozen orbit family (F2, found in the singly-averaged analysis) may
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Figure 5.9: Example C: Unstable orbit from the surface of doubly-averaged
heliotropic conditions near the unstable singly-averaged Sun-frozen family F2.
Initial conditions for the orbit are given in Table 5.3

provide a better upper bound on a for long-lifetime heliotropic orbits (when F2

is within the bounds [R0, amax]). Although F2 only crosses the heliotropic sur-

face at a∗, its proximity suggests that the true dynamics of orbits in the vicinity

are unstable; example C in Figure 5.9 illustrates such a case. Conveniently,

the steepness of (F2) at low inclinations allows the use of its end at i = 0 (a∗)

as a single upper bound value for a. For values of a approaching and exceeding

a∗, the singly-averaged equations are no longer stable for inclined orbits when

integrated. Even so, long-lifetime orbits may still exist in the full dynamics

with a∗ ≤ a ≤ amax: Example D, shown in Figure 5.10, is a long-lifetime
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orbit where a > a∗. This orbit is notable for its large periodic variation in e.

One practical suggestion is to use initial conditions near periapsis for a ≥ a∗.

This empirical rule was found to aid in generating non-impacting osculating

elements from the mean elements. For a < a∗, the initial true anomaly does

still substantially affect the orbit, but there are often long-lifetime orbits for

any choice of initial true anomaly (contrary to the case of a ≥ a∗).
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Figure 5.10: Example D: Long-lifetime heliotropic orbit with a > a∗ found
using the heliotropic surface. Initial conditions for the orbit are given in Ta-
ble 5.3

The limiting cases for heliotropic orbits can be estimated by manipulat-

ing Equation (5.21). Here the oblateness effect is contained entirely in B1 and
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the effect of solar radiation pressure entirely in B2. Also, B1, B2, B3, and B4

are all real and nonnegative for captured orbits about an oblate spheroid (for

J2 > 0). Noting that increasing the strength of SRP (increasing B2) decreases

i if all else is held constant, the maximum possible inclination is expected to

come about by reducing B2. Setting B2 = 0 and ignoring the effect of the

small body motion (ḟ = 0), Equation (5.21) simplifies to Equation (5.22),

yielding an inclination of ≈ 46.4◦. Under these conditions, the J2 terms in the

numerator and denominator of Equation (5.21) cancel each other out (again

assuming J2 > 0). Note that B2 also approaches zero when e approaches one,

even with the effect of SRP, so the result still holds for high eccentricity orbits.

Although higher inclination is possible on the heliotropic surface, the highest-

inclination areas (visible in the three-dimensional view in Figure 5.7) occur

well into the zone of impacting orbits at relatively high values of a (using the

parameter values in Table 5.1).

cos iB2=0,ḟ=0 =
1 +
√

6

5
(5.22)

This maximum inclination limit is approached as J2 increases, with everything

else held constant. Moving in the opposite direction, trying to eliminate the

effect of J2, leads to B1 = 0 and causes a singularity in Equation (5.21).

Considering instead a small, positive value for B1 allows the approximation

B4 → B2, which leads to Equation (5.23). In this equation, maximizing cos i

allows the minimum possible B1, so assuming cos i = 1, then the approximate

minimum value of B1 is given by Equation (5.24). Two intuitive results are

verified by Equation (5.24): first, as the effect of SRP (B2) increases, a larger

oblateness is required to maintain the heliotropic orbit and, second, neglecting

the effect of SRP entirely does not drive the requirement on J2 (B1) to zero.
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cos iB1→ε =
3 +B2

15B1B3

(5.23)

B1,min ≈
3 +B2

15B3

(5.24)

Equation (5.24) being nonzero results from the need to precess the or-

bital plane to match the Sun line motion. Some perturbation (i.e. oblateness)

is needed to drive that precession.

In summary, practical prograde heliotropic orbits around an oblate

(J2 > 0) body are expected to fall within the bounds:

R0 ≤a ≤ min(a∗, amax)

0 ≤e ≤ emax

0 ≤i ≤ imax . 46.4◦

The quantities amax, emax, and a∗ come from the singly-averaged Sun-

frozen orbit solutions. The value of imax can be found for a particular case

with a numerical root-finding procedure as outlined above. These bounds for

the space of heliotropic orbits will change for different obliquities, GM , γ, and

J2, but the orbits, once found, are expected to be robust to small changes in

these parameters. Future studies will focus on the robustness of the heliotropic

orbits to parameter uncertainty.

5.4.2 Periodic orbits

Periodic heliotropic orbits can be found using initial guesses from the

averaged dynamics and a suitable root finding technique applied in the full
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dynamics [134]. Periodic heliotropic orbits are periodic in all the orbital el-

ements except Ω, which experiences a shift equivalent to the change in f to

keep the orbit apoapse towards the Sun. (The orbits are exactly periodic if λ

is used as an element instead of Ω.) Equation (5.19) is useful for determining

the nearest periodic orbit by resonance (number of spacecraft revolutions per

circulation in ω). Using this resonance, a periodic orbit is found by numer-

ically correcting the initial conditions determined by the heliotropic surface.

Details on the employed numerical methods and the general utility of using

resonant periodic orbits for science orbit design can be found in [165] and

[134, 166]. Performing the described process on example B yields the periodic

orbit example BP shown in Figure 5.11. This periodic orbit repeats (relative to

the Sun line) every 18 spacecraft revolutions, and the eigenvalues of its mon-

odromy matrix reveal linear stability, at least to the sixth digit. (The largest

eigenvalue magnitude is given in Table 5.3.) Future work includes following

and mapping these and other similar periodic orbit families.

It is also possible to find orbits which are not heliotropic but are still

stable. Instead of Equation (5.14), another constraint could be applied to

achieve a different constrained orbit geometry. One such possibility for future

work is to allow for different resonances between full periods of Ω and ω,

leading to the constraint in Equation (5.25) to produce prograde orbits with

an M :N resonance in ω and Ω, respectively. Unless M = N = 1 the resulting

orbits will not necessarily be heliotropic, but these orbits could still be stable

and may still be useful as low-altitude science orbits.

