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Abstract–The solution of the equations of a dc circuit 
containing an arc is given and compared with experimental data. 
The arc is modeled according to its classical equivalent circuit 
and the adequacy of this model is discussed. The analytical 
solution for the circuit with an opening gap is given for the case 
of a constant gap and the results are extended to the cases of a 
gap opening with uniform velocity and a gap opening with 
constant acceleration, under the assumption of a quasi-static 
approximation for which the limits of applicability are estimated. 
Voltage and current evolutions in time are derived, including an 
estimate of the arc duration and quenching time. The results are 
compared to experimental data. Also provided is a generalized 
view of the transient behavior of an arc in a circuit that extends 
the description commonly used, in terms of only a voltage-
current relationship, by also including inductive effects.1 

 
Index Terms–arc model, dc bus fault, electric arc extinction, 

fault interruption, series fault 

I. INTRODUCTION 
ower systems where substantial sections are dependent on 
a local dc bus are becoming ever more ubiquitous as the 

penetration of power electronics makes them more practical 
and attractive. In addition, dc loads in areas like computing 
and telecommunications continue to be added in greater 
numbers to power systems. Some complete systems based on 
dc bus architecture have already been commissioned and 
several more are being planned for both large and small 
installations, like microgrids, ship power systems, etc. As 
these applications grow, it becomes increasingly important to 
address the issue of proper circuit protection against faults, 
which has historically been more difficult for dc systems than 
for ac systems. One such potential fault is caused by the 
accidental opening of the dc bus due to conductor rupture or to 
the breaking of the connection between bus sections. This 
failure results in the injection of a gap in series with the main 
current flow and usually gives rise to an arc between the 
separated sections of the circuit (series fault). Therefore, the 
current may actually be maintained near its normal level and 
the fault may go undetected for some time, while considerable 
energy is dissipated in the arc with potential destructive 
results. An in-depth understanding of this fault, therefore, is 
very important for planning of proper circuit protective 
features, for estimating the potential damage resulting from it, 
and for comparing different circuit architectures in regard to 
their ability to survive such faults.  
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In this paper, the analytical solution of the circuit equations 
applicable to a dc bus under a series fault is presented, making 
use of the classical representation of an arc in terms of an 
equivalent circuit. The results are then compared with 
experimental data obtained at the University of Texas Center 
for Electromechanics (UT-CEM) and a discussion of the limits 
of the arc model is provided. A generalization of the classical 
description of the arc is also included, obtained by adding an 
inductive voltage axis to the traditional two-dimensional 
steady state voltage-current diagram. 

II. EQUIVALENT CIRCUIT 
The equivalent circuit of the system is shown in Figure 1: a 

gap opens in the line conductor in series with a load resistor R 
and a line inductance L supplied by a dc voltage source V. The 
gap separation is x between one gap electrode assumed 
stationary and the other electrode that moves in a straight line 
with velocity u which may be a function of time. An arc is 
assumed to be formed at the gap upon initial separation, with 
an arc voltage e and an arc current i. 

 
Figure 1: Equivalent circuit of the system. 

 
The equations governing the system are: 

diL Ri e
dt
+ + =V  Kirchhoff Law  (1) 

( , )e e i x=  arc characteristic   (2) 
( )x x t=  gap dynamic characteristic  (3) 

The arc characteristic equation (2) describes the voltage at 
the arc terminals as a function of arc current and arc 
separation. This characteristic equation aims to synthesize, in 
terms of macroscopic parameters, the complex phenomena 
taking place in the gap and at the electrodes, reducing them to 
an equivalent circuit model for the arc and making possible 
the solution of the circuit using analytical procedures or 
simulations. 

The electric arc between a pair of electrodes has been 
studied systematically for over a century [1-4] and several 
attempts have been made to condense the complex physical 
phenomena taking place at the arc gap into a representation 
amenable for use in electric circuit calculations. All circuit 
models proposed for an electric arc can be summarized in the 
following general relationship: 
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c dxe a bx
iα
+

= + +     (4) 

where a, b, c, d, and α are all parameters to be found in the 
literature or experimentally. This relationship is empirical in 
nature. 

