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Abstract - This paper presents the formulation
and simulation of a simple nonlinear switched
reluctance motor (SRM) model. The model
formulation is developed by first measuring
the motor's flux linkage. A suitable 3
dimension shape function is developed to
curve fit this data. Multiple shape functions
are added together to reduce the mean
square error of the flux linkage equation. We
call this equation the Chan Series. Motor
parameters such as inductance and back
electromotive force coefficient equations are
obtained by differentiating the Chan Series.
The coenergy and motor torque equations are
derived from the Chan Series by mathematical
manipulation. Nonlinear model analysis is
then carried out. Ways to indicate the motor
size that takes into consideration the effect
of magnetic flux saturation are proposed.
Two motor relations are presented. Computer
simulation of the model for chop, single-
chop, and single-puise modes are performed
and compared to those published in [19].
The comparisons show that the developed
model can predict the SRM behavior.

I. INTRODUCTION.

Switched reluctance motors (SRMs) are the focus of
much interest today. The motor design is simple: a rotor
without windings and stator with windings located at the
poles.[1] These features make the motor rugged and
inexpensive to manufacture.[2] Also, SRMs are a less
expensive alternative to permanent-magnet brushless
motors in many applications.[3] Compared to induction
motors, SRMs are more efficient and less costly.[4]
SRMs have the potential to be used as variable speed
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drives in many commercial applications such as
vehicles.[5]

SRM dynamics are nonlinear in nature.[6] The motor
torque is a nonlinear function of the current magnitude
and rotor position. The air gap reluctance between the
salient stator and rotor poles varies with rotor position.
Usually, these motors operate in the magnetic flux
saturation region so that a higher torque to mass ratio is
obtained.[7]

A nonlinear mathematical model of the SRM can
provide a better insight into the motor ‘dynamics. The
model can be used to formulate speed and torque
control algorithms. Using the model, motor efficiency
can be evaluated. Eventually, such models can lead to
better SRM designs.

Finite elements have been used to form a nonlinear
model. Uematsu used finite element analysis to
compute the coenergy of the motor for various current
levels and rotor angles.[8] The flux linkage and motor
torque are obtained by computing the slope of the
coenergy with respect to current and rotor angle,
respectively. This method is useful to design a SRM.
However, more work will be needed to obtain the
dynamic behavior of the motor.

A number of nonlinear SRM models have been
developed using magnetics theory. Faiz used a
magnetic circuit concept to compute the SRM's mean
torque.[9] Moallem used an improved magnetic
equivalent circuit method to predict the performance of
the SRM.[10] Staton developed a unified theory of
torque production in SRMs.[11] Also, Staton predicted
the torque in a SRM using the flux-mmf diagram.[12]
Radun developed analytical equations, which include
the effect of iron saturation, to model the motor.[13] His
equations can predict the machine performance, flux
linkage, back electromotive force, and static torque.
Other nonlinear SRM models have been developed by
Filicori [14], Torrey [15], and Miller [16].
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Neural networks have been used to predict the
SRM's nonlinear behavior. Garside used application
specific artificial neural networks to identify SRM states
using odd periodic activation functions.[17] Belfore
used evolutionary neural networks to develop a SRM
model.[18] This model is composed of 4 hidden layers
of 17, 11, 13, and 16 neurons. His model shows good
agreement to simulation results.

Panda presented an empirical SRM model in [19].
He used the cosine series to curve fit the flux linkage
data. The obtained equation is differentiated to obtain
the back electromotive force equation. Current rise and
fall times are predicted using the curve fitted flux linkage
equation, derived back electromotive force equation,
and other derivatives of the flux linkage equation.
Current rise and fall rates with respect to the rotor angle
are predicted using the curve fitted flux linkage
equation and its derivatives. These current rise and fall
rates are used to plot the chop, single-chop, and single-
pulse current wave forms as functions of rotor position.

Simple nonlinear SRM models are desired. Such
models can be used in controi algorithms such as:
feedback linearization control in [20] and [21]; sliding
mode control in [22]; robust control in [23], [24], and
[25]; and adaptive control in [26]. Also, nonlinear
models can be used in torque control as described in
[27]. State observers can be developed from these
models.[28] Also, simple nonlinear models can be used
in the energy optimizing control strategy that is
presented in [29].