Mω +NΩ = f (5.25)

An example of such an orbit is given in Figure 5.12 (notice the near 2:1 reso-

nance in ω and Ω, respectively). The orbit shown in Figure 5.12 is marginally
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Figure 5.11: Example BP : Long-lifetime periodic heliotropic orbit corrected
from example B. Initial conditions for the orbit are given in Table 5.3

linearly unstable (according to the eigenvalues of its monodromy matrix) but

appears to be nonlinearly stable (when propagated for 11,000 orbits). These

kinds of orbits can be investigated by using Equation (5.25) to derive a mod-

ified doubly-averaged disturbing potential, resulting in a surface of mean ele-

ment conditions similar to the one developed for inclined heliotropic orbits.
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Figure 5.12: Example E: Long-lifetime periodic orbit with similar character-
istics to a heliotropic orbit except with a 2:1 resonance in ω̇ and Ω̇. Initial
conditions for the orbit are given in Table 5.3

5.5 Implementing High Degree Zonal Gravity

Extending the process of finding 3D heliotropic orbits to higher de-

gree zonal gravity terms leverages the independence of the SRP and zonal

gravity terms in the disturbing potential. The constrained doubly-averaged

SRP disturbing potential introduced is unaffected by the inclusion of higher

degree gravity terms, whose disturbing potential can be determined with Algo-

rithm 5.2. The method for determining the secular effect of J to an arbitrary
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Algorithm 5.2 Calculating the secular disturbing potential of the zonal grav-
ity harmonics

¯̄RJ,sec = 0
for l = 2 to degree by 2 do

RJl : Calculate the potential term from the Legendre polynomial

u = sin (i) sin (ω + ν)

Pl (u) =

∂l

∂ul

(
(u2 − 1)

l
)

2ll!

. There are several alternative methods for determining Pl (u)
R̄Jl : Integrate RJl over one orbital period, changing the variable of

integration to ν

R̄Jl =
1

2π

∫ 2π

0

RJldM
∗ = Jl

(
R0

l

al+1

)
−µ

2π (1− e2)l−1/2

∫ 2π

0

(1 + e cos (ν))l−1 Pl (u) dν

¯̄RJl,sec : Integrate R̄Jl over period of ω

¯̄RJl,sec =
1

2π

∫ 2π

0

R̄Jldω

¯̄RJ,sec ← ¯̄RJ,sec + ¯̄RJl,sec

end for
return ¯̄RJ,sec

degree is summarized in Procedure 5.2, where R0 is the spherical harmon-

ics normalization radius and ν is the spacecraft true anomaly. Procedure 5.2

is carried out analytically using a symbolic manipulator program (Maple, in

the current implementation). Only the even degrees of J are used in the

heliotropic orbit calculation because the secular effect of the odd degrees is

averaged out to zero by integration on ω [149]. Combining the averaging over

ω used to determine ¯̄RJ,sec with the constrained double averaging on ¯̄RSRP
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assumes their averaging periods are identical. In practice, this requirement

leads to the assumption that ḟ is small: that is, ω̇ ≈ Ω̇.

For example, the four rates required for Eq. (5.18), after following the

process in Procedure 5.1 and using Procedure 5.2 to sixth degree, are shown

in Eq. (5.26). Here µ is the small body gravitational parameter and γ is the

solar radiation pressure acceleration (assumed constant).
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5.6 Heliotropic orbit solutions at Bennu

For application at Bennu, the first six even zonal harmonic coefficients

(J2, J4, J6, · · · , J12) are determined by applying the method of [167] to the

constant-density polyhedral shape model calculated by [155] with the grav-

itational parameter estimated by [156]. These coefficients are used with an

assumed 180◦ obliquity and a Brillouin sphere radius of 0.2887 km. The mag-

nitudes of these harmonic coefficients and a power fit to them are shown in

Figure 5.13. The harmonic coefficients are used to determine the nominal

heliotropic surface and the power fit is used for uncertainty modeling, as de-

scribed below. Nominal parameter values are µ = 5.2 × 10−9 km3/s2 [156]

and γ = 1.2762 × 10−10 km/s2. The resulting heliotropic orbit solutions at

Bennu accounting for the nominal even zonal coefficients J2-J12 are shown in

Figure 5.14.
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Figure 5.13: Bennu normalized even zonal gravity terms and power fit
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Figure 5.14: Heliotropic orbit solutions at Bennu using even J2-J12. Surface
shading indicates inclination (deg)

Figure 5.14 can be used to quickly determine the bounds of possible

heliotropic orbits at Bennu, given the assumptions of the approach and the

estimated gravity field from Figure 5.13. For example, the maximum non-

impacting mean inclination on the surface is about 21◦, with impact defined

as mean periapse falling below the Brillouin sphere radius. Similarly, the max-

imum possible mean semimajor axis is about 2.4 body radii in an equatorial

orbit.

In the constrained, doubly-averaged dynamics, heliotropic orbits only

exist for eccentricity greater than the heliotropic orbit boundary, which is the

equatorial family of heliotropic orbits. The average impact boundary provides

a simple upper bound on the possible eccentricities of heliotropic orbits for a

given value of semimajor axis. Shading in Figure 5.14 shows the inclination
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of the valid heliotropic surface between these two boundaries. Note that a

spacecraft may go below the impact boundary (Brillouin sphere) even though

the average orbital elements stay above the boundary, so a more conservative

boundary would likely be used for mission planning.
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Figure 5.15: The nominal heliotropic boundary shifts as additional degrees of
J are included, showing the relative importance of each value at Bennu.

Figure 5.15 illustrates the effect each successive even term in J has on

the heliotropic boundary at Bennu. The addition of J4 makes a significant

difference and terms above J6 appear to have a minor impact only on the

nominal boundary.

