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Storage, fractionation and melt-crust interaction of basaltic magmas at 

oceanic and continental settings 

 

Ruohan Gao, Ph.D. 

The University of Texas at Austin, 2016 

 

Supervisor: John C. Lassiter 

 

This study uses phenocrysts and xenoliths to examine storage, fractionation and 

melt-crust interaction of basaltic magmas. Gabbroic xenoliths from Hualalai Volcano, 

Hawaii include fragments of lower oceanic crust (LOC) cumulates. Oxygen and Sr 

isotope compositions of these gabbros indicate minimal hydrothermal alteration. Magmas 

from fast ridges fractionate on average at shallower and less variable depths and undergo 

more homogenization than those from fast ridges. These features suggest a long-lived 

shallow magma lens exists at fast ridges, which limits the penetration of hydrothermal 

circulation into the LOC. Anorthitic plagioclases in these LOC gabbros therefore unlikely 

derive from hydrous melting or hydrothermal replacement. The strongly positive 

correlation between plagioclase anorthite content and whole rock Re concentration of 

Hualalai LOC gabbros may place further constraints on the origin of anorthitic 

plagioclase at mid-ocean ridges. 

Most Hualalai xenoliths represent Hualalai melt-derived cumulates. MELTS 

modeling and equilibration temperatures suggest Hualalai shield-stage-related gabbros 

crystallized within local LOC. Therefore, a deep magma reservoir existed within or at the 

base of the LOC during the shield stage of Hualalai Volcano. Melt–crust interaction 
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between Hawaiian melts and Pacific crust partially overprinted Sr, Nd, and Pb isotope 

compositions of LOC-derived gabbros. The modified isotope compositions of Pacific 

LOC (and likely lithospheric mantle) are similar to Hawaiian rejuvenated-stage lavas. 

Although minor assimilation of Pacific crust by Hawaiian melts cannot be excluded, the 

range of oxygen isotope compositions recorded in Hawaiian magmas cannot be generated 

by assimilation of the in situ LOC.  

The Papoose Canyon (PC) monogenetic eruption sequence in the Big Pine 

volcanic field, California displays temporal-compositional variations indicating mixing of 

two distinct melts. PC phenocrysts and xenoliths derive from melt that is more 

fractionated and enriched than PC lavas. Pressure constraints suggest these phenocrysts 

and xenoliths crystallized at mid-crust depths. PC lavas also show evidence of crustal 

contamination. Therefore, PC phenocrysts and xenoliths likely derive from early PC 

melts that ponded, fractionated and assimilated continental crust in mid-crustal sills, 

which were mixed with more primitive melts as the eruption began. The temporal-

compositional trends thus reflect gradual exhaustion of these sills over time. 
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 1 

Introduction 

Basalt is the most common volcanic rock type on Earth, which is formed by 

partial melting of Earth’s mantle (Yoder & Tilley, 1962). In particular, oceanic crust that 

covers about 60 percent of Earth’s surface is primarily composed of basaltic lavas and 

cumulates. Two thirds of oceanic crust are formed by mafic and ultramafic cumulates that 

derive from fractionation of basaltic melts in magma sills at mid-ocean ridges. 

Investigating the magma plumbing system and fractionation process at mid-ocean ridges 

is important for understanding the mechanism of lower oceanic crust (LOC) accretion. 

On the other hand, geochemists often use compositional variations in basalts as a 

tool to study the composition and evolution of Earth’s mantle (e.g., Hart, 1988; Sun & 

McDonough, 1989). However, basalts represent only indirect probes of mantle 

composition. The composition of erupted lava is also affected by magmatic processes 

during melt generation and transportation. For example, mixing, fractional crystallization, 

and assimilation in crustal reservoirs can significantly damp out small-scale 

heterogeneities, and overprint source signatures in mantle-derived magmas. Therefore, 

understanding the history of magma storage, fractionation, and melt-crust interaction is 

also necessary when using basaltic lavas as a probe of Earth’s mantle. 

In the following chapters, the fractional crystallization products of basaltic 

magmas (xenoliths and phenocrysts) are used as tools to investigate magma storage, 

fractionation, and melt-crust interaction at a variety of tectonic settings. I focus on 

xenoliths and phenocrysts because signature of magma ponding, fractionation, and crustal 

contamination may be better preserved in these melt “crystal cargos” than in bulk lavas. 

I examined a suite of gabbroic and ultramafic xenoliths from the c.a. 1800-1801 

Kaupulehu flow of Hualalai Volcano, Hawaii. A subset of gabbroic xenoliths derives 
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from ancient Pacific LOC beneath the Hawaiian Islands (~110 Ma; Waggoner, 1993; 

Clague, 1987). Strontium and O isotope composition of these LOC-derived gabbros are 

examined to evaluate the extent of hydrothermal alteration of the in situ LOC, which then 

provides constraints on the magma plumbing systems and models of LOC formation at 

mid-ocean ridges (“gabbro glacier” versus “multiple sills”). I use the mineral major 

element, trace element, and Sr-Nd-Pb-Hf-Os isotope compositions of the LOC xenoliths 

to examine the fingerprints of melt-crust interaction between Hawaiian magmas and 

Pacific LOC recorded in these rocks. 

Most Hualalai xenoliths are fractional crystallization products of Hualalai shield- 

and post-shield-stage magmas (e.g., Clague, 1987). I used mineralogical and 

compositional constraints on the fractionation pressures of Hualalai-related gabbros, and 

estimated the depth(s) of storage for Hualalai shield-stage magmas. I examined the Os 

and O isotope compositions of LOC- and Hualalai-derived xenoliths to evaluate the 

effects of melt–crust interaction in the evolution of Hawaiian magmas. 

I also investigated the origin of temporal compositional variations in a continental 

basaltic monogenetic vent sequence, the Papoose Canyon (PC) eruption sequence in Big 

Pine Volcanic Field (BPVF), California. Compositional variations in monogenetic vent 

eruption sequence have been proposed to either reflect source heterogeneity or crustal 

contamination (e.g., Blondes et al., 2008; Erlund et al., 2010). Major element, trace 

element, and Sr-Nd-Pb-O isotope variations in olivine and clinopyroxene phenocrysts 

and ultramafic xenoliths provide new constraints on the pre-eruptive magma storage, 

fractionation, and crustal assimilation history at PC vent. Such insight allows us to test 

crust versus mantle origins for the observed temporal-compositional trends. 
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Chapter 1: Geochemical investigation of Gabbroic Xenoliths from 

Hualalai Volcano: Implications for lower oceanic crust accretion and 

Hualalai Volcano magma storage system1 

ABSTRACT 

The patterns of axial hydrothermal circulation at mid-ocean ridges both affect and 

are influenced by the styles of magma plumbing. Therefore, the intensity and distribution 

of hydrothermal alteration in the lower oceanic crust (LOC) can provide constraints on 

LOC accretion models (e.g., “gabbro glacier” vs. “multiple sills”). Gabbroic xenoliths 

from Hualalai Volcano, Hawaii include rare fragments of in situ Pacific lower oceanic 

crust. Oxygen and strontium isotope compositions of 16 LOC-derived Hualalai gabbros 

are primarily within the range of fresh MORB, indicating minimal hydrothermal 

alteration of the in situ Pacific LOC, in contrast to pervasive alteration recorded in LOC 

xenoliths from the Canary Islands. This difference may reflect less hydrothermal 

alteration of LOC formed at fast ridges than at slow ridges. Mid-ocean ridge magmas 

from slow ridges also pond on average at greater and more variable depths and undergo 

less homogenization than those from fast ridges. These features are consistent with LOC 

accretion resembling the “multiple sills” model at slow ridges. In contrast, shallow 

magma ponding and limited hydrothermal alteration in LOC at fast ridges are consistent 

with the presence of a long-lived shallow magma lens, which limits the penetration of 

hydrothermal circulation into the LOC. 

Most Hualalai gabbros have geochemical and petrologic characteristics indicating 

derivation from Hualalai shield-stage and post-shield-stage cumulates. These xenoliths 

provide information on the evolution of Hawaiian magmas and magma storage systems. 

MELTS modeling and equilibration temperatures constrain the crystallization pressures 

                                                 
1The content of this chapter was published in 2016 in Earth and Planetary Science Letters 442, 162-172. 
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of 7 Hualalai shield-stage-related gabbros to be ∼2.5–5 kbar, generally consistent with 

inferred local LOC depth. Therefore a deep magma reservoir existed within or at the base 

of the LOC during the shield stage of Hualalai Volcano. Melt–crust interaction between 

Hawaiian melts and in situ Pacific crust during magma storage partially overprinted 

clinopyroxene Sr and Nd isotope compositions of LOC-derived gabbros. Although minor 

assimilation of Pacific crust by Hawaiian melts cannot be excluded, the range of oxygen 

isotope compositions recorded in Hawaiian lavas and cumulates cannot be generated by 

assimilation of the in situ LOC gabbros, which have relatively uniform and MORB-like 

δ18O values. To first order, the isotopic heterogeneity observed in Hawaiian melts 

appears to derive from the heterogeneous plume source(s), rather than assimilation of 

local oceanic crust.  

1.1 INTRODUCTION 

Hydrothermal circulation at mid-ocean ridges is intimately linked to the processes 

of oceanic crust accretion. Axial hydrothermal circulation drives cooling and 

crystallization of axial magmas. In addition, the distribution of magmas in the crust, in 

particular the presence or absence of a long-lived shallow axial magma chamber, 

influences the depth and degree of axial hydrothermal circulation. Hydrothermal 

alteration of newly formed oceanic crust dominates the heat and mass exchange between 

the Earth’s lithosphere and hydrosphere. However, the intensity and distribution of 

hydrothermal circulation in gabbro cumulates, the thickest layer of oceanic crust, is still 

poorly constrained.  

The ca. 1800-1801 Kaupulehu flow of Hualalai Volcano, Hawaii contains 

abundant dunite, wehrlite and gabbro, and rare websterite and anorthosite xenoliths 

(Jackson et al., 1981; Clague, 1987; Kauahikaua et al., 2002). A small subset of the 
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gabbros appears to be Pacific lower oceanic crust (LOC) layer-3 gabbros (Clague, 1987; 

Lassiter and Hauri, 1998). These gabbros can be used to examine the hydrothermal 

alteration history of LOC, and provide constraints on the mechanism of LOC accretion. 

The majority of Hualalai gab- bros are cumulates derived from Hualalai shield- and post-

shield- stage melts (Clague, 1987). These gabbros can be used to investigate the Hualalai 

magma plumbing system and the role of crustal assimilation in the evolution of Hawaiian 

magmas.  

In this study, we report mineral major and trace element and Sr–Nd–O isotope 

variations in a suite of 28 Hualalai gabbros, including 16 samples with chemical 

characteristics indicative of derivation from in situ Pacific LOC and 12 samples related to 

the shield and post-shield stages of Hualalai magmatism. Strontium and oxygen isotope 

data of LOC-derived gabbros are used to evaluate the extent of hydrothermal alteration of 

the in situ LOC, providing constraints on different models of LOC formation. We 

examine mineralogical and compositional constraints on the fractionation pressures of 

Hualalai-related gabbros to constrain the depth(s) of magma storage, and examine 

compositional variations in LOC- and Hualalai-derived gabbros to evaluate the effects of 

melt–crust interaction in the evolution of the in situ LOC and Hawaiian magmas.  

1.2 BACKGROUND 

Hawaiian volcanoes commonly evolve through four stages that are characterized 

by different lava types, magma supply rates and inferred degrees of mantle melting 

(Clague, 1987). Magma supply rates and degree of melting increase as the volcano moves 

towards the center of the plume, and then decrease as the Pacific plate moves away from 

the plume (e.g., Frey et al., 1990). Small volumes of alkalic basalt are primarily erupted 

during the pre-shield stage. Large volumes of tholeiitic basalt dominate the following 
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shield stage. The post-shield stage is characterized by a return to mostly alkalic basalt and 

associated differentiated lavas. Finally, some Hawaiian volcanoes erupt small volumes of 

alkalic basalt, basanite and nephelinite during a rejuvenated stage, usually following a 

hiatus in activity at the end of the post-shield stage (Clague, 1987).  

Hawaiian lavas also display significant temporal and spatial variability in isotopic 

composition. Post-shield and rejuvenated-stage lavas typically have more depleted 

isotopic compositions than shield-stage lavas (e.g. Chen and Frey, 1985). In addition, 

recent Hawaiian volcanoes display systematic spatial-compositional variations that define 

two parallel linear trends. “Loa trend” volcanoes typically have more “enriched” Sr–Nd 

isotopic compositions compared to “Kea trend” volcanoes, and are also characterized by 

higher 208Pb/204Pb at a given 206Pb/204Pb (Abouchami et al., 2005). In addition, olivine in 

“Loa trend” lavas have δ18O values that extend as high as +6.1‰, beyond the range of 

fresh MORB or most mantle peridotites. Olivine in “Kea trend” lavas have δ18O values as 

low as +4.3‰ (Eiler et al., 1996).  

The chemical characteristics of “Loa trend” lavas likely reflect ancient recycled 

oceanic crust and sediments entrained in the Hawaiian plume source (e.g. Eiler et al., 

1996; Lassiter and Hauri, 1998). In contrast, several different origins have been proposed 

for the “Kea trend” lavas, including incorporation of depleted upper mantle 

asthenosphere (e.g. Chen and Frey, 1985), lower Pacific crust or lithospheric mantle (e.g. 

Eiler et al., 1996), and recycled lithosphere within the Hawaiian plume itself (e.g. 

Lassiter and Hauri, 1998). Evaluation of the role of local crust/lithospheric mantle is 

difficult because the composition of the in situ Pacific crust and lithospheric mantle is not 

well characterized. Furthermore, the extent to which Hawaiian magmas pond and 

crystallize within the oceanic crust/lithospheric mantle during different stages of 

Hawaiian volcanism is unclear.  
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Hualalai Volcano is located on the west coast of the Big Island of Hawaii (Fig. 

1.1). Post-shield alkali basalts cover most of the subaerial portion of Hualalai Volcano. 

Shield-stage tholeiitic basalts are exposed along the submarine northwest rift zone. The 

1800–1801 Huehue and the slightly older Kaupulehu alkali basalt lava flows contain 

abundant mafic and ultramafic xenoliths that are interpreted as Hualalai cumulates and in 

situ Pacific LOC (Clague, 1987). These xenoliths provide new constraints on the 

composition and evolution of the local LOC, and on the evolution of Hawaiian volcano 

magma storage systems.  
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Figure 1.1 Simplified map of Hualalai Volcano 

Star marks location where gabbroic xenoliths were collected (modified from 

Clague, 1987). Inset shows the location of Hualalai Volcano on the Big Island of Hawaii. 
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1.3 SAMPLES AND METHODS 

We examined 28 gabbroic xenoliths from the c.a. 1800-1801 Kaupulehu alkalic 

basalt flow of Hualalai Volcano. Seventeen of the analyzed samples were collected by 

Dale Jackson and Mel Beeson in 1963 and 1965; these samples are housed in the Jackson 

Collection at the Smithsonian National Museum of Natural History. Eleven additional 

samples were collected by David Clague and Wendy Bohrson in 1983 and 1984, or by 

Clague between 1987 and 1996. Previous studies have shown that a small population of 

Hualalai gabbros (<<1%) has low, MORB-like 87Sr/86Sr (e.g., Clague and Chen, 1986; 

Clague, 1987; Lassiter & Hauri, 1998). These samples also have depleted LREE (light 

rare earth element) and Sm/Yb<1. We selected samples with low 87Sr/86Sr and/or low 

Sm/Yb, thought to derive from the in situ LOC beneath the Hawaiian Islands. Samples 

analyzed also include the more abundant non-LOC gabbros with higher 87Sr/86Sr and/or 

higher Sm/Yb, which appear to derive from Hualalai shield and post-shield stage 

magmas. 

The gabbroic xenoliths generally have modal mineral abundances ranging from 

40-60% plagioclase, 35-55% clinopyroxene, and ~2% spinel. Some gabbros also contain 

up to 10% orthopyroxene and 20% olivine (point counting from this study and data from 

Jackson et al., 1981). These gabbros can be classified into three distinct populations 

based on their different mineralogy and chemical characteristics. Group-1 and 2 gabbros 

contain both clinopyroxene and orthopyroxene, whereas group-3 gabbros lack 

orthopyroxene. Group-1 and 2 gabbros are distinguished by clinopyroxene Sm/Yb ratios 

(Fig. S1.1). Most samples are relatively fresh with only minor alteration (likely 

iddingsite) on olivine and Fe-oxidation on pyroxene grain boundaries or surfaces. 88Kap-

2, 92Kap-3, 63Kap-15, 65-100-110, 65-115-10, 63Kap-7 and 65-60-17 show greater 

surface alteration. Clinopyroxene in some samples exhibits orthopyroxene exsolution 
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reflecting sub-solidus cooling. In some samples, the presence of highly irregular grain 

boundaries may indicate incipient partial melting. Planar fluid inclusion arrays in 

minerals indicative of annealed fractures are also present in some xenoliths. 

Mineral major element compositions for clinopyroxene, orthopyroxene, and 

plagioclase were measured by EPMA at the USGS and University of Texas at Austin (UT 

Austin). Clinopyroxene trace element compositions were measured by LA-ICP-MS (UT 

Austin). Strontium and neodymium isotopes were measured by TIMS. Neodymium and 

samarium concentrations were measured by isotope dilution using TIMS. Oxygen isotope 

ratios were measured by laser fluorination. All isotopic analyses were performed at UT 

Austin. Refer to Appendix A1.1 for more method details. 

1.4 RESULTS 

Major element mineral compositions are presented in Appendix Tables S1.1 

through S1.3. Clinopyroxene Mg# [molar Mg/(Mg+Fe)*100] varies from 73 to 87, and 

negatively correlates with clinopyroxene TiO2 content (Fig. S1.1). Plagioclase anorthite 

contents (An) range from 57 to 98. Core-rim variation of An is up to 6, but neither cores 

nor rims are systematically more anorthitic. For some samples, clinopyroxene Mg# 

variation among grains is up to 2, and plagioclase An variation is up to ~10. However, 

intra-sample heterogeneity is small compared to inter-sample heterogeneity. Group-1 and 

2 gabbros have systematically lower clinopyroxene TiO2 contents and extend to higher 

Mg# than group-3 gabbros. Group-2 and 3 gabbros have similar plagioclase K2O 

contents, whereas group-1 gabbros have systematically lower K2O contents that the other 

two groups (Fig. S1.2). 

Clinopyroxene trace element abundances are presented in Supplemental Table 

S1.4. Clinopyroxene from group-2 and 3 gabbros have high LREE concentrations ([La] = 
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0.9 – 2.2 ppm) and concave-down REE patterns (La/Sm = 0.34-0.81, Sm/Yb > 1.6, Fig. 

1.2a). In contrast, clinopyroxene from group-1 gabbros have lower LREE concentrations 

([La] = 0.01-1 ppm). They also have depleted LREE/MREE (La/Sm = 0.09-0.56), and 

flat to slightly depleted MREE-HREE patterns (e.g., Sm/Yb < 1; Fig. 1.2a).  Group-1 

gabbros are also more depleted in other highly incompatible trace elements (e.g., Sr, Zr 

and Hf).  

Radiogenic and stable isotope data are presented in Table 1.1. Both group-2 and 3 

gabbros have enriched Sr-Nd isotopic compositions (87Sr/86Sr = 0.70356-0.70377, εNd= 

4.0-8.3) similar to Hawaiian lavas (Fig. 1.3). Group-1 gabbros have depleted Sr-Nd 

isotopic compositions (87Sr/86Srplag = 0.70255-0.70287, εNd, cpx = 6.6-10.9), which 

resemble East Pacific Rise (EPR) MORBs. Several group-1 gabbros have higher 87Sr/86Sr 

in clinopyroxene than in plagioclase. In contrast, clinopyroxene and plagioclase from 

group-2 and 3 gabbros are in isotopic equilibrium. 

Clinopyroxene and plagioclase δ18O values correlate well with each other with 

△plag-cpx = +0.7 ± 0.2‰ (Fig. 1.5 inset). Most group-1 gabbros have δ18O values in a 

narrow range (δ18Oplag values = +5.7 to +6.2‰, δ18Ocpx values = +4.9 to +5.3‰), except 

one sample with a δ18Oplag value of +5.3‰.  Oxygen isotope compositions of group-2 

gabbros show more variation (δ18Oplag values = +5.1 to +6.3‰, δ18Ocpx values = +4.3 to 

+5.5‰). Group-3 gabbros span a narrow range of oxygen isotope compositions (δ18Oplag 

values = +6.1 to +6.2‰, δ18Ocpx values = +5.2 to +5.6‰).  



 12 

Sample 87Sr/86Sr 
Sm Nd 

143Nd/144Nd εNd δ18O(‰)         87Sr/86Sr 143Nd/144Nd εNd δ18O(‰) 
(ppm) (ppm) 

Clinopyroxene  
 

Plagioclase 

Group-1 MORB 
     

 
     

63Kap-3 0.70265 
  

0.513104 9.1 5.1       0.70262 0.513018 7.4 5.7 

65Kap-14d 0.70256 
  

0.513171 10.4 5.3  
 

0.70255 
   

63Kap-13 0.70268 
  

0.513179 10.6 5.1  
 

0.70266 
  

5.9 

65Kap-13 0.70261 
  

0.513071 8.4 5.3  
 

0.70261 
  

6.0 

65Kap-14a 0.70256 
  

0.513118 9.4 5.3  
 

0.70255 
  

5.7 

65-61-26 0.70295 1.64 4.94 0.512968 6.4 4.9  

 

0.70282 0.512951 6.1 5.8 

65-61-26 dup    0.512966 6.4    0.70284    

65-60-32 0.70308 2.07 4.49 0.513134 9.7 5.8  
 

0.70272 0.513138 9.8 6.2 

65-7-133 0.70293 1.16 2.59 0.513109 9.2 5.1  

 

0.70257 0.513065 8.3 5.8 

65-7-133 dup    0.513102 9.1    0.70255    

65-86-64 0.70348 1.60 4.60 0.512998 7.0 5.1  

 

0.70271 0.512998 7.0 5.7 

65-86-64 dup    0.512989 6.8    0.70270    

83Kap-8 0.70295 0.63 1.21 0.513143 9.9 
 

 
 

0.70270 
  

5.3 

83Kap-9 0.70267 0.50 0.87 0.513192 10.8 
 

 
 

0.70266 
  

5.7 

87Kap-10 0.70294 0.45 1.57 0.512977 6.6 
 

 
 

0.70280 
  

5.7 

94Kap-7 0.70260 0.10 0.19 0.513109 9.2 
 

 
 

0.70254 
  

5.7 

96Kap-7 0.70275 
  

0.513168 10.3 
 

 
 

0.70265 
  

5.8 

88Kap-2 0.70289 
  

0.513021 7.5 
 

 
 

  
  

5.8 

87Kap-14 0.70265     0.513195 10.9            5.8 

Group-2 Shield 
     

 
     

63Kap-15 0.70360 
  

0.512933 5.8 
 

 
 

0.70358 0.512974 6.6 5.2 

65-115-10 0.70376 
  

0.512867 4.5 
 

 
 

0.70377 0.51291 5.3 5.7 

65-60-17 0.70359 
  

0.513064 8.3 5.4  
 

0.70359 
  

6.3 

84-1801-5 0.70376 
  

0.512873 4.6 
 

 
     

87Kap-11 0.70364 
  

0.512845 4 4.9  
     

92Kap-1 0.70331 
  

0.512897 5.1 
 

 
    

6.1 

92Kap-3 0.70359 
  

0.512910 5.3  5.3   
     

Group-3 Post-shield 
     

 
     

63Kap-7 0.70364 
  

0.512907 5.2 5.6  
 

0.70363 0.512911 5.3 6.1 

65-86-92 0.70359 

  

0.512937 5.8 5.4  

 

0.70357 

  

6.0 

65-86-92 dup    0.512933 5.8    0.70358    

65-109-146abc 0.70358 

  

0.512917 5.4 5.2  

 

0.70356 0.512917 5.4 6.1 

65-109-146abc dup   0.512924 5.6    0.70357    

65-60-221 0.70368 
  

0.512900 5.1 
 

 
 

0.70364 
   

65-100-110 0.70357 
  

0.512927 5.6 
 

 
 

0.70356 
   



 13 

Table 1.1: Sr- Nd-, and oxygen-isotope compositions of Hualalai gabbroic xenoliths. 

For δ18O values, averages of duplicate measurements are presented in this table. 

Duplicate data are reported in Supplemental Table S1.6.  
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Figure 1.2 REE patterns of clinopyroxene from Hualalai xenoliths and equilibrium melts. 

 (a) Measured clinopyroxene REE concentrations of the Hualalai gabbroic 

xenoliths normalized to primitive mantle (McDonough & Sun, 1995). (b) Calculated melt 

REE concentrations in equilibrium with clinopyroxene from the Hualalai gabbroic 

xenoliths assuming no trap melt in the xenoliths. REE clinopyroxene-melt Kd values used 

were calculated using BIGD (see supplement for more details). Fields of Hualalai lavas 

and EPR basalts are shown for comparison (data from GeoRoc and PetDB).  
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Figure 1.3 Clinopyroxene εNd vs. plagioclase 87Sr/86Sr. 

Plagioclase 87Sr/86Sr are plotted because Sr-isotopes in some clinopyroxene have 

been partially reset by melt-crust interaction (see 1.5.3.2 for more discussion). Fields of 

Hawaiian lavas and EPR MORB are shown for comparison (data are from GeoRoc and 

PetDB). Also shown are whole rock Sr-Nd isotope data for basalts from PDP 843 to the 

west of Hawaii (King et al., 1991), and previously reported whole rock Sr-Nd isotope 

data from the Hualalai gabbros (e.g., Lassiter & Hauri, 1998). 
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1.5 DISCUSSION 

1.5.1 Origins of Hualalai gabbros 

Group-1 gabbros have Sr-Nd isotope compositions that starkly differ from 

Hualalai and other Hawaiian lavas but overlap with EPR MORB (Fig. 1.3). Assuming no 

trapped melt, the REE concentrations of melts in equilibrium with clinopyroxene from 

group-1 gabbros were calculated using measured clinopyroxene REE concentrations and 

estimated cpx-melt partition coefficients (see supplement for details). From this 

calculation, the melts in equilibrium with group-1 gabbros have MORB-like flat to 

LREE-depleted patterns (Fig. 1.2b). These characteristics suggest group-1 gabbros derive 

from layer-3 gabbros of the Pacific oceanic crust beneath the Hawaiian Islands as 

previously proposed (e.g., Clague, 1987). 

The presence of orthopyroxene in group-2 gabbros suggests they derive from 

tholeiitic melts (Bohrson & Clague, 1988; Fodor & Galar, 1997). The clinopyroxene REE 

compositions of group-2 gabbros are in equilibrium with melts that have LREE-enriched 

REE patterns similar to Hualalai lavas (Fig. 1.2b). The Sr-Nd isotope compositions of the 

group-2 gabbros plot primarily within the field of Hawaiian lavas (Fig. 1.3). Group-2 

gabbros therefore are most likely related to Hualalai tholeiitic shield stage magmas. 

Clinopyroxene from group-3 gabbros are also in equilibrium with melts that have 

LREE-enriched patterns resembling Hualalai lavas (Fig. 1.2b). The Sr-Nd isotope 

compositions of group-3 gabbros cluster closely within the field of Hualalai alkalic post-

shield stage lavas (Fig. 1.3). In addition, the absence of orthopyroxene in group-3 

gabbros suggests they derive from alkalic basalts (Fodor & Galar, 1997). Together, these 

features suggest that group-3 gabbros likely derive from Hualalai alkalic post-shield stage 

magmas. In the following discussion, we assign group-1, 2 and 3 gabbros as derived from 
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in situ Pacific LOC, Hualalai tholeiitic shield stage magmas and Hualalai alkalic post-

shield stage magmas, respectively. 

1.5.2 Hydrothermal circulation in LOC 

Hydrothermal circulation at mid-ocean ridges plays a critical role in heat and 

mass transfer between Earth’s lithosphere and hydrosphere. Near-axis hydrothermal 

circulation removes a significant portion of the heat from crystallization and cooling of 

the plutonic LOC (e.g., Phipps Morgan & Chen, 1993; Maclennan et al., 2005). 

Interaction with hydrothermal fluids can also substantially modify the chemical and 

isotopic composition of altered oceanic crust (e.g., Gregory & Taylor, 1981; Alt & 

Teagle, 2000). The strength and distribution of near-axis hydrothermal circulation 

remains a matter of debate. Different studies have proposed pervasive hydrothermal 

circulation through the entire LOC (e.g., Bosch et al., 2004), focused hydrothermal 

circulation within fracture zones in the LOC (e.g., Coogan et al., 2006), and hydrothermal 

circulation that only penetrates the upper oceanic crust (e.g., Manning et al., 1996). The 

strength and distribution of hydrothermal circulation in LOC can be evaluated by 

examining geochemical signatures of hydrothermal alteration in LOC rocks.  

Oxygen and strontium isotopes are sensitive tracers of hydrothermal alteration. 

Unaltered oceanic crust spans a narrow range of O and Sr isotope compositions 

[δ18OMORB ≈ +5.4 to +5.8‰ (Eiler, 2001); 87Sr/86SrNMORB ≈ 0.7022-0.7032 (Sun & 

McDonough, 1989)]. Low temperature hydrothermal alteration results in higher δ18O 

values than NMORB, whereas high temperature hydrothermal alteration results in lower 

δ18O values. Alteration also increases the 87Sr/86Sr of oceanic crust because seawater has 

87Sr/86Sr significantly higher than fresh MORB [87Sr/86Srseawater ≈ 0.709 (e.g., Burke et al., 

1982)]. Previous studies of ophiolites and fault-uplifted seafloor oceanic crust sections 
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have documented high δ18O values (whole rock δ18Owr ≈ +5 to +12.5‰) and 87Sr/86Sr (up 

to 0.7085) in pillow basalt and upper sheeted dikes, suggesting low-T hydrothermal 

alteration in the upper oceanic crust (e.g., Gregory & Taylor, 1981; Alt &Teagle, 2000). 

In contrast, lower sheeted dike and gabbro layers have low average δ18O values (δ18Owr ≈ 

+1.5 to +11.5‰, δ18Oplag ≈ +2.5 to +12.5‰; e.g., Gregory & Taylor, 1981) and are 

interpreted to have undergone high-T hydrothermal alteration.  

In contrast to typical observations from ophiolitic gabbros, most of the Hualalai 

LOC gabbros span a narrow range of plagioclase oxygen isotope compositions (Fig. 1.4a, 

δ18Oplag values = +5.7 to +6.2‰). Clinopyroxene from these gabbros have δ18Ocpx values 

ranging from +4.9‰ to +5.3‰. Clinopyroxene δ18O values correlate well with 

plagioclase δ18O values (Δplag-cpx = +0.7 ± 0.2‰, Fig. 1.5 inset). Plagioclase-

clinopyroxene fractionation is ~0.5‰ for rapidly quenched gabbroic magmas, and Δplag-

cpx increases during cooling of the system (Gregory & Taylor, 1981). The observed Δplag-

cpx is consistent with equilibrium fractionation at temperatures ~1150±60°C (Kyser et al., 

1981). If these values are corrected back to Δplag-cpx = 0.5‰, the Hualalai LOC gabbros 

would have δ18Oplag values ≈ +5.6 to +6.2‰ and δ18Ocpx values ≈ +5.1 to +5.4‰ 

(assuming ~50:50 plagioclase/clinopyroxene). Considering analytical uncertainties, these 

values are within the range of primary magmatic δ18Oplag values of +5.7 to +6.2‰ and 

δ18Ocpx values of +5.2 to 5.7‰ in equilibrium with NMORB (Gregory & Taylor, 1981; 

Eiler, 2001). Previous studies have observed large variations in δ18O values (up to 3‰) 

over short (mm) length-scales adjacent to micro hydrothermal veins in ophiolitic LOC 

gabbros (Coogan et al., 2007). Analyses of plagioclase and clinopyroxene separates could 

potentially overlook such small-scale alteration. However, hydrothermal micro veins 

were not observed in Hualalai LOC gabbros. Whole rock δ18O values in the Hualalai 

LOC gabbros (+5.9 to +6.2‰; Lassiter & Hauri, 1998) are also primarily consistent with 
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NMORB (+5.3 to +5.9‰; Eiler, 2001). The oxygen isotope compositions of both the 

gabbroic whole rocks and mineral separates suggest minimal hydrothermal alteration. 

Strontium isotopes in Hualalai LOC gabbros also appear to record minimal 

interaction with seawater. Both plagioclase and whole rock Sr isotope compositions of 

group-1 gabbros [87Sr/86Srplag = 0.70254-0.70284; 87Sr/86Srwr = 0.70256-0.70279 (Lassiter 

& Hauri, 1998)] are within the range of fresh NMORB (Fig. 1.4b). Although 

clinopyroxene in a few LOC gabbros have higher 87Sr/86Sr than in plagioclase, there is no 

correlation between δ18O values and 87Sr/86Sr (Fig. 1.5), as is typically observed in 

hydrothermally altered oceanic crust basalts and gabbros (e.g., Hart et al., 1999). Instead, 

the higher clinopyroxene 87Sr/86Sr ratios more likely reflect minor interaction between 

Hawaiian magmas and in situ LOC (see Section 1.5.4.2).  The combined Sr and O 

isotope data from the Hualalai LOC gabbros suggest much less hydrothermal alteration 

than typically observed in ophiolitic or fault-uplifted seafloor gabbros. 

The absence of an alteration signature in the Hualalai LOC gabbroic xenoliths 

does not necessarily preclude alteration in other portions of the LOC not sampled by 

these xenoliths. Some LOC gabbros from ophiolitic sections also appear to have 

unaltered O and Sr isotope compositions. However, the majority of LOC gabbros in 

many ophiolites show significant shifts in δ18O values and/or 87Sr/86Sr from fresh oceanic 

crust values. Gabbros from the Oman ophiolite do not show a significant decrease in 

alteration signatures with increasing depth (Fig. 1.4). Although focused fluid flow near 

fractures has been proposed for portions of the Oman ophiolite, alteration is still observed 

in most gabbros far from fracture zones (Coogan et al., 2006). These features suggest 

pervasive hydrothermal alteration from diffuse fluid flow throughout the entire LOC. The 

Hualalai LOC gabbros span a range of compositions (e.g., cpx Mg# = 76–86) and 2-

pyroxene equilibration temperatures (954-1065 °C, calculated temperatures are reported 
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in Table S1.5.), which suggests they likely represent a random sampling of the in situ 

LOC at various depths. If the in situ LOC beneath the Hawaii Islands displayed the same 

distribution of alteration signatures as is observed in ophiolites, it would be unlikely for 

alteration signatures to be missing from the LOC gabbroic xenoliths. 

The hydrothermal alteration in ophiolitic and fault-uplifted seafloor gabbros may 

reflect alteration associated with their uplift and exposure, which we refer to as secondary 

hydrothermal alteration. Isotope tracers (O, Sr) in ophiolitic gabbros exhibit larger shifts 

from fresh MORB values than in fault-exposed seafloor gabbros (Alt & Teagle, 2000), 

which likely reflect more intensive secondary hydrothermal alteration associated with the 

thrusting and emplacement of ophiolites.  Recent studies of in situ LOC samples (from 

ODP 1256D) show that the intensity of hydrothermal alteration decreases sharply with 

increasing depth within the uppermost ~100 m of the gabbro layer (Gao et al., 2012; 

Höfig et al., 2014). The minimal hydrothermal circulation recorded in the Hualalai LOC 

gabbros may therefore be more representative of in situ LOC than tectonically exhumed 

gabbros.   
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Figure 1.4 O and Sr isotope compositions of Hualalai group-1 gabbros compared to the 

Oman ophiolite. 

Data of the Oman ophiolite is compiled from Gregory & Taylor (1981), 

McCulloch et al. (1980), Stakes & Taylor (1992), Bosch et al. (2004), Kawahata et al. 

(2001), Lanphere et al. (1981) and Coogan et al. (2006). Shaded fields of Sr and O 

isotope compositions of unaltered NMORB are plotted for reference.  
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Figure 1.5 87Sr/86Sr- δ18O in Hualalai gabbroic xenoliths and Hawaiian lavas. 

For LOC gabbros, plagioclase 87Sr/86Sr ratios are plotted as they are more 

resistant to melt-rock interaction (see 5.3.2 for more discussion). Plagioclase 87Sr/86Sr and 

clinopyroxene 87Sr/86Sr are indistinguishable for Hualalai-related group-2 and -3 gabbros. 