A simple nonlinear SRM model is developed in this
paper. The flux linkage used is that measured from a
motor in [19]. A special shape function is used to curve
fit this data. Curve fitting is done by use of the method
of steepest descent.[30] The mean square error of the
flux linkage equation is reduced by adding more than
one shape function to the equation. We name this
equation the Chan Series. Motor parameters such as
inductance and back electromotive force coefficient are
obtained by differentiating the Chan Series. The
coenergy equation is formulated by integrating the
Chan Series with respect to current. This coenergy
equation is differentiated with respect to the SRM's
rotor angle to obtain the motor's torque equation. Ways
to indicate the size of the SRM that takes into account
the effect of magnetic flux saturation is described. Two
motor relations are presented. Computer simulation
results are obtained and compared to those published
in [19]. The comparisons show that the developed
nonlinear model predicts the SRM’s behavior.

This paper is composed of 5 sections: introduction,
development of a simple nonlinear SRM model,
nonlinear model analysis, computer simulation resuits,
and conclusion.

il. DEVELOPMENT OF A SIMPLE NONLINEAR SRM
MODEL.

A. Model formulation

The simple nonlinear SRM model is developed in
this section. First the SRM's flux linkage is measured.
Such an example is shown in Fig. 1.[19] This flux
linkage set is measured by Panda from a 4 KW SRM.
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Fig. 1. Measured flux linkage of a one phase 4 KW SRM at different
current levels and rotor positions.[19]

A suitable flux linkage equation must be found so that it
can be curve fitted to the measured flux linkage data.
This equation must have certain properties: (1) zero
slope at the stator pole axis of symmetry, (2) symmetrical
about the stator pole axis, (3) integrable with respect to
current, and (4) differentiable with respect to rotfor
angle. We have developed such an equation and name

it the Chan Series, see (1).
1 1 2 1
[1+e°1n0—02n + 14 g ¢inP-can _c3":":1+e'c4ni B 1:] ( )

M
MO, = 3 Con
where Cqp, Cony C3n, @nd T4, are constants. The stator

n=1

current is i and rotor angle is 0. Integer M is the number
of such terms used to reduce the mean square error.
Property 1 ensures that the motor torque is zero when
both stator and rotor poles are aligned. Property 2
provides symmetrical electromagnetic characteristics.
Property 3 allows the coenergy to be formulated by
integrating the Chan Series with respect to the stator
current, see (2).

ForO<i

WO, = I; AG,idi
~Can :|[— 1+

R 1 1
= —+1ldi
.‘.0 ; c()nl:1 + gtmnd-c2n M 14 e~cind-c2n @ ~Cant

B M 1 1 c 2In(1+ e ~°47) - 2In(2) "
- ZCO" 1+ gSmd-c2n + 1+e-cmoczn 3N Can
@)

2¢ o4t

n=1

319



Fori<O:
WO, = [ 2(@,0ci
o C4ni
:zco{ 1 _CSnJ{2ln(2)—2In(1+e 4 )”}
n=1

1+ e%inf-can {4 g~CMb-C2n Can
(3)

Property 4 ensures that a motor torque equation that
drives the SRM can be obtained by differentiating the
coenergy equation with respect to the rotor angle, see
(4). Proof that the motor torque can be formulated in
this manner from the coenergy of a nonlinear system is
provided in secondary section B.
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_c1neC1n9-02n
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The above equation is valid when the rotor is polarized.
However, the SRM rotor is made of soft iron that does
not become magnetized. Thus, the equation below
should be used.

Can

Fori<0:

Can

Fori<O:
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The Chan Series is curve fitted to the flux linkage data
that is measured in [19]. Curve fitting is done by use of
the method of steepest descent, which is described in
[30] or [31]. The computed coefficients of the curve
fitted 5 term Chan Series are:

C01=0.600 236, c{,=26.050 989, c,;=8.770 479,
C31=0.330 620, C41=0.055 926,
Coa=1.169 206, ¢1,=13.596 735, cp,=3.740 967,
Cap=1.144 212, ,,=0.801 617,
Coa=-1.071 243, C13=12.107 311, Cp3=3.249 941,
C33=1.273 768, €43=0.970 880,
C0a=0.172 338, ¢1,=12.985 381, cpe=1.715 012,
C34=1.377 829, C44=1.004 575,
Co5=0.176 827, c45=12.988 520, co5=1.719 679,
Ca5=1.381 047, C45=1.004 695

The average error is 0.004025. A plot of the curve fitted
equation is shown in Fig. 2.