The surface in Figure 5.14, which shows the heliotropic orbits in the

constrained doubly-averaged system, is used to generate initial guesses for he-

liotropic orbits in the unaveraged, higher fidelity dynamics. As an example,

higher fidelity orbits are propagated with the 12×12 spherical harmonics grav-

ity field and the actual 172◦ obliquity determined by [155], and include SRP
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and solar gravity perturbations. Figure 5.16 shows one such orbit with ini-

tial conditions {a, e, i,Ω, ω, ν} = {0.5 km, 0.38, 21.472◦,−90◦, 90◦, 180◦} prop-

agated with an older estimate of Bennu µ = 4.057 × 10−9 km3/s2, propagated

for nearly two full cycles of Ω.
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Figure 5.16: Example heliotropic orbit at Bennu integrated in the unaveraged
high-fidelity dynamics: including a 12 × 12 spherical harmonics gravity field
with a rotating body, 172◦ obliquity, SRP, and solar gravity – shown in a
Sun-synodic frame with the Sun in the negative x-direction
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5.7 Sensitivity to gravity field uncertainty

Heliotropic orbits are expected to exist whenever there is a region be-

tween the heliotropic orbit boundary and the impact boundary (e.g. the

shaded region in Figure 5.14). In order to investigate the effects of gravity

field uncertainty on the existence of heliotropic orbits, a Monte Carlo analysis

(MC) is performed. The variables being changed as input for each run of the

MC are the seven gravity parameters (µ and even J2−J12) and the SRP accel-

eration γ, represented as normally-distributed random variables; the output

of each MC run is the location of the equatorial heliotropic boundary. An

example of the boundary for the nominal case is shown in Figure 5.14. Three

different standard deviation cases for J are considered, with the means of the

MC given in Figure 5.17.
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Figure 5.17: Means of three statistical heliotropic boundary cases compared to
the nominal case. The mean for σJ = 10% nearly overlaps the nominal case.

The input random variables (gravity parameters) are normally dis-

tributed about their nominal values with standard deviation specified as a
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percentage of the power curve approximation in Figure 5.13. For µ, the nomi-

nal value is 5.2 × 10−9 km3/s2 with σµ = 12% of the nominal value [156]. For

γ, the nominal value is 1.2762 × 10−10 km/s2 with σγ = 10% of the nominal

value. For the even terms of the J vector, the mean is the nominal value shown

by the “x” marks in Figure 5.13 and the standard deviation is a percentage

of the fit value for the same degree. For the standard deviation of J , three

different percents are investigated: 10%, 50%, and 100%; corresponding to

Figs. 5.18, 5.19, and 5.20, respectively.

Figures. 5.18–5.20 show histograms of the heliotropic boundary loca-

tion at select values of a. Reference lines in these figures show where the

impact, mean, and nominal conditions intersect the histograms. When multi-

ple reference lines intersect one histogram bar in Figs. 5.18–5.20, ‘impact’ takes

priority over ‘nominal,’ which takes priority over ‘mean’ in the histogram bar

shading.

As an explanation of the process used in the uncertainty analysis, con-

sider the generation of the central histogram in Figure 5.19. First, seven sets

of 100,000 normally-distributed random samples are generated to correspond

to µ and the even J2 through J12 with the standard deviations for this case

(σ = 50% on J). The result is 100,000 independent random parameter sets

for Bennu-like gravity fields. Next, a fixed value of a is chosen; in this case

a = 0.6 km. Then, Procedure 5.1 is applied to each parameter set, with the

independent variables for the procedure a = 0.6 km and i = 0 (the heliotropic

boundary is at zero inclination), resulting in a heliotropic value for e. Not

every parameter set will necessarily result in a solution (e) because heliotropic

orbits may not be possible for every set of gravity parameters (and SRP, which

is not varied in the current study). In this example, two of the sets at a = 0.6
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Figure 5.18: Histograms of the heliotropic boundary with σµ = 12%, σγ =
10%, σJ = 10%. The mean and nominal values nearly overlap. All 100,000
cases evaluated had non-impacting heliotropic orbits at some value of a.

km did not return a solution. The remaining 99,998 values of e form a distri-

bution, whose histogram is generated by creating 150 equally-distributed bins

between zero and 0.8 (the cases considered do not exceed e = 0.8). The result-

ing histogram is normalized by the maximum bin count. The same 100,000

random sets of gravity parameters are used to find the heliotropic boundary e

for different values of a so that each chosen value of a has its own histogram of

the heliotropic boundary. The process described in the example is repeated for

each of the three error cases. Although Figs. 5.18–5.20 each show only seven

distributions, 50 different values of a were considered for each standard devi-

ation case, with all the results shown in Figure 5.17 and included in drawing

conclusions.

As described in the preceding paragraph, it is possible for a heliotropic
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Figure 5.19: Histograms of the heliotropic boundary with σµ = 12%, σγ =
10%, σJ = 50%. Of the 100,000 cases considered, 98.85% allow for non-
impacting heliotropic orbits at some value of a.

orbit boundary not to exist for a given set of gravity parameters. When

this occurs, the case is excluded from the histogram, but this exclusion has

no significant impact on the displayed results: for σJ = 10%, no cases are

excluded for any value of a; for σJ = 50%, 0.0%− 0.047% of the tested cases

are excluded, depending on the value of a; for σJ = 100%, 0.25% − 2.08% of

the tested cases are excluded, depending on the value of a (higher percentage

of no-solution values tends to happen at higher values of a).

Figure 5.17 shows that the heliotropic orbits at Bennu are robust to

the variations considered, with the mean of the equatorial boundary remaining

near the nominal case. The distributions in e are non-Gaussian, and increas-

ingly so for errors with higher standard deviations, as shown in Figs. 5.18–5.20.

Other than the distribution shape itself, the difference between the mean and
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Figure 5.20: Histograms of the heliotropic boundary with σµ = 12%, σγ =
10%, σJ = 100%. Of the 100,000 cases considered, 88.05% allow for non-
impacting heliotropic orbits at some value of a.

the mode (peak) of the distribution – especially visible in Figure 5.20 – pro-

vides a good indicator of the non-Gaussian nature of the distribution. Even

with this highly non-Gaussian behavior, the mode of the distribution stays

below the impact line for the same values of a where the mean is below the

impact line. Of all 300,000 hypothetical Bennu gravity model cases considered,

about 96% could support heliotropic orbits for some value of a, and of those

cases, 100% of the 100,000 σJ = 10% cases support heliotropic orbits for some

value of a.

