
Copyright

by

Xi Zheng

2015

The Dissertation Committee for Xi Zheng
certifies that this is the approved version of the following dissertation:

Physically Informed Runtime Verification for Cyber Physical

Systems

Committee:

Christine Julien, Supervisor

Dewayne Perry

Miryung Kim

Raul Longoria

Sarfraz Khurshid

Physically Informed Runtime Verification for Cyber Physical

Systems

by

Xi Zheng, B.COMP.INFO.MGMT.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2015

To Dr. Julien for her consistent support and guiding me through the most difficult

journey of my life.

To Dr. Kim, Dr. Perry, Dr. Khurshid, and Dr. Longoria for putting me through

the best education possible.

To Mable, Charles, and my extended family for their understanding and sacrifice.

To all my collaborators for helping me complete those challenging projects.

Physically Informed Runtime Verification for Cyber Physical

Systems

Publication No.

Xi Zheng, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Christine Julien

Cyber-physical systems (CPS) are an integration of computation with phys-

ical processes. CPS have gained popularity both in industry and the research com-

munity and are represented by many varied mission critical applications. Debugging

CPS is important, but the intertwining of the cyber and physical worlds makes it

very difficult. Formal methods, simulation, and testing are not sufficient in guaran-

tee required correctness. Runtime Verification (RV) provides a perfect complement.

However the state of the art in RV lacks either efficiency or expressiveness, and very

few RV technologies are specifically designed for CPS. The CPS community requires

an intuitive, expressive, and practical RV middleware toolset to improve the state

of the art.

In this proposal, I take an incremental and realistic approach to identify

and address the research challenges in CPS verification and validation. Firstly, I

carry out a systematic analysis of the state of the art and state of the practice

in verifying and validating CPS using a structured on-line survey, semi-structured

v

interviews, and an exhaustive literature review. From the findings obtained, I iden-

tify the key research gaps and propose research directions to address these research

gaps. My second work is to work on the most pertinent research direction proposed,

which is to provide a practical and physically informed runtime verification tool-sets

specifically designed for CPS as a sound foundation to the trial and error practice

identified as the state of the art in verifying and validating CPS. I create an expres-

sive yet intuitive language (BraceAssertion) to specify CPS properties. I develop

a framework (BraceBind) to supplement CPS runtime verification with a real time

simulation environment which is able to integrate physical models from various

simulation platform. Based on BraceAssertion and BraceBind, which collectively

captures the combination of logical content and physical environment, I develop

a practical runtime verification framework (Brace), which is efficient, effective, ex-

pressive in capturing both local and global properties, and guarantee predictable

runtime monitors behavior even with unpredictable surge of events. I evaluate the

tool-set with increasingly complex real CPS applications of smart agent systems.

vi

Table of Contents

Abstract v

Chapter 1. Introduction 1

1.1 Intended Contributions . 5

1.2 Overview . 6

Chapter 2. On the State of the Art in Verification and Validation in
Cyber Physical Systems 8

2.1 Introduction . 9

2.2 Methodology . 12

2.3 Literature Review . 16

2.4 The on-line survey . 22

2.4.1 Background and Definitions 22

2.4.2 Perceptions . 26

2.4.3 Experiences . 28

2.5 Interview . 34

2.6 Future Research Directions . 41

2.7 Threats to Validity . 43

2.8 Research Contributions . 45

2.9 Chapter Summary . 45

Chapter 3. BraceForce: A Middleware to Integrate Sensing in CPS
Applications 47

3.1 Introduction . 48

3.2 Related work . 52

3.3 BraceForce . 56

3.3.1 BraceForce Abstract Architecture 56

3.3.1.1 BraceForce Layered Architecture. 57

3.3.1.2 BraceForce Deployment Scenarios. 61

vii

3.3.2 BraceForce Implementation 64

3.3.2.1 Android Programming Idiosyncrasies 64

3.3.2.2 Unified Data and Subscription Interfaces 65

3.3.2.3 Thread Management and Android services 66

3.3.2.4 Networking . 67

3.3.2.5 Sensor Driver Definition and Discovery 68

3.3.2.6 Model Driven Data Acquisition 70

3.4 Empiricial Design . 71

3.5 Results and Discussion . 75

3.6 Research Contributions . 82

3.7 Chapter Summary . 82

Chapter 4. BraceAssertion: Behavior Driven Development for CPS
Application 84

4.1 Introduction . 85

4.2 Motivation and Overview . 87

4.2.1 Motivating Application . 87

4.2.2 Behavior Driven Development 89

4.2.3 My Basic Formal Framework 90

4.2.4 ECA and SCL . 91

4.3 BraceAssertion . 93

4.3.1 BraceAssertion Language . 94

4.3.2 BraceAssertion Formal Semantics 98

4.4 Dual Monitor Architecture . 98

4.4.1 Event Monitor . 101

4.4.2 ECA Monitor . 103

4.4.3 Combinatorial Analysis . 104

4.5 Case Study and Evaluation . 107

4.5.1 The Case Study Briefly . 107

4.5.2 Research Questions (RQs) . 108

4.5.3 Experiment Design . 108

4.5.4 RQ1: The Efficiency of the Event Monitor 111

4.5.5 RQ2: The Effectiveness of BraceAssertion 113

viii

4.5.6 RQ3: ECA Monitor Efficiency and Unique Features 114

4.5.7 Threats to Validity . 116

4.6 Related Work . 117

4.7 Research Contributions . 118

4.8 Chapter Summary . 119

Chapter 5. BraceBind: Combining Real-Time Simulation with Run-
time Verification for Cyber Physical Systems 120

5.1 Introduction . 121

5.2 Motivation and Related Work . 124

5.3 Interface Specification for Physical Models and the Cyber 128

5.3.1 Model Interface Specification 129

5.3.2 Annotations for physical aspects 131

5.4 BraceBind . 132

5.4.1 BraceBind Architecture Overview 133

5.4.2 Model Transformation . 135

5.4.3 Data Integration . 136

5.4.4 Time Synchronization . 138

5.4.5 Master Synchronizer . 140

5.4.6 The Case Study . 145

5.4.7 The Case Study . 145

5.4.8 Research Questions (RQs) . 146

5.4.9 Experiment Design . 147

5.4.10 BraceBind VS Simulink (E1) 149

5.4.11 BraceBind VS Physical Deployment (E2) 149

5.4.12 BraceBind VS Physical Deployment in Runtime Verification (E3)153

5.4.13 Discussion . 154

5.5 Research Contributions . 157

5.6 Chapter Summary . 157

ix

Chapter 6. Brace: A Middleware for Practical On-Line Monitoring
of Cyber-Phyiscal System Correctness 159

6.1 Introduction . 160

6.2 The Formal Specification: BraceAssertion 163

6.3 The Brace Middleware . 169

6.3.1 Local Optimization Controller 171

6.3.2 Communication Agent . 174

6.3.3 Event Synchronizer . 178

6.3.3.1 Synchronizing the Events of a Single Node 179

6.3.3.2 Synchronizing Events across Multiple Nodes 180

6.3.3.3 Synchronizing and Aggregating Events and Attributes 182

6.3.4 Global Property Monitors and their Automata 184

6.4 Case Study and Evaluation . 188

6.4.1 The Case Study . 188

6.4.2 Android Test Bed . 191

6.4.3 Orbit Test Bed . 192

6.4.4 Validity discussion . 197

6.5 Related Work . 198

6.6 Research Contributions . 201

6.7 Chapter Summary . 201

Chapter 7. Conclusion 203

Appendix 205

Appendix A. BraceAssertion 206

A.1 SCL Syntax and Semantics . 206

A.2 BraceAssertion Syntax (in BNF) . 208

A.3 BraceAssertion Semantics . 209

A.4 Algorithms in BraceAssertion . 211

A.4.1 AspectJ Instrumentation . 211

A.4.2 Monitor Synthesis (Main) . 212

A.4.3 Event Monitor Synthesis . 214

A.4.4 ECA Monitor Synthesis . 214

A.5 The Case Study - Full Version . 215

x

Bibliography 218

xi

Chapter 1

Introduction

Cyber-Physical Systems (CPS) are gaining popularity and are widely used

in biomedical and healthcare systems, autonomous vehicles, large scale real time

rescue, smart grid and renewable energy, and many other industrial applications [50,

113,156,183].

A ubiquitous and fundamental challenge in developing CPS is that such

systems inherently integrate both physical and logical components in a way that

necessitates jointly verifying, validating, and evolving the complete CPS. Tradi-

tional approaches (e.g., Formal Methods and Testing) focus mainly in the soft-

ware and (computer) hardware domains, with methods tailored to validating the

cyber portions of the system. Such approaches neglect key physical aspects and

the interplay between the physical and cyber aspects. The state of the art ap-

proaches (e.g., model-based approaches [32, 68, 122], and debugging tools in sensor

networks [101, 163, 166, 176, 188]) that do combine the cyber and physical focus on

calibration activities that tailor the behavior of the CPS to a particular operating

environment. This is contrary to a more direct debugging approach that focuses

on identifying mismatches between an actual physical environment and the devel-

oper’s assumptions about that environment (whether explicit or implicit). Such a

mismatch can even lead to logical errors in the cyber components of the system that

1

cannot be reliably solved through calibration. This disconnect between the logical

and physical is especially relevant in many safety-critical CPS, where computational

elements must correctly assess and manipulate the state of physical elements in a

verifiable manner.

In cyber-physical systems, design, implementation, and testing often par-

tially or completely neglect concrete models of time and physics that have real im-

pact on CPS application performance. Consider a simple CPS application deployed

in a smart home. When an occupant wants to watch a movie, the smart home

must make the environment dark, so it turns off all of the lights in the room. The

smart home assumes that the room is dark and commences playback of the movie.

An obvious logical programming error is highlighted by this oversimplified example:

turning off the lights in a room does not always make the room dark. During the

daytime, it may be necessary to also close the blinds. In creating CPS applications,

system developers rely on ad hoc implementation and testing methods: we take a

quick crack at implementing a system, throw it in a target environment, observe

its behavior, and refine it by fine-tuning its behavior. Such an approach is neither

reliable nor robust, and it is also not easily generalizable or extensible.

As a second example, consider the safe control of an autonomous vehicle

tasked with transporting payloads from one location to another in a specific amount

of time. Based on observations in the development of the vehicle, a CPS designer

may assume that a given amount of power to the motor for a specified time interval

causes the vehicle to move a specific distance. However, if anything changes about

the environment (e.g., the coefficient of friction of the road surface, the incline of

2

the surface, or even the charging level of the battery), this assumption can fail. If

the entire application is written around a specific set of environmental assumptions,

the entire application can fail. In this case, the application was fine-tuned to a

specific operating environment instead of debugged in the context of specifications

of correct behavior of both the logical and physical components. In this proposal, in

contrast, I motivate a debugging process in which the correct behavior of physical

components can be provided by well-understood models of physics.

Temporal aspects of cyber-physical systems present yet another challenge.

Cyber-physical systems inherently include actuation, or actions that have real im-

pact on a physical world, and actuation takes time. Consider a CPS in which a

robotically controlled arm flips a light switch off. Debugging the CPS that flips the

switch could very reasonably include checking to ensure that, after the instruction

was issued to the arm, the room became darker. Automated debugging techniques

generally assume that, when a line of code is executed, the impact of that execution

is effectively instantaneous, and therefore a debugging technique can immediately

check whether the expected result occurred. However, verifying that the robotic

arm successfully turned off the light requires giving the arm time to do its job. It

is not immediately obvious how to automate checking that such an actuation was

successful without a clear specification of how that success relates to the passage of

real time.

The tenuous connections between the debugging tasks and sensor platforms

also pose significant challenge for verifying and validating CPS. It is difficult (and

at times impossible) to incorporate physical sensor readings, which are often not

3

reliable, into debugging rules and tools. This issue is further complicated by the

heterogeneous nature of sensor platforms; different platforms require their own lan-

guages and operating systems making it challenging to add sensor information to

the debugging task in a general purpose way.

As for now, CPS developers rely heavily on simulation to safeguard the cor-

rectness of CPS. As an example of the limitations of simulation, a vehicle in the

2007 DARPA Urban Challenge dangerously deviated from its computer-generated

path and stuttered in the middle of a busy intersection. The bug was ultimately

determined to be related to limitations of the steering rate at low speeds, which

was undetected by the (sophisticated) simulation model used [133]. While simu-

lation models may provide very good representations of the real world, they often

fail to accurately represent the environment; playback of recorded traces in simula-

tion environments suffers from a similar limitation in that it reduces the inherently

continuous environment to a discrete one.

These examples highlight several aspects novel to cyber-physical systems

that makes developing them, and, more to the point, debugging them, challenging.

It is impossible to exhaustively test the complete system for all possible physical

states of a target environment. Further, the physical environment may change over

time, causing an application that worked at one time to later fail, simply because

the new environment was not covered in the original testing. Simply stated, existing

CPS development and debugging approaches are insufficient because they cannot

ensure the correctness of a program that actuates on a system or environment in a

way that considers physical ramifications.

4

1.1 Intended Contributions

This proposal addresses the challenges of verifying and validating CPS by

providing a tool-set for CPS runtime verification. Fig. 1.1 shows the components of

the tool-set and how these components will support the specification, development,

and debugging of CPS applications from a high-level abstraction [192].

More specifically, I will make the following contributions:

1. Conduct a comprehensive investigation on the state of the art in CPS veri-

fication and validation through an exhaustive literature review, a structured

on-line survey, and interviews [RC1].

Figure 1.1: The Brace Framework Architecture

5

2. Create BraceForce as a supporting infrastructure to access sensors from het-

erogeneous platforms [RC2].

3. Create BraceAssertion as a new intuitive and expressive language to spec-

ify CPS properties with timing constraints (qualitative and quantative) and

predicate logics [RC3].

4. Create BraceBind as a middleware to enable real time simulation of physi-

cal models from heterogeneous simulation platforms to inform CPS runtime

verification [RC4].

5. Create Brace as a practical, efficient, and effective online runtime verification

middleware specifically designed for CPS applications [RC5].

6. Evaluate the multi-component toolkit using real increasingly complex CPS

applications of multi agent systems [RC6].

1.2 Overview

The rest of this proposal is organized as follows. Chapter 2 presents the re-

sults of our investigation on the state of the art in CPS verification and validation.

Chapter 3 presents BraceForce which provides a simplistic and unified programming

interface to access sensor data across heterogeneous sensor platforms. BraceForce

facilitates debugging of CPS applications in various physical test environment with

different set of sensors. Chapter 4 presents BraceAssertion language which is ex-

pressive of metric temporal logics and predicate logics, and intuitive of using natural

language to specify CPS properties. BraceAssertion is supported with a dual moni-

6

tor architecture which uses Event Monitor to generate filtered and aggregated timed

trace, and Timed Automata Monitor to detect violations of CPS properties based on

the timed trace (offline checking). Chapter 5 presents BraceBind which is capable

of generating a real time simulation environment that allows real time execution of

physical models from different simulation platforms (e.g. Simulink and LabView)

and using the results to inform CPS runtime verification. BraceBind avoids ex-

pensive and often infeasible repeated physical deployment of CPS applications as

currently required for CPS debugging and testing (including CPS runtime verifica-

tion). Chapter 6 presents Brace as an online runtime verification middleware that is

efficient (in terms of CPU and Memory), effective (in terms of number of false pos-

itives and false negatives), expressive in capturing both local and global properties,

and as first of the kind to guarantee predictable behavior of runtime monitors even

with unpredictable surge of (random) events. I also discuss a real and increasingly

complex CPS application used to evaluate BraceAssertion, BraceBind, and Brace in

each corresponding chapter. Finally, Chapter 7 concludes.

7

Chapter 2

On the State of the Art in Verification and Validation
in Cyber Physical Systems

It is widely held that debugging cyber-physical systems (CPS) is challeng-

ing; many strongly held beliefs exist regarding how CPS are currently debugged and

tested and the suitability of various techniques. For instance, dissenting opinions

exist as to whether formal methods (including static analysis, theorem proving, and

model checking) are appropriate in CPS verification and validation. Simulation tools

and simulation-based testing are also often considered insufficient for cyber-physical

systems. Many “experts” posit that high-level programming languages (e.g., Java

or C#) are not applicable to CPS due to their inability to address (significant)

resource constraints at a high level of abstraction. To date, empirical studies in-

vestigating these questions have not been done. In this chapter, I qualitatively and

quantitatively analyze why debugging cyber-physical systems remains challenging

and either dispel or confirm these strongly held beliefs along the way. Specifically, I

report on a structured on- line survey of 25 CPS researchers (10 participants classi-

fied themselves as CPS developers), semi-structured interviews with 9 practitioners

across four continents, and a qualitative literature review. I report these results

and discuss several implications for research and practice related to cyber-physical

systems.

8

2.1 Introduction

Cyber-Physical Systems (CPS) feature a tight coupling between physical

processes and software components [113] and execute in varying spatial and tem-

poral contexts exhibiting diverse behaviors across runs [183]. CPS are widely used

in biomedical and healthcare systems, autonomous vehicles, smart grids, and many

industrial applications [113, 156, 183]. Over the years, systems and control engi-

neers have made significant progress in developing system science and engineering

methods and tools (e.g., time and frequency domain methods, state space analysis,

filtering, prediction, optimization, robust control, and stochastic control) [14]. At

the same time, computer science and software engineering researchers have made

breakthroughs in software verification and validation (e.g., systematic testing, for-

mal methods). While there are existing well-grounded testing methodologies for

other domains of software, and while formal methods have been used for verification

of mission-critical systems in practice, verifying and validating CPS are complicated

because of the physical aspects and external environment. For instance, there are

insufficient methods for investigating the impact of the environment, or context, on

a CPS [171]. External conditions, which are often hard to predict, can invalidate

estimates (even worst-case ones) of the safety and reliability of a system. Modeling

any CPS is further hampered by the complexity of modeling both the cyber (e.g.,

software, network, and computing hardware) and the physical (physical processes

and their interactions) [121]. Simplified models that do not anticipate that the

physical and logical components fail dependently are easily invalidated.

In a 2007 DARPA Urban Challenge Vehicle, a bug undetected by more than

9

300 miles of test-driving resulted in a near collision. An analysis of the incident

found that, to protect the steering system, the interface to the physical hardware

limited the steering rate to low speeds [133]. When the path planner produced a

sharp turn at higher speeds, the vehicle physically could not follow. The analysis also

concluded that, although simulation-centric tools are indispensable for rapid proto-

typing, design, and debugging, they are limited in providing correctness guarantees.

In some mission-critical industries (e.g., medical devices), correctness is currently

satisfied by the documentation for code inspections, static analysis, module-level

testing, and integration testing [95]. These tests do not consider the context of the

patient [95]. Such a lack of true correctness guarantees could easily cause something

like the Therac-25 disaster [117] to reoccur.

I seek to address the dearth of empirical information available about CPS

development, specifically in debugging and testing. While limited studies of CPS

verification and validation exist [58, 112, 165], there is no study that systematically

addresses the entire range of existing approaches. In the past decade, as research

on CPS has exploded, many strongly held beliefs have emerged related to devel-

oping, debugging, and testing these systems. I conduct a broad literature review,

a quantitative survey, and qualitative interviews with CPS experts to uncover the

state of the art and practice in CPS verification and validation. My surveys and

interviews start with basic questions, identifying the technical backgrounds of ac-

tual CPS experts. I then move into specifics related to tools and techniques used

on a daily basis. I take a broad view, encompassing simulation, formal methods,

model-driven development, and more ad hoc approaches. I also attempt to ascertain

10

what aspects of CPS development remain unaddressed in practice, with the aim of

eliciting a targeted research agenda for software engineers desiring to support the

ever-growing domain of CPS development.

Table 2.1: Summary of strongly held beliefs about CPS development

Belief Sections

I. CPS developers are largely untrained in traditional software engi-
neering methodologies. [62, 156]

§2.4.1, §2.5

II. CPS developers are generally unfamiliar with traditional software
verification and validation tools and methodologies. [62, 156]

§2.4.1, §2.5

III. High-level programming languages (e.g., Java) are not applicable
to CPS. [72, 182]

§2.4.1, §2.5

IV. Resource constraints (e.g., CPU, memory, and storage) are a ma-
jor issue in developing and debugging CPS. [107,182,190]

§2.4.1, §2.5

V. Existing model checking and other formal techniques are insufficient
to meet CPS applications’ needs. [40, 47,111,178]

§2.3, §2.5

VI. Simulation alone is insufficient in supporting verification and val-
idation of CPS. [133]

§2.4.2, §2.4.3, §2.5

VII. An ad hoc, trial-and-error approach to development is the state
of the art for CPS systems. [137,156]

§2.4.2, §2.5

VIII. There is a significant gap in language between formal models
of computing and communications and models of physics that makes
applying them jointly in CPS challenging. [2, 113,170]

§2.4.2 §2.4.3, §2.5

To the best of my knowledge, my study is the first to quantitatively assess

the state of the art in this area. I start by identifying strongly held beliefs about

CPS debugging (Section 2.2) and then review the relevant available literature (Sec-

tion 2.3). I follow this with detailed results from an on-line survey (Section 2.4) and

one-on-one interviews with CPS experts (Section 2.5). I conclude with some future

research directions for CPS verification and validation elicited from my investigation

(Section 2.6).

11

2.2 Methodology

Cyber-physical systems are increasingly prevalent, and they pervade many

other emerging domains, including pervasive computing in general and the Internet

of Things. The rise has been so rapid over the past decade that software engineering

support for these new domains has not kept pace. I seek to confirm or dispel several

widely held beliefs related to developing CPS, with a specific focus on the verification

and validation stages. Table 2.1 documents several of these beliefs, along with

relevant references to the literature. The section of the chapter in which I address

each belief is listed in the right-most column of Table 2.1. my investigation takes

three parts: a broad literature review, a quantitative on-line survey, and qualitative

interviews. This combined study benefits from the strengths of each of its parts;

while I feel the study methods are rigorous, some threats to validity still exist. I

discuss these in Section 2.7. For each of my three methods, before discussing the

results, I here briefly describe the goals of the approach, my protocol, and how I

analyzed the data.

Literature Review. It is obviously not possible (or desirable) to perform a

complete literature review of CPS verification and validation in this chapter. Instead

I aim to provide a broad look at the variety of techniques and approaches that could

be applied to CPS verification and validation. The approaches analyzed in the

literature review helped us shape the questions for the on-line survey and interviews.

Protocol. I conducted this review by exploring related publications in the re-

cent past in the areas/categories of static analysis, theorem proving, model checking,

run-time verification, simulation based testing, synchronous approaches of real-time

12

systems testing, model driven development (MDD) based tools, and finally social

and cultural impact of verification and validation. All of these reviews were focused

through a lens capturing cyber-physical systems and other closely related domains

(e.g., hybrid systems and real-time systems). The review reported in this chapter

is a refinement of a much broader look that included additional domains (e.g., dis-

tributed systems in general, reactive systems, sensor networks, etc.) and a deeper

look at specific categories of approaches. The artifacts covered in this chapter serve

as (highly referenced) exemplars of the state of the art in verification and validation

for CPS.

Data Analysis. For each category in my review, I chose a few representa-

tive approaches (selected based on measures of popularity including citations and

discussions of practical applications) and provide a short summary (due to the size

limitation) of their pros and cons.

On-line Surveys. My survey has two aims. First, I aim to corroborate find-

ings from the literature review by cross-checking them with those CPS researchers

with hands-on experiences. Second, I seek to confirm or dispel the strongly held

beliefs listed in Table 2.1.

Protocol. Based on the findings from my literature review, I created a set

of multiple choice questions that attempt to resolve the veracity of the strongly

held beliefs surrounding CPS development and debugging. I also designed a set of

open-ended questions motivated to complement the variety of information collected

13

in the literature review1.

I sent the invitation of the on-line survey to 82 CPS researchers, who publish

work related to real-world CPS development and deployment in relevant academic

conferences and received 25 responses. I reached experts from a wide range of

subfields, including electrical, mechanical, chemical, and biological engineering and

from computer science; 37.5% of them have expertise in control systems and AI,

37.5% of them in networking, 16.7% of them in cyber-security, 16.7% of them in

civil engineering, mechanical engineering, or other “traditional” engineering fields,

37.5% in real-time systems, distributed systems, algorithm, verification, testing, and

software engineering, in general. When asked about their primary role(s), 70.8%

have roles as CPS modeling experts, designers, and architects; 54.2% have roles in

validation and verification; and 41.7% classified themselves as CPS developers. The

participants had, on average, 8.35 years of software development experience and

6.69 years of experience in CPS applications.

Data Analysis. I performed statistical analysis on the multiple choice ques-

tions. I collated the free-text responses by combining responses that aligned con-

textually. I use a phenomenological approach [53], which attempts to aggregate

meaning from multiple individuals based on their “lived experiences” related to the

concept (i.e., phenomenon) under study. my on-line survey (and, in fact, my in-

terviews), are exactly targeting the conclusions I can draw based on studies of the

experiences of a group of individuals, in this case, experts in CPS development.

1The surveys were delivered via SurveyMonkey; the full text is available at (https://www.
surveymonkey.com/s/MP7HP7W)

14

Interviews. To more deeply examine the implications of several of the

responses in the survey and corroborate the findings in the survey relative to the

strongly held beliefs listed in Table 2.1, I created open-ended questions around

the trends I saw in the survey results, to explore further CPS practitioners opinions

related to CPS verification and validation. The full questions list is available online2.

Protocol. I conducted these interviews through personal interactions3. The

audio of the interviews was recorded with the participants’ consent. In the case

of in-person interviews, the participants often showed the interviewer documents,

papers, devices, and other artifacts that were relevant to the interview questions;

this often highlighted the real constraints and limitations or showcased the develop-

ment and deployment environments. The interviewees were CPS experts in charge

of real-world CPS systems from around the world (from North America, Europe,

Asia, and Australia). I found the participants through my review of the CPS litera-

ture and development tools; the selected interview participants are in charge of the

development and deployment of real-world CPS applications development and de-

ployment. I interviewed an expert in autonomous vehicles, another in closely related

autonomous robots, one in medical CPS, two in formal methods, one in unmanned

aerial vehicles and wireless sensor networks, one in assisted living, one in wearable

devices, and the last one in structural health monitoring.

Data Analysis. I transcribed the interviews and then used the same method-

ologies as I did for the on-line survey.

2http://goo.gl/5vwvPf
3Two interviews were done over Skype; the remainder were in person

15

2.3 Literature Review

In my literature review, I focus on breadth of coverage, providing exem-

plars in the wide variety of applicable areas, including formal methods, model- and

simulation-based testing, runtime verification, and multiple practical tools. I also

look briefly at social and cultural factors that have a non-trivial impact on the

adoption of these techniques.

Formal Methods. Static analysis is used to efficiently compute approx-

imate but sound guarantees about the behavior of a program without executing

it [60]. Abstract interpretation relates abstract analysis to program execution [51]

and can be used to compute invariants [6,16,28,46,59,77,93,132]; these approaches

have been applied in CPS, including in avionic and embedded systems [30] and for

remote space rovers [60]. In general, the efficiency and quality of static analysis tools

have reached a level where they can be practically useful in locating bugs that are

otherwise hard to detect via testing. However, for mission-critical CPS applications

(which may contain millions of lines of code that interact in complex ways with a

physical world), existing tools do not scale well and tend to introduce many false

positives [64].

Theorem proving has been applied in deductive verification [114,115], where

validity of the verification conditions are determined, and in generating invariants for

runtime assertions [92]. Theorem provers have also been used for verifying hybrid

systems [1, 29]. Isabelle/HOL [141] has been used to formally verify the kernel

piece of seL4 [103], which is the foundation OS for a highly secure military CPS

application. This work shows that, with careful design, a (critical component of a)

16

complex CPS can be formally verified by the state of art theorem prover. However,

the requirement for human intervention and high costs (the total effort for proof

was about 20 person-years, and kernel changes require 1.5-6 person-years to re-

verify [102]) makes applying theorem proving impossible for general-purpose CPS

applications, which may contain millions of lines of code [150] and require much

quicker (and less expensive) changes.

The verification world is also rife with highly capable model checkers [57,109],

including those that handle real-time constraints [181], parametric constraints [83],

stochastic effects [89], and asynchronous concurrency [70], all of which are common

in CPS. Model abstraction and reduction can make analysis more tractable (and thus

more applicable to CPS) [49,78,179], however, error bounds are usually unquantified,

which makes the verification unsafe. While model checking allows verification to be

fully automated, in addition to issues such as state-explosion, complexity in property

specification, and inevitable loss of representativeness [15], CPS exhibit bugs that

crop up only at run-time based on the physical state of the deployment world;

such bugs cannot be captured by model checking alone. In hybrid systems, online

model- checking has received some attention, investigating, for example the potential

behavior of a system over some short-term (time-bounded) future. Such approaches

have been applied to checking medical device applications [40], where the findings

have motivated further investigation into adaptations of model checking targeted

for CPS-like domains.

It is exceedingly difficult to prove properties of CPS automatically because

of the disconnect between formal techniques for the cyber and well-established engi-

17

neering techniques for the physical [48,149]. This disconnect is the root of Belief VIII

in Table 2.1. Further, the large scale of CPS applications pushes scalability require-

ments well beyond the capabilities of existing tools. Though significant progress has

been made in formal verification that has the potential to change this landscape

for CPS, without support from other approaches, including run-time verification

(which is much less constrained by scalability issues) [25], formal methods alone

are not enough to tackle the challenges in CPS verification and validation [47,111].

These positions from the literature are the root of Belief V in Table 2.1; my sur-

vey and interviews will try to further identify uses and challenges associated with

real-world CPS developers applying formal techniques.

Run-Time Verification. In run-time verification, correctness properties

specify all admissible executions using extended regular expressions, trace matches,

and others formalisms [25]. Temporal logics, especially variants of LTL [152] are

popular in runtime verification. However, basic temporal logics do not capture non-

functional specifications that are essential in CPS (e.g., timeouts and latency) and

lack capabilities to deal with the stochastic nature of many CPS applications [75,153,

164]. In [174], a monitor is created for hybrid systems and a monitorability theorem

is provided. However, there is little discussion of whether the monitor will impact

the system’s functional and non-functional behaviors. In [104], an efficient runtime

assertion checking monitor is proposed for memory monitoring of C programs. This

non-invasive monitoring is well suited to mission- critical and time-critical CPS

applications. In summary, the state of art in run-time verification can potentially

provide a great supplement for formal methods and traditional testing in CPS.

18

However many opportunities remain to make run-time verification more suitable

to the idiosyncrasies of CPS and approachable to CPS developers. For instance,

aspect-oriented monitoring tools [42] are less intrusive, and their adaptation to CPS

run-time verification may prove more approachable for developers.

Model-Based Approaches. In this category, I include model-based test-

ing [180] and model-driven development (MDD), which both use models to auto-

matically generate code. I include simulation tools (e.g., [32, 63, 122]) since they

rely on models to evaluate executions of programs. Modeling real-time components

has been decomposed into behaviors, their interactions, and priorities on them; rea-

soning can then occur layer by layer [23, 172]. In general, such approaches allow

the verification of all system layers from the correctness proof of the lower layers

(i.e., gate-level) to the verification procedure for distributed applications; such an

approach has been used to verify automotive systems, a key exemplar of CPS [35].