Therefore, we plot clinopyroxene 87Sr/86Sr ratios for group-2 and -3 samples for which 

plagioclase 87Sr/86Sr was not measured. Because most Hawaiian lava δ18O data are 

measured in olivine phenocrysts (data from Eiler et al., 1996), we plotted plagioclase 

δ18O values in equilibrium with measured olivine given the fractionation factor △plag-ol= 

0.7‰ (Eiler, 2001). Inset shows the correlation between plagioclase δ18O and 

clinopyroxene δ18O of Hualalai gabbroic xenoliths. Fractionation lines of △plag-cpx = 

0.7±0.2‰ are plotted for reference. 
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1.5.3 Implications for LOC accretion 

Hydrothermal alteration recorded in the Hualalai LOC gabbros may place 

constraints on the mechanism of LOC accretion. Two endmember models have been 

proposed. The “gabbro glacier” model proposes that magmas are fed from the underlying 

mantle to a shallow, long-lived melt lens at the dike-gabbro boundary. Crystallization of 

gabbroic cumulates takes place in the shallow melt lens, and LOC is formed by 

downward advection of these cumulates (e.g., Phipps Morgan & Chen, 1993; Quick and 

Denlinger, 1993). In contrast, the “multiple sills” model proposes multiple magma sills 

injected into LOC at various depths and times, with LOC produced by crystallization of 

these magma sills followed by dominantly horizontal flow of the solid gabbro away from 

the ridge axis (e.g. Kelemen et al, 1997). Hybrid models combine these two end 

members, with the top part of the LOC formed in a shallow melt lens and the rest formed 

in lower magma sills (e.g., Maclennan et al., 2005). 

Heat released from magma crystallization at mid-ocean ridges is primarily 

removed by near-axis hydrothermal circulation (e.g., Phipps Morgan & Chen, 1993). 

Different LOC accretion models make different predictions regarding the strength and 

distribution of this circulation. The “gabbro glacier” model predicts near-axis 

hydrothermal circulation primarily focused above the shallow melt lens (e.g., Phipps 

Morgan & Chen, 1993; Maclennan et al., 2004, 2005). In contrast, the “multiple sills” or 

hybrid models predict deep and intensive near-axis hydrothermal cooling throughout the 

LOC. Otherwise, the latent heat from sills injected at various depths would trigger 

remelting of the LOC instead of crystallization (e.g., Maclennan et al., 2004; Thelssen-

Krah et al., 2011). Both models permit but do not require focused off-axis hydrothermal 

circulation penetrating the LOC along fracture zones after melt lenses have solidified. 

Although the relationship between hydrothermal alteration of off-axis LOC and LOC 



 24 

accretion is complex, in general, greater deep hydrothermal alteration is expected for the 

“multiple sills” model (e.g., Maclennan et al., 2005). 

The range of compositions and equilibrium temperatures spanned by Hualalai 

LOC gabbros (see Section 1.5.2) suggests they do not derive from a single locality. 

Assuming they represent a random sampling of the in situ LOC, we can calculate the 

probability that hydrothermally altered portions of the lower crust would not be sampled 

if present. For example, given 16 random samples of LOC material (the number of 

Hualalai LOC gabbroic xenoliths), if 5% by volume of the in situ LOC is altered, the 

probability that this material would not be sampled is ~44% [P=(1-x)N]. If 20% of the 

LOC is altered, the probability of not sampling altered regions decreases to ~3%. 

Therefore, the absence of alteration signatures in the LOC xenoliths suggests 

volumetrically minor hydrothermal alteration of the LOC beneath Hualalai, which is 

difficult to reconcile with the “multiple sills” model. 

LOC gabbroic xenoliths have been reported or suggested for several other 

localities, including Jasper Seamount (Gee et al., 1991), the Canary Islands (e.g., 

Schmincke et al., 1998), Davidson Seamount (Davis et al., 2007), and Flores Island, 

Azores (Franca et al., 2008). However, Sr and O isotope compositions have only been 

reported for LOC xenoliths from several Canary Islands (Vance et al., 1989; Hoernle, 

1998; Hansteen & Troll, 2003). The majority of these xenoliths have 87Sr/86Sr shifted to 

higher values than Atlantic NMORB at a given 143Nd/144Nd (cf. Fig. 5 in Hoernle, 1998). 

Sr-isotope enrichments are most pronounced in Gran Canaria xenoliths. Furthermore, 

four Gran Canaria xenoliths have lower δ18Owr values (δ18Owr = +3.4 to +5.1‰; Hansteen 

& Troll, 2003) than fresh NMORB. These features suggest pervasive high-T 

hydrothermal alteration of in situ LOC beneath the Canary Islands, in contrast to what is 
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observed at Hualalai. The pervasive hydrothermal alteration observed in the Canary 

Island LOC xenoliths is compatible with the “multiple sills” model. 

The oceanic crust beneath the Hawaiian Islands was formed at the EPR, a fast 

spreading ridge, whereas the crust beneath the Canary Islands was formed at the Mid-

Atlantic Ridge (MAR), a slow spreading ridge. Oceanic crust at slow ridges is generally 

more fractured than at fast ridges (e.g., Phipps Morgan et al., 1987), which can provide 

conduits for fluid infiltration and hydrothermal alteration (e.g., Alt et al., 2010). More 

data from additional xenolith localities is needed to determine if LOC formed at fast 

ridges is consistently less altered than LOC formed at slow ridges. However, cooling 

rates in LOC gabbros from fast ridges decrease significantly with depth in the upper 

kilometer of the gabbro layer, as estimated from the Ca-in-olivine geospeedometer. In 

contrast, LOC gabbros at slow ridges display no variation in cooling rates with depth, and 

cool substantially faster than those at fast ridges. The cooling rate profiles are consistent 

with more extensive deep hydrothermal circulation and associated cooling at slow ridges 

(Coogan et al., 2007). In addition, as discussed below, several other observations are 

consistent with different magma plumbing systems at fast and slow ridges. 

Shallow melt lenses have been consistently detected by seismic imaging beneath 

fast ridges (e.g., Hooft et al., 1997). In contrast, crustal melt lenses are only occasionally 

detected beneath slow spreading ridges in the Atlantic Ocean (e.g., Sinha et al., 2006). 

These geophysical observations are consistent with petrologic models that suggest 

shallower magma ponding at fast ridges. For example, Michael & Cornell (1998) shows 

that melts fractionate fast ridges at shallower depths than at slow ridges. Magma 

fractionation also appears to occur within a narrower range of depths at fast ridges than at 

slow ridges (Michael & Cornell, 1998). MORB glasses from fast ridges also have higher 

average Cl/K ratios than those from slow ridges. These features indicate assimilation of 
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shallow, hydrothermally altered materials with elevated Cl/K during shallow magma 

ponding and fractionation at fast ridges (Michael & Cornell, 1998). 

Correlations between MORB isotopic heterogeneity and spreading rate also 

suggest different magma plumbing systems at fast and slow ridges. Sr isotope 

heterogeneity at individual ridge segments decreases with decreasing average Mg# 

(Rubin et al., 2009). In addition, both average Mg# and Sr isotopic heterogeneity 

correlate with ridge spreading rate, with fast ridges possessing lower average Mg# and 

less isotopic heterogeneity than slow ridges. Similar correlations are also observed for Nd 

isotopes. We compiled MORB Nd isotope data from 10 mid-ocean ridge segments as 

well as samples from ODP Sites 843 and 1256D (see supplement for details). As shown 

in Fig. S1.3, εNd variability is negatively correlated with ridge spreading rate. The lower 

average Mg# and isotopic heterogeneity at fast ridges is consistent with greater mixing 

and homogenization of discrete magma batches coupled with protracted fractional 

crystallization in long-lived magma chambers. Combined with the observation that 

magmas at fast ridges fractionate on average at shallower depths than at slow ridges 

(Michael & Cornell, 1998), these features are consistent with the presence of a shallow, 

long-lived magma chamber, through which most magmas pass prior to eruption. In 

contrast, the greater isotopic heterogeneity at slow ridges may reflect greater preservation 

of primary magma heterogeneity due to direct tapping of discrete melt batches from 

multiple sills intruded at various depths. 

Taken collectively, the geochemical and geophysical observations at slow ridges 

are consistent with the thermal and petrologic predictions of the “multiple sills” model. 

Fractional crystallization in a long-lived shallow magma chamber is significant at fast 

ridges. In principle, hybrid models where magmas pond and fractionate in multiple sills 

over a range of depths and then feed into a shallow melt lens prior to eruption are 
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consistent with the petrologic observations. However, magma crystallization requires 

sufficient removal of latent heat, often through hydrothermal cooling (Maclennan et al., 

2004, 2005). Therefore, the limited hydrothermal alteration observed in the LOC beneath 

the Hawaiian Islands, although not conclusive, favors the “gabbro glacier” model. Future 

studies of LOC xenoliths from additional localities may place further constraints on the 

distribution of hydrothermal alteration in LOC, and may provide a new avenue to study 

the processes of LOC accretion. 

1.5.4 Magma storage system of Hualalai Volcano and melt-crust interaction 

1.5.4.1 Evidence for LOC shield-stage magma reservoir of Hualalai Volcano 

The depths of magma storage may affect the evolution of Hawaiian magmas in 

several ways. For example, pressure affects the liquid line of descent and volatile 

degassing processes. In addition, the effects of assimilation or melt/wallrock interaction 

will vary depending on whether melts pond within the volcanic edifice, oceanic crust, or 

upper mantle. The magma plumbing systems of Hawaiian volcanoes evolve as magma 

supply rates change (e.g., Clague 1987; Bohrson, 2007 and references therein). The high 

magma supply during the shield stage provides the thermal impetus to maintain a 

shallow-level magma reservoir within the volcanic edifice. During the post-shield stage, 

decreasing magma supply leads to solidification of the shallow magma reservoir. The 

presence of LOC gabbroic xenoliths in Hualalai post-shield stage lavas and the 

crystallization sequence of Mauna Kea post-shield lavas suggest deep magma reservoirs 

exist within or beneath the LOC during the post-shield stage, possibly close to the Moho 

(Clague, 1987; Frey et al., 1990). However, whether a deep magma reservoir is also 

present during the shield stage is a matter of debate. Several studies propose that a deep 

magma reservoir coexists with the shallow reservoir during the shield stage (e.g., Clague, 
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1987; Bohrson & Clague, 1988; Vazquez et al., 2007). Other studies suggest there is only 

one magma reservoir during the shield stage, and this reservoir deepens during the shield 

to post-shield transition (e.g., Frey et al., 1990; Shamberger & Hammer, 2006). 

    The depths of origin of shield-stage gabbros can be used to infer the depth of 

the Hualalai shield stage magma reservoir(s), because the gabbros are most likely 

cumulates derived from these crystallized reservoirs. We evaluate the crystallization 

depths of Hualalai shield gabbros using (1) MELTS thermodynamic modeling (Ghiorso 

& Sack, 1995); (2) comparison of equilibration temperature in shield gabbros and LOC 

gabbros; and (3) comparison with previous estimates for depth of origin of Hualalai 

gabbroic and ultramafic xenoliths. Each of these approaches provides an independent, if 

imprecise, assessment of magma fractionation pressure. Taken together, they provide a 

consistent picture of the Hualalai volcano shield-stage plumbing system. 

Isobaric fractional crystallization of a primitive tholeiite melt was modeled using 

MELTS over a pressure range of 2-8 kbar. Crystallization depths of Hualalai shield 

gabbros were then constrained by comparing observed mineralogy and composition with 

model-predicted crystallization sequences and mineral compositions at various pressures. 

We used the primitive Hualalai tholeiite KK-14-5 (Bohrson & Clague, 1988) and an 

initial water content of 0.4 to 0.7 wt.% as the initial melt composition for the MELTS 

modeling (Table S1.8). MELTS models were initiated at the NNO or QFM oxygen buffer 

and allowed to proceed unbuffered. 

Over the range of initial water content and oxygen fugacity investigated, all 

models were able to produce all the major mineral phases present in shield gabbros, and 

show two consistent results: (1) as pressure increases, the temperature at which 

plagioclase arrives at the liquidus decreases, and as a result of earlier pyroxene 

fractionation the An content of the first plagioclase crystallized decreases with increasing 
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pressure; (2) the onset of orthopyroxene fractionation occurs at higher temperature with 

increasing pressure, resulting in higher Mg# of the first-crystallized orthopyroxene (Fig. 

1.6; more discussion of the MELTS modeling is presented in supplement). The mineral 

compositions observed in shield gabbros (plagioclase An up to 70, orthopyroxene Mg# 

up to 87) require fractionation within the pressure range of ~2.5-5 kbar. This range is 

consistent with pressure constraints (1-5 kbar) of Shamberger & Hammer (2006) based 

on clinopyroxene geobarometry. This pressure range corresponds to a depth of ~11-18 

km, which is within the local oceanic crust (Moore, 1987; Clague, 1987). This depth 

interval overlaps with but is slightly shallower than crystallization depths previously 

estimated for Hualalai shield ultramafic xenoliths by Bohrson & Clague (1988) (~13-28 

km). 

Comparison of equilibration temperatures between Hualalai shield-stage and LOC 

gabbros also provides indirect evidence that these two xenolith types derive from similar 

depths. Hualalai shield gabbros record 2-pyroxene equilibration temperatures [942-

1075°C; precision ~±25°C; (Brey & Kohler, 1990)] similar to temperatures recorded in 

the LOC gabbros (954-1065°C). MELTS modeling suggests crystallization of group-2 

gabbros at temperatures higher than 1075°C. Lamellar exsolution textures are observed in 

pyroxene from some group-2 gabbros. Therefore, the 2-pyroxene temperatures recorded 

by group-2 gabbros likely reflect subsolidus cooling. In contrast, the Pacific LOC beneath 

the Hawaiian Islands (Müller et al., 2008) should have cooled to ~400 °C due to 

conductive cooling over the past ~100 Ma (Pollack et al., 1993), and 2-pyx thermometers 

in these gabbros should record a pyroxene blocking temperature of ~650 °C (Mitra et al., 

1999). However, LOC group-1 gabbros record equilibrium temperatures nearly identical 

to the range recorded in the shield-stage related gabbros. This likely reflects re-heating of 

the LOC by Hawaiian magmas. 
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Given that the equilibration temperatures recorded by the group-2 gabbros likely 

reflect post-crystallization sub-solidus cooling, and the temperatures in the group-1 

gabbros reflect recent reheating of the LOC, it would seem fortuitous for these xenoliths 

to record such similar temperatures unless they last equilibrated at similar depths. 

Bohrson & Clague (1988) suggested slightly higher sub-solidus temperatures (~1045-

1090°C) for Hualalai shield-stage-related ultramafic xenoliths compared to shield 

gabbros. Combined with the slightly higher pressure estimates for these ultramafic 

xenoliths (Bohrson & Clague, 1988), this suggests that Hualalai shield ultramafic 

xenoliths derive from somewhat deeper depths than shield gabbros. In conclusion, 

although precise pressure estimates for formation of the shield-related gabbroic and 

ultramafic xenoliths are difficult, it appears most likely that Hualalai shield stage magmas 

ponded and fractionated within and/or at the base of the LOC. A deep magma reservoir 

probably existed during the shield stage of Hualalai Volcanism in addition to the shallow 

intra-edifice reservoir.  
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Figure 1.6 MELTS modeling results. 

Lines in the figure shows An of the first plagioclase (open circles) and Mg# of the 

first orthopyroxene (filled circles) predicted by MELTS modeling at different pressures. 

Initial composition can be found in Table S1.8. The effects of various water contents in 

the initial melt and different initial oxygen fugacity were assessed and presented. Model-

predicted crystallization pressure range of Hualalai shield gabbros is constrained by the 

highest plagioclase An and orthopyroxene Mg# observed.  
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1.5.4.2 Effects of melt-crust interaction on in situ LOC 

The existence of a magma reservoir within the LOC during shield and post-shield 

stages of Hawaiian volcanoes provides the opportunity for magmas to interact with the 

surrounding LOC during magma storage. Several features of group-1 gabbros may record 

interaction with Hualalai magmas. These features include Sr-isotope disequilibrium 

between clinopyroxene and plagioclase observed in several samples (Fig. 1.7), and 

correlations between Sr and Nd isotopes and trace element ratios that trend towards 

Hualalai magma cumulate compositions (Fig. 1.8). 

Whereas clinopyroxene and plagioclase in Hualalai-related group-2 and 3 gabbros 

have indistinguishable Sr isotopic compositions, clinopyroxene in many group-1 gabbros 

are out of equilibrium with coexisting plagioclase and extend to more radiogenic 

compositions (Fig. 1.7a). The extent of Sr isotope disequilibrium (Δ87Sr/86Srcpx-plag) 

correlates with clinopyroxene Sr concentrations and other incompatible trace elements. 

Clinopyroxene with low incompatible element concentrations (e.g., < 4 ppm Sr) are 

generally in equilibrium with coexisting plagioclase, whereas incompatible-element-

enriched clinopyroxene are not (Fig. 1.7b). Sr isotopic disequilibrium between 

clinopyroxene and plagioclase has also been observed in gabbros from the Oman 

ophiolite, which was interpreted to reflect partial exchange with 87Sr-rich seawater-

derived hydrothermal fluids (McCulloch et al., 1980). However, the anomalous 87Sr 

enrichment in clinopyroxene is unlikely to reflect hydrothermal alteration, as there is no 

oxygen isotope evidence for hydrothermal alteration of the group-1 gabbros (see section 

1.5.2).  

Both 87Sr/86Sr and 143Nd/144Nd of group-1 gabbros correlate with insoluble trace 

elements and ratios such as La/Sm, and trend towards Hualalai magma cumulate 

compositions (Fig. 1.8). Although clinopyroxene 143Nd/144Nd in group-1 gabbros is also 
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correlated with 147Sm/144Nd, the slope of the correlation suggests an “age” (170±50 Ma) 

that is significantly older than local oceanic crust (~100 Ma; Müller et al., 2008). 

Therefore, rather than reflecting radiogenic ingrowth, these correlations more likely 

reflect mixing between LOC cumulates and incompatible-element-enriched Hualalai 

melts. 

Interaction between LOC gabbros and Hualalai melts may occur through melt 

infiltration and reaction along gabbro grain boundaries. As an approximation, this 

interaction can be modeled as simple binary mixing between gabbro clinopyroxene or 

plagioclase and Hualalai melts. Such mixing affects Sr isotopes in clinopyroxene to a 

greater extent than coexisting plagioclase, because clinopyroxene has lower Sr 

concentrations (Fig. 1.9). The difference in Nd concentrations is smaller between these 

two mineral phases, so that melt addition has roughly similar effects on plagioclase and 

clinopyroxene. Mixing models show that the range of both Sr and Nd isotopic variation 

in LOC gabbros can be generated by addition of less than 5-10% of either shield- or post-

shield-stage melts. This amount of melt addition is unlikely to have significantly affected 

the major element or oxygen isotope compositions of the LOC xenoliths.  
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Figure 1.7 Melt-crust interaction signatures. 

 (a) Comparison of clinopyroxene and plagioclase 87Sr/86Sr. Several LOC 

xenoliths have higher clinopyroxene 87Sr/86Sr than for plagioclase from the same sample. 

Shield- and post-shield related gabbros plot close to the 1:1 line, indicating isotopic 

equilibrium between plagioclase and clinopyroxene in these samples. (b) Correlation 

between Δ87Sr/86Srcpx-plag in the LOC gabbros and clinopyroxene Sr concentrations. The 

observed Sr isotope disequilibrium between clinopyroxene and plagioclase most likely 

reflects melt-crust interaction between Hawaiian melts and in situ LOC. 
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Figure 1.8 Clinopyroxene 87Sr/86Sr and 143Nd/144Nd versus La/Sm ratios of Hualalai 

gabbroic xenoliths. 
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Figure 1.9 Binary mixing model for melt-crust interaction. 

Simple binary mixing model as an approximate for the melt-crust interaction 

processes between Hawaiian magmas and in situ LOC. The filled star represents the 

average Sr-Nd isotopic composition of Hualalai post-shield (PS) stage magmas, whereas 

the open star marks the average isotopic composition of Hualalai shield stage magmas. 

Magma and mineral phases Sr/Nd concentrations used for modeling are [Sr]magma, shield = 

250 ppm, [Sr]magma, PS = 450 ppm, [Sr]cpx = 4 ppm, [Sr]plag = 90 pmm; [Nd]magma, shield = 20 

ppm, [Nd]magma, PS = 50 ppm, [Nd]cpx = 1 ppm, [Nd]plag = 0.2 ppm. Magma, clinopyroxene 

and plagioclase Sr and Nd concentrations are chosen based on literature data compiled 

from GeoRoc, measurement concentrations in this study, and unpublished data from 

Nicholas Dygert, respectively.  
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1.5.4.3 Effects of melt-crust interaction on Hawaiian lavas: the origin of oxygen 

isotope heterogeneity in Hawaiian lavas 

    The chemical and isotopic variations in Hawaiian basalts are commonly 

utilized to infer the origin and length scales of heterogeneities in the Hawaiian plume 

(e.g., Abouchami et al., 2005). Many studies made the implicit assumption that the 

compositions of Hawaiian basalts closely track their mantle sources with little 

modification during transportation and storage in the oceanic crust. However, as 

discussed in 5.4.1, Hawaiian shield and post-shield stage magmas most likely ponded and 

fractionated in the lower oceanic crust, prior to eruption or transportation to the intra-

edifice magma reservoir. During this ponding, Hawaiian magmas have the potential to 

assimilate in situ LOC. Therefore, the role of crustal contamination in the evolution of 

Hawaiian magmas needs to be assessed. 

Hawaiian lavas display greater oxygen isotope variability than fresh NMORB 

(Eiler et al., 1996). Several studies have proposed that “Loa trend” lavas inherit their high 

δ18O values from ancient recycled oceanic crust or sediment entrained in the Hawaiian 

plume source (e.g., Eiler et al., 1996, Lassiter & Hauri, 1998). However, the origin of the 

low δ18O values of “Kea trend” lavas is still uncertain. Eiler et al. (1996) proposed the 

low δ18O values are generated by assimilation of hydrothermally altered in situ LOC 

gabbros. In contrast, Lassiter & Hauri (1998) argued that both the high and low δ18O 

values in Hawaiian lavas reflect the presence of ancient recycled oceanic lithosphere in 

the Hawaiian plume source. More recently, Wang et al. (2003) and Wang and Eiler 

(2008) proposed that the low δ18O values in Mauna Kea lavas reflect assimilation of 

volcanic edifice material that has been altered by meteoric water. 

Oxygen isotope data from Hualalai gabbroic xenoliths suggest that assimilation of 

local LOC cannot generate the range of oxygen isotope compositions observed in 
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Hawaiian lavas. LOC-derived group-1 gabbros have a narrow range of oxygen isotope 

compositions similar to fresh NMORB (see section 1.5.2). In contrast, olivine 

phenocrysts in Hawaiian lavas span a wide range of oxygen isotope compositions (δ18Ool 

= +4.3 to +6.1‰; Eiler et al., 1996). For Δ18Omelt-ol = ~0.5‰ (Eiler, 2001), Hawaiian 

magmas therefore have δ18O values extending to both higher and lower values than the in 

situ LOC. Assimilation of the in situ LOC cannot generate either the anomalously low or 

high δ18O values observed in many Hawaiian melts (Fig. 1.5). 

Most group-2 and group-3 gabbros have oxygen isotope compositions at or 

beyond the upper limit of the range defined by fresh MORB, consistent with the high 

δ18O values reported for “Loa trend” lavas including the Hualalai post-shield lava 

analyzed by Eiler et al. (1996). These Hualalai-related gabbros likely crystallized within 

or at the base of the LOC (see Section 1.5.4.1). Because assimilation of volcanic edifice 

material cannot have affected the oxygen isotope composition of cumulates formed 

within the LOC, the oxygen isotope compositions of these Hualalai cumulates are most 

likely inherited from the Hawaiian plume source(s). The high δ18O values in several 

shield and post-shield stage gabbros are therefore consistent with previous proposals that 

high δ18O values in Hawaiian lavas reflect recycled high-δ18O material in the Hawaiian 

plume (e.g. Eiler et al., 1996; Lassiter & Hauri, 1998). In addition, although only one 

Hualalai cumulate with anomalously low δ18O is reported here, the presence of low δ18O 

cumulates, if confirmed, would suggest that low δ18O values in Hawaiian melts also 

derive from the Hawaiian plume. 

1.6 CONCLUSIONS 

Lower oceanic crust (LOC) gabbroic xenoliths reported at several ocean islands 

and seamounts provide an under-utilized approach to study the compositions and 
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hydrothermal alteration history of LOC. This information can provide further constraints 

on LOC accretion models, and the potential influences of melt-crust interaction on the 

compositions of ocean island basalts. Gabbroic xenoliths from Hualalai Volcano are 

divided into three groups based on their geochemical and petrologic compositions. 

Group-1 and 2 gabbros contain clinopyroxene and orthopyroxene, and are consistent with 

derivation from tholeiitic melts. Group-3 gabbros lack orthopyroxene, and likely derive 

from alkalic melts. Group-2 and 3 gabbros both have enriched Sr-Nd isotopic 

compositions similar to Hawaiian lavas, and clinopyroxene REE concentrations in 

equilibrium with Hualalai-like melts. In contrast, group-1 gabbros have depleted Sr-Nd 

isotopic compositions that overlap with EPR MORB, and clinopyroxene REE 

concentrations in equilibrium with MORB-like LREE-depleted melts. The geochemical 

and petrologic characteristics of group-1, 2 and 3 gabbros suggest they derive from in situ 

Pacific lower oceanic crust, Hualalai tholeiite shield stage magmas and Hualalai post-

shield stage magmas, respectively. 

In contrast with observations from many ophiolitic and fault-uplifted seafloor 

LOC gabbros, the O and Sr isotope compositions of group-1 gabbros indicate minimal 

hydrothermal alteration of in situ LOC beneath Hualalai. The higher extents of 

hydrothermal alteration in ophiolitic and seafloor gabbros may result from “secondary” 

hydrothermal alteration during faulting and uplift. The minimal hydrothermal alteration 

recorded in Hualalai LOC xenoliths also contrasts with pervasive alteration recorded in 

LOC xenoliths from the Canary Islands. These differences may reflect less hydrothermal 

alteration of LOC formed at fast ridges than at slow ridges. Combined with other lines of 

geochemical and geophysical evidence (e.g., greater isotopic heterogeneity, the lack of 

seismic evidence for shallow melt lenses), the high degree of hydrothermal alteration 

observed in LOC samples from slow ridges suggests the “multiple sills” model of LOC 
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accretion. In contrast, seismic imaging of shallow melt lenses and reduced isotopic 

heterogeneity of erupted basalts at fast ridges suggest that magmas in these settings pass 

through and fractionate within a long-lived shallow melt lens. This long-lived shallow 

melt lens likely restricts deep penetration of on-axis hydrothermal circulation and cooling 

of LOC at ridge axes, consistent with the limited hydrothermal alteration of LOC formed 

at fast ridges.  

Group-1 and group-2 gabbros record similar subsolidus 2-pyroxene equilibration 

temperatures (942 - 1075°C), suggesting derivation from similar depths. MELTS 

modeling further suggests the crystallization pressures of group-2 gabbros to be ~2.5-5 

kbar, roughly consistent with local LOC depth. Therefore, a magma reservoir close to the 

Moho existed during Hualalai shield stage. Melt-crust interaction between Hawaiian 

melts and in situ Pacific crust during magma storage partially overprinted clinopyroxene 

Sr and Nd isotopic compositions of group-1 gabbros. Although minor assimilation of 

Pacific crust by Hawaiian melts cannot be excluded, the range of oxygen isotope 

compositions recorded in Hawaiian lavas and cumulates cannot be generated by 

assimilation of the in situ LOC gabbros, which have relatively uniform and MORB-like 

δ18O values. Therefore, the isotopic variations observed in Hawaiian melts reflect plume 

source heterogeneity. 
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Chapter 2: Geochemistry of Mafic and Ultramafic Xenoliths from 

Hualalai Volcano: Implications for the Origins of Hawaiian 

Rejuvenated Volcanism 

2.1 INTRODUCTION 

The Hawaiian Islands are a series of volcanoes developed on the Pacific plate that 

migrates over a relatively stationary mantle plume (Mogan, 1972). Hawaiian volcanoes 

commonly evolve through pre-shield stage, shield stage, post-shield stage, and a final 

rejuvenated stage that usually follows a hiatus in activity after the shield/post-shield stage 

(Clague & Dalrymple, 1987). Hawaiian lavas display large chemical and isotopic 

variations, both temporally and spatially. For example, post-shield-stage and rejuvenated-

stage lavas usually have more depleted isotopic compositions than shield-stage lavas 

from the same volcano (e.g., Frey et al., 2005; Fekiacova et al., 2007). There is still no 

consensus as to whether these variations reflect intrinsic heterogeneity of the mantle 

plume, mixtures of the plume source with entrained mantle, or contamination by Pacific 

lithosphere (e.g., Class & Goldstein, 1997; Hofmann & Farnetani, 2013). 

In particular, the origin of Hawaiian rejuvenated-stage lavas is highly debated. 

Because they are characterized by depleted isotopic compositions, many previous studies 

have proposed that rejuvenated lavas may derive from depleted Pacific lithosphere that 

has been metasomatized by melts from the Hawaiian plume (e.g., Lassiter et al., 2000; 

Yang et al., 2003; Dixon et al., 2008). In contrast, recent studies have argued that the 

rejuvenated lavas are isotopically distinct from Pacific lithosphere, and therefore the 

rejuvenated lavas sample a depleted source that is widely distributed within the plume 

itself (e.g., rejuvenated lavas have higher 208Pb/204Pb at a given 206Pb/204Pb than inferred 

Pacific lithosphere; Fekiacova et al., 2007; Bizimis, 2013). These debates are largely due 
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to lack of constraints on the compositions of local Pacific lithosphere beneath the 

Hawaiian Islands. 

The ca. 1800-1801 Kaupulehu flow of Hualalai Volcano, Hawaii contains 

abundant xenoliths of dunite, wehrlite and gabbro, and rare websterite and anorthosite 

(Jackson et al., 1981; Clague, 1987; Kauahikaua et al., 2002). According to their Sr-Nd 

isotope compositions, the majority of these xenoliths are cumulates derived from Hualalai 

magmas, whereas a small subset of gabbroic xenoliths sample in situ Pacific lower 

oceanic crust (Clague, 1987; Gao et al., 2016). The chemical and isotopic characteristics 

of these xenoliths can provide critical constraints on the contribution of lithosphere 

assimilation to the evolution of Hawaiian lava compositions. The lower oceanic crust 

(LOC) xenoliths provide direct information on the composition of in situ lithosphere 

beneath the Hawaiian Islands. If lithosphere assimilation is significant during magma 

ponding, signatures of coupled assimilation and fractional crystallization (AFC) is 

expected to be evident in Hualalai-magma-derived cumulates.  

In this study, we report mineral major element, and Sr, Nd, Os and O isotope 

variations in 12 Hualalai-derived ultramafic (8 dunite and 4 websterite) xenoliths. We 

also report new Os, Hf and Pb isotope data for a suite of gabbroic xenoliths (both 

Hualalai- and LOC-derived), which have been previously characterized for chemical and 

Sr-Nd-O isotope compositions (e.g., Lassiter et al., 1998; Gao et al., 2016a). These new 

geochemical data are then used to constrain the role of Pacific lithosphere in 

generating/affecting Hawaiian lava compositions, especially the rejuvenated-stage lavas. 

2.2 SAMPLES AND METHODS 

The xenoliths examined in this study are from the c.a. 1800-1801 post-shield 

Kaupulehu alkalic basalt flow of Hualalai Volcano. Ten ultramafic xenoliths (8 dunites 
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and 2 websterites) were collected by David Clague. Two additional websterites were 

from the Jackson collection housed at the Simithsonian National Museum of Natural 

History. Dunites are composed of olivine (~97-99% modal abundance), spinel (~1-2%) 

and clinopyroxene (<1%). All websterites contain clinopyroxene (~30-45%) and 

orthopyroxene (~40-60%). Two websterites (63kap-16, 87kap-4) also contain olivine 

(~15%), and one (63kap-16) contains a small amount of plagioclase (~2%). All 

ultramafic xenoliths are relatively fresh with no visible alteration. Twenty-eight gabbroic 

xenoliths were also provided by Clague and Smithsonian Institution. These gabbros 

include 1-pyroxene (only clinopyroxene) and 2-pyroxene (both clinopyroxene and 

orthopyroxene) cumulates derived from Hualalai magmas, and 2-pyroxene gabbros from 

ancient Pacific LOC (Gao et al., 2016a).  More detailed sample description of the 

gabbroic xenoliths can be found in Gao et al. (2016a). These gabbros have been 

previously characterized for major element, trace element, and Sr-Nd-O isotope 

compositions (e.g., Clague, 1987; Lassiter et al., 1998; Gao et al., 2016a).  

Mineral major element abundances of Hualalai ultramafic xenoliths were 

measured via EPMA on a JEOL-8200 microprobe using methods outlined in Gao et al. 

(2016a). Fresh mineral grains were mounted in epoxy and polished for probe analyses. 

Measurements of secondary standards were accurate to within 5% for Na, Ni and Cr, 

within 3% for Al, Si and Fe, within 1% for Mg and Ca, and 15% for MnO. The Fe2O3 

content of spinel was calculated by normalizing all cations to 3.0, assuming Fe was the 

only multivalent cation, and by partitioning Fe between Fe3+ and Fe2+ to result in 4.0 

oxygens. 

For gabbros and websterites, 50-150 mg clinopyroxene separates were processed 

for Sr, Nd, and Lu-Hf isotope analyses. For dunites, Sr isotopes were measured on 100-

150 mg whole rock chips. One websterites was also analyzed for whole rock Sr isotope 
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composition to check that clinopyroxene isotope compositions comparable to whole rock. 

Mineral separates and whole rock chips are picked under a binocular microscope to avoid 

adhered melts and/or surface alteration. Samples were digested following procedures 

described in Byerly & Lassiter (2012) and Connelly et al. (2006). The separation and 

analytical procedure, precision and accuracy of Sr, and Nd isotopes were as described in 

Gao et al. (2016a). AG1-X8 and DGA resins were used to separate Lu and Hf. Lutetium 

and Hf isotopes were analyzed using a Micromass IsoProbe MC-ICP-MS. The JMC Hf 

standard was measured between every third samples for standard correction; BRC-2 and 

BHVO-2 were measured as secondary standards. Average measured 176Hf/177Hf of 

BHVO-2 was 0.283106±0.000046 (2 s.d.), and the accepted value is 0.283109 

(GeoReM), and average measured BCR-2 was 0.282867±0.000056 (2 s.d.) with accepted 

value 0.282878 (GeoReM). Lutetium and Hafnium concentrations were determined by 

isotope dilution using a mixed 176Lu-180Hf spike.  

Lead isotopes were measured on 100-150 mg plagioclase separates. Samples were 

leached in dilute HF for 5 min before digestion. Both the leachates and leached samples 

were analyzed for Pb isotope compositions. Lead was separated using AG1-X8, and 

analyzed as metal loaded with Silica gel on a Triton TIMS. The NBS 981 standard was 

measured by double spike method regularly, with average measured 206Pb/204Pb = 

16.933±0.003, 207Pb/204Pb = 15.488±0.003, and 208Pb/204Pb = 36.688±0.011 (2 s.d.). For 

comparison, the values reported by Todt et al. (1996) are 206Pb/204Pb = 16.9356±0.0007, 

207Pb/204Pb = 15.4891±0.0009, and 208Pb/204Pb = 36.7006±0.0034 (2 s.d.). Average mass 

fractionation of unspiked NBS 981 was 1.1‰ per AMU. For most samples, instrumental 

mass fractionation was corrected using a Pb double spike. The other samples were mass 

fractionation corrected using the average NBS 981 fractionation factor. Double-spike 
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measurements are within error of mass fractionation corrected values. Pb blanks were 

lower than 20 pg/g. 

Rhenium and Os were separated from bulk xenolith powders following the 

procedure of Byerly & Lassiter (2012). Fresh samples were carefully polished with 

aluminum oxide sandpaper to remove any saw marks, and rinsed with DI water. Air dried 

samples were then wrapped in plastic and crushed with a hammer before being powdered 

in an alumina ball mill. Os isotopes were measured with the Triton TIMS in negative ion 

mode, and Re isotopes were analyzed by MC-ICP-MS. The UMD Os standard was 

measured regularly, averaging a measured 187Os/188Os of 0.11382±0.00003 (2 s.d.), 

which is consistent with value reported by Walker et al. (2005) (0.1137920±0.0000024). 