These uncertainty statistics in the simplified model point to one of the

major limitations of practically implementing heliotropic orbits: these orbits

are sensitive to body parameters which may not be well defined before the

spacecraft arrives at the body. The presence of radar measurements for Bennu
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provides high confidence in the data available, but most primitive bodies of

interest would not have such data. As a result, heliotropic orbits at asteroids

are most applicable where the body gravity is sufficiently well defined before

the mission or as an extended mission at an applicable body. Alternatively,

a mission may be able to fly without nominally using a heliotropic orbit, but

with a high “upside potential” in science benefits if a heliotropic orbit can

be implemented after characterization of the body from a more distant or-

bit. In particular, missions which fly a flash LIDAR or active spectrometer

may see this as an advantageous possibility because the quality of data can

be greatly increased by maintaining a long-lifetime low-altitude orbit. Gravity

field measurement could also benefit significantly because the long orbit life-

times provide for a longer maneuver-free measurement period relatively close

to the gravitational perturbations.
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Chapter 6

Conclusions

This dissertation has focused on advancing the state of the art in tech-

niques and software used for preliminary design of missions to some challenging

destinations, particularly the outer planets and small bodies. Section 1.4 out-

lines the primary contributions in the four major areas addressed; each of these

four is briefly reviewed in this chapter with a view towards applicability and

future work.

6.1 Innovating the multiple gravity assist global search

The pathsolving problem is solved with a global search algorithm that

combines a grid search with multi-level pruning, as described in Chapter 2.

The algorithm approaches the pathsolving as a cascade of leg-solving and

node-solving subproblems which are computed breadth-first. The breadth-

first approach allows straightforward comparison between all trajectories at

the same stage and pruning based on that comparison.

One of the primary advantage of the presented method is its flexibil-

ity to incorporate different types of trajectory legs and nodes: v∞ leveraging,

shape-based low thrust, and optimized DSM legs have been implemented with

the presented algorithm in a pathsolving tool called Explore. Each leg needs

to be able to solve a BVP similar to the traditional Lambert problem, so many
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other options for solving a particular leg are possible. For example, different

LT trajectory models could be included as long as they can robustly provide a

solution to the BVP. Because the optimized DSM takes significantly longer to

compute than a specialized maneuver routine like the VILT, another possible

future extension would be other classes of maneuvers; for example, adding a

broken plane maneuver routine and an apoapsis plane change maneuver rou-

tine would quickly provide other known efficient maneuvers. Implementations

for calculating these maneuvers could use additional information available from

the search like the inbound v∞ to the preceding node and the orbit planes of

the bodies to be encountered.

In addition to the flexibility of using different kinds of trajectory legs,

the legs can be connected by ballistic flybys, body rendezvous with stay times,

or nπ sequence nodes. Other nodes could also readily be included as well –

powered flybys or aerogravity assists, for example. The nodes solve a BVP

with provided inbound and outbound v∞ and are associated with a single

ephemeris object. Although an ephemeris object is nominally a celestial body,

further flexibility in the search algorithm comes from the potential to use arbi-

trary points in space or spacecraft as nodes. Using this flexibility to implement

multi-spacecraft missions is one area worth further study; a secondary space-

craft on an externally-defined trajectory could be a node that deploys a pri-

mary spacecraft to start the search as illustrated in Figure 6.1. Alternatively,

the secondary spacecraft-as-node could be targeted by the primary spacecraft

during the trajectory search. One way this capability has been successfully

used is by connecting an interplanetary trajectory with a planetocentric cap-

ture trajectory; the interplanetary trajectory is the first node of the search,

with the search starting by a small maneuver deviating from this trajectory

190



within a given range of TCM times set as launch times. This case is also

conceptually illustrated by Figure 6.1.

Figure 6.1: Conceptual illustration of a predefined secondary spacecraft trajec-
tory used as a node within the MGA GS, either to deploy a primary spacecraft
or as the transition from interplanetary cruise to the start of a capture sequence
search.

The critical role pruning plays in the GS process is also discussed in

Chapter 2. Which quantities make the most effective pruning conditions for

a particular mission merits further investigation, especially in the context of

performance index pruning. Additionally, it has been observed that Pareto

sorting with two dimensions which are positively correlated is generally unde-

sirable because each rank often contains only a couple solutions. So further

research may involve an automated way to prevent this from occurring during

a search or a study of which quantities make the most effective sets for Pareto

sorting.

6.2 Including maneuvers and v∞ leveraging

A boundary value formulation for v∞ leveraging transfers (VILTs) is

described and characterized in Chapter 3; this method enables the fast calcu-

lation of transfers including a single impulsive maneuver at a spacecraft apse.

These maneuvers, based on VILTs, are a broader class of velocity-aligned ap-

sidal maneuvers (VAM). The resulting transfers naturally incorporate bodies
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with ephemeris locations and enable leveraging-like transfers between different

bodies.

Casting the v∞ leveraging transfer as a boundary value problem ad-

dresses many of the difficulties of including maneuvers in a broad, fast tra-

jectory search. The general VILT reformulation presented in Chapter 3 is

based on the solution to a one-dimensional root-solve that requires a similar

computational burden and solution process as that of the conventional multi-

revolution Lambert problem. The use of the free parameter for tangent and

nontangent VILTs requires some understanding of the fundamental mechanics

and the types of trajectories expected, but the ability to quickly and effectively

include VAMs in the trajectory search is a major advantage, greatly expanding

the search space without an exponential increase in run time.

The maneuvers that can be included with the presented VILT routine

map to various maneuver types and families, as demonstrated by the different

examples. Of particular interest are cases that do not classify as traditional

VILTs but can still be found with the same method – for example, orbit

insertion maneuvers. In such cases, the limitation to a single maneuver per

leg can be detrimental so a possible extension for future work is the inclusion of

two apsidal maneuvers between a pair of boundary conditions. Orbit insertion

sequences would benefit because the insertion maneuver and the periapse raise

maneuver are generally only separated by a coast arc.

Another limitation of the presented VILT method is the assumption

that the spacecraft plane is unchanged by the maneuver. In ephemeris-case

trajectories, a small plane adjustment can make a big difference in targeting

the next encounter, especially for near-π transfers, so a means to incorporate

this would be useful. The same TOF based solution structure used for VILTs
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may be applicable to other classes of maneuvers as well; this is another area

worth further investigation.

6.3 Including nπ sequences

Chapter 4 demonstrates how nπ transfer sequences can be included in

a broad trajectory search without an exponential increase in branches to be

considered that would conventionally result from the addition of the many

extra DOFs. This inclusion is accomplished by formulating the nπ sequence

design space as a boundary value problem on the v∞ sphere. The boundary

value problem can be defined in the context of a sequential search by treating

an nπ sequence as a gap in time and possibly body states, then evaluating

the gap when both boundary conditions have been determined by the primary

trajectory search. This algorithm makes the nπ sequence a “node” in the

context of the MGA GS described in Chapter 2.