It is important to clarify that one set of values for the a, b, 
c, d, and α parameters may cover only the range of arc 
currents of immediate interest and that, therefore, these 
parameters are not constant but themselves, in general, 
variable. However, to minimize the analytical complexity of 
the problem, it is customary to treat these parameters as true 
constants with the understanding that the solution may then be 
limited to a given current range. 

For example, if α = 1, we obtain the equation first proposed 
by Ayrton [1-4] and still the most commonly used. It must be 
pointed out, however, that in general α may not be an integer 
and that it could even be negative, thus allowing equation (4) 
to describe in its form the whole range of possible arcs, from 
low current “silent” arcs to high current “hissing” arcs. 

The set of basic equations (1)-(3) has an interesting 
geometrical interpretation that highlights some properties of 
its solution in an intuitive way. If we assume the following as 
reference axes in a system variable space: 

variable  for the  axis
variable /  for the  axis
variable  for the  axis

i x
di dt y
e z

 

then it can be noticed that (1), written as f(i, di/dt, e) = 0, 
represents a plane in this reference system, whereas (2), 
written as g(i, e, x) = 0 in the same variable space, with x as a 
parameter, represents a cylindrical surface with its axis 
parallel to the di/dt axis. The arc will be sustainable only on 
the intersection of the plane surface and the cylindrical 
surface, that is to say on the solution curve for (1)-(3). 
However, there are only two steady state points of equilibrium 
for the arc, and they are located where the solution curve 
meets the plane di/dt = 0 (x-z plane). In fact, all points on the 
solution curve lying in the region di/dt > 0 will tend to migrate 
toward points of larger current, by definition, and likewise, 
points for which di/dt < 0 will move toward lower currents. 
Based on this fact, it can be quickly realized also that the only 
limit point of stable equilibrium is i = iQ (Figure 2) which 
becomes an attractor point for all others on the solution curve, 
whereas i = iP is an isolated point of unstable equilibrium. In 
fact, if the point representing the system on the solution curve 
is displaced slightly from iP, it will tend to move farther from 
it. 

Notice that the intersection of the surfaces shown in Figure 
2 with the e-i plane results in the familiar two-dimensional arc 
stability diagram based only on resistive elements reported in 
the literature [1-4]. Therefore, the representation shown in 
Figure 2 is a generalization of this diagram to the case where 
an inductive component is present in the circuit. 

As the contacts separate, the cylindrical surface describing 
the gap rises vertically according to (2) and it is clear from 
Figure 2 that the equilibrium points move until they eventually 
disappear when the solution curve has no more points in 

common with the e-i plane: when this happens, the arc 
quenches. Figure 2 also shows the potentially large inductive 
voltage that can be generated by a sudden change in arc gap 
length. This change in gap length may not necessarily be the 
result of physical motion of one electrode with respect to the 
other (as indicated in the figure), but can also be the result of 
the random fluctuations in the current path within the arc 
resulting in an unpredictable and rapid change in effective gap 
length. Correspondingly, the operating point of the arc then 
jumps rapidly from one solution curve to another with the 
current lagging behind and resulting in Ldi/dt voltage spikes. 

 
Figure 2: Region of stability for the arc in the circuit of Figure 1 shown in the 
i-(di/dt)-e space, analogous to the conventional x-y-z space. 

 
Substituting (4) into (1), we obtain the following single 

equation with the current as the unknown: 
( )2 ( )di tt

dt iα
ψτ λ i= − −     (5) 

where 
L
R

τ =  inductive time constant  (6) 

2
V a bx

R
λ − −
=     (7) 

c dx
R

ψ +
=      (8) 

In general, a closed form solution to (5) cannot be found. 
We can, however, examine some special cases. 