Os blank was 160 fg/g. Rhenium and osmium concentrations were determined by isotope 

dilution using a mixed 185Re-190Os spike. Powder splits of five LOC gabbros were also 

analyzed for Re concentrations at the University of Bonn. 

Oxygen isotopes were analyzed on ~2 mg olivine crystals that were carefully 

picked under a binocular microscope to avoid visible melt infiltration, inclusions, or 

surface alteration. Oxygen was extracted by laser fluorination (Sharp, 1990). In house 

quartz standard Lausanne-1 (δ18O = 18.1‰), garnet standard UWG-2 (δ18O = 5.8‰) 

(Valley et al., 1995) and olivine standard San Carlos (δ18O = 5.25‰) were measured to 

ensure accuracy and precision. δ18O values are reported relative to SMOW, where the 

δ18O value of NBS-28 is +9.65‰. Duplicates were run for three samples on different 

days. All the analyses described above were performed at the University of Texas at 

Austin. 
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2.3 RESULTS 

Mineral major element compositions of ultramafic xenoliths are reported in Table 

2.1. Coexisting olivine, clinopyroxene, and orthopyroxene in individual samples have 

similar Mg# (molar 100*Mg/(Mg+Fe)), and show no core-rim variation. Websterites 

have Mg# ranging from 82-86. Clinopyroxene TiO2 contents of websterites range from 

0.25 – 0.31. Dunites have Mg# ranging from 84 to 90. Spinel in dunites have Mg# 

ranging from 49 to 63 and Cr# varying between 34 and 65.  For comparison, gabbroic 

xenoliths have clinopyroxene Mg# ranging from 73 to 85 (Gao et al., 2016a).  

New Sr-Nd-Pb-Hf-Os-O isotope data are reported in Table 2.2. Clinopyroxene 

from websterites have 87Sr/86Sr = 0.70338 – 0.70358 and 143Nd/144Nd = 0.51289 – 

0.51296. One websterites was also analyzed for whole rock 87Sr/86Sr (0.70336), which is 

consistent with clinopyroxene 87Sr/86Sr (0.70338). This suggests that clinopyroxene have 

isotopic compositions in equilibrium with whole rock. Whole rock 87Sr/86Sr ratios of 

dunite xenoliths range between 0.70355 and 0.70361. For comparison, Hualalai shield-

stage lavas have 87Sr/86Sr = 0.70366 – 0.70380 and 143Nd/144Nd = 0.51285 – 0.51293, 

whereas post-shield-stage lavas have 87Sr/86Sr = 0.70351 – 0.70366 and 143Nd/144Nd = 

0.51290 – 0.51296 (e.g., Yokose et al., 2005; Yamasaki et al., 2009; Hanano et al., 2010). 

Websterite xenoliths have 143Nd/144Nd within the range of Hualalai lavas, but extend to 

lower 87Sr/86Sr. The Sr isotope compositions of dunite xenoliths are within the range of 

post-shield-stage lavas (Fig. 2.1). 
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         63-kap-16              87-kap-4               88-kap-1               87-kap-37               96-kap-19        

 

opx ol cpx opx cpx opx ol sp ol sp 

SiO2 54.61 (.72) 39.96 (.34) 51.21 (.56) 53.43 (.60) 52.27 (.58) 55.74 (.50) 39.65 (.57) 

 

40.12 (.40) 

 
Al2O3 2.93 (.16) 

 

3.30 (.30) 3.25 (.65) 3.16 (.32) 1.92 (.26) 

 

14.58 (.68) 

 

16.13 (.26) 

Na2O 0.11 (.04) 

 

0.68 (.08) 0.07 (.02) 0.42 (.09) 0.10 (.00) 

    
MgO 30.82 (1.16) 46.75 (.23) 16.81 (.28) 29.57 (.22) 19.04 (1.42) 31.71 (.01) 47.06 (.26) 10.59 (.34) 48.36 (.30) 12.16 (.04) 

CaO 2.62 (1.89) 0.07 (.02) 20.42 (.29) 1.52 (.07) 18.68 (1.49) 1.65 (.06) 0.09 (.03) 

 

0.07 (.02) 

 
MnO 0.18 (.02) 0.19 (.03) 0.18 (.04) 0.22 (.02) 0.15 (.03) 0.16 (.01) 0.20 (.02) 0.23 (.02) 0.17 (.02) 0.19 (.03) 

FeO 8.86 (.52) 14.01 (.11) 6.30 (.03) 11.64 (.26) 5.61 (.20) 9.25 (.33) 13.72 (.22) 19.99 (.27) 12.11 (.27) 17.56 (.50) 

Fe2O3 

       

16.22 (.70) 

 

11.95 (.24) 

TiO2 0.20 (.04) 

 

0.31 (.04) 0.19 (.05) 0.25 (.05) 0.10 (.06) 

 

2.40 (.29) 

 

1.91 (.09) 

Cr2O3 0.54 (.05) 

 

0.86 (.12) 0.48 (.12) 0.93 (.23) 0.62 (.04) 

 

36.67 (.10) 

 

41.03 (.45) 

NiO 0.08 (.03) 0.34 (.02) 0.05 (.04) 0.08 (.02) 0.05 (.02) 0.10 (.03) 0.30 (.03) 0.22 (.01) 0.40 (.02) 0.23 (.03) 

Totals 100.96 (.75) 101.33 (.33) 100.12 (.84) 100.46 (.48) 100.56 (.72) 101.36 (.44) 101.02 (.85) 100.90 (.25) 101.26 (.65) 101.17 (1.02) 

Mg# 86.2 (.3) 85.7 (.1) 82.8 (.2) 82.1 (.4) 85.9 (.9) 86.0 (.4) 86.1 (.1) 48.8 (1.1) 87.8 (.2) 55.5 (.8) 

Cr# 

       

65.4 (1.0) 

 

65.5 (.1) 

 

Table 2.1: Major element compositions of Hualalai ultramafic xenoliths. 

Major element contents reported are average of multiple analyses (wt.%). Digits in brackets after concentrations are 1 

s.d. of the mineral population for each sample.
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               87-kap-42           94-kap-5           87-kap-32         96-kap-20            92-kap-2               87-kap-33        

 

cpx ol sp ol ol sp ol ol sp ol sp 

SiO2 50.74 (.56) 39.11 (.36) 

 

39.81 (.53) 39.90 (.22) 

 

39.67 (.55) 39.45 (.41) 

 

39.84 (.15) 

 
Al2O3 4.71 (.44) 

 

32.88 

  

23.40 (1.51) 

  

29.45 (.11) 

 

22.07 (.57) 

Na2O 0.97 (.10) 

          
MgO 17.24 (1.34) 46.67 (.04) 15.11 47.41 (.24) 48.33 (.09) 14.38 (.18) 49.64 (.17) 45.13 (.11) 13.31 (.04) 45.71 (.09) 12.31 (.23) 

CaO 19.10 (1.72) 0.12 (.03) 

 

0.15 (.03) 0.14 (.01) 

 

0.10 (.01) 0.17 (.01) 

 

0.16 (.00) 

 
MnO 0.14 (.02) 0.22 (.03) 0.15 0.17 (.01) 0.15 (.03) 0.17 (.02) 0.18 (.01) 0.22 (.03) 0.19 (.00) 0.26 (.03) 0.20 (.02) 

FeO 5.53 (.43) 14.45 (.31) 16.33 12.55 (.29) 11.25 (.10) 15.52 (.28) 10.50 (.24) 15.73 (.41) 18.56 (.18) 15.49 (.16) 17.87 (.24) 

Fe2O3 

  

10.84 

  

8.86 (.10) 

  

16.92 (.25) 

 

14.07 (1.20) 

TiO2 0.76 (.22) 

 

2.43 

  

2.56 (.14) 

  

2.63 (.00) 

 

1.62 (.24) 

Cr2O3 1.16 (.12) 

 

23.39 

  

34.79 (1.34) 

  

20.11 (.10) 

 

32.45 (.64) 

NiO 0.06 (.02) 0.26 (.04) 0.27 0.45 (.03) 0.43 (.04) 0.34 (.03) 0.43 (.04) 0.30 (.03) 0.30 (.03) 0.23 (.03) 0.23 (.03) 

Totals 100.42 (.22) 100.91 (.07) 101.4 100.57 (.81) 100.27 (.29) 100.02 (.25) 100.53 (.39) 101.08 (.55) 101.46 (.35) 101.74 (.09) 100.83 (.66) 

Mg# 84.9 (.2) 85.3 (.3) 62.5 87.2 (.2) 88.5 (.1) 62.5 (.7) 89.5 (.2) 83.8 (.3) 56.3 (.3) 84.2 (.1) 55.4 (.6) 

Cr# 

  

34.8 

  

52.7 (2.6) 

  

33.9 (.2) 

 

52.4 (.7) 

 

Table 2.1: Major element compositions of Hualalai ultramafic xenoliths (continue). 
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Figure 2.1: Sr-Nd isotope plot. 

The clinopyroxene Sr-Nd isotope compositions of Hualalai gabbroic and 

ultramafic xenoliths are plotted in comparison with Hawaiian lavas, EPR MORBs, and 

basalts from ODP Site 843 (data compiled from GeoRoc and PetDB). Hawaiian shield 

and post-shield stage lavas are shown as Kea-trend and Loa-trend fields. The fields of 

Hualalai shield and post-shield stage lavas are also drawn for comparison. Hawaiian 

rejuvenated-stage lavas from Niihau, Haleakala, Kauai, Molokai, and Koolau are shown 

with purple symbols.  
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Three gabbros with Hualalai-like Sr-Nd isotope compositions (Hualalai-derived 

cumulate, Gao et al., 2016a) have plagioclase Pb isotope compositions (206Pb/204Pb = 

17.974-18.010, 207Pb/204Pb = 15.437-15.447, 208Pb/204Pb = 37.736-37.755) similar to 

Hualalai post-shield lavas (e.g., 206Pb/204Pb = 17.891-18.011; Hanano et al., 2010). One 

cumulate gabbro has anomalously high 206Pb/204Pb (206Pb/204Pb = 18.327, 207Pb/204Pb = 

15.421, 208Pb/204Pb = 37.772; Fig. 2.2). Most gabbros with depleted, MORB-like Sr-Nd 

isotope compositions (LOC-derived, Gao et al., 2016a) span a range of plagioclase Pb 

compositions (206Pb/204Pb = 18.016-18.272, 207Pb/204Pb = 15.445-15.497, 208Pb/204Pb = 

37.610-37.981) that fall between EPR basalts and Hawaiian lavas. The Pb isotope 

compositions of leachates are reported in Table S2.1. Leachates are more radiogenic than 

leached samples, and have particularly high 207Pb/204Pb ratios. This is consistent with the 

unleached-leached paring whole rock analyses by Lassiter and Hauri (1998). Similar to 

the leachates, two LOC-derived gabbros also have high 207Pb/204Pb (15.588 and 15.593, 

respectively) (Fig. 2.2).  

Clinopyroxene from most Hualalai-derived 2-pyroxene gabbros have εHf ranging 

from 8.8 to 10.9, whereas one sample has high εHf of 20.7. Clinopyroxene from 1-

pyroxene gabbros have εHf varying between 10.9 and 13.3. Clinopyroxene from LOC-

derived gabbros have εHf ranging from 11.7 to 18.6, which positively correlates with 

176Lu/177Hf but displays significant scatter (Fig. S2.1a). 

Hualalai-derived xenoliths span a narrow range of Os isotope compositions 

(187Os/188Os = 0.133 – 0.138; Fig. 2.3), which is similar to Hualalai lavas (187Os/188Os = 

0.134 – 0.138), and within the range of “Loa trend” lavas (187Os/188Os = 0.132 – 0.146; 

e.g., Hauri et al., 1996; Lassiter & Hauri, 1998). LOC gabbros have highly radiogenic Os 

(187Os/188Os = 0.212-0.634) that positively correlates with 187Re/188Os (Fig. S2.1b). 
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Figure 2.2: Pb isotope plot. 

The plagioclase Pb isotope compositions of Hualalai xenoliths are compared with 

Hawaiian lavas, EPR MORBs, and basalts from ODP Site 843 (data compiled from 

GeoRoc and PetDB). Hualalai xenolith leachate compositions are also plotted for 

comparison. 
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Rock 

Type 

An  

(plag) 

87Sr/86Sr 

(cpx/wr) 

143Nd/144Nd 

(cpx) 

Lu 

(cpx) 

Hf 

(cpx) 

176Hf/177Hf 

(cpx) 

206Pb/204Pb 

(plag) 

207Pb/204Pb 

(plag) 

208Pb/204Pb 

(plag) 

Δ8/4 

(plag) 

δ18O 

(ol) 

Re 

(wr) 

Os 

(wr) 

187Os/188Os 

(wr) 

LOC 
 

63kap-3 G 86.4 
     

18.090 15.488 37.760 26.1 
    

65kap-14d* G 97.7 
     

18.085 15.479 37.610  
 

0.82 24 0.563 

63kap-13** G 85.4 
  

0.1 0.3 0.283223 18.213 15.483 37.810  
  

18 0.395 

65kap-13 G 76.9 
  

0.1 0.3 0.283153 18.162 15.491 37.783 19.9 
 

0.16 15 0.285 

65kap-14a* G 97.7 
     

18.051 15.588 37.950  
 

0.83 33 0.634 

65kap-14a (dup)             1.00**   

83kap-9 G 83.2 
     

18.171 15.497 37.739 14.3 
 

0.39 25 0.448 

83kap-9 (dup)             0.47** 38  

94kap-7* G 96.8 
     

18.272 15.593 37.995  
 

0.58 19 0.630 

94kap-7 (dup)*        18.316 15.584 38.002   0.86** 16  

96kap-7 G 64.5 
  

0.2 0.4 0.283299 18.059 15.458 37.631 17.1 
    

83kap-8** G 83.6 
     

18.173 15.445 37.761  
    

65-7-133 G 78.6 
  

0.2 0.6 0.283236 18.160 15.447 37.812 23.0 
    

65-60-32 G 70.2 
  

0.4 1.0 0.283087 
   

 
    

88kap-2 G 80.5 
        

 
    

87kap-14 G 61.7 
  

0.2 0.4 0.283248 
   

 
    

87kap-10 G 93.7 
  

0.1 0.2 0.283292 
   

 
    

65-61-26 G 79.3 
  

0.2 0.8 0.283102 18.195 15.468 37.981 35.6 
 

0.31 18 0.370 

65-61-26 (dup)             0.34** 24  

65-86-64 G 65.6 
  

0.2 0.4 0.283201 18.016 15.449 37.726 31.8 
 

0.19 25 0.212 

65-86-64 (dup)      0.3 0.283177         

Hualalai post-shield 
 

63kap-7* G 73.2 
  

   

17.974 15.447 37.750  
 

  
 

65-86-92 G 83.1 
  

0.1 0.9 0.283080 
   

 
 

0.36 1001 0.1340 

65-109-146abc G 79.0 
  

0.1 1.2 0.283148 
   

 
 

  
 

65-60-221 G 57.1 
  

0.3 3.3 0.283090 
   

 
 

  
 

65-100-110 G 67.5 
  

   

18.010 15.444 37.755 35.4 
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Hualalai shield 
 

87kap-37 D 
 

0.703605w 
 

   
   

 5.3 
 

393 0.1337 

96kap-19 D 
 

0.703548w 
 

   
   

 5.3 0.02 3590 0.1345 

87kap-42 D 
 

0.703557w 
 

   
   

 5.1, 5.3 0.19 1752 0.1353 

94kap-5 D 
   

   
   

 5.3 
 

410 0.1341 

87kap-32 D 
 

0.703591w 
 

   
   

 5.5 0.05 297 0.1326 

96kap-20 D 
   

   
   

 
 

0.03 648 0.1341 

92kap-2 D 
   

   
   

 5.4 
 

439 0.1345 

87kap-33 D 
 

0.703598w 
 

   
   

 5.4 2.16 1070 0.1344 

63kap-15 G 61.4 
  

0.2 1.2 0.283357 18.327 15.421 37.772 -1.2 
 

1.21 138 0.1320 

63kap-15 (dup)        18.319 15.404 37.725 -4.8     

65-115-10 G 71.4 
  

0.1 2.0 0.283080 18.008 15.437 37.736 33.8 
 

0.08 63 0.1370 

65-60-17 G 

   

0.1 1.1 0.283139 

   

 

   
 

84-1801-5 G 67.9 
  

0.1 0.2 0.283071 
   

 
 

  
 

84-1801-5 (dup)      0.2 0.283030         

87kap-11 G 65.4 
  

0.1 0.4 0.283033 
   

 
 

0.09 363 0.1360 

63kap-16 W 

 

0.703384c 0.512893 
      

 5.6 0.09 104 0.1356 

63kap-16 (dup)   0.703362w             

87kap-4 W 

 

0.703550c 0.512912 
      

 5.3, 5.5 0.42 538 0.1363 

65-114-105 W 

 

0.703569c 0.512955 
      

 5.3, 5.3 0.17 1425 0.1335 

88kap-1 W   0.703576c 0.512896                1.14 19 0.1385 

Table 2.2: Sr-Nd-Pb-Hf-Os-O isotope data of Hualalai mafic and ultramafic xenoliths. 

* Standard corrected Pb isotope data. ** Re concentrations measured at University of Bonn. c Sr isotopes measured on 

cpx. w Sr isotopes measured on whole rock. G - gabbro, D – dunite, W – websterites. Lu and Hf concentrations are in ppm; Re 

concentrations are in ppb; Os concentrations are in ppt. 
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Olivines from the websterite xenoliths have δ18O values range from +5.3 to 

+5.6‰. Dunites have olivine δ18O values range from +5.2 to +5.5‰. Their narrow ranges 

of oxygen isotope compositions are largely consistent with Hualalai lavas (δ18Ool = +5.3 

to +5.4‰; Eiler et al., 1996). 

2.4 DISCUSSION 

2.4.1 Effects of crustal storage and melt-crust interaction on Hualalai magmas 

The compositional variations of Hawaiian lavas have been widely used to infer 

heterogeneities within the plume source. However, Hawaiian magmas have transported 

through and ponded within the Pacific lithosphere (e.g., Bohrson, 2007 and references 

therein). Small-scale heterogeneities may be obscured in erupted lavas, because discrete 

melt batches with distinct compositions may be mixed and homogenized during magma 

ponding. In addition, the composition of erupted lavas may have been overprinted as the 

result of assimilating Pacific lithosphere that is isotopically distinct from Hawaiian 

magmas. Therefore, in order to make proper interpretation of the compositional 

variations of Hawaiian lavas, it is necessary to evaluate the effects of crustal storage and 

melt-crust interaction on Hawaiian magmas. 

The majority of Hualalai xenoliths are cumulates formed by fractional 

crystallization of Hualalai magmas during ponding within crustal reservoirs (e.g., Clague, 

1987). Hualalai cumulate xenoliths include a variety of lithologies, which likely result 

from crystallization of different magma types at various depths. These cumulate xenoliths 

thus can provide more information on the compositional variability of discrete melt 

batches than erupted lavas. The significance of magma mixing and homogenization may 

be constrained by comparing the compositional variability of cumulate xenoliths with 

that of erupted lavas. In addition, if Hualalai melts have assimilated wall materials during 
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magma ponding and fractional crystallization, signatures of coupled assimilation and 

fractional crystallization (AFC) should be recorded in cumulate xenoliths. In the 

following discussion, we first discussed the origins (parental magma and depth of 

fractionation) of Hualalai cumulate xenoliths. The geochemical variations of these 

cumulate xenoliths are then used to evaluate the role of magma mixing and crustal 

assimilation in the evolution of Hualalai melt compositions. 

2.4.1.1 Origins of Hualalai xenoliths 

Hualalai volcano has evolved through a shield stage that is dominated by tholeiitic 

basalt eruption, and a post-shield stage characterized by alkali basalt eruption. The 

magma plumbing systems of Hawaiian volcanoes also evolve over time. A shallow-level 

reservoir within the volcanic edifice has been detected by seismic imaging at Hawaiian 

shield-stage volcanoes (e.g., Mauna Loa and Kilauea; Okubo et al., 1997). Some studies 

argue that a deep magma reservoir also exists during the shield stage (e.g., Clague, 1987; 

Vazquez et al., 2007; Gao et al., 2016a), whereas other studies suggest that there is only 

one shallow reservoir (e.g., Frey et al., 1990; Shamberger and Hammer, 2006). During 

the post-shield stage, decreasing magma supply leads to solidification of the shallow 

reservoir. The presence of LOC gabbroic xenoliths in post-shield-stage lavas suggests 

deep magma reservoirs exist within or at the base of LOC during the post-shield stage 

(e.g., Bohrson, 2007 and references therein). Therefore, Hualalai cumulate xenoliths may 

be crystallized from either shield-stage tholeiitic magma or post-shield-stage alkalic 

magma at a range of depths. Here we discuss the origins of Hualalai xenoliths by 

combining (1) xenolith composition and lithology; (2) MELTS thermodynamic models 

(Ghiorso and Sack, 1995); and (3) comparison with previous interpretations of the origins 

of Hualalai mafic and ultramafic xenoliths (Table 2.3).
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Lithology Shield stage? Post-shield stage? P/T constraints 

1-pyx 

gabbros 
 

Lack orthopyroxene 

High clinopyroxene TiO2 contents 

(e.g., B&C, 1988; F&G, 1997) 

 

2-pyx 

gabbros 

Presence of orthopyroxene 

Low clinopyroxene TiO2 contents 

(e.g., B&C, 1988; F&G, 1997) 

 

1007 – 1069°C; ~1 – 5, mostly ~3 kbar 

(S&H, 2006) 

942 – 1075°C, ~2.5 – 5 kbar (Gao, 2016) 

Websterites 

Presence of orthopyroxene 

Low clinopyroxene TiO2 contents 

(e.g., B&C, 1988; F&G, 1997) 

 1225 – 1350°C, 4.5 – 9 kbar (B&C, 1988) 

Dunite 

Presence of orthopyroxene 

MELTS modeling: major liquidus phase 

Cross-cutting by websterite vein 

Spinel Cr#, clinopyroxene 87Sr/86Sr and 

whole-rock 3He/4He similar to post-shield 

lavas (Chen, 1992) 

<2.8 kbar (Roedder, 1965; C&B, 1991) 

<2 kbar (this study) 

 

Table 2.3: Origins of Hualalai cumulate xenoliths. 

Summary of interpretations of the parental magmas and fractional crystallization depths of Hualalai cumulate xenolith.



 58 

The majority of xenoliths from the c.a. 1800-1801 Kaupulehu flow are cumulates 

derived from Hualalai magmas, except that a small subset represents fragments of ancient 

Pacific LOC gabbro layer (e.g., Clague, 1987; Lassiter and Hauri, 1998; Gao et al., 

2016a). Sixteen of the 2-pyroxene gabbros examined in this study are characterized by 

depleted Sr-Nd isotope compositions and depleted light rare earth element (LREE) 

patterns that are similar to oceanic crust cumulate, but distinct from Hawaiian lavas (Gao 

et al., 2016a). These gabbros also have highly radiogenic Os isotope compositions 

(187Os/188Os = 0.212-0.634) that are positively correlated with 187Re/188Os. This is 

consistent with ingrowth of 187Os through radiogenic decay of 187Re over time. All these 

features indicate that these 2-pyroxene gabbros derive from ancient Pacific LOC beneath 

the Hawaiian Islands. In contrast, all the other 2-pyroxene gabbros, 1-pyroxene gabbros, 

dunites, and websterites examined have Sr, Nd and Os isotope compositions similar to 

Hawaiian lavas (Gao et al., 2016a and this study). In addition, clinopyroxene from these 

gabbros have rare earth element concentrations that are in equilibrium with Hualalai-

lava-like melts (Gao et al., 2016a). These xenoliths are therefore most likely cumulates 

derived from Hualalai magmas. In this section, we will only concentrate on discussing 

the origins of the cumulate xenoliths. Therefore, the depleted 2-pyroxene gabbros will be 

referred to as LOC-derived gabbros, whereas 2-pyxroxene gabbros only refer to Hualalai-

derived cumulate gabbros in the following discussion. 

The shield- versus post-shield-stage origins of Hualalai cumulate xenoliths can be 

inferred from their petrology and mineral compositions. Presence of orthopyroxene 

suggests that the parental magma is silica-saturated, and therefore indicates tholeiitic 

origin (e.g., Bohrson and Clague, 1988; Fodor and Galar, 1997; Shamberger and 

Hammer, 2006). In addition, silica-saturated tholeiitic magma-derived clinopyroxene is 

characterized by lower TiO2 contents at a given Mg# than alkalic magma-derived 
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clinopyroxene (e.g., Clague and Bohrson, 1991; Fodro and Galar, 1997). Therefore, 2-

pyroxene gabbros and websterites that contain orthopyroxene and have relatively low 

TiO2 content most likely derive from tholeiitic shield-stage magmas (Fig. 2.3).  

Websterites appear to derive from greater depths than 2-pyroxene gabbros. 

Bohrson and Clague (1988) examined the textures of websterite xenoliths to extract 

information of mineral crystallization sequence, which was compared to the results of 

fractional crystallization experiments conducted at a range of pressures. They argued that 

first crystallization of olivine followed by orthopyroxene is consistent with fractionation 

of websterites between ~4.5-9 kbar (Bohrson and Clague, 1988). Shamberger and 

Hammer (2006) suggested 2-pyroxene gabbros were crystallized at lower pressures (~1-5 

kbar, mostly 3 kbar) based on clinopyroxene geobarometry (Nimis, 1999). Gao et al 

(2016a) also suggested similar crystallization depths (~2.5 – 5 kbar) for 2-pyroxene 

gabbros based on comparing the mineral compositions of 2-pyroxene gabbros with 

MELTS models. 

The higher inferred crystallization pressures of websterites compared to those 

gabbros indicate that websterites may crystallize earlier and cumulate deeper than 2-

pyroxene gabbros. This is consistent with 2-pyrxoene gabbros extending to lower 

Mg#(78-83; Gao et al., 2016a) than websterites (Mg# = 83-87). This is also in agreement 

with the higher sub-solidus equilibrium temperatures recorded in websterites. Two-

pyroxene thermometer suggests websterite xenoliths were last equilibrated at 

temperatures of ~1045-1090 °C (Bohrson and Clague, 1988). Two-pyroxene gabbros 

record subsolidus 2-pyroxene equilibration temperatures of ~942–1075°C (Gao et al., 

2016a). QUIF thermometry (Lindsley and Frost, 1992; Andersen et al., 1993) also 

suggested similar equilibrium temperature of ~1007 – 1069°C for 2-pyroxene gabbros 

(Shamberger and Hammer, 2006). 
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Figure 2.3: Mg# versus TiO2 content of clinopyroxene. 

The alkali versus tholeiitic divide is based on the compositions of clinopyroxene 

phenocryst in Hualalai tholeiitic shild-stage and alkalic post-shield-stage lavas following 

Clague and Bohrson (1991). Dashed line marks the range of clinopyroxene composition 

of dunite xenoliths in the Kaupulehu flow (Clague and Bohrson, 1991).
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In contrast, 1-pyroxene gabbros most likely derive from fractional crystallization 

of post-shield-stage alkalic magmas within LOC reservoirs. One-pyroxene gabbros lack 

orthopyroxene, and have relatively high clinopyroxene TiO2 content. These features are 

consistent with derivation from alkalic magmas (Gao et al., 2016a). During the post-

shield stage, the shallow edifice reservoir existed during shield-stage is solidified, as the 

result of decreasing magma supply rate. Only the deep, LOC reservoir maintains. 

Therefore, 1-pyroxene gabbros are most likely crystallized at LOC depths. 

The parental magma of dunite xenoliths is less straightforward. Chen et al (1992) 

suggested that dunites derive from alkalic post-shield-stage magmas. This interpretation 

was based on dunite xenoliths have similar spinel Cr# (molar 100*Cr/(Cr+Al), ~20-70) 

as phenocrysts in post-shield-stage lavas (~30 – 60). In addition, dunite whole rock 

3He/4He values (8.6 – 9.6 Ra) are consistent with post-shield-stage lavas (7.84 – 9.84 Ra), 

but significantly lower than shield-stage lavas (14.4 – 17.6 Ra). Finally, clinopyroxene 

separates of dunites have 87Sr/86Sr (0.70348 – 0.70361) within the range of post-shield-

stage lavas (0.70351 – 0.70366) (Chen et al., 1992).  Our measurements of dunite 

whole-rock 87Sr/86Sr (0.70355 - 0.70361) are also consistent with post-shield-stage lavas.  

However, Chen et al (1992) also documented a dunite xenolith containing 

orthopyroxene, which would suggest derivation from tholeiitic magma. In addition, the 

wide range of forsterite content (Fo = 83 – 90) observed in the dunite xenoliths suggests 

protracted fractional crystallization of mainly olivine over a wide temperature range. This 

is consistent with fractionation of tholeiitic magmas at relatively low pressure as 

suggested by MELTS thermodynamic models (Ghioro and Sack, 1995). In order to 

constrain the origin of dunite xenoliths, we modeled fractional crystallization of Hualalai 

tholeiitic and alkali magmas using MELTS. Hualalai tholeiite KK-14-5 and average 1800 

alkalic basalt are used as start melts (Bohrson and Clague, 1988). Water content was 
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initiated at 0.4 wt.%. Oxygen buffer was initiated at NNO and allowed to proceed 

unbuffered. Isobaric fractional crystallization of the primitive melts was modeled over a 

pressure range of 1-8 kbar. MELTS modeling results suggest fractional crystallization of 

primary olivine over an extended range of temperature only occurs for tholeiite at 

relatively low pressures (<2 kabr; Fig. 2.4). Moreover, Hualalai dunites are more likely 

formed during shield-stage based on the field observation that some dunites are cut 

orthopyroxenite veins (personal conversation with Clague). Such crosscutting 

relationship indicates that formation of these dunites preceded the formation of the 

orthopyroxenite veins, which most likely derived from shield-stage tholeiitic magmas. 

Therefore, dunites are also likely formed during shield stage. 

Combined together, these approaches provide constraints on the origins (parental 

magmas and formation depths) of Hualalai cumulate xenoliths. One-pyroxene gabbros 

most likely derive from fractional crystallization of post-shield-stage magmas at LOC 

depths (e.g., Gao et al., 2016a). Dunites, 2-pyroxene gabbros and websterites are likely 

cumulates crystallized from shiled-stage magmas at various depths, and therefore provide 

us a slice through the plumbing system during the shield stage. The following discussion 

is based on the xenolith classification described here. 
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Figure 2.4: MELTS modeling results – phase diagrams. 
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2.4.1.2 Hualalai magma mixing and crustal contamination? 

Hualalai cumulates show a range of isotope compositions that are similar but not 

identical to Hualalai lavas. Hualalai lavas show temporal variations of isotopic 

compositions. Shield-stage lavas are characterized by systematically more enriched Sr-

Nd isotope compositions than post-shield-stage lavas (e.g., Yokose et al., 2005; 

Yamasaki et al., 2009). Post-shield stage cumulates (1-pyroxene gabbros) have Sr-Nd 

isotope compositions within the range of post-shield-stage lavas (Gao et al., 2016a). In 

contrast, shield-stage cumulates span a wider range of Sr-Nd isotope compositions 

compared to shield-stage lavas. For example, webseterites have 87Sr/86Sr extending to as 

low as 0.70331, whereas Hualalai shield-stage lavas have 87Sr/86Sr ranging between 

0.70366 and 0.70380. 

The greater isotopic variability in cumulates may reflect either better preservation 

of primitive, small-scale heterogeneities of Hawaiian plume-derived melts, or higher 

degree of crustal contamination recorded. In the first case, because magma mixing and 

homogenization usually couple with protracted fractional crystallization within magma 

reservoirs, more evolved lavas/cumulates (lower Mg#) are expected to display less 

isotopic variations (e.g., Rubin et al., 2010). In contrast, in the second case, higher degree 

of crustal contamination is expected to be observed in more evolved lavas and cumulates. 

Therefore, examining the correlations between the index of fractionation and isotopic 

compositions in lavas and cumulates can help constrain the significance of magma 

mixing and crustal contamination. Neither shield-stage nor post-shield-stage Hualalai 

lavas show any systematic variations in Sr-Nd isotope compositions correlated with 

whole rock Mg#. Therefore, in the discussion below, we will focus on examining the 

compositional variations in cumulate xenoliths, which provides snapshot of Hualalai 
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magma compositions at different stages and depths, to place constraints on the evolution 

of Hualalai magmas. 

Different types of Hualalai cumulate xenoliths have different characteristics of 

isotopic compositions. As mentioned above, 1-pyroxene gabbros have relatively uniform 

isotope compositions: 87Sr/86Srcpx = 0.70357 – 0.70364, 143Nd/144Ndcpx = 0.51290 – 

0.51294 and δ18Oplag = +6.1 to +6.2‰ (Gao et al., 2016a). Their compositions are 

consistent with post-shield stage lavas (87Sr/86Sr = 0.70351 – 0.70366, 143Nd/144Nd = 

0.51290 – 0.51296; δ18Ool = +5.3 to +5.4‰; e.g., Hanano et al., 2010; Eiler et al., 1996). 

Dunites also have similar uniform isotope compositions (87Sr/86Srcpx = 0.70348 – 

0.70361, 87Sr/86Srwr = 0.70355 - 0.70361, 143Nd/144Ndcpx = 0.51293 – 0.51298, and δ18Ool 

= +5.2 to +5.4‰; Chen et al., 1992 and this study). In contrast, websterites are 

characterized by heterogeneous Sr isotope compositions extending to lower 87Sr/86Sr than 

any Hualalai lavas, but relatively uniform Nd and O isotope compositions (87Sr/86Srcpx = 

0.70331 – 0.70358, 143Nd/144Ndcpx = 0.51289 – 0.51296, and δ18Ool = +5.3 to +5.6‰). 

Finally, 2-pyroxene gabbros extend to higher 87Sr/86Srcpx (0.70359 – 0.70376; Gao et al., 

2016a) than websterites and dunite, and have heterogeneous Nd isotope compositions 

(143Nd/144Ndcpx = 0.51285 – 0.51306; Fig. 2.5). Both the Sr and Nd isotope compositions 

of 2-pyroxene gabbros are more heterogeneous than Hualalai shield-stage lavas. Given 

Hualalai volcano is a “Loa-trend” volcano, the most striking feature of 2-pyroxene 

gabbros is that they possess low δ18O values (δ18Ocpx = +4.9 to +5.4‰, δ18Oplag = +5.2 to 

+6.3‰) that are a characteristic of Hawaiian “Kea-trend” lavas (Fig. 2.6). The Os isotope 

compositions of 2-pyroxene (187Os/188Os = 0.132 – 0.136) and websterites (187Os/188Os = 

0.134 – 0.139) are also more heterogeneous than dunites (187Os/188Os = 0.133 – 0.135; 

Fig. 2.7). 
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Figure 2.5: Sr-Nd isotope compositions versus Mg#. 

Gabbro data is from Gao et al. (2016a), wehrlite and clinopyroxenite data is from 

Chen et al. (1992). The compositional ranges of Hualalai shield- and post-shield-stage 

lavas are also plotted for comparison (data compiled from GeoRoc database). 
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Figure 2.6: Oxygen isotope systematics of Hualalai xenoliths. 

The compositional range of Loa-trend lavas, Kea-trend lavas and Hualalai shield 

stage lavas (grey field) are also shown for comparison (data compiled from GeoRoc 

database). 
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Figure 2.7: Osmium isotope systematics of Hualalai xenoliths. 

Dashed diamond shows that age corrected Os isotope composition (assuming an 

age of ~500 kyr for shield-stage xenolith fractionation). Age correction has minor effect 

on most samples except on websterites with high Re/Os ratio. The compositional range of 

Loa-trend and Kea-trend lavas are also shown for comparison (data compiled from 

GeoRoc database). 
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Post-shield-stage xenoliths show evidence of AFC processes. We compiled 

literature data of post-shield-stage gabbro, wehrlite and clinopyroxenite xenoliths, which 

are mostly likely post-shield-stage xenoliths because of lacking orthopyroxene (Chen et 

al., 1992; Gao et al., 2016a). These xenoliths show negative correlation between 

clinopyroxene 87Sr/86Sr and Mg#, and positive correlation between 144Nd/143Nd and Mg# 

(Fig. 2.5). These correlations suggest that post-shield stage magmas fractionated while 

assimilating materials with higher 87Sr/86Sr and lower 144Nd/143Nd. This is consistent with 

assimilating earlier Hualalai shield-stage produces that have more enriched Sr-Nd isotope 

compositions than post-shield-stage magmas (e.g., Yamasaki et al., 2009). 