Two separate algorithms are presented for pathfinding and pathsolving

on the v∞ sphere: the first is a two-level deterministic approach that separates

pathfinding and pathsolving, and the second algorithm is a hybrid stochastic

sphere-walking approach. The hybrid method is more suitable for very long

sequences because there is no need to keep track of a combinatorially large

number of possible sequences; although the stochastic nature requires tracking

many sequences, this number is set by the user and does not grow with the

number of potential transfers in the sequence – as it does with the deterministic

approach.

Having both boundary values of the nπ sequence helps reduce the tra-

jectory search options, but implementing with one boundary condition may

be preferable in some cases, such as when the nπ sequence is the first or last
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part of the trajectory. Such cases are a good avenue for future research. The

sphere-walking algorithm presented is amenable to a single boundary value

implementation but the deterministic method presented requires both v∞.

Another promising option for extending the presented nπ sequence

method is the inclusion of more than one odd nπ transfer in a sequence.

Although not conceptually different from the method presented, the imple-

mentation of such a case is complicated by the additional change in v∞, as

described in Chapter 4. One potential benefit of such a sequence is that a v∞

leveraging effect could be achieved at a body with an eccentric orbit by us-

ing two odd nπ transfers with different associated resonances. Although such

a case would be heavily constrained and may be rare in practice, it merits

further investigation.

6.4 Investigating heliotropic orbits

The challenge of finding stable orbits at asteroids is investigated for the

case of combined SRP and zonal gravity perturbation in Chapter 5. Sun-frozen

and heliotropic orbits are promising categories of orbits in this dynamical

regime. The existence and average orbital elements of inclined heliotropic

orbits are found using a novel constrained double averaging technique. This

technique is also used to determine a maximum upper bound on inclination of

about 46◦ for heliotropic orbits around oblate bodies where J2 is the dominant

zonal harmonic.

The extension of heliotropic orbits into the 3D space has broader im-

plications because these orbits occur naturally for circumplanetary dust and

have also been proposed for HAMR spacecraft at Earth. One such extension

worth further consideration is the distribution of particles in Saturn’s E-ring
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or “Charming” ringlet, which show heliotropic characteristics. The theory de-

veloped could be used to predict the mean elements of ring particles, and such

a prediction compared against observations. This type of analysis is compli-

cated by the presence of other perturbations and by the fact that the source

mechanism for the ring – cryovolcanic jets on Enceladus for the E ring – may

constrain the particle orbital elements more than the heliotropic dynamics.

There may also be other dynamical systems which would benefit from

an application of constrained averaging, as done with the heliotropic orbits.

In particular, other systems which would yield a trivial solution if averaged in

the general case may yield insightful results when averaged with a constraint.

Within the space of heliotropic orbits, there are some periodic orbits. In

addition to providing interesting point solutions, these orbits allow a more rig-

orous stability analysis. Periodic orbits also present another means of finding

long-lifetime orbits in the presence of multiple perturbations. As demonstrated

by one example within Chapter 5, there may be periodic orbits which are not

heliotropic but still maintain long orbit lifetimes; these types of orbits would

be interesting to study in more depth, both to find more such orbits in the

simplified model and to discover if these orbits persist with more realistic body

and perturbation models.

In addition to the these broader applications, the investigation of he-

liotropic orbits around a model of Bennu shows that such orbits also warrant

further study. Including higher degree zonal gravity terms enables a more

accurate investigation at small bodies, which tend to have more significant

contributions from these terms than planetary bodies do. Additional charac-

terization of perturbations as well as analysis of controllability of spacecraft on

heliotropic orbits must precede flying a heliotropic asteroid orbiter, so these are
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areas of suggested further study. Such additional study will benefit from the

groundwork laid in Chapter 5 for determining the likelihood of existence of a

heliotropic orbit and for finding initial conditions for higher fidelity modeling.
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Appendix A

Notation, Acronyms, and Abbreviations

A.1 Sequence abbreviations
Me Mercury Te Tempel-1

V Venus Wi Wild-2
E Earth Ve Vesta
M Mars It Itokawa
J Jupiter Be Bennu
S Saturn Ju 1999 JU3
U Uranus Ch Churyumov-Gerasimenko
N Neptune Ha Halley
P Pluto Gr Grigg-Skjellerup

Ce Ceres Har Hartley-2
Ti Titan
C Callisto

Eu Europa
G Ganymede
I Io
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A.2 Named MGA pathfinding, pathsolving, and
pruning tools

EPIC Stochastic/deterministic hybrid pathsolving
Explore Deterministic sequential pathsolving, introduced in Chapter 2
GASP (Gravity Assist Space Pruning) Deterministic pruning for flybys
IGATO Stochastic GO pathfinding/solving with grid MS
IMAGO (Interplanetary Mission Analysis Global Optimization) Pathfind-

ing/solving tool based on EPIC
MAnE (Mission Analysis Environment) Commercial local optimizer with

some pathsolving capability
MDTOP Stochastic pathsolving
PAMSIT Deterministic sequential pathsolving for AGA trajectories
SOURCE Deterministic parallel pathsolving
STOUR (Satellite Tour Design Program) Deterministic sequential pathsolving
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A.3 Acronyms
ACO Ant Colony Optimization
AGA Aerogravity Assist
BB Branch and Bound

BVP Boundary Value Problem
coop Cooperative Methods (Combined Methods)
DE Differential Evolution

DOF Degree of Freedom
GA Genetic Algorithm
GO Global Optimization
GS Global Search

GTOC Global Trajectory Optimisation Competition
HAMR High Area-to-Mass Ratio
HDDP Hybrid Differential Dynamic Programming

IB-VILT Inter-Body v∞ Leveraging Transfer
LPE Lagrange Planetary Equations
LT Low-thrust
LU Normalized Length Unit

MBH Monotonic Basin Hopping
MCS Multivariate Coordinate Search
MGA Multiple Gravity Assist
MS Multiple Start/Restart