Flux linkage (Ves)

0.0
Rotor angle (rad) 0.5
Fig. 2: A plot of the 5 term curve fitted Chan Series.

The current magnitude is related to the rotor position
by adifferential equation. This equation is formulated
from the electric circuit of the stator coil, which is shown

in Fig. 3. 7
i
Vv _1_ R %{(G,i)
Ty

T
Fig. 3. An electrical circuit diagram of the stator coil.

The circuit’s current is | and voltage is V. The coil has an
inductance, L(0,i), which is a function of the rotor
position, 6, and current, i. This coil has an internal
resistance, R. The Kirchoff's voltage law is used to
formulate the differential equation (7). The variable A is

the flux linkage and w is the angular velocity of the rotor.
V_Ris MO _ o 0MO) O OM6,) 08
=Ri+ =Ri+ —_ —
' st e A 7
=Ri+L(@, i)gt'- +E@,)w

where L@,)- a‘g"i} , E@)) = 6"6(:'” ,and w =%te-.

Note that the value of |E(6,)] is called the back emf
coefficient in [19]. Thus, the formulated equation is
referred to as back emf coefficient equation. The Chan
Series is used in (7) to complete the differential
equation. The inductance and E(8,i) equations are
formulated by differentiating the Chan Series. These
derivatives are shown in (8) and (9).

gy | 2oame™® } 8)
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+
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E(OJ)—;COn!i (1+e°1n"-c2ﬂ)2 +(1+e‘€1n0—czn)2 1+ @4 1] (9)
Plots of these 2 equations are shown in Figs. 4 and 5,
respectively.
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Fig. 4. Plot of the 5 term inductance equation that is a function of rotor
position and current.
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Fig. 5. A plot of the 5 term E(6,i) equation that is a function of rotor
position and current.

Using (4) and (6) the SRM's torque profile is plotted in
Fig. 6.

Torque (Nem)

0.0
Rotor angle (rad) 05

Fig. 6. A plot of the 5 term torque equation that is a function of rotor
position and current.

The above equations make up a simple nonlinear SRM
model. Using this model, analysis of the motor is
performed and presented in Section {ll.
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B. Proof that the motor torque can be computed from
the coenergy of a nonlinear model

Proof that the motor torque can be computed from
the coenergy of a nonlinear model is provided in this

section. An invertible nonlinear equation that relates
the flux linkage to the current is chosen, see (10).
i= 26.5)2 (1 0)
1+0+62

where O is the rotor angle. Using this equation, the
magnetic energy equation is derived as follows:

, 26.5)° A3
W02 = it = [ 5750 * " Sv0+07) (1)

The torque equation is formulated by differentiating

(11):

o{ 26.5)3 ]

Wn(6,3) 3(1+0+0%) |  26.503(1+20)

T=- =— =

&4 £y 3(1+0+0°%)2 (12)

Next, the motor torque is formulated from the
coenergy equation. Mapping of the flux linkage to
current in (10) is rearranged to obtain a relation of flux
linkage in terms of current.

A = 0.194257(14 0 + 62)2i2 (13)
Using (13), the coenergy equation is developed as
follows:

W, = jxdi: [0.194257(1+e+92)%i%di= 0.194257§-(1+e+92)%i% (14)
The torque equation is formulated by differentiating the
coenergy equation.

T=%=0.194257-%-(1+9+92)'%(1+29)i% (15)

Equation (10) is put into Equation (15) to obtain a motor
torque equation that is a function of both rotor angle
and flux linkage.

(16)

26.5)% H _ 26.5(1+ 203
(1+0+06%)| ~ 3(1+0+0%)7
Comparing (16) to (12), we see that both motor torque
equations are identical. Thus, the motor torque can be
computed from the coenergy of a nonlinear model.

1
T- 0.194257%(1+9+92) ’2(1+2e)[

IIl. NONLINEAR MODEL ANALYSIS.
A. Relations Between Formulated Equations

This section presents certain relations that exist
between equations of the nonlinear SRM model.
Relation between the inductance, back emf coefficient,
and flux linkage equations is shown in (17).

[ L@.ai =[ E@.bdo = 20,0 an
Using (17), the volume under the inductance surface is
shown to be equal to the integral of the flux linkage
equation in (18). This volume indicates the overall
strength of the magnetic field at a given current level



and range of rotor angle, taking into account the effect
of magnetic flux saturation. Note that the size of the
SRM can be indicated based on the overall strength of
the magnetic field. The computed volume under the
inductance surface for the motor is 0.221 HA (Henry
Ampere).