The relatively homogeneous isotope compositions of dunite xenoliths may be the 

result of magma mixing. As discussed in previous section, Hualalai shield-stage 

cumulates may be formed at a range of different depths. Dunites are most likely formed 

at shallow depths (<2 kbar), whereas 2-pyroxene gabbros appear to have crystallized 

within oceanic crust (~2.5 – 5 kbar; Gao et al., 2016a), and webseterites likely derived 

from the greatest depths (~4.5 – 9 kbar; Bohrson and Clauge, 1988). Therefore, it is 

reasonable to postulate that dunites are cumulates formed in a shallow reservoir within 

volcano edifice, whereas 2-pyroxene gabbros and websterites are cumulates formed with 

a deep reservoir within oceanic crust. If magmas ponded in the shallow reservoir were 

fed from the deep reservoir, longer history of mixing and homogenization of discrete 

magma batches would result in more homogenized magma compositions in the shallower 

reservoir. Then the more homogeneous compositions of dunite xenoliths compared 2-

pyroxene gabbros and websterites are consistent with this scenario. 

The more heterogeneous isotope compositions of 2-pyroxene gabbros and 

websterites compared to shield-stage lavas may be due to greater degrees of crustal 

contamination recorded in the cumulates. Websterites have systematically higher Mg#, 
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and lower 87Sr/86Sr than 2-pyroxene gabbros. Therefore, overall there appear to be a 

negative correlation between the Mg# and Sr isotope compositions of these cumulates (n 

= 10, r = 0.83; Fig. 2.5a). This is consistent with fractional crystallization while 

assimilating materials with higher 87Sr/86Sr than shield-stage magmas. 

In addition, 2-pyroxene gabbros have lower δ18O values than websterites. Gao et 

al. (2016a) reported δ18O values of clinopyroxene and plagioclase from the shield-stage 

gabbros (δ18Oplag = +5.2 to +6.3‰, δ18Ocpx = +4.9 to +5.4‰). In this study, the oxygen 

isotope compositions of websterites are measured on olivine separates (δ18Ool = +5.3 to 

+5.6‰). In order to compare the oxygen isotope compositions of the gabbros and 

websterites, we assume Δcpx-ol = +0.3‰ and Δplag-ol = +0.8‰ (Mattey et al., 1994; Eiler et 

al., 2001). When only clinopyroxene or plagioclase δ18O values are available, the 

equilibrium olivine δ18O values are calculated using the assumed Δcpx-ol and Δplag-ol. When 

both clinopyroxene and plagioclase δ18O values are available are available, the average of 

calculated olivine δ18O values using Δcpx-ol and Δplag-ol is used for comparison. Under this 

assumption, the shield-stage gabbros have equilibrium olivine δ18O values ranging from 

+4.4 to +5.3‰. Then the oxygen isotope compositions of 2-pyroxene gabbros and 

websterites show broad positive correlation with clinopyroxene Mg# (n = 8, r = 0.61; Fig. 

2.6a), and negative correlation with clinopyroxene 87Sr/86Sr (n = 7, r = 0.57; Fig. 2.6b).  

Combined together, these correlations appear to be consistent with an AFC 

process where the contaminant is characterized by lower δ18O values and higher 87Sr/86Sr 

than Hualalai shield-stage magmas. These features would be consistent with 

hydrothermally altered lower oceanic crust. However, all LOC xenoliths discovered at 

the Hualalai volcano have fresh MORB-like Sr and O isotope compositions, which 

indicate minimal hydrothermal alteration. Therefore, it is difficult to explain the 
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compositional variations in the 2-pyroxene gabbros and websterites as the result of 

assimilating in situ Pacific LOC. 

Alternatively, the different isotope compositions of different xenolith types may 

be primitive, and reflect evolution of primary Hualalai magma compositions at different 

times and/or conditions. During the evolution of Hualalai volcanism, magma supply rates 

and degrees of partial melting of the Hawaiian plume source vary over time (e.g., Clague, 

1987). It is widely accepted that the Hawaiian plume is highly heterogeneous in turns of 

both isotopic compositions and lithologies (e.g., Lassiter and Hauri, 1998; Huang et al., 

2013; Hoffman et al., 2013). Varied degrees of partial melting can result in changing melt 

compositions. Meanwhile, coupled variations in magma supply rates can lead to 

structural transform of magma plumbing system and fractional crystallization of different 

type of cumulates at different P/T conditions. In this case, the various isotope 

compositions and degrees of fractionation observed in different xenolith types is just the 

coincidental result of such processes. This is highly possible because correlations 

between Mg# and isotope ratios are not observed in any of the individual xenolith types. 

If this is true, the wide range of isotopic compositions observed in 2-pyroxene gabbros 

and websterites indicates that the heterogeneities of Hualalai magma compositions have 

been damped out in erupted lavas, but preserved in cumulate xenoliths. 

2.4.3 Effects of crustal storage and melt-crust interaction on Pacific lithosphere: 

Implications for the origin of Hawaiian rejuvenated-stage lavas 

Small volumes of rejuvenated-stage lavas erupted semi-synchronously (within the 

last 1 Myr) at six older Hawaiian volcanoes and the North Arch volcanic field (Kaula, 

Niihau, Kauai, Oahu, east Molokai and west Maui; e.g., Ozawa et al., 2005). The high 

MgO contents of these lavas (>10%; Clague & Frey, 1982) and the high forsterite 

contents of their olivines (86-89) indicate that rejuvenated-stage magmas are relatively 
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primitive (Maaløe et al., 1992). Rejuvenated-stage lavas span a relatively restricted range 

of Sr-Nd-Hf isotope compositions that are more depleted compared to the underlying 

shield and post-shield lavas (e.g., Lassiter et al., 2000; Frey et al., 2005; Fekiacova et al., 

2007). In contrast, they are more enriched in incompatible trace elements than shield and 

post-shield lavas (e.g., Clague & Dalrymple, 1988; Garcia et al., 2010). Rejuvenated-

stage lavas are also characterized by radiogenic Os isotope compositions (e.g., Lassiter et 

al., 2000). 

The origin of Hawaiian rejuvenated volcanism has long been debated. Many early 

studies related the depleted Sr-Nd-Hf isotope compositions of rejuvenated-stage lavas to 

reflect partial melting of oceanic lithosphere that has been heated from below by the 

Hawaiian plume (e.g., Chen & Frey, 1985; Lassiter et al., 2000; Yang et al., 2003). For 

example, Lassiter et al. (2000) suggested that rejuvenated-stage lavas derive from melting 

of petrologically heterogeneous Pacific lithospheric mantle that contains high-187Os/188Os 

pyroxenite veins. Alternatively, Yang et al. (2003) proposed that the enriched trace 

element and depleted Sr-Nd isotope compositions of rejuvenated-stage lavas are best 

explained by derivation from depleted lithosphere that has been recently metasomatized 

by incipient low-degree melt from the Hawaiian plume. 

In contrast, many recent studies argue that there are systematic differences 

between the isotopic compositions of Hawaiian rejuvenated-stage magmas and Pacific 

lithosphere, based on the isotopic compositions of basalts from EPR and ODP Site 843 

(e.g., Fekiacova et al., 2007; Bizimis et al., 2013). Overall, at a given 206Pb/204Pb, 

rejuvenated-stage lavas have higher 87Sr/86Sr and 208Pb/204Pb but lower 143Nd/144Nd and 

207Pb/204Pb than both EPR MORBs and ODP 843 basalts (e.g., Fekiacova et al., 2007; 

Garcia et al., 2010). In addition, the 206Pb/204Pb-207Pb/204Pb array defined by rejuvenated-

stage lavas does not intersect with the field of ODP 843 (e.g., Fekiacova et al., 2007). 
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Therefore, it was argued that Pacific lithosphere could be neither the source nor one 

endmember component of Hawaiian rejuvenated-stage lavas, and that the depleted source 

of rejuvenated-stage lavas is intrinsic to the Hawaiian plume (e.g., Frey et al., 2005; 

Garcia et al., 2010; Bizimis et al., 2013). Here we examine the Sr-Nd-Hf-Pb-Os isotope 

compositions of in situ LOC gabbros to compare the compositions of the in situ Pacific 

lithosphere to Hawaiian rejuvenated-stage lavas. 

Clinopyroxenes in some LOC gabbros have higher 87Sr/86Sr than co-existing 

plagioclase (Δ87Sr/86Srcpx-plag up to 0.0008; Gao et al., 2016a). One LOC gabbro even has 

clinopyroxene Sr-Nd isotope compositions (87Sr/86Srcpx = 0.7036, 143Nd/144Ndcpx = 

0.5130) similar to the most enriched rejuvenated-stage lavas (Fig. 2.1). Previous study 

interpreted the Sr isotope disequilibrium between clinopyroxene and plagioclase in LOC 

gabbros as results of interaction with Hawaiian plume magmas (Gao et al., 2016a). A 

simple binary mixing model suggested the range of Sr-Nd isotope compositions observed 

in Hualalai LOC gabbros may be accounted for by mixing with up to ~10% Hualalai 

melts (Gao et al., 2016a). Therefore, the compositions of in situ Pacific lithospheric LOC 

may have been modified by Hawaiian shield- and post-shield-stage melts percolating 

through the Pacific lithosphere. 

As to LOC, this process has significant affected the Sr-Nd isotope compositions 

of clinopyroxene, but has minor effect on the Sr isotope composition of plagioclase. This 

is because plagioclase has high Sr concentrations, and therefore is more resistant to 

modification by melt-crust interaction. Depleted MORB mantle (DMM) on average has 

Sr concentration of 7.66 ppm and Nd concentration of 0.58 ppm (Walkman & Hart, 

2005). These concentrations are similar to the Sr and Nd concentrations in 

clinopyroxenes from LOC gabbros. Therefore, similar to the clinopyroxenes that have 

been modified by melt-crust interaction, melt-metasomatized lithospheric mantle beneath 
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the Hawaiian Islands may also have Sr-Nd isotope compositions similar to rejuvenated-

stage lavas. 

One of the main pieces of evidence against derivation of Hawaiian rejuvenated 

volcanism from Pacific lithosphere is the Pb isotope systematics of basalts from EPR and 

ODP Site 843 (e.g., Fekiacova et al., 2007; Garcia et al., 2010; Bizimis et al., 2013). For 

example, ODP 843 basalts have more radiogenic Pb isotope compositions than Hawaiian 

rejuvenated-stage lavas (e.g., King et al., 1999; Fekiacova et al., 2007; Fig. 2.2). In 

addition, rejuvenated-stage lavas have higher 208Pb/204Pb and lower 207Pb/204Pb at a given 

206Pb/204Pb than EPR and ODP 843 basalts (e.g., Fekiacova et al., 2007; Garcia et al., 

2010; Fig. 2.2). However, plagioclases from in situ LOC gabbros have systematically less 

radiogenic Pb isotope compositions than ODP 843 basalts. Moreover, compared to EPR 

MORBs and ODP 843 basalts, many Hualalai LOC gabbros have higher 208Pb/204Pb and 

lower 207Pb/204Pb at a given 206Pb/204Pb, which is consistent with Hawaiian Rejuvenated 

lavas (Fig. 2.2). 

The Pb isotope compositions of Hualalai LOC gabbros may also reflect melt-crust 

interaction between the local oceanic crust and Hualalai magmas. These LOC gabbros 

have plagioclase Pb isotope compositions intermediate between EPR MORBs and 

Hualalai lavas. High precision (double spike) plagioclase Δ8/4 of these gabbros 

positively correlate with clinopyroxene 87Sr/86Sr and La/Sm ratios (Δ8/4 measures 

deviation from the Northern Hemisphere Reference Line; Hart, 1984) (Fig. 2.8). 

Hawaiian lavas have higher Δ8/4, 87Sr/86Sr, and La/Sm than EPR MORBs. Therefore, the 

positive correlations between plagioclase Δ8/4 and clinopyroxene 87Sr/86Sr and La/Sm 

likely reflect interaction with Hawaiian melts. Pacific lithospheric mantle beneath the 

Hawaiian Islands may have similar Pb isotope compositions as these LOC gabbros, as the 

result of metasomatism by Hawaiian plume-derived melts (e.g., Yang et al., 2003).  
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Figure 2.8: Plagioclase Δ8/4 of LOC gabbros reflects melt-crust interaction. 

Gao et al. (2016a) suggested that the positive correlation between clinopyroxene 

87Sr/86Sr and La/Sm are results of melt-crust interaction between Hawaiian lavas and 

Pacific crust. Plagioclase Δ8/4 values of LOC gabbros show correlation with these 

indicators of melt-crust interaction. Only double spike Pb data are included in this plot. 

(a) Plagioclase Δ8/4 versus clinopyroxene 87Sr/86Sr. (b) Plagioclase Δ8/4 versus 

clinopyroxene La/Sm. 
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The radiogenic Hf isotope compositions of Hualalai LOC gabbros are also similar 

to Hawaiian rejuvenated-stage lavas. In the Nd-Hf isotope space, Hawaiian rejuvenated-

stage lavas have high 176Hf/177Hf, and plot above the array defined by Hawaiian shield 

and post-shield lavas, and EPR MORBs (Fig. 2.9). The radiogenic Hf isotope 

compositions of rejuvenated-stage lavas are also evident in 176Hf/177Hf versus 206Pb/204Pb 

plot, where they extend to highly radiogenic 176Hf/177Hf values at relatively constant 

206Pb/204Pb (Fig. 2.10). Although Hualalai LOC gabbros show significant scatter in the 

Hf-Nd and Hf-Pb isotope plots, they again largely overlap with the range of Hawaiian 

rejuvenated-stage lavas. 

Overall, Hualalai LOC xenoliths have Pb-Hf isotope compositions, and 

clinopyroxene Sr-Nd isotope compositions overlapping the range of compositions of 

Hawaiian rejuvenated stage lavas. The compositions of these LOC gabbros appear to 

have been modified by interaction with Hawaiian magmas. The in situ Pacific 

lithospheric mantle may also have been overprinted by Hawaiian shield- and post-shield-

stage melts percolating through the Pacific lithosphere, and therefore has isotope 

compositions similar to the LOC. If this were the case, partial melting of this 

metasomatised lithospheric mantle would be able to produce Hawaiian rejuvenated-stage 

lavas. 
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Figure 2.8: Nd-Hf isotope plot. 

The clinopyroxene Nd-Hf isotope compositions of Hualalai gabbroic xenoliths are 

plotted in comparison with Hawaiian lavas and EPR MORBs (data compiled from 

GeoRoc and PetDB). Hawaiian shield and post-shield stage lavas are shown as Kea-trend 

and Loa-trend fields. The fields of Hualalai shield and post-shield stage lavas are also 

drawn for comparison. Available literature Nd-Hf isotope data from rejuvenated volcano 

Haleakala, Kauai, Molokai, and Koolau are shown with purple symbols. 



 78 

 

Figure 2.9: Pb-Hf isotope plot. 

Plagioclase 206Pb/204Pb of Hualalai gabbroic xenoliths are plotted versus 

clinopyroxene 176Hf/177Hf. The Pb-Hf isotope compositions of Hawaiian lavas and EPR 

MORBs are also plotted for comparison (data compiled from GeoRoc and PetDB). 

Hawaiian shield and post-shield stage lavas are shown as Kea-trend and Loa-trend fields. 

The fields of Hualalai shield and post-shield stage lavas are also drawn for comparison. 

Available literature Pb-Hf isotope data from rejuvenated volcano Kauai and Koolau are 

shown with purple symbols. 
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Another important feature of Hawaiian rejuvenated lavas is their radiogenic Os 

isotope compositions (187Os/188Os = 0.138-0.160). Lassiter et al. (2000) showed that the 

Os isotope compositions of rejuvenated lavas display no correlation with Sr, Nd or Pb 

isotopes, but positively correlate with major and trace elements (e.g., Al2O3, SiO2, Sr). 

These features were interpreted as reflecting melting and mixing of low-187Os/188Os 

peridotite and high-187Os/188Os pyroxenite veins within lithospheric mantle (Lassiter et 

al., 2000). Alternatively, the radiogenic Os isotope compositions of Hawaiian 

rejuvenated-stage lavas may be generated by assimilating or partial melting of the in situ 

LOC gabbros that have highly radiogenic 187Os/188Os (0.212-0.634). Because plagioclase 

in gabbros have high Al2O3 content, assimilation of gabbros then is consistent with the 

observed positive correlation between 187Os/188Os and Al2O3. Although Hawaiian 

rejuvenated-stage lavas have high MgO content (>10 wt.%) and appear to be primitive, 

high-MgO lavas still may have incorporated an evolved and contaminated component 

(e.g., Gao et al., 2016b). This is because erupted lavas usually represent a mixture of 

different magma batches, where one magma batch may be primitive with high MgO 

content, but mixed with magmas batches that are evolved and crustally contaminated. 

This can be tested by examining phenocryst compositions within rejuvenated-stage lavas. 

If rejuvenated-stage lavas are hybrid, their crystal phases are expected to be out of 

equilibrium with the host lavas (Gao et al., 2016b). 

All together, Hualalai LOC gabbros provide additional constraints on the isotopic 

compositions of the in situ Pacific lithosphere beneath the Hawaiian Islands, other than 

previous constraints from EPR MORBs and ODP Site 843 basalts (e.g., Fekiacova et al., 

2007). As the result of melt-crust interaction between Hawaiian melt and the in situ 

Pacific crust, the Pb-Hf isotope compositions of LOC gabbros (in particular Pb) are 

consistent with the isotopic characteristics of Hawaiian rejuvenated-stage lavas. 
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Therefore, the Pacific lithosphere beneath the Hawaiian Islands, which has seen a large 

amount of Hawaiian-plume-derived melts, possibly has been metasomatised and thus has 

isotopic compositions similar to Hualalai LOC gabbros. If this is the case, partial melting 

of metasomatised Pacific lithosphere is capable of generating the range of isotopic 

compositions observed in Hawaiian rejuvenated-stage lavas. The role of Pacific 

lithosphere in generating Hawaiian rejuvenated-stage lavas needs to be re-evaluated. 

2.5 CONCLUSION 

Hualalai magma-derived cumulates (gabbros, websterites and dunites) display 

variations in Sr, Nd, and Os isotope compositions that are correlated with 

clinopyroxene/olivine Mg#. These correlations are consistent with coupled fractional 

crystallization and assimilation of LOC or volcano edifice materials. These observations 

suggest that the compositions of Hawaiian melts may have been partially overprinted 

during magma storage, fractionation, and assimilation prior to eruption. 

Lower oceanic crust (LOC) gabbroic xenoliths from Hualalai Volcano have Sr-

Nd-Pb-Hf isotope compositions (in particular Pb) that are more similar to Hawaiian 

rejuvenated-stage lavas than EPR and ODP 843 basalts. The isotopic compositions of 

these LOC gabbros are likely the result of melt-crust interaction between Hualalai 

magmas and the in situ Pacific crust. Therefore, the Pacific lithosphere beneath the 

Hawaiian Islands, which has seen large amount of Hawaiian plume-derived melts, may 

have been metasomatised and have isotopic compositions similar to Hualalai LOC 

gabbros. If this is the case, a metasomatised Pacific lithosphere is a likely source for 

Hawaiian rejuvenated-stage volcanism. 

A few LOC gabbroic xenoliths contain plagioclase with high An and 

clinopyroxene with low incompatible trace element abundances and MREE/HREE ratios. 
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These gabbros are also characterized by high Re concentration, high 187Re/188Os, and 

high 187Os/188Os. The correlations between Os isotope ratios, clinopyroxene 

MREE/HREE ratios and plagioclase An contents indicate these features are primary and 

derive from processes occurred at mid-ocean ridges. 

The Sr and O isotope compositions suggest the high-An plagioclase in these 

gabbros unlikely derive from hydrous melting or hydrothermal plagioclase replacement. 

Both melt-crust interaction and high Ca/Na parental melt composition may be the origin 

of high-An plagioclase at mid-ocean ridges. However, the strong positive correlation 

between whole rock Re concentration and plagioclase An content observed in Hualalai 

LOC gabbros is mysterious, and may place further constraints on the origin of high-An 

gabbros at mid-ocean ridges. 
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Chapter 3: Crustal or Mantle Origin of Temporal Compositional 

Trends in Monogenetic Vent Eruptions? Insights from the Crystal 

Cargo in the Papoose Canyon Sequence, Big Pine Volcanic Field, CA2 

ABSTRACT 

The Papoose Canyon (PC) monogenetic vent eruption sequence in the Big Pine 

Volcanic Field, California records systematic stratigraphic variations in whole rock 

chemical and Sr-Nd-Pb isotope compositions (e.g., trace element concentrations 

decreased by up to a factor of 2 during the course of the eruption). Correlations between 

trace element concentrations and isotopic ratios indicate these temporal variations reflect 

binary mixing of two distinct melts, one of which is chemically and isotopically more 

enriched than the other. This mixing process may reflect crustal assimilation, or melting 

and mixing of heterogeneous mantle source(s). We examine major and trace element and 

Sr-Nd-Pb-O isotopic variations in the crystal cargo (phenocrysts and xenoliths) in PC 

lavas to constrain the history of pre-eruption magma storage and the nature of the two 

mixing endmembers. 

PC olivine and clinopyroxene phenocrysts span a wide range of Mg# (olivine Fo 

= 77-89, cpx Mg# = 81-89), and the majority of phenocrysts are more evolved than their 

host lavas (equilibrium Mg# ~85-89). In addition, olivine and clinopyroxene from 

ultramafic xenoliths within the early sequence have similar Mg# (73-87) to the 

phenocrysts, and lower than typical mantle peridotites. Sr-Nd-Pb isotope compositions of 

clinopyroxene from the xenoliths are similar to early PC lavas. Finally, many 

clinopyroxene phenocrysts and clinopyroxene in xenoliths have trace element 

abundances that indicate derivation from melts with higher trace element abundances 

                                                 
2The content of this chapter was submitted to Earth and Planetary Science Letters. 
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than the most enriched PC lavas. These features suggest that the phenocrysts and 

xenoliths derive from melt that is more fractionated and enriched than PC lavas. 

Pressure constraints suggest PC phenocrysts and ultramafic xenoliths crystallized 

at ~5-7 kbar, corresponding to mid-crust depths. Correlations between HFSE depletion 

and Sr-Nd-Pb isotopic compositions, high 𝛿18O values in olivines, and radiogenic Os 

isotopic compositions in whole rocks also suggest PC lavas have incorporated a crustally 

contaminated component. In conjunction, we propose that PC phenocrysts and ultramafic 

xenoliths derive from early PC melts that ponded and fractionated and assimilated 

continental crust, possibly in mid-crustal sills. These melts were drained and mixed with 

more primitive melts as the eruption began, and the temporal-compositional trends 

therefore reflect gradual deflation and exhaustion of these sills as the eruption progressed. 

These results indicate that even “primitive” melts may contain a significant signature of 

crustal contamination. 

3.1 INTRODUCTION 

Geochemical variations in basalts from different regions and tectonic settings 

have provided invaluable insight into the composition and evolution of Earth’s mantle 

(e.g., Hart, 1988; Sun & McDonough, 1989). However, basalts represent only indirect 

probes of mantle composition. Processes such as melt generation, migration, and melt-

crust interaction all can affect the compositions of erupted lavas, making it difficult to 

discriminate mantle source signatures. For example, mantle signals can be overprinted 

and obscured by crustal contamination at continental settings (e.g., Glazner, 1991). 

Therefore, accurate inferences regarding mantle composition or melting processes using 

basalt probes require an understanding of melt generation and migration processes from 

source to surface. 
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Many ocean island volcanoes and continental monogenetic vents display 

significant chemical and isotopic variations during a single eruptive cycle, which can 

mimic compositional variations observed in entire volcanoes or regions over longer 

timescales (e.g., Garcia et al., 2000; Blondes et al., 2008; Erlund et al., 2010). Given the 

short timescales of single eruptive cycles, melt generation conditions and source 

characteristics are expected to be relatively invariant. The compositional variations 

observed in single eruption sequences therefore may provide valuable insight into the 

processes of magma generation and migration that are not possible from studies 

conducted over broader areas and larger timescales (e.g., Reiners, 2002). In some cases 

these short-term variations are proposed to reflect melt generation and extraction from 

heterogeneous mantle sources (e.g., Reiners et al., 2002; Blondes et al., 2008; 

Rasoazanamparany et al., 2015). In other cases, these temporal variations appear related 

to temporally varying degrees of crustal contamination (e.g., McBirney et al., 1987; 

Erlund et al., 2010; Needham et al., 2011). Distinguishing between these two 

mechanisms is particularly difficult for continental settings, because crustally 

contaminated melts may have qualitatively similar chemical and isotopic signatures as 

melts from metasomatized continental lithospheric mantle (e.g., Hildreth et al., 1991; 

Glazner, 1991). 

Several recent studies indicate that erupted lavas are often hybrid mixtures of 

multiple discrete magma batches (e.g., Andrews et al., 2008; Moune et al., 2012). 

Temporal-compositional variations at monogenetic vents may reflect variable mixing of 

different magma batches. Understanding the history and location (crust vs. mantle) of 

magma storage and mixing can therefore help constrain the origins of the compositional 

variations in monogenetic vents. This history is often difficult to constrain from bulk 

lavas because of the mixing and homogenization processes described above. Instead, 
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crystal cargos (phenocrysts and xenoliths) often contain more information about the 

magma storage and mixing history than bulk lavas (e.g., Rankenburg et al., 2004; 

Andrews et al., 2008). In this study, we examine the crystal cargo of the Papoose Canyon 

(PC) monogenetic vent sequence in Big Pine Volcanic Field (BPVF), California, a well-

documented monogenetic vent with clear temporal-compositional trends (Blondes et al., 

2008). Major and trace element and isotope variations in olivine and clinopyroxene 

phenocrysts and ultramafic xenoliths provide new constraints on the pre-eruptive magma 

storage and mixing history at PC vent, and allow us to test crust versus mantle origins for 

the observed temporal-compositional trends. 

3.2 BACKGROUND 

The BPVF is a monogenetic volcano field situated in Owens Valley, California, 

bounded to the east and west by the Inyo-White Mountains and the Sierra Nevada. With 

the exception of one silicic vent, lavas erupted at the BPVF are primarily mafic in 

composition, ranging from basanites to alkalic and sub-alkalic basalts (Bierman et al., 

1991). Most vents erupted between 0.1 and 0.8 Ma, with the oldest documented eruption 

at ~1.2 Ma (Gillespie, 1984; Bierman, 1991; Blondes et al., 2008). The origin of BPVF 

volcanism is commonly attributed to Basin-and-Range regional extension and associated 

lithosphere thinning and/or delamination (e.g., Beard & Glazner, 1995; Lee et al., 2001). 

Basalts erupted at the BPVF span a range of major and trace element and isotope 

compositions. For example, whole rock SiO2 abundances vary from 44.1 to 53.0 wt.%, 

olivine-fractionation-corrected Sr concentrations vary from ~900 to 2300 ppm and 

87Sr/86Sr ranges from 0.70534 to 0.70648. (Ormerod et al., 1988 & 1991; Rogers et al., 

1995; Beard & Glazner, 1995; Mordick & Glazner, 2006; Blondes et al., 2008). Ormerod 

et al. (1991) suggested that the variations in trace element abundances reflect different 
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degrees of partial melting of a relatively homogeneous mantle source. However, this 

cannot account for observed isotopic variations. Beard and Glazner (1995) proposed that 

the observed compositional variations reflect melt generation from heterogeneous 

metasomatized continental lithospheric mantle. More recently, Gazel et al. (2012) 

suggested that melt generation depths of BPVF lavas have shifted from asthenospheric 

mantle to the lithosphere-asthenosphere boundary over time, resulting in increased 

incorporation of lithospheric mantle components in younger BPVF lavas.  

Several individual monogenetic vents in the BPVF display significant temporal 

compositional variations (Blondes et al., 2008). For example, trace element and isotope 

compositions of the PC sequence (760.8 ± 22.8 ka) span much of the range defined by the 

BPVF as a whole. Over the course of the PC eruption, the concentrations of highly 

incompatible trace elements decreased by up to a factor of ~2 (e.g., La concentrations 

decreased from 66 to 33 ppm). This decrease in trace element concentrations was 

accompanied by decreasing 87Sr/86Sr (0.7063 – 0.7055) and increasing 휀Nd (-3.5 – -1.1). 

SiO2 (43.5 – 47.7 wt.%) and Al2O3 (15.6 – 16.5 wt.%) abundances and compatible 

element (e.g., Cr and Ni) concentrations increased slightly over time, whereas MgO (9.8 

± 0.3 wt.%) remained roughly constant (Blondes et al., 2008, Gazel et al., 2012). 

3.3 SAMPLES AND METHODS 

3.3.1 Field observations and samples 

The Papoose Canyon valley cuts and exposes a stacked basaltic eruption sequence 

derived from a cinder cone at the easternmost part of the BPVF. The PC vent is in contact 

with dolomite country rock. The PC sequence contains both massive lava and vesicular 

scoria layers. Massive lavas appear mostly fresh, with scattered secondary zeolite/calcite 

minerals filling vesicles. Cinders and scorias are generally more altered and oxidized. 



 87 

Overall, PC lavas have low phenocryst abundances, with phenocryst mineralogy 

dominated by olivine and clinopyroxene (cpx). Abundant pyroxene-rich ultramafic 

xenoliths (70-90 % modal cpx and 10-30 % modal olivine) and some carbonate crustal 

xenoliths are present in the early eruption sequence. Both ultramafic and carbonate 

xenoliths are sub-rounded to rounded. We collected stratigraphically-controlled samples 

from the massive flows during two field trips in 2012 and 2014. Pyroxene-rich ultramafic 

xenoliths and carbonate crustal xenoliths contained in the PC flows were also collected 

with host lavas when possible. Sample location and approximate stratigraphic position 

are reported in Appendix Table A1. Relative stratigraphic positions were calculated 

assuming an overall bedding dip similar to the angle of repose for most cinder cones 

(~30o), consistent with measured bedding angles. See Appendix Fig. S3.1 for details. 

3.3.2 Methods 

3.3.2.1 Point counting 

Olivine phenocryst abundance was determined by point counting of 6 

stratigraphically controlled samples spanning the eruption sequence. Each sample was cut 

into flat slabs of ~5 × 8 cm and polished. Point counting was done under an optical 

microscope using a transparent 2 × 2 mm grid sheet overlay. More than 500 points were 

counted for each sample. Olivine phenocrysts are classified into 3 populations based on 

size: small phenocrysts (0.5-1 mm), large phenocrysts (1-3.5 mm) and megacrysts (> 3.5 

mm). 

3.3.2.2 Major element, trace element, and isotope composition 

Whole rock major and trace elements were analyzed using standard XRF and LA-

ICP-MS techniques at Washington State University. Olivine and cpx major element 

abundances were measured by EMPA at the University of Texas at Austin (UT Austin). 
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Clinopyroxene trace element compositions were measured by LA-ICP-MS (UT Austin). 

Strontium, Nd and Pb isotopes were measured by TIMS. Osmium isotopes were 

measured by N-TIMS, and Os concentrations were measured by isotope dilution. Oxygen 

isotope ratios were measured by laser fluorination. All isotopic analyses were performed 

at UT Austin. Further discussion of analytical methods is provided in the Appendix. 

3.4 RESULTS 

3.4.1 Point counting 

Point counting results are presented in Appendix Table A2. PC lavas contain 2-

7% olivine and < 0.5% cpx phenocrysts, as well as rare olivine and cpx megacrysts 

(<0.1%). The modal abundance of large olivine phenocrysts (1-3.5 mm) decreases 

gradually from 4.1% in the early-sequence sample to 0.6% in the late-sequence sample 

(Fig. 3.1). In contrast, the modal abundance of small olivine phenocrysts (0.5-1 mm, 0.7-

3.9% modal abundance) does not change systematically over time. Megacryst 

abundances in most samples are too low to be determined by point counting in this study.  
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Figure 3.1 Modal abundance of large olivine phenocrysts. 

The modal abundance of large olivine phenocryst (1-3.5 mm) in PC lavas 

decreases over the course of eruption.  
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3.4.2 Major and trace elements 

3.4.2.1 Whole-rock major and trace elements 

The major and trace element compositions of PC lavas are presented in Appendix 

Table A3. PC lavas have relatively high and uniform Mg# (69-70). SiO2 (45.7-47.4 wt.%) 

and Al2O3 (15.8-16.3 wt.%) increase over the course of eruption, whereas CaO (10.2-9.6 

wt.%), TiO2 (2.1-1.9 wt.%), K2O (2.0-1.4 wt.%) and P2O5 (1.1-0.7 wt.%) decrease. 

FeOtotal (8.8-9.1 wt.%), Na2O (3.6-3.9 wt.%), and MgO (9.3-9.8 wt.%) do not show 

systematic temporal trends. Our data are generally consistent with previous studies 

(Blondes et al., 2008; Gazel et al., 2012; Fig. S3.2). 

PC lavas show Ti and HFSE depletions, slight positive Sr anomalies and no Eu 

anomalies. Incompatible trace element concentrations (e.g., Sr, Ba, and LREE) decrease 

significantly over the course of eruption. LREE and large ion lithosphere elements (LILE, 

e.g., Sr, Ba) show greater variation than high field strength elements (HFSE, e.g., Nb, Ta) 

and HREE, with the former varying by about a factor of 2 while the latter vary by ~20-

30% (e.g., Fig. 3.2b). The concentrations of moderately incompatible trace elements (e.g., 

HREE) remain nearly constant, whereas those of compatible elements (Cr = 185-384 

ppm; Ni = 151-226 ppm) increase over the course of eruption. The concentrations of 

highly incompatible trace elements show linear correlations with those of moderately 

incompatible trace elements (e.g., La vs. Sm; Fig. 3.3a).   
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Figure 3.2 REE patterns of cpx and equilibrium melts. 

 (a) Measured clinopyroxene REE concentrations of PC phenocrysts and 

xenoliths (normalized to primitive mantle; McDonough and Sun, 1995). (b) Calculated 

melt REE concentrations in equilibrium with the clinopyroxene assuming no trapped melt 

in the xenoliths. See Appendix for more details about Kd value estimation. Green field 

shows the compositional variations of bulk PC lavas. 
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Figure 3.3 Geochemical trends suggestive of binary mixing. 

Correlations between trace element concentrations and isotopic ratios of PC lavas 

suggest binary mixing of two distinct components. (a) La and Sm concentrations are 

linearly correlated, which cannot be explained by variations in the degree of partial 

melting because of differences in DLa and DSm. (b) 87Sr/86Sr is linearly correlated with the 

inverse of Sr concentration, which is consistent with binary mixing of two isotopically 

distinct components. Literature data from Blondes et al. (2008). 
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3.4.2.2 Mineral major and trace elements 

Major element compositions of 215 olivine phenocryst grains from 8 samples 

spanning the entire stratigraphy are reported in Appendix Table A4. Olivine phenocrysts 

have Mg#s ranging from 77 to 89, with an average Mg# ≈ 84 (Fig. S3.3a). Several 

individual samples contain olivines spanning a wide range of composition, which is 

nearly as great as the range defined by PC olivine phenocrysts as a whole (Fig. 3.4a). 37 

cpx phenocryst grains from 4 samples were also analyzed (Table A5). These cpx 

phenocrysts have Mg#s ranging from 81 to 87, with an average of 84 (Fig. S3.3a). Again, 

individual samples contain cpx spanning a range in composition (Fig. 3.4b).  

Olivine and cpx from PC ultramafic xenoliths have major element compositions 

largely consistent with PC phenocrysts (Table A4 and A5). Olivines from PC ultramafic 

xenoliths have Mg#s ranging from 73-87, whereas cpx from these xenoliths have Mg#s 

ranging from 73-88 (Fig. S3.3b). Olivine and cpx from individual xenoliths have 

relatively uniform Mg#s, and the Mg# of olivine and cpx are also similar to each other in 

a given xenolith. The range of Mg#s observed in the ultramafic xenoliths extends to 

lower values than observed in PC phenocrysts. However, the Mg# distribution and 

average are similar (Fig. S3.3). 

Clinopyroxene trace element abundances in PC phenocrysts and ultramafic 

xenoliths are presented in Table A6. Phenocryst cpx and xenolith cpx have similar trace 

element patterns, with depleted HFSE (Fig. 3.2a). These cpx also show greater variations 

in highly incompatible trace element concentrations (e.g., [La] = 1.1-17.3 ppm) than in 

moderately incompatible trace element concentrations (e.g., [Lu] = 0.1-0.4 ppm). 
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Figure 3.4 PC phenocrysts are out of equilibrium with their host lavas. 