NLP Nonlinear Programming
PSO Particle Swarm Optimization
SA Simulated Annealing

SRP Solar Radiation Pressure
SOI Sphere of Influence
TU Normalized Time Unit

VAM Velocity-Aligned Apsidal Maneuver
VILM v∞ Leveraging Maneuver
VILT v∞ Leveraging Transfer

YORP Yarkovsky-O’Keefe-Radzievskii-Paddack effect
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A.4 Symbols
Symbols: Part 1

a Semi-major axis (km or LU, depending on the context)
B Node or body encounter (ordered) in MGA sequence
b One particular body (not ordered) in MGA sequence
C Change: Direction of a VILT with respect to change in e, either in-

creasing (+1) or decreasing (-1)
D Domain: Specifies whether a VILT is Exterior (+1) or Interior (-1)
E Eccentric Anomaly (rad unless specified as deg)
e Eccentricity
F Number of solutions that a particular set of VILT inputs has, which

may be zero, one, or in a rare event more than one
h Altitude, normally of a flyby (km)
i Inclination (rad unless specified as deg)
K Integer number of full spacecraft revolutions in a ballistic coasting arc
k Pareto rank of an MGA trajectory compared to other trajectories
L Leg or transfer in MGA sequence
M Number of approximate body orbit revolutions about the primary
m spacecraft mass (kg)
M∗ Mean anomaly (rad unless specified as deg)
N Number of spacecraft orbit revolutions for a transfer (complete for bal-

listic transfers, approximate for v∞ leveraging transfers)
n A positive integer
n∗ Orbital mean motion (rad/s)
O Offset: Whether the t of a transfer requires an extra T/2 (+1) or not

(-1) after taking into account K
p Semi-latus rectum (km)
R Discretization resolution along a body orbit, normally defined in points

per body orbit (ppr)
r Distance from the primary body (km or LU depending on the context).

On a flyby hyperbola, the flyby body is primary.
S Solution: Which VILT solution to solve for, the lower value of rC (1)

or a higher value (2), if it exists
s Solution counter or index for a list of solutions
T Orbital period (s)

TOF Time of flight of the entire VILT (s)
t Time of flight of a specific spacecraft arc: to which arc t applies is

defined by the subscripts (s)
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Symbols: Part 2
V Velocity magnitude in general (km/s or LU/TU depending on context)
v∞ Excess hyperbolic speed of a spacecraft relative to a body, the magni-

tude of the v∞ (km/s or LU/TU depending on context)
∆V Magnitude of a spacecraft velocity maneuver (km/s)
δ Turn angle of a flyby
θ Counterclockwise angle from the first encounter to the second en-

counter, less than 2π rad (rad)
µ Gravitational parameter (km3/s2 or LU3/TU2 depending on context)
ν True anomaly (rad unless specified as deg)
ξ Angle between an encounter and the non-leveraging apse (rad)
Ω Orbit longitude of the ascending node (rad unless specified as deg)
ω Orbit argument of periapsis (rad unless specified as deg)
Φ Flight path angle (rad)

A.5 Subscripts and Superscripts
B Pertaining to the body at an encounter. In Chapter 3, B always refers

to the low encounter.
C Pertaining to the spacecraft, defined at the common apse (the lever-

aging apse) of a VILT in Chapter 3
E A placeholder for L or H when an equation is to be applied to both

encounters
H Pertaining to or defined on the high half of a VILT (the transfer with

the high encounter)
I Inbound to a flyby (or encounter or node)
L Pertaining to or defined on the low half of a VILT (the transfer with

the low encounter)
O Outbound from a flyby (or encounter or node)
P Pertaining to or defined at orbit periapse
Pr Pertaining to the primary body (e.g. the Sun for interplanetary trans-

fers)
S Pertaining to a whole sequence of nπ transfers (in Chapter 4)
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Appendix B

Publications

Refereed Journals

Published

Demyan Lantukh, Ryan P. Russell, and Stephen B. Broschart.
“Heliotropic Orbits at Oblate Asteroids: Balancing Solar
Radiation Pressure and J2 Perturbations,” Celestial Me-
chanics and Dynamical Astronomy, Volume 121, Issue 2, pp
171-190, 2015. DOI: 10.1007/s10569-014-9596-x

Chapter 5

Demyan Lantukh, Ryan P. Russell, and Stefano Campagnola.
“The V-Infinity Leveraging Boundary Value Problem and
Application in Spacecraft Trajectory Design,” Journal of
Spacecraft and Rockets, Volume 52, Issue 3, pp 697–710,
2015. DOI: 10.2514/1.A32918

Chapter 3

In Review

Demyan Lantukh, Ryan P. Russell, and Stephen B. Broschart.
“Heliotropic Orbits at Asteroids with Zonal Gravity Pertur-
bations: Application at Bennu,” Journal of Guidance, Con-
trol, and Dynamics. Submitted: 23 January 2015

Chapter 5

Planned

Demyan Lantukh and Ryan P. Russell. “Multi-Objective
Search for Multiple Gravity Assist Trajectories,” Journal
TBD

Chapter 2

Demyan Lantukh and Ryan P. Russell. “Automated Inclu-
sion of n-pi Transfers in Gravity-Assist Flyby Tour Design,”
Journal TBD

Chapter 4
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Conference
Demyan Lantukh and Ryan P. Russell. “Multi-Objective

Search for Multiple Gravity Assist Trajectories,”
AAS/AIAA Astrodynamics Specialist Conference, 9-13
August 2015, Vail, CO

Chapter 2

Demyan Lantukh, Ryan P. Russell, and Stephen B. Broschart.
“Heliotropic Orbits at Asteroids: Zonal Gravity Perturba-
tions and Application at Bennu,” 25th AAS/AIAA Space
Flight Mechanics Meeting, 11-15 January 2015, Williams-
burg, VA

Chapter 5

Demyan Lantukh, Ryan P. Russell, and Stephen B. Broschart.
“Heliotropic Orbits at Oblate Asteroids: Balancing Solar
Pressure and J2 Perturbations,” In Advances in the Astro-
nautical Sciences, volume 150, 2014

Chapter 5

Demyan Lantukh and Ryan P. Russell. “Automated Inclusion
of n-pi Transfers in Gravity-Assist Flyby Tour Design,” In
Advances in the Astronautical Sciences, volume 143, 2012