A. Case 1: Constant Gap 
For example, we could consider the case of α = 1, as is 

commonly done in much of the literature. Furthermore, we 
can assume that the separation of the electrodes is constant (u 
= 0) or that the mechanical motion of the moving gap 
electrode is slow compared to the electrical response of the 
system (quasi-static approximation) and assume, therefore, 
that x = xo = constant. In summary, we could solve the 
problem 

2 o
o

di i
dt i

ψ
τ λ= − −     (9) 

with 
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=, const. (corresponding to const.)
( 0)  (initial condition)
o o o

o

x x
i t i
λ ψ = =

= =
 (10) 

Equation (9) is separable and can be solved as 

2 2 o o

i di dt
i i τλ ψ

= −
− +∫ ∫

o

   (11) 

The result of the first integral depends on the discriminant 
of the denominator, namely on 2

oλ ψ− . In our case, it can be 
shown that this discriminant is always positive for any 
combination of parameters that makes physical sense, thus 

2 0o oλ ψ− >      (12) 
resulting in the roots i1 and i2 of the polynomial in the 
denominator of (11) being real and distinct and given by 

2
1,2 o oi oλ λ ψ= ± −     (13) 

where i1 > i2. When (12) is developed with the definitions in 
(7) and (8), it leads to 

2

max
2

o o
V a R d d V a d cx x

b b b b R b R

⎡ ⎤− −⎛ ⎞ ⎛ ⎞⎢ ⎥< = + − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
      (14) 

This simply states the anticipated result that, for a given 
supply voltage V, load resistance, and arc characteristics (a, b, 
c, d), the arc can exist only if the electrode separation does not 
exceed a maximum value. 

Therefore, on the basis of (12), we can now write the 
solution of (9) by way of (10) and (11) as 

2 2 1

1 2 2 1 2 1

ln ln
o o

i i i i i i
t

i i i i i i i i
τ
⎡ ⎤⎛ ⎞ ⎛−

= −⎢ ⎥⎜ ⎟ ⎜− − − −⎢ ⎝ ⎠ ⎝⎣
1 ⎞−
⎟
⎥⎠⎦

 (15) 

The solution has been found in terms of the inverse 
function t(i) instead of i(t), but this is still useful in 
establishing some interesting results. We shall restrict 
ourselves to the case of positive current, as assumed in Figure 
1. Therefore, in order for (15) to yield a real solution, the 
following conditions must be satisfied at the same time: 

1

1

2

2

0
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0

o

o

i i
i i
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i i

−
>

−

−
>

−

     (16) 

which can be translated into 
1

2 1

2

IF
IF
IF

o

o

o

i i
i i i
i i

>

< <
<

    (17) 
→
→
→

1

2

2

i i
i i i
i i

>
< <
<

1

Thus, i will be confined to one of the three regions (0, i2), 
(i2, i1), (i1,∞) and, in fact, to the very same region where the 
initial current io happens to fall. 

A consideration of the first two derivatives of the function 
t(i) will allow us to sketch the expected function i(t). Thus, 

[ ]

1 2

22
1 2

2 2
1 2

( )( )

( )( )

dt i
di i i i i

i i id t
di i i i i

τ

τ

= −
− −

−
=

− −

   (18) 

from which we derive 
 2i i<  2 1i i i< <  1i i>  
/dt di  < 0 > 0 < 0 

2 2/d t di  < 0 < 0 for 1 2 ,i i i<  otherwise > 0 > 0 
This functional study is completed by the observation that 

if io = i1, the function degenerates to the constant i = i1, and, 
likewise, if io = i2, also i = i2. Therefore, noting also that 

1 2 ,o i iψ =  the expected evolution in time of the current is as 
shown in Figure 3. 

 
Figure 3: Sketch of function i(t) for constant gap and for different values of io. 