Figure 4. Measured Mg# of PC phenocrysts are plotted versus whole rock Mg# of 

their host lavas. Equilibrium fields are calculated from Fe2+/Mg partition coefficient 

between olivine or cpx and melt. (a) Olivine phenocrysts versus host lavas, (b) cpx 

phenocrysts versus host lavas. PC literature data are from Blondes et al. (2008 and 2012) 

and Gazel et al. (2012). BPVF literature data are from Mordick & Glazner (2006) and 

Gazel et al. (2012). Open squares show wholerock data from Mordick & Glazner (2006) 

that are corrected for olivine addition. Some olivine phenocrysts from Blondes et al. 

(2012) have extremely high Mg# (>95), which they interpreted as the result of subsolidus 

oxidation after eruption, and are therefore not relevant to this study. 
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3.4.3 Radiogenic and oxygen isotopes 

Strontium, Nd, Pb, Os and O isotope compositions are reported in Table 1. 

87Sr/86Sr decreases from 0.7061 to 0.7058, and 휀Nd increases from -2.7 to -1.4 over the 

course of the eruption. Pb isotopic compositions also evolve toward less enriched 

compositions over time (e.g., 206Pb/204Pb varies from 19.11 to 18.99). The Sr, Nd, and Pb 

isotopic ratios are linearly correlated with the inverse of trace element concentrations 

(e.g., 87Sr/86Sr vs. 1/[Sr]; 143Nd/144Nd vs. 1/[Nd]; Fig. 3.3b). 

Five middle-sequence samples were measured for 187Os/188Os to fill the gap of the 

Os-isotope data set previously reported by Blondes et al. (2008). The Os isotopic 

compositions of PC lavas (187Os/188Os = 0.183-0.287) are more radiogenic than depleted 

MORB mantle or primitive upper mantle (187Os/188Os < 0.130; Shirey & Walker, 1998). 

However, Os isotopic ratios do not correlate with Sr-Nd-Pb isotopes or relative 

stratigraphic position.  

Five pyroxene-rich ultramafic xenoliths have Sr, Nd, and Pb isotopic 

compositions falling on the trend defined by PC lavas (e.g., these xenoliths have 87Sr/86Sr 

= 0.7059 – 0.7063, 휀Nd = -2.5 – -3.3, 206Pb/204Pb = 19.08 – 19.14). However, all of the 

xenoliths are isotopically more enriched than their host lavas, with higher 87Sr/86Sr and 

206Pb/204Pb (Fig. 3.5). 

Olivine phenocryst separates from PC flows have δ18O values ranging from 

+5.4‰ to +5.8‰, slightly higher than the δ18O value of olivine from fresh NMORB and 

mantle peridotite (+5.2±0.2‰; Eiler, 2001; Mattey et al., 1994). No temporal trend was 

observed. The δ18O values of olivine mineral separates from PC ultramafic xenoliths 

range from +5.5‰ to +5.7‰. 
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  Mg# (wr) Mg#** 
(ol corr.) 

Mg# 
(ol, ave.) 

Mg# 
(cpx, ave.) 

87Sr/86Sr 143Nd/144Nd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 187Os/188Os Os (ppt) δ18O (ol) 

Lavas     
        

14PC-2 68.7 65.5 84.2  0.70614   0.51250 19.11 15.66 38.86 0.183 39 5.6 

14PC-4 69.2 66.2 83.9 86.0 0.70610   0.51249 19.11 15.66 38.86 0.190 38 
 

14PC-5 69.8 67.2 83.4  0.70604 
 

19.08 15.65 38.84 0.287 55 
 

PC-1 69.6 67.4 83.1 85.0 0.70600   0.51249 19.06 15.65 38.85 0.261 20 5.4, 5.6 

PC-2 69.5 67.7 84.0 83.3 0.70591   0.51251 19.03 15.65 38.85 
  

5.7 

14PC-12 69.8 69.3 84.5  0.70575   0.51254 18.98 15.63 38.80 0.207 37 5.4 

14PC-13 69.7 69.4 84.6  0.70559   0.51257 18.99 15.64 38.79 
   

PC-3 69.1 68.7 84.3 83.9 0.70581   0.51252 18.99 15.64 38.83 
  

5.6, 5.8 

14PCX-3 host lava     0.70596 
 

19.07 15.65 38.83 
  

5.5 

14PCX-6 host lava     0.70600 
 

19.09 15.66 38.85 
  

5.5 

14PCX-9 host lava     0.70602 
 

19.12 15.67 38.89 
   

14PCX-17 host lava     0.70606 
 

19.12 15.67 38.89 
   

Xenoliths     
       

14PCX-3   83.9 84.0 0.70625*   0.51248* 19.11* 15.66* 38.86* 
  

5.7 

14PCX-6   84.5 83.4 0.70606*   0.51248* 19.08* 15.66* 38.85* 
  

5.5 

14PCX-9    85.1 0.70629*   0.51247* 19.16* 15.68* 38.91* 
   

14PCX-15   84.4 85.6 0.70591*   0.51251* 19.12* 15.67* 38.88* 
  

5.6 

14PCX-17   86.3 85.3 0.70613*   0.51248* 19.14* 15.68* 38.93* 
   

Table 3.1: Compositions of PC lavas, phenocrysts, and xenoliths. 

* Radiogenic isotopic compositions measured on clinopyroxene separates from ultramafic xenoliths. ** Mg# of PC 

melts are calculated by subtract cumulate olivine from whole rock. The average composition of PC olivine phenocrysts was 
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used. The amount of olivine cumulate subtracted is determined based on the least squares regression between large olivine 

phenocryst abundance and relative stratigraphic position of samples (Fig. 1). 
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Figure 3.5 PC ultramafic xenoliths are more enriched than their host lavas. 

The ultramafic xenoliths in early PC sequence have isotopic compositions 

overlapping but extending to more enriched compositions compared to PC lavas. 

Individual xenoliths are systematically more enriched than their host lavas. WGB – 

western great basin, B&R – basin and range, BPVF – Big Pine volcanic field (Rogers et 

al., 1995; Beard & Glazner, 1995; Reid & Ramos, 1996; Beard & Johnson, 1997; 

Kempton et al., 1991; Blondes et al., 2008).  
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3.5 DISCUSSION 

3.5.1 Temporal compositional variations reflect two-component mixing 

Lavas from the PC monogenetic vent display significant temporal variations in 

major and trace element and isotope composition. Over the course of the PC eruption, 

incompatible trace element concentrations decreased, whereas Sr, Nd and Pb isotopes 

evolved to less enriched compositions. Several lines of evidence suggest these 

compositional variations primarily reflect mixing of two distinct melt components. For 

example, PC lavas show linear correlations between highly and moderately incompatible 

trace elements (e.g., La vs. Sm, Nb vs. Zr; Fig. 3.3a). Although variations in degree of 

partial melting may generate variations in trace element concentrations (e.g., Ormerod et 

al., 1991), curved correlations are expected for elements with different partition 

coefficients (e.g., Reiners, 2002). In contrast, two-component mixing will generate linear 

correlations between different elements regardless of their compatibility (e.g., Reiners, 

2002). Sr, Nd and Pb isotopic ratios are also linearly correlated with inverse trace element 

concentration (e.g., 87Sr/86Sr vs. 1/[Sr]; Fig. 3.3b), which is again consistent with binary 

mixing (e.g., Glazner et al., 1991; Reiners, 2002). Overall, the compositional variations 

suggest mixing of one melt characterized by high incompatible trace element 

concentrations and enriched isotopic signatures, and another melt that is chemically and 

isotopically less enriched. PC lavas show greater compositional variation in LILE and 

LREE (~2x) than in HFSE and HREE (~1-1.2x). LREE/HFSE ratios in PC lavas also 

correlate with Sr-Nd-Pb isotope compositions. This suggests that the enriched melt is 

preferentially enriched in LILE and LREE relative to HFSE and HREE. The observed 

stratigraphic variations indicate that the proportion of the enriched component contained 

in the erupted hybrid melt decreased over time. 
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Several different models have been proposed for these two melt components, 

which have different implications for melt generation and transportation. For example, 

partial melting of a lithologically heterogeneous mantle source (e.g., pyroxenite and 

peridotite) may produce melts with distinct chemical and isotopic compositions (e.g., 

Reiners, 2002; Blondes et al., 2008). Alternatively, the compositional trends could reflect 

mixing of lithosphere- and asthenosphere- derived melts, possibly as asthenosphere-

derived melts ponded at the asthenosphere/lithosphere boundary (Blondes et al., 2008). 

Finally, if PC magmas ponded within the continental crust prior to eruption, the 

compositional trends could reflect variable degrees of crustal contamination. Therefore, 

when and where melt mixing occurred has important implications for the origin of the 

observed compositional trends. In the following section, we evaluate the record of 

magma storage contained within PC phenocrysts and ultramafic xenoliths. 

3.5.2 Magma storage and fractionation 

Previous studies have proposed rapid magma ascent from source to surface with 

limited shallow storage for many monogenetic volcanoes (e.g., Mattsson, 2012; McGee 

et al., 2013). PC whole rocks have relatively high and uniform MgO contents (8.7-10.5 

wt.%) and Mg# (69-70), indicating they have undergone limited fractional crystallization 

(Blondes et al., 2008). In addition, early PC sequence lavas contain abundant ultramafic 

xenoliths that were previously interpreted as mantle xenoliths (Blondes et al., 2008). 

These features would seem to indicate PC lavas have experienced limited crustal ponding 

and fractionation, which would suggest the melt mixing described above occurred within 

the mantle (Reiner, 2002; Blondes et al., 2008). However, as discussed below, the 

compositions of PC phenocrysts and xenoliths suggest a more complicated history of 
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magma storage, fractionation and mixing than suggested by whole rock compositional 

variations. 

PC whole rocks span a narrow range of Mg# (69-70, assuming Fe2+/FeT ≈ 85%). 

In contrast, olivine phenocrysts in PC lavas span a wide range of composition (Fo = 77-

89, with an average of 84). Large variations are observed among olivine grains from 

individual samples (Fig. 3.4a). In addition, the majority of olivine phenocrysts appear to 

be more evolved than olivine in equilibrium with their host lavas. Assuming a KD 
ol-melt 

(Fe2+/Mg) = 0.3±0.03 (Roeder & Emslie, 1970), olivine phenocrysts in equilibrium with 

PC lavas should have Fo ≈ 87-89, but the majority of phenocrysts have significantly 

lower Fo (Fig. 3.4a). Clinopyroxene phenocrysts span a slightly narrower range of Mg# 

than olivines (Mg# = 81-87, with average of 84), but for the most part also have Mg#s 

lower than in equilibrium with their host lavas (KD 
cpx-melt (Fe2+/Mg) = 0.28±0.08; Putirka, 

2008; Fig. 3.4b). 

One possible explanation for the apparent disequilibrium between phenocrysts 

and whole rocks is that the whole rocks contain cumulate olivine and cpx, which may 

result in overestimation of melt Mg# from whole rock compositions. PC lavas contain up 

to ~4% large olivine (1-3.5 mm), ~1-4% small olivine (0.5-1 mm), and trace amounts of 

cpx phenocrysts (<0.5 %). If we assume the majority of large phenocrysts are cumulate 

and take this effect into account, the melt composition estimated from cumulate 

subtraction is still not in equilibrium with the phenocryst phases (Fig. 3.4). Alternatively, 

the melt Fe2+/FeT ratio may be higher than the value we chose (0.85). This Fe2+/FeT ratio 

corresponds to melt oxygen fugacity of ~FMQ+1, which was estimated by Gazel et al. 

(2012) for BPVF lavas based on V partitioning between olivine and melt inclusions. High 

oxygen fugacity of BPVF lavas is also suggested by high sulfur contents of the least 

degassed melt inclusions (Gazel et al., 2012; Jugo et al., 2010). In addition, few melts 
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from the Great Basin have oxygen fugacities lower than FMQ (e.g., Christiansen & 

McCurry, 2008). A Fe2+/FeT ratio of 0.9, which would correspond to ~FMQ 

(Botcharnikov et al., 2005), would shift the calculated melt Mg# by only ~1 unit, too 

little to bring the melt and phenocrysts into equilibrium. Therefore, the phenocrysts 

appear to derive primarily from melts that have lower Mg# and thus experienced greater 

fractionation than their host lavas. 

Ultramafic xenoliths in early PC lavas were previously described as likely derived 

from the mantle (Blondes et al., 2008), which would indicate rapid magma ascent from 

mantle depths. However, the xenoliths we investigated all lack orthopyroxene and no true 

4-phase peridotites were identified. Most mantle-derived xenolith suites contain 

peridotite even if pyroxenite is also present. In addition, xenolith olivine and cpx Mg#s 

range from 73 to 87, extending well below the range of Mg# (88-90) reported from BPVF 

mantle xenoliths from other localities (Beard & Glazner, 1995; Lee et al., 2001 & 2002). 

Instead, the range of Mg#s are similar to the range defined by PC phenocrysts. These 

xenoliths therefore most likely formed as cumulates from the same melts that generated 

the phenocrysts. 

Overall, both the phenocrysts and ultramafic xenoliths appear to derive from 

melts that on average are more evolved and have lower Mg# than PC lavas. This suggests 

that PC lavas represent mixtures of a primitive melt component with high Mg# and a 

more evolved, low-Mg# melt containing these phenocrysts and xenoliths. Over the course 

of the eruption, abundances of both large olivine phenocrysts and ultramafic xenoliths 

decrease, which may indicate that the large olivine phenocrysts are cumulates derived 

from the more evolved magma, whereas smaller olivines represent true phenocrysts 

formed during rapid near-surface cooling. In this case, decreasing abundances of large 

phenocrysts and ultramafic xenoliths indicate that the proportion of the evolved melt 
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component in the erupted lavas decreased over time. As discussed in section 5.1, the 

compositional variations in PC lavas likely reflect mixing of two melt components. Given 

the discussion above, the mixing between a primitive melt and a more evolved melt 

suggested by the observed phenocryst-host-rock disequilibrium may account for these 

compositional trends. In the following discussion, we examine the likely depths of 

magma storage and fractional crystallization. 

Previous studies have estimated the storage depths of younger (< 500 ka) BPVF 

lavas using phenocryst-melt thermobarometers and the volatile contents in phenocryst-

hosted melt inclusions to constrain phenocryst crystallization depths. Mordick & Glazner 

(2006) suggested deep cpx crystallization using the cpx-melt thermobarometer of Putirka 

et al. (1996). They examined four samples from younger BPVF vents, and suggested cpx 

phenocryst growth at ~1.4±0.3 GPa and ~1250±100 °C (Mordick & Glazner, 2006). In 

contrast, Gazel et al. (2012) suggested shallow fractionation (~5 kbar) of olivine 

phenocrysts, based on volatile contents (CO2 and H2O) of melt inclusions trapped in the 

phenocrysts. These pressure constraints would seem to indicate that cpx and olivine 

phenocrysts in BPVF lavas formed at very different depths. However, coexisting olivine 

and cpx in PC ultramafic xenoliths have similar Mg#, and olivine and cpx phenocrysts in 

PC lavas span similar ranges of Mg# and have the same average Mg#. These features 

indicate concurrent crystallization of olivine and cpx. 

The use of the cpx-melt thermobarometer to calculate crystallization pressures 

presupposes that phenocrysts and host lavas are in chemical equilibrium. However, as is 

true for the majority of PC phenocrysts, most of the samples investigated by Mordick & 

Glazner (2006) contain cpx that are out of equilibrium with their host lavas, even after 

whole rock compositions are corrected for phenocryst accumulation to estimate melt 

compositions (Fig. 3.4). The only cpx/melt pair examined by Mordick & Glazner (2006) 
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that is close to equilibrium (sample B-1) resulted in the lowest estimated pressure (~1 

GPa). In addition, the Putirka et al. (1996) thermobarometer is calibrated for anhydrous 

melts, whereas BPVF magmas have relatively high water contents (1.5-3.0 wt.%; Gazel 

et al., 2012). Because water can lower the liquidus temperature of melts, failing to take 

into consideration of the effects of water may lead to overestimation of crystallization 

temperatures. This in turn will result in overestimation of pressure, because temperature 

is an input in the Putirka (1996) cpx-melt barometer. Therefore, the estimated cpx 

crystallization pressures of Mordick & Glazner (2006) may be systematically too high. 

Fractionation at >1 GPa would appear to be inconsistent with abundant olivine 

phenocrysts in BPVF lavas. Many experimental studies show that olivine fractionation in 

alkalic basalts primarily occurs at pressures <1 GPa (e.g., Green & Ringwood, 1967; 

Nekvasil et al., 2004). As pressure increases, the stability field of clinopyroxene expands 

at the expense of olivine and plagioclase (e.g., O’Hara, 1968). Olivine is the dominant 

phenocryst phase in PC lavas. Clinopyroxene is less abundant, whereas plagioclase is 

absent. Olivine and cpx are both present in PC ultramafic xenoliths.  

We further constrained the potential pressure range of PC magma crystallization 

by modeling fractional crystallization over a range of pressures (1-11 kbar) using the 

MELTS thermodynamic model (Ghiorso & Sack, 1995). The crystallization pressures of 

PC phenocrysts and ultramafic xenoliths were then constrained by comparing the model-

predicted crystallization phases and mineral compositions with observations. We also 

evaluated the effects of initial melt composition, water content, oxygen fugacity, and 

crystallization style (fractional versus batch) on modeling results by varying these 

parameters over reasonable ranges. The compositions of both the earliest and the latest 

PC lavas were used as the initial model melt compositions. Initial water contents of 1.5 

and 3.0 wt.% were used, consistent with the estimated water contents for primitive BPVF 
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melts (Gazal et al., 2012). Oxygen fugacity was initiated at FMQ and FMQ+1, and 

allowed to proceed unbuffered in MELTS modeling. 

All models produced similar crystallization trends. One representive set of 

modeling results is shown in Fig. 3.6, and additional information is presented in 

Appendix Fig. S3.4. Over the range of pressures investigated, the stability field of olivine 

shrinks with increasing pressure, and olivine is not crystallized at pressures >10 kbar. In 

contrast, the onset of cpx fractionation occurs at higher temperature with increasing 

pressure, resulting in higher Mg# of the first-crystallized cpx. These results are consistent 

with experimental observations (e.g., Green & Ringwood, 1987; Nekvasil et al., 2004). 

Olivine and cpx in PC phenocrysts and xenoliths span a wide range of Mg# (73-89, Fig. 

S3.4). The MELTS modeling results suggest that at pressures greater than ~7 kbar, 

olivine fractionation will be suppressed and olivine with low Mg# (< 73) will not be 

formed because olivine is replaced by cpx on the liquidus. On the other hand, at pressures 

< ~5kbar, the onset of cpx fractionation will be too late to produce cpx with Mg# up to 

88. Therefore, MELTS modeling suggest the phenocrysts and xenoliths crystallized at 

pressures of ~5-7 kbar, assuming isobaric rather than polybaric fractionation (Fig. 3.6). 

This pressure estimate is consistent with the pressure estimates derived from BPVF melt 

inclusions (Gazel et al., 2012). 

Taken collectively, we suggest the phenocrysts contained in PC lavas most likely 

formed at ~5-7 kbar. Using an average crustal density of 2,750 kg/m3 (Wang et al. 2002), 

the estimated depth of magma fractionation is ~19-26 km. Given a local crustal thickness 

of ~36 km (Wang et al., 2002), the magmas parental to the PC phenocrysts and ultramafic 

xenoliths therefore likely ponded within the middle to lower crust prior to eruption. Gazel 

et al. (2012) suggested that magmas may have stalled and ponded near the brittle-ductile 

transition (~20 km) within the crust, due to this rheological contrast. 
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Figure 3.6 Pressure constraints based on MELTS modeling results. 

MELTS modeling results of fractional crystallization using 14PC-2 as the starting 

melt composition, 1.5 wt.% initial water content, and oxygen buffer initiated at FMQ+1. 

The range of crystallized mineral compositions (Mg#) varies with pressure. The range of 

olivine and clinopyroxene Mg# observed in PC phenocrysts and xenoliths suggests they 

were crystallized at ~5-6.5 kbar. See text for discussion.  
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3.5.3 Crustal contamination 

Paragraphs with the style Heading 4,h4 applied can be extracted to appear in the 

table of contents with the style TOC 4. The above discussion suggests mixing of a 

primitive melt and an evolved melt occurred within the crust to generate the observed 

compositional variations in PC lavas. The trace element concentrations in cpx 

phenocrysts and cpx in xenoliths vary by up to a factor of 15. We calculated the REE 

concentrations of the melts from which these cpx formed using estimated cpx-melt 

partition coefficients (see Appendix for more details). Most of the calculated melts have 

incompatible trace element concentrations that are higher than any PC lavas (Fig. 3.2b). 

Clinopyroxene HFSE and HREE concentrations are well correlated with cpx Mg#. These 

correlations are generally consistent with compositional variations derived from 

fractional crystallization in conjunction with increasing KD values with decreasing Mg# 

(e.g., Lu, Fig. 3.7a). In contrast, LILE and LREE concentrations do not correlate with 

Mg#, and pyroxenes spanning a narrow range in Mg# show much larger variations in the 

concentrations of these elements than can be explained by the effects of fractional 

crystallization alone (Fig. 3.7b).  The LILE and LREE variations observed in these 

pyroxenes require pyroxene crystallization from melts with highly variable LILE and 

LREE concentrations and LILE/HFSE fractionation (Fig. 3.7b).  

In addition, although ultramafic xenoliths have Sr, Nd, and Pb isotopic 

compositions overlapping the range of PC lavas, these xenoliths extend to (and beyond in 

the case of Pb) the most enriched compositions defined by PC lavas. In every sample 

analyzed, individual xenoliths have isotopic compositions that are more enriched than 

their host lava (Fig. 3.5). Overall, PC phenocrysts and xenoliths appear to derive from 

melts that are isotopically more enriched than their host lavas, and characterized by LILE 

and LREE enrichment relative to HFSE and HREE. Therefore, the parental melt of PC 
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phenocrysts and xenoliths resembles the “enriched” mixing component discussed in 

Section 5.1. 

In principle, it is possible that the primitive and evolved melts derived from 

distinct mantle sources, and the chemically and isotopically more enriched compositions 

of the evolved melts are a mantle-derived primary feature. For example, the “enriched” 

melts may derive from partial melting of enriched mantle domains (e.g., pyroxenite 

veins; Reiners, 2002; Blondes et al., 2008). In this case, the fact that the more enriched 

melt is also more evolved is coincidental. However, as discussed below, several lines of 

chemical and isotopic evidence suggest that crustal contamination may have played an 

important role in modifying the composition of the evolved melt that is the source of PC 

phenocrysts and ultramafic xenoliths. 

Average continental crust has radiogenic 87Sr/86Sr and unradiogenic 143Nd/144Nd 

compared to both convecting upper mantle and primitive mantle. Continental crust is also 

characterized by significant HFSE depletion. For example, average continental crust has 

La/Nb of ~2.5, N-MORB has La/Nb of ~1.0, and ocean island basalts have La/Nb ≤1.2 

(Rudnick & Gao, 2003; McDonough & Sun, 1995). Assimilation of continental crust 

therefore is expected to generate correlations between isotopic compositions and 

LILE/HFSE ratios, as has been observed in several previous studies (e.g., Davies & 

Macdonald, 1987; Rowe et al., 2011). PC lavas are variably depleted in HFSE, with 

La/Nb ranging from ~2 to 3.6. In addition, La/Nb ratios strongly correlate with 87Sr/86Sr, 

206Pb/204Pb and 143Nd/144Nd (e.g., Fig. 3.8). These features are consistent with crustal 

contamination, although melt generation from subduction-modified mantle (especially if 

rutile is present as a trace phase) could also potentially produce isotopically enriched, 

HFSE-depleted melts. 
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Figure 3.7 Clinopyroxene Mg# versus trace element concentrations. 

 (a) Lu concentrations in clinopyroxene from PC phenocrysts and xenoliths are 

negatively correlated with cpx Mg#. This trend is largely consistent with fractional 

crystallization. (b) Ce concentrations in these cpx show large variations that cannot be 

explained by fractional crystallization alone. The fractional crystallization curves are 

modeled assuming the initial melt has a composition resembling the least enriched (latest) 

PC lava ([Lu] = 0.38 ppm, [Ce] = 71 ppm). The mass fraction and Mg# of fractional 

crystallization products of this initial melt was modeled using the MELTS software at 6 

kbar, with an initial water content of 1.5 wt.%, initial oxygen buffer of QFM+1, and 

temperature steps of 10°C. Partition coefficients between cpx and melt was varied 

corresponding to the crystallization temperature of each step (Kd
Lu = 0.32-0.49, Kd

Ce = 

0.100-0.144, see appendix for more information on Kd selection). 
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Figure 3.8 Correlation between La/Nb ratios and Sr isotopes in PC lavas. 
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The oxygen isotope compositions of PC phenocrysts and cumulate xenoliths are 

also consistent with crustal contamination. Olivine phenocrysts from PC lavas have 𝛿18O 

values ranging from +5.4 to +5.8 ‰. Olivines from PC cumulate xenoliths display a 

similar range of oxygen isotope compositions (𝛿18O = +5.5 to +5.7 ‰). These values are 

slightly but consistently higher than normal mantle olivine (𝛿18O = +5.0 to +5.4 ‰, 

Mattey et al., 1994) or olivine from most uncontaminated MORB or ocean island basalts 

(Eiler, 2001). Continental crust typically has higher than mantle 𝛿18O values (e.g., Taylor 

et al., 1968; Kempton & Harmon, 1992). Positively correlated 𝛿18O values and radiogenic 

87Sr/86Sr in many basalt suites has been attributed to crustal contamination (e.g., 

Puricutin, McBirney et al., 1987; Aeolian arc, Peccerillo et al., 2004). Although PC lavas 

and ultramafic xenoliths contain olivines with 𝛿18O values higher than typical MORB, no 

correlation between olivine 𝛿18O and whole rock 87Sr/86Sr is observed. This may reflect 

derivation of the olivines from the evolved (and contaminated) melt, whereas the whole 

rocks represent mixtures of evolved, contaminated melt and primitive, uncontaminated 

melt. As a result, the Sr isotope composition of the melt mixture is dependent on the ratio 

of contaminated and primitive melt in the hybrid melt, but 𝛿18O values of the olivines, 

which formed from the contaminated melt prior to mixing, are not. 

PC lavas also have radiogenic Os isotopic compositions (187Os/188Os = 0.183-

0.310) compared to normal mantle peridotite (187Os/188Os < 0.130; e.g., Shirey & Walker, 

1998; Lassiter et al., 2014) and most unmodified mantle-derived magmas (187Os/188Os < 

0.150; e.g., Hauri & Hart, 1993; Lassiter & Hauri, 1998). Continental crust has high 

Re/Os ratios and therefore variable but high 187Os/188Os (e.g. Esser & Turekian, 1993). 

Although the highly radiogenic Os isotope compositions in PC lavas are suggestive of 

crustal contamination, wholerock Os isotope ratios do not systematically vary with 

stratigraphic position or correlate with other chemical and isotopic systems. Because PC 
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lavas have very low Os concentrations ([Os]<60 ppt), their Os isotopic compositions may 

be largely controlled by the composition of trace phases such as sulfide inclusions within 

olivine phenocrysts. Sulfides may have grown from either primitive melt or contaminated 

melt. A mixture of different sulfide populations could result in whole rock Os isotopic 

compositions becoming decoupled from other isotope systems. 

Taken collectively, all of the features described above are consistent with crustal 

contamination. Therefore, although we cannot exclude the possibility that the evolved 

melt derives from a distinct subduction-modified mantle source, it appears more likely 

that the evolved melt fractionated and assimilated continental crust during magma 

storage. The compositional variations in PC lavas therefore likely reflect varying degrees 

of crustal contamination, as is suggested for many other monogenetic vents (e.g., 

McBirney et al., 1987; Schaaf et al., 2005; Erlund et al., 2010; Rowe et al., 2011). 

3.5.4 Sills model 

The above discussion indicates that the PC lavas contain a melt component that 

has experienced significant crustal storage and fractional crystallization and that therefore 

the observed compositional variations in PC lavas are most readily explained by mixing 

of an evolved and crustally-contaminated melt with a more primitive melt.  Signatures 

of the enriched, evolved component decrease over the course of the PC eruption, as 

suggested by decreasing incompatible trace element concentrations and the decreasing 

abundance of large olivine phenocrysts and cumulate xenoliths. A model is needed to 

explain this temporal trend. Here we propose a two-stage eruption model, where an initial 

melt pulse stalls and fractionates in the crust, and the eruption is triggered by arrival of a 

later melt pulse which then mixes with the earlier component (Fig. 3.9). 
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In this model, an initial melt pulse stalled and formed one or more sills within the 

crust. According to pressure constraints, these sills most likely formed at ~20 km, near 

the brittle-ductile transition within the crust (Gazel et al., 2012). Magmas within the 

crustal sills fractionated and assimilated crustal materials while cooling via coupled 

assimilation and fractional crystallization (DePaolo, 1981; Spera & Bohrson, 2001). 

Therefore, these magmas are characterized by high incompatible trace element 

concentrations and enriched isotopic compositions, and contain significant amounts of 

phenocrysts and cumulates. A later melt pulse that broke to the surface then triggered the 

eruption. As the eruption began, the pressures within the crustal sills shifted from 

lithostatic to magmatic, and as a result the sills collapsed and magma from the sills was 

forced into the main conduit and mixed with the later, more primitive magmas from 

depth. Over the course of eruption, the sill component was gradually exhausted. As a 

result, the sill-component signatures decreased over time, which is reflected in decreasing 

incompatible trace element concentrations, less enriched isotopic compositions and lower 

phenocryst and cumulate xenolith abundances in later PC lavas. 

The limited major element variation recorded in PC lavas places constraints on 

the extent of mixing of evolved (low Mg#) and primitive (high Mg#) melts. After 

correcting for olivine phenocrysts, the Mg# of erupted PC melts varied from ~66 in the 

earliest PC melt to ~70 at the end of the eruption. We estimated the potential composition 

of the evolved sill component by calculating the liquid line of descent of primitive PC 

lavas using the MELTS program. Trace element abundances were estimated from the 

most enriched cpx, which has a Ce concentration of ~54 ppm, and is estimated to derive 

from a melt with ~420 ppm Ce (Kd = 0.13). Modeling details are given in the appendix. A 

simple binary mixing model suggests addition of up to ~20% of the sill component could 

generate the relatively small variations in Mg# and large variations in incompatible trace 
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element concentrations in the erupted melts (Fig. S3.5). This mixing process can also 

explain the variations in Sr-Nd-Pb isotopic compositions in PC lavas. However, we note 

that the modest increase in SiO2 content over the course of eruption would appear to be 

inconsistent with the sills model, because fractional crystallization and assimilation of 

silicic crust usually increases the SiO2 content of evolved and contaminated melts. One 

possibility is that the parental melt to the sill component initially had lower SiO2 than the 

second melt pulse. Alternatively, the sill component may have assimilated crustal rocks 

with low SiO2 abundance (e.g., carbonate or skarn).  
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Figure 3.9 Deflating sills model. 

(a) One or more sills are created through a magmatic pulse some time prior to 

eruption; (b) Melts ponding in the sills undergo fractional crystallization and assimilate 

crustal rocks; (c) A second magma pulse triggers eruption. As the eruption progresses, 

the sills deflate due to dropping pressure, which forces the evolved and contaminated 

magma with phenocrysts and xenoliths to mix back into the feeder conduit with more 

primitive melt. 
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3.6 CONCLUSIONS 

 Lavas from the Papoose Canyon (PC) monogenetic vent sequence display 

significant temporal variations in major and trace element abundances and Sr, Nd, 

and Pb isotope compositions. 

 Correlations between trace element concentrations and isotopic ratios indicate the 

observed temporal variations reflect binary mixing of two distinct melts, where 

the proportion of the chemically and isotopically more enriched component 

decreases over time. 

 The major and trace element compositions of PC phenocrysts and ultramafic 

xenoliths suggest they derive from a melt that is more evolved and chemically 

more enriched than PC lavas. 

 Pressure constraints suggest PC phenocrysts and ultramafic xenoliths fractionated 

at pressures of ~5-7 kbar, which corresponds to the middle crust, possibly near the 

brittle-ductile transition. 

 Correlations between HFSE depletions and Sr-Nd-Pb isotopic compositions, high 

𝛿18O in olivines, and radiogenic Os isotopic compositions in wholerocks suggest 

PC lavas have likely experienced crustal contamination.  

 A deflating sills model is proposed to explain the observations and implications 

described above. An initial melt pulse stalled and formed one or more sills within 

the crust, where melt fractionated and assimilated crustal material. The eruption 

was triggered by the arrival of a later melt pulse, and the early, evolved melts 

were drained and mixed with the later, more primitive melts. The temporal-

compositional trends therefore reflect exhaustion of the sill component over time. 
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 These results indicate that even “primitive” lavas may contain a significant 

signature of magma ponding, fractionation, and crustal contamination that is 

obscured within the bulk lava but is recorded in the melt “crystal cargo”. 
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Appendices 

APPENDIX A1: SUPPLEMENTARY FILE FOR CHAPTER 1 

Appendix A1.1 Analytical Methods 

Xenoliths were crushed by hand and then placed in deionized water and 

ultrasonicated for 15 minutes, after which cleaned grains were dried and sieved. Grains of 

250-850 microns in diameter were picked under a binocular microscope to prepare 

clinopyroxene and plagioclase separates. Care was taken to avoid any grains with visible 

alteration or adhered melt. Epoxy grain mounts were then made and polished for mineral 

major and trace element analyses of 2-3 grains from each sample. 

Mineral compositions of most samples were analyzed at the USGS on polished 

thin sections using standards, procedures, and equipment and yielding analytical accuracy 

and precision outlined in Bohrson and Clague (1988) and Davis et al. (1994). Each 

analysis in the table is an average of the number of points indicated in Supplemental 

Tables S1.1 through S1.3. Additional major elements on some of the clinopyroxene and 

plagioclase separated for other chemical analyses were measured using a JEOL JXA-

8200 EPMA at UT Austin at 15kV accelerating voltage, with a 10nA beam current, and a 

defocused beam of 10μm diameter. Measurements of secondary standards were accurate 

to within 5%, and are generally reproducible within 5% (1 s.d.) except MnO (20%). 

Some samples were analyzed at both the USGS and UTA to evaluate any potential inter-

laboratory bias and these replicates are presented in Supplemental Tables S1.1 through 

S1.3. The differences between the two labs are smaller than the compositional variation 

observed between grains of individual samples, so no systematic inter-laboratory 

differences were detected.  
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Clinopyroxene trace element concentrations were measured by LA-ICP-MS using 

an Agilent 7500ce quadrupole with a New Wave UP-193FX laser system using methods 

described in Byerly and Lassiter (2012). 75 μm spots were pre-ablated and dwell time 

was 60s with 50s washout time. Analyses of most elements for secondary standard BCR-

2g were accurate to within 5% of the accepted values. Gadolinium and Hf were accurate 

to within 7%, and Y was accurate to within 10%. Repeat analyses of BCR-2g were 

reproducible to within 3% (1 s.d.). In most cases 3 spots per sample were analyzed and 

average concentrations are reported.  

For Sr and Sm-Nd isotopes, 100-150 mg plagioclase and/or clinopyroxene 

separates were digested following procedures described in Byerly & Lassiter (2012) and 

Connelly et al. (2006). Before digestion, samples for Sr and Sm-Nd analysis were leached 

in 2.5 N HCl for 30 min, and then washed and ultra-sonicated in deionized water. Sr-Spec 

and REE-spec/HDEHP resins were used to separate Sr and Sm/Nd, respectively. 

Strontium and Sm/Nd were run on a Triton TIMS. Strontium was run as metal on single 

Re filaments loaded with Ta2O5. Neodymium and Sm were run as metals on double Re 

filaments. NBS 987 and UT Ames Nd standards were measured regularly during the 

course of this study. The average NBS 987 87Sr/86Sr for the TIMS lab over the period 

during which analyses were performed was 0.710273±0.000015 (2 s.d.), similar to the 

value reported by Thirlwall (1991) (0.710248±0.000015). The average 143Nd/144Nd of UT 

Ames Nd was 0.512072±0.000010 (2 s.d.), and is consistent with the values reported by 

Scher & Delaney (2010) (0.512069±0.000014). During the period of analytical work, 

replacement of one faraday cup resulted in a slight shift of measured standard 87Sr/86Sr 

and 143Nd/144Nd ratios. Therefore the sample ratios reported in this study are standard 

corrected (Sr standard corrected to 0.710250 and Nd standard corrected to 0.512070 

using average measured standard values from before and after faraday cup replacement). 
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Five duplicates were measured and the standard deviations (2 s.d.) for 87Sr/86Sr and 

143Nd/144Nd were 12ppm and 5ppm, respectively. Strontium total procedure blanks were 

less than 150pg, and Nd blanks were less than 75pg. The impact from blanks was 

negligible for the sample sizes analyzed, and no blank correction was applied to the 

reported data. 