The practicality and costs of development associated with these approaches are still

unknown.

While there are many computational and network simulators that many soft-

ware engineers may be familiar with, in the CPS domain, the most relevant system

is Simulink, which is widely deployed in the automotive industry and other mission

critical domains (e.g., avionic applications [81]). As explored further in my on-line

survey and interviews, simulation based approaches lack sufficient expressiveness

to serve as an end-to-end solution and the truthfulness of the behavior is often in

question [112]. When system verification has relied exclusively on simulation, the

verification has failed to identify key failure points [133]; in addressing Belief VI from

19

Table 2.1 in my survey and interviews, I seek to identify situations when real-world

CPS developers rely on simulation and when it falls short.

Model-based approaches are gaining momentum, and it seems inevitable

that approaches will emerge that can be applied to general purpose CPS. For now,

the high learning curve associated with creating the models, the costs of developing

them, and scalability remain major hurdles to wide adoption.

Testing and Debugging Tools. Though sensor networks and CPS are

not exactly the same, several tools exist to support testing and debugging deployed

wireless sensor networks, which provides insight into directions and challenges for

CPS. Passive distributed assertions [163] allow programmers to specify assertions

that are preprocessed to generate instrumented code that passively transmits rele-

vant messages as the assertions are checked. Dustminer [101] collects system logs

to look for sequences of events responsible for faulty interactions among sensors.

Clairvoyant [188] uses a debugger on each sensor node to instrument the binary

code to enable GDB-like debugging behavior. MDB [177] provides the same style

of behavior for macroprograms specified at the network level (instead of the node

level). Envirolog [125] records all events labeled with programmer-provided anno-

tations, allowing an entire execution trace to be replayed. Declarative tracepoints

allow the programmer to insert checkpoints for specified conditions that occur at

runtime. Sympathy [158] collects and analyzes a set of minimal metrics at a cen-

tralized sink node to enable fault localization across the distributed nodes. Finally,

KleeNet [166] uses symbolic execution to generate distributed execution paths and

cover low- probability corner-case situations. In summary, these tools and algo-

20

rithms can tackle various similar issues in CPS; an immediate effort to adapt them

more specifically to CPS would be one that directly accounts for the physical world

with continuous dynamics.

Cultural and Social Concerns. To improve the state of art and prac-

tice of developing and debugging cyber-physical systems, it is essential to have a

robust, scalable and integrated toolset that not only provides accessible approaches

for verification and validation but approaches that are also more willingly adopted

by practitioners. The major cultural and social impediments include lack of funding

and lack of priority [5], which are not related to technical aspects at all. Apart from

commonly known false positives, the reasons developers do not use static analysis

tools have been documented as developers’ overload [97], while mandate from su-

pervisors, the (in)ability to find knowledgeable people, and code ownership all play a

role in how bugs are fixed [136].

In many of the approaches I reviewed, even when the CPS developers at-

tempted to provide significant rigor to verification and validation tasks, they almost

always had to fall back on a “trial and error” approach, which results in a more

ad hoc approach to verifying the system [137]. In addressing Belief VII from Ta-

ble 2.1, my survey and interviews seek to uncover how pervasive trial and error is

among real-world CPS developers. In correlation with Belief I, I are also interested

in whether real-world CPS developers are classically trained software engineers who

are aware of more formal methods or whether they are “outsiders” who simply

default to ad hoc methods.

21

2.4 The on-line survey

My on-line survey consisted of 32 multiple choice and free answer questions

designed to (1) understand participants’ definitions of CPS; (2) determine partici-

pants’ familiarity with existing techniques for verification and validation, and how

they are applied to CPS; and (3) to collect information about the main challenges in

verification and validation of CPS, from an “in the trenches” perspective. Table 2.2

shows an abbreviated version of the survey. The specific questions were driven by my

literature review, which also helped elicit the strongly held beliefs in Table 2.1. The

questions were crafted to help confirm or dispel each of these beliefs. my approach

in the survey was intentional. I began by generating definitions of both cyber- phys-

ical systems and of verification and validation. I then built on this foundation to

determine, in detail, the experts’ various approaches to and perceptions of the wide

array of CPS verification and validation techniques.

2.4.1 Background and Definitions

Among CPS developers, there are strong opinions about appropriate pro-

gramming languages. The programming language greatly influences the verification

tools and techniques that can be applied; while some techniques apply at the de-

sign level and are thus more general purpose, others apply at the language level.

The responses to the question “What programming languages are you fa-

miliar with?” mirror surveys of programming language adoption in general (with

C/C++ and Java taking the top spots, and Python a close third). Only one of my

respondents was familiar with nesC, the programming language for TinyOS sensor

22

Table 2.2: Summary of Survey Questions (abbreviated; see
https://www.surveymonkey.com/s/MP7HP7W for complete survey)

Background

What are your primary application domains of expertise (multiple choice)?
What are your primary roles (multiple choice)?
How many years of cyber-physical systems development experience do you have?
What programming languages have you used in developing CPS applications?
(multiple choice)

Definition

What are the differences between CPS and embedded systems? (free text)
How do you define verification and validation (in general) (free text)?

Perceptions

Please rate agreement or disagreement (Strongly Agree, Agree, Neutral, Dis-
agree, Strongly Disagree)

- Simulation alone is sufficient for verification and validation of CPS.

- Formal methods for verification and validation of CPS is not tractable with
respect to resources and time.

- The state of the art of verification and validation of CPS involves repeatedly
rerunning the system in a “live” deployment, observing its behavior, and
tweaking the implementation (both hardware and software) to achieve the
stated requirements.

Experience

What percentage of your work is devoted to verification and validation?
How do you think code inspection can help with verification and validation?
(free text)
What testing methodologies do you employ during verification and validation
of CPS? (multiple choice)
What model checker(s) do you employ during verification and validation of
CPS? (multiple choice)
What simulation tools have you used? (multiple choice)
Have you written assertions to aid in verification and validation of CPS?

network platforms. This is interesting given that many CPS experts purportedly be-

lieve that high-level programming languages are not appropriate for cyber-physical

23

style systems [72,182].

A subsequent question broached this question directly, when I asked partici-

pants to rate their agreement with, “A programming language like Java is not

applicable to systems with hard real-time constraints.” Figure 2.1 shows the

results; I were surprised by the implication that many of the surveyed CPS experts

found Java to be reasonably appropriate for CPS development (50% of self-classified

developers, referred as developers, selected disagree/strong disagree, 30% selected

neutral). Consider other Java dialects such as RT-Java or Java Embedded, or Java

ME, that are designed specifically for developing real-time or embedded applica-

tions, this further counters the colloquial claim expressed as Belief III in Table 2.1

that high-level languages are not appropriate to CPS development, which has a po-

tential rippling effect on future research directions. In my interviews, I found even

stronger evidence for these findings (Section 2.5).

Figure 2.1: “A programming language like Java is not applicable to systems with hard
real-time constraints.”

I also asked the participants to express definitions of both cyber-physical

24

systems and verification and validation in their own words. This is important in

setting a foundation for the remainder of the survey responses. When I asked,

“In your opinion, what are the main differences between cyber-physical

systems and conventional embedded systems,” most respondents’ answers

identified commonly cited key distinctions; the following responses were typical:

“embedded systems were mostly focused on software/hardware interacting with low

level sensing and real-time control. CPS includes embedded systems but also net-

works, security, privacy, cloud computing, and even big data.”

“CPSs tend to focus more on the interplay between physical and virtual worlds,

and the kind of applications possible with the observation (and modification) of the

physical world done through devices embedded in the environment.”

While the above gets at participants’ individual definitions of CPS (which

largely converge), I also wanted to understand CPS developers’ perspectives on

verification and validation. In response to “How do you define verification

and validation,” over half of the participants gave something quite similar to

commonly accepted definitions (i.e., that verification establishes how well a software

product matches its specification, while validation establishes how well that software

product achieves the actual goal [33]). Many other respondents (30% developers

with incorrect answers) failed to correctly express the concepts. Intuitively, these

results motivate the creation of easy-to-use tools and better education that enable

even CPS developers without a rigorous software engineering background to develop

robust systems.

25

2.4.2 Perceptions

One of the primary goals of this survey is to uncover the veracity of the beliefs

in Table 2.1. I phrased several of these sometimes controversial points as questions

about “perceptions” associated with CPS development. I asked the participants to

rate their level of agreement (or disagreement) with the statements using a five-point

Likert scale.

It is often stated (and even empirically demonstrated [133]) that simula-

tion does not sufficiently match a system’s behavior in the real world. I asked

my participants to rate their agreement with “The use of simulation alone is

sufficient for supporting verification and validation of cyber-physical sys-

tems.” Given the variety of backgrounds among my participants, this question

has the potential to tease out a potential dichotomy among CPS developers with

different backgrounds. In fact, all but one of the survey respondents selected ei-

ther “Disagree” or “Strongly disagree.” The one respondent who selected “Strongly

Agree” was also one of the four survey respondents who gave their primary area of

expertise as “Civil Engineering/Mechanical Engineering/Other Engineering,” where

models are more traditionally accepted as complete representations of the system.

Another commonly held belief (Belief V in Table 2.1) is that formal ap-

proaches have too high of an overhead to be practically applied in CPS [178]. When

I asked the participants to rate “The use of formal methods for verification

and validation of cyber-physical systems is not tractable with respect to

resources and time,” the diversity of answers was surprising, as was the apparent

support for at least limited use of formal methods for CPS. Figure 2.2 shows the

26

Figure 2.2: “The use of formal methods for verification and validation of cyber-physical
systems is not tractable with respect to resources and time.”

distribution of responses (40% developers were in favor and 30% selected neutral).

CPS developers will widely claim that the most common approach to debug-

ging CPS requires a significant amount of “trial and error” [137,156] (Belief VII in

Table 2.1). To evaluate this claim, I asked the participants’ opinions regarding “The

current state of the art of verification and validation of cyber-physical

systems involves repeatedly rerunning the system in a ’live’ deployment,

observing its behavior, and subsequently tweaking the implementation

(both hardware and software) to adjust the system’s behavior to achieve

the stated requirement.” 91.3% of the participants expressed either “Strongly

Agree or Agree.” The current “trial and error” processes are neither rigorous nor

repeatable, but the extensive amount of in situ debugging that these responses

demonstrate motivates better support for approaches to verification and validation

that function “in the wild.”

My literature review found that approaches to CPS verification and valida-

27

tion tend to focus either on computational models or on models of physics. Rarely

do the two converge. In attempting to address Belief VIII from Table 2.1, the

next question in my survey attempted to ascertain whether this is intentional or

accidental. I asked the participants to rate their agreement with “A lack of for-

mal connection to models of physics is a key gap in the verification and

validation of cyber-physical systems.” I found that 69.6% of the respondents

(and 60% of the respondents who also self-identified as CPS developers) selected

either “Strongly Agree” or “Agree,” while 26.1% (30% of the CPS developers) were

“Neutral.” This is corroborated by a second question, in which I asked the respon-

dents whether they agreed with the statement, “Since CPS has both cyber and

physical parts, any approach for verification and validation would need

to allow an engineer to, in some way, examine both parts at the same

time,” to which only 27.3% of the respondents selected “Disagree” or “Strongly

Disagree.” These two results in conjunction indicate a need for more expressive and

integrated models that cross the cyber and physical worlds.

2.4.3 Experiences

The third section of my survey queried the participants about their use of

verification and validation techniques, most specifically applied to CPS. As Fig-

ure 2.3 shows, more than 60% of the participants spent between 30-60% of the

system’s development time on debugging; more than 20% of the respondents spent

more time than that. Clearly, debugging CPS is expensive and time consuming.

Only about half of the participants indicated that they employed code in-

28

Figure 2.3: Project time spent in debugging

spection. Of the respondents who did not use code inspection, the majority found it

to be “not relevant.” While code inspection is not universally used, it is believed by

some developers to provide an important and useful tool to improving code quality

and code understanding, which is known to lead to less error-prone implementa-

tions [175]. While this motivates better tool support for code inspection of CPS, it

is not a clear significant concern of active CPS developers.

I received an evenly balanced response to ”Have you used systematic

testing to aid in verification and validation?” Participants who responded

affirmatively reported improvement of code coverage, systematic review, and iden-

tification of corner cases as benefits. Respondents who have not used systematic

testing gave standard reasons, including a “lack of time and deep familiarity” and

“no easily available tools.” Generally, CPS developers are not universally familiar

with traditional systematic testing tools. Though systematic testing is well estab-

lished in more general purpose software engineering domains, there are research

29

challenges in bridging the gap between existing techniques and CPS development.

When I asked “Have you used formal methods (e.g., model checking)

to aid in verification and validation?” the majority replied affirmatively. When

I followed up with the participants who had employed formal methods about the

advantages, they cited inferring useful patterns, complete testing, finding corner

cases, and verifying key components. Some participants even reported a sense that

model checking was becoming increasingly practical for real systems. Those who

did not use model checking said that it is (for example):

“overly complicated for most purposes; most bugs arise from time dependent inter-

actions with physical systems.”

“not applicable to my domain; demanding and unreliable.”

When I asked “What specific model checker(s) do you employ?” par-

ticipants reported high usage of Spin [90] (53.85%), NuSMV [45] (46.15%), and

UPPAAL [109] (46.15%)), as shown in Figure 2.4. There was also substantially

high use of other (mostly domain-specific) model checkers.

From the free form responses, I noticed that participants gravitate towards

general purpose model checkers for very small, very specific pieces of their systems.

These model checkers do not enable combined reasoning about the cyber and phys-

ical portions of the systems, which is critical to complete and correct verification of

CPS.

The responses to “Have you used simulation to aid in verification and

validation?” were overwhelmingly positive; only one participant said “no.” Par-

30

Figure 2.4: Model checkers used

ticipants reported using simulation to understand the system, prototype behavior,

refine specifications, explore configurations, and minimize test effort:

“can provide some preliminary confidence of the system”

“can help refine the specification and validate the system”

“allows assumptions made in modeling to be cross-validated against another source

of ground truth”

“helps save and focus testing effort.”

One participant noted, “modeling and simulation only goes so far. No one

ever found oil by drilling through a map on a table.” The one participant who did

not rely on simulation stated that, “Good enough simulation does not exist.” Par-

ticipants reported high usage of Simulink (61.1%) and proprietary tools (77.8%), as

shown in Figure 2.5. The remarkably high use of in-house simulation is concern-

ing because it naturally limits reproducibility and generalizability and implies that

31

developers find that simulation tools in general are not sufficient.

Figure 2.5: Simulation tools used

A common approach to debugging at the source level is to augment a pro-

gram with assertions that provide checkpoints on the program’s state throughout

its execution. When I asked the participants about their use of assertions in CPS,

the vast majority (more than 70%) had used them. The respondents used assertions

primarily for bug detection and writing formal specifications, and, to a slightly lesser

extent, to document assumptions. The participants stated that the use of assertions:

“[provides] formal documentation [and] explicitly states otherwise implicit assump-

tions, enabling to detect errors sooner and have a better indication of where a

problem stems from”

“forces developer to write down (basically as part of the code) the expectation for

correct behavior [with] the bonus of being able to ‘execute’ the assertion.”

32

The two main reasons cited for not having used assertions in CPS devel-

opment were concerns about performance and the difficulty in tracing assertions in

deployed systems. In general, these results bolster my hypothesis that assertions are

a useful means to verify and validate CPS; future research that tailors assertions to

particular challenges of CPS (e.g., distribution and physical aspects) may ameliorate

some of the concerns.

Finally, I asked my participants’ perceptions of open challenges in verifica-

tion and validation of CPS. Almost 50% reported issues with physics models, more

than a quarter cited scalability, and nearly a quarter reported issues with a lack

of systematic verification and validation methods. Figure 2.6 reports the complete

results. Example statements include:

“CPS models are fragile. I need verification and validation methods that scale with

the complexity of the model and are robust to slight variations of the model.”

“Time plays a critical role and is misunderstood.”

“Impossible to fully understand environment dynamics.”

The survey results indicate models of software systems, models of physics,

and the integration of the two are major bottlenecks in verification and validation

of CPS. Scalability of existing techniques and a lack of a capability of directly

verifying CPS code from simulation motivate new, tailored approaches that build

on and complement the current state of the practice. Before exploring these research

challenges, I look at individual interviews with CPS developers.

33

Figure 2.6: Main research challenges

2.5 Interview

The final piece of study is a set of in depth interviews with CPS developers

in charge of real-world CPS systems, most of which are mission critical ones (e.g.,

medical device and bridge structural health monitoring). I was somewhat surprised

to find that my survey respondents were not completely against using high-level

programming languages like Java to build CPS. The interviews corroborated the

survey results and, in fact, highlighted high-level languages that are popular among

the CPS developers I interviewed. Specifically, typical responses from my intervie-

wees in response to the discussion question “What are the main programming

languages you used in developing CPS applications?” were:

“For the high level, mostly it is Python. Low level is C and C++. In the middle

34

is Java.”

“For wireless sensor networks, mainly C, nesC; for aerial drones, mainly C++,

Java. I also extended C++, C, and Java with high level abstractions for specific

needs.”

“Algorithms developed in MatLab for modeling and off-line validation; C++ and

Java are written on Android phones to reproduce codes in Matlab”

“The sensor [. . .] software was mainly written in C and C++. The [server software]

shown to end users with a web based system was written in C++ and Ruby on

Rails.”

Quite simply, while “low-level” languages are still popular among CPS de-

velopers, high-level languages are also commonly used for CPS development.

I entered my studies with the perception that CPS developers are hampered

by severe resource constraints in their deployment environments. My analysis of the

survey results hinted that this might not be the case. In my one-on-one interviews,

I discussed the actuality of the resource constraints of the interviewees’ target plat-

forms and their perceived impact of those constraints on the debugging task. The

interview results indicate that CPS developers do not always perceive their target

platforms to be resource constrained. Further, the CPS developers I interviewed

did not perceive any resource constraints the platforms may have to be a significant

impediment to development and debugging:

“The computation platform is not resource constrained.”

35

“We don’t have concerns of resources in general. However, to me, wireless sen-

sor networks are a specific type of CPS, the device nodes are for sure resource

constrained. But for other types of CPS applications, it might not be the case.”

This is an important finding in the sense that techniques for supporting

development tasks for CPS (including those for verification and validation) often

have a quite significant focus on resource constraints; these efforts may, in fact, be

misplaced or at least over-emphasized.

I know from my experience and from the literature that simulation is com-

monly used in verification and validation in CPS. However, many researchers and

practitioners discount the value of simulation. During my interviews, I asked the

interviewees about the simulation tools they use and their perception of the pros

and cons of using simulation. The following are some samples of the resulting dis-

cussions:

“These simulations are not very truthful. We used an in-house hybrid simulation

tool, [but] even with this in-house simulation, we need real testing as the risk is too

big for any undetected errors in autonomous vehicles.”

“I am not happy with [. . .] simulation tools as they are not accurate enough; they

give you a basic sense of how the system would work, but actually making the

simulation work requires [too much effort] to tune parameters.”

“We used simulation but what you can test through simulation is only a very small

fraction of the problems which can potentially come out when you deploy the sys-

tem.”

36

A common theme was the revelation that the primary simulation tools used

were in-house simulators. Further, though from my interviews, I noticed that simu-

lation is increasingly likely to be used primarily only in the earlier stages of design

to give a rough view of the system and its behavior.

Concerns about the applicability of model checking to CPS appeared to crop

up in my survey; my interviews delved deeper into the use of model checkers by my

interview subjects. The responses I received to the question “How do you use

model checkers in verifying and validating CPS applications?” indicate that

model checkers enjoy only a limited use by in-the-field CPS practitioners, usually

employed to check only small pieces of the larger system:

“We use a very simplistic model for partial ordered sets and use Spin to check it.”

“We would like to transform our questions into timed automata and feed the input

into UPPAAL. But the model checking suffers from space explosion, and we have

to restrict our input to very small set. It is not that useful [. . .] model checking

[does not] fit our needs.”

The interviewees’ comments related to model checking further indicated a desire

supplant model checking with more robust run-time verification that is both “on-

line” and “incremental.”

I asked, generally, “How do you test CPS applications?” Across the

board, the responses validated our view that trial and error is currently the most

prevalent approach:

37

“We use simulation and trial and error to observe errors.”

“Mainly visual observation, look at what robots are doing, take videos and sensor

data. Basically it is trial and error.”

“Test software isolated from sensors and controller, then use trial and error to

visually observe what is going on.”

“Visual observation. We collect traces and print out sensor values. We manually

read the traces. It is trial and error.”

“We use ground truth and testing to compare results.”

“We mainly use automated formal verification and some code review for the kernel

part.”

“We used volunteers to collect real data and applied them to MatLab models. The

real test is done on real patients. Trial and error. Ground truth is provided by

nurses and cameras.”

The majority of our survey respondents identified a lack of formal connection

to models of physics as a key concern. I explored this gap more in the interviews

by asking the subjects about the software and physics models they employ. I was

surprised to find that CPS developers tend not to deeply consider (formal) models

of physical systems during development. They also found available software models

inadequate. Some examples of their responses include:

“The environment is not ideal, we created static physics models to handle noise.

The models are still immature and fixed. We need on-line learning models.”

38

“We used physics models of motors [and a] flow dynamics model. We use these

models to determine what forces to counteract using actuation.”

“We mainly used distribution models (e.g., partial order models, lattice models) to

detect global [correctness] predicates. We abstract away the physics model.”

Recent emerging work has demonstrated the use of model-driven develop-

ment to automatically generate CPS software from heavily validated models [95,148].

My interviews attempted to ascertain a practitioner’s view on the use of these ap-

proaches. Model-driven development, though having a quite lengthy history, is far

from mature, especially with respect to CPS. Some examples of my interviewees’

responses include:

“For simple problems, model-driven development might be possible. But for complex

problems, [. . .] model-driven development is not very realistic.”

“I am not optimistic about this approach. To create models that are very accurate

takes too long, which is not useful.”

“There is a significant gap between the perceived environment and the modeled

environment. [You risk] building a model more complex than the traditional pro-

gramming task.”

I also asked my subjects, “How have you used assertions? What im-

provement you like to see for the use of assertions in CPS?” My results

confirm my intuition that assertions are a reasonable approach to debugging CPS,

but that to make them even more appealing, especially to domain experts, an as-

39

sertion framework should be complemented by CPS-specific features (e.g., temporal

and physics aspects).

“We used assertions to assert the effects of actuation, mainly used for debugging.

We actually need to debug assertions, as assertion happens too quickly and it fails

to observe the effects of actuation. In CPS, actuation latency is not taken care of

by traditional assertions.”

“I used assertions to figure out errors. Since I could not step through code since

the interaction with the physics, I find assertions is very useful in this regard.”

Finally, to explore my subjects’ opinions on future research directions for

CPS development and debugging, I ask open-ended questions, “What are your

ideal testing tools for CPS that are not currently available?” The inter-

view subjects described a need for integrated simulation tools, more accessible yet

expressive modeling languages, and debugging tools that give programmers greater

visibility into the entire system’s behavior (both cyber and physical) and better

fault localization. The following are direct quotes:

“high-fidelity simulation with on-line learning of models.”

“accurate run-time models of physics and software models to use for off-line devel-

opment.”

“tools that can reproduce bugs.We could throw random errors into the model to

check how the system reacts. It is also ideal to have multi-domain models for

motors, mechanical systems (for integrated simulation).”

40

“[techniques for] formally specifying behaviors, automating fault localization by

specifying a syndrome (e.g., a pattern).”

“Theorem proving requires too many human intervention, any more automation

can help.”

“There are automated code generation from Matlab models to C++ and Java ready

for smart phones. Integration tests have to be done manually; it would be good to

have integration test in simulation for heterogeneous models.”

“Need a formal specification language for better clarification. Integration test can

not be automated between client and server side. [Sensor] node developers and

server developers have to manually collaborate for testing.”

2.6 Future Research Directions

From my literature review, survey, and interviews, I have collected a set of

potential research directions that have the potential to move CPS debugging into a

world where the techniques are more rigorous and repeatable than the ad hoc testing

that is the current state of the practice.

Formal Methods. To analyze continuous aspects of CPS, higher-order-

logic automatic theorem provers [80] have been employed. Reducing the enormous

amount of user intervention required is a key research challenge. Further, these ap-

proaches need to be made more expressive to capture the heterogeneity of CPS. As

a future direction, a generic prover supporting other forms of differential equations

(i.e., non-homogeneous) is highly desired. Theorem proving can also be supple-

mented by static timing analysis to perform program flow analysis, making tradi-

41

tional theorem proving more tenable. Future research in static analysis must deal

with the challenges imposed by complex hardware (e.g., multicore platforms with

caches) [38]. As for model checking, it would be ideal to have an integrated plat-

form to combine model checkers; for instance, CPS systems could benefit from a

combination of a stochastic model checker [48] with KRONOS [57] to explore both

stochastic and real-time features of CPS.

Simulation. From my on-line surveys and interviews, a simulation approach

that explicitly integrates the cyber and the physical is required. Such co-simulation

has begun to be explored, for instance, to combine the network simulator ns-2 [173]

with Modelica [63] to simulate industrial automation and a power grid [3]. As a

step further, CPS developers would benefit from a flexible framework for moving

between full simulation (co-simulation) and a full testing environment, allowing

aspects of the simulation to be incrementally replaced by physical devices and other

characteristics of the real deployment environment. This framework requires an

environment in which models and physical devices can “talk” the same language,

making the transition from one to the other transparent to the CPS developer and

his debugging task.

Run-time verification. Temporal logics are often used to specify correct

system behaviors and used to generate run-time monitors for CPS. However, there

are no existing algorithms to generate monitors from Metric Temporal Logic [105,

128,145]. Combined with the promise that run-time assertions demonstrated in my

studies, I expect that a run-time assertion checking framework [193] that captures

the essence in MTL (e.g., specifying latency) combined with a high-level model-

42

ing language similar to Java Modeling Language [110] would be more accessible to

developers in annotating CPS programs. Such automatically generated monitors

would enable CPS validation at run-time in a non-intrusive manner with respect to

functional and non-functional behaviors of the CPS applications under study. In

general, I should promote solutions that do not interfere with the developer’s pro-

cess (see existing testing methods, for instance). Because the physical world is an

essential component of CPS, that means successful approaches will likely function

“in the wild.”

2.7 Threats to Validity

Internal validity. I made some assumptions in some of the findings in

Sections 2.4 and 2.5. For instance, from the reported high ratio of in-house simu-

lation, I draw a conclusion that general purpose simulation tools are not sufficient.

There might be other confounding variables that result in the high ratio of in-house

simulation, for instance participants might have no access to the general purpose

simulation tools due to license issues. The on-line survey’s lack of interaction re-

stricted us from ruling out those confounding variables. To mitigate these issues, I

used the literature survey and interviews to corroborate my findings. When analyz-

ing interviews and free text answers, I chose to use a phenomenological approach

instead of grounded theory [53] because I wanted to attempt to study the process

of CPS verification and validation and not the agents of the process (i.e., the de-

velopers themselves) [127]. Grounded theory is also particularly useful if existing

theories about the process do not exist [54], which, given my deep literature sur-

43

vey, is clearly not the case here. In analyzing my results, I draw usage conclusions

from perceptions about the use (e.g., familiarity with a programming language is

indicative of the use of the programming language); again conclusions from the sur-

vey were substantively corroborated by the interviews. In my survey, 41% of the

CPS researchers also classified themselves as developers. I did not always distin-

guish results between researchers and these self-classified developers. However, for

any questions with significant differences (i.e., the question about the use of formal

methods), I did explore these potential two communities for their comparability.

My interviews focused more on practicing CPS developers.

Construct validity. The categories in the literature review and questions

in my survey and interviews may neglect important aspects, which may consequently

cause us to overlook key issues in verification and validation of CPS. To mitigate

this, I carried out an even more in-depth literature study than is reported here; this

study covers hundreds of research papers across relevant domains and publication

venues. This coverage mitigates the concern that I missed a significant question

for my survey or interview. Another construct validity issue lies in the number of

participants in the on-line survey (25) and interviews (9). I did successfully reach

a wide cross-section of disciplines and cultures, including both researchers (survey)

and practitioners (interviews) across the world.

External validity. The participants in the interview are (necessarily) from

a limited set of domains. These interviews do not include CPS practitioners from

many interesting CPS fields like smart energy grids, and smart cities. The conclu-

sions drawn from the interviews may not be applicable to these domains. To mitigate

44

these issue, I did hand pick practitioners across four continents who are directly in-

volved with developing and deploying real (a few large scale) CPS applications from

a wide range of subfields.

2.8 Research Contributions

In this chapter, I made the following contribution:

Research Contribution 1: Conduct a comprehensive investigation on the state

of the art in CPS verification and validation through exhaustive literature review,

structured on-line surveys, and interviews. The results lay a solid theoretical foun-

dation and create strong motivation for the rest of the works.

2.9 Chapter Summary

I generated an overall picture of the state of the art and state of the practice

of verification and validation in cyber-physical systems through a broad literature

survey, an on-line survey of CPS researchers, and qualitative interviews of CPS

practitioners. I focused my investigation around a set of strongly held beliefs as-

sociated with the development of CPS. The results for the first two beliefs were

mixed: while some CPS developers are deeply familiar with classical software en-

gineering approaches, many are not and even those that are familiar do not apply

these techniques generally to CPS. I dispelled the second two beliefs: in fact, high-

level programming languages are used by CPS developer experts, and these same

experts are not overly hindered by resource constraints. I confirmed that existing

formal method techniques and simulation are, as yet, insufficient for supporting the

45

development of entire general-purpose CPS. I also confirmed strongly that the cur-

rent state of the practice in CPS verification and validation remains an ad hoc trial

and error process. Finally, I confirmed that there are still significant gaps between

the formal models of computing and the formal models of physics that underpin

today’s CPS systems. This investigation has elicited a set of research directions

that have the potential to directly address challenges that real CPS developers cited

in the experiences in developing and debugging real-world CPS.

46

Chapter 3

BraceForce: A Middleware to Integrate Sensing in CPS
Applications

From the survey, I chose to work on the most pertinent research direction

proposed, which is to provide a practical and physically informed runtime verifica-

tion tool-sets specifically designed for CPS as a sound foundation to the trial and

error practice identified as the state of the art in verifying and validating CPS.

However, runtime verification of CPS requires use of sensor networks in different de-

bugging and deployment environment, and our ability to seamlessly and efficiently

incorporate sensor network capabilities remains astoundingly difficult. Today, ac-

cessing remote sensing data and integrating this data into the adaptive behavior of a

dynamic user-facing CPS application requires interacting with multiple sensor plat-

form languages, data formats, and communication channels and paradigms. In this

chapter, I present BraceForce, an open and extensible middleware that allows de-

velopers to access the myriad remote sensing capabilities inherent to cyber-physical

systems using very minimal code. Further, BraceForce incorporates event- and

model-driven data acquisition as first-class concepts to provide efficient access to

sensing while retaining expressiveness and flexibility for applications. This chap-

ter presents the BraceForce middleware architecture and key abstractions, describes

their implementations, and provides an empirical study using BraceForce to support

47

CPS applications. More relevantly, BraceForce serves as a supporting infrastructure

for the entire tool-set by providing access to various sensors available in the debug-

ging environment [199,200].