 
It is interesting to compare the above predictions with test 

data in the case of an actual experiment. Several experiments 
on series faults on a dc bus have been run at UT-CEM [5]. A 
typical one, for example Figure 4, shows the case of a series 
fault with the electrodes held at a fixed gap distance of 0.25” 
(6.35 mm). In this test, the current, starting from an initial 
value of about 175 A, settled at a constant value of about 160 
A (the small negative slope for t > 20 s can be attributed to 
electrode wear, and the high frequency spikes to random 
fluctuations of the environmental conditions in the gap). In 
this case, due to excessive electrode erosion, the gap was 
forced open to stop the fault after about 35 s. Using the result 
in (15) with the following parameters (the values for a, b, c, d 
were obtained from [1]) 

680 V
6.2 mH
3.8
175 A
15.2 V
10.7 V/mm
21.4 VA
3 VA/mm

o

V
L
R
i
a
b
c
d

=
=
= Ω
=
=
=
=
=

    (19) 

one obtains the values 
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m

1

2

max

157 A
0.04 A

x 57.1 mo

i
i
=
=

=
    (20) 

and the plots shown in Figure 5. The curve that applies in this 
case is the one marked “io = 175 A” for which the initial 
current matches the value of that in the test. The calculations 
predict a stable limit current of 157 A that compares well with 
the average limit current resulting from the test of 
approximately 160 A. Both calculations and test indicate that 
the arc steady state current will be reached very quickly (in 
just a few ms) and maintained as long as conditions in the arc 
region remain constant. 
 

 
Figure 4: Experiment 4D at UT-CEM on a series fault voltage and current at a 
fixed gap distance of 0.25”. 

 

 
Figure 5: Calculated time evolution of the current for the series fault test 4D at 
UT-CEM for different cases of initial current (the inset shows arc extinction if 
the initial current is too low). 
 

To summarize, the analysis of the constant gap arc gives 
the following results: 

1. For a given supply voltage, load resistance, and arc 
characteristics, the gap must be less than a maximum 
separation distance in order for an arc to be supported 
(14). 

2. For an arc to be present, the initial current must be at 
least as large as a minimum value i2 (13), otherwise the 
arc self-extinguishes. 

3. An arc satisfying the conditions above settles at a steady 
current given by i1 (13) (or i2 only if the initial current is 
equal to i2) that will be maintained forever unless other 
phenomena change the arc environment (e.g., electrode 
erosion, random fluctuations in the arc structure, etc.). 

B. Case 2: Gap Opening at Constant Speed 
The case is described by the following equations (again we 

assume that α = 1): 
( )2 ( )di tt

dt i
ψτ λ= = i−     (21) 

 
const.

=
2

u
V a but

R
c dut

R

λ

ψ

=
− −

+
=

    (22) 

where u is the opening velocity of the gap. 
Equation (21) is nonlinear and does not have an exact 

solution expressible in closed form; thus, it must be solved by 
some approximation or numerically. The issue is not avoided 
if, instead of an arc model in terms of its  characteristic, a 
model in terms of an equivalent arc resistance is used, as has 
been done in the literature [6-9]. 

e i−

For our purposes, some insight can be gained by simply 
noticing that, for a given minimum resolvable gap length 
increment of interest in our problem xr, and for electrode 
velocities u that are not too large, the system time constant τ is 
likely to be much smaller than the transit time . 
Thus, using the values in (19) and assuming for example xr = 1 
mm and u = 2.54 mm/s, we find 

/r rt x u=

11.6 ms 394 ms
2.54

r
r

xL t
R u

τ = = << = = =  (23) 

This inequality is strong enough to allow quite liberal 
margins for the choice of xr and u within most practical limits. 
This allows us to extend, to a first order approximation, the 
results found in case 1 under a quasi-static assumption and 
conclude that at all times during the opening of the gap the 
current will have stabilized at the value of i1 corresponding to 
the gap length at that particular time. Thus, the evolution in 
time of i will coincide with that of i1 and be given by 

2
1i i λ λ ψ= = + −     (24) 

with λ and ψ given by (22). 
This function has been plotted for the case of u = 2.54 

mm/s and is shown in Figure 6. It can be seen that the 
evolution of voltage and current is almost linear and that the 
arc extinguishes after about 22.5 s. The corresponding test 
data is reported in Figure 7. It can be noticed immediately that 
the theoretical and experimental plots agree well in regard to 
the slopes of the curves and the general, almost linear trend. 
The test data, however, show an abrupt arc extinction after 
about 7 s, namely one third the duration predicted 
theoretically. 
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Figure 6: Plot of i(t) when u = 2.54 mm/s under a quasi-static approximation. 