For oxygen analyses, under a binocular microscope plagioclase and clinopyroxene 

crystals are carefully picked to avoid visible melt infiltration, inclusions or surface 

alteration. Oxygen isotope ratios were measured on ~2 mg of optically pure 

clinopyroxene and plagioclase separates by laser fluorination (Sharp, 1990). Each sample 

was heated with a CO2 laser in the presence of BrF5. The extracted O2 was cryogenically 

purified prior to introduction into a ThermoElectron MAT253 isotope ratio mass 

spectrometer. In house quartz standard Lausanne-1 (δ18O = 18.1‰), garnet standard 

UWG-2 (δ18O = 5.8‰) (Valley et al., 1995) and olivine standard San Carlos (δ18O = 

5.2‰) were measured to ensure accuracy and precision. δ18O values are reported relative 

to SMOW, where the δ18O value of NSB-28 is +9.65‰. Duplicates were measured on 

different days, and duplicate data are reported in Supplemental Table S1.6. Precision 

based on replicates of the standards is ±0.1 (1 s.d.).  

Appendix A1.2 Melt REE Concentrations Calculation 

We calculated the REE concentrations of melts in equilibrium with clinopyroxene 

from Hualalai gabbros, assuming no trapped melt. The Kd values used were obtained 

using the empirical program BIGD (Nielsen, 1992). The input parameters for the program 

are Xmelt – average Hualalai melt composition (data from GeoRoc), Xmineral – average 

measured clinopyroxene composition, and T – average temperature (1100 °C) of 

clinopyroxene fractionation. The Kd values are listed in the following Table S1.7. If 
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trapped melts were present, this melt would increase REE concentrations in 

clinopyroxene following sub-solidus re-equilibration, which will result in overestimation 

of REE abundances in calculated equilibrium melts. This cannot account for the LREE-

depleted, MORB-like patterns calculated for the melts in equilibrium with group-1 

gabbros. In addition, the similarity of the calculated melts in equilibrium with group-2 

and -3 gabbros with Hualalai lavas suggests little sub-solidus reequilibration with trapped 

melt components. 

Appendix A1.3 MELTS Modeling 

The crystallization products of primitive Hualalai tholeiitic melt KK-14-5 (Table. 

S1.8; Bohrson & Clague, 1988) were modeled using MELTS (Ghiorso & Sack, 1995). 

Water content measured for KK-14-5 is 0.39 wt. % (Bohrson & Clauge, 1988), and water 

content estimates for primitive Hawaiian range up to 0.6 wt. % (Hauri, 2002). We 

investigated the effect of varying water content by using 0.4-0.7 wt. % initial water 

content for MELTS models. Oxygen buffer suggested for Hawaiian melts is between 

NNO and QFM (e.g. Gerlach, 1993). MELTS models initiated at the NNO buffer and 

QFM buffer were investigated in this study. The model-predicted crystallization 

sequences at different pressures are presented in Figure A3.3 (using initial 0.4 wt. % 

water content and NNO oxygen buffur). 

Appendix A1.4 MORB Nd Isotopic Heterogeneity 

We compiled Nd isotope data of MORB at ocean spreading centers using the 

PetDB database. In order to investigate the correlation between MORB Nd isotopic 

heterogeneity and ridge spreading rates, ten mid-ocean ridge segments with different 

spreading rates (Press et al., 2004) were selected (listed in Table. S1.9). We excluded 

segments previously found to be influenced by hotspot inputs (Steinberger, 2000). The 
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degree of Nd isotope heterogeneity along individual ridge segments was quantified by 

calculating the standard deviation of εNd in ~50 km long sections with rolling bins, and 

then averaging the standard deviations of the bins from each ridge segment. The 50 km 

bin size was chosen to ensure sufficient analyses within most bins to allow calculation of 

the standard deviation. The ridge segments used and the number of Nd-isotope analyses 

included for each segment are listed in Table S1.9. 
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Appendix A1.5 Figures 

 

 

Figure S1.1: Clinopyroxene TiO2 vs. clinopyroxene Mg# of Hualalai gabbroic xenoliths. 
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Figure S1.2: Plagioclase K2O vs. clinopyroxene Sm/Yb of Hualalai gabbroic xenoliths.  
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Figure S1.3: Nd isotope heterogeneity versus spreading rate. 

Nd isotope heterogeneity (calculated as 1 s.d. of the population) of Hualalai 

group-3 gabbros compared with mid-ocean ridge basalts sampled from ~50 km rolling 

bins along different ridge segments. Data for ODP 843 basalts are from King et al. 

(1991); data for ODP 1256D are from Höfig et al. (2014); data for other mid-ocean ridges 

are compiled from PetDB (more detailed information is provided in supplement text).  
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Figure S1.4: Crystallization sequence of the MELTS model results. 

Crystallization sequence of the MELTS model results with 0.4 wt.% initial water 

content and NNO oxygen buffer. 
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Appendix A1.6 Tables 

 

Sample n SiO2 Al2O3 Na2O MgO CaO MnO FeO TiO2 Cr2O3 Total Mg# 

Group-1 MORB 

63Kap-3b 3 52.01 (.66) 2.39 (.33) 0.36 (.03) 17.74 (.73) 20.85 (.12) 0.20 (.02) 5.01 (.06) 0.13 (.02) 0.20 (.01) 98.94 (1.74) 86.4 (.4) 

65-Kap-14da 3 52.13 (.21) 3.12 (.18) 0.18 (.01) 16.53 (.21) 21.53 (.31) 0.13 (.02) 5.48 (.23) 0.21 (.06) 0.19 (.10) 99.50 (.17) 84.3 (.7) 

65Kap-14d repb 3 52.88 (.69) 2.57 (.03) 0.05 (.02) 18.81 (1.79) 20.51 (2.01) 0.13 (.02) 5.71 (.52) 0.04 (.04) 0.43 (.04) 101.15 (.85) 85.6 (.1) 

63Kap-13a 6 52.35 (.80) 3.64 (.58) 0.51 (.04) 16.58 (1.02) 20.68 (1.11) 0.15 (.01) 5.58 (.24) 0.33 (.04) 0.72 (.14) 100.57 (.58) 84.1 (.5) 

63Kap-13 repb 6 52.51 (.52) 3.08 (.22) 0.46 (.03) 16.83 (.25) 21.29 (.25) 0.16 (.03) 5.68 (.07) 0.27 (.03) 0.68 (.07) 101.00 (.74) 84.2 (.2) 

65Kap-13a 6 51.72 (.52) 3.58 (.83) 0.66 (.05) 16.47 (.49) 20.55 (.23) 0.14 (.01) 5.12 (.14) 0.43 (.07) 0.58 (.05) 99.23 (.34) 85.1 (.6) 

65Kap-13 repb 3 52.99 (.46) 2.74 (.05) 0.49 (.03) 17.07 (.09) 21.37 (.04) 0.15 (.01) 5.30 (.04) 0.33 (.03) 0.69 (.03) 101.12 (.47) 85.3 (.1) 

65Kap-14ab 5 51.31 (.41) 2.40 (.04) 0.08 (.03) 17.27 (.28) 21.83 (.31) 0.14 (.03) 5.58 (.23) 0.09 (.05) 0.34 (.09) 99.08 (.57) 84.8 (.4) 

65-61-26b 4 49.72 (.74) 4.11 (.69) 0.61 (.02) 15.82 (.33) 20.85 (.08) 0.18 (.03) 4.96 (.16) 0.37 (.06) 0.64 (.03) 97.30 (.88) 85.1 (.7) 

65-60-32a 5 49.74 (.87) 4.33 (1.04) 0.68 (.02) 14.76 (.61) 19.94 (.59) 0.22 (.01) 8.45 (.28) 0.96 (.21) 0.20 (.08) 99.24 (.35) 75.7 (1) 

65-60-32 repb 2 50.00 (.15) 4.13 (.40) 0.58 (.02) 14.69 (.23) 19.75 (.20) 0.26 (.01) 8.43 (.25) 0.89 (.04) 0.19 (.02) 98.94 (.04) 75.8 (.3) 

65-7-133a 5 51.70 (.53) 4.05 (.93) 0.55 (.09) 16.56 (.58) 20.46 (.76) 0.14 (.01) 4.83 (.31) 0.47 (.08) 0.84 (.21) 99.60 (.29) 85.9 (1.1) 

65-7-133 repb 6 51.77 (.57) 2.99 (.11) 0.52 (.01) 16.83 (.27) 21.53 (.17) 0.15 (.01) 5.07 (.06) 0.41 (.06) 0.76 (.05) 100.04 (.76) 85.7 (.1) 

65-86-64a 5 51.50 (.66) 3.61 (.58) 0.62 (.04) 15.70 (.27) 20.50 (.38) 0.19 (.02) 6.79 (.19) 0.48 (.05) 0.28 (.03) 99.64 (.32) 80.5 (.6) 

65-86-64 repb 4 51.21 (1.19) 4.24 (.85) 0.61(.04) 14.72 (1.26) 20.61 (.39) 0.23 (.06) 7.16 (.19) 0.53 (.06) 0.21 (.06) 99.54 (1.60) 78.7 (1.5) 

83Kap-8a 4 51.39 (.50) 3.69 (.79) 0.55 (.03) 15.93 (.29) 20.78 (.16) 0.16 (.01) 5.25 (.16) 0.30 (.07) 0.46 (.18) 98.5 (.53) 84.4 (.6) 

83Kap-8 repb 2 52.75 (.36) 2.94 (.01) 0.49 (.03) 16.74 (.17) 21.00 (.36) 0.18 (.04) 5.52 (.12) 0.21 (.01) 0.70 (.00) 100.57 (.28) 84.5 (.2) 

83Kap-9a 6 51.63 (.38) 3.52 (.49) 0.52 (.02) 16.03 (.36) 20.91 (.25) 0.13 (.03) 4.84 (.19) 0.26 (.05) 0.69 (.08) 98.53 (.30) 85.5 (.7) 

83-Kap-9 repb 3 51.55 (.23) 2.95 (.15) 0.49 (.00) 16.16 (.12) 20.97 (.36) 0.17 (.01) 5.44 (.07) 0.21 (.00) 0.71 (.03) 98.69 (.35) 84.2 (.2) 

87Kap-10a 9 50.13 (.80) 5.73 (.92) 0.35 (.02) 15.49 (.47) 21.58 (.19) 0.13 (.01) 5.52 (.18) 0.39 (.28) 0.14 (.08) 99.41 (.24) 83.3 (.9) 

94Kap-7a 7 52.48 (.36) 2.51 (.32) 0.09 (.02) 16.75 (.22) 21.52 (.27) 0.12 (.01) 4.88 (.35) 0.18 (.13) 0.18 (.13) 98.71 (.27) 86.0 (1.0) 

96Kap-7a 6 50.90 (.31) 3.89 (.59) 0.64 (.05) 15.48 (.33) 20.28 (.27) 0.19 (.03) 6.63 (.23) 0.55 (.09) 0.23 (.02) 98.78 (.60) 80.6 (.5) 
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88Kap-2a 15 50.62 (.88) 4.23 (.71) 0.64 (.06) 15.58 (.81) 20.56 (.67) 0.16 (.01) 6.24 (.33) 0.60 (.33) 0.38 (.04) 99.00 (.69) 81.6 (1.3) 

87Kap-14a 5 51.22 (.94) 4.55 (.84) 0.61 (.03) 15.82 (.59) 21.50 (.24) 0.14 (.02) 4.96 (.28) 0.56 (.14) 0.70 (.06) 100.14 (.87) 85.0 (.9) 

Group-2 Shield 

63Kap-15b 3 50.68 (.09) 2.49 (.06) 0.37 (.01) 15.12 (.08) 22.00 (.05) 0.19 (.02) 7.53 (.12) 0.95 (.03) 0.21 (.02) 99.55 (.26) 78.2 (.3) 

65-115-10b 6 50.80 (.45) 3.21 (.35) 0.46 (.03) 15.39 (.15) 21.44 (.29) 0.21 (.03) 7.77 (.18) 1.02 (.13) 0.11 (.03) 100.42 (.87) 78.1 (.5) 

65-60-17b 4 49.73 (.53) 5.69 (.19) 0.52 (.04) 15.27 (.20) 21.00 (.25) 0.14 (.03) 6.53 (.14) 0.70 (.25) 0.67 (.11) 100.31 (.72) 80.8 (.3) 

84-1801-5a 4 50.42 (.42) 4.54 (.36) 0.64 (.09) 15.64 (1.04) 19.46 (1.12) 0.16 (.02) 7.45 (.20) 0.70 (.08) 0.45 (.04) 99.42 (.22) 78.9 (.8) 

87Kap-11a 5 51.06 (.83) 4.85 (.51) 0.83 (.04) 15.34 (.36) 21.10 (.43) 0.15 (.01) 5.75 (.12) 0.69 (.22) 0.62 (.11) 100.40 (.91) 82.6 (.6) 

92Kap-1a 5 51.25 (.41) 4.33 (.29) 0.58 (.03) 16.06 (.17) 20.85 (.37) 0.10 (.01) 4.20 (.21) 0.25 (.04) 1.05 (.14) 98.67 (.29) 87.2 (.6) 

92Kap-3a 5 50.02 (.98) 4.99 (1.12) 0.74 (.06) 15.31 (.36) 19.74 (.31) 0.14 (.03) 5.81 (.32) 0.70 (.29) 0.91 (.29) 98.36 (.28) 82.4 (1.1) 

Group-3 Post-shield 

63Kap-7a 8 49.93 (.26) 5.75 (.17) 0.61 (.03) 15.18 (.13) 19.83 (.23) 0.16 (.01) 7.46 (.18) 1.05 (.07) 0.33 (.05) 100.26 (.41) 78.4 (.3) 

63Kap-7 repb 3 48.49 (.28) 5.62 (.04) 0.54 (.04) 15.35 (.06) 19.18 (.03) 0.20 (.02) 7.62 (.11) 1.05 (.02) 0.31 (.02) 98.39 (.36) 78.4 (.3) 

65-86-92a 5 49.10 (.37) 6.34 (.18) 0.49 (.04) 14.82 (.19) 20.44 (.17) 0.14 (.01) 6.68 (.08) 0.95 (.18) 0.51 (.05) 99.46 (.21) 79.8 (.4) 

65-86-92 repb 4 48.85 (.44) 5.54 (.23) 0.43 (.02) 15.24 (.15) 19.94 (.13) 0.17 (.01) 6.90 (.09) 0.82 (.04) 0.53 (.03) 98.46 (.39) 79.9 (.3) 

65-109-146abcb 2 49.44 (.39) 5.84 (.42) 0.49 (.01) 15.11 (.30) 20.88 (.03) 0.19 (.02) 7.40 (.12) 1.02 (.06) 0.66 (.06) 101.02 (.05) 78.6 (.6) 

65-100-110b 2 48.84 (.49) 4.73 (.29) 0.55 (.05) 15.14 (.29) 21.11 (.05) 0.16 (.02) 7.34 (.03) 1.26 (.15) 0.49 (.03) 99.66 (.45) 78.8 (.3) 

65-60-221a 6 49.70 (.30) 3.88 (.23) 0.57 (.01) 14.68 (.15) 21.40 (.28) 0.24 (.03) 7.70 (.14) 1.32 (.18) 0.02 (.01) 99.47 (.26) 77.3 (.4) 

65-60-221 repb 3 49.53 (.47) 4.09 (.20) 0.53 (.02) 14.43 (.21) 21.16 (.12) 0.27 (.01) 7.73 (.07) 1.19 (.02) 0.11 (.02) 99.04 (.63) 77.1 (.4) 

Table S1.1: Clinopyroxene major element compositions (wt. %). 

aAnalyses performed at USGS. bAnalyses preformed at UT Austin. Major element contents reported are average of 

multiple analyses. N indicates numbers of measurements for given sample. Digits in brackets after concentrations are 1 s.d. of 

the mineral population for each sample. 
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Sample n SiO2 Al2O3 Na2O MgO CaO MnO FeO TiO2 Cr2O3 Total Mg# 

Group-1 MORB 

65Kap-14da 2 53.95 (.35) 3.24 (.23) 0.05 (.02) 29.15 (.35) 1.29 (.21) 0.22 (.02) 11.30 (.71) 0.16 (.01) 0.09 (.01) 99.40 (.71) 82.1 (1.1) 

65Kap-14d repb 3 54.37 (.21) 3.22 (.14) 0.00 (.01) 31.11 (.12) 1.06 (.02) 0.19 (.02) 10.51 (.15) 0.07 (.01) 0.09 (.02) 100.69 (.36) 84.2 (.2) 

63Kap-13a 7 54.81 (1.03) 2.97 (.80) 0.05 (.01) 30.14 (.42) 1.09 (.13) 0.24 (.01) 10.63 (.24) 0.14 (.01) 0.39 (.04) 100.47 (.88) 83.5 (.5) 

65Kap-13a 2 53.65 (.07) 3.84 (.08) 0.07 (.01) 30.05 (.07) 0.95 (.05) 0.23 (.01) 10.15 (.07) 0.17 (.02) 0.32 (.04) 99.40 (.14) 84.1 (.1) 

65-60-32a 3 52.13 (.06) 3.29 (.10) 0.04 (.01) 26.43 (.15) 1.19 (.12) 0.33 (.02) 15.23 (.15) 0.35 (.02) 0.07 (.01) 99.03 (.04) 75.6 (.2) 

65-60-32 repb 3 51.78 (.15) 3.54 (.06) 0.04 (.02) 26.54 (.09) 1.16 (.11) 0.38 (.02) 15.42 (.11) 0.33 (.02) 0.05 (.00) 99.25 (.36) 75.6 (.2) 

65-7-133a 3 53.83 (.35) 3.8 (.07) 0.07 (.02) 30.23 (.15) 1.01 (.06) 0.22 (.01) 9.80 (.06) 0.28 (.02) 0.35 (.02) 99.6 (.17) 84.6 (.0) 

65-86-64a 3 53.97 (.49) 2.51 (.45) 0.04 (.01) 28.73 (.29) 1.08 (.07) 0.30 (.01) 12.80 (.17) 0.17 (.02) 0.18 (.02) 99.70 (.20) 80.0 (.4) 

83Kap-8a  5 53.51 (.30) 3.19 (.53) 0.06 (.03) 29.50 (.16) 0.99 (.08) 0.24 (.01) 10.35 (.34) 0.13 (.04) 0.30 (.07) 98.28 (.61) 83.6 (.5) 

83Kap-9a 6 53.74 (.51) 3.49 (.45) 0.07 (.04) 29.83 (.27) 1.00 (.10) 0.22 (.02) 9.90 (.08) 0.11 (.02) 0.39 (.04) 98.75 (.60) 84.3 (.1) 

87Kap-10a 4 53.98 (.58) 3.45 (.76) 0.02 (.01) 30.13 (.45) 1.04 (.06) 0.21 (.01) 10.53 (.26) 0.10 (.01) 0.10 (.01) 99.50 (.24) 83.6 (.6) 

94Kap-7a 5 55.08 (.23) 2.03 (.09) 0.02 (.02) 30.12 (.46) 1.26 (.35) 0.22 (.04) 9.81 (.72) 0.06 (.04) 0.15 (.06) 98.75 (.53) 84.6 (1.1) 

96Kap-7a 6 53.35 (.23) 2.89 (.43) 0.04 (.01) 28.02 (.31) 1.10 (.08) 0.28 (.03) 12.87 (.30) 0.21 (.02) 0.13 (.01) 98.90 (.57) 79.5 (.4) 

88Kap-2a 13 53.58 (.61) 3.11 (.35) 0.05 (.01) 29.10 (.34) 1.04 (.08) 0.26 (.02) 11.82 (.29) 0.17 (.04) 0.25 (.02) 99.39 (.80) 81.5 (.4) 

87Kap-14a 5 54.72 (.37) 3.49 (.62) 0.04 (.01) 30.54 (.27) 1.00 (.08) 0.22 (.01) 9.85 (.23) 0.20 (.06) 0.36 (.05) 100.40 (.58) 84.7 (.4) 

Group-2 Shield 

84-1801-5a 5 53.16 (.44) 3.40 (.32) 0.06 (.01) 28.16 (.35) 1.27 (.05) 0.25 (.01) 12.86 (.43) 0.27 (.02) 0.28 (.02) 99.68 (.22) 79.6 (.7) 

84-1801-5 repb 3 53.43 (.41) 3.45 (.17) 0.07 (.05) 28.41 (1.09) 2.15 (1.62) 0.24 (.01) 12.10 (.49) 0.24 (.03) 0.26 (.05) 100.39 (.34) 80.9 (.2) 

87Kap-11a 5 54.42 (.15) 3.04 (.27) 0.05 (.00) 29.80 (.22) 1.07 (.05) 0.24 (.01) 10.72 (.22) 0.24 (.05) 0.33 (.04) 99.92 (.48) 83.2 (.4) 

92Kap-1a 5 54.47 (.22) 3.26 (.25) 0.06 (.01) 30.92 (.16) 1.01 (.02) 0.18 (.01) 8.20 (.34) 0.09 (.02) 0.47 (.04) 98.65 (.23) 87.0 (.5) 

92Kap-3a 6 53.99 (.53) 2.78 (.60) 0.11 (.02) 29.36 (.39) 1.85 (.62) 0.20 (.02) 9.84 (.74) 0.16 (.10) 0.60 (.18) 98.88 (.18) 84.2 (1.1) 

Table S1.2: Orthopyroxene major element compositions (wt. %). 
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Sample n SiO2 Al2O3 Na2O MgO CaO FeO K2O Total An 

Group-1 MORB 

63Kap-3b 5 45.92 (.47) 34.14 (.19) 1.53 (.12) 0.08 (.01) 17.52 (.17) 0.33 (.05) 0.06 (.02) 99.58 (.41) 86.4 (1.0) 

65Kap-14da 4 43.68 (.15) 35.28 (.36) 0.42 (.05) 0.10 (.01) 19.70 (.16) 0.35 (.02) 0.00 (.01) 99.51 (.48) 96.3 (.4) 

65Kap-14d repb 4 43.65 (.43) 34.97 (.39) 0.26 (.06) 1.07 (.13) 19.62 (.22) 0.44 (.06) 0.00 (.01) 100.01 (.74) 97.7 (.5) 

63Kap-13a 5 46.66 (.58) 33.62 (.33) 1.77 (.19) 0.11 (.02) 17.22 (.33) 0.30 (.03) 0.02 (.01) 99.69 (.32) 84.3 (1.7) 

63Kap-13 repb 5 47.07 (.48) 33.97 (.21) 1.64 (.27) 0.26 (.23) 17.30 (.37) 0.37 (.05) 0.01 (.01) 100.62 (.41) 85.4 (2.2) 

65Kap-13a 5 48.02 (.08) 32.02 (.19) 2.43 (.05) 0.09 (.02) 15.86 (.15) 0.25 (.01) 0.04 (.02) 98.71 (.19) 78.2 (.5) 

65Kap-13 repb 8 48.64 (.62) 32.81 (.29) 2.61 (.16) 0.10 (.02) 15.70 (.29) 0.25 (.04) 0.02 (.01) 100.12 (.38) 76.9 (1.3) 

65Kap-14ab 5 43.77 (.34) 35.65 (.43) 0.25 (.05) 0.66 (.26) 19.67 (.04) 0.46 (.10) 0.00 (.01) 100.47 (.38) 97.7 (.5) 

65-61-26b 8 48.11 (.49) 33.07 (.24) 2.29 (.20) 0.14 (.09) 15.84 (.19) 0.29 (.07) 0.14 (.09) 99.89 (.44) 79.3 (1.6) 

65-60-32a 7 51.79 (.68) 30.50 (.43) 4.45 (.18) 0.07 (.02) 12.94 (.36) 0.37 (.04) 0.08 (.01) 100.19 (.77) 61.7 (1.6) 

65-7-133a 5 47.62 (.30) 33.18 (.26) 2.13 (.03) 0.10 (.02) 16.32 (.08) 0.28 (.03) 0.04 (.01) 99.68 (.57) 80.9 (.3) 

65-7-133 repb 7 48.08 (.47) 32.98 (.49) 2.40 (.18) 0.12 (.05) 15.96 (.45) 0.28 (.04) 0.05 (.01) 99.86 (.52) 78.6 (1.6) 

65-86-64a 6 51.40 (.45) 31.38 (.27) 3.85 (.16) 0.08 (.02) 13.85 (.32) 0.31 (.02) 0.05 (.01) 100.92 (.31) 66.6 (1.4) 

65-86-64 repb 3 51.23 (.51) 30.77 (.13) 3.86 (.11) 0.05 (.07) 13.30 (.09) 0.33 (.06) 0.28 (.02) 99.82 (.41) 65.6 (.5) 

83Kap-8a 9 47.16 (.68) 33.52 (.49) 1.80 (.35) 0.05 (.01) 16.71 (.56) 0.28 (.02) 0.05 (.01) 99.57 (.36) 83.7 (3.1) 

83Kap-9a 8 47.24 (.24) 33.31 (.27) 1.86 (.09) 0.08 (.07) 16.67 (.14) 0.26 (.05) 0.05 (.02) 99.48 (.30) 83.2 (.7) 

87Kap-10a 6 44.55 (.11) 34.95 (.28) 0.72 (.06) 0.09 (.02) 19.41 (.28) 0.29 (.02) 0.03 (.01) 100.04 (.56) 93.7 (.6) 

94Kap-7a 9 43.86 (.21) 35.29 (.30) 0.38 (.06) 0.07 (.01) 19.23 (.15) 0.29 (.03) 0.03 (.03) 99.16 (.27) 96.6 (.5) 

96Kap-7a 4 52.11 (.22) 29.92 (.37) 3.95 (.14) 0.06 (.02) 12.98 (.15) 0.31 (.00) 0.07 (.00) 99.39 (.33) 64.5 (1.0) 

88Kap-2a 4 50.56 (1.98) 30.93 (1.43) 3.29 (.80) 0.10 (.01) 14.01 (1.41) 0.33 (.02) 0.14 (1.41) 99.37 (.15) 70.2 (7.2) 

87Kap-14a 14 47.48 (.71) 33.04 (.36) 2.26 (.27) 0.08 (.02) 16.83 (.40) 0.28 (.02) 0.03 (.01) 100.00 (.72) 80.5 (2.2) 

Group-2 Shield 

63Kap-15a 4 52.50 (.16) 29.70 (.26) 4.33 (.03) 0.06 (.01) 12.60 (.00) 0.34 (.02) 0.18 (.00) 99.69 (.24) 61.7 (.2) 

63Kap-15 repb 6 52.80 (.30) 29.95 (.19) 4.34 (.14) 0.05 (.02) 12.50 (.05) 0.34 (.05) 0.19 (.02) 100.18 (.05) 61.4 (.7) 

65-115-10b 9 50.46 (.48) 31.43 (.52) 3.18 (.30) 0.10 (.04) 14.36 (.39) 0.70 (.30) 0.24 (.04) 100.47 (.32) 70.4 (2.5) 
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84-1801-5a 6 51.17 (1.04) 31.00 (.61) 3.61 (.41) 0.14 (.02) 13.80 (.70) 0.29 (.04) 0.18 (.05) 100.19 (.33) 67.9 (3.6) 

87Kap-11a 6 51.51 (2.03) 30.16 (1.17) 3.97 (.83) 0.07 (.01) 13.58 (1.39) 0.25 (.02) 0.18 (.06) 99.72 (.57) 65.4 (7.0) 

92Kap-1a 6 51.20 (1.41) 30.75 (.98) 3.26 (.56) 0.07 (.01) 13.60 (1.14) 0.24 (.03) 0.65 (.15) 99.77 (.08) 69.7 (5.4) 

92Kap-3a 4 52.16 (.63) 29.99 (.40) 3.98 (.22) 0.07 (.01) 12.71 (.40) 0.29 (.02) 0.32 (.04) 99.51 (.20) 63.8 (2.0) 

Group-3 Post-shield 

63Kap-7a 5 49.96 (.18) 31.22 (.13) 2.92 (.03) 0.11 (.01) 15.04 (.09) 0.45 (.05) 0.15 (.01) 99.84 (.19) 74.0 (.3) 

63Kap-7 repb 5 49.67 (.25) 31.85 (.29) 2.97 (.04) 0.09 (.02) 14.73 (.14) 0.41 (.03) 0.13 (.02) 99.84 (.54) 73.3 (.2) 

65-86-92a 5 47.40 (.22) 32.88 (.18) 1.96 (.08) 0.12 (.01) 16.70 (.16) 0.46 (.02) 0.12 (.01) 99.63 (.35) 82.5 (.7) 

65-86-92 repb 6 47.27 (.53) 33.36 (.11) 1.89 (.10) 0.14 (.04) 16.76 (.10) 0.44 (.06) 0.11 (.01) 99.97 (.62) 83.1 (.8) 

65-109-146abcb 4 47.75 (.28) 32.67 (.21) 2.31 (.24) 0.16 (.04) 15.72 (.20) 0.53 (.06) 0.14 (.02) 99.27 (.30) 79.0 (1.9) 

65-60-221a 8 53.95 (.81) 29.20 (.64) 4.85 (.45) 0.07 (.01) 11.69 (.79) 0.42 (.02) 0.39 (.06) 100.56 (.44) 57.1 (3.9) 

65-100-110b 7 51.31 (.58) 30.82 (.32) 3.59 (.25) 0.13 (.04) 13.52 (.34) 0.52 (.03) 0.28 (.03) 100.17 (.35) 67.5 (2.0) 

Table S1.3: Plagioclase major element compositions (wt. %). 
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Sample La Ce Pb Sr Nd Sm Zr Hf Eu Gd Dy Y Er Yb 

Group-1 MORB 

63Kap-3 0.03 0.24 0.007 3.51 0.46 0.28 1.8 0.08 0.14 0.57 1.09 5.96 0.71 0.74 

65Kap-14d 0.01 0.07 0.0001 2.1 0.09 0.07 0.42 0.01 0.02 0.16 0.42 2.78 0.4 0.54 

63Kap-13 0.11 0.67 0.004 3.75 1.18 0.59 7.56 0.25 0.24 1.12 1.61 8.84 1.05 1.11 

65Kap-13 0.21 1.31 0.009 5.75 1.88 0.95 9.52 0.3 0.39 1.39 1.92 10.1 1.16 1.15 

65Kap-14a 0.03 0.14 0.002 1.28 0.21 0.10 1.54 0.04 0.03 0.28 0.66 4.62 0.6 0.76 

65-61-26 1.00 4.21 0.07 7.10 4.19 1.48 22.5 0.64 0.56 1.88 2.33 11.27 1.40 1.29 

65-60-32 0.46 2.81 0.02 8.05 4.09 1.99 18.9 0.68 0.85 2.95 3.88 21.1 2.41 2.36 

65-7-133 0.26 1.41 0.009 5.32 2.13 1.04 13.8 0.35 0.37 1.62 2.28 12.4 1.4 1.38 

65-86-64 0.50 2.33 0.05 7.12 2.63 1.20 6.14 0.32 0.55 1.82 2.41 12.90 1.45 1.31 

83Kap-8 0.12 0.64 0.01 4.56 0.93 0.49 3.64 0.15 0.21 0.79 1.21 6.64 0.78 0.78 

83Kap-9 0.06 0.41 0.002 3.64 0.71 0.43 3.01 0.12 0.18 0.70 1.12 6.12 0.73 0.78 

94Kap-7 0.01 0.09 0.009 1.39 0.14 0.10 0.74 0.04 0.04 0.26 0.66 4.54 0.56 0.71 

96Kap-7 0.09 0.66 0.008 6.52 1.50 0.92 4.16 0.28 0.38 1.55 2.23 11.25 1.28 1.20 

88Kap-2 0.23 1.07 0.003 6.28 1.51 0.83 3.47 0.21 0.41 1.40 1.94 10.12 1.17 1.08 

87Kap-14 0.11 0.63 0.05 5.12 1.07 0.59 3.81 0.16 0.24 0.90 1.32 7.39 0.82 0.85 

Group-2 Shield 

63Kap-15 1.21 5.94 0.04 25.00 8.67 3.61 32.60 1.24 1.10 4.63 4.69 20.40 2.17 1.53 

65-115-10 2.20 9.51 0.09 36.40 8.76 2.85 30.80 0.99 0.94 3.17 3.15 14.00 1.58 1.28 

65-60-17 1.26 4.58 0.08 36.72 4.56 1.56 16.73 0.67 0.60 1.85 2.02 9.03 0.95 0.72 

87Kap-11 0.89 3.83 0.01 19.09 3.34 1.18 7.67 0.28 0.48 1.37 1.70 8.06 0.86 0.71 

Group-3 Post-shield 

63Kap-7 1.01 4.39 0.01 41.20 5.18 1.95 16.90 0.79 0.76 2.47 2.48 11.40 1.15 0.89 

65-86-92 1.16 4.81 0.08 37.20 5.18 1.83 20.90 0.90 0.67 2.18 2.19 9.98 1.09 0.87 

65-109-146abc 1.50 5.92 0.03 45.80 6.35 2.33 25.90 1.24 0.82 2.83 2.83 12.40 1.32 1.04 

65-100-110 1.91 7.32 0.04 46.50 8.29 2.98 33.60 1.60 1.04 3.42 3.46 15.10 1.63 1.28 

Table S1.4: Clinopyroxene trace element concentrations (ppm). 
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Sample TBNK (°C)   Sample TBNK (°C) 

Group-1 MORB   Group-2 Shield 

65Kap-14d 1065 
 

83Kap-7 1075 

63Kap-13 971 
 

84-1801-5 1030 

65Kap-13 988 
 

87Kap-11 942 

65-60-32 975 
 

92Kap-1 1006 

65-7-133 955 
 

92Kap-3 1041 

65-86-64 983 
 

94Kap-14 1033 

83Kap-8 1014 
 

65-68-46 991 

83Kap-9 982 
 

65Kap-4 957 

87Kap-10 954 
 

82-1800-32 922 

94Kap-7 997 
 

82-1800-29 962 

96Kap-7 974 
 

65-7-195 1003 

88Kap-2 971 
 

83Kap-2 1029 

87Kap-14 1022   94Kap-3 954 

Table S1.5: Equilibrium temperatures. 

Equilibrium temperature calculated using two-pyroxene geothermometer  

(Brey&Kohler, 1990). 
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Sample 
Clinopyroxene 

       
Plagioclase 

δ18O - 1 δ18O - 2 δ18O - 1 δ18O – 2 

Group-1 MORB 
     

63Kap-3 5.02 5.24 
 

5.65 5.65 

65Kap-14d 5.27 
  

5.67 5.58 

63Kap-13 5.10 4.99 
 

5.79 5.95 

65Kap-13 5.41 5.20 
 

5.79 6.11 

65Kap-14a 5.25 5.34 
 

5.76 5.71 

65-61-26 4.93 
  

5.65 5.86 

65-60-32 5.75 
  

6.02 6.38 

65-7-133 5.11 
  

5.76 5.81 

65-86-64 5.23 5.05 
 

5.56 5.73 

83Kap-8 
   

5.34 5.35 

83Kap-9 
   

5.61 5.88 

87Kap-10 
   

5.69 5.67 

94Kap-7 
   

5.53 5.81 

96Kap-7 
   

6.06 5.61 

88Kap-2 
   

5.93 5.59 

87Kap-14 
   

5.71 5.91 

Group-2 Shield 
     

63Kap-15 
   

5.07 5.34 

65-115-10 
   

5.74 5.59 

65-60-17 5.47 5.34 
 

6.45 6.21 

87Kap-11 4.92 
    

92Kap-1 
   

6.06 
 

92Kap-3 5.25 
    

Group-3 Post-shield 
     

63Kap-7 5.56 
  

6.02 6.17 

65-86-92 5.43 
  

6.03 6.01 

65-109-146abc 5.23 
  

6.02 6.17 

Table S1.6: Oxygen isotope duplicate measurements.  
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  La Ce Nd Sm Eu Gd Dy Er Yb 

Kd 0.05 0.11 0.20 0.27 0.31 0.33 0.36 0.36 0.35 

Table S1.7: Kd value used for melt composition calculation. 