Chapter 4

Demyan Lantukh, Ryan P. Russell, and Stefano Campagnola.
“Automated Inclusion of v-infinity Leveraging Maneuvers in
Gravity-Assist Flyby Tour Design,” AIAA/AAS Astrody-
namics Specialist Conference, 13-16 August 2012, Minneapo-
lis, MN

Chapter 3
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Appendix C

Solution to GTOC6 by the University of Texas

at Austin Team

Department of Aerospace Engineering and Engineering Mechanics,
The University of Texas at Austin

Team Leads Ryan P. Russell • Demyan V. Lantukh
Team Contributors Ricardo León Restrepo • Drew Jones •

Nick Bradley • Vivek Vittaldev • Kevin Bokel-
mann • Sonia Hernandez • Etienne Pellegrini •
Nitin Arora • Gregory Johnson • David Ottesen •
Marty Brennan • Cesar Ocampo (consultant)

The Global Trajectory Optimisation Competition (GTOC) is a regular

international competition to solve challenging spacecraft trajectory problems

invented to test both tools and trajectory designers [65]. Begun in 2005 by

the European Space Agency Advanced Concepts Team, the competition en-

courages the development and discussion of global optimization techniques for

spacecraft trajectories.

C.1 Problem statement

The 6th GTOC, conducted September-October 2012, aimed to map the

four Galilean moons (Io, Europa, Ganymede, and Callisto) using flybys. Each

moon was split into 32 faces modeled after a soccer ball (a “football grid” in

the terms of the organizers). Each face was assigned a point value which was
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scored the first time a flyby periapse occurred over that grid face within a

specified altitude range.

The spacecraft begins at Jupiter SOI and is captured at Jupiter using

a combination gravity assists in a sequence like those found by [52]. Energy

reduction and science tours follow capture. The trajectory is constrained to

occur within a specified time and mass budget. Final mass is reduced by

using fuel in thrusting and by incurring a radiation dose penalty each flyby

that depends on the spacecraft orbit. Problem details can be found in [65].

C.2 Submitted solution overview

The University of Texas team took 3rd place of 36 registered teams in

GTOC6, the highest-placing team from the United States. The final score

of 267/324 came from 97 flybys. A mistake in grid face identification cost 5

points on the score (submitted as 272) but did not affect the final ranking. The

submitted solution had both mass and time margin so the solution deadline

was the primary limiting factor. Solution properties are given in Table C.1

and the entire trajectory is shown in Figure C.1. The final sequence is:

SOI-I-G-VILM-G-VILM-G-VILM-G5-C11-G16-Eu9-I32-Eu20-Eu

Table C.1: Flyby and points breakdowns for the GTOC6 solution submitted

Body Flybys Patches (of 32)

Callisto 11 11
Ganymede 24 23
Europa 29 28
Io 33 31
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Figure C.1: Galilean moon mapping mission trajectory, the 3rd place solution
to the GTOC6 problem.

C.3 Summary of solution methodology

The global trajectory search for Galilean moon mapping trajectories

was conducted in Explore. As detailed in Chapter 2, two levels of searches

were conducted: The first search provided the trade space for flyby-aided

capture to a VILT. A few numerical experiments showed that three or four

VILTs were sufficient, so the second level search constrained the capture near

the best portions of the trade space and then continued the entire tour. The

fact that the entire trajectory from before capture through various flybys and

maneuvers, from orbit periods on the orders of hundreds of days to orbit

periods on the order of a couple days could be found with a global search tool

is a testament to the versatility of Explore.
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Considerable study of the solution space was required in order to prop-

erly constrain the global search. While Explore was being set up for the prob-

lem, several statistical studies were conducted on many randomly-generated

cases to tune the nπ sequence pathfinding/pathsolving method described at

the end of Chapter 4 and to determine how much time should be allocated to

each of the four moons. Moon visit order was determined by intuition along

with trial and error.

Once the problem could be run in Explore, the performance indices

still needed to be tuned to capture the correct portion of the solution space.

As described in Chapter 2, this performance index tuning is not necessarily

intuitive but is among different problems since all parameters are physical

quantities. If more computational resources could be applied, a more brute-

force approach that did less pruning could have been attempted.

The solution from Explore contained the entire sequence from SOI to

the last Europa encounter but the VILTs were impulsive maneuvers. A local

LT optimizer based on differential dynamic programming (HDDP) [168, 169]

was applied to convert the VILTs to LT arcs which matched the VILT flyby

conditions exactly. This seven-state matching at the start and end of the LT

VILTs cost some fuel but meant that the rest of the sequence was unaffected

and did not need to be modified as a result of the conversion to LT.

C.4 Details of submitted solution

The solution is composed of seven distinct phases. The last six phases

are each composed of an nπ sequence followed by a nonresonant transfer. De-

tails of the resonant tour implementation are provided in Chapter 4. All phases
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are computed sequentially and automatically; the user provides performance

indices and constraints but does not need to manually patch different phases.

1. Capture and low-thrust v∞ leveraging

2. First Ganymede resonant tour to Callisto

3. Callisto resonant tour to Ganymede

4. Second Ganymede resonant tour to Europa

5. First Europa resonant tour to Io

6. Io resonant tour to Europa

7. Second Europa resonant tour to Europa

Figure C.2 provides the time histories of spacecraft mass and v∞ along the

whole trajectory, with vertical lines indicating the boundaries between trajec-

tory phases. Figures C.3-C.9 show each phase of the trajectory, making the

individual resonant tours visible.
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Figure C.2: Galilean moon mapping mission time history of mass and local
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Figure C.3: Galilean moon mapping trajectory for phase 1 of the presented
GTOC6 solution
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Figure C.4: Galilean moon mapping trajectory for phase 2 of the presented
GTOC6 solution
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Figure C.5: Galilean moon mapping trajectory for phase 3 of the presented
GTOC6 solution
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Figure C.6: Galilean moon mapping trajectory for phase 4 of the presented
GTOC6 solution
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Figure C.7: Galilean moon mapping trajectory for phase 5 of the presented
GTOC6 solution
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Figure C.8: Galilean moon mapping trajectory for phase 6 of the presented
GTOC6 solution
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Figure C.9: Galilean moon mapping trajectory for phase 7 of the presented
GTOC6 solution
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Appendix D

v∞ Leveraging Transfers with Ephemeris

Locations

Several examples are presented to show how the boundary-value VILT

method is capable of determining VILTs in the ephemeris case. First, com-

parisons are made between a circular-coplanar model and an ephemeris model

for ∆V -EGA and Earth-Mars transfers. A third case is presented with just

ephemeris locations of Ganymede and Europa as an intermoon example.