 
This discrepancy between calculated and tested arc 

extinction times can be attributed to several reasons as, for 
example, the following: 

1. Random fluctuations in the actual arc path not 
accounted for in the theory that assumes an ideal 
geometrical straight line for it 

2. Thermodynamic effects in the arc plasma not reflected 
in the simple circuit arc model 

3. Electrodynamic effects in the arc plasma also not 
reflected in the arc circuit model 

 
Figure 7: Experimental data for the case of u = 2.54 mm/s. 

C. Case 3: Gap Opening at Constant Acceleration 
In this case we have 

( )2 ( )di tt
dt i

ψτ λ= − i−     (25) 

2

2

2

2

const.
/ 2

2
/ 2

gtx

u gt
g

V a bgt
R

c dgt
R

λ

ψ

=

=
=

− −
=

+
=

    (26) 

where g is the constant acceleration with which the gap opens. 
In this case we can follow exactly the same procedure as for 

the case of constant velocity and examine under what 
conditions the quasi-static approximation still holds. Thus, 
assuming g = 9.8 m/s2, which represents the case of a 
conductor falling freely under the influence of gravity, if we 
allow a ratio of at least 10 in an equivalent relationship to (23) 
we can write 

max max

11.6 ms 16 ms
9800

r
r

xL t
R u

τ = = << ≤ = =
t

 (27) 

Therefore, our approximation is valid for times less than 
tmax given by 

max 6.4 mst t< =     (28) 
If this condition is verified, we can still use (24). 

Calculations using this equation yield the plot shown in Figure 
8. It is clear that the current in the arc extends well beyond the 
time limit set by (28), thus, the use of the quasi-static 
approximation and of (24) is no longer warranted. The 
corresponding experimental data is shown in Figure 9, and, 
not surprisingly, the measured arc extinction time is about four 
times longer than that calculated from (24). For this case, the 
only procedure available is that of a numerical solution to (25) 
or an analytical solution based on an approximation of the 
nonlinear terms. 

 
Figure 8: Calculated current and voltage for a gap opening under constant 
acceleration. 

 

 
Figure 9: Experimental results for a gap opening with constant acceleration of 
9.8 m/s2. 
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III. CONCLUSION V. BIOGRAPHIES 
The analytical solution for the circuit with an opening gap 

shown in Figure 1 was given for the case of constant gap 
under the assumption that the gap can be represented by the 
Ayrton model. The results for a constant gap were extended to 
the cases of a gap opening with uniform velocity, and gap 
opening with constant acceleration, under the assumption of a 
quasi-static approximation, for which the limits of 
applicability were also found. In general, the expressions 
given are expected to yield arc extinguishing times in excess 
of those observed in actual experiments since ideal conditions 
at the electrodes have been assumed with no random 
fluctuations of the arc path. These fluctuations will tend to 
extinguish the arc sooner than calculated from the theoretical 
formulas given. It is clear that the Ayrton model can be used, 
but that electrode motion, as would occur in many practical 
situations, introduces complexities that are not addressed by 
this simple model and that further analytical and experimental 
work are needed to develop a more accurate model. 

IV. REFERENCES 
[1] J. D. Cobine, Gaseous Conductors - Theory and Engineering 

Applications, Dover, 1958. 
[2] R. Holm, Electric Contacts – Theory and Application, Springer-Verlag, 

1967. 
[3] T. E. Browne, “The electric arc as a circuit element,” J. of the 

Electrochemical Society, vol. 102, no. 1, pp. 27-37, Jan. 1955. 
[4] R. F. Ammerman, T. Gammon, P. K. Sen, and J. P. Nelson, “DC arc 

models and incident-energy calculations,” IEEE Trans. Industry 
Applications, vol. 46, no. 5, pp. 1810-1819, Sept.-Oct. 2010 

[5] F. M. Uriarte, H. Estes, T. Hotz, A. L. Gattozzi, J. D. Herbst, A. 
Kwasinski, and R. E. Hebner, “Development of a series fault model for 
dc microgrids,” submitted to 2012 IEEE Innovative Smart Grid 
Technologies Conference (ISGT 2012), Jan. 17-19, 2012. 