3.1 Introduction

Developing and deploying CPS applications involves a large amount of low-

level programming that requires interacting with different (often proprietary) data

formats, languages, and operating systems. In practice, applications are built for

specific sensor network platforms with little potential for portability to other plat-

forms or integration with other sensors. Debugging CPS applications that inherently

integrate with a physical environment requires not only the aforementioned integra-

tion of the application with sensing but also the use of a testing harness that, at

debugging time, accesses sensed data about the physical environment for the pur-

poses of validating the actions of the application. Integrating sensing for application

and debugging support in a way that is easy, flexible, and portable is essential for

supporting CPS application development.

In general, research in this space has been focused on demonstrating the

feasibility of applications, the development of support services such as routing pro-

tocols or energy-saving algorithms, or on advancement of hardware platforms and

operating systems. Little focus has been applied to effective development support

for applications that integrate the capabilities of networked sensing platforms in

easy to use and extensible ways. In addition to the variety of data formats, com-

munication technologies, and programming platforms a developer must tackle, CPS

48

applications also require handling network dynamics and energy constraints.

This chapter introduces BraceForce, a middleware for CPS application de-

velopment that simplifies the development, deployment, and debugging of CPS ap-

plications. In supporting application deployment, BraceForce allows the developer

to connect the application to sensing assets in the deployment environment. In

supporting application debugging, BraceForce can be used to monitor a test envi-

ronment using capabilities that may not be available in the deployment environment.

Architecturally, BraceForce defines functional tiers that encapsulate related aspects

but coordinate in such a way that the tiers’ deployment to particular physical as-

sets is flexible. Different tiers can be deployed on user-facing devices or on sensing

devices with limited capabilities, directly addressing and leveraging the specific ca-

pabilities and intentions of each device. BraceForce provides auto-discovery of new

sensing and computing assets, allowing easy integration of new capabilities into

existing applications or automatic and seamless extension of a debugging environ-

ment. As BraceForce discovers new components, the tiered architecture organically

extends to these new components, flexibly deploying the necessary tiers to the new

components.

Instead of using a proprietary programming language (e.g., nesC [71]), sup-

porting a single hardware platform (e.g., ODK [39]), or creating a new standard

(e.g., Dandelion [120] or DASH [56]), BraceForce presents a simple Java program-

ming interface for integrating new sensing capabilities. To add a new sensor to

BraceForce, a developer just needs to implement a simple sensor driver interface

that provides essential commands (e.g., open, close, query) and configuration. The

49

driver implementation can be specific to the particular sensor but basically trans-

lates raw data into meaningful BraceForce sensor data constructs, guided by the

provided BraceForce interfaces. BraceForce handles issues such as thread manage-

ment, networking, remote procedure call, etc.

BraceForce supports both the traditional pull and more flexible push based

interaction with sensing devices. Out of concern of energy-saving, BraceForce’s

default form of interaction is event-driven data acquisition, in which sensed data is

only pushed to an interested application on the occurrence of an event. Applications

specify thresholds on changes in sensed values that determine when new samples are

returned. Such an approach has been shown to dramatically reduce energy costs of

interacting with networked sensors. Existing approaches that support some integra-

tion of sensing capabilities with mobile application development [39] provide only

continuous sampling or instantaneous polling, which require the application to tune

the interaction with the sensing platform and therefore either expend extraneous

energy or miss important sensed value changes.

BraceForce embraces model-driven data acquisition (MDDA) [94, 138, 139,

162,187] to reduce energy costs of integrating sensing in CPS applications. MDDA

suppresses sensor readings that are predictable according to some a priori or learned

model. BraceForce supports (i) temporal models of data evolution based on previ-

ous sensor readings [162]; (ii) models based on underlying physics principles of the

sensed system [138]; (iii) models derived from applying data mining to prior sensed

data [94]; and (iv) models expressing correlations of data in space and time [187].

While the use of model-driven data acquisition is itself not novel to BraceForce,

50

what is new is how BraceForce integrates model-driven data acquisition in a general

purpose programming framework for acquiring and interacting with sensed data.

This chapter describes BraceForce, from its flexible architecture to a proto-

type implementation. I directly assess BraceForce’s ability to ease CPS application

development through an exploratory study of BraceForce applied to real CPS appli-

cations that rely on networked sensors. BraceForce provides a clear design contract

for integrating new sensors into existing applications. This chapter makes the con-

crete contributions in three areas:

1. Supporting CPS application developers and users

◦ BraceForce provides a simple and unified programming interface to reduce pro-

gramming barriers of CPS applications that integrate sensing.

◦ BraceForce’s tiered architecture enables dynamic updates to CPS applications

and their physical deployments without intervention by the users.

2. Supporting flexible and expressive CPS applications

◦ BraceForce can be deployed to heterogeneous devices in different configurations

to meet constraints of CPS applications and devices.

◦ BraceForce supports both pull- and push-based interaction with sensing devices.

◦ BraceForce embraces model-driven data acquisition to address energy concerns

of CPS applications.

3. Studying CPS application development

◦ I demonstrate and evaluate how BraceForce makes both the development pro-

cess more approachable and the resulting CPS application more efficient.

51

◦ I demonstrate that MDDA within BraceForce can significantly reduce the net-

work overhead, which in turn reduces energy consumption.

The next section places this chapter’s contributions in the context of related

work. In Section 3.3, I provide complete details of the BraceForce middleware. Sec-

tion 3.4 presents the empirical design for my evaluation, while Section 3.5 describes

its results.

3.2 Related work

BraceForce aims to make sensor programming transparent to CPS appli-

cation developers by explicitly and intentionally hiding low-level sensing concerns.

BraceForce provides CPS application developers dynamic deployment and automatic

discovery of networked sensors, distributed data caching and aggregation capabil-

ities, and presents the networked sensors through a combination of event-driven

and model-driven accessors, providing both flexibility for developers and efficiency

for the deployment. Existing approaches tackle similar and in some cases overlap-

ping concerns, but, to my knowledge, BraceForce is the first to provide transparent

support of CPS application development and debugging.

Sensor Platforms. Much work on sensor networks has focused on hardware

and software platforms to support increasingly sophisticated capabilities. TinyOS [85]

is an operating system for sensor networks that enables developers to use networked

sensors to solve distributed sensing, computational, and coordinating tasks. Its

focus has largely been on supporting increasingly complex and sophisticated ap-

plications at the expense of usability and flexibility [118]. The Robot Operating

52

System (ROS) [155] provides a component-oriented style of programming, in which

components communicate via publish/subscribe mechanisms and two-way service

calls, both using user-defined topics. However, ROS only supports a communica-

tion scale of one machine, and connection mechanisms are among ROS components

running on the same machine; CPS systems require coordination among distributed

components. ROS also comes with a non-trivial learning curve.

Arduino has gained wide popularity due to simplicity, high degrees of us-

ability, and the resultant enabling of rapid prototyping. While programming for

Arduino is more straightforward, programmers are still required to interact with

the Arduino at a very low-level of abstraction. This does not allow for flexible up-

dating and discovery of local sensing devices. The Android Sensor Framework [11]

provides a programming interface to access hardware and software sensing compo-

nents on Android. This framework is also limited in its abstract capabilities; the

developer is still entirely responsible for thread control and other essential concerns

for accessing sensors. Further, the Android Sensor Framework does not enable con-

necting to external sensors connected to the device via BlueTooth, USB or other

connectivity modes. Instead, the developer must use other libraries.

Integrating sensing in CPS applications requires high level abstractions to

provide automatic sensor discovery and flexible and efficient access to the sensor

data via event- and model-driven data acquisition. BraceForce unifies access to a

variety of sensor platforms and provides a flexible and expressive application pro-

gramming interface with high-level programming constructs tailored to networked

sensor integration.

53

Sensor Programming Frameworks. Easing programming of sensor net-

works has received significant attention. Maté [119], for example, is a tiny virtual

machine that allows developers to concisely express sensor programs and cause these

programs to be dynamically deployed. A virtual machine approach is very flexible,

but Maté comes with the cost of increased complexity due to the severe and unmiti-

gatable resource constraints of the target environment [84]. The mixed (and richer)

capabilities of the target CPS environment allow us to circumvent these resource

constraints using a distributed architecture. In addition, I can embed data-driven

techniques in my programming abstractions to make acquiring and integrating sen-

sor data a natural part of the programming task.

SensorWare [36] shares the resources of a single node among many appli-

cations. SensorWare’s primary abstractions have a network focus and are intuitive

for sensor and networking experts but do not promote data and data integration

for application developers. MiLAN [82] builds on networking and discovery pro-

tocols, using a plug-in mechanism to incorporate arbitrary protocols. Application

developers use QoS graphs to specify their sensing requirements, and MiLAN uses

this information along with the sensor network state to determine how to configure

the network and sensors to meet the provided requirements. This high-level data-

centric abstraction is the style I target in my middleware. I couple these abstractions

with automatic sensor discovery and a distributed architecture that, by its nature,

addresses the mixed resource constraints of my target environment.

Dandelion [120] supports developing wireless body sensor applications on

smartphones using a programming abstraction called a senselet, which abstracts

54

a device driver and allows applications to integrate data from that device through

remote method invocation. This abstraction is data-centric and provides a jumping-

off point for BraceForce’s abstractions, but Dandelion does not incorporate higher-

level programming constructs for aggregation, model-driven data acquisition, and

automatic sensor discovery and integration.

Perhaps most similar to my goals, Open Data Kit (ODK) Sensors [39] sim-

plifies deployment of smartphone applications that rely on data from a smartphone’s

external sensors (e.g., connected via USB and BlueTooth). The application logic

may rely on data from both on board and external sensors, and the sensor driver

developer implements specific driver interfaces for configuring sensors, packaging the

data they generate, and connecting that data into the Android framework. Interac-

tions with sensors are confined to pull-based acquisition with only locally connected

sensors. ODK Sensors is tightly integrated with Android, limiting its applicability.

I focus on easing the integration of distributed sensor data into CPS appli-

cations without limiting the expressiveness of sensing capabilities or over-utilizing

precious constrained resources. This demands not only automatic sensor discovery

and integration but also abstractions for acquiring sensor data in ways other than

through direct sensor polling.

Model Driven Data Acquisition. Model-driven data acquisition (MDDA)

can limit costly communication with networked sensors by suppressing polling and

notifications from the sensors except when the sensor readings deviate from some

pre-defined or learned model. Gupta et al. studied the problem of collecting spa-

tially correlated data in a wireless sensor network, based on the theory of dominating

55

sets [76]. Other work has focused on achieving data suppression using temporal and

spatial data correlation either by dividing the network into clusters [123], exploiting

domain knowledge regarding reasonable ranges of sensed values [186], or combin-

ing temporal and spatial correlations [187]. Other approaches use simple models of

sensed value trends to generate readings only when the sensed value deviates from

the model’s predicted value. Simple linear models are very effective [162], and the

approach can also be applied to in-network aggregation of raw values [61].

I am motivated to use similar techniques in BraceForce to suppress data

without sacrificing the quality of knowledge about the sensed entity. BraceForce

allows CPS developers to incorporate different models of MDDA both at the level

of individual sensors and at the level of an entire distributed application to handle

different deployment scenarios and meet specific energy requirements of CPS ap-

plications. I avoid approaches that demand a particular topological structure (e.g.,

designated clusters of nodes) to avoid unnecessary rigidity in a dynamic network of

supporting sensors and rely on simple models that have shown significant gains.

3.3 BraceForce

I first describe BraceForce from an abstract architectural perspective; I then

detail my prototype implementation.

3.3.1 BraceForce Abstract Architecture

BraceForce comprises five abstraction layers: the sensor driver layer, the

data layer, the distribution layer, the distributed data cache and aggregator layer,

56

and the CPS application layer. Fig. 3.1 shows one example BraceForce deployment

with these five layers.

3.3.1.1 BraceForce Layered Architecture.

Sensor Driver Layer. In the current state of the art, CPS application devel-

opers must understand low-level protocols and hardware-specific aspects of sensors

to be able to write sensor drivers. Moreover, the raw data from the sensor has no

open standard and often loses the original temporal information associated with the

sensor data retrieval. These issues demonstrate a gap between the low-level sens-

ing capabilities of both on-board and external sensors and the application space.

At BraceForce’s base, the sensor driver layer bridges this gap. The sensor driver

layer encapsulates functions related to interacting with a sensor, from configura-

tion, through starting, querying, reconfiguring, stopping, and cleaning up allocated

resources. The sensor driver layer requires driver developers to adhere to a design

contract enabling these common functionalities and unifying on-board and external

sensors into a shared data packet format that can be used throughout the remainder

of the BraceForce architecture. A driver developer creates the connection between

the sensor and the driver layer by defining how raw sensor data (e.g., in the form of

a binary array) is converted into a BraceForce sensor data response, which defines

an abstract data type unified across all sensor data. Each sensor data response maps

a data type (or types) to a value (or values) and associates a timestamp with the

data. This timestamp ensures that data used by higher layers is fresh within the

requirements of the application.

57

On#board)
Sensors)

External)
Sensors)

Sensor)Driver)Layer)

Data)Layer)
Model)driven)
)))))data)acquisi:on)

On#board)
Sensors)

External)
Sensors)

Sensor)Driver)Layer)

Data)Layer)

D2D)Discovery)Distribu:on)Layer) Distribu:on)Layer)

Distributed)Data))
Cache)and)Aggregator)

Model)driven)
)))))data)acquisi:on)

CPSApplica:on)Node)

Model)driven)
)))))data)acquisi:on)

Dr
iv
er
)

Dr
iv
er
)

Figure 3.1: BraceForce: Uniform Environment

Data Layer. Mobile operating systems allow sensors to be accessed directly

using BlueTooth, Near Field Communication (NFC), USB, and proprietary inter-

faces to on-board sensors. This manner of access is device-specific and requires a

non-trivial amount of low-level development and testing using interfaces that are not

portable across platforms. These programming methods also usually entail a steep

learning curve. BraceForce encapsulates these communication and sensor framework

58

interactions in the data layer, thus explicitly separating user-application code above

from sensor- and platform-specific code below. The data layer also controls data re-

trieval for locally connected sensors (both on-board and external), where the options

include push, in which a sensor pushes every data reading to the data layer; pull,

in which the data layer periodically polls the connected sensor; and event-driven, in

which a sensor notifies the data layer only upon the occurrence of some predefined

“event. ” At the data layer, BraceForce introduces single-device MDDA, whereby

simple models of temporal correlation can be used to suppress sensor readings as

long as they follow an expected model [162].

Distribution Layer. CPS applications require a distributed view of active

and available sensors, both on the local device and available remotely on other

devices in the network. Programmers must use message passing mechanisms or

RPC-like connectors to make devices in the network communicate and coordinate

their actions. Developers must also handle location transparency and other intrin-

sic issues related to distributed programming (e.g., concurrency, failures, and time

synchronization). In the distribution layer, BraceForce provides automatic discov-

ery of other BraceForce-enabled devices, and thereby other BraceForce connectable

sensors. BraceForce uses a combination of best effort protocols for the on-the-fly

discovery and reliable protocols for initiating and accepting remote method calls to

transfer sensor data from discovered sensors. The distribution layer also extends the

data acquisition modalities of the data layer by defining data listeners that bridge

between the data layer below and the aggregation layer above and, more importantly,

across distributed devices. One specific function of this bridge is to use guidance

59

from the cross-device MDDA performed at the aggregation layer (described next) to

correctly configure and query underlying (distributed) sensors. Within the distribu-

tion layer, BraceForce’s automatic detection of distributed sensors can be deployed

alongside the Sensor Driver Layer, circumventing the data layer, simplifying the

BraceForce deployment on devices that have significant computation and storage

constraints.

Distributed Data Cache and Aggregator. CPS applications that require large

scale deployments often include sensing devices that have severe computation and

storage constraints. In this case, it is highly ideal that data storage and processing

are done in backend servers or other more powerful devices in the network. Program-

ming these features in a scalable and reliable way is a challenge for CPS application

developers. BraceForce’s aggregation layer is specifically designed to deal with this

challenge through a unified view of all of the dynamic sensing capabilities of the

networked sensing support infrastructure. As new sensors are discovered on-the-fly

or known sensors disappear, these dynamics are handled seamlessly by BraceForce.

Given a distributed view of aggregate sensing capabilities, the aggregation layer

can perform high-level MDDA, for example, by using more sophisticated models

based on spatial correlations or learned relationships among sensed data [139]. In

my prototype, I demonstrate the potential for this high-level MDDA using a spatial

correlation model that suppresses sensor readings that are similar to neighboring

readings. More generally, from the aggregation layer, BraceForce can expressively

direct data acquisition (e.g., by choosing between event-driven data acquisition, the

push modality, and the pull modality) for all of the sensors under its purview. This

60

layer also encapsulates data mining and compression.

CPS Application Node. To support the CPS application node, BraceForce

maintains a registry of aggregation and sensing capabilities, and the programming

interface allows the application to subscribe to them. Based on the particular ap-

plication goals, these sensors can be integrated just as part of a testing harness at

debugging time or can provide essential functional information for the application

at deployment time.

3.3.1.2 BraceForce Deployment Scenarios.

Fig. 3.1 showed just one possible deployment scenario in which all of the

devices are homogeneous (e.g., smart phones) and have the same capabilities. In

BraceForce, different physical assets can support different pieces of the architecture,

depending on a particular device’s capabilities and functional requirements. In any

deployment, the sensor driver layer and the discovery layer must be present on any

sensing-capable device, as they are essential to connecting to and getting data from

sensors. On moderately capable devices, the addition of the data layer adds multiple

modalities for driving data acquisition and the potential for expressive temporal-

based MDDA. Fig. 3.2 shows an alternative deployment in which the system consists

of heterogeneous devices; in this example, the application runs on a dedicated high-

powered device (e.g., a laptop) that connects to a variety of sensing devices of

different capabilities, held together by the distribution layer.

I envision three primary use cases for BraceForce. In the obvious case, Brace-

Force is an integral part of the CPS application. Take a smart home application

61

External)
Sensors)

On.board)
Sensors)

Sensor)Driver)Layer)

Data)Layer)
Model)driven)
)))))data)acquisi:on)

Discovery)Target)

D2D)Discovery)

Discovery)Ini:ator)

Distributed)Data))
Cache)and)Aggregator)

Model)driven)
)))))data)acquisi:on)

CPS)Applica:on)Node)
Dr
iv
er
)

External)
Sensors)

On.board)
Sensors)

Sensor)Driver)Layer)

Dr
iv
er
)

Discovery)Target)

Figure 3.2: BraceForce: Mixed Environment

in which a home controller connects to various sensing devices integrated with the

home to control the ambient environment. In this case, the homeowner may intro-

duce and remove components from the home over its lifetime, and, using BraceForce,

62

the changing capabilities are seamlessly reflected to the application.

As a second case, I envision the middleware to be deployed for large scale

ad-hoc sensor networks (e.g., to monitor the fire situation in a forest). The Sensor

Driver Layer and Discovery Layer can be combined into a service to be deployed

on cheap sensor devices that have basic sensing and networking capacity without

additional computation and storage resources. These devices can be deployed at a

mass scale. The Distributed Data Cache and Aggregator can be deployed as service

to more powerful Android devices or a cluster of backend servers for data processing.

The sensor data then will be passed to the CPS application node, which runs on

user-facing Android devices to notify users (e.g., fire workers and rescuers) of the

real time situation in the environment and allow them to make informed actions.

As a third use case, consider a mobile autonomous robot application wrapped

in a test harness that connects to expressive sensing capabilities available in the

debugging environment but not expected to be available in the deployment environ-

ment. At deployment time, the robot may be placed in an unknown territory and

expected to perform some tasks. At debugging time, however, the developer may

control the environment and may be able to monitor various aspects of the robot us-

ing sensors embedded in the environment (e.g., overhead cameras). The debugging

program that surrounds the actual control application can use BraceForce to access

these sensors for debugging; at deployment time, these connections to BraceForce

and the debugging environment are removed.

63

3.3.2 BraceForce Implementation

To demonstrate and evaluate BraceForce, I have built the entire architecture

in the Android operating system. I choose Android as my initial platform as it is

open source and has extensive support for background processes, including several

built-in constructs for inter-application communication [167]. BraceForce is not

particular to Android, and I avoid using low-level constructs and interfaces specific

to Android and not replicated on other platforms.

3.3.2.1 Android Programming Idiosyncrasies

A handful of accidental complexities arise from my choice of Android; below,

I describe these challenges and my solutions as they arise. In addition, to understand

the discussions of the architecture, I briefly review a vocabulary related to Android:

Intent: a passive data structure holding an abstract description of an operation to

be performed; something that has happened and is being announced.

Android Interface Definition Language (AIDL): allows definition of the pro-

gramming interface that the client and service use to communicate with each other

using interprocess communication (IPC).

Bundle: a data structure of key-value mappings but not limited to a single String/Ob-

ject mapping.

Android does not provide significant high-level abstractions for programming

coordination among distributed devices. From a model perspective, BraceForce

assumes such capabilities, e.g., in the form of Java RMI. To support my BraceForce

64

prototype on Android, I therefore implement my own version of RMI by building

on several open source projects. I use JsonBeans [100] to serialize and deserialize

Java object graphs to and from JSON [55]. JsonBeans is an obvious choice for this

task because it is very lightweight (45KB) with no external dependencies. I use

ASM [12,106] to dynamically generate classes involved in the RMI process in binary

form.

3.3.2.2 Unified Data and Subscription Interfaces

Programming for Android requires interacting with the Dalvik virtual ma-

chine, and it is inevitable that my implementation accesses some proprietary An-

droid constructs (e.g., Bundle). To remain as general as possible, I implement

a wrapper that encapsulates these proprietary components and presents a generic

interface to the BraceForce implementation. Within this wrapper, BraceForce trans-

lates Android data structures to reusable and portable Java data structures.

Android provides sensor data subscription only for internal sensors. To sub-

scribe for sensor data from external sensors (e.g., sensors connected via USB), de-

velopers have to create a subscription model themselves (e.g., using the observer

design pattern) and write a large amount of low-level code to access sensor data.

Retrieving data from other devices is even more difficult. In BraceForce, I provide a

unified subscription interface for developers to access internal sensors, external sen-

sors, and networked sensors. Fig. 3.3 shows the BraceForce API used to subscribe

sensed data from an internal accelerometer (line 1), a temperature sensor (Dallas

DS18B20) connected via USB (line 2), and all accelerometers on networked devices

65

(line 3). Line 4 shows how to retrieve sensor data; it is the same regardless of the

type of sensor connection. The retrieved data contains a timestamp of the data and

where the data is from; data values are accessed through meaningful keys instead

of array indices provided by Android.

1 BraceSensorManager.subscribeSensorEvent(BuiltInSensorType.ACCELEROMETER.name(), this, this);
2 BraceSensorManager.subscribeSensorEvent(”DS18B20”, this, this, SensorAutoDetection.USB);
3 BraceSensorManager.subscribeSensorEvent(BuiltInSensorType.ACCELEROMETER.name(), this, this,

true);
4 BraceSensorManager.retrieveSensorData(event);

Figure 3.3: Interface for data subscription

3.3.2.3 Thread Management and Android services

Android provides much support for multi-threaded applications. As with any

multithreaded environment, the added flexibility comes with a significant increase

in complexity. In Android applications that interface with sensing, developers must

implement (and debug) threads to listen for and connect to multiple connections.

These tasks are far from trivial, as they require the developer to have a deep un-

derstanding of the relationships between the operating system and the life cycles of

application components. As my user study (described in Section 3.5) demonstrates,

developers have a difficult time navigating the complexities of the Android APIs

related to thread management and concurrency.

BraceForce exposes thread managers that explicitly enable thread-safe access

to the shared sensor data available to the CPS applications. To enable communi-

cation beyond shared memory, I expose the threads and their embodied data using

the Android Binder service’s remote procedure call capabilities. To conserve energy,

BraceForce activates threads only when necessary. This is guided by developers

66

through the interface in Fig. 3.3, e.g., by specifying the types of communication

interfaces to attach to event listeners. For example, in Fig. 3.3, line 2 specifically

indicates that BraceForce should activate the USB thread to communicate with the

connected temperature sensor. Alternatively, a developer with less experience in

low-level details can indicate, via a boolean parameter, activation of all the net-

working threads, albeit at increased cost.

3.3.2.4 Networking

my prototype supports simple device-to-device discovery based on UDP. The

relevant threads for discovery and exposed Android Binder services are built in the

distribution layer. When each discoverable service is started within BraceForce,

the distribution layer implementation creates a new Android intent and attaches

the discovery capability to that intent. When the discovery layer starts a service,

it listens on the UDP port specified in its intent and reacts to discovery requests

received on this port. The discovery layer also actively engages in discovery by

sending UDP packets to neighboring devices. Each node maintains an active list of

other nodes; this list is maintained by removing any nodes that have failed to respond

to three consecutive periodic requests. Using UDP for discovery is a simple approach

to enable automatic device discovery. BraceForce could potentially integrate other

on-the-fly discovery mechanisms in the distribution layer, e.g., [13], so that devices

can talk to each other even when they are in different networks (e.g., behind NAT).

67

3.3.2.5 Sensor Driver Definition and Discovery

BraceForce’s driver layer separates CPS application developers from sen-

sor driver developers by providing a contract for implementing new sensor drivers.

Fig. 3.4 shows this contract and the simple SensorDataResponse structure, which is

mapped to a Java Hashtable. The interface shown in Fig. 3.4 provides a high-level

abstraction that allows access to sensor data in key-value pair fashion instead of

requiring the application developer to directly interact with myriad forms of raw

sensor data.

1 public interface Driver {
2 byte[] getCmdForSensorConfig(String configKey, Hashtable configParams);
3 byte[] getCmdForSensorData();
4 byte[] getCmdForStartSensor();
5 byte[] getCmdForStopSensor();
6 SensorDataResponse getSensorData(List<SensorDataPacket> rawData);
7 byte[] sendDataToSensor(Hashtable actuatorData);
8 void shutdown();
9 }

10 public interface SensorDataResponse {
11 List<Hashtable> getSensorDataInCollection();
12 }

Figure 3.4: Interface for defining sensor drivers

The driver interface is exposed through an AIDL file. I have built the drivers

for common built-in sensors on Android devices. For any external or uncommon sen-

sors, the sensor driver developer must implement the interface in Fig. 3.4 to provide

access to those sensors1 . This is accomplished by creating an Android library project

that includes the interface implementation and AndroidDeviceDrivers.aidl. The

project can be uploaded to the mobile devices connected to the sensor(s) for which

1While the byte[] data type clearly requires programming at a very low-level, the sensor driver
developer is an expert in the sensor and, as such, is required to think about sensors at a low-level.
The CPS application developer, however, is shielded from these low-level concerns by the high-level
data types that BraceForce provides.

68

the driver(s) are written. Given the project’s manifest file, the BraceForce driver

layer can automatically detect the driver definition and create AIDL stub clients

that connect to the new driver service.

The BraceForce data layer automatically discovers connected sensors (e.g.,

those attached via USB and BlueTooth in my prototype). Once the data layer in

BraceForce detects external sensors, a manager agent interacts with the underlying

communication channel manager and the created driver stub to capture raw sensor

data, convert it to the BraceForce SensorDataResponse, and make it available for

the higher layers of the architecture. The manager’s interface allows the higher

level (and ultimately the application developer) to specify how BraceForce should

interact with the sensor. In the case of push-based interactions or event-driven data

acquisition, the application developer defines the behavior of a listener, as shown in

Fig. 3.5.

1 public interface SensorDataChangeListener {
2 void bindDataProvider(SensorDataProvider provider);
3 void onDataChanged(SensorDataChangeEvent event);
4 }
5 public interface SensorDataProvider {
6 List<Hashtable> getSensorData();
7 void addSensorData(Hashtable sensordata);
8 void addSensorData(List<Hashtable> sensordataList);
9 }

Figure 3.5: Data Change Listener Interface

The first method in the interface binds the listener to a data provider; the

latter provides a wrapper for a specific sensor/driver pair on a specific device. The

second method is invoked automatically by the data layer when a reading is pushed

or an event notification occurs.

69

3.3.2.6 Model Driven Data Acquisition

To help CPS application developers to design energy-efficient solutions, Brace-

Force enables MDDA within the data layer for single device models and within the

aggregation layer for distributed models.

In my prototyped data layer, I use the temporal model from [61]; specifically,

if the value change for a single sensor between two consecutive readings lies below

a specified threshold, the reading is suppressed (Fig. 3.6). This is a simple form

of data suppression based on temporal data correlation; even only slightly more

complex models [162] may substantially further reduce the overhead of high quality

sensing since the energy of communication dominates computation [187]. my goal

with this simple implementation is to demonstrate how MDDA dovetails with the

BraceForce architecture.

1 float lastData =
2 (Float)historicalDataPack.get(mainParameterName);
3 float thisData =
4 (Float)currentDataPack.get(mainParameterName);
5 long accessTime =
6 (Long)historicalDataPack.get(”timestamp”);
7 long currentTime =
8 (Long)currentDataPack.get(”timestamp”);
9 if(currentTim−accessTime<timeDelta){

10 if(Math.abs(thisData−lastData)<dataDelta){
11 Log.d(”SensorEventDrivenListener”,
12 ”Data suppressed”);
13 return;
14 }
15 }

Figure 3.6: Simple temporal data correlation

In the aggregation layer, I apply MDDA using simple spatial data corre-

lation. The data aggregation service maintains a list of nearby devices and their

sensing capabilities. Periodically (as specified by the application), BraceForce ag-

70

gregates sensed values by type from all connected devices. my model assumes that

each sensed value has within its SensorDataResponse a location and timestamp.

my implementation of spatially correlated MDDA checks the sensed values from de-

vices located close to one another and suppresses readings from sensors that would

be redundant with respect to the spatial coverage of the sensing task. Because the

aggregation layer is above the distribution layer in the BraceForce architecture, this

data suppression decision must be transmitted to the distributed sensing devices;

this is accomplished through the RMI implementation encapsulated within the dis-

tribution layer. I use a simple model that suppresses readings for a device physically

located between two similarly capable devices if the two devices on either side sense

values within a specified threshold of each other.

3.4 Empiricial Design

Using my prototype implementation, I have carried out an empirical evalua-

tion to answer the following questions about the performance and use of BraceForce.

Question 1: Does BraceForce simplify development of applications that require in-

teraction with distributed and aggregated CPS sensor data? If so, how and why?

Question 2: What are the potential ramifications of using BraceForce to interface

with the sensors?

Question 3: Can BraceForce save energy by employing even primitive predictive mod-

els of temporal and spatial data correlation? If so, under what conditions does it

work and at what cost to quality of knowledge supplied to the application?

71

Question 1: Simplifying the Programming Task. I conduct a user

study involving twelve participants from a diverse student population and with

varying levels of programming experience. All have basic knowledge of Java. I ask

each participant to fill in the sensor data retrieval sections for three different appli-

cations.2 Each participant performed each of the three tasks once using BraceForce

and once using the Android SDK alone. Each participant was awarded a $20 Ama-

zon gift card. The order of the two subtasks was randomized for each user and each

application.