[[ue.dide = [ a.ide (18)

Likewise, the volume under the back emf coefficient
surface equals the coenergy:
J' f E(6,i)dodi = J‘ M6,)di = W(B,)’ (19)

The relation between (17) and (18) is obtained by
integrating the inductance equation in (17) and back
emf coefficient equation in (18) once more as shown in
(20) and (21), respectively.

[[] Le.diodi = ff 20,6 (20)

{[[E®.edide = [[ (0,)dide = [wie,)do 21)

Equations (20) and (21) are equal to each other
because they represent the volume under the flux
linkage curve. Also the volume under the flux linkage
surface equals the integral of the coenergy with respect
to the rotor angle, see (21). This relation shows that the
volume under the flux linkage surface indicates the
energy level at a given current level over the range of
rotor position, considering the effect of magnetic flux
saturation. Thus, the size of the SRM can be indicated
based on this volume. The computed volume under
the flux linkage surface of the motor is 1.775 WbA
(Weber Ampere).

When the inductance and back emf coefficient
equations are triple integrable, such as those derived
from the Chan Series, then (22) can be shown to be
true. This inductance emf flux linkage motor relation is
proved in secondary section B by use of the Chan
Series. The significance of this relation is it links the 3
motor parameters.

jj L(B.i)didodi = j j j E(6,i)dodide = j j A(6,i)dide (22)

Using (4), and (19) the relation between the torque
and coenergy equations is shown below.
fT@.0do = [[E®,doci (23)

Fubini's Theorem states that the order of integration in
the double integral of E( 8 ,i) does not affect the value of
the integral.[32] Thus, (23) can be expressed as

iT-(f—") = E@.) (24)

Note that a negative sign is placed in front of the E(0,i)
equation in (24). The reason is the E(0,) equation
represents electricity generated by the motor torque.
This torque emf motor relation is shown to be true by
differentiating (4) to obtain the negative of (9). The
significance of this motor relation is it links the
mechanical motion to the generated electricity In
practice, this relation is useful because the motor torque

can be measured, curve fitted, and differentiated to
obtain the back emf coefficient equation.

The motor's size, taking into consideration the
effects of magnetic flux saturation, can be indicated by
the volume under the coenergy surface. The
computed volume under the coenergy surface of the
motor is 8.66 JA (Joule Ampere).

B. Proof of the inductance emf flux linkage motor
relation

The inductance emf flux linkage motor relation
shown in (22) is proved by use of the Chan Series. The
volume under the flux linkage surface is:

j A{0,i)dide
M —c4ni
1 1 e canl .
- .U ;co“L T eomozn | {4 e o0z Can ]{2[1 Tyt e-can )‘ 1}d'd9
M Cinb-C2) —Cinb-Cc2, 25
_$ Con[_ln(ne 0-2n) Int+e~c n)+(2_03n)9+a12} (25)
et Cin Cin
{2[n(1 reoany H
——— T titayy
Can
where a7 and a,» are integration constants.
m L(0,i)didedi
M 1 1 2 .
= ”;c""L S oomtan T {4 g-cm0-can 090 ][1 P +a21}d9d'
(26)

M cin0-C2 —cin0-c2y
=Z{00n[“ln(1+en ")+In(1+e I ")+(2_03n)0+a22J

n=1 Cin Ci

2in{1+ g ~%4ni)
C4n

+{2+an)i+ 323:”

where ay, ax, and ay; are integration constants. The

computed value of (26) equals the volume under the
flux linkage surface equation when as, = ayp, ap = -1,

and ap3 = a44.
j j j E(0,)dodido

M 1 1 e~Cani .
= 'U;co,,[‘ o T g+ a9 21~ rpe dide

M cn0-c2n ~Cin0-C2n
:z{%[_lnme ), Ini+e )+(2+a31)9+333}
n=1

(27)

Ch Cin

[2In(1+e‘°4"‘) +i+332}}

Can

where ay,, a3, and ass are integration constants. The
computed value of (27) equals the volume under the
flux linkage surface equation when &gy = -Cs,, 8a3 = a4,
and az = a41.

Thus, the inductance emf flux linkage motor relation,
shown in (22), is proved because (25), (26), and (27) are
equal to one another.

IV. COMPUTER SIMULATION RESULTS.
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A model of the active phase stator coil's current
dynamics is formulated by rearranging (7) as follows:
L(®, i)%i =V -Ri-E(6,ijw
a__v_ __R,_EG)
ot L(O,) L0 L)
When provided with initial conditions, this nonlinear
differential equation can be solved numerically for
current values in the subsequent time steps. Using the
4th order Runga Kutta routine, computer simulations of
the current dynamics in the stator coil for chopping,
single-chop, and single-pulse modes are obtained.
These results (model) are shown in Figs. 7, 8, and 9,
respectively.  Also, plots of current values (data)
predicted in [19] are superimposed onto these figures.
The plots show that both data sets are in good
agreement with one another.