 
SiO2 Al2O3 Fe2O3 FeO MgO CaO Na2O K2O TiO2 MnO H2O CO2 Total Mg# 

47.90 10.40 1.30 10.44 16.50 8.23 1.64 0.22 1.52 0.18 0.50 0.01 98.87 73.8 

Table S1.8: Start melt composition for MELTS models (wt. %). 

 

Ridge Latitude Range Longitude Range 
Spreading Rate 

(cm/yr) 

# of Data 

Points 

# of 

bins 

Chile Rise 36.839° S – 46.0405° S 75.8967° W – 97.1675° W 7.4 23 7 

EPR 31.377° S – 49.733° S 109.232° W – 113.783° W 18.3 33 14 

EPR 2.5° S - 20.5965° S 103.017° W – 114.035° W 17.2 63 24 

EPR 6.225° N – 27.253° N 102.525° W – 113.712° W 11.7 388 65 

Juan de Fuca 40.38° N – 50.89° N 127.98° W – 130.55° W 6 73 19 

SE Indian Ridge 41.098° S – 50.3475° S 86.23° E – 118° E 7.2 71 33 

C. India Ridge 1.32° S – 24.98° S 62.47° E – 70.045° E 4 92 22 

MAR 10.071° S – 30.98° S 13.198° W – 13.46° W 4 40 13 

MAR 0.037° E – 13.9025° E 24.872° W – 45.0305 W 2.5 82 9 

MAR 14.085° E – 35.9447° E 34.1667° W – 45.0207° W 3 262 70 

Table S1.9: Summary of ridge segments compiled for MORB Nd isotopic heterogeneity 

evaluation.  
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APPENDIX A2: SUPPLEMENTARY FILE FOR CHAPTER 2 

Appendix A2.1 Figures 

 

Figure S2.1: Correlations of parent-daughter isotopes in LOC gabbros. 

(a) 176Hf/177Hf versus 176Hf/177Hf. (b) 187Re/188Os versus 187Os/188Os. 
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Appendix A2.2 Tables 

 
  206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 

63kap-3 18.115 15.500 37.788 

63kap-13 18.408 15.522 37.958 

65kap-13 18.249 15.512 37.867 

83kap-8 18.194 15.480 37.869 

94kap-7* 18.355 15.597 38.039 

96kap-7* 18.202 15.545 37.952 

65kap-14a 17.932 15.551 37.742 

65kap-14d 18.625 15.605 38.217 

83kap-9 18.446 15.583 38.077 

63kap-15 18.414 15.478 37.923 

63kap-7 18.443 15.591 38.092 

65-100-110 18.489 15.568 38.139 

Table S2.1: Pb isotope compositions of leachates. 

*Standard corrected Pb isotope data. 
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APPENDIX A3: SUPPLEMENTARY FILE FOR CHAPTER 3 

Appendix A3.1 Methods 

A3.1.1 Whole rock major and trace elements 

Major and trace elements were analyzed on fresh whole rock samples using standard XRF 

and solution ICP-MS techniques at Washington State University. Duplicate measurements of 

major elements by XRF are reproducible within 1% (1 s.d.). Trace elements measured by ICP-

MS are reproducible within 3% (1 s.d.). The secondary standard BHVO-2 is accurate within 1% 

for major elements, within 5% for most trace elements except Nb, Hf, Rb (10%) and Tb, Ta 

(15%). 

A3.1.2 Mineral major and trace elements 

Olivine and clinopyroxene major element abundances were measured by EMPA on a JEOL-

8200 microprobe at the University of Texas at Austin (UT Austin) using methods outlined in 

Gao et al. (2016). Fresh samples were crushed, and olivine and clinopyroxene grains with no 

visible alteration were handpicked under a binocular microscope and mounted in epoxy. A 

focused beam was used for olivine analyses, whereas a defocused beam (10μm) was used for cpx 

to reduce Na migration. Initial analyses demonstrated only minor core-rim variations [e.g. 

within-grain variation in Mg# (100*Mg/(Mg+Fe2+)) < 1]. Therefore, only core analyses were 

performed for remaining grains. Measurements of secondary standards were accurate to within 

5% for Na, Ni and Cr, within 3% for Al, Si and Fe, within 1% for Mg and Ca, and 18% for MnO. 

Duplicates are reproducible within 5% (1 s.d.) for Fe and Al, within 2% for Na, Cr, Ca, Mg, Mn 

and Ni, within 1% for Si, and 10% for MnO. 

Clinopyroxene trace element concentrations were measured via an Agilent 7500ce 

quadrupole with a New Wave UP-193FX laser system at UT Austin using methods outlined in 

Gao et al. (2016). BCR-2g was measured as a secondary standard, based on which all elements 
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are accurate to within 10% and reproducible within 5% (1 s.d.). Three spots were analyzed for 

most grains, and the average of the analyses from a single grain are reported in Table A6. 

A3.1.3 Radiogenic and oxygen isotopes 

For Sr, Nd, and Pb isotopes, ~100-150 mg cpx separates or ~20 mg phenocryst-free matrix 

chips were digested following the procedures outlined in Byerly & Lassiter (2012). AG1-X8, Sr-

Spec and REE-spec/HDEHP resins were used to separate Pb, Sr and Nd, respectively. Sr, Nd, 

and Pb isotopes were analyzed on a TE Triton TIMS using methods outlined in Gao et al. (2016) 

and Byerly & Lassiter (2012). NBS 987, UT Ames Nd and NBS 981 standards were measured 

regularly during the course of this study.  The average NBS 987 87Sr/86Sr for the TIMS lab over 

the period during which analyses were performed was 0.710253±15 (2 s.d.), consistent with 

previously reported values (e.g., 0.710248±15; Thirlwall, 1991). The average 143Nd/144Nd of UT 

Ames Nd was 0.512072±10 (2 s.d.), comparable to previously reported values (e.g., 

0.512069±14; Scher & Delaney, 2010). For Pb isotopes, instrumental mass fractionation was 

corrected using a Pb double spike. NBS 981 measured by the double spike method during the 

course of this study has average 206Pb/204Pb=16.933±3, 207Pb/204Pb=15.488±3, and 

208Pb/204Pb=36.688±11 (2 s.d.). For comparison, the values reported by Todt et al. (1996) are 

206Pb/204Pb=16.9356±7, 207Pb/204Pb=15.4891±9, and 208Pb/204Pb=36.7006±34 (2 s.d.). Total 

procedure blanks were less than 150 pg, 75 pg and 15 pg for Sr, Nd and Pb, respectively. No 

standard or blank correction was applied to the reported data. 

Osmium concentrations and Os isotopes were measured on whole rock powders of 5 

samples. Fresh samples were cut with a diamond saw, and then carefully polished with 

aluminum oxide sandpaper to remove any saw marks. Samples were rinsed with DI water and 

dried before being wrapped in plastic (to avoid contact with metal) and crushed by hammer. 
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Lava chips were then powdered in an alumina ball mill. Rhenium and osmium were separated 

from whole rock powders following the procedures of Byerly & Lassiter (2012). Osmium 

concentrations were measured via isotope dilution using a mixed 185Re-190Os spike. Osmium 

isotopes were measured with the TE Triton TIMS in negative ion mode. The UMD Os standard 

was measured regularly and the average measured 187Os/188Os was 0.11382±0.00003 (2 s.d.), 

consistent with the value (0.1137920±0.0000024) reported by Walker et al. (2005). Osmium 

blanks were ~0.3 pg/g.  

Oxygen isotope compositions were measured on ~2 mg of olivine separates by laser 

fluorination following the methods of Sharp (1995) using a ThermoElectron MAT253 mass 

spectrometer. In-house quartz standard Lausanne-1 (δ18O = 18.1‰), garnet standard UWG-2 

(δ18O = 5.8‰) (Valley et al., 1995), and olivine standard San Carlos (δ18O = 5.2‰) were 

measured to ensure accuracy and precision. δ18O values are reported relative to SMOW, where 

the δ18O value of NBS-28 is +9.65‰. Precision based on replicates of the standards is ±0.1‰ (1 

s.d.). All the isotope analyses described above were performed at UT Austin. 

Appendix A3.2 MELTS modeling 

The crystallization products of PC magma were modeled using MELTS (Ghiorso & Sack, 

1995). The effects of initial melt composition, water content, oxygen fugacity, and crystallization 

style (fractional versus batch) on modeling results were evaluated by varying one parameter at a 

time compared to the set of parameters reported in the main text. When using 14PC-13 as the 

initial melt, the Mg# of the first clinopyroxene decrease more significantly with decreasing 

pressure, compared to using 14PC-2 as initial melt. As a result, there is no single pressure range 

where clinopyroxene with high Mg# and olivine with low Fo can be both formed (Fig. S4a). 

When 3 wt.% initial water content was used instead of 1.5 wt.% water, clinopyroxene 
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crystallization at relatively low pressures is further suppressed, and the MELTS modeling results 

suggest crystallization of PC phenocrysts and xenoliths at ~7-7.5 kbar (Fig. S4b). Batch 

crystallization of 14PC-2 with initial water content of 1.5 wt.% and oxygen fugacity of FMQ+1 

suggests crystallization pressures of 5-7.5 kbar (Fig. S4c). Finally, when initial oxygen buffer 

was set at FMQ, MELTS modeling suggests crystallization of PC magmas at ~7.5-8 kbar (Fig. 

S4d). Therefore, although the fields of olivine and clinopyroxene compositions shift slightly with 

different input parameters, all MELTS models suggest significant olivine crystallization (with Fo 

extending to 73) only occurs at crustal depths (<8 kbar). 

Appendix A3.3 Clinopyroxene-melt partition coefficients 

Clinopyroxene-melt partition coefficients (Kd) are a function of melt composition, mineral 

composition, temperature and pressure. Therefore, choosing appropriate Kd values is important 

for modeling melting and crystallization processes. In general, Kd values for Sr increase and Kd 

values for HFSE decrease with increasing pressure. Kd values of most incompatible elements 

increase as temperature, melt Mg# and cpx Mg# decreases (e.g., Adam & Green, 2003; Bédard, 

2014). Kd values of REE and HFSE also increase with increasing TiO2 content in cpx (e.g., 

Adam & Green, 1994; Bédard, 2014). 

Clinopyroxenes in PC lavas and ultramafic xenoliths span a range of compositions, which is 

consistent with progressive fractional crystallization (Mg# negatively correlates with TiO2 

contents). We assume that all PC phenocrysts and xenoliths were crystallized at relatively 

uniform pressures (5-7 kbar). MELTS modeling suggest that the majority of PC phenocrysts and 

ultramafic xenoliths crystallized at temperatures of 1090-1200°C (assuming 1.5 wt.% initial 

water content). The Kd values for high-Mg# cpx (88), which we estimate formed at ~1200 °C, 

were calculated using the BIGD program (Nielsen, 1992). The major element compositions of 
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PC sample 14PC-2 and of the most magnesian clinopyroxene were used as inputs to the BigD 

model. The composition of the youngest PC lava was assumed as melt composition, which has 

Mg# in chemical equilibrium with the high-Mg# cpx. Estimated Kd values for high-Mg# cpx 

calculated using BigD are largely consistent with published Kd values for cpx in equilibrium with 

alkali basalt (e.g., Zack & Brumm, 1998), as well as with experimentally determined partition 

coefficients for cpx crystallized at similar pressure and temperature (Adam & Green, 1994; 

Green et al., 2000; Adam & Green, 2003).  

Estimation of partition coefficients for more evolved cpx (Mg# = 78) is subject to greater 

uncertainty because the composition of the melt from which these cpx grew is more uncertain. 

Equilibrium crystallization of the more evolved cpx (Mg# = 78) requires a parental melt Mg# ≈ 

42. A possible parental melt composition was estimated by calculating effects of fractional 

crystallization of 14PC-2 using the MELTs program as described above. When using 

compositions of this evolved melt, BIGD gives unreasonably high Kd values, e.g., Kd
HREE > 2. 

However, experiments run at similar pressure (5 kbar), temperature (1070 °C ), cpx (Mg# = 74, 

TiO2 = 1.25) and melt compositions (Mg# = 44) suggests Kd
La = 0.1, Kd

ce = 0.16, Kd
Nd =  0.29, 

Kd
Dy =  0.51, Kd

Er =  0.58, and Kd
Yb =  0.69 (Mercer & Johnston, 2008). These partition 

coefficients were utilized for the low-Mg# cpx. For cpx with intermediate Mg# and estimated 

crystallization temperatures, we interpolated between the high-Mg# and low-Mg# Kd estimates. 

Estimated KD values utilized in Figures 2 and 7 are reported in Table A7. Uncertainties in 

calculated Kd values may effect the exact position and slope of the calculated parental melt REE 

patterns shown in Figure 2. However, regardless of Kd value, the large variation in LREE 

abundance at roughly constant Mg# illustrated in Figure 7 requires cpx to crystallize from a 

range of melts variably enriched in LREE and LILE. 
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Appendix A3.4 Binary mixing model 

In order to constrain the proportion of the sill component mixed with primitive melts in the 

erupted PC lavas, we modeled binary mixing of a primitive melt and an evolved melt. The 

primitive melt is assumed to have a composition similar to the least enriched PC lavas (MgO = 

9.32, FeO = 7.14 assuming FeO/FeOT = 0.85, [Ce] = 71 ppm). To estimate the major element 

composition of the evolved sill component, we used the MELTS model to estimate the 

composition melt generated by fractional crystallization, using a “primitive” melt (14PC-2) as 

the starting composition, using the same model parameters as above (P = 6 kbar, 1.5 wt.% H2O, 

initial oxygen fugacity = FMQ). The melt composition in equilibrium with cpx with Mg# = 73 

(the most evolved cpx phenocryst measured) was used to estimate the composition of the sill 

component (MgO = 2.31, FeO = 7.37). The most enriched cpx observed has Ce concentration of 

~54 ppm, and therefore is in equilibrium with a melt having Ce concentration of ~420 ppm 

(using a Kd = 0.13, corresponding to the Mg# of this particular cpx). Binary mixing of this 

evolved, enriched melt and the primitive melt can generate the observed correlation between 

melt Mg# and Ce concentration by mixing a maximum of ~20% of the sill component with the 

primitive melt (Fig. S5).   

Although this mixing model can account for the large variations in incompatible trace 

element abundance and modest variations in Mg# observed in the PC lavas, our estimated 

evolved melt component has higher SiO2 than the primitive melt, and therefore this model 

predicts that SiO2 should decrease rather than increase during the course of eruption (as the ratio 

of sill melt/primitive melt decreases with time). In addition, the model does not explain the 

slightly higher CaO in the early (more contaminated) melts. This suggests either that the first 

melt pulse that ponded and fractionated within the crust initially had a lower SiO2 content than 

the later pulse that triggered eruption, or that the process of assimilation caused SiO2 to decrease 
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rather than increase. The coupled low SiO2 and high CaO required of the sill component based 

on the temporal major element trends may indicate assimilation of high-Ca, low-Si skarn 

material rather than more typical lower crust.    
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Appendix A3.5 Figures 

 

Figure S3.1: Sampling strategy. 

(a) Stacked basaltic eruption sequence was cut and exposed at the Papoose Canyon. (b) 

Schematic diagram showing our sampling strategy. We walked down the canyon valley, and 

collected lava flow samples from earlier to later Papoose Canyon eruption sequence. The dipping 

angle of actual PC lava strata varies from ~30° in the earliest strata to shallower angle in later 

strata. We calculated the relative stratigraphic height of each sample assuming a uniform dipping 

angle of 30°, which is also the typical static angle of repose for scoria cone (Carrigy, 1970). 

Given the fact that the dipping angle of actual PC lava strata appear to be shallower in later 

strata, the calculated stratigraphic thickness may be slightly overestimated, but the relative 

stratigraphic positions are still robust. Calculated relative stratigraphic positions are reported in 

Table A1. 
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Figure S3.2: Temporal-compositional variations of major and trace elements. 
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Figure S3.3: Distribution of mineral Mg#. 

(a) Olivine and clinopyroxene phenocrysts in PC lavas span a wide range of Mg#, and are 

mostly out of equilibrium with their host lavas. (b) Olivine and clinopyroxene from PC 

ultramafic xenoliths span a similar range of Mg# as PC phenocrysts, which is lower than typical 

mantle peridotites. 
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Figure S3.4: MELTS modeling results. 

(a) Fractional crystallization of 14PC-13 with initial water content of 1.5 wt.% and 

FMQ+1 oxygen buffer. (b) Fractional crystallization of 14PC-2 with initial water content of 3.0 

wt.% and FMQ+1 oxygen buffer. (c) Batch fractional crystallization of 14PC-2 with initial water 

content of 1.5 wt.% and FMQ+1 oxygen buffer. (d) Fractional crystallization of 14PC-2 with 

initial water content of 1.5 wt.% and FMQ oxygen buffer. 
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Figure S3.5: Binary mixing model. 

Binary mixing model suggests that mixing up to ~20% evolved melt into primitive melt 

can produce the observed compositional variations in PC lavas. Mg# of the modeled melt is 

calculated from the MgO and FeO contents of mixed melt. Mg# of PC samples are melt Mg# 

calculated from whole rock composition by subtracting cumulate olivine. 
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Appendix A3.5 Tables 

 

  N W ELE (m) STRAT (m)     N W ELE (m) 

PC-1 37.01492 118.1684 1588.3 204 
 

14PCX-6 37.01515 118.1615 1652.0 

PC-2 37.01512 118.1697 1563.0 242 
 

14PCX-7 37.01515 118.1615 1652.0 

PC-3 37.01545 118.1731 1521.0 364 
 

14PCX-8 37.01515 118.1615 1652.0 

14PC-2 37.01515 118.1636 1638.0 18 
 

14PCX-9 37.01592 118.1619 1676.4 

14PC-4 37.01526 118.1645 1617.0 46 
 

14PCX-10 37.01592 118.1619 1676.4 

14PC-5 37.01528 118.1664 1597.2 119 
 

14PCX-11 37.01592 118.1619 1676.4 

14PC-8A 37.01478 118.1690 1586.5 231 
 

14PCX-12 37.01658 118.1619 1676.4 

14PC-9 37.01549 118.1703 1589.0 295 
 

14PCX-13 37.01522 118.1629 1639.5 

14PC-12 37.01537 118.1728 1527.0 353 
 

14PCX-15 37.01522 118.1629 1639.5 

14PC-13 37.01547 118.1731 1521.0 362 
 

14PCX-16 37.01518 118.1635 1635.3 

14QC-2 37.01493 118.1680 1596.2 193 
 

14PCX-17 37.01510 118.1635 1636.2 

14PCX-5 37.01515 118.1615 1652.0     14PCX-18 37.01493 118.1680 1596.2 

Table S3.1: Coordinates of samples. 

ELE – elevation, STRAT – calculated relative stratigraphic position. 
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  14PC-4 14PC-5 14PC-8a 14PC-9 14PC-12 14PC-13 

1-3.5mm (%) 4.1 3.8 3.4 2.2 0.9 0.6 
<1mm (%) 0.7 2.8 1.6 3.9 1.8 1.2 
Total (%) 4.8 6.5 4.0 6.1 2.7 1.8 

Table S3.2: Olivine phenocryst point counting results. 
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Table S3.3: Major and trace element compositions of PC lavas. 

Major element concentrations are in wt.%. Trace element concentrations are in 

ppm. The measured composition of secondary standard BHVO-2 is also reported. 

    14PC-2 14PC-4 14PC-5 14PCX-9L 14QC-2 PC-1 PC-2 14PC-12 14PC-13 PC-3 BHVO-2 

SiO2   
 

45.83 45.66 46.17 46.48 46.58 46.60 47.00 47.42 46.96 47.20 49.88  
TiO2   

 
2.14 2.09 2.09 2.03 2.01 2.06 1.97 1.95 1.94 1.97 2.76 

Al2O3  
 

15.76 15.83 15.82 15.91 16.09 16.33 16.10 16.24 16.18 16.29 13.61  
FeO* 

 
9.11 9.05 9.07 8.97 8.87 8.80 8.87 8.80 8.94 8.83 11.18  

MnO    
 

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.17 
MgO    

 
9.46 9.62 9.39 9.78 9.57 9.52 9.55 9.62 9.73 9.34 7.30  

CaO    
 

9.92 10.21 9.79 10.05 9.65 9.95 9.66 9.62 9.76 9.69 11.42  
Na2O   

 
3.72 3.72 3.75 3.81 3.95 3.94 3.74 3.83 3.82 3.59 2.23  

K2O    
 

2.04 2.09 1.95 1.95 1.75 1.89 1.85 1.68 1.40 1.68 0.52  
P2O5   

 
1.10 1.02 0.94 0.93 0.86 0.89 0.77 0.71 0.69 0.73 0.26 

Sum 
 

99.23 99.44 99.12 100.05 99.47 100.13 99.67 100.03 99.58 99.47 99.32  
LOI (%) 

 
0.19 0.44 0.25 0.28 0.02 -0.17 -0.19 0.16 0.54 -0.02 0.00  

           
 

 
Cs 

 
0.28 0.27 0.28 0.29 0.34 0.31 0.31 0.28 0.25 0.28 0.10 

Rb 
 

28.5 24.8 22.7 27.1 26.4 24.3 23.6 26.9 20.2 23.0 8.9 
Ba 

 
1329.7 1230.7 1117.8 1102.6 1038.2 1064.7 927.9 842.8 780.8 866.3 128.2 

Th 
 

4.3 4.1 3.8 3.9 3.7 3.7 3.3 3.1 2.7 3.0 1.24 
U 

 
1.2 1.1 1.1 1.1 1.1 1.1 0.9 0.8 0.8 0.9 0.42 

Ta 
 

1.4 1.3 1.3 1.3 1.3 1.3 1.1 1.2 1.1 1.1 1.17 
Nb 

 
22.4 21.4 20.9 20.9 20.7 21.1 18.6 17.8 16.9 18.1 16.8 

La 
 

64.1 60.4 56.1 55.5 51.6 51.4 45.9 42.0 38.3 42.6 15.3 
Ce 

 
141.3 133.3 123.3 121.6 113.2 112.7 100.5 91.6 86.2 93.5 36.9 

Pb 
 

7.9 7.2 6.6 7.1 6.4 6.8 6.0 5.4 5.3 5.6 1.6 
Pr 

 
18.4 17.2 16.0 15.7 14.5 14.6 13.1 11.9 11.2 12.2 5.26 

Sr 
 

1678.9 1591.7 1503.5 1457.8 1371.0 1398.9 1253.3 1143.3 1083.2 1180.3 395.9 
Nd 

 
71.8 68.0 63.6 61.5 57.8 57.8 51.9 47.9 45.0 49.0 24.1 

Hf 
 

5.9 5.6 5.6 5.7 5.8 5.9 5.5 5.2 5.1 5.4 4.4 
Zr 

 
271.7 263.8 263.6 266.3 268.2 271.6 258.2 247.1 238.2 252.0 166.2 

Sm 
 

12.5 11.8 11.4 10.9 10.4 10.2 9.5 8.9 8.5 9.0 6.4 
Eu 

 
3.5 3.3 3.2 3.1 3.0 3.0 2.8 2.6 2.5 2.7 2.2 

Gd 
 

8.9 8.5 8.4 8.0 8.0 7.9 7.6 7.1 7.0 7.3 6.4 
Tb 

 
1.2 1.2 1.2 1.1 1.1 1.1 1.1 1.0 1.0 1.1 1.0 

Dy 
 

6.5 6.5 6.3 6.3 6.4 6.3 6.1 5.9 6.0 6.0 5.7 
Ho 

 
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.2 1.1 

Er 
 

3.1 3.0 3.0 3.0 3.1 3.1 3.0 3.1 3.0 3.0 2.6 
Tm 

 
0.42 0.41 0.41 0.40 0.43 0.44 0.42 0.42 0.41 0.42 0.35 

Y 
 

30.1 29.8 29.7 29.5 30.5 30.4 29.9 29.2 28.7 29.4 25.6 
Yb 

 
2.5 2.5 2.5 2.5 2.6 2.6 2.6 2.6 2.6 2.6 1.9 

Lu 
 

0.37 0.37 0.38 0.37 0.40 0.42 0.39 0.39 0.38 0.40 0.28 
Sc 

 
22.4 23.5 24.0 23.1 23.8 24.3 25.8 25.5 25.7 26.0 31.9 

Ni 
 

174.8 181.9 187.2 186.9 187.8 174.7 188.6 190.1 193.8 180.6 115.0 
Cr 

 
237.0 260.0 268.2 250.7 264.1 267.5 273.4 287.2 299.1 280.3 280.3 

V 
 

188.4 189.7 183.9 186.3 187.8 189.5 188.4 186.7 176.7 190.6 312.5 
Ga 

 
15.4 15.7 14.5 16.2 15.4 16.5 15.4 16.5 17.2 16.4 20.8 

Cu 
 

44.2 39.2 52.1 40.1 34.0 45.9 48.2 52.7 42.5 35.1 126.9 
Zn 

 
74.1 74.5 71.5 72.6 70.6 93.2 72.8 69.5 70.3 73.1 99.3 
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  SiO2 FeO MnO MgO NiO CaO Totals Mg#     SiO2 FeO MnO MgO NiO CaO Totals Mg# 

Phenocrysts 
        

12PC-2-O13 40.27 14.63 0.22 46.45 0.24 0.08 101.88 85.1 

PC-1-O1 39.41 16.70 0.22 45.10 0.30 0.09 101.82 82.9 
 

12PC-2-O14 40.15 13.19 0.16 47.13 0.24 0.08 100.95 86.5 

PC-1-O2 39.97 13.49 0.19 46.83 0.32 0.10 100.89 86.2 
 

12PC-2-O15 39.04 19.58 0.30 41.83 0.26 0.11 101.11 79.4 

PC-1-O3 38.95 20.59 0.35 40.32 0.10 0.11 100.42 77.9 
 

12PC-2-O16 39.74 14.24 0.22 46.38 0.22 0.09 100.89 85.4 

PC-1-O4 38.86 21.05 0.31 40.90 0.08 0.12 101.32 77.8 
 

12PC-2-O17 39.94 12.91 0.20 46.97 0.19 0.09 100.31 86.8 

PC-1-O5 40.12 16.20 0.23 44.59 0.26 0.08 101.49 83.2 
 

12PC-2-O18 40.12 13.53 0.20 47.76 0.26 0.08 101.95 86.4 

PC-1-O6 39.59 13.30 0.22 46.67 0.18 0.12 100.07 86.3 
 

12PC-2-O19 39.07 18.69 0.30 42.58 0.15 0.09 100.88 80.4 

PC-1-O7 39.79 14.04 0.24 45.81 0.27 0.11 100.26 85.4 
 

12PC-2-O20 40.34 12.79 0.20 47.26 0.49 0.12 101.20 86.9 

PC-1-O8 40.14 15.77 0.20 45.65 0.18 0.12 102.05 83.9 
 

14PC-4-O1 40.09 14.38 0.21 46.71 0.25 0.08 101.71 85.4 

PC-1-O9 40.11 16.14 0.23 46.10 0.25 0.09 102.92 83.7 
 

14PC-4-O2 40.44 13.05 0.16 47.53 0.28 0.09 101.55 86.8 

PC-1-O10 40.51 14.01 0.23 47.03 0.25 0.09 102.12 85.8 
 

14PC-4-O3 39.77 17.68 0.32 44.22 0.20 0.15 102.34 81.8 

PC-1-O11 40.13 16.16 0.19 45.15 0.26 0.07 101.97 83.4 
 

14PC-4-O4 38.64 21.89 0.35 40.63 0.05 0.10 101.67 77.0 

PC-1-O12 38.83 20.00 0.27 41.87 0.07 0.17 101.22 79.0 
 

14PC-4-O5 40.46 14.20 0.19 46.93 0.26 0.08 102.12 85.6 

PC-1-O13 40.48 14.55 0.17 45.88 0.25 0.09 101.43 85.0 
 

14PC-4-O6 40.14 13.77 0.19 47.08 0.28 0.09 101.55 86.0 

PC-1-O14 39.74 16.59 0.21 45.14 0.14 0.10 101.92 83.0 
 

14PC-4-O7 40.45 13.79 0.18 47.11 0.22 0.08 101.82 86.0 

PC-2-O1 39.70 14.14 0.22 46.15 0.25 0.12 100.58 85.4 
 

14PC-4-O8 40.44 13.28 0.22 47.23 0.25 0.10 101.53 86.5 

PC-2-O2 39.25 18.49 0.27 43.20 0.15 0.20 101.56 80.8 
 

14PC-4-O9 39.14 20.98 0.48 41.81 0.19 0.16 102.76 78.2 

PC-2-O3 39.44 15.85 0.23 45.18 0.30 0.12 101.13 83.7 
 

14PC-4-O10 39.98 15.11 0.22 45.74 0.16 0.08 101.29 84.5 

PC-2-O4 39.24 18.41 0.43 42.90 0.22 0.25 101.45 80.7 
 

14PC-4-O11 40.00 14.83 0.21 45.92 0.18 0.09 101.23 84.8 

PC-2-O5 39.70 15.07 0.27 45.48 0.28 0.21 101.02 84.5 
 

14PC-4-O12 39.78 15.30 0.27 45.40 0.25 0.07 101.08 84.2 

PC-2-O6 39.37 18.55 0.35 43.34 0.16 0.11 101.88 80.8 
 

14PC-4-O13 39.85 15.98 0.26 45.94 0.24 0.09 102.36 83.8 

PC-2-O7 40.00 15.14 0.22 46.06 0.28 0.10 101.80 84.6 
 

14PC-5-O1 39.37 16.58 0.25 44.43 0.18 0.10 100.91 82.8 

PC-2-O8 39.99 14.47 0.24 46.55 0.27 0.12 101.63 85.3 
 

14PC-5-O2 39.41 15.51 0.21 45.76 0.25 0.10 101.25 84.2 

PC-2-O9 39.93 14.23 0.19 46.42 0.29 0.10 101.16 85.5 
 

14PC-5-O3 40.57 14.89 0.21 45.89 0.17 0.10 101.83 84.7 

PC-2-O10 40.20 14.61 0.22 46.59 0.24 0.11 101.96 85.2 
 

14PC-5-O4 39.99 14.88 0.23 46.12 0.21 0.08 101.51 84.8 

PC-2-O11 39.02 15.36 0.23 45.01 0.31 0.08 100.00 84.1 
 

14PC-5-O5 39.86 16.63 0.26 45.21 0.18 0.10 102.24 83.0 

PC-2-O12 40.02 14.96 0.20 45.01 0.29 0.08 100.57 84.4 
 

14PC-5-O6 39.57 16.63 0.21 44.82 0.17 0.11 101.51 82.9 

PC-2-O13 39.80 13.50 0.22 45.64 0.20 0.10 99.46 85.9 
 

14PC-5-O7 39.83 16.87 0.25 44.88 0.24 0.11 102.19 82.7 

PC-2-O14 39.06 18.08 0.24 43.93 0.14 0.10 101.54 81.4 
 

14PC-5-O8 39.73 15.29 0.21 45.73 0.22 0.09 101.28 84.3 

PC-2-O15 39.04 19.59 0.31 41.16 0.18 0.07 100.34 79.1 
 

14PC-5-O9 38.95 20.42 0.25 41.90 0.18 0.15 101.85 78.7 

PC-2-O16 39.53 18.42 0.25 42.69 0.25 0.11 101.26 80.7 
 

14PC-5-O10 39.91 16.40 0.25 44.87 0.27 0.10 101.81 83.1 
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PC-2-O17 39.56 13.69 0.20 45.48 0.25 0.08 99.26 85.7 
 

14PC-5-O11 40.13 16.23 0.22 44.60 0.12 0.11 101.41 83.2 

PC-2-O18 39.28 15.73 0.22 45.46 0.19 0.11 101.00 83.9 
 

14PC-5-O12 40.01 15.00 0.20 46.20 0.27 0.09 101.76 84.7 

PC-2-O19 40.22 15.03 0.22 46.87 0.29 0.09 102.72 84.9 
 

14PC-5-O13 40.20 15.07 0.22 45.83 0.14 0.10 101.57 84.6 

PC-2-O20 39.76 16.24 0.22 45.27 0.24 0.07 101.79 83.4 
 

14PC-5-O14 39.33 16.58 0.25 45.12 0.23 0.12 101.63 83.0 

PC-2-O21 39.85 15.58 0.22 45.22 0.19 0.11 101.18 83.9 
 

14PC-5-O15 39.61 16.68 0.22 45.21 0.28 0.09 102.08 83.0 

PC-2-O22 38.69 18.56 0.27 43.55 0.05 0.14 101.25 80.9 
 

14PC-5-O16 38.89 20.39 0.28 42.17 0.08 0.14 101.95 78.8 

PC-2-O23 39.36 16.84 0.28 44.33 0.27 0.04 101.13 82.6 
 

14PC-5-O17 39.77 15.43 0.25 45.56 0.17 0.10 101.29 84.2 

PC-2-O24 40.14 15.21 0.22 46.36 0.25 0.07 102.25 84.6 
 

14PC-5-O18 39.63 16.94 0.28 45.25 0.19 0.11 102.39 82.8 

PC-2-O25 39.95 13.56 0.21 47.46 0.28 0.08 101.54 86.3 
 

14PC-5-O19 40.54 13.28 0.22 47.58 0.20 0.08 101.90 86.6 

PC-2-O26 40.27 14.07 0.21 46.64 0.25 0.14 101.58 85.6 
 

14PC-5-O20 39.88 14.35 0.23 46.78 0.24 0.09 101.56 85.4 

PC-2-O27 39.95 14.99 0.24 46.05 0.29 0.09 101.62 84.7 
 

14PC-12-O1 40.10 12.91 0.17 47.91 0.34 0.13 101.55 87.0 

PC-2-O28 38.81 20.89 0.38 41.47 0.28 0.06 101.88 78.1 
 

14PC-12-O2 39.53 15.75 0.25 44.96 0.19 0.09 100.77 83.7 

PC-2-O29 39.70 14.70 0.21 46.25 0.18 0.09 101.12 85.0 
 

14PC-12-O3 40.20 12.47 0.21 47.83 0.27 0.08 101.07 87.3 

PC-2-O30 39.10 17.01 0.33 43.32 0.15 0.21 100.12 82.1 
 

14PC-12-O4 39.02 17.95 0.28 43.20 0.11 0.13 100.69 81.2 

PC-2-O31 40.72 11.99 0.20 48.77 0.35 0.22 102.24 88.0 
 

14PC-12-O5 39.44 16.10 0.23 45.06 0.23 0.09 101.15 83.4 

PC-2-O32 40.33 13.68 0.21 46.29 0.21 0.10 100.83 85.9 
 

14PC-12-O6 39.45 15.88 0.25 44.99 0.18 0.11 100.85 83.6 

PC-2-O33 40.18 15.87 0.24 45.47 0.25 0.10 102.12 83.8 
 

14PC-12-O7 39.06 18.64 0.29 42.43 0.17 0.12 100.71 80.4 

PC-2-O34 39.68 14.55 0.19 46.24 0.19 0.09 100.94 85.1 
 

14PC-12-O8 39.99 14.52 0.23 45.87 0.27 0.10 100.98 85.0 

PC-2-O35 39.75 14.43 0.25 46.27 0.24 0.09 101.01 85.2 
 

14PC-12-O9 39.85 14.79 0.21 45.90 0.29 0.10 101.14 84.8 

PC-2-O36 39.74 14.51 0.25 46.10 0.24 0.12 100.95 85.1 
 

14PC-12-O10 39.75 13.60 0.18 46.69 0.25 0.09 100.57 86.1 

PC-2-O37 39.24 17.45 0.26 44.37 0.16 0.09 101.56 82.1 
 

14PC-12-O11 40.12 12.50 0.18 47.98 0.35 0.09 101.20 87.4 

PC-2-O38 39.55 18.43 0.30 43.22 0.26 0.14 101.89 80.8 
 

14PC-12-O12 39.80 16.01 0.22 45.14 0.25 0.10 101.52 83.5 

PC-2-O39 40.78 12.68 0.20 47.94 0.23 0.22 102.04 87.2 
 

14PC-12-O13 39.78 15.74 0.24 44.73 0.19 0.10 100.79 83.6 

PC-2-O40 40.26 14.14 0.25 46.69 0.22 0.10 101.65 85.6 
 

14PC-12-O14 38.72 16.02 0.21 44.29 0.17 0.09 99.51 83.3 

PC-2-O41 39.31 12.56 0.20 47.24 0.22 0.09 99.64 87.1 
 

14PC-12-O15 40.23 12.29 0.19 47.78 0.24 0.12 100.86 87.5 

PC-2-O42 40.58 12.24 0.18 47.61 0.25 0.09 100.94 87.5 
 

14PC-12-O16 39.02 18.69 0.28 43.17 0.16 0.12 101.44 80.6 

PC-2-O43 39.70 12.30 0.16 47.26 0.27 0.12 99.81 87.4 
 

14PC-12-O17 39.14 16.06 0.25 44.82 0.16 0.10 100.53 83.4 

PC-2-O44 39.04 16.97 0.20 44.20 0.11 0.09 100.62 82.4 
 

14PC-12-O18 39.99 12.40 0.18 47.70 0.23 0.10 100.60 87.4 

PC-2-O45 40.48 14.77 0.24 45.91 0.30 0.08 101.78 84.8 
 

14PC-12-O19 40.23 11.29 0.17 48.42 0.27 0.24 100.61 88.5 

PC-2-O46 40.48 14.92 0.23 46.78 0.22 0.09 102.72 85.0 
 

14PC-12-O20 39.77 15.01 0.21 45.92 0.27 0.09 101.27 84.6 

PC-2-O47 39.21 17.69 0.31 43.87 0.22 0.15 101.44 81.7 
 

14PC-12-O21 40.59 12.27 0.23 48.25 0.22 0.07 101.64 87.6 

PC-2-O48 39.99 16.15 0.26 45.61 0.19 0.15 102.36 83.6 
 

14PC-12-O22 39.45 18.28 0.28 43.36 0.13 0.12 101.63 81.0 

PC-2-O49 40.21 16.32 0.22 45.89 0.17 0.11 102.92 83.5 
 

14PC-12-O23 39.87 14.92 0.22 45.83 0.21 0.12 101.17 84.7 
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PC-2-O50 39.28 18.89 0.27 43.39 0.10 0.09 102.02 80.5 
 