◦ Application 1 relies only on a single Android internal sensor (the accelerome-

ter). The application mimics part of a smarthome CPS application that uses an

Android device to detect the user’s shake orientation. The hardware used is an

Android phone.

◦ Application 2 relies on an external temperature sensor. The application repre-

sents part of a CPS application that requires getting information from external

sensors to an Android device. The hardware includes a temperature sensor (Dal-

las DS18B20) connected via an Arduino MEGA board, which in turn is connected

to an Android tablet.

◦ Application 3 mimics a large scale wireless sensor network. Sensor readings come

from accelerometers on low-budget Android phones. The sensor data must be

aggregated to a more powerful data processing device (an Android tablet). The

sensor data is then displayed in an application running on a user’s Android phone.

2Videos of how BraceForce works for these three application are available at http://goo.gl/

62WMyc, http://goo.gl/KVDQZT, and http://goo.gl/5mE64m

72

The participants create the sensor retrieval and aggregation components (includ-

ing a primitive MDDA model of temporal data correlation for which pseudo-code

is provided). These components are deployed to the Android mobile phone and

an Android tablet, respectively. Connectivity among the devices relies on a local

wireless network.

I provide training sessions for the participants, which includes a five minute

session on BraceForce, a five minute session on the scope and functions of the appli-

cations,3 and a thirty minute session for the Android architecture and APIs related

to sensor data retrieval.4 The participants were given additional material on An-

droid (e.g., URLs for highly relevant Android programming) to review at home

prior to the study. I record for each participant how many hours they spent on An-

droid reading after the training but before the study. To rule out other confounding

variables (e.g., human fatigue), I set the time limit for each user study to four hours.

Before the user study, each participant fills out a pre-questionnaire to provide

basic information of their programming experience in general, and specifically with

Android and with sensors. After each user study, each participant fills out a post-

questionnaire about how they feel about using BraceForce compared with Android

SDK for each application and their overall feeling about the middleware. If a user

fails to complete an evaluation application, in the post-questionnaire I ask what led

to the failure and the user’s estimate of how many more hours would be needed to

3The tutorials for both BraceForce and evaluation applications are available at http://goo.gl/
mMXQj5

4Tutorial for Android are available at http://goo.gl/8j9tBA

73

complete it.

I measure the development time and accuracy for each user for each of the

evaluation applications. The results are averaged across participants. I also provide

in-depth qualitative analysis of participants’ feedback.

Question 2: Potential ramifications of using BraceForce. To answer

the second question, I use the same evaluation applications in the first question.

In this case, I implement the Android versions ourselves as the baseline to compare

with the BraceForce versions. I measure the accuracy of the applications (using out-

of-band validation, for example, by measuring the temperature using an ordinary

thermometer) and the running time required to acquire the sensed data; these results

are averaged across five runs of each application. In Application 1 and 3, a “run”

is defined as 10 distinct rotation tests; in Application 2, a “run” is defined as 10

measurements of body temperature.

Question 3: Energy Savings with Model-Driven Data Acquisition.

To answer the third question, I created a fourth evaluation application, which is a

piece of a smart home application in which a user retrieves light readings from mul-

tiple sensors deployed around a home. The deployment is at the home of one of the

authors; the lighting levels are subject to controlled lighting as well as uncontrolled

conditions that include the glow of street lights, passing cars, daylight, etc. The

deployment consists of six sensing devices, a pair of devices for data aggregation,

and a completely separate laptop that runs the CPS application node.

I employ MDDA at both the data and aggregation layers. I deploy the

six sensing devices in pairs; one of each pair executes MDDA, while the second of

74

the pair does not. Across all runs, I measure both the number of data packets

transmitted with and without MDDA, along with the accuracy of the sensed data.

In this experiment, I am comparing the use of MDDA to not using it; therefore the

device not using data suppression is treated as the “ground truth” for determining

the accuracy of MDDA. The frequency of data acquisition is fixed for both groups

at 10 seconds. For the MDDA group, the suppressed data is predicted to compare

with the sensed data from the comparison group. For a specific time, the predicted

value for a suppressed sensor is either the average of the neighboring readings (in

the case of the spatial model) or a running average of the previous readings (in the

case of the temporal model).

3.5 Results and Discussion

Question 1. I evaluated how BraceForce eases the development of CPS

applications for each of my three applications, I evaluated the benefits of using

BraceForce specifically in terms of reduction in development time. The results show

the development times for each of three evaluation applications when using Brace-

Force are not substantially different, even though the applications are increasingly

complex. However, the development times when using the Android SDK increase

dramatically among evaluation applications (a 349.8% increase from Application 1 to

Application 2, and then another 147.9% increase from Application 2 to Application

3). Fig. 3.7 shows a box-and-whisker plot of the percentage decrease in development

time for BraceForce versus Android. BraceForce reduces the median development

time in the range of 66% (for Application 1) to 98.8% (for Application 3) compared

75

Figure 3.7: Decrease in development effort using BraceForce vs. Android sensor
framework

to the Android SDK.5 The variance for the reduction for Application 1 is wide be-

cause several of the test subjects were able to complete the (simple) Android task

very quickly. As the application complexity increases, however, BraceForce’s ab-

stractions provide significant support for the development task. All participants

were able to deliver working applications in all three cases when using BraceForce,

but when using the Android SDK, only half of the participants delivered a working

Application 1, one participant was able to successfully implement Application 2,

and no participants completed Application 3.

One of the most useful sets of feedback from the post-questionnaire explained

the users’ stumbling blocks with respect to completing the tasks using the Android

SDK:

5If a participant was not able to complete a specific task within the time limit (i.e., 4 hours in
total), I asked the user to estimate the time he or she thought would be required to complete the
task; this value was used in computing the relative development efforts.

76

“Android interface is harder to understand”

“Complex Android APIs”

“Android permission is complicated; hard to locate the right documents”

“Android SDK is complex and not easier to understand, not user friendly”

“Complex logic regarding permission, broadcast receivers and so on; distributed

programming in Android is very difficult”

I also asked participants whether they agree that using BraceForce was much

easier and quicker than the Android SDK and if so, why. Eleven participants re-

sponded that they “Strongly Agree” with the statement, while the remaining partic-

ipant responded “Agree”. As for why, the users’ justifications included the following:

“Easy to manage and read, simplify the implementation”

“Much more efficient, easier to use, easier to understand”

item “More convenient, more integrated in communication”

“Convenient, cleaner, user friendly”

“Very simple, easy to understand, elegant”

“Very easy to use, hides all the low level details”

“It hides the complex logic, easier to use, simple to debug”

Question 2. I evaluated the ramifications of using BraceForce to interface

with the sensors in terms of the accuracy of the sensing task and the running time.

Fig. 3.8 shows the results. The accuracy of the versions of all three applications was

not noticeably different (it was marginally better using BraceForce), but Fig. 3.8

77

shows that executing through the BraceForce tiered architecture has some impact on

the application’s execution efficiency (in terms of how long it took the application to

run, including interacting with the sensors). While this burden was relatively higher

(an 8% increase) for Application 1, it was substantially lower for the more sophisti-

cated Applications 2 and 3, since the interaction with the BraceForce architecture

is amortized over more extensive and potentially distributed interactions.

Figure 3.8: BraceForce’s percent increase in accuracy and running time vs. Android
alone

Question 3. In this experiment, I report results from using MDDA for a

run of the smarthome application over three hours. I report results that examine

the impact of MDDA at the aggregation level. That is, in the experiments I report

in this section, I fix the frequency of data acquisition in the data layer and instead

explicitly suppress updates from neighbors where the sensor readings differ by less

than x% from the average of the neighboring readings. I vary x from 0.5% (the most

sensitive) to 5% (the least sensitive). I report results for three sensitivity settings in

78

Fig. 3.9, which plots the tradeoff of MDDA with respect to accuracy and commu-

nication costs. While MDDA at the data layer is also useful to sensing driven CPS

applications, for space considerations, I focus on the higher level MDDA because it

has a more significant potential to impact communication costs since the reasoning

at the aggregation layer requires network communication among distributed sensing

devices.

Figure 3.9: Tradeoffs of MDDA

As shown, there is a modest loss of accuracy when sensor readings are sup-

pressed, but this comes at a substantial reduction in the communication overhead. I

measure both the number of packets transmitted and the number of bytes transmit-

ted because some communication is amortized over the entire run of the application.

In my particular scenario, suppressing sensor readings that are within 2% of neigh-

boring readings entails a only 3% loss of accuracy (in comparison to the out-of-band

measured ground truth) but incurs 74-78% less communication overhead. These re-

79

sults are dependent on the particular model used and the ability of the phenomenon

sensed to be predictably modeled. The results do show that, in applications where

this is the case, MDDA whose sensitivity is tuned by the application domain expert

can provide a significant benefit in terms of the cost to deploy or debug a CPS

application that must acquire data from a networked set of sensors.

Discussion. I briefly discuss threats to validity.

Construct and Internal Validity. I have used two simple models for MDDA.

I posit that using more sophisticated models will only bring more benefits to the

suppression of superfluous transmissions of sensor data, but I have not validated

this hypothesis. The application used to answer Question 3 was developed by the

authors; since the focus of the evaluation for Question 3 is not on the usability of

BraceForce but instead on the importance of MDDA (from a performance aspect),

the particular developer should be irrelevant.

I use automated measures of CPU usage, WiFi usage, and communication

latency to assess BraceForce. These statistics can be influenced by network noise,

background threads, and other processes running on the test devices. To mitigate

these concerns, I perform multiple trials and average values across the trials.

I use qualitative analysis of BraceForce simplicity based on Software Engi-

neering and Computer Science students in a public university. The results may be

different with professional CPS developers, however, my target is to enable novice

programmers to build CPS applications, and my users represent these novice pro-

grammers. In my study’s pre-questionnaire, the majority of my participants labeled

their programming capabilities as “Average” (while five labeled their experience as

80

“Above Average”), and only one study participant had any prior experience in in-

terfacing with sensing devices. Future studies will include both more experienced

CPS developers and even more novice programmers.

I minimize learning effects by randomizing the order of the use of Brace-

Force and the Android Platform. For those participants who cannot complete the

evaluation applications, I use the users’ estimate on how long it would take them

to finish the application. It is a guess at best and it might be different (e.g., more

accurate) for professional CPS developers. But I find out in the study, for those

participants whose programming capabilities as ”Above Average”, they tend to give

much higher time estimation(e.g., five times more). From this, I have a hypoth-

esis that more experience a developer has, more accurate the time estimation is;

and those with average programming skills tend to give optimistic estimation. The

hypothesis is not validated though.

External Validity. I have implemented the BraceForce prototype only for the

Android operating system. I therefore cannot draw concrete conclusions about the

external validity in terms of BraceForce’s applicability to other operating systems

and platforms. I have attempted to mitigate these concerns by avoiding proprietary

interfaces whenever possible and, when not possible, wrapping those interfaces in a

generic way that should be repeatable for other platforms and systems. The same

is true for my use of external sensors connected via the Arduino board. While I

have focused my prototype implementation on the Android and Arduino platforms,

I have looked at a wide variety of devices, and my design and implementation has

focused on abstractions that are, in theory, easily transferable to other domains.

81

Future work will include this translation to additional platforms as well as a novel

MDDA tailored for the needs of the CPS applications.

3.6 Research Contributions

In this chapter, I made the following contribution:

Research Contribution 2: Create a supporting infrastructure to access sensors

from heterogeneous platforms with energy efficiency and accessible programming

interface. This work allows flexible debugging and deployment environment to access

heterogeneous sensing capabilities required for CPS runtime verification.

3.7 Chapter Summary

I motivated the need for a generic and principled framework that allows for

cross-platform integration of networked sensing capabilities with CPS applications.

This is important in a variety of use cases, most notably to support developers of

CPS applications that interact with on-board, external, and networked sensors and

to support debugging of CPS applications that require direct interaction with the

physical world. BraceForce provides a layered architecture that explicitly separates

the application developer from the low-level complexity of interacting with sensing

devices and enables the programming task to instead focus on the application logic

and the integration of sensing into that logic. my evaluation demonstrated that

BraceForce does indeed lower the barrier to creating these applications. Further,

BraceForce also provides two essential points in the layered architecture to perform

model-driven suppression of the sensing tasks, resulting in a significant reduction

82

in the cost of sensing (as measured in energy cost and communication cost) while

mitigating the concomitant loss of sensing accuracy.

83

Chapter 4

BraceAssertion: Behavior Driven Development for CPS
Application

Even with accessible sensing capabilities provided by BraceForce, however,

developing and debugging CPS remain significant challenges. Many bugs are de-

tectable only at runtime under deployment conditions that may be unpredictable

or at least unexpected at development time. The current state of the practice of

debugging CPS is generally ad hoc, involving trial and error in a real deployment.

For increased rigor, it is appealing to bring formal methods to CPS verification.

However developers often eschew formal approaches due to complexity and lack of

efficiency. This paper presents BraceAssertion, a specification framework based on

natural language queries that are automatically converted to a deterministic class

of timed automata used for runtime monitoring. To reduce runtime overhead and

support properties that reference predicate logic, I use a second monitor automaton

to create filtered traces on which to run the analysis using the specification monitor.

I evaluate the BraceAssertion framework using a real CPS case study and show that

the framework is able to minimize runtime overhead with an increasing number of

monitors.

84

4.1 Introduction

Cyber-Physical Systems (CPS) are found in applications in structural mon-

itoring, autonomous vehicles, and many other fields. Compared with the growth

of the domain, verification and validation of CPS lags far behind [194]. The state

of the practice in debugging CPS generally entails a combination of simulation and

in situ debugging. In a 2007 DARPA Urban Challenge Vehicle, a bug undetected

by more than 300 miles of test-driving resulted in a near collision. An analysis of

the incident found that, to protect the steering system, the interface to the physi-

cal hardware limited the steering rate to low speeds [133]. When the path planner

produced a sharp turn at higher speeds, the vehicle physically could not follow, and

this unanticipated situation caused the bug. The analysis concluded that, although

simulation-centric tools are indispensable for rapid prototyping, design, and debug-

ging, they are limited in providing correctness guarantees. State of the art formal

methods tools, including static analysis, theorem proving, and model checking, are

insufficient in tackling the challenges in CPS verification and validation [194]. Other

verification techniques, including model-based testing [41] and simulation [81] have

high learning curves, impractical development costs, and scalability issues. Domain

specific tools (e.g., passive distributed assertions [163] and symbolic execution [166]),

though more scalable, fail to formally verify either qualitative constraints (e.g., the

ordering of events), quantitative ones (e.g., timing), or both. Ad hoc debugging has

become the de facto standard for debugging CPS, though it suffers tremendously

from a lack of robustness [194]. More formal runtime verification is a perfect candi-

date to identify subtle errors that are otherwise hard to capture due to scalability

85

(state explosion) or unexpected interactions with physical environments. Moreover,

on-line monitors (e.g., JavaMOP [42]) can react to errors in actual executions, which

is essential for CPS applications.

Runtime verification requires correctness properties to be written in a formal

specification language. In addition to many other characteristics, every CPS is a

real-time system; therefore formal specifications of CPS must capture real time prop-

erties such as event ordering, timeout, and delay. Temporal logics and first/higher

order logic have been used to specify concurrent and real-time programs. However,

CPS practitioners tend not to use formal specification because of the steep learning

curve and a lack of reliability [37]. The use of informal models as a transition has

been recommended [67], and Behavior-Driven Development (BDD) tools are gaining

popularity among CPS developers [194]. This paper introduces BraceAssertion, a

BDD-style specification language that is accessible to CPS developers yet expressive

enough to represent a determinizable class of Timed Automata [9] and to support

predicate logic. I also design a monitor framework to automate verification based

on BDD specifications. My concrete contributions are:

◦ I bring Behavior-Driven Development to Cyber-Physical Systems (CPS) to enable

formal specification of correct system behaviors using natural language.

◦ I create the BraceAssertion language, which extends BDD to support the expres-

siveness of deterministic timed automata and adds support for predicate logic to

cater for complex requirements of CPS applications.

◦ To support BDD-style specification, I implement an efficient dual monitor archi-

86

tecture, consisting of a synthesized event monitor that generates filtered traces

and a synthesized timed automata monitor to verify quantitative properties on

traces.

◦ I provide real-world case studies to evaluate the effectiveness and efficiency asso-

ciated with the synthesized monitors derived from BraceAssertions.

4.2 Motivation and Overview

In this section, I introduce a motivating CPS application and the research

challenges therein. I then provide background information on Behavior Driven De-

velopment (BDD), my formal framework, and the foundational logics.

4.2.1 Motivating Application

My work can be easily motivated by agent-based CPS [134], where the sys-

tem’s concurrency and distribution are handled by each agent, so verification can

be localized to each agent. These systems require a runtime verification framework

with high expressiveness, intuitiveness, and with low runtime overhead. I use this

example throughout the paper, though the BraceAssertion framework is applicable

to CPS in general.

Consider a multi-agent vehicular patrol application with a set of unmanned

vehicles that coordinate to achieve a global monitoring task. As part of the cooper-

ative exercise, each vehicle’s agent develops a schedule of tasks to execute. Such an

application may specify the following three constraints: (1) if a vehicle is selected

as responsible for a waypoint, its schedule will eventually contain a task to reach

87

that waypoint (Spec 1); (2) a vehicle will reach the locale of each selected waypoint

before a specified deadline (Spec 2); and (3) the choice of which vehicle to perform

each waypoint task is optimal relative to a chosen system utility function (Spec 3).

Spec 1 & 2 require qualitative constraints (e.g., those that reference the

ordering of events) and quantitative constraints (e.g., those that reference timeouts

and bounds on response times). JavaMOP [42], a state of the art runtime verification

framework, is not able to capture these constraints. Instead, capabilities like those of

Metric Temporal Logic (MTL) [105] and Metric Interval Temporal Logic (MITL) [8]

are required. Spec 3 is more subtle and actually requires a predicate logic whereby

each waypoint task can be quantified and a predicate function can evaluate whether

a chosen utility function is optimal. Existing runtime verification techniques based

on metric temporal logic cannot capture this expressiveness. Recent work on Metric

First-Order Temporal Logic (MFOTL) [21] can, but the complexity and lack of

binding between the specification and the implementation make it unwieldy and

impractical for CPS practitioners. An even more challenging requirement is to

minimize the runtime overhead for the application, since CPS are usually deployed

to resource constrained platforms; this challenge remains open.

In summary, the motivating application requires a specification that is intu-

itive to specify, provides a tight binding to the implementation, can express quanti-

tative requirements and a predicate logic, and incurs low runtime overhead. These

combined research challenges push us first to look at a widely accepted and intuitive

industrial specification, Behavior Driven Development (BDD), on which my work is

based.

88

4.2.2 Behavior Driven Development

Behavior Driven Development (BDD) was created to clarify common misun-

derstandings in Test-Driven Development related to what to test, what not to test,

how much to test, and how to understand why a test fails [26]. However, formal se-

mantics are still lacking for BDD. A BDD specification typically starts with a story

template: As a [X], I want [Y], So that [Z] and is further refined into multiple test

scenarios of the form: Given [initial condition], When [events occur], Then [ensure

some outcomes]. As an example, a correctness specification for the push operation

on a Stack data structure would be Given [A stack is not full] When [an element is

added to the stack] Then [that element is at the top of the stack]. Each fragment of

a test scenario has to be associated with segments of program code using inheritance

or as a plug-in to the programming language.

Intuitively, to give formal semantics to the Given-When-Then template, I

can treat the template as a state transition in a finite automaton. Given specifies in

which states the transition is enabled, When specifies which input signals or events

trigger the transition, and Then specifies what actions to take and which state(s) to

move to. The popularity of BDD reflects the willingness of developers “in the wild”

to accept a less formal specification language. However, state of art frameworks

in BDD (e.g., Cucumber, JBehave1) ignore quantitative constraints such as timing,

qualitative ones such as ordering of events (happens-before), quantification (∃ and

∀), and predicates (as in first-order logic), which are all crucial in specifying CPS

1cukes.info, jbehave.org

89

applications. my goal is to support CPS applications by filling the gap between BDD

(which is reasonably accessible to CPS developers) and formal methods (which are

not). Instead of asking developers to write the underlying temporal logic formulae

directly, I create BraceAssertion, a natural description language in BDD style that

allows developers to capture a correctness specification’s essential semantics and to

annotate the CPS application to connect the implementation to the specifications.

My monitor synthesis algorithms can automatically generate runtime monitors that

are timed automata obtained from the textual description.

4.2.3 My Basic Formal Framework

Because CPS applications require reactions to timeouts or incoming events,

my models must consider a dense time domain, for which I use non-negative real

numbers. The implementation of such a time domain requires digital clocks; I assume

that local clocks are sufficiently synchronized (i.e., that the worst case drift is below

a very small and acceptable σ); this assumption is achievable using established clock

synchronization algorithms [65,131].

I model the execution of a CPS application as an infinite sequence of ob-

servations δ = δ0δ1 · · · δn · · · . Each δi ⊆ 2E , where E is a set of propositions that

describes the observed state of the application. Since a CPS application is also a

real-time system, events’ timing information must be captured. A timed trace is

a pair Θ = (δ̄, τ̄), where δ̄ is a trace and τ̄ is an infinite sequence of non-negative

real numbers representing the time at which each event is observed. The timing

sequence respects monotonicity and progress (τi < τi+1 and ∃i ∈ N, ∀j ∈ R, τi > j).

90

This basic framework underpins the BraceAssertion language, which cap-

tures both qualitative and quantitative constraints and identifies constraint viola-

tions by considering captured timed traces of the system’s execution. Event Clock

Automata (ECA) [9] has many of the semantic capabilities required for modeling

quantitative properties of CPS. I next provide a brief introduction to ECA and the

associated State Clock Logic (SCL) [160], which is used to express ECA, and relate

their capabilities to the goals of BraceAssertion.

4.2.4 ECA and SCL

Timed automata [7] are finite automata extended with real-time clocks. In

timed automata [7], one can annotate state transitions with timing constraints using

real-valued clock variables. The constraints on clocks can specify time intervals

e.g., a given event eventually happens or happens before a deadline. Contrary to

standard automata, timed automata are not always determinizable and thus difficult

to use directly for runtime verification. Event Clock Automata (ECA) [9] restrict

the use of the clock and thus embody a determinizable class of timed automata. In

ECA, for each event, a recording clock records the time of the last occurrence and

a predicting clock predicts the time of the next occurrence. An ECA is in the form

A = (Σ, L, L0, Lf , E), where Σ is a set of symbols, L is a set of states, L0 represents

a single start state, Lf represents a set of accepting states, and E is a set of edges

representing transitions. Two edges with the same source and the same input must

have mutually exclusive clock constraints to preserve determinism. Notice that finite

automata are ECA with no clocks.

91

S0start

S1

S1

e

e

e

e

Figure 4.1: Specification in ECA: If a vehicle is selected for a waypoint, its schedule even-
tually contains that waypoint.

Fig. 4.1 shows how Spec 1 can be expressed using a finite automaton. S0

refers to the initial state after the agent was assigned to reach the given waypoint.

S1 is the accepting state, where the agent’s schedule contains the task to reach the

waypoint. The event e adds the waypoint to the agent’s schedule. S1 represents the

set of states reachable from S0 in which the waypoint is not in the agent’s schedule;

e represents any event that does not insert the waypoint into the agent’s schedule.

This very simple automaton accepts any trace in which the desired event eventually

happens, which is no more or less than required by the specification. Fig. 4.2 shows

how the quantitative properties Spec 2 can be represented with ECA. Here, in the

accepting state S1, the agent has reached the waypoint before a deadline. The

timing constraint xa associated with the edge from S0 to S1 ensures that each r

(which refers to the event that the agent has reached the waypoint) occurs within τ

time units of the preceding a (which refers to the event that the agent was assigned

to reach a waypoint).

S0start S1

r[xa 6 τ]

Figure 4.2: Specification in ECA: A vehicle will reach the locale of the waypoint within a
bounded time τ .

As a de-facto standard, State Clock Logic (SCL) is used to express ECA [160].

However, there remain characteristics of CPS that limit the usefulness of SCL to

92

runtime verification. Consider Spec 2; the event that causes the transition to the fi-

nal accepting state is associated with an action “enter the waypoint.” Such methods

in CPS interact with the environment in ways that are not possible to capture in

SCL. In my example, the nature of the physical space (e.g., indoors versus outdoors),

or environmental conditions (e.g., wind) and their impacts on the system’s correct-

ness must be considered. As a simple example, the vehicle must have an auxiliary

procedure that detects that it has reached the waypoint with some guarantee; this

procedure generates the event r that causes the state transition in Fig. 4.2. Clearly

this requires the specification to be expressive enough to locate this procedure in

the implementation, quantify the waypoint, and evaluate the procedure at the right

time, none of which is available in SCL (or in temporal logics in general). This

limitation of SCL applied to CPS is even more striking for Spec 3. This constraint

cannot even be specified in SCL because SCL does not have the ability to associate

utility with events. The demand of CPS applications for a more powerful logic

to express such constraints, along with the low acceptance of formal specification

in general [184] and by CPS developers especially [194] motivates us to create the

BraceAssertion specification language on top of ECA.

4.3 BraceAssertion

My BraceAssertion language is expressive enough to specify quantitative

and qualitative constraints that characterize behaviors of CPS applications. At the

same time, it builds on the simplicity and abstraction level of Behavior Driven De-

velopment (BDD) frameworks to make it more accessible to CPS developers. BDD

93

is based on natural language and provides tighter integration between specification

and implementation through customized annotations in the code. In this section, I

introduce the essential syntax of BraceAssertion and show how to express standard

real-time constraints. I then define the formal semantics in terms of SCL formulas.

4.3.1 BraceAssertion Language

Qualitative Constraints. In existing BDD approaches, support for spec-

ifications that reference the order of events is minimal. Further, providing specifi-

cations in the usual BDD form e.g., Given [initial condition], When [events occur],

Then [ensure some outcome], only considers instantaneous (logical) state transi-

tions, which are unlikely in CPS applications considering delays in responses from

physical devices and the environment. BraceAssertion augments the BDD language

with the capability to define the system as an aggregate of individual components.

BraceAssertion then allows associating automata (monitors) with each component

to enable distributed runtime verification at the level of each component. To connect

this with BDD, I change the BDD story template “As a [X]-I want [Y]-So that [Z]”

into “In [S] -As a [X]-I want [Y]-So that [Z]” where S is a component for the story.

A story is associated with one or more BDD specifications in the Given-When-Then

form2. BraceAssertion also adds a When-Then-Else construct to define alternative

state transitions from a Given state and When events. As a concrete example, using

these new qualitative constraint constructs, Spec 1 can be written as “In [Agent],

Given [All] When [agent was chosen to reach a waypoint] Then [Eventually its

2Following BDD convention, nesting of the BDD constructs is not allowed. Users can always
use separate BDD specifications instead.

94

scheduler contains the task to reach that way point].” I also extend the BDD Then

fragment to support four qualitative operators: Always, Eventually, Eventually Per-

manent, and Never, which correspond, respectively, to the linear temporal logics

operators �, ♦, ♦�, and ¬� (see [160] for the timed version of the operators).

Quantitative Constraints. While timing constraints are essential in CPS

applications and in theory expressible in SCL, BDD lacks the semantics to annotate

state transitions with timing constraints such as specifying deadlines. To bridge

this gap, I add new constructs and keywords Within, Exactly, and More Than in

a BDD When fragment. Each construct and its associated time value provides

a hard deadline constraint on the timing of the event clause. This enables us to

easily specify standard timing constraints in CPS. As an example, the bounded time

response constraint “a p event is always followed by a q event within k (time units),”

is expressed in BraceAssertion as: “Given [p] When [Within k (time units) After [p]]

Then [q].” The BraceAssertion to specify an exact response time is similar but uses

the “Exactly” keyword in place of the “Within” keyword. A timeout specification

can be given by a BraceAssertion of the form: “Given [All] When [Exactly k (time

units) After q] Then [p].” Triggering an alarm can be specified by using a negated

guard and the “Within” keyword. Finally, constraining the minimal time interval

between two events can be specified by a BraceAssertion in the form: “Given [All]

When [More Than k (time units) Before p] Then [q].” As a concrete example, Spec

2 can be written as: “In [Agent], Given [chosen to reach a waypoint] When [Within

xx time units After] Then [reach the locale of that waypoint].”

95

Predicate Logic. To tie specifications of correctness properties to the im-

plementation, developers using BDD associate every event to a method signature.

The BDD specification treats the method signature as a propositional expression

i.e., the evaluation of “has the method A been executed?”. In CPS, however, it is

insufficient to bind events only to method invocations. CPS applications require

events to be associated with a variety of additional system aspects (e.g., thread

safety checks against specific data structures), but most importantly and uniquely,

elements of the physical environment (e.g., validation against sensor values). For

instance, consider Spec 1 once again. The text description in the Then clause ac-

tually requires predicate logic because the specification existentially or universally

quantifies over tasks. To handle such complexities, CPS correctness specifications

require predicate logic (e.g., first order logic). To continue to support the tight

integration between the specifications and the implementation in BDD, I (1) add

two new constructs and keywords to the Given-When-Then structure in the BDD

specification, (2) I define additional semantics in the BDD Then fragment, and (3) I

create additional BDD annotations for the implementation.

The two new constructs based on the keywords With and And, allow the

creator of the specification to indicate parameters to the logical predicate contained

within the Then clause. The three new BDD annotations connect the predicate

provided in the extended Then clause to the implementation. For instance, the

quantification of the parameters in a predicate (i.e., the task and schedule in my first

specification) relies on a BDD annotation created specifically for this purpose. More

generally, Table 4.1 lists my additional BDD annotation classes: Event, Predicate,

96

Param, and Execution.

Table 4.1: New BDD Annotations

Annotation Description

Event bind an event to a method invocation
or a single statement

Predicate reference a boolean function

Param identify quantified variables

Execution identify execution place for a predicate

The following code snippet shows how the implementation reflects the newly

introduced annotations. The developer uses the Predicate annotation to associate

a boolean function checkTaskOptimal with the predicate (“check schedule is opti-

mal”). The developer provides the implementation of the function, which is standard

practice in BDD. The developer uses the Param annotation to locate the variable

associated with the quantified parameter (“the task”), while the mode’s value of

List indicates that the variable’s quantification is ∀, i.e., each instance is verified

against the predicate. Alternatively, the mode can be assigned Single to specify ∃,

where the latest instance is verified against the predicate. Finally the timing for

predicate evaluation is determined by the Execution annotation (in this case, after

execution of CalculateSchedule).

@Predicate(name=”check schedule is optimal”)
public boolean checkTaskOptimal(Task task){

//developer’s implementation of predicate check
}
//somewhere else...
@Param(name=”task”, variable=”t”, mode=List)
@Execution(name=”check schedule is optimal”, mode=ExecutionMode.After)
public Schedule CalculateSchedule(Task t){

//developer’s implementation of a piece of logic
//from the actual CPS application
}

97

Enabling support for predicate logic in BraceAssertions includes adding sup-

port for these new keywords and annotations. I omit the details for brevity, but I

accomplished the integration of this support via non-trivial engineering efforts based

on aspect-oriented programming (e.g., through AspectJ) and some data structure

manipulation. The complete BraceAssertions syntax is given in Chapter. A.