(28)
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Fig. 7. Stator current in the chopping mode at 700 r/min and 500 V.
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Fig. 8. Stator current in the single-chop mode at 1300 r/min and 500 V.
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Fig. 9. Stator current in the single-pulse mode at 1500 r/min and 500 V.

The validity of the simple nonlinear model is tested
by use of another set of operating condition: chopping
mode with rotor speed at 600 r/min and voltage limit of
440 V. Computer simulation results (model) and that
(data) obtained in [19] are plotted in Fig. 10. The plot
shows good agreement between the two data sets.

15 Il[T]lllllllIlrI'll]lIlllIlllllllllllll

-
(=}
USILELE AL L

[¢)]

Phase current (A)

5LlJIllllllllllllllllllllIlllllllllll_l_Ll

20 15  -10 -5 0 5 10 15
Rotor angle (°)
Fig. 10. Stator current in the chopping mode at 600 r/min and 440 V.

The torque equations (4) and (6) are used to
compute the torque values in the chopping mode with
the rotor speed at 900 r/min and voltage limit of 500 V.
Plots of both chop current and torque profiles (model)
are shown in Fig. 11. Superimposed on this figure are
the chop current and torque profiles (data) predicted in
[19]. Both sets of data show good agreement to one
another.
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Fig. 11. Stator current and torque profiles in the chopping mode at 900
r/min and 500 V.

Panda measured the static torque values (data) of
the motor at various current levels and rotor
position.[19] A plot of this measured data together with
those predicted by Panda’s model (Panda) are shown in
Fig. 12. Using the torque equations (4) and (6), the
computed torque values (model) of the simple nonlinear
model are also plotted on the same figure. The figure
shows good agreement of the torque values between
the model and data.

—— 12A model
—&— 10A model
—¢—— 8A model
———3— BA model
=t 4 A model

~==-0- -~ {12A data
== =g -=- 10A data
== =4~ == 8A data
== =A- == 6A data
--==¥--- 4A data
—@--= {12A Pand
—@- - - 10A Pand
——4- -~ 8A Panda
— A4~ - = 6A Panda
——V¥- -~ 4A Panda

0 5 10 15 20 25 30
Rotor angle (°)

Fig. 12. Comparison of static torque profiles at various current levels.

V. CONCLUSION.

A simple nonlinear SRM model has been developed
using flux linkage data that is measured from the SRM
and curve fit. A special 3 dimension shape function has
been developed to curve fit this data. A few of these
shape functions are added together to reduce the
mean square error. This equation is called the Chan
Series. A 5 term Chan Series is curve fitted to the flux
linkage data using the method of steepest descent.

The computed average error is 0.004025. Other motor
equations are obtained by mathematically manipulating
the Chan Series: L(90,i), E(9,i), and torque. Also, 3
dimensional plots of these equations are presented.

Analysis of the nonlinear model revealed the
following. Volume under the inductance surface
indicates the overall strength of the magnetic field at a
given current level and range of rotor angle, taking into
consideration the effect of magnetic flux saturation.
The computed volume under the inductance surface of
the motor is 0.221 HA. Volume under the flux linkage
surface indicates the energy level at a given current
level over the range of rotor position considering the
effect of magnetic flux saturation. The computed
volume under the flux linkage surface of the motor is
1.775 WbA. Two motor relations are shown:
inductance emf flux linkage relation and torque emf
relation. These two relations are proved using the Chan
Series. The inductance emf flux linkage relation links
the three motor parameters: inductance, back emf, and
flux linkage. The torque emf relation is of practical use
because the back emf can be computed from the
measured motor torque. Volume under the coenergy
surface indicates the motor's size taking into
consideration the effects of magnetic flux saturation.
The computed volume under the coenergy surface of
the motor' is 8.66 JA.

Computer simulations of the nonlinear model in the
chop, single-chop, and single-pulse modes are
obtained. Plots of currents dynamics in these 3 modes
are compared to those computed in [19]. The two data
sets show good correlation to each other. Also, the
torque profile of the motor when in the chop current
mode is plotted. This profile is compared to that
predicted in [19]. The two profiles show good
agreement to each other as well. Thus, a simple
nonlinear SRM model has been developed.
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