Ephemeris cases presented here use body states provided by NASA

JPL databases de405.bsp and jup230l.bsp1. The circular-coplanar bodies are

defined by the orbital elements in Table D.1. Table D.2 provides the search

constraints used for the presented cases, where ppr indicates discretization

sample points per body orbit period. In all the cases presented νL = 0, there-

fore VILTs are tangent. Table D.3 describes the symbols used to differentiate

the different types of trajectories in Figs. D.1-D.9. Because VILTs are the

focus, no attempt is made to distinguish between different types of ballis-

tic transfers (e.g. number of revolutions, short- or long-period). Note that

Fig. D.1 shows solutions with every possible value of K, that is with maneu-

ver placement possible on each spacecraft revolution. Figures. D.2-D.9 restrict

the results to K = 1 to promote clarity of the figures. Relative geometry of

1Available online: ftp://ssd.jpl.nasa.gov/pub/eph/ [Accessed 10 January 2012]
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Table D.1: Orbital elements for the circular-orbit cases

Earth Mars

Semimajor axis (AU) 1.0000 1.5237
Eccentricity 0 0
Inclination (degrees) 0 0
Argument of periapsis (degrees) 0 0
Longitude of the Ascen. Node (degrees) 0 0
Mean Anomaly (degrees) 0 180

The epoch of the orbits is at launch

Table D.2: Constraints for the one-leg cases presented as examples of the VILT
design space

Earth-Earth Earth-Mars Ganymede-Europa

Launch date and time 01/01/2013 0:00 04/18/2013 11:47 01/01/2013 0:00
Max Launch v∞ (km/s) 5 7 5
Max ∆V (km/s) 1 2 0.3
Max Revolutions 3 3 3
Resolution (ppr) 1000 2000 1000
Max TOF (Earth days) 3600 3600 50

the bodies is important for IB-VILTs so for simplicity and repeatability the

trajectory starts at conjunction for the Earth-Mars example and opposition

for the Ganymede-Europa example.
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Table D.3: Symbol and color scheme for figures in this Appendix

Case Shape Color

Ballistic × Green
VILT – 1 rev., interior ◦ Red
VILT – 1 rev., exterior + Red
VILT – 2 revs., interior 4 Blue
VILT – 2 revs., exterior ♦ Blue
VILT – 3 revs., interior � Black
VILT – 3 revs., exterior • Black
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Figure D.1: TOF of the ∆V -EGA: circular orbit (a) vs. ephemeris (b) Earth
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Figure D.2: v∞ mapping of ∆V -EGA: circular orbit (a) vs. ephemeris (b)
Earth
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Figure D.3: ∆V of the ∆V -EGA for circular orbit (a) and ephemeris (b) cases
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Figure D.4: Efficiency of the ∆V -EGA for circular orbit (a) and ephemeris (b)
cases
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D.2 Earth-Mars inter-body VILTs
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Figure D.5: TOF of ballistic and IB-VILT Earth-Mars transfers for circular
orbit (a) and ephemeris (b) cases
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Figure D.6: v∞ mapping of ballistic and IB-VILT Earth-Mars transfers for
circular orbit (a) and ephemeris (b) cases
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Figure D.7: ∆V of IB-VILT Earth-Mars transfers for circular orbit (a) and
ephemeris (b) cases
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Figure D.8: Efficiency of IB-VILT Earth-Mars transfers for circular orbit (a)
and ephemeris (b) cases
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D.3 Ganymede-Europa inter-body VILTs
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Figure D.9: Ganymede-Europa ballistic transfers and IB-VILTs in the
ephemeris case
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[45] Izzo, D., oes, L. F. S., Märtens, M., de Croon, G. C., Heritier, A., and

Yam, C. H., “Search for a Grand Tour of the Jupiter Galilean Moons,”

Proceedings of the 15th annual conference on Genetic and evolutionary

computation, Vol. 15, ACM, New York, 2013.

[46] Kloster, K. W., Petropoulos, A. E., and Longuski, J. M., “Europa Or-

biter tour design with Io gravity assists,” Acta Astronautica, Vol. 68,

2011, pp. 931–946. doi: 10.1016/j.actaastro.2010.08.041.

[47] Buffington, B., Campagnola, S., and Petropoulos, A., “Europa Multiple-

Flyby Trajectory Design,” Proceedings of the AIAA/American Astro-

nautical Society Astrodynamics Specialist Conference, 2012, Also AIAA

paper 2012-5069.

[48] Campagnola, S., Buffington, B. B., and Petropoulos, A. E., “Jovian tour

design for orbiter and lander missions to Europa,” Acta Astronautica,

Vol. 100, 2014, pp. 68–81. doi: 10.1016/j.actaastro.2014.02.005.

[49] Izzo, D., Bourdoux, A., Walker, R., and Ongaro, F., “Optimal trajecto-

ries for the impulsive deection of near earth objects,” Acta Astronautica,

Vol. 59, 2006, pp. 294–300. doi: 10.1016/j.actaastro.2006.02.002.

[50] Vasile, M., Summerer, L., and Pascale, P. D., “Design of

Earth–Mars transfer trajectories using evolutionary-branching tech-

nique,” Acta Astronautica, Vol. 56, 2005, pp. 705–720. doi:

10.1016/j.actaastro.2004.12.002.

232



[51] Chen, K. J., McConaghy, T. T., Landau, D. F., Longuski, J. M., and

Aldrin, B., “Powered EarthMars Cycler with Three-Synodic-Period Re-

peat Time,” Journal of Spacecraft and Rockets , Vol. 42, No. 5, 2005,

pp. 921–927. doi: 10.2514/1.11610.

[52] Lynam, A., Kloster, K., and Longuski, J., “Multiple-satellite-aided cap-

ture trajectories at Jupiter using the Laplace resonance,” Celestial Me-

chanics and Dynamical Astronomy , Vol. 109, No. 1, 2011, pp. 59–84.

doi: 10.1007/s10569-010-9307-1.
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