4.3.2 BraceAssertion Formal Semantics

The formal semantics of BraceAssertion is given in terms of SCL formulas.

Each BraceAssertion is translated into an SCL formula according to the rules of

Table 4.2, where φ, φ1, φ2 are predicate logics formulas (with no timing constraints),

v∈ {<,≤,=, >,≥}, and c is an integer. The syntax and formal semantics of SCL

over timed traces are given in Chapter. A. By providing a translation (Table 4.2) I

provide a formal semantics to BraceAssertion. My translation into SCL provides a

correct-by-construction algorithm to build monitors to check BraceAssertion spec-

ifications. Indeed, one the result of [160] is that, for any φ in SCL, an ECA Aφ

can be constructed that accepts exactly the timed traces that satisfy φ. As any

BraceAssertion specification f is translated in an SCL formula φf , the ECA Aφf

thus accepts exactly the timed traces defined by f .

4.4 Dual Monitor Architecture

One of my main concerns is to establish a tight integration between specifi-

cation and implementation. At the conceptual level, I accomplish this through the

annotations in the BDD-based BraceAssertion. From a practical perspective, I lever-

98

Table 4.2: Formal Semantics of BraceAssertion

BraceAssertion SCL
Given φ1 When After Then φ2 φ1Uφ2

Given φ1 When Before Then φ2 φ1Sφ2

When v c Before φ Bvc φ
When v c After φ Cvc φ
When v c After φ1 Then φ2 φ1 →Bvc φ2

When v c Before φ1 Then φ2 φ1 →Cvc φ2

Then Always φ1 ♦φ1

Then Eventually φ1 �φ1

Then Eventually Permanent φ1 ♦�φ1

age Aspect Oriented Programming (AOP) to effectively insert behavior-augmenting

pieces of code based on the annotations; this code is used to check the program-

mer specified properties. Using AOP, I devise a dual monitor architecture shown

in Fig. 6.1. My AOP-based approach allows BraceAssertion correctness properties

to include complex logics (e.g., predicates and quantification) that can be resolved

using pointcuts in AOP. Further, the architecture allows for a separation of concerns

related to event maintenance and monitor execution: an Event Monitor uses the

BDD annotations to generate a filtered event trace that can be analyzed by runtime

monitors, which explicitly monitor the run-time state to check a specified property

during program execution. Because the BraceAssertion annotations give us the

pointcuts for parameters, predicates, and points of execution, the Event Monitor

can weave them together with the source code of the CPS application and generate

only the needed (aggregated) events that result from evaluating each predicate at

runtime. BraceAssertion’s support for customized predicates makes my framework

more flexible than the state of the art in runtime monitoring [21,22], which constrain

99

monitoring to a set of predefined predicates.

As an overview of the entire process of employing BraceAssertion, a CPS

developer creates a system specification by defining BraceAssertion specifications

and annotating the program in BDD style. My framework synthesizes two monitors

from each specification3. I first synthesize an Event Monitor that generates point-

cuts and advice [86], monitors underlying events at runtime, and generates filtered

execution trace. I then synthesize an ECA monitor to verify system correctness

based on collected execution traces.

Figure 4.3: The Dual Monitor Architecture

3I omit the monitor synthesis algorithms, see Chapter. A for details.

100

4.4.1 Event Monitor

The event monitors synthesized from the BDD specifications instrument the

annotated program by injecting AspectJ pointcuts which at runtime feed ”raw”

signals to event monitors to generate filtered timed traces. My creation of the

event monitor is driven by performance limitations of existing runtime verification

approaches and by scalability challenges that emerge in attempting to directly im-

plement BraceAssertions. First, as shown in Fig. 4.1, a BraceAssertion can refer to

the negation of an event. Every time an event that is not e occurs, an event e must

be output to the trace. Second, the Given-When-Then notation specifies events (and

not states) [26]. A näıve implementation of BraceAssertion requires generating an

internal state for each unique event and an aggregate state for every set of events

within a given structure (e.g., I require an aggregate state for the multiple events

specified in a BraceAssertion’s When clause). A complete transition table must

consider all possible permutations of internal states (including aggregate states). In

addition, my BDD-based approach requires instrumenting the implementation to

support the semantics of BDD annotations, which can also include predicate logic.

Such predicates must be dynamically evaluated at runtime. For all of these reasons,

I synthesize an Event Monitor from a given BraceAssertion specification. This

synthesized monitor allows the BraceAssertion framework to (1) create pointcuts

in the implementation through instrumentation and (2) monitor events at runtime

and generate filtered traces over which correctness specifications can be checked.

For brevity, I omit the main algorithm the Event Monitor uses to instrument the

program; refer to Chapter. A for details.

101

At runtime, the injected pointcuts pass events to the Event Monitor to cre-

ate expressive runtime traces. The Event Monitor can filter/generate four types of

events from input atomic events: (1) clock events; (2) single events; (3) comple-

mented events; and (4) aggregate events.

Algorithm 1 Event Filter (FILTER)
1: if e.isClockEvent ∨ e.isEvent then
2: output(e)

3: for ∀ce ∈ e.ces do
4: filter(ce)

5: for ∀em ∈ eventMonitorStore(e.id) do
6: em.setTransition(e.id)

Algorithm 1 shows the basic filter algorithm, which filters atomic events (e)

passed from the instrumented execution. If the atomic event is a clock event or single

event (e.g., with only one event with one When clause), the algorithm outputs the

event to the trace (lines 1-2). If the input atomic event has any complemented events,

I recursively apply the algorithm to the complemented events instead of outputting

them directly (lines 3-4). Each Event Monitor is essentially a state machine that

keeps track of a list of atomic events and makes a state transition upon receiving an

event. If the input atomic event is associated with any Event Monitor, the algorithm

invokes setTransition of the Event Monitor to check whether all the internal events

for the Event Monitor have been detected and, if so, outputs the aggregate event

for the Event Monitor (lines 5-6). The Event Monitors are therefore essential in

limiting the scale of the generated event traces.

102

4.4.2 ECA Monitor

Given a BraceAssertion, I automatically construct an ECA that checks

whether the specification is violated. While similar approaches are non-trivial [160],

my synthesis algorithm is straightforward and efficient since the BraceAssertion is

already a textual description of an ECA. For instance, from the Given-When-Then

specification, I can extract a set of transitions {E} together with initial and accept-

ing states. Checking whether a trace violates a specification amounts to checking

whether the ECA accepts the trace. My verification algorithm is based on a stan-

dard decision algorithm for testing membership of a trace in a regular language [91].

Testing membership of timed traces for general timed automata is NP-complete [10],

but, as I prove below, because I restrict ourselves to a subclass of timed automata

that are deterministic, testing membership can be done in polynomial time.

I also introduce two major enhancements. The first one is essential in deal-

ing with the recording and predicting clocks for each BraceAssertion. Because I

evaluate specifications over trace files, I handle the predicting clock using a look

ahead algorithm that relies on a concurrent queue to access the future in the trace

file. A producer reads from the trace file and fills in the concurrent queue, while a

consumer reads one timed word after another as input to the ECA monitors. The

length of the queue is (lower) bounded by the maximum clock constraint across all

specifications. The length of the queue also reflects another parameter specifying a

minimum number of timed words in the queue (to minimize the overhead of context

switching when the buffer is too small). When a predicting clock is referenced, the

ECA monitor can look ahead in the queue to check a constraint.

103

My second enhancement is essential in handling the fact that there may be

a large number of BraceAssertion specifications for even a modest system, and I

need a scalable solution for checking the correctness of these specifications. I use

lazy initialization to activate an instance of a monitor only when the monitor’s

initial event is detected, and I terminate the monitor instance as soon as I reach

an accepting (specification passed) or rejecting (specification violated) state. This

minimizes the number of active monitors. Each timed word can be consumed by

only one instance of a particular monitor but can be shared among instances of

other monitors (to allow parallel processing). At any point in the process, there are

three possible values for each ECA monitor: accepting, rejecting, or undetermined

(if the monitor is still active).

In Chapter. A, I provide the complete ECA monitor synthesis algorithm.

In essence, since SCL is used to represent ECA [160] and BraceAssertion formal

semantics are expressed using SCL, the synthesis algorithm is quite straightforward.

The validity of the monitor synthesis algorithm has been demonstrated exhaustively

via hundreds of synthesized timed traces.

4.4.3 Combinatorial Analysis

Because one of my goals is to reduce the overhead of runtime monitoring, I

perform a combinatorial analysis of the Event Monitor and the ECA Monitor.

Lemma 4.4.1. The time cost for an Event Monitor to output one event in the event

trace is O(|e| + |p|), and the storage cost (for all events) is O(|e|), where |e| is the

number of events and |p| is the number of parameters in the BraceAssertion.

104

Proof. The atomic events are generated from the pointcuts. The BraceAssertion

framework simply passes the atomic events or parameters directly to the Event

Monitor. The Event Monitor filters and generates the required events, without any

other logic; therefore the runtime cost is O(|e| + |p|). My analysis of the Event

Monitor is based on Algorithm 1. From lines 1-2, checking whether an input event

is a clock event or a single event is O(1) because the Event Monitor uses hashtables4

to register the types of events. Similarly, from lines 5-6, the Event Monitor uses a

hashtable to register all Event Managers, which in turn keep track of corresponding

atomic events. Since each Event Manager has a maximum O(|e|) events stored,

the time cost is O(|e|). Considering the above, the combined time cost for all

events is O(|e|); considering also lines 3-4, as each event has a maximum of one

complemented event, the recursive function is called at most once for each event.

So the overall time cost for each event (combined with the event generation) is

O(2 · |e|+ |e|+ |p|) = O(|e|+ |p|). During the synthesis process, an Event Monitor

stores a number of auxiliary data structures (all based on hashtables), each of which

has storage cost of O(|e|). The number of these auxiliary data structures is constant,

so the overall storage cost for all events is O(|e|).

Lemma 4.4.2. The space complexity of the synthesis algorithm (i.e., the size of the

ECA monitor) is O(n · |e|), where |e| is the number of events, and n is the number

of specifications.

Proof. In the ECA monitor synthesis, I reuse a shared state transition table, which

4I get constant time performance using efficient hashing [146].

105

has maximum number of transitions of O(|e|). For each monitor, I also record

accepted and rejected states. The total storage cost is therefore O(n · |e|).

Lemma 4.4.3. The time complexity of the offline membership test is O(|t| · |e| · |c|),

where |t| is the number of timed words in the trace file, |e| is the number of events,

and |c| is the number of clock variables (constraints).

Proof. My work is based on the membership test algorithm in [91]. The only differ-

ence is instead of checking words, I check timed words. So in the worst case scenario,

for each timed word, I must traverse all state transitions (|e|) in the global transition

table and check all clock constraints (|c|). In practice, the behavior of my monitor

will be close to O(|t|). Traversing each state transition is replaced by querying a

hashtable for the transition records with the beginning state of the current state

recorded in each ECA monitor (constant time on average), and there are a constant

number of clock constraints per specification, thus on average the time cost can be

reduced to O(|t|).

I implemented a Java prototype of my dual monitors and tested the seman-

tic correctness on synthetic traces. Since my main contribution is to use BDD to

efficiently and effectively bring ECA and first order logic into CPS development, I

conducted an empirical study on a real multi-agent patrol system to analyze effec-

tiveness and efficiency.

106

4.5 Case Study and Evaluation

I evaluate the BraceAssertion framework using a case study application5

that existed before the creation of BraceAssertion; this is the application I have

used for examples.

4.5.1 The Case Study Briefly

I used an existing robot planning system, which is a distributed version of

Generalized Partial Global Planning (GPGP) [116]. This system’s planning algo-

rithm is a version of Anytime A∗ that is customized to distributed planning for a

group of mobile vehicles. A group of vehicles is assigned patrols that must visit

a set of specified waypoints. The vehicles negotiate, and each derives a schedule

that contains a subset of the waypoints. The schedules are chosen to optimize the

combined utility of the vehicles. Each vehicle hosts an intelligent agent that can

optimize its actions, autonomously and interactively. Each agent includes a local

scheduler, which derives a schedule based on a set of tasks assigned for execution;

a negotiator, which coordinates with other agents to derive the schedule; and an

execution system. To accomplish a global task, agents negotiate over multiple at-

tributes. In this paper, I used a deployment instance in which two vehicles cyclically

move along their generated waypoint sets. The utility of visiting a waypoint can

change dynamically, which may change the agents’ schedules.

5I refer readers to the complete case study in Chapter. A

107

4.5.2 Research Questions (RQs)

My evaluation answers the following research questions:

RQ1: How efficient is the Event Monitor in generating a filtered event trace (in

terms of CPU, memory overhead, and the size of traces generated)?

RQ2: How effective is BraceAssertion in detecting runtime violations (e.g., to cap-

ture injected errors and, even better, to detect real bugs)?

RQ3: How efficient is the ECA Monitor in detecting runtime violations using the

filtered event trace, and how do the features of the ECA Monitor help to improve

efficiency?

4.5.3 Experiment Design

To answer these questions, I use my Java prototype and my case study ap-

plication. I use the patrol application to generate traces as described in Section 6.3,

and I check those traces for the three properties from Section 6.2:

◦ “In [Agent], Given [All] When [agent chosen to reach a waypoint] Then [Eventu-

ally its scheduler contains the task to reach that way point].” (Spec 1)

◦ “In [Agent], Given [agent was chosen to reach a waypoint] When [Within 40

seconds After] Then [reach the locale of that waypoint].” (Spec 2)

◦ “In [Scheduler], Given [All] When [a task is added] Then [check schedule is opti-

mal With the task].” (Spec 3)

108

The application developer must annotate application code with hooks for

BraceAssertion specifications. The code below shows how this happens for the

When event in Spec 1. Using the BraceAssertion library, which contains customized

Java annotation classes, the developer uses the Event annotation to assign the name

field to the event name (“agent was chosen to reach a waypoint”). This is the only

step required to connect an event in BraceAssertion to the implementation.

//somewhere in the Agent class...
@Event(name=”agent chosen to reach a waypoint”)
public void assignTask(Task task){

// Developer’s implementation when a static
// task to reach a waypoint is assigned

}

I evaluate BraceAssertion’s ability to detect injected violations in traces, and

I benchmark its performance. In this process, I also found violations in the patrol

implementation other than those I injected. All of the experiments were performed

on a PC with an Intel i5 CPU (2.30GHz, 2 cores 4 threads) and 4GB RAM. I control

the size of an instance of the problem by adjusting the number of waypoints visited

by the agents. For each of the three specifications, the Event Monitor monitors the

atomic events and generates the required aggregate events in the trace.

I report results for the following experiments:

Baseline: I run the original application with an increasing number of statically

determined waypoints: 6 (default), 48, 384, and 30726. The last situation is a

extreme one that requires monitoring recurring tasks at a very high frequency; in

6A monitor is activated when a waypoint is assigned. I increase the waypoints to increase the
number of concurrent monitors.

109

normal situations, events generated for checking specifications have a much lower

frequency.

Experiment 1 (E1): I re-run Baseline with the application annotated and instru-

mented with Spec 1. I randomly inject errors to exercise Spec 1.

Experiment 2 (E2): I re-run E1 with the application also annotated and instru-

mented with Spec 2. I randomly inject errors to exercise both specifications.

Experiment 2-Wild (E2-Wild): I run the original application annotated and instru-

mented with a version of Spec 2 that incrementally tightens the timing constraint.

Experiment 3 (E3): I run the original application annotated and instrumented with

the third specification using an increasing number of dynamically determined

tasks (i.e., waypoints): 6 (default), 32, and 64. I randomly inject errors to exercise

the specification.

Experiment 4 (E4): I use the trace file from E2 ’s largest test and multiply it by

10 (i.e., pasting ten copies of the trace back to back). I then synthesize increas-

ing numbers of arbitrary specifications (i.e., with arbitrary events for the Given,

When, and Then clauses of a BraceAssertion): 3 specifications (default), 24, 192,

and 1536.

Experiment 5 (E5): I use the same scaled trace file, using ECA monitors to verify

the trace file while incrementally increasing the size of the trace buffer.

I report average values for CPU usage and memory consumption using Vi-

sualVM7. Results are averages of 5 runs.

7http://visualvm.java.net/

110

4.5.4 RQ1: The Efficiency of the Event Monitor

To report CPU usage and memory consumption, I compute the percent

increase in comparison to Baseline, e.g., for E1, I compute E1−Baseline
Baseline .

Figure 4.4: CPU Overhead

Fig. 4.4 shows that the CPU overhead of running the Event Monitor along-

side the application is minimal, with a 0.23% increase in CPU usage for E1 with 6

tasks and 0.25% for E2 with 6 tasks, growing to only 1.09% for E2 with the largest

test set. The results show that using the Event Monitor to generate runtime traces

incurs a trivial performance overhead for the monitored CPS application.

Figure 4.5: Memory Overhead of the Event Monitor

111

Fig. 4.5 shows the Event Monitor’s memory overhead. The memory usage

in E1 shows that adding one specification to monitor high-frequency events adds

only less than 1% overhead. In both E1 and E2, the memory overhead does not

always increase with the size of the test sets. This results from my use of a lock-

free concurrent queue for predicate parameters with ∀ quantification (e.g., Spec 1

checks “for all” way points); in this implementation, the size of the queue depends

on the timing of evaluating the predicate (e.g., “its scheduler contains the task”)

and some optimization parameters defined for the concurrent queue, which causes

the observed discontinuities.

I also measured the size of the trace files generated as a measure of the

BraceAssertion overhead (Fig. 4.6). Each task requires at least two timed words in

the trace file. Even in the largest test set, the sizes of the trace files are 145.2 and

218.6 KB for E1 and E2, respectively, which is a very reasonable size for the ECA

monitor to process.

Figure 4.6: Size of Traces Generated (in KB)

112

4.5.5 RQ2: The Effectiveness of BraceAssertion

For each trace from E1, E2, and E3, I used the synthesized ECA monitor to

verify the trace and compared the number of reported violations with my injected

errors. In all cases, my synthesized monitor was able to find the injected violations.

In my first few runs of E2, my ECA monitor located many more violations than the

number injected. The application developers quickly determined that these were

actual errors resulting from synchronization faults in the coordination across the

distributed agents. Ultimately, I used an implementation with these bugs resolved

for the results.

When I executed E2 on the corrected version of the application, I successfully

detected all of the injected violations, but I also detected one additional violation in

the case of 384 tasks and two additional violations in the case of 3072 tasks. I devised

and executed E2-Wild to adjust the timing constraint to attempt to find more subtle

errors in the application. Fig. 4.7 shows that when I restrict the timing constraint

from 40 seconds down to 10 and execute the dual monitors without injecting errors,

I find violations “in the wild” in all cases. The application developers confirmed that

these violations are the result of inefficient thread management and synchronization

in the application.

Because dynamic tasks are more difficult for the patrol application to gener-

ate, checking the third specification for very long traces was not possible. For E3, I

checked violations for the third specification with injected errors for 6 and 64 tasks;

my ECA monitor found all injected violations.

113

Figure 4.7: E2-Wild: Finding Real Bugs

4.5.6 RQ3: ECA Monitor Efficiency and Unique Features

For all the traces generated from E1 and E2, it took the synthesized ECA

monitor seconds or less (around 4 seconds for the largest trace in E2) to give veri-

fication results; these speeds are too quick for VisualVM to profile usage. For this

reason, I used the largest trace from E2 and increased its size by 10 times as a basis

for the experiments here.

I first measured the performance impact of lazy initialization, which acti-

vates the ECA monitor only when the initial event is detected in the trace and

deactivates the monitor as soon as the monitor reaches an accepting (or rejecting)

state. I measured the CPU usage and memory consumption with and without lazy

initialization (Fig. 4.8). Though there is a small amount of overhead required to

maintain a registry of every ECA for activation, the overall performance reduction

is effective. I believe the saving is mainly due to number of (specification related)

concurrent data structures saved for monitors not activated or deactivated.

Finally, I used E5 to measure the performance impact of setting the param-

eters on the lock-free concurrent queue. When the size of the buffer is low (e.g.,

114

Figure 4.8: Lazy Initialization

10 to 30 timed words), the CPU and memory usage are quite high (Fig. 4.9) due

to frequent context switching and conditional synchronization. When the size is

very large, CPU utilization is marginally impacted, while memory usage is more

significantly impacted due to wasted space in the buffer. The running time, for all

settings, remains flat around 60 seconds. These results demonstrate that a balance

in defining the size of the buffer is important.

115

Figure 4.9: Trace Buffer- ECA Monitor

4.5.7 Threats to Validity

A potential threat to the external validity of my work arises because I eval-

uated BraceAssertion using a single application. I have attempted to mitigate this

issue by choosing a real world application that is representative of a broad class

of cooperative CPS applications. I also chose correctness properties that exercise

diverse aspects (e.g., qualitative, quantative, and first-order expressiveness) of the

BraceAssertion framework. Though I used a limited number of specifications, my ex-

periments increase the number of waypoints dramatically to activate more instances

of monitors, which is more relevant to real requirements of CPS applications.

With respect to construct validity, I measured the CPU and memory over-

head of my approach using the free VirtualVM instead of a commercial-level tool like

JProfiler8. In addition, the impact on the running time of the observed application

is hard to assess. I measured a decrease in runtime when running an increasing num-

ber of monitors, which is counter-intuitive. However, I believe that this is reasonable

8www.ej-technologies.com/products/jprofiler/overview.html

116

for CPS because the interdependencies among multiple threads and events are not

always deterministic and cannot be measured as in traditional software systems.

4.6 Related Work

In addition to the previously described work on runtime-verification and

behavior-driven development, this paper is informed by work on runtime monitors

based on temporal logics and other runtime monitors mainly designed for efficiency.

Monitors Based on Temporal Logics. Efforts in real-time temporal

logics have resulted in Metric Temporal Logic (MTL) [105] and Metric Interval

Temporal Logic (MITL) [8], which check execution traces for real-time properties.

State Clock Logic (SCL) [160] includes prophecy and history clocks and is decid-

able by a simple decision procedure that relies on event clock automata. Eagle [19]

is a fixed-point based logic capable of supporting MTL with bounded space/time

complexity. This line of work introduces metrics (often with relaxed punctuality)

into temporal logic and enables synthesizing decidable monitors. These approaches

only support propositional logic, which cannot express quantification and predicates.

Metric First-Order Temporal Logic (MFOTL) [44] adds first-order logic expressive-

ness and metrics to quantify timing constraints [22]. This work might be most similar

to my approach, however, it does not measure runtime performance and cost, and

there is no implementation to show this approach can work in a manner that is not

intrusive to functional and non-functional behaviors of monitored applications.

Efficient Monitors. Based on JavaMOP, an optimization for parametric

runtime monitoring relies on efficient data structures [96]. This is similar to my

117

approach; I aggregate repetitive atomic events to significantly reduce the number

of events to be processed, and I use a global transition table backed by an effi-

cient data structure. my approach is also similar to [154], where inter-property and

intra-property monitor compaction deal with large numbers of monitors and high-

frequency events. Another way to improve the efficiency of runtime monitoring is

to apply static analyses to eliminate unnecessary instrumentation [31]. Since the

underlying BDD for BraceAssertion requires manual instrumentation, this approach

is orthogonal and complementary to my framework. There are a few existing effi-

cient specification languages that I could use as the basis of my framework [150],

however I believe the wide popularity and intuitiveness of BDD makes my work

more accessible to real CPS practitioners.

4.7 Research Contributions

In this chapter, I made the following contribution:

Research Contribution 3: Create BraceAssertion as a new intuitive and expres-

sive language to specify CPS properties with timing constraints (qualitative and

quantative) and predicate logics. I support BraceAssertion with dual monitors for

efficient online timed trace generation and effective offline monitoring of properties

violation. This work lays solid foundation for efficient, effective, and more expressive

(e.g, to be able to capture global properties violation) online runtime verification.

118

4.8 Chapter Summary

This chapter brings Behavior-Driven Development (BDD) into runtime ver-

ification of CPS applications. To provide a balance between expressiveness and ac-

cessibility, I bridge the gap between BDD and Metric Temporal Logics (e.g., SCL)

and first order logic. I support the approach using a dual monitor architecture and

algorithms, build a prototype on top of aspect-oriented programming, and show the

framework to have minimal runtime overhead for the host applications.

119

Chapter 5

BraceBind: Combining Real-Time Simulation with
Runtime Verification for Cyber Physical Systems

With BraceAssertion and its supporting monitors, CPS developers are able

to capture those subtle bugs in CPS applications (e.g., bugs in the underlying dis-

tributed algorithms, and concurrency issues). However, debugging CPS is compli-

cated by the fact that the correctness is dependent on the real-time interaction of

the cyber portion of the system with some physical world. In general, existing ap-

proaches to debugging CPS either evaluate the cyber portion of the system against

a (usually not very representative) simulation of the physical environment or deploy

and test the cyber portion in a limited number of real environments. In this chapter,

I introduce BraceBind, a middleware that brings expressive real-time simulation and

real-world evaluations under one umbrella to support robust runtime verification of

CPS. BraceBind uses an intuitive approach to specifying the physical model inter-

faces that allows integrating the cyber portion with different types of physical models

(e.g., transducer models, rigid dynamic models, and environment models) created

in various simulation platforms (e.g., Simulink and LabView). BraceBind also pro-

vides annotations that allow connections to these real-time simulations to be easily

replaced with connections to an actual physical environment, e.g., to measurements

from sensors. This chapter describes my novel time synchronization algorithms and

120

efficient data integration with microsecond latency, which are needed to bring real

time physical process simulation into CPS runtime verification to detect subtle bugs

that occur when cyber components interact with physical processes in unexpected

ways. The use of BraceBind removes the need for a physical deployment of a CPS

for every debugging activity, which can often prove too expensive or even impossible.

I evaluate the accuracy, efficiency, and effectiveness of the BraceBind middleware

on an empirical study of a real CPS smart agent system.

5.1 Introduction

Cyber-Physical Systems (CPS) are gaining momentum both in academia and

industry and have been applied to myriad applications in health, structural moni-

toring, energy management, autonomous vehicles, and many other fields. Compared

with the growth of the domain in general, verification and validation of complete

CPS lags far behind [194]. Anecdotal failures are common and, after post hoc analy-

sis, the failures are often traced back to a mismatch between the logical and physical

components of the complex system. As just one example, in 2003, failures originat-

ing in a very localized piece of power equipment connected to a much larger electrical

grid triggered the failure of the grid’s software management system, which in turn

caused a large-scale power blackout lasting more than 20 hours [4]. Considering that

CPS have been widely applied to mission critical application areas and are expected

to continue to grow in prevalence in these domains, robust approaches to verifying

the intertwined physical and logical components are an essential research objective.

However, unlike finding bugs in traditional software systems, which have

121

only cyber components, bugs in CPS are often tied to the introduction of physical

components. Such bugs are often induced by limitations and misrepresentations

in the software interface to physical hardware. This is exactly the challenge that

manifested in the electric grid example above; the control software embodied implicit

assumptions (e.g., the maximum possible voltage loaded in the electric grid) about

the underlying physical components that simply failed to hold at runtime. Such

implicit assumptions are rarely externalized because today’s technologies make it

difficult for CPS designers and developers to express these assumptions, and they

are often impossible to infer automatically with any reasonably sufficient precision.

An in-depth study of CPS designers and developers showed that the state of

art in formal methods (e.g., theorem proving and model checking), simulation, and

testing are not sufficient in capturing these bugs that arise from interactions between

cyber and physical components [194]. As a complement to formal methods and

testing, runtime verification provides a “last line of defense” in capturing these subtle

bugs. However, in CPS, the physical properties of the deployment environment

are often difficult or impossible to replicate at development time, resulting in the

deployed application encountering unexpected conditions. For example, the designer

of an autonomous vehicular system may assume (and benchmark) that applying a

given amount of power to the motor for a specified amount of time causes the vehicle

to move a specific distance (or at least within a given range of distances). However

if the environment changes (e.g., the coefficient of friction of the road surface or

the incline of the surface) changes, the assumption may fail to hold. This is a

simplistic example chosen to make the point; it is easily (and commonly) avoided by

122

autonomous vehicle developers, but more insidious and harder to detect versions of

the same fundamental problem routinely creep into deployed CPS systems [4, 133].

The de-facto standard in CPS runtime verification is to perform the end-to-

end system tests after deploying the complete CPS system to the target deployment

environment. However the deployment process itself is often very expensive and time

consuming (e.g., road tests for autonomous vehicles) or not possible (e.g., for rover

deployed to the Mars). Such a debugging approach that relies on the deployment

process poses non-trivial challenges for creating an accessible and repetitive testing

environment, which is essential for CPS (especially complex ones). In this chapter,

I motivate an integrated testing environment that can combine real time simulation

of physical processes with runtime verification; the debugging environment can be

used to identify any incorrect assumptions about the underlying physical processes in

those challenging environments. For instance, my motivating electric grid example

would be greatly enhanced by a debugging environment in which the control software

can be tested against simulated physical models of the grid itself before deployment.

With the help of an expressive runtime verification framework [195, 196], essential

properties of the control software (e.g., the fact that no power line at any time has

overloaded voltage that is more than 765 000 V) can be specified and tested.

Concretely, this chapter makes the following contributions:

◦ I introduce real-time simulation of physical components into runtime verification

to help expose CPS developers’ implicit assumptions about the underlying phys-

ical components in the deployment environment.

123

◦ I create the BraceBind middleware that handles challenges associated with time

synchronization and data integration essential for real-time simulation across the

heterogeneous simulation platforms needed for runtime verification of CPS.

◦ I provide a simple model interface specification and tailored annotations for Brace-

Bind to “glue” cyber components and various real-time simulation of physical

components into an integrated runtime verification environment.

◦ I introduce annotations that allow connections to real-time simulation to be easily

replaced with connections to actual measurements of the physical environment

(e.g., from sensors).

◦ I evaluate the approach using a real CPS application of a smart agent system.

5.2 Motivation and Related Work

Runtime verification of CPS will be greatly enhanced by incorporating real-

time simulation of physical models. However, a few significant challenges in doing

so remain open in the context of the current literature and state of the art.

The first of these challenges lies in the mismatch between the language of

such physical models and the language(s) used to implement the cyber portions

of CPS. To incorporate real-time physical models into runtime verification, I must

first transform the physical models or simulations into executable modules (e.g., C

or C++). Several existing simulation platforms provide built-in or plug-in utilities

for such physical model transformations. For example, Simulink Coder1 (formerly

1http://au.mathworks.com/products/simulink-coder/

124

Real-Time Workshop) transforms Simulink models into C++ code, and the LabView

C Code Generator2 can transform LabView models into C code or Windows DLLs.

Other work in the literature has also enabled the generation of C code from Modelica

models [69,142].