[6] V. V. Terzija, R. Ciric, and H. Nouri, “Improved fault analysis method 
based on a new arc resistance formula,” IEEE Trans. Power Delivery, 
vol. 26, no. 1, pp. 120-126, Jan. 2011. 

[7] A. Balestrero, L. Ghezzi, M. Popov, G. Tribulato, and L. Van der Sluis, 
“Black box modeling of low-voltage circuit breakers,” IEEE Trans. 
Power Delivery, vol. 25, no. 4, pp. 2481-2488, Oct. 2010. 

[8] T. Ohtaka, M. Iwata, S. Tanaka, and Y. Goda, “Development of an 
EMTP simulation model of arcing horns interrupting fault current,” 
IEEE Trans. Power Delivery, vol. 25, no. 3, pp. 2017-2024, July 2010. 

[9] L. S. Frost, “Dynamic arc analysis of short-line fault tests for accurate 
circuit breaker performance specification,” IEEE Trans. Power 
Apparatus and Systems, vol. PAS-97, no. 2, pp. 478-484, March/Apr. 
1978. 

Angelo L. Gattozzi, Ph.D., is a Research 
Associate at the Center for Electromechanics of 
the University of Texas at Austin where he has 
been working on power modules for the electric 
gun program, resonant converters for high speed 
motors/generators with flywheel energy storage, 
energy harvesting from sea waves, and 
simulations for the electric system of the DDG51 
class Navy destroyer. 

Prior to joining the University of Texas, Dr. 
Gattozzi was responsible, at the Lincoln Electric Company in Cleveland, 
Ohio, for the development of a complete new line of induction motors, 
achieving the highest efficiency levels in the industry. 

John D. Herbst joined the Center for 
Electromechanics in 1985. He is currently the 
Principal Investigator for research programs 
involving high power rotating electric machines 
and power converters. Prior to his current 
position, Mr. Herbst served as Principal 
Investigator for the ONR Megawatt Power 
Module for Ship Service program, an effort to 
explore high speed generators and energy storage 
flywheels to reduce fuel consumption on the 

DDG51 class of Navy warships. He was also Co-Principal for the 
Advanced Locomotive Propulsion System (ALPS) project, a $30M effort 
to demonstrate an advanced hybrid electric propulsion system for high 
speed passenger locomotives. 

Fabian M. Uriarte, Ph.D., joined the Center for 
Electromechanics in 2010. He obtained his BS 
and MS in electrical engineering from Virginia 
Tech, and his Ph.D. in electrical engineering 
from Texas A&M University in the area of 
parallel simulation of power systems. His 
research interests are in parallel computing, 
object-oriented programming, and modeling and 
simulation of power systems, power electronic 
converters, and microgrids. 
Robert E. Hebner, Ph.D., (S’70-M’71-SM’83-
F’93) is Director of the Center for 
Electromechanics at the University of Texas at 
Austin. The Center develops technology, 
primarily novel motors, generators, and 
suspension components, and teams with 
companies to get the technology into the market. 

Previo
ector of the U.S. National Institute of 

Standards and Technology (NIST). In addition, 
he has directed NIST’s Electronic and Electrical Engineering Laboratory, 
a laboratory with a staff of more than 250. He also worked at the Defense 
Advanced Research Projects Agency where he developed programs to 
improve semiconductor manufacturing. 

Throughout 
oauthored more than one hundred technical papers and reports. He has 

extensive experience in international technology programs. This work 
included the modernization of the measurement systems needed to support 
global trade and the assessment of the effectiveness of government 
technology programs in stimulating domestic economies. 
 


	Analytical Description of a Series Fault on a dc Bus
	I. Introduction
	II. Equivalent circuit
	A. Case 1: Constant Gap
	B. Case 2: Gap Opening at Constant Speed
	C. Case 3: Gap Opening at Constant Acceleration

	III. Conclusion
	IV. References
	V. Biographies