14PC-13-O1 40.30 14.41 0.22 46.89 0.22 0.09 102.14 85.4 

PC-2-O51 39.83 12.89 0.20 48.19 0.30 0.11 101.52 87.1 
 

14PC-13-O2 39.99 17.65 0.27 44.03 0.18 0.11 102.23 81.8 

PC-2-O52 39.71 16.55 0.21 45.44 0.23 0.10 102.23 83.2 
 

14PC-13-O3 40.31 15.57 0.25 46.46 0.29 0.09 102.97 84.3 

PC-2-O53 39.55 16.89 0.24 44.90 0.15 0.10 101.83 82.7 
 

14PC-13-O4 40.50 14.07 0.24 47.01 0.25 0.09 102.16 85.7 

PC-2-O54 40.37 16.42 0.28 45.62 0.32 0.08 103.08 83.3 
 

14PC-13-O5 40.03 13.97 0.20 46.86 0.25 0.10 101.40 85.8 

PC-2-O55 39.92 13.83 0.27 47.02 0.29 0.22 101.55 86.0 
 

14PC-13-O6 39.75 18.04 0.25 44.32 0.11 0.11 102.58 81.6 

PC-3-O1 39.53 14.47 0.20 46.31 0.23 0.07 100.81 85.2 
 

14PC-13-O7 40.25 14.20 0.24 46.82 0.22 0.08 101.81 85.6 

PC-3-O2 38.83 17.02 0.25 44.48 0.23 0.16 100.98 82.5 
 

14PC-13-O8 39.72 16.64 0.27 44.83 0.18 0.07 101.70 82.9 

PC-3-O3 39.95 14.44 0.24 46.35 0.32 0.10 101.40 85.2 
 

14PC-13-O9 40.12 15.32 0.20 45.72 0.31 0.09 101.76 84.3 

PC-3-O4 39.86 14.07 0.25 46.57 0.29 0.13 101.17 85.6 
 

14PC-13-O10 40.72 14.37 0.21 46.86 0.19 0.09 102.43 85.4 

PC-3-O5 38.38 21.66 0.55 40.03 0.17 0.29 101.07 76.9 
 

14PC-13-O11 40.54 14.14 0.23 47.13 0.27 0.10 102.41 85.7 

PC-3-O6 39.90 14.29 0.22 46.16 0.28 0.11 100.97 85.3 
 

14PC-13-O12 39.82 17.23 0.28 44.67 0.24 0.11 102.35 82.3 

PC-3-O7 40.33 13.20 0.20 47.23 0.29 0.12 101.38 86.6 
 

14PC-13-O13 40.67 14.35 0.21 47.09 0.22 0.09 102.62 85.5 

PC-3-O8 39.83 13.01 0.21 46.60 0.24 0.19 100.08 86.6 
 

14PC-13-O14 39.85 15.30 0.24 46.05 0.24 0.09 101.77 84.4 

PC-3-O9 39.17 13.88 0.18 47.35 0.23 0.09 100.90 86.0 
 

14PC-13-O15 39.58 17.92 0.29 43.62 0.19 0.11 101.71 81.4 

PC-3-O10 38.76 12.78 0.18 46.92 0.25 0.09 98.99 86.9 
 

14PC-13-O16 39.87 15.94 0.26 45.64 0.18 0.11 102.01 83.7 

PC-3-O11 39.30 13.96 0.19 46.97 0.18 0.09 100.69 85.8 
 

14PC-13-O17 40.38 14.00 0.20 46.87 0.30 0.09 101.83 85.8 

PC-3-O12 40.14 13.00 0.19 46.93 0.23 0.09 100.57 86.7 
 

14PC-13-O18 39.31 16.04 0.22 44.74 0.17 0.11 100.59 83.4 

PC-3-O13 39.54 13.77 0.16 46.98 0.19 0.08 100.71 86.0 
 

14PC-13-O19 40.16 14.96 0.22 46.45 0.26 0.10 102.15 84.8 

PC-3-O14 40.01 14.26 0.17 47.39 0.27 0.08 102.17 85.7 
 

14PC-13-O20 39.57 14.15 0.17 46.76 0.31 0.07 101.03 85.6 

PC-3-O15 39.31 15.94 0.20 44.88 0.14 0.06 100.52 83.5 
          

PC-3-O16 39.75 15.61 0.22 45.80 0.24 0.11 101.74 84.1 
 

Xenoliths 
        

PC-3-O17 39.44 16.46 0.26 44.83 0.22 0.11 101.32 83.1 
 

14PCX-1-O1 39.84 13.05 0.21 46.80 0.28 0.12 100.30 86.6 

PC-3-O18 39.23 17.19 0.37 43.57 0.15 0.10 100.61 82.0 
 

14PCX-2-O1 37.42 16.13 0.22 45.30 0.16 0.10 99.34 83.5 

PC-3-O19 39.49 15.99 0.27 45.12 0.26 0.15 101.27 83.6 
 

14PCX-2-O2 37.32 16.44 0.23 45.26 0.12 0.10 99.48 83.2 

PC-3-O20 39.67 13.78 0.16 46.53 0.29 0.09 100.52 85.9 
 

14PCX-2-O3 37.85 16.26 0.21 45.35 0.22 0.10 99.99 83.4 

PC-3-O21 39.29 13.04 0.18 47.11 0.29 0.12 100.02 86.7 
 

14PCX-2-O4 38.04 16.01 0.23 45.36 0.12 0.08 99.84 83.6 

PC-3-O22 39.74 11.91 0.18 47.46 0.25 0.10 99.64 87.8 
 

14PCX-3-O1 37.86 15.56 0.23 45.71 0.23 0.08 99.66 84.1 

PC-3-O23 39.63 14.38 0.17 46.82 0.20 0.09 101.28 85.4 
 

14PCX-3-O2 37.42 15.85 0.23 45.66 0.23 0.09 99.48 83.8 

PC-3-O24 39.38 13.70 0.26 46.26 0.22 0.08 99.90 85.9 
 

14PCX-3-O3 37.66 15.65 0.22 45.32 0.21 0.10 99.16 83.9 

PC-3-O25 39.85 16.60 0.30 44.27 0.17 0.06 101.26 82.8 
 

14PCX-4-O1 37.75 15.98 0.22 45.32 0.10 0.11 99.49 83.6 

PC-3-O26 39.56 13.84 0.26 46.50 0.27 0.17 100.60 85.8 
 

14PCX-4-O2 37.77 15.78 0.26 46.20 0.17 0.09 100.27 84.1 

PC-3-O27 39.23 13.65 0.22 46.48 0.28 0.08 99.94 86.0 
 

14PCX-4-O3 38.27 16.05 0.24 45.21 0.13 0.10 100.01 83.5 
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PC-3-O28 39.47 15.23 0.23 45.97 0.17 0.10 101.18 84.5 
 

14PCX-5-O1 39.79 14.25 0.19 46.15 0.24 0.10 100.71 85.4 

PC-3-O29 39.68 14.25 0.22 46.55 0.32 0.13 101.15 85.5 
 

14PCX-5-O2 39.62 14.46 0.22 45.40 0.20 0.08 99.98 85.0 

PC-3-O30 40.22 17.39 0.25 44.50 0.22 0.10 102.68 82.2 
 

14PCX-5-O3 39.83 14.20 0.21 45.88 0.18 0.09 100.39 85.3 

PC-3-O31 38.90 17.16 0.26 44.40 0.15 0.10 100.97 82.3 
 

14PCX-6-O1 37.55 15.09 0.23 45.97 0.11 0.08 99.02 84.6 

PC-3-O32 39.34 17.75 0.29 44.43 0.23 0.07 102.12 81.8 
 

14PCX-6-O2 37.54 15.35 0.22 45.64 0.18 0.07 99.00 84.3 

PC-3-O33 39.87 15.24 0.21 46.07 0.20 0.10 101.71 84.5 
 

14PCX-6-O3 37.89 14.94 0.21 45.76 0.22 0.10 99.12 84.6 

PC-3-O34 39.90 13.10 0.18 47.74 0.25 0.07 101.23 86.8 
 

14PCX-7-O1 38.19 14.92 0.22 45.83 0.19 0.08 99.44 84.7 

PC-3-O35 40.49 14.35 0.22 46.92 0.29 0.09 102.36 85.5 
 

14PCX-7-O2 38.69 15.29 0.20 45.51 0.17 0.08 99.94 84.3 

PC-3-O36 40.70 14.97 0.18 46.63 0.18 0.09 102.75 84.9 
 

14PCX-7-O3 38.82 14.46 0.19 46.37 0.20 0.09 100.13 85.2 

PC-3-O37 40.04 17.89 0.24 44.67 0.16 0.09 103.09 81.8 
 

14PCX-7-O4 37.76 14.34 0.19 46.01 0.18 0.10 98.58 85.2 

PC-3-O38 40.65 14.61 0.26 47.20 0.25 0.09 103.06 85.3 
 

14PCX-8-1-O1 38.53 14.69 0.20 46.36 0.21 0.10 100.09 85.0 

PC-3-O39 39.96 13.53 0.19 47.26 0.23 0.09 101.27 86.3 
 

14PCX-8-1-O2 38.54 14.58 0.21 46.16 0.22 0.07 99.78 85.1 

PC-3-O40 39.86 15.88 0.21 46.02 0.21 0.07 102.25 83.9 
 

14PCX-8-1-O3 37.47 14.42 0.20 45.86 0.14 0.08 98.17 85.1 

PC-3-O41 40.15 13.99 0.18 47.76 0.17 0.09 102.34 86.0 
 

14PCX-8-1-O4 38.92 14.41 0.22 46.30 0.13 0.09 100.06 85.3 

PC-3-O42 40.51 15.19 0.23 46.52 0.23 0.09 102.78 84.6 
 

14PCX-10-O1 38.13 13.36 0.20 47.63 0.23 0.10 99.66 86.5 

PC-3-O43 38.66 21.36 0.27 41.24 0.08 0.16 101.77 77.7 
 

14PCX-10-O2 38.87 13.48 0.19 47.60 0.21 0.10 100.45 86.4 

PC-3-O44 39.28 20.45 0.42 41.89 0.13 0.15 102.32 78.7 
 

14PCX-10-O3 38.59 13.09 0.18 47.91 0.20 0.10 100.07 86.8 

PC-3-O45 40.17 14.05 0.22 47.41 0.33 0.08 102.26 85.9 
 

14PCX-10-O4 38.53 13.26 0.20 47.63 0.24 0.10 99.96 86.6 

PC-3-O46 39.90 13.70 0.19 47.45 0.28 0.09 101.61 86.2 
 

14PCX-11 37.89 20.33 0.27 42.61 0.14 0.12 101.36 79.0 

PC-3-O47 40.64 13.63 0.18 48.02 0.28 0.09 102.84 86.4 
 

14PCX-13-1-O1 36.14 16.42 0.23 44.72 0.17 0.09 97.76 83.1 

12PC-2-O1 40.51 13.27 0.19 47.54 0.31 0.10 101.93 86.6 
 

14PCX-13-1-O2 37.81 16.55 0.22 45.45 0.20 0.08 100.32 83.2 

12PC-2-O2 39.90 17.17 0.22 44.63 0.20 0.08 102.20 82.4 
 

14PCX-13-2-O1 37.86 15.32 0.24 46.16 0.21 0.07 99.86 84.4 

12PC-2-O3 38.90 18.63 0.26 42.99 0.14 0.10 101.03 80.6 
 

14PCX-15-O1 37.94 15.21 0.24 46.15 0.24 0.09 99.86 84.5 

12PC-2-O4 39.76 13.93 0.19 46.68 0.22 0.09 100.87 85.8 
 

14PCX-15-O2 38.55 15.55 0.22 46.72 0.27 0.08 101.40 84.4 

12PC-2-O5 39.60 15.04 0.21 45.96 0.20 0.10 101.12 84.6 
 

14PCX-15-O3 37.97 15.38 0.23 46.35 0.26 0.09 100.30 84.4 

12PC-2-O6 39.82 15.59 0.20 45.58 0.23 0.13 101.55 84.0 
 

14PCX-15-O4 37.77 15.45 0.21 46.20 0.24 0.08 99.96 84.3 

12PC-2-O7 40.40 10.91 0.16 49.36 0.23 0.09 101.16 89.1 
 

14PCX-16-O1 34.93 24.45 0.42 38.11 0.04 0.12 98.07 73.7 

12PC-2-O8 39.45 20.01 0.27 42.01 0.18 0.10 102.02 79.1 
 

14PCX-17-O1 38.07 14.16 0.20 47.09 0.22 0.08 99.82 85.7 

12PC-2-O9 39.79 15.48 0.23 45.73 0.23 0.08 101.54 84.2 
 

14PCX-17-O2 38.69 13.22 0.20 47.64 0.16 0.07 99.99 86.6 

12PC-2-O10 40.37 13.56 0.20 47.08 0.33 0.08 101.63 86.2 
 

14PCX-17-O3 40.35 12.79 0.21 47.31 0.17 0.07 101.06 86.9 

12PC-2-O11 39.29 18.98 0.28 42.58 0.16 0.10 101.39 80.2 
 

14PCX-17-O4 40.17 13.78 0.22 46.76 0.19 0.09 101.37 85.9 

12PC-2-O12 39.92 15.61 0.22 45.45 0.24 0.09 101.53 84.0   14PCX-17-O5 39.91 13.42 0.20 46.89 0.20 0.04 100.72 86.3 
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Table S3.4: Major element compositions of olivine (wt.%). 

Olivine grains from individual samples are numbered in order. For example, PC-1-O1 stands for the first olivine grain from 

sample PC-1. 
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  SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O Totals Mg#     SiO2 TiO2 Al2O3 FeO Cr2O3 MnO MgO CaO Na2O Totals Mg# 

Phenocrysts 
            

14PCX-4-P4 51.46 0.69 5.57 5.76 0.83 0.14 17.52 17.69 1.07 100.77 84.6 

PC-1-P1 50.10 0.73 7.23 4.55 0.73 0.16 15.28 20.57 1.02 100.38 85.8 
 

14PCX-5-P1 49.51 0.75 6.89 4.67 0.70 0.12 15.55 19.96 0.82 99.08 85.7 

PC-1-P2 49.98 0.70 6.78 4.52 0.79 0.12 15.70 18.53 0.77 97.89 86.2 
 

14PCX-5-P2 50.83 0.68 6.49 4.76 0.60 0.14 15.91 19.89 0.99 100.27 85.8 

PC-1-P3 50.22 0.56 6.80 5.07 0.83 0.11 19.38 16.16 0.67 99.79 87.3 
 

14PCX-5-P3 50.21 0.70 6.33 4.75 0.61 0.16 15.66 19.98 0.85 99.30 85.6 

PC-1-P4 50.54 0.65 6.92 4.49 0.87 0.10 17.14 18.09 0.68 99.48 87.3 
 

14PCX-5-P4 49.93 0.82 6.69 4.46 0.72 0.13 15.21 20.65 0.91 99.60 86.0 

PC-1-P5 51.72 0.59 5.50 4.88 0.94 0.15 16.07 20.24 0.82 100.96 85.6 
 

14PCX-6-P1 49.66 0.97 7.55 5.93 0.44 0.15 15.13 20.16 0.85 100.84 82.1 

PC-1-P6 51.58 0.35 5.79 6.21 0.17 0.19 14.64 21.11 1.00 101.03 80.9 
 

14PCX-6-P2 49.86 0.80 7.26 6.14 0.28 0.12 15.68 19.87 0.72 100.75 82.1 

PC-1-P7 51.44 0.45 5.45 5.69 0.13 0.16 14.54 19.74 0.96 98.55 82.1 
 

14PCX-6-P3 49.51 1.01 7.66 4.90 0.63 0.12 15.20 19.69 0.77 99.48 84.8 

PC-2-P1 52.31 0.56 5.39 5.18 0.76 0.15 15.24 21.59 1.00 102.21 84.1 
 

14PCX-6-P4 48.92 0.90 7.63 4.99 0.50 0.15 15.13 19.69 0.96 98.87 84.5 

PC-2-P2 51.99 0.39 5.05 5.44 0.63 0.16 15.00 21.52 0.94 101.13 83.2 
 

14PCX-7-P1 50.38 0.72 6.50 5.79 0.34 0.14 15.91 19.97 0.74 100.51 83.2 

PC-2-P3 51.83 0.49 5.12 5.27 0.96 0.16 15.09 21.26 1.04 101.20 83.8 
 

14PCX-7-P2 50.17 0.77 6.92 5.67 0.38 0.13 15.74 19.97 0.85 100.61 83.3 

PC-2-P4 50.81 0.54 6.45 5.79 0.50 0.17 14.55 20.96 1.07 100.87 81.9 
 

14PCX-7-P3 50.32 0.63 6.25 5.15 0.34 0.11 16.04 19.60 0.78 99.29 84.9 

PC-2-P5 51.71 0.54 5.48 5.48 0.70 0.16 14.94 21.29 0.94 101.23 83.1 
 

14PCX-7-P4 49.96 0.72 6.70 4.81 0.29 0.13 15.49 19.24 0.80 98.22 85.3 

PC-2-P6 51.69 0.52 5.14 5.01 0.67 0.13 15.29 21.39 0.91 100.75 84.6 
 

14PCX-8-1-P1 49.92 0.65 6.99 5.18 0.73 0.13 15.81 19.55 0.61 99.54 84.6 

PC-2-P7 53.44 0.36 4.68 6.36 0.55 0.19 18.45 16.97 0.84 101.90 83.9 
 

14PCX-8-1-P2 49.03 0.99 7.21 4.57 0.86 0.11 15.41 20.26 0.87 99.28 85.9 

PC-2-P8 52.78 0.44 5.32 5.45 0.72 0.18 15.12 21.41 0.98 102.38 83.3 
 

14PCX-8-1-P3 49.61 0.73 7.25 5.22 0.50 0.12 15.68 20.02 0.71 99.86 84.4 

PC-2-P9 52.40 0.51 5.67 6.66 1.03 0.15 16.66 18.66 0.81 102.58 81.8 
 

14PCX-8-1-P4 49.86 0.68 6.23 5.41 1.01 0.13 15.62 19.77 0.99 99.76 83.9 

PC-3-P1 49.85 0.48 5.64 5.48 0.48 0.17 15.10 20.89 0.97 99.05 83.2 
 

14PCX-8-2-P1 47.62 1.74 8.06 7.78 0.02 0.14 15.24 17.70 0.86 99.18 77.9 

PC-3-P2 51.46 0.31 4.57 5.13 0.69 0.13 15.62 20.99 0.96 99.86 84.6 
 

14PCX-8-2-P2 46.86 1.91 9.00 7.45 0.01 0.16 13.89 18.88 0.98 99.13 77.0 

PC-3-P3 51.46 0.45 5.16 5.49 0.55 0.15 15.49 21.12 0.97 100.84 83.5 
 

14PCX-8-2-P3 47.47 1.79 8.74 6.84 0.01 0.17 14.01 18.63 1.06 98.66 78.7 

PC-3-P4 51.33 0.53 5.12 5.36 0.90 0.16 15.25 21.32 0.83 100.81 83.7 
 

14PCX-9-P1 51.36 0.73 6.07 4.80 0.24 0.13 16.45 19.95 0.76 100.52 86.0 

PC-3-P5 51.20 0.34 4.61 5.54 0.52 0.18 15.35 20.84 0.95 99.53 83.3 
 

14PCX-9-P2 51.54 0.68 5.71 5.48 0.25 0.12 17.00 18.83 0.89 100.55 84.8 

PC-3-P6 51.74 0.53 5.54 5.33 0.49 0.17 14.95 21.16 0.95 100.87 83.5 
 

14PCX-9-P3 50.64 0.85 6.09 5.25 0.28 0.12 15.90 19.89 0.84 99.89 84.5 

PC-3-P7 50.97 0.57 5.48 4.70 0.56 0.17 14.84 21.28 0.90 99.46 85.0 
 

14PCX-10-P1 50.37 0.60 5.64 4.13 1.15 0.14 16.56 19.62 0.80 99.04 87.8 

PC-3-P8 51.85 0.44 4.99 6.38 0.55 0.19 18.59 17.54 0.68 101.22 84.0 
 

14PCX-10-P2 50.44 0.47 5.20 4.29 1.29 0.10 16.19 19.77 1.07 98.84 87.2 

PC-3-P9 50.40 0.56 5.18 5.00 0.71 0.11 15.01 21.56 0.88 99.42 84.4 
 

14PCX-11-P1 48.50 1.52 8.34 6.90 0.04 0.16 14.43 18.41 1.02 99.28 79.0 

PC-3-P10 51.35 0.37 4.94 5.33 0.42 0.16 15.35 21.01 0.93 99.86 83.8 
 

14PCX-12-1-P1 50.82 0.59 5.93 4.95 0.53 0.14 16.22 19.84 1.23 100.27 85.5 

PC-3-P11 50.54 0.53 4.89 5.29 0.36 0.09 15.22 21.14 0.85 98.92 83.8 
 

14PCX-12-1-P2 51.29 0.54 8.91 4.53 0.53 0.13 13.25 18.87 1.44 99.50 84.1 

14PC-4-P1 51.54 0.67 6.17 4.52 1.09 0.12 16.21 20.28 0.75 101.34 86.6 
 

14PCX-12-2-P1 50.70 0.74 7.30 4.78 0.77 0.15 16.65 19.31 0.78 101.19 86.3 

14PC-4-P2 49.92 1.00 8.61 4.75 0.59 0.14 14.66 20.72 0.93 101.35 84.8 
 

14PCX-12-2-P2 49.55 0.87 8.21 4.77 0.76 0.12 14.89 20.17 0.90 100.28 84.9 

14PC-4-P3 50.69 1.24 5.35 5.41 0.21 0.12 15.11 22.88 0.57 101.58 83.4 
 

14PCX-12-2-P3 49.85 0.85 7.34 4.91 0.42 0.14 16.22 19.16 0.68 99.60 85.6 

14PC-4-P4 50.20 0.76 7.22 4.61 0.75 0.09 15.85 20.35 0.74 100.60 86.1 
 

14PCX-12-2-P4 50.24 0.78 7.12 5.02 0.87 0.13 15.73 19.09 1.02 100.06 84.9 
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14PC-4-P5 52.05 0.52 5.51 4.36 1.17 0.13 16.59 20.53 0.68 101.58 87.3 
 

14PCX-13-1-P1 50.77 0.57 5.77 4.80 0.93 0.13 16.42 20.02 0.70 100.11 86.0 

14PC-4-P6 51.09 0.77 6.87 4.55 1.02 0.12 16.47 19.93 0.69 101.51 86.7 
 

14PCX-13-1-P2 51.68 0.45 4.92 4.24 0.86 0.14 15.82 20.89 0.90 99.98 87.0 

14PC-4-P7 51.57 0.57 6.14 4.38 1.04 0.10 15.84 20.96 0.75 101.37 86.7 
 

14PCX-13-1-P3 49.80 1.09 6.41 4.86 0.90 0.11 15.11 22.34 0.47 101.10 84.8 

14PC-4-P8 51.03 0.64 6.01 4.99 0.97 0.13 15.90 19.42 0.90 100.13 85.1 
 

14PCX-13-2-P1 50.17 0.86 6.84 4.73 0.81 0.12 15.55 19.52 1.08 99.67 85.5 

14PC-4-P9 51.89 0.56 5.57 4.77 1.18 0.14 17.31 18.83 0.76 101.04 86.7 
 

14PCX-13-2-P2 51.12 0.60 6.05 4.56 0.97 0.13 15.41 19.96 1.05 99.83 85.9 

14PC-4-P10 51.41 0.67 6.52 4.87 0.78 0.15 17.03 19.41 0.72 101.62 86.3 
 

14PCX-13-2-P3 48.62 1.51 8.25 5.59 0.23 0.13 14.38 19.63 1.08 99.43 82.3 

14PC-4-P11 52.85 0.46 5.39 4.80 1.06 0.13 17.57 19.16 0.82 102.24 86.8 
 

14PCX-13-2-P4 49.60 1.02 7.60 4.76 0.60 0.10 15.32 20.20 0.94 100.22 85.3 

Xenoliths 
            

14PCX-15-P1 50.03 0.71 6.67 4.83 1.06 0.12 15.77 20.40 0.97 100.52 85.5 

14PCX-1-P1 50.23 0.82 6.76 5.01 0.85 0.10 16.84 17.90 0.80 99.43 85.8 
 

14PCX-15-P2 48.61 1.44 5.92 5.12 0.57 0.12 15.06 22.19 0.37 99.47 84.1 

14PCX-2-P1 49.16 1.12 8.41 6.30 0.27 0.16 14.87 19.81 0.86 100.97 80.9 
 

14PCX-15-P3 50.12 0.54 6.45 4.64 1.07 0.12 16.86 19.08 0.64 99.57 86.7 

14PCX-2-P2 48.71 1.27 8.05 5.67 0.24 0.14 14.37 19.58 0.90 99.00 82.0 
 

14PCX-15-P4 49.85 0.66 6.20 4.73 1.03 0.11 16.20 19.82 0.66 99.31 86.0 

14PCX-2-P3 49.91 1.01 7.55 6.55 0.09 0.14 15.30 19.52 0.93 101.09 80.8 
 

14PCX-16-P1 47.31 2.00 9.47 7.40 0.02 0.22 12.87 19.24 1.22 99.69 75.8 

14PCX-2-P4 49.05 0.93 8.31 7.02 0.16 0.15 15.11 19.59 0.69 101.04 79.5 
 

14PCX-16-P2 48.63 1.02 12.12 6.29 0.02 0.16 11.05 16.15 4.25 99.75 76.0 

14PCX-3-P1 49.12 1.09 8.16 5.40 0.35 0.14 14.43 20.13 0.96 99.84 82.8 
 

14PCX-16-P3 46.96 1.86 9.72 8.33 0.00 0.23 12.21 19.37 1.20 99.83 72.5 

14PCX-3-P2 49.85 0.97 5.92 4.96 0.42 0.12 15.68 21.76 0.53 100.26 85.0 
 

14PCX-17-P1 50.75 0.60 5.77 4.58 1.03 0.10 15.59 20.87 0.89 100.19 86.0 

14PCX-3-P3 48.89 0.91 7.97 5.32 0.25 0.13 15.14 20.33 0.83 99.81 83.7 
 

14PCX-17-P2 51.12 0.53 5.06 4.96 0.88 0.11 16.17 19.88 0.90 99.57 85.4 

14PCX-3-P4 49.08 1.05 6.36 5.23 0.52 0.13 15.62 20.34 0.78 99.18 84.3 
 

14PCX-18-P1 51.35 0.48 5.29 4.60 1.01 0.12 16.37 20.42 0.80 100.51 86.5 

14PCX-4-P1 49.14 1.17 8.22 6.23 0.11 0.17 15.39 18.98 0.84 100.24 81.6 
 

14PCX-18-P2 50.19 0.75 7.33 5.43 0.44 0.10 15.63 19.45 0.78 100.14 83.8 

14PCX-4-P2 48.80 1.35 8.00 5.54 0.20 0.16 14.71 19.24 0.95 99.06 82.7 
 

14PCX-18-P3 50.78 0.63 6.44 5.65 0.85 0.13 18.40 16.36 0.67 99.97 85.4 

14PCX-4-P3 48.45 1.73 8.11 6.16 0.24 0.15 14.87 19.58 0.93 100.30 81.3   14PCX-18-P4 49.65 1.15 8.27 5.49 0.46 0.14 14.94 20.02 1.06 101.22 83.0 

Table S3.5: Major element compositions of clinopyroxene (wt.%).  



 160 

  PC-1-1 PC-1-4 PC-3-1 PC-3-2 PC-3-3 14PCX-6-1 14PCX-6-2 14PCX-8-2-1 14PCX-8-2-2 14PCX-9-1 14PCX-9-2 BCR-2 

Nb 0.0 0.0 0.4 0.1 0.3 0.2 0.2 0.2 0.2 0.1 0.2 11.7 

La 1.2 1.1 17.3 15.3 11.5 8.4 3.6 3.7 3.6 6.8 6.1 23.1 

Ce 5.4 5.4 54.2 53.2 34.1 36.3 14.6 17.0 16.6 25.7 25.2 50.4 

Pb 0.0 0.0 0.7 0.5 0.6 0.3 0.3 0.2 0.2 0.2 0.2 10.3 

Sr 64.5 65.0 228.9 209.0 208.2 163.4 110.2 136.1 140.8 235.0 205.5 321.3 

Nd 6.8 6.4 31.5 34.9 20.8 34.5 14.4 19.1 19.9 20.3 19.4 26.6 

Hf 0.8 0.8 1.1 1.5 0.8 4.5 1.2 1.8 1.9 1.4 1.3 4.3 

Zr 22.6 22.8 47.5 54.6 28.0 126.1 30.3 40.4 44.7 46.9 44.3 169.0 

Sm 2.1 2.1 5.6 6.4 4.2 8.0 4.1 5.7 6.2 4.2 4.1 6.2 

Eu 0.8 0.8 1.6 1.8 1.1 2.2 1.2 1.8 1.9 1.2 1.2 1.8 

Gd 2.3 2.3 3.9 4.4 2.8 6.2 3.5 5.1 5.6 3.2 3.1 6.0 

Dy 2.5 2.3 3.1 3.2 2.3 5.0 3.0 4.5 4.9 2.5 2.4 6.0 

Er 1.3 1.2 1.6 1.5 1.1 2.5 1.5 2.2 2.3 1.3 1.2 3.4 

Y 12.3 11.7 14.6 14.9 10.5 22.7 13.3 20.0 21.5 11.5 11.0 31.0 

Yb 1.1 1.2 1.4 1.4 0.9 2.1 1.2 1.8 1.8 1.0 1.0 3.1 

Lu 0.2 0.2 0.2 0.2 0.1 0.3 0.2 0.2 0.2 0.1 0.1 0.5 

Table S3.6: Clinopyroxene trace element compositions of PC phenocrysts and xenoliths (ppm). 

The sample averages of multiple spot analyses are reported. The average of repeatedly measured secondary standard BCR-2 is 

also reported. 
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cpx Mg# T (°C) La Ce Nd Sm Eu Gd Dy Er Yb Lu 

77 1090 0.080 0.146 0.282 0.384 0.466 0.463 0.507 0.520 0.504 0.493 

79 1110 0.076 0.139 0.268 0.365 0.444 0.440 0.481 0.494 0.478 0.468 

81 1130 0.069 0.126 0.241 0.328 0.398 0.394 0.430 0.441 0.428 0.419 

84 1150 0.068 0.123 0.235 0.319 0.388 0.384 0.419 0.430 0.417 0.408 

86 1170 0.062 0.112 0.214 0.290 0.352 0.348 0.380 0.390 0.378 0.371 

87.5 1190 0.060 0.108 0.205 0.277 0.337 0.333 0.363 0.372 0.362 0.355 

88 1200 0.058 0.106 0.201 0.271 0.329 0.325 0.355 0.364 0.354 0.347 

Table S3.7: Kd value used for melt composition calculation. 
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Conclusion 

Mafic and ultramafic xenoliths from Hualalai Volcano Gabbroic xenoliths from 

Hualalai Volcano contains gabbroic lower oceanic crust (LOC) fragments, and cumulates 

derived from Hualalai shield- and post-shield-stage magmas. Strontium and O isotope 

compositions of LOC gabbros are within the range of fresh NMORB, and therefore 

indicate minimal hydrothermal alteration of in situ LOC beneath the Hawaii Island. The 

minimal hydrothermal alteration recorded in Hualalai LOC xenoliths is in contrast with 

pervasive alteration recorded in ophiolitic gabbros and LOC xenoliths from the Canary 

Islands. Combined with other lines of geochemical and geophysical evidence (e.g., 

shallow magma fractionation depths, seismic evidence for shallow melt lenses), I propose 

a long-lived, shallow melt lens at fast ridges restricts deep penetration of on-axis 

hydrothermal circulation. Magmas pass through and fractionate within the long-lived, 

shallow melt lens to produce LOC at fast ridges. 

Melt-crust interaction between Hawaiian magmas and Pacific LOC has partially 

overprinted the trace element and isotopic compositions of in situ LOC. Hualalai LOC 

gabbros have Sr-Nd-Pb-Hf isotope compositions similar to Hawaiian rejuvenated-stage 

lavas. The in situ Pacific lithospheric mantle may have similar isotopic composition as 

LOC gabbros, as the result of metasomatism by Hawaiian-plume derived melts. If this is 

the case, Pacific lithosphere is a likely source for Hawaiian rejuvenated-stage volcanism. 

Most Hualalai xenoliths are cumulates derived from Hualalai shield-stage and 

post-shield-stage cumulates, which provide information on the evolution of Hawaiian 

magmas and magma storage systems. MELTS modeling and equilibration temperatures 

suggest Hualalai shield-stage gabbros are formed in a magma reservoir within or at the 

base of local LOC. Gabbro and websterites derived from Hualalai shield-stage magmas 
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display more variations in Sr-Nd-Pb-Hf isotopic compositions than shield-stage lavas. 

Dunites derived from Hualalai post-shield-stage magmas have Os isotope composition 

indicating coupled fractional crystallization and assimilation. Therefore, magmas storage, 

fractionation, and crustal assimilation appear to have partially homogenized and 

overprinted Hawaiian melt compositions. However, the range of oxygen isotope 

compositions recorded in Hawaiian melts cannot be generated by assimilation of the in 

situ LOC, which have relatively uniform and MORB-like δ18O values. 

The Papoose Canyon (PC) monogenetic vent eruption records temporal 

compositional variations that reflect binary mixing of two distinct melts, one of which is 

chemically and isotopically more enriched than the other. Although PC lavas have high 

MgO content and appear to be primitive, PC phenocrysts and ultramafic xenoliths derive 

from a melt that is more evolved and chemically more enriched than their host lavas. 

Pressure constraints suggest PC phenocrysts and ultramafic xenoliths fractionated at 

middle-crust depths. Typical crustal contamination signatures such as correlations 

between HFSE depletions and Sr-Nd-Pb isotopic compositions, radiogenic Os isotopic 

compositions, and high 𝛿18O in olivines are also observed in PC lavas. Therefore, a 

deflating sill model is proposed to explain the temporal trends observed. PC phenocrysts 

and xenoliths fractionated and assimilated crustal materials in crustal sill(s) formed by 

early melt pulse. The eruption was triggered by the arrival of a later melt pulse. Then the 

early, evolved melts were drained and mixed with the later, more primitive melts. The 

temporal-compositional trends reflect exhaustion of the sill component over time, which 

is consistent with the decreasing phenocryst and xenolith abundances in PC lavas. These 

results indicate that even “primitive” lavas may contain a significant signature of magma 

ponding, fractionation, and crustal contamination that is obscured within the bulk lava but 

is evident in the melt “crystal cargo”.  
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