However, all of these existing tools require basic configurations to be set up

before code transformation can happen. For instance, in Simulink Coder and Lab-

View C Code Generator, one must choose a fixed step size and appropriate solver

algorithms. As its name implies, the step size (τs) remains constant throughout the

simulation. However, the real time required to execute each step (τp) varies depend-

ing on the hosting machine and rarely matches τs. Since τs is generally much larger

than τp, some time synchronization behavior is required at runtime [43]. However,

τs is set statically based on experience, which can result in values that are either too

large (causing a loss of data accuracy) or too small (making it impossible for the

host machine to finish one step within the step size). Also when time synchroniza-

tion is required across different models hosted in different computation units, clock

drift inevitably causes errors in local time synchronization algorithms (especially for

smaller step sizes).

My solution within BraceBind determines the step size automatically based

on the deployment machines and uses a network based time synchronization algo-

rithm to synchronize τs with τp to deal with clock drift. Moreover, in a real-time

simulation environment, models that require a smaller step size (e.g., a rigid dy-

namic body model requires a microsecond step size to match the simulated physical

2http://sine.ni.com/nips/cds/view/p/lang/en/nid/209015

125

device) have to synchronize with models with a (much) larger step size (e.g., sensor

models generally require a millisecond step size) with (significant) delay imposed

on the former. To avoid losing the required accuracy (by unnecessarily waiting

for slower models), the de-facto standard in simulation (including in Simulink Real

Time3 and dSpace Real Time4) is to deploy a (often very large) physical model with

all the components as subsystems; this model is then centralized and executed on a

dedicated server. The step size for the model is determined by the fastest running

subsystem. This approach wastes resources, especially for those models that do not

require this finer level of step size (which could be a majority of the models in a CPS

application). Further, this approach is not scalable with increasing complexity of

models, and it is not applicable for establishing a real-time simulation environment

that incorporates models across different simulation platforms (e.g., Simulink and

LabView). I introduce a novel concept TimeZone, which groups models based on

their timing requirements. This allows different levels of time synchronization inside

and outside of a specific TimeZone.

The complexity of CPS systems in general demands heterogeneous simu-

lation environments spanning various physical domains [87, 140]. Even with the

presumption that each domain provides tools to transform models into executables,

integrating them into a complete test environment remains a non-trivial research

challenge. For instance, at runtime, the input and output parameters of a vehicle

kinematic model (in Open Dynamic Engine [143]) may need to be connected with a

3http://au.mathworks.com/products/simulink-real-time/
4https://www.dspace.com/en/inc/home/support/suptrain/systems.cfm

126

controller model (in Simulink) and a few sensor models (e.g., accelerator model built

in SystemC [144]). Function Mock-up Interface (FMI) [66] provides interfaces to in-

tegrate physical components across different simulation platforms. However, FMI

requires simulation platform vendors to strictly support FMI function calls, which

is not practical. Moreover, the two fundamental challenges in integrated simulation,

namely time synchronization and data integration are left for developers to handle,

which is complex and error prone. In my solution, CPS developers just need specify

the input and output interface for each physical model, and BraceBind converts the

simulation models into executable modules, handling time synchronization and data

integration across models automatically with only microseconds delay.

My work is in line with Hardware-in-the-Loop testing [43,73,79,191], which

is becoming increasingly common in practice. In [79], a real-time simulation en-

vironment with microseconds latency is established to test AC motors. However,

the environment is specially designed for AC motors, and each simulation module

is hard-wired to a specific processor. In comparison, my solution is built on top of

a generic message passing framework, and is therefore not designed for any specific

hardware or tied to any specific processors. Work in co-design [74, 129] validates

device function for a wide range of operating conditions. In this approach, the real

device communicates to mathematical models which are implemented as FPGA cir-

cuits or processor instructions; the models are executed in real time to simulate

the interacting environment. In comparison, I use off-the-shelf simulation platforms

(e.g., Simulink and LabView) and existing physical models for the given CPS appli-

cation (which are created anyway during prototype phase). Also as I bring real-time

127

simulation into CPS runtime verification, I provide glue that enables switching the

test environment from a physical setting to a real-time simulation setting, even en-

abling test settings that consist of combinations of physical devices and simulation

models. In [135], a virtual prototype of an entire cyber physical system is built inside

the SystemC simulation environment. Besides the large amount of work required

to create the necessary different kinds of models, the cyber part is also prototyped.

Such an approach comes with the common disadvantage of pure simulation: the fact

that the prototyped CPS will likely not match the actual deployed CPS. In compar-

ison, BraceBind integrates (existing) simulation models from (popular) simulation

platforms to test real implementations of CPS applications based on existing work

in runtime verification.

5.3 Interface Specification for Physical Models and the Cyber

To establish and connect a real time simulation to the cyber portion of a CPS,

BraceBind requires a few essential pieces of information from the physical models

and the cyber part of the CPS. I design an XML Schema Definition (XSD) through

which the CPS developer provides the required input, output, and a few other basic

pieces of information for each physical model, and I use a specific annotation class

to define input (to actuators) and output (from sensors) connecting the cyber part

of the system to the real time simulation and the physical environment. I use the

physical models for an electric vehicle used for the evaluation as examples throughout

the section.

128

5.3.1 Model Interface Specification

For each model required in the real-time simulation, the developer uses XML

to provide information of the input, output, and the basic information for the model.

For instance, to establish a real-time simulation for an electric vehicle traveling

across different terrains, I would like to replace the actual vehicle with a simulation

of the vehicle, based on a physical model of its expected behavior. To do this, I

need a dynamic body model for the vehicle. No matter how complex the model is, it

requires the input for current angle change and drive force, and the model outputs

the current position and angle of the vehicle. BraceBind also requires some basic

information about the model and its realization in order to be able to connect it

to the CPS implementation. This information includes the simulation platform the

model is currently created under (e.g., Simulink), the file name for the model (e.g.,

slx or mdi file), the solver algorithm (e.g., Runge-Kutta, Dormand-Prince, or Euler),

and a few other essential pieces of information. BraceBind uses this information to

generate executables (C or C++) from the existing model file. To help control the

simulation and its integration with the cyber part of a CPS, the CPS developer

provides a minimum and maximum for the simulation’s step size and the name of

the TimeZone the model belongs to. The settings for the step size are used by

BraceBind to find an optimal value for the fixed step size based on the deployment

machine. TimeZone is used by BraceBind to unite physical models with similar

timing requirements into a group to achieve time synchronization across all the

models while not sacrificing required accuracy within the group. This is described

in more detail in Sec. 5.4.5.

129

The following XML is part of the specification for the aforementioned vehi-

cle’s dynamic body model. In the sample input, I use “ModelSpecific” to include

those input parameters that may be set statically or empirically (e.g., Vehicle Mass),

and use “AppSpecific” to include those input parameters whose values come from

other models in the same simulation environment (e.g., current angle). One impor-

tant thing to note is the value of current angle change (“Angle Change”) comes from

a model called “CyberDelegate”. This model is created automatically by BraceBind

as a facade between the cyber part of the system and the real-time simulation. The

input and output for the model are defined in the next section. For brevity, I skip

the discussion of the schema and refer readers to https://goo.gl/7YzvmQ for more

details.

<?xml version=”1.0” encoding=”utf−8”?>
<Model>
<Name>DynamicModel</Name>
<Platform>Simulink</Platform>
<ModelType>Dynamic</ModelType>
<FilePath>/user/james/simulink/dynamicmodel.slx</FilePath>
<OutputPath>/user/james/rtse/dynamicmodel.cpp</OutputPath>
...
<Input>

<Integration>
<FixedStepSize><Min>0.00001</Min><Max>0.0001</Max>
</FixedStepSize>...

</Integration>
<ModelSpecific>

<Param>
<DataType>Double</DataType><Name>Vehicle Mass</Name>
<Value>1.8118</Value>

</Param>
</ModelSpecific>
<AppSpecific>

<Param>
<ModelName>CyberDelegate</ModelName>
<Name>Angle Change</Name>

</Param>...
</AppSpecific>

</Input>
<Output>

<DataPack>
<DataType>Double</DataType><name>X Position</name>...

</DataPack>

130

</Output>...
</Model>
</xs:schema>

5.3.2 Annotations for physical aspects

A primary motivation of my work is to provide “glue” to connect cyber com-

ponents to values that reflect the physical environment, whether these values come

from real-time simulation or from physical transducers (e.g., sensors and actuators).

In BraceBind, this glue comes in the form of annotations that provide a unified view

of the physical system and specify how the simulation or transducers connect to

that system model.

In my previous work on CPS runtime verification [195,196], I have developed

an intuitive specification language based on a determinizable timed automaton [9]

called BraceAssertion. This assertion language is coupled with a practical online

runtime verification framework, that is efficient, effective, and specifically designed

for CPS. In its current form, BraceAssertion uses a Behavior Driven Development

(BDD) [26] style annotation to connect implementation with specification. In this

work, BraceBind extends the BDD annotation to connect the cyber portion of the

implementation with the real-time simulation via the “CyberDelegate” model pro-

vided by BraceBind. More specifically, I add a BDD annotation class called Phys-

icalVariable, which is used to differentiate those variables in the cyber part of the

implementation, values of which either come from sensors or are used (often as a

result of a control algorithm) to command actuators. When connecting the variable

to a real-time simulation, the physical variable has a property “Type,” which deter-

131

mines whether the value of the variable is used as an input to the “CyberDelegate”

model (“Actuator”) or as an output from the “CyberDelegate” model (“Sensor”)5.

For instance, to supply “Angle Change” input to the “CyberDelegate” model,

the developer provides the annotation in Fig. 5.1. BraceBind provides an instru-

mentation process to locate the variable (“angle”) and insert a statement after the

value assignment. The statement will report the changed data to the “CyberDele-

gate” model using BraceBind’s lightweight and very low latency messaging service

(Sec. 5.4.3). While the example shows the annotation attached to a particular

method, it can also be provided at the class level6. Another thing to note from

the example is the property “mode”. The value “Simulation” means the variable is

connected to the real time simulation, while the value “Physical” means the variable

is connected to a real device. There is also a project level “mode” which can connect

the entire cyber part with a real time simulation (“Simulation”) or with a physical

environment (“Physical”).

5.4 BraceBind

In this section, first I briefly explain the BraceBind architecture, and then

explain in detail the key algorithms inside BraceBind. Throughout, I demonstration

how BraceBind address the challenges identified in Sec. 5.2.

5To simplify the example, I connect the “CyberDelegate” model directly with vehicle Dynamic
model; in the experiment, there are accelerometer and gyrometer models that supply data to
the “CyberDelegate” model, and there is a motor actuator model that receives data from the
“CyberDelegate” model.

6In future work I will explore extending BraceBind’s annotation to both the the project and
statement level.

132

@PhysicalVariable(name="Angle_Change",

variable="angle",

type="Actuator",

mode="Simulation")

public void onSensorChanged(SensorEvent event) {

//... somewhere in the function

float orientation[] = new float[3];

SensorManager.getOrientation(R, orientation);

mBearing =

(float) (orientation[0] * (180 / Math.PI));

//... somehwere else in the function

velocity = (0.15f);

angle =

((mBearing - desiredBearing) * turn_factor);

}

Figure 5.1: Sample use of physical variable annotations

Figure 5.2: BraceBind: Real-time Simulation Integrator

5.4.1 BraceBind Architecture Overview

Fig. 5.2 shows how CPS developers use the BraceBind approach to integrate

real-time simulation of physical portions of the CPS into the development process.

A CPS developer uses the XML specification in Sec. 5.3 to specify the input and

output parameters for each needed physical model; because of the heterogeneity of

133

many CPS environments and preferences by CPS developers, these physical models

may be running on heterogeneous simulation platforms. BraceBind then automat-

ically transforms the model to create an executable for each model; generates the

input and output programming interfaces for each model; and creates a master syn-

chronizer, which coordinates the data exchange and time synchronization among the

models, and between the models and the CPS program. CPS developers can then

manually deploy (or BraceBind can deploy automatically) these synthesized com-

ponents, enabling a real-time simulation environment as part of the CPS testing

environment. In connecting the BraceBind-assisted real-time simulation to the CPS

testing, not only are idiosyncrasies related to timing and synchronization handled

on the developer’s behalf, but sensor models, actuator models, kinematic models,

the master synchronizer, and the CPS system can be deployed to their own ma-

chine(s) and devices. In the BraceBind approach, the only input required for CPS

developers to provide are (1) the specification XML to guide the entire automa-

tion process (manual deployment is possible but is reserved for hand-optimizing

the testing environment) and (2) the annotations to connect a selected number of

PhysicalVariables or the entire cyber part of the system with the real-time simu-

lation. Compared with the de facto standard in [66], flexibility, intuitiveness and

most importantly practicality are the key advantages and my main contributions.

The main algorithms in BraceBind can be divided into four categories: Model

Transformation, Data Integration, Time Synchronization, and Master Synchronizer.

I will walk through each category in the remainder of this section.

134

5.4.2 Model Transformation

Algorithm 2 shows BraceBind’s main algorithm to generate, instrument, and

deploy the real-time simulation modules using the specified physical models. The

algorithm iterates over each model in the XML specification, uses code generation

scripts provided by the simulation platforms (e.g., lvcg from LabView C Generator

or rtwbuild from Simulink) to generate C/C++ code automatically and to deploy it

to the designated path (line 3). Then the algorithm instruments the generated code

(e.g., for Simulink generated code, it is necessary to change the specified location

of a few referenced header files and the access permissions for a few variables in

preparation for BraceBind’s later tasks) (line 4). The algorithm then instruments

the generated code with data integration code and copies over to the deployment

path a few library files required for the data integration (line 5); more details on

the data integration process are provided in Sec. 5.4.3. Afterwards, the algorithm

instruments the generated code with time synchronization code and copies over to

the deployment path a few library files for time synchronization (line 6); similarly,

more details on the time synchronization algorithm are given in Sec. 5.4.4. Later

the algorithm compiles the generated code into an executable (line 7), and registers

the model with the deployment path of the executable to the master synchronizer

(MS), which coordinates and monitors the real- time simulation environment (line

8).

135

Algorithm 2 Model Transformation
1: models← lookupModelSpec
2: for modelinmodels do
3: dpath← generateCode(model)
4: instrument(dpath)
5: addDataStub(dpath)
6: addT imeSynchronizationStub(dpath)
7: compile(dpath)
8: register(dpath,model)

5.4.3 Data Integration

In BraceBind, the generated executable for each model communicates with

each other and with the master synchronizer (MS) using a Message Passing System

built on top of ZeroMQ [88], which provides a scalable solution and a message deliv-

ery latency less than 1 millisecond when the message size is less than 100KB [169].

When evaluated in my testbed, the latency for messages of size less than 50KB

in the same machine is less than 65 microseconds and less than 400 microseconds

among computers in the same network (connected via 1G Ethernet).

In the process of generating executable from each model, BraceBind gen-

erates a class implementing the interface DataIntegrator shown in Fig. 5.3. The

DataIntegrator has four key functions:

◦ startPublisher is called to start up a ZeroMQ agent that listens to subscription

for the model output values from ZeroMQ agents for other models in the same

real-time simulation. For each subscription request, the publisher retrieves the

most current data from a lock free concurrent queue (OutputQueue). The data in

the queue is provided by a separate function discussed later; this approach avoids

locks and keeps the output data “fresh”. To enable this behavior, the publisher

also registers its IP address and port number with the Master Synchronizer (MS).

136

The MS provides a directory service for each real-time executable (identified by

its publisher). This enables publishers and subscribers to send messages directly,

which is essential for efficient message exchange for real-time simulation.

◦ startSubscribers is called to start up one or more ZeroMQ agents to act as

subscribers to publishers for the model’s required input values. The subscribers

contact the master synchronizer to find the needed publishers. The subscribers

subscribe to the input data with a much smaller (e.g., 4 times faster) interval than

the fixed time step specified for the physical model they are serving. This ensures

that the input data for the physical model is current in the face of network latency

and noise. The retrieved input data along with its timestamp is stored inside a

lock free concurrent queue (InputQueue).

◦ getRealTimeInputValueFromQueue is called before current physical model per-

forms a time step and retrieves the most recent input data from the InputQueue.

◦ addResultToQueue is called when the current physical model completes a time

step; this function stores the output data into the OutputQueue.

class DataIntegrator {

public:

virtual void startPublisher(string modelName,

unsigned int portNumber) = 0;

virtual void startSubscribers(vector<string>& inputModels) = 0;

virtual HashMap getRealTimeInputValueFromQueue() = 0;

virtual void addResultToQueue(HashMap currentResult) = 0;

// other methods omitted for brevity...

}

Figure 5.3: DataIntegrator Interface

137

5.4.4 Time Synchronization

In real-time simulation, it is essential to guarantee that the fixed step size

(τ) in simulation is equal to the actual time (T). This is especially important in

BraceBind, as some physical components may be simulated but others may not

be. In [43], the clock frequency of a timer in the host computer is obtained at the

beginning and end of the step function of a simulation model; the difference of these

two values is taken as the actual time required for the model to perform one step (T).

The difference between T and τ (generally, τ is much bigger than T) is used as an

input to a fine-tuned delay function to maintain the time synchronization between

τ and T . However, this previous work is constrained to a single host platform

(the Windows operating system) and cannot deal with clock drifts across different

computation platforms. In this chapter, I define a hierarchical approach to handle

time synchronization challenges in real-time simulation. In this section, I describe

the challenges and my solutions to guarantee accurate local time synchronization for

each model. In Sec. 5.4.5, I will explain my solution for time synchronization across

models and finding an optimal solution for each model’s step size in the deployment

environment.

First, in generating a real-time executable for each model, I automatically

deploy a Network Time Protocol (NTP) [130] daemon into each host machine. This

step guarantees about one millisecond time synchronization accuracy across nodes

in the real time simulation (intra-net) [27].

Secondly, in the same process, BraceBind generates a class (TS) implement-

ing the interface TimeSynchronizer in Fig. 5.4. The TimeSynchronizer has four

138

key functions:

◦ initialize retrieves the assigned step size from the master synchronizer and

stops time for running the model in the deployment environment.

◦ moreSteps controls the loop that the current physical model executes each time

step. For each physical model in the real-time simulation, I can terminate it either

from the master synchronizer or assign a fixed number of time steps to execute.

◦ startTimeSync takes the correct time stamp of the deployment machine before

the physical model executes a step function.

◦ endTimeSync takes another correct time stamp of the deployment machine after

the physical model execute a step function. The difference between this time

stamp and the previous one is the actual time this step T . If assigned step size τ

is bigger than or equal to T , an accurate nanoseconds level wait function is called

for the period of τ − T , otherwise, a timeout error is reported.
class TimeSynchronizer {

public:

virtual void initialize(string modelName, float stopTime,

float stepSize) = 0;

virtual bool moreSteps() = 0;

virtual void startTimeSync() = 0;

virtual void endTimeSync() = 0;

// other methods omitted for brevity ...

}

Figure 5.4: TimeSynchronizer interface

Besides the apparent difference that the fixed step size is assigned from the

master synchronizer, the time synchronizer (TS) implements similar functionality as

in [43]. However, my TS not only provides additional auto detection of the deploy-

ment environment (BraceBind currently supports Windows, Ubuntu, and Mac OS)

139

and activates required platform-specific library calls (e.g., host get clock service

in Mac OS and QueryPerformanceFrequency in Windows), but also provides more

accurate wait functions. For instance, in my initial experiment, I have tried differ-

ent types of system wait or sleep functions. I found even the most accurate wait

function provided by the system (nanosleep in Linux and Mac) does not wait for

the exact time, which is not acceptable in real-time simulation. For instance, one

of the physical models in my evaluation application exhibits the following proper-

ties has a value that sometimes (legitimately) fluctuates greatly. If the data for a

previous time step is mistakenly used as input for the current time step, crucial

physical elements (in this case, the angle of the vehicle dynamic body model) will

be (potentially dangerously) misrepresented. Instead of relying on a sleep func-

tion provided by the system, which is heavily dependent on the operating system

version and configuration, I define my own more reliable wait function that uses a

hard loop and polls a platform-specific accurate nano-seconds timing function (e.g.,

clock get time in Linux and Mac). From my experiments, this results in highly

consistent values for the real-time simulation.

5.4.5 Master Synchronizer

As the kernel of BraceBind, the master synchronizer (MS) provides the fol-

lowing functions to make establishing real time simulation possible: 1) directory

service for the underlying message passing system; 2) time synchronization across

models in the real time simulation; 3) monitor for the the real-time simulation envi-

ronment, 4) logging for models’ output subscribed by the application for debugging

140

analysis. These functions are achieved inside Algorithm 3.

Algorithm 3 Master Synchronizer - Main
1: if modelsTransformed(modelSpec) then
2: currentMode← Trial
3: for model ∈ activatedModels do
4: remoteStartModel(model)

5: currentMode← RegoCompleted
6: outputCurrentMode()
7: currentMode← Optimize
8: for model ∈ activatedModels do
9: createT imeZoneAgent(model)

10: optimizeStepSize()
11: currentMode← ready
12: generatePhysicalV ariableBinding()
13: while !receiveStopFromRV() do
14: if receiveInputFromRV () ∧ currentMode = ready then
15: currentMode← start
16: startModels()
17: startMonitor()

18: shutDownModels()

In the algorithm, after all the physical models in the XML specification

are transformed into executables and deployed into designated path, the MS enters

the Trial state (lines 1-2), which remotely activates the models in the real-time

simulation. After all of the models register with the MS (as described previously),

the MS enters the “RegoCompleted” state and publishes the mode to all of the

models in the real-time simulation. The models can then look up the IP and port

number for models providing their required input data (lines 3-6). Then MS enters

the “Optimize” state.

In real-time simulation, it is intuitive that physical models with a smaller

step size should wait for those (often interactive) physical models with a larger

step size to achieve true real time simulation. However, to save processing power

and memory, it is common to use a low-order Ordinary Differential Solver (ODE)

with a smaller step size to reduce local (per time step) and global error to an

141

acceptable level [108]. This makes the intuitive mechanism not possible in real-

time simulation due to the unacceptable level of local and global error (i.e., larger

step sizes introduce larger errors). To deal with this challenge, instead of the de

facto solution of deploying all the models with different timing requirements into a

dedicated yet expensive server with the smallest step size (which is expensive and

wastes resources), I introduce TimeZone. The CPS developer can group physical

models with similar timing requirements into a single TimeZone. For instance, a

CPS developer can deploy the vehicle dynamic model and the environment model

in the evaluation application into one TimeZone that allows microsecond level time

synchronization. Other, less stringent models, can be placed in a different TimeZone

with a larger time step.

Ideally all the models in a given TimeZone are deployed into one machine

whose capabilities are matched to the requirements of the TimeZone. Alternatively,

the models may be able to execute in an intra-net with a clock synchronization

algorithm with sufficient accuracy [98]. For each TimeZone, the MS needs to create

a dedicated timezone agent that subscribes to input data and publishes output data

for the simulation models inside the associated TimeZone, and more importantly

performs each time step while fully synchronizing with other timezone agents. This

requires the timezone agent to wait for the slowest TimeZone at the end of each

time step. The creation of specified TimeZone and timezone agent, and assigning

each model to a timezone are achieved in lines 8-9 of Algorithm 3. The MS then

sets an optimized fixed step size for each TimeZone (line 10); I elaborate on this

optimization algorithm later.

142

After the optimization step, each physical model enters “sleep” mode to

await further commands from the MS. The MS enters the “ready” state and creates

the “CyberDelegate” facade to connect the cyber part of the system to the real

time simulation. As part of the process for creating the delegate, the MS creates

the PSAgent, which reports the start and end of the CPS application to the MS,

which is used to control the life span of the real-time simulation environment (lines

11-12). Once CPS developer starts the CPS application (e.g., using a runtime

verification framework like Brace [196]), the communication between the cyber part

of the system and the real-time simulation starts. When the MS detects the “start”

signal from the PSAgent and the current mode is “ready”, the MS notifies all the

physical models to activate and start executing their step function (lines 13-16).

Afterwards the MS monitors the runtime behavior of each model by subscribing to

the output for all models. If an error is reported for a given model, the MS stops

all the models and reports the error back to CPS developer (line 17). After the MS

detects the “end” signal from PSAgent, it shuts down all of the real-time models

executables and generates log files for each physical variable.

Besides serving as the facade between the cyber and the real time simula-

tion, “CyberDelegate” also has other two functionalities. First, it contains lock-free

concurrent queues for the exchange of data between PhysicalVariables in the cyber

portion of the CPS application and models in the real-time simulation. Second,

it enables logging of those physical variables data for further debugging analysis.

For instance, when the runtime verification framework detects a violation of a CPS

property, the CPS developer can look at the trajectories for those logged physical

143

variables in the property to help debugging subtle errors involving physical processes

and/or regarding the deployment environment.

I return now to the question of how I can optimize the step size for each

TimeZone. I am motivated to optimize these time steps because it is known that

of I can reduce the step size of an ODE solver by a factor of λ, I am able to reduce

local error (per time step) by approximately λ ∗ n + 1 and reduce global error by

approximately λ∗n, where n is the order of the ODE solver [108]. However, reduction

of step size can incur additional computational costs. Because most simulation

platforms only support fixed step sizes once the simulation starts, it is important to

set the step size wisely from the start. I aim to achieve a balance between accuracy

and computational efficiency by computing the best step size for each TimeZone.

Algorithm 4 shows how I achieve this optimization for my real-time simulation

models. I first iterate through each zone to test for each model whether the max

step size (default) works for the deployed machine (i.e., that τ is bigger than T). If

not, the algorithm reports an error (which indicates that the deployment machine

is not suitable for the model or the max step size is not set correctly) (lines 3-

4). I then find the largest, second largest, and smallest step size (as specified in the

models’ XML specifications) in the current zone (line 5-7). I then try to (iteratively)

find whether I can reduce the maximum step size for the TimeZone to the smallest

possible maximum step size of models in the same zone without causing timeout for

any models in the TimeZone (lines 8-14).

144

Algorithm 4 Find Optimal StepSize
1: for ∀zone ∈ T imeSyncZones do
2: for ∀model ∈ zone.models do
3: if !run(model.maxSize,model) then
4: reportT imeOutError(model)

5: existingMaxSize← findMax(zone)
6: maxSize← findMax(zone, existingMaxSize)
7: maxMinSize← findMaxMin(zone)
8: for maxSize > maxMinSize do
9: for ∀model ∈ zone.models do

10: if model.maxSize > maxSize∧!run(maxSize,model) then
11: goto nextTimeZone

12: existingMaxSize← maxSize
13: maxSize← findCandidateMax(zone, existingMaxSize)

14: nextTimeZone:

5.4.6 The Case Study

I evaluate BraceBind using a case study application that existed before the

creation of BraceBind; this is the application I have used for examples.

5.4.7 The Case Study

I used an existing robot planning system, which is a distributed version of

Generalized Partial Global Planning (GPGP) [116]. This system’s planning algo-

rithm is a version of Anytime A∗ customized to distributed planning for a group of

mobile vehicles. Specifically, a group of vehicles is assigned patrols that must visit a

set of way-points. The vehicles negotiate, and each derives a schedule that contains

a subset of the way-points. The schedules are chosen to optimize the combined

utility of the vehicles.

My case study vehicle is based on the Rover 5 Robot Platform7, which uses

four independent motors, each with a hall-effect quadrature encoder and gearbox. I

7https://www.sparkfun.com/products/10336

145

equipped the vehicle with accelerometer and orientation sensors. The evaluation ap-

plication is built in Android and deployed to a Samsung Galaxy S3 phone to control

the rover. I conduct the experiments in a laboratory environment, where there are

three surfaces to mimic different physical deployment environments (wood8, grass9,

and linoleum10) and an overhead camera for both positioning and recording the

tests. Before the experiment, there are existing thoroughly tested physical models

for the vehicle including motor, vehicle dynamic, environment, accelerometer, and

gyrometer.

5.4.8 Research Questions (RQs)

My evaluation answers the following research questions:

RQ1: What is the accuracy of the real-time simulation established by BraceBind

compared with the physical models in their original simulation platforms?

RQ2: What is the accuracy of the real-time simulation established by BraceBind

compared with the real deployment environment?

RQ3: How effective is the runtime verification that uses BraceBind’s real-time sim-

ulation compared with the runtime verification in physical deployment environ-

ment?

8A sample video for wood is at https://goo.gl/PkxDa4
9A sample video for grass is at https://goo.gl/Vv3fF2

10A sample video for linoleum is at https://goo.gl/s097Ag

146

5.4.9 Experiment Design

To answer these questions, I implemented a prototype for BraceBind in C++.

I then ask developers familiar with the existing physical models to create Brace-

Bind specifications for these models, and ask developers familiar with the evalua-

tion application to annotate the application code to identify PhysicalVariables using

supported BDD annotation. Then I use BraceBind to automatically establish the

real-time simulation environment. The real-time simulation environment is running

on two laptops, one running Mac OS X 10.9.3 with 2.5GHz Intel Core i5 and 8G

memory and a second running Ubuntu 12.04 with 2.5GHz Intel Core i5 and 4G

memory. The models requiring microsecond level latency are running in the Mac

machine and other models are running in Ubuntu.

I ask application developers to annotate the code using customized anno-

tation class to identify variables and predicate functions required for the runtime

verification framework [195] to check the following six application correctness prop-

erties: 1) when a vehicle is assigned a task, the vehicle shall have this task in its local

scheduler (P1); 2) the completion time for a given task is bounded (P2); 3) when a

vehicle is assigned a task, the schedule for this task is optimal (P3); 4) the integral

of cross track error is bounded (i.e., the vehicle is not weaving) (P4); 5) the duration

of the main control loop is bounded (P5); 6) the number of messages for each task

negotiation is bounded (P6). These properties are hard to verify by hand because

they are related to the distributed algorithm, timing requirement, and the control

algorithm.

I report results for the following experiments, which are specifically designed

147

to answer the above questions:

◦ Simulation-platform VS Real-time Simulation (E1): I compare each model in the

real-time simulation environment (RTSE) with the model in its original simulation

platform. I create a big simulation model combining all the physical models for

the application and run it in Simulink. I feed 20 random inputs to the model and

RTSE (with the cyber part disconnected and replaced with a program providing

random inputs and recording the outputs from RTSE) with 30 minutes running

time (which is the maximum time it takes for all vehicles to complete all the

tasks in each physical deployment scenario), and compare the output (which is

the trajectory of the rover position including x, y, velocity of x, velocity of y, and

the vehicle’s angle).

◦ Real-time Simulation VS Physical Deployment (E2): I deploy the evaluation ap-

plication on two physical rovers in the controlled lab with three floor settings

(wood, grass, and linoleum). I then create an RTSE with the evaluation appli-

cation (with two identical sets of vehicle related models). For each type of floor,

I change the environment model input (specifically the co-efficiency of drag) to

reflect the friction level on each physical setting. I conduct one experiment for

each floor setting with a separate task issuer assigning 180 tasks (waypoints) for

each experiment. I record x and y position of each rover along with the time

stamp, time of reaching each waypoint both for the physical deployment and the

RTSE.

◦ Real-time Simulation + Runtime Verification VS Physical Deployment + Run-

time Verification (E3): I conduct the same experiment as in E2 but with the

148

runtime monitors embedded inside the application to monitor my six application

correctness properties. I also inject errors in the application to intentionally vio-

late those properties. I record number of errors found by the runtime verification

framework (real + injected) both for the physical deployment and the RTSE.

I report results for each experiment and also discuss a few unexpected and

interesting findings during the experiments. I close this section with a discussion of

key features of my framework, and of some validity discussions.

5.4.10 BraceBind VS Simulink (E1)

Fig. 5.5 plots the difference between each output parameter using the Brace-

Bind real-time simulation vs. direct simulation in Simulink for the 20 different runs.

The figure shows the average difference for each output parameter, along with the

maximum and minimum errors, over the 20 runs. These differences are very small

(the maximum error, across all runs and all variables, was 0.029%), demonstrat-

ing that the real-time simulation environment established by BraceBind is highly

faithful to the original simulation environment. The accurate result is due to my

highly accurate time synchronization, low latency data integration, and step size

optimization; I omit the details demonstrating the individual contributions of these

components for brevity.

5.4.11 BraceBind VS Physical Deployment (E2)

Fig. 5.6 shows the trajectories of one of the test vehicles reaching 19 assigned

waypoints, both in the Linoleum environment and in the BraceBind. This trajectory

149

Figure 5.5: BraceBind VS Simulink

is representative of the trajectories for both vehicles across all 180 waypoints. The

Y axis shows the distance from the vehicle to the next waypoint. The Waypoints

Range series shows the acceptance range of each waypoint (e.g., if the vehicle is

within 25 centimeters of a given waypoint, the vehicle is considered to have reached

the waypoint). The figure shows that the simulation result from BraceBind is highly

consistent with the real deployment environment with average error (over both ve-

hicles and across all trajectories) between 5.76% to 11.20%. my analysis determined

that the errors result from:

◦ the physical models used in the experiments are thoroughly tested, they still

contain small errors with respect to their representation of the physical world;

◦ in my testbed, the positioning of the vehicle is recorded by an overhead camera,

which can process three frames per second; this results in small positioning errors

that impact both the BraceBind deployment and the physical deployment; and

150

◦ I did not build a model of the battery into the real time simulation environment;

I attempted to experiment with fully powered batteries in each experiment, but

the battery dissipation does have a small impact on the error between the two

deployments.

Figure 5.6: BraceBind VS Physical Deployment – Linoleum

Figure. 5.7 shows another physical deployment, where the surface is changed

to wood. Compared to the Linoleum environment, there are a few bumps on the

floor. As the figure shows, though the trajectories of the vehicle are quite consistent,

there are spikes now and then in the physical environment deployment that are not

exhibited in the simulation environment. my analysis indicates that these spikes are

due to the bumps causing the vehicle astray from the planned track. The error range

for the real time simulation in this test is from 5.7663% to 11.3299%. This shows

that, even with unexpected physical conditions (e.g., bumps), BraceBind can still

guarantee an acceptable error range. Further, a more detailed model of the physical

environment (e.g., one that models bumps in the floor surface) would give real-time

151

simulation results that a more faithful representation of the physical deployment

(although the trajectories themselves may not line up if the arbitrary bumps in

the real-time simulation do not end up in the same locations as in the physical

deployment).

Figure 5.7: BraceBind VS Physical Deployment – Wood

During the trial tests before conducting E2, I discovered that the co-efficiency

of drag provided for the physical model of the grass environment is not accurate

(likely because the grass surface in the lab is synthetic grass instead of real grass).

However, the results for the grass environment are still interesting because they

measure how the use of real-time simulation within BraceBind responds if there are

relatively large errors for parameters of the physical models. Therefore, in addition

to having an incorrect co-efficiency of drag, I also reduced the weight of vehicles

by 1/3 without changing the weight parameter in the models. Fig. 5.8 shows that

the resulting error range is quite large (from 17.3215% to 81.7556%). However, I

can still have a pretty faithful representation of the trajectories, which shows that

BraceBind is still able to give a rough feel about how the CPS application might

152

behave in such “uncertain” environments.

Figure 5.8: BraceBind VS Physical Deployment – Grass

5.4.12 BraceBind VS Physical Deployment in Runtime Verification (E3)

In E3, I injected 10 errors for each of the six application correctness proper-

ties. Since injected errors are all logical errors, not surprisingly these injected errors

are detected (which was expected based on my previous work [195,196]; correct error

detection is not a contribution of BraceBind). Fig. 5.9 shows the additional errors

(non-injected ones) that I were able to detect in both the physical deployment and

in BraceBind as supported by real-time simulation. Six of the errors (for P2) were

confirmed by the CPS developers to be actual bugs in the implementation. The

remaining errors are assumed to be true positives if they were found in the physical

deployment and false positives if they were not.

Summarizing the above and the results in Fig. 5.9, runtime verification sup-

ported by BraceBind instead of the physical deployment had 0 false negatives (i.e.,

no (known) errors were not detected) and 1 to 2 false positives (i.e., errors that were

153

“detected” based on the real-time simulation that were not actual errors).

Figure 5.9: BraceBind VS Physical Deployment – Linoleum

Fig. 5.10 shows the results from the same experiment on the wood surface.

Again, both scenarios found all of the injected errors. Here, however, BraceBind

backed by real-time simulation actually missed some confirmed errors (for P2) and

some assumed errors (i.e., those found in the physical deployment for P4 and P5).

This implies a likely small false negative rate in the BraceBind scenario and a false

positive rate that is on par with the prior results. I believe these errors are again

caused by the bumps in the wood floor that are not accounted for in the physical

model.

For brevity, I omit the results for the grass surface. As expected, there are

larger but still reasonable number of false positives (i.e., 5 for P2, 2 for P4, 3 for

P5) again due to the (intentional) inaccuracies in the grass model.

5.4.13 Discussion

In addition to the experimental results I have reported here, I have tested

the impact of removing time synchronization or using a less accurate time synchro-

154

Figure 5.10: BraceBind VS Physical Deployment – Wood

nization in BraceBind. The result is that vehicles in the simulated environments

often get stuck in an endless control loop while trying to reach a waypoint even

with an accurate version of PID controller. I found that the position data can be-

come completely out of sync, and the vehicle is not able to reach the waypoint before

being given a piece of incorrect position data. I also tried using MQTT11 instead

of ZeroMQ; however, the latency of message delivery with MQTT is much higher,

meaning that the output data from the dynamic real-time simulations can not reach

the models fast enough for the vehicle’s view of the (simulated) physical world to

remain in sync.

BraceBind is also able to support LabView models in addition to Simulink

models. For instance, I have used LabView to create the vehicle motor model and

used it in the experiments. The accuracy is good, however the LabView generated C

code requires much greater computational power than the Simulink converted C++

11http://mqtt.org/

155

code, and if I run the combined real-time simulation for more than 30 minutes,

the CPU utilization in my test machine quickly climbs over 100%. I believe I need

a much more powerful host machine to carry out experiments with the LabView

models. My future work will investigate how to measure the requirements and make

recommendations of host machine capabilities.

Compared with the state of the art using dedicated simulation servers run-

ning all simulation models together, BraceBind provides a more scalable and cheaper

solution for a real-time simulation environment. Even the suggested somewhat more

powerful host machine for LabView models is much more affordable than a dedi-

cated simulation server. Moreover, BraceBind combines the real time simulation

with the runtime verification seamlessly which is not provided by any off-the-shelf

products and is one of the first kind.

The empirical results in E3 use mainly my previous runtime verification

framework as the baseline. As proven in [195, 196], my runtime verification frame-

work has a very low number of false positives with no confirmed false negatives.

Moreover, for P2 where I do have existing logs to confirm the real number of er-

rors, I provide the confirmed errors to prove the trustworthiness of the runtime

verification framework and increase the accuracy of the test results.

Though a relatively simple and low speed physical rover is used as the testing

vehicle, the physical models I use are quite representative of any electric vehicle

models both in terms of number of sub-models/subsystems and types (e.g., sensors,

actuators, environment, and dynamic models). As my future work, I am looking

into applying BraceBind for industrial level CPS (e.g., to express a train control

156

system in China).

5.5 Research Contributions

In this chapter, I made the following contribution:

Research Contribution 4: I create BraceBind as a middleware that enables real

time simulation of physical models from heterogeneous simulation platform to inform

CPS runtime verification. With effective CPS runtime verification middleware, this

work allows detection of subtle bugs originated from developers’ uncaught wrong as-

sumptions regarding physical processes in CPS application without repetitive phys-

ical deployment which is either too expensive or not feasible. Since BraceBind

allows two channels of debugging data, one from physical deployment environment

(e.g.,sensors and actuators) and another from highly faithful real-time simulation,

this capability provides the required flexibility, repeatability, and cost control by

CPS runtime verification. Based on this, I am able to provide more efficient and

expressive runtime verification middleware.

5.6 Chapter Summary

In this chapter, I created BraceBind to provide real-time simulation to inform

CPS runtime verification. Firstly, I defined a simple yet expressive model interface

specification in XML; I then extended BraceAssertion annotations to differentiate

physical variables from cyber variables in the implementation and allow physical

variables to take values either from sensors (physical devices) or from models (real-

time simulation). BraceBind is able to automatically convert physical models from

157

various simulation platforms into executables. I also create highly capable algo-

rithms to grant the generated executables with accurate time synchronization and

efficient data integration essential to creating a real-time simulation environment.

The extensive case study proves that the real-time simulation created by BraceBind

is highly accurate. Combined with my prior work on CPS runtime verification,

BraceBind is able to detect subtle bugs CPS as effectively as in the physical de-

ployment environment without all of the commensurate difficulties of debugging in

situ.

158

Chapter 6

Brace: A Middleware for Practical On-Line Monitoring
of Cyber-Phyiscal System Correctness

The previous works combined allow detection of bugs both in Cyber and

Physical worlds. However, developing and debugging CPS remain significant chal-

lenges. Formal Methods, testing, simulation and other state of the art techniques are

not sufficient to guarantee required correctness. Runtime Verification (RV) provides

a perfect complement to above approaches. However, the state of the art RV tools

suffer from either lack of expressiveness or lack of efficiency. Moreover, a few unique

requirements of CPS (e.g., predictability and intuitiveness) exacerbate the problem.

In this chapter, building on my prior work, I present Brace, a middleware for practi-

cal on-line monitoring that abstracts and controls the monitoring of local and global

correctness properties for CPS. Brace provides time synchronization for the events

and attributes collected from distributed CPS application nodes and performs event

filtering on behalf of applications, while guaranteeing predictable behavior of run-

time monitoring in the presence of surges of events from the underlying monitored

CPS. Using an extensive case study on a real-world multi-agent CPS deployed both

on physical rovers and a simulation testbed, I demonstrate Brace as an efficient,

effective, and practical runtime monitoring middleware for CPS.

159

6.1 Introduction

Cyber-Physical Systems (CPS) have been widely applied in various domains,

including but not limited to autonomous vehicles, automated health care, smart

grid, structural health monitoring, and many other mission-critical applications.

However, recent research has demonstrated significant gaps in my ability to perform

quality verification and validation of CPS [102,194]. In fact, the de facto state of the

art for generating correct CPS programs is to deploy the entire system and attempt

to debug in situ [194]. This is some ad hoc form of runtime verification, which

enjoys some popularity in the wider software engineering community. However, in

the context of CPS, significant research challenges remain.

Consider a canonical example of a CPS: an autonomous vehicular system.

I consider a multi-agent patrol application that executes atop a fleet of such au-

tonomous vehicles. In this CPS, a set of unmanned vehicles coordinates to achieve

a provided global monitoring task. To verify whether this system performs cor-

rectly, one must verify that the fleet together achieves the global task; to accomplish

this, one must also verify local tasks assigned to each vehicle. If the global task is

specified as the fleet visiting a set of assigned waypoints given some schedule, then

each agent’s local tasks will consist of the set of waypoints the agent must visit. An

important local property to be checked in such an application is whether the choice

of a particular vehicle to perform a set of waypoints (as its local task) is optimal

relative to a chosen system utility function

As a CPS is often distributed (in the case of my example at a minimum

across the multiple communicating vehicles), correctness is also expressed via global

160

correctness properties. For instance, in my example application, I consider the

following three global properties: (1) given that a particular vehicle is assigned a

particular task (containing one or more waypoints), no other vehicles are assigned

the same task; (2) the number of messages required to be exchanged among the

vehicles for them to reach consensus about a task assignment is bounded; and (3) all

the tasks must be completed within a given time.

In my prior work [198], I introduced BraceAssertion, by which developers can

specify local correctness properties in the form of assertions that are associated with

the individual components of the CPS program. I also built an offline monitoring

framework to check these assertions over traces of program executions. In this work,

I make two significant advances: first, I extend the approach to capture global asser-

tions, which requires collecting events and properties from distributed CPS nodes,

synchronizing time across these events from distributed nodes, and new constructs

for expressing quantitative constraints at a global level. Second, I ensure an efficient,

effective runtime monitor with predictable behavior (e.g., CPU and Memory). As

the common approach to ensuring the correctness of a CPS is to execute the system

in situ, runtime verification is a natural approach to codifying the validation ap-

proach. However, since CPS developers are often domain experts and not software

engineers (or even trained programmers), overly formal approaches are not palatable

to them [194]. Given that runtime verification is my chosen approach and my audi-

ence requires both an effective but an intuitive approach to creating specifications, I

must take care to balance efficiency and effectiveness, which have been shown to be

conflicting in prior work on middleware for runtime verification [18]. For instance,

161

on one hand efficient synchronization and monitoring algorithms are required to

check global properties; on the other hand false negatives (i.e., missed errors) and

false positives (i.e., wrongly reported errors) must be minimized. As a further chal-

lenge, CPS applications are often deployed to embedded devices or smart phones or

in real-time or interactive application domains, and these applications cannot afford

any significant impact on the application’s timing behavior (especially for devices

without a real-time operating system) and thus any performance impact of runtime

verification must be carefully mitigated. Existing approaches to runtime verifica-

tion do not emphasize this aspect; for instance, widely used time triggered online

monitoring frameworks use long sampling periods (during which runtime monitors

sit idle) to ensure predictability [34]. While CPS require a more flexible approach

to setting the sampling period, that alone is not enough; instead, CPS developers

need to be able to specify the resources (e.g., time and memory) to allocate to the

runtime verification process. In summary, cyber-physical systems demand a prac-

tical middleware for runtime verification that is able to address these challenges

collectively. More explicitly, I make the following concrete contributions:

• I extend BraceAssertion to allow programmers to specify global properties

based on events and attributes collected across distributed CPS nodes.

• I introduce Brace, a middleware that enables on-line runtime verification of

cyber-physical systems and is able to detect violations both in local properties

and global properties.

• Within Brace, I design a novel linear programming model and load balancing

algorithms to guarantee predictable behaviors of runtime monitors even with

162

unpredictable surges of events.

• I design new synchronization algorithms to guarantee the correct ordering

of events and attributes collected from distributed CPS nodes and use these

events to check global properties.

• As a backend for Brace, I create a novel model backed by automata to filter

and aggregate events. This is important for reducing the processing overhead

of checking global correctness specifications.

• I extensively evaluate Brace with a real-world autonomous vehicle application.

6.2 The Formal Specification: BraceAssertion

I start with my BraceAssertion model [198] that allows specifying local prop-

erties in an intuitive way using Behavior-Driven Development (BDD) [26], which is

designed to be intuitive to developers. To enable off-line verification using Brace-

Assertion, I translated the intuitive BDD-style specifications into State Clock Logic

(SCL), which I extended with customized annotations. I then check the resulting

predicates using Event Clock Automata (ECA) [9]. In this prior work, BraceAsser-

tion supported local properties in components of a CPS and checked them off-line,

against traces collected of the CPS’s behavior. As a brief summary of the approach,

I model the execution of a CPS application as an infinite sequence of observations

δ = δ0δ1 · · · δn · · · . Each δi ⊆ 2E , where E is a set of propositions that describes

the observed state of the application. For each observation, I also record the timing

information that allows us to construct a timing sequence Θ = (δ̄, τ̄), which respects

monotonicity and progress (i.e., τi < τi+1 and ∃i ∈ N, ∀j ∈ R, τi > j). Using this

163

prior work, I can specify the property “whether the choice of an agent is optimal

after assigned a task” as:

When [Assigned a Task]

Then [Schedule is optimal

WITH schedule

AND task]

This prior work supports neither the checking of global properties, which

specify the joint correctness of multiple components of a CPS, nor on-line mon-

itoring, or checking the CPS in situ, while it is executing. With respect to the

specification language, I define three extensions to the semantics in this work.

Defining Sets of CPS Components. To write specifications that refer-

ence multiple components of the CPS I must extend the BraceAssertion notation

to reference properties across sets. In my extended BraceAssertion, the Set con-

struct groups multiple distributed CPS application nodes into a logical unit that

can be referenced in global properties. For instance, in my second example global

property (i.e., that the number of messages required to negotiate task assignment

is bounded), I need a way to reference a Set of active vehicles (in order to check

whether they reach a consensus). I add three keywords into BraceAssertion: Set,

Joins, and Quits. Properties can specify that a given node Joins a Set after one or

more specified local events and Quits a set after one or more specified local events.

The complete syntax is: “Set [set name], Join [events], Quit [events]”. The Set

definition is uniform across the entire CPS. The events defined for Joins and Quits

are connected with the implementation via annotation, and each generated event

is associated with the unique id of the CPS application node generating it. The

164

events collected by Brace help manage Set memberships at runtime (Section 6.3.4).

Within the “[events]” blocks, multiple events are connected by logical operators

(e.g., And and Or). As a concrete example, for the motivating application, I define

the following set: “Set [ActiveAgents], Join [assigned task]”.

Defining Global Events and Distributed Properties. In BraceAsser-

tion, the specifications are effectively synthesized into automata, which process

events generated at runtime to monitor the correctness of the specified property.

The first step of defining a global property is for the user to specify the global

event(s) that trigger checking a particular global property. Such a global event is

built by aggregating local events that occur across distributed nodes. I create a few

constructs in BraceAssertion to capture this semantics. To define global events, I

extend the original BraceAssertion language with a When definition specifically for

marking a global event. Its format is:

When [Exactly (default)/More Than/Less Than]

[number of required local events]

[name of local component]

(set alias)

[description of (distributed) local event(s)]

(distributed attribute name)

In the definition of global event, “set alias” implicitly defines a set of com-

ponents based on the specified local components and required local events. The

description of the local event is the CPS developer’s natural language description;

as described in the next section, the developer must use this description in anno-

tations that connect the specification to the source code of the CPS program. The

“distributed attribute name” refers to one or more objects or attributes with which

165

the local events are associated, for instance, “the task” in the assigned task event

for an agent.

Consider the first two properties I gave as examples in the introduction.

Both make use of a global event that references the state when exactly one agent

has been assigned the task of patrolling one or more given waypoints. Such a global

event can be specified by the CPS developer as:

When [Exactly]

one

Agent

(AssignedAgent)

assigned to complete a task

(ChosenTask)

In this example, “AssignedAgent” defines an implicit set (as opposed to

being defined explicitly via the Set definition), where the agent joins the set af-

ter the agent experiences the “assigned to complete a task” event (Section. 6.3.4).

“ChosenTask” defines the task attribute in the local event “assigned to complete

a task”. When a CPS developer associates the local event with the implementa-

tion using BraceAssertion annotations, the developer must also specify a mapping

from the attribute “ChosenTask” to a variable in the implementation. The fol-

lowing code-snippet shows how this is done using the BraceAssertion annotation.

As shown, this process adds two new annotation types to the existing BraceAsser-

tions: DistributedEvent, which binds a distributed event to a method invocation

(or a single statement) and DistributedAttribute, which identifies a distributed

attribute inside a method or a class.

//somewhere inside the class Agent

166

@DistributedEvent(name="assigned to complete a task")

@DistributedAttribute(name="ChosenTask",

type="Object",

variableName="task")

public synchronized void assignTask(Task task){

....

}

In the above event specification and annotations, Distributed Attributes refers

to local attributes in each CPS application node that are used to specify global

properties. In CPS, such distributed attributes are ubiquitous. For instance, in the

motivating application, there is an attribute that records the task(s) assigned to

each agent, and there is another distributed attribute that captures the number of

messages needed to reach a particular consensus. In other applications, distributed

attributes may capture the power usage of each node, the pressure reading of a

particular tire, etc. Aggregate functions (predicates) are often associated with dis-

tributed attributes to collectively specify global properties. To support this, I add

four built-in predicates to BraceAssertion: Sum, Average, Max, and Min. Moreover,

CPS developers can express complex and application specific global properties not

only with existing predicate logic support, but also with “set” (explicitly defined),

“distributed attribute name”, “set alias” (implicitly defined).

Defining Global Properties. This finally enables us to specify global

properties by combining these components. For instance, to express my first example

property, which requires that exactly one vehicle is assigned a particular task, I write

the following BraceAssertion specification:

Given [Globally]

When [Exactly]

167

one

Agent

(AssignedAgent)

assigned to complete a task

(ChosenTask)

Then [no other vehicles have the same task

WITH ChosenTask in AssignedAgent

AND ExecutionPlan in ActiveAgents]

In this specification, “Globally” explicitly differentiates a global BraceAsser-

tion from a local one, the text description in Then but before ”With” is a predicate

definition that is associated with a customized function in the implementation via

yet another BraceAssertion annotation [198]. The predicate evaluates whether any

other vehicle has the same task with respect to two quantified parameters “Chosen-

Task” and “ExecutionPlan”. The parameters are quantified using a combination

of the BraceAssertion annotation (using the “DistributedAttribute” annotation),

which determines the values the parameters will have at runtime, and the set these

two parameters belong to (“AssignedAgent” and ‘ActiveAgent”, respectively) which

determines the distributed nodes (agents) these parameters belong to.

As another example, my second sample global property would have the fol-

lowing specification:

Given [Globally]

When [Exactly]

one

Agent

(AssignedAgent)

assigned to complete a task

(ChosenPoint)

Then [Sum (messages required to reach consensus

WITH ChosenTask in AssignedAgent

AND Consensus in ActiveAgents)

Less Than 10]

168

In this specification, “Sum” is the pre-defined predicate introduced previ-

ously, “Less Than” (along with “Equal” and “More Than”) are newly introduced

keywords to support pre-defined predicates. The contents of the parentheses (i.e.,

“messages required to reach consensus...”) are associated with a customized func-

tion in the implementation using an annotation that returns a count of the number

of messages sent to reach a consensus on the assignment of the task to the selected

agent.

6.3 The Brace Middleware

Figure 6.1: Brace Architecture

Fig. 6.1 shows the overall Brace architecture, including the cyber components

(both hardware and software) of the CPS on the left hand side and the dedicated

monitoring components on the right hand side. Within the local CPS nodes, the

Event Monitor and ECA Monitor1 are synthesized automatically from BraceAsser-

1I use ECA monitor to refer my property monitor built on top of Event Clock Automata.

169

tion specifications, as described in [198]. However, I extend the role of the Event

Monitor to also monitor distributed events and attributes used for the specification

of global properties. In addition to using the monitored events to check the local

properties, the Event Monitor stores the information required for distributed events

and attributes in the Distributed Event/Attribute Queue (DQ), which can then fa-

cilitate sharing this event and attribute information for the purpose of monitoring

global properties.

To enable reliable transfer of distributed events and properties from each

node to the global monitor nodes, I introduce a Communication Agent both at the

local CPS application nodes and at the global monitor nodes. I use MQ Teleme-

try Transport (MQTT) [124] to implement the communication among the different

distributed components.2 Each Communication Agent on a local CPS node aggre-

gates numeric data to minimize network overhead and creates bundles to send data

in batches. On the other side, the Communication Agent at each global monitor

node passes received distributed events and attributes to the Event Synchronizer,

which synchronizes events and attributes received from the distributed CPS nodes.

The result is the fully ordered Global Event/Attribute Queue, which feeds an event

automata that filters and aggregates these events to reduce the number of events

that must be processed by the Global ECA Monitor.

More details about Global ECA Monitor and these Event Automata in Sec. 6.3.4.

As described in detail below, I allow the local monitors to be transitioned to the

2As MQTT is known to have milliseconds message latency and guarantee message delivery with
specific settings.

170

global monitoring nodes when the burden of monitoring becomes too great for op-

erating on the CPS devices. To support this load balancing, each global monitor

node keeps a copy of local monitors and can dynamically assign a local event queue

for a distributed node when that node requires load balancing.

Because a main goal in this work is to guarantee predictable behavior of

runtime monitoring, I introduce a Local Optimizer on the local CPS application

nodes, which uses a novel linear programming model to find an optimal solution for

the local monitor automata. To deal with situations in which the local optimizer

cannot find an optimal solution, I also introduce load balancing through the Com-

munication Agent, which stops the local monitors and delegates local monitoring

tasks to the global monitor nodes. Given this overview of the Brace architecture,

I next present the details of the components of Fig. 6.1, including implementation

aspects.

6.3.1 Local Optimization Controller

The online local property monitor (ECA Monitor) that sits in each dis-

tributed node is a time-triggered automaton [34,185] to guarantee predictability of

the observed system. In this timed-triggered mode, the monitors are activated peri-

odically according to a pre-defined sample period to read events from the local event

queue, make the appropriate state transitions, and detect any resulting violations of

the monitored properties. In [34,185], the sampling period is a constant determined

by an off-line linear optimization model specially designed for sequential programs.

In Brace, I give CPS developers more granular control over the behavior of runtime

171

monitors by allowing them to specify the minimum requirement for the idle time

where the runtime monitor is not activated (IT), the maximum time for a runtime

monitor to run after activated but before putting into “sleep” again during a CPS

execution (AT), and the maximum memory for the Brace middleware to allocate to

storing unprocessed events while the runtime monitor is “sleeping” (BS). Moreover,

to handle the often unpredictable nature of monitored events in CPS (e.g., events

in CPS may often come in bursts), I determine the optimized values for IT, AT,

and BS dynamically, based on a linear programming model. More specifically, the

Local Optimizer in each distributed node continuously monitors the rate at which

the local events are generated, i.e., the event creation speed (y events/second) and

the rate at which the local property monitors can process the events, i.e., the event

processing speed (x events/second). From these two statistics and the ranges speci-

fied by CPS developers, I devise the following linear programming model to find the

optimal solution.

my Linear Programming model’s objective function is:

minimize(y ∗ IT + (y − x) ∗AT) (6.1)

That is, the objective is to minimize the required buffer size for the next

Idle Time and Active Time combined. The linear optimization model is further

constrained by the minimum Idle Time and maximum Active Time specified by the

CPS developer. I use an off-the-shelf Linear Programming solver [168] that is fast

and lightweight3 to find optimal solution.

3From trial and the testbed in the chapter, the running time for the solver is within 2 milliseconds

172

I now frame some of the key constraints that underlie my linear programming

model. First, and simply:

IT ≥ mIT (6.2)

This constraint is used to guarantee that the application’s observed idle time, i.e.,

the time when no monitoring is occurring, meets the required minimum idle time

(i.e., mIT) provided by the CPS developer.

Second, and similarly:

AT ≤ maxPT (6.3)

This constraint guarantees the maximum observed period of time in which the run-

time monitors are allowed to execute is constrained by the CPS developer’s specified

bound. maxPT is also configurable for each CPS application.

Thirdly:

y ∗ IT ≤ BS ≤ maxMemory (6.4)

This constraint gives the constraints over how much memory can be allocated to

store unprocessed events during each segment of Idle Time. The required maxi-

mum memory (i.e., maxMemory) is provided by the CPS developer. Recall that y

captures the average event generation speed4.

The optimal solution, if found, provides a balance between how much mem-

ory is allocated, how much time is given to the monitors for execution, and how

4Brace records the event generation speed from the latest sampling period as a prediction for
the next idle time.

173

much time is given to applications to run on their own without being affected by

monitors. If there is no optimal solution, the local optimizer switches to a Delega-

tion mode that turns off the local monitor and instructs the communication agent

to send the local monitoring tasks to global monitoring nodes. In such situations,

the local optimizer continues to monitor the event queue and calculate the optimal

solution but with the last constraint changed to:

BS ≤ safeBuffer ∗ y ∗ IT (6.5)

This loosens the upper bound for memory overhead to attempt the application-

specific buffer value safeBuffer to make sure that the length of the event queue is

large enough to hold events for the give number of idle periods. The constraint is

used to minimize the possibility that while in the transitions between Delegation

mode and Local mode, there are no lost (overwritten) events in the buffer.

While the local monitor is in Delegation mode, if after N (configurable per

application) sampling periods, the updated linear programming model can always

find an optimal solution, the local optimizer switches back to Local mode. The

local optimizer instructs the local communication agent to send a Restore to local

message to the global monitor nodes, waits for latest instance of local monitors to

be returned, and restores and reactivates the monitor instances locally.

6.3.2 Communication Agent

As described in the overview above, the Communication Agent in each of

the CPS local nodes and in the global monitor nodes is responsible for coordinating

174

checking of global properties and for checking delegated local properties. To support

my implementation of the Communication Agent, I rely on MQTT. MQ Telemetry

Transport (MQTT) [124] is a scalable and light-weight messaging protocol based on

publish/subscribe; Its capabilities of minimizing network bandwidth and ensuring

reliable message delivery make it a good candidate for devices and connections like

those found in CPS. In my prototype, I use Paho (an MQTT client library) [147]

and Really Small Message Broker (RSMB), an open-source messaging server imple-

menting MQTT with very small overhead (80KB of storage space and 200KB or less

of memory) [52]. In essence, the communication agent uses a lock-free linked list

to store the data related to local events (if load balancing is required), distributed

events, and distributed attributes, including their time stamps. The agent peri-

odically aggregates data in a bundle (batch) to minimize network overhead. The

bundle contains a message header with a unique id (e.g., mac-address) of the CPS

application node and a creation timestamp and sequence number (later used for

detecting missing bundles and for message synchronization across bundles).

Because MQTT is built on the publish/subscribe paradigm, each bundle is

published to a shared topic subscribed to by all of the global monitor nodes. Because

I only want one global monitor node to be responsible for each bundle, I implement

a cancel protocol on top of MQTT’s publish subscribe mechanism. Specifically, I

use a second MQTT topic shared among the global monitor nodes. When a global

monitor receives a bundle and intends to process it, it publishes the bundle’s id and

sequence number, along with the timestamp at which it was received. If there are

duplicates, the global monitor node that received the bundle first according to the

175

reception timestamp would keep the bundle while others just simply discard it.

The other role of the Communication Agent on the local CPS application

nodes is to handle load balancing of local property checking. When the node’s

local optimizer decides to switch the monitoring mode back to Local, its Commu-

nication Agent sends a control package of Restore to local to all reachable global

monitoring nodes. If one of the global monitor nodes replies with a snapshot of

the current instance of the application’s local monitors, the Communication Agent

passes the snapshot to local optimizer to restore it. At the global monitor node, the

Communication Agent passes the received distributed events and attributes to the

Event Synchronizer for further processing. The global monitor’s Communication

Agent also receives request to accept delegation of local property monitoring. After

receiving a Delegation request from a CPS application node, the global monitor’s

Communication Agent activates replicas of the specified local monitors and restores

local events to another concurrent queue. While it is responsible for a delegated local

monitor, the global monitor’s Communication Agent maintains the local monitor’s

event queue using events received from the Communication Agent on the associated

local CPS application node. When the global monitor receives a Restore to local re-

quest, it ceases loading the local monitor’s event queue. When the local event queue

is exhausted, the global monitor’s Communication Agent deactivates the indicated

local monitor, takes a snapshot of current instance, and sends it back to the CPS

application node.

For communication efficiency, I combine the tasks of the Communication

Agent, sending network packages that contain both distributed events and infor-

176

Algorithm 5 Data Preparation
1: t← currentTime
2: for ∀e ∈ DQ do
3: if e.time ≤ t then
4: eList .add(e)

5: addToCQ(eList)
6: if delegateMon then
7: if init then
8: for ∀m ∈ activeLocalMonitors do
9: monList .add(m)

10: init ← false
11: addToCQ(monList)
12: else
13: for ∀le ∈ localEventQueue do
14: if le.time ≤ t then
15: leList .add(le)

16: addToCQ(leList)

mation about delegated local monitoring. Algorithm 5 shows the raw data that is

gathered by the Communication Agent at a CPS application node. The Communi-

cation Agent starts by marking the current time. It then selects all of the distributed

events and attributes (bounded by the marked current time) from the distributed

event and attribute queue (DQ) and adds them to the Communication Queue (CQ)

(lines 1-5). The CQ is monitored by an MQTT agent and published periodically.

If the local optimizer has decided to delegate local monitoring (line 6), initially the

Communication Agent adds the instance of each active local monitor to a linked list

that it also puts in the CQ (lines 7-11). Finally, if the node is in delegate mode and

not just starting delegate mode, the Communication Agent adds all the events in

the local queue (bounded by the current time) to CQ (lines 13-16).

Algorithm 6 shows the algorithm behind how the data is published by the

Communication Agent in a CPS application node; it is called in a thread sepa-

rate from the main CPS application execution. The Communication Agent iterates

through each item in the communication queue (CQ), if the item is either a local

177

event or local monitor instance, no further processing is required, and the Com-

munication Agent simply sends the item in its raw form (lines 3-4). If the item in

the CQ is a distributed event and contains event objects, the data cannot be aggre-

gated and is therefore sent directly (lines 7-9). Otherwise the events with the same

name are aggregated into a single event with two time stamps. The first time stamp

records the first occurrence of the event while the second one records the last one;

the value of the aggregate is the number of occurrences of the event (lines 11-12). If

the item is a distributed attribute and of numeric value, the data is aggregated in a

similar way, but the aggregate also includes the average, maximum, and minimum

value of all attributes with the same name (lines 13-16). Finally, a non-numeric

attribute is not aggregatable and is instead sent directly (line 18). In the end, the

Communication Agent creates a bundle that contains all of this data with a message

header containing the node’s unique id of the distributed node and an increasing

sequence number.

6.3.3 Event Synchronizer

As distributed events and attributes are received at the global monitor nodes,

they must be synchronized so that the required properties can be checked against

the generated events. The purpose of the Event Synchronizer in a global monitor

node is to guarantee a total ordering of distributed events and attributes collected

from across the distributed CPS application nodes, which is essential to being able

to check global properties at runtime. The Event Synchronizer achieves this using

three levels of synchronization.

178

Algorithm 6 Main publish algorithm (Local Node)
1: sendList ← newList()
2: for ∀c ∈ CQ do
3: if c.type ∈ {localEvent ,monitor} then
4: sendList .add(c)

5: if c.type = distributedEAs then
6: for ∀de ∈ c.list do
7: if de.isEvent then
8: if de.hasEventObjects then
9: sendList .add(de)

10: else
11: ale ← aggEvent(de.name, de.time)
12: sendList .add(ale)

13: if de.isAttribute then
14: if de.isNumeric then
15: ala ← aggAttribute(de.name, de.time, de.value)
16: sendList .add(ala)
17: else
18: sendList .add(de)

19: seqNumber ← newSeqNumber()
20: nodeId ← getMacAddress()
21: publish(sendList , seqNumber ,nodeId)

6.3.3.1 Synchronizing the Events of a Single Node

To guarantee a total ordering of messages from each individual CPS applica-

tion node and to detect missing bundles as a result of network losses, the Event Syn-

chronizer checks the sequence number embedded inside each bundle. Algorithm 7

gives the algorithm that the Event Synchronizer uses to synchronize bundles re-

ceived for a single CPS application node. First, based on the bundle’s unique node

id and sequence number, the Event Synchronizer knows the next sequence number

expected from the node (lines 1-4). If the seqNumber of the next bundle received

is less than the expected next sequence number, the bundle is a duplicate and the

Event Synchronizer just discards it (lines 5-6). If the seqNumber of the received

bundle is larger than the expected next sequence number, the network package is

stored in an Out-of-Sync Queue (OSQ) reserved for future use (lines 7-8). Finally,

179

Algorithm 7 Network Package Synchronization
1: bundle ← receivePublication
2: nodeID ← bundle.nid
3: seqNumber ← bundle.sno
4: nextSeq ← getNextExpected(nodeID)
5: if seqNumber < nextSeq then
6: return
7: else if seqNumber > nextSeq then
8: storeOutSyncQueue(bundle,nodeID)
9: else

10: SQ .add(bundle)
11: nextSeq ← seqNumber + 1
12: storedList ← retrieveQueue(nodeID)
13: for ∀bd ∈ storedList do
14: if bd .seqNumber = nextSeq then
15: SQ .add(bd)
16: nextSeq ← seqNumber + 1

17: storeNextExpected(nodeID ,nextSeq)

if the received seqNumber is the expected one, the bundle’s contents are pushed into

the Synchronization Queue (SQ) (line 10). In this last case, the Event Synchronizer

also looks into the OSQ (which is ordered by time) to find any subsequent bundles

that were received out of order and pushes them to the SQ (lines 11-16).

6.3.3.2 Synchronizing Events across Multiple Nodes

Merely guaranteeing a total ordering for events and attributes within each

CPS application node is not enough; the Event Synchronizer also needs to synchro-

nize events and attributes across multiple CPS application nodes, for which it uses

the Synchronization Queue (SQ). I rely on clock synchronization achieved using

NTP. Also, as discussed next, I introduce a synchronization error buffer, which, in

addition to other purposes described below, diminishes the need to cater to NTP’s

error bound. However, it is still not possible to simply sort the events and attributes

in the global queue by their timestamps because network latencies may cause a bun-

dle from some node Nx, which contains an earlier event to have not arrived before

180

the bundle from some node Ny, even if the event(s) in the latter occurred later. The

challenge is to prevent the events from Ny from being placed in the global queue

and processed by the global monitor before the events from Nx arrive.

To address this challenge, I built a buffer inside the Event Synchronizer to

pre-sort the arrival events and attributes by timestamp, and I use Algorithm 8 to

guarantee time synchronization of events and attributes that are output to the global

queue for processing by the global monitor(s). The algorithm assumes that the

maximum delay (δmax) for a network packet is known and bounded practically, this

can be achieved experimentally in a set-up period. The algorithm starts by detecting

whether the buffer has reached a pre-determined size limit or a pre-set flushing

period is complete (line 1). If the result is positive, the synchronization process

enters the aboutToFlush stage if there are events in the buffer (lines 7-8). The process

records the last event (lastEvent) (line 11) and starts a count down period that is

bounded by δmax (lines 9-11), which waits for any potentially missing bundles, which

could potentially contain events that occurred before lastEvent . When this waiting

period ends, all the received events up to lastEvent are ordered (by timestamp)

and stored in the Global event/attribute Queue (GQ) (line 4) before the process is

re-initialized (line 5).

The above synchronization algorithm guarantees the total ordering of mes-

sages across the CPS application nodes. I also built into the Event Synchronizer

to logically synchronize distributed events with distributed attributes. Distributed

events cause state transitions in the global monitor, while distributed attributes are

used to generate corresponding events that determine whether the automaton ends

181

Algorithm 8 Synchronization Across Nodes
1: if flushTimeUp ∨ bufferSize ≥ maximumSize then
2: if aboutToFlush then
3: if countDown ≥ flushTime then
4: flushUntil(lastEvent)
5: initBuffer

6: else
7: if buffer .size ≥ 1 then
8: aboutToFlush ← True
9: countDown ← currentTime

10: flushTime ← currentTime + δmax

11: lastEvent← getBufferEnd

up in an accepting state or rejecting state. I refer to the latter events as Global Pred-

icate Events (GPE). For instance, in the sample global property where the number

of messages to reach a consensus of task assignment shall be bounded, the number

of messages shall be bounded, as specified in the “Then”, is treated as a GPE as it

is a predicate defined globally and its evaluation result is treated as an event.

6.3.3.3 Synchronizing and Aggregating Events and Attributes

In this final step, the Event Synchronizer aggregates distributed events from

one or more CPS application nodes specified in BraceAssertion specification into

global events (which are the atomic events recognized by the global monitor).

Another task of the Event Synchronizer at this stage is to locate corresponding

distributed attributes, which is essential to generate the Global Predicate Events

(GPEs), which triggers state transitions either into accepting or rejecting states

detectable by the global monitor.

To aggregate distributed events into a global event5, the Event Synchronizer

5Based on the global specifciation. For instance, if the specification is “When [More than two
agents is assigned to reach a waypoint]”, then the first three arrived events “Assigned to reach a
waypoint” will be aggregated at the global monitor node as a global event.

182

assigns an event id for the global event, and the Event Synchronizer monitors the

first and last occurrence of the contributing distributed events, and records the

timestamps for these two occurrences as τstart and τend (If multiple distributed

events are aggregated into one global event, I take the earliest and latest timestamps

as the time duration). The two timestamps define the time span of the global

event. Since Brace’s global events are often associated with distributed attributes,

it is essential to synchronize the timing between a global event and its matching

distributed attributes. For instance, in my first example property, the global event

“one Agent assigned to complete a task” is associated with the distributed attributes

“ChosenTask” and “ExecutionPlan”. The time span of the distributed attributes is

determined collectively by the time span (τstart and τend) of the matching global event

and any timing constraint (τc) specified in the specification. Timing constraints from

specifications may indicate application-level timing requirements, for example that

an event occurs within a specified time of another event. Distributed attributes

for each global property are not only filtered temporally using the above timespan

but also based on the CPS application nodes they originated from. The Event

Synchronizer determines the originating node for each distributed attribute using

the unique node ID in the bundle. If there are duplicate distributed attributes in

the same time span for the same node, an aggregation process is invoked to create

one aggregated attribute. The Event Synchronizer guarantees that, for a given

correctness predicate that each distributed attribute from a set of distributed nodes

contains a unique or aggregate value and that the entire collection of values falls

into the right time span.

183

6.3.4 Global Property Monitors and their Automata

Brace’s global property monitors detect violations of specified properties in

much the same way that the local monitor does [198]. Several additional challenges

exist in making the global monitor work correctly, specifically so that it can simply

read an event queue and make state transitions without worrying about the details

of how these events are generated. To support this, I create a Set Manager and

invent two event automata.

Set Manager. As described previously, a Set consists of nodes, each of

which Joins after a specific event occurs to the node and Quits after another specific

event occurs. A Set manager monitors distributed events associated with Set defi-

nitions and dynamically manages each Set defined by the CPS application through

the BraceAssertion framework. 6 The Set manager is essential in the generation of

Global Predicate Event (GPE).

Global Event Automata. Each global event is determined based on the

contributing distributed events collected from the CPS application nodes as de-

scribed above. Each distributed event can be used by more than one global event.

To generate global event efficiently, I create a single state machine for generating

each global event based on the contributing distributed events. The state machine

has an initial state (Not Firing) and an accepting state (Firing). The arriving of the

accepting state triggers an action to put the global event along with the timestamp

of reaching the accepting state to the internal event queue (Global Event Queue)

6Set manager sits in the global monitor node.

184

read by the global property monitor. Each global property monitor may consume

multiple global events; these events are each generated by their own global event

automata. The intermediate states of the global event automata are determined

by the number of distributed events specified in the BraceAssertion and the con-

straints on and relationships between those distributed events, also specified in the

BraceAssertion.

For example, in the global properties of the motivating application, I define

one global event as:

When [Exactly]

one

Agent

(AssignedAgent)

assigned to complete a task

(ChosenTask)

In this case, there is one intermediate state that can be reached from the

initial state upon receiving an event indicating that one of the CPS application

node’s agent was assigned a task. If “More Than” is used, then there are two

intermediate states7 and the accepting state can only be reached upon receiving

two specified distributed events, each from a unique node. When a global event is

generated, the timespan of the participating distributed event is used to generate a

Global Predicate Event (GPE) as discussed next; and the only purpose of creating

GPE is to filter events so that the global monitor can only accept those limited

number of event signal to avoid creating a big state transition table before hand and

effectively avoid state explosion issue commonly see in applying automata theory.

7There is no order for events, any event of “assigned a task” is considered as an intermediate
state. The automata is pretty much like a count-down automata

185

GPE Automata In BraceAssertion, a user can create a boolean predicate

which accepts any number of specified distributed attributes as parameters, and

evaluates the predicate at runtime. If the evaluation result is True, an associated

event (GPE) along with the current timestamp are pushed into the Global ECA

Queue (GQ). User is also allowed to create an application-specific predicate with

required return value for a pre-defined predicate (e.g., Sum) and compare the output

of the pre-defined predicate with a user specified value using a predefined set of op-

erators (e.g., Less Than), both defined in Sec. 6.2). The boolean result is processed

the same way as user-defined boolean predicate. For each GPE, I also create a au-

tomata with similar reasons as Global Event. The GPE automata is activated by the

generation of the corresponding global event (e.g., defined in When); and the inputs

are distributed attributes that are time-bounded by the corresponding global event,

and value-bounded by the Set(s) as each distributed attribute is always associated

with a Set (default All, which refers to all nodes). The starting state is Not Firing,

and there is one accepting state and another rejecting state. The accepting state is

triggered when the predicate is evaluated as True and the corresponding GPE along

with the current timestamp are pushed into GQ; and the rejecting state is triggered

when the predicate is evaluated as False and a complemented GPE (created during

global monitor synthesis) along with the current timestamp are pushed into GQ.

The intermediate states are determined by the number of parameters (distributed

attributes) required by the user defined predicate; and unlike the intermediate states

for global event state machine, the intermediate states for GPE are ordered. For

instance, for Global Property 2 for the motivating application, GPE is defined as

186

“Then Sum of (total messages required to reach consensus with ChosenTask in As-

signedAgent And the consensus in Active Agents) Less Than xx”. The user defined

predicate is “total messages required to reach consensus”, that is associated with

the implementation using specifically designed annotation [198], the first interme-

diate state in the generated state machine is for “ChosenPoint” (as constrained by

the Set - AssignedAgent), and the second intermediate state is for “the consensus”

(as constrained by the Set - Active Agents). The transitions to these intermediate

states are triggered by completing the calculation of the value for each distributed

attribute (if corresponding distributed attributes are aggregatable, aggregate dis-

tributed attributes for each node in the specified Set in the time span; otherwise

take the last value for each node in the Set in the time span). From the last in-

termediate state, there are two transitions, one to the accepting state and another

to the rejecting state. The two transitions are triggered by passing the value of

each distributed attribute in the order to the specified predicate, and evaluate the

predicate (if the predicate is boolean) or passing the predicate result to the built-in

predicate and the return value is compared against a user specified number using a

built-in operator. The result is a boolean and determines which transition to be ac-

tivated. When reaching either accepting or rejecting state, the corresponding event

and timestamp are pushed into GQ.

In [196], using combinatorial analysis I prove the runtime cost of checking

global and local properties (both Local and Delegation mode) is polynomial. I also

implemented a Java prototype of Brace and conducted a thorough empirical study

on a real multi-agent patrol system to analyze the capabilities of Brace to deal with

187

identified challenges in CPS runtime verification.

6.4 Case Study and Evaluation

I evaluate the Brace middleware using an existing robot planning system,

which is a distributed version of Generalized Partial Global Planning (GPGP) [116].

This system’s planning algorithm is a version of Anytime A∗ that is customized to

distributed planning for a group of mobile vehicles; this is the application I have

used for examples.

6.4.1 The Case Study

To use Brace to test different aspects of the system, I used two evaluation

applications that already existed before Brace based on the robot planning system

and deploy the applications to two different testbeds. I used Brace to find bugs that

I intentionally injected, but along the way, I also uncovered bugs in the applications

that were unknown to the developers.

The first evaluation application is a Rover Patrol application that is built in

Android and deployed to a Samsung Galaxy S3 phone to control a Rover 5 Robot

Platform8. This platform uses four independent motors, each with a hall-effect

quadrature encoder and gearbox. I asked the application developers to annotate

the code using my customized annotation class to identify variables and specify the

predicate functions required to check six application correctness properties:

LP1 when a vehicle is assigned a task, the vehicle shall have this task in its local

8https://www.sparkfun.com/products/10336

188

scheduler;

LP2 the completion time for a given task is bounded;

LP3 when a vehicle is assigned a task, the schedule for this task is optimal;

LP4 the integral of cross track error is bounded (i.e., the vehicle is not weaving);

LP5 the duration of the main control loop is bounded; and

LP6 the number of messages for each task negotiation is bounded.

All of these properties are local to a single CPS application node, but these properties

are hard to verify by hand because they are related to the distributed algorithm,

timing requirement, and the control algorithm. I conduct the experiments in a

laboratory environment (Android Test Bed), where there are three surfaces to mimic

different physical deployment environments9 (wood10, grass11, and linoleum12). The

environment also contains an overhead camera that is used for both positioning and

for recording the tests. Through this evaluation application, I aim to assess Brace’s

effectiveness at detecting local properties related to control algorithms and timing,

both of which may be significantly affected by different physical environments.

The second evaluation application models a utility-based distributed schedul-

ing multi-agent system for the robotic patrol application. It follows a blackboard

architecture in that a task structure is shared among multiple coordinating CPS

application nodes; this blackboard updated concurrently by the scheduling and ex-

ecution components agents on those nodes. Each agent maintains a snapshot of its

9The controller algorithm, for instance, has different behavior in each environment.
10A sample video for wood is at https://goo.gl/PkxDa4
11A sample video for grass is at https://goo.gl/Vv3fF2
12A sample video for linoleum is at https://goo.gl/s097Ag

189

current state of execution and a combined task structure. The use of a structurally

rich, current, combined task structure for representing the agent’s execution state

allows interleaving of atomic actions that belong to different tasks, avoiding redun-

dancy, and rescheduling only the portion(s) of a task that have not been completed

yet. The complexity of this application lies in its concurrency and the correctness

of the scheduling algorithms, which are very difficult to check. In this application,

I test three local properties:

LP7 when a vehicle is assigned a task, the vehicle shall have this task in its local

scheduler

LP8 an agent accomplishes an assigned task within a time bound; and

LP9 each agent’s schedule is optimal for that agent.

Besides these local properties, I also test three global properties:

GP1 there are no duplicate task assignments (i.e., each task is assigned to only one

agent);

GP2 the number messages required to reach a consensus is bounded; and

GP3 the global patrol must eventually finish.

I deployed and ran my evaluations for this second application on a smaller replica

of the ORBIT testbed [161] (Orbit Test Bed). This testbed has 40 physical ORBIT-

like machines (i.e. nodes) based on a VIA 1Ghz, 512 MB board [99, 189]. These

nodes are interconnected via multiple networking technologies, including two sepa-

rate wired 1GB Ethernet networks, which guarantees the separation between control

190

traffic and experiment/data traffic in my evaluations. Moreover the clocks of these

nodes are also synchronized via NTP on the same LAN, which ensures offsets be-

tween nodes smaller than 5ms. Through this evaluation application, I aim to assess

Brace’s effectiveness in checking global CPS properties and its efficiency in online

monitoring, including in the face of surges of CPS events.

I discuss the empirical results for each testbed, and concluded with a validity

discussion.

6.4.2 Android Test Bed

In the Android test bed application, I injected ten random logical errors that

caused violations in each of the six local properties. Brace detected all of these logic

errors. I also found that Brace was able to detect more errors in these properties that

related to data collected from the rovers’ sensors and thus related to the physical

deployment.

As one example, Figure 6.2 shows the errors that Brace found for the trail

run on the Linoleum surface. As shown, Brace found an additional 22 errors (over

the 10 I injected) for LP3. I verified with the CPS application developers that

these were in fact legitimate (previously unknown) errors related to the scheduling

algorithm that resulted in sub-optimal solutions when relying on actual position

data from the sensors. In the case of LP2, Brace found an additional seven errors

over the 10 injected ones, six of which were confirmed to be legitimate errors related

to an inefficient implementation of the controller loop. The seventh was a false

positive.

191

Figure 6.2: Linoleum Deployment

For brevity, I skip the results of Grass and Wood floor deployment. In

summary, in both environments, Brace was able to detect all of the injected errors

and to report additional true bugs in the application (e.g., I found bugs related to the

fact that the rover unexpectedly weaves on the grass surface due to the unexpected

friction level).

6.4.3 Orbit Test Bed

To evaluate Brace’s efficiency using the Orbit testbed,I designed the following

four experiments:

• Baseline: I run the original application with an increasing number of stati-

cally determined tasks: 4 (default), 48, and 384 (to increase the number of

concurrently executing monitors).

• Experiment 1: I re-run Baseline with the application annotated and instru-

mented with an increasing number of specifications (in terms of local and

global properties) (the first local property, three local properties, and three

local and three global properties); this again results in an increase in the num-

192

ber of concurrently running monitors, both in the CPS application nodes and

in the global monitor nodes.

• Experiment 2: I re-run Baseline of 384 tasks with the application annotated

and instrumented with all local specifications. I run the experiment with an

increasing number of injected locally monitored events per second: 400, 800,

and 1600, which is representative of an increased sampling rate of the sensors

in the CPS application.

• Experiment 3: I re-run Baseline of 384 tasks with the application annotated

and instrumented with all of the local specifications (i.e., LP7, LP8, and

LP9). I run the experiment with 40 randomly injected errors.

• Experiment 4: I re-run Baseline of 3072 tasks with the application annotated

and instrumented with all global specifications. I run the experiment with 40

randomly injected errors.

I used the OMF framework [157] to systematically describe and reproducibly

orchestrate my experiments on the testbed. In that regard, I translated the above

experiments into an OMF experiment description, which is versioned and available

on github13. I divided the total available nodes into subsets of four nodes, then

deployed and ran a separate instance of my experiment on each subset of nodes

(in parallel). Each running experiment instance has its own set of parameters as

described in my experiment design. For each set of parameters, I ran 10 replicas

of the experiment in order to collect sufficient results for a statistically meaningful

analysis.

13https://github.com/mytestbed/experiments/tree/master/brace2015

193

Figure. 6.3 shows the result of Experiment 1 in terms of CPU overhead as

compared to Baseline. The figure plots the percentage increase in CPU usage. In

the figure, the L1 bar indicates the overhead when there is a single local property

checked; L3 checks all three local properties, and G3 checks the three local proper-

ties and three global properties. The figure shows that, with increasing numbers of

properties to be monitored, the CPU overhead is reasonably under control thanks

to efficient event filtering and event automata used to verify these properties.

Figure 6.3: Efficiency - CPU Overhead

Figure 6.4 shows the result of Experiment 1, plotting the percentage increase

in memory usage relative to the Baseline experiment. The memory overhead, as

expected, is higher than the CPU overhead. First of all, to guarantee predictable

behavior, Brace’s local optimizer constantly monitors the behavior of the monitor

(which is reflected in the CPU overhead) and adjusts the buffer size to give the

hosted application more frequent and longer time windows without monitors. These

increasing buffers impact the memory overhead. Secondly, the particular application

chosen here exhibits a high degree of concurrent behavior, and thread safety of the

194

data structure becomes a primary thing to check against in my properties. To do

this, I need to allocate memory in Brace to store the list of objects to deal with

dirty reads and dirty writes, which is crucial to guarantee sufficient effectiveness (in

terms of reducing the number of false positives and false negatives).

Figure 6.4: Efficiency - Memory Overhead

Figure 6.5 shows the results of Experiment 2 with different number of in-

jected events; the values shown are relative to the results of Experiment 1 with 384

tasks. The figure shows with increasing number of injected errors, there is an in-

creasing CPU usage (from 3.3091% with 400 injected events, to 5.4508% with 1600

injected events). The memory usage has similar increase range (from 2.68% with

400 injected events to 5.51% with 1600 injected events). From the log I noticed

that, in the scenario with 800 injected events, Brace periodically turns on and off

the load balancing mode to guarantee the local runtime monitoring behavior. This

demonstrates that the local optimization algorithm can guarantee the runtime mon-

itor behavior with unexpected surges of events. However, when there are a large

195

number of event surges (and the local optimizer cannot produce optimal solutions),

load balancing works well, too.

Figure 6.5: Predictability

For brevity, I omit the discussion of the results of Experiment 3. The results

are consistent with the findings I have in the Android Test Bed as all the injected

local errors are detected.

Figure 6.6 shows the result of Experiment 4 with 40 randomly injected logic

errors in distributed algorithms. The figure shows that Brace can always detect all of

the injected logic errors; again Brace also detects other (previously unknown) errors.

For the first global property GP1, all the additional errors I detected were confirmed

by the CPS application developers; they were related to a concurrency error in the

scheduling algorithm. For the other two properties, each detected 4 errors, which

the CPS application developers later deemed to be false positives. From analyzing

server logs from the testbed, I discovered that, though my time synchronization

does give a time buffer in which it matches global events with required distributed

196

attributes, concurrency errors caused data to be overwritten for a few distributed

attributes. This is a direct result of the location chosen for the annotations for those

distributed attributes in the implementation. If the annotation is in thread critical

place, then any variables required are not immune from thread safety issues. I could

resolve this by storing more instances of every single property, but the resulting

significant increase in the memory usage motivates us to instead sacrifice a small

number of false positives.

Figure 6.6: Global Properties

6.4.4 Validity discussion

In the Android test bed, I did not measure the CPU and memory usage as

I found it is very difficult to do so reliably on the Android platform. I tried third

party profile tools, but the overhead of running these tools changed the rover and

applications’ behavior.

In the Orbit test bed, I did not analyze the network transmission data. I

found the evaluation application has a nondeterministic way of sending network

packets due to the nature of the complex negotiation and scheduling algorithm and

197

the message passing system the application chose to use. As a result, I do not know

an exact value of how much additional network overhead is required for running

the CPS application with Brace vs. without it, especially for load balancing and

global properties. I did implement data aggregation, event filtering, and package

compression in the Brace middleware. In the worst case scenario, I can have a

dedicated network channel for Brace to avoid the impact on the hosted application.

6.5 Related Work

There are a few recent work in RV to improve efficiency and scalability.

In [96], shared parameters and events of multiple specifications are explored to in-

crease runtime and memory performance, and RV-Monitor [126] introduces a few

improvements for the index tress and caches commonly used for runtime monitoring

to improve efficiency. While these techniques provide good solution in efficiency,

they suffer from a lack of predictability (especially when there are surges of events)

and expressiveness (i.e., none of them provides capability to specify quantitative

constraints). These deficits make them unlikely candidates for CPS run-time verifi-

cation. MapReduce has also been used to process multiple trace fragments in par-

allel to improve scalability [17]. However, these parallel monitors are offline and are

therefore not adequate for CPS applications, which in general require more respon-

sive on-line monitoring. In comparison, my solution is based on on-line monitoring

and resolve efficiency issue by introducing Event Monitor at local node (existing

work) and Event Automata at global node (introduced in this chapter) to filter and

aggregate “raw” events.

198

Copilot introduces a functional specification language based on Haskell to

address hard-constraints in monitoring ultra-critical embedded systems [151]. How-

ever, the specification language requires a non-trivial learning curve, which in addi-

tion to being more expensive may also introduce errors in specifications. Further,

Copilot’s expressiveness is not intended for CPS; for instance, the specification lan-

guage is not expressive enough to capture the local and global properties in the

motivating application. In comparison, my solution is based on intuitive specifica-

tion language (BraceAssertion) and I have introduced in this chapter new syntax

and semantics in BraceAssertion and novel algorithms in Brace to support checking

global properties.

Adaptive runtime verification (ARV) uses an offline state estimation of the

probability of a property being violated to assign a critical level to each monitor

instance [20]. ARV then uses the critical level of each monitor to turn the monitor

on and off at runtime to control overhead. Though this work is effective in reducing

runtime overhead, the number of false positives and false negatives that result from

approximation errors is not acceptable for mission critical CPS applications. In

comparison, besides using Event Monitor (for local properties) and Event Automata

(for global properties), I use dynamic linear optimization model and load balancing

to guarantee predictable runtime overhead.

In the context of runtime monitors for distributed systems, a distributed

on-line monitoring algorithm that allows LTL specifications to be distributed and

observed by each component has been shown to 1) reduce the communication over-

head (though some communication is still required to resolve non-local properties)

199

and 2) increase the responsiveness in detecting violations at the expense of perfor-

mance overhead on the local component [24]. This line of work is similar to ours in

that it also explores the use of distributed monitoring. However, this work presumes

perfect synchrony among components (e.g., there is no network noise or delay) and

that the sets of events on different components are unique. In many CPS applica-

tions, perfect synchrony cannot be guaranteed (and is very unlikely) and the sets

of events on different components are often overlapping. In my work, I use novel

time synchronization algorithms to deal with network noise and delay and have no

restriction of sets of events on different components.

In time-triggered on-line monitoring, a monitor is invoked periodically to

sample events stored in a buffer. In [34], for instance, a linear programming model

is introduced to find the longest sampling period with minimum event history buffer

for time-triggered online monitoring. The work in [185], on the other hand, inte-

grates event- and time-triggered online monitoring based on a linear programming

model to balance responsiveness and performance overhead. However, in both cases,

the linear programming models are based on a Control-Flow Graph (CFG) that is

statically analyzed; as a result, these approaches are intended for sequential pro-

grams, while most CPS applications are distributed and entail concurrently execut-

ing components. In my work, I use dynamic linear model to control each running

time for monitors, idle time without monitors, and maximum memory allocated.

my approach is more fine grained and suitable for CPS.

Perhaps most similar to my work in terms of capturing global properties is

Passive Distributed Assertions (PDA) [163], though in the context of wireless sen-

200

sor networks. In PDA, distributed assertions are instrumented in the application

and evaluated at a single sink node. Properties used for the assertions are collected

passively from the network. The distributed assertion has the expressiveness of first-

order logic but is not applicable to CPS applications due to its lack of expressiveness

of event ordering and real-time properties (e.g., timeouts). In my work, the under-

lying speciciation language has the power to express metric temporal logic [159] and

first-order logic, and my online runtime verification framework is more tailored for

CPS applications in terms of efficiency, effectiveness, and being predictable.

6.6 Research Contributions

In this chapter, I made the following contribution:

Research Contribution 5: Built on top of previous works, I create Brace as a

practical, efficient, and effective online runtime verification middleware specifically

designed for CPS applications.

6.7 Chapter Summary

In this chapter, I present Brace as a middleware for practical on-line moni-

toring of Cyber-Physical System Correctness. I first extend BraceAssertion to allow

programmers to specify global properties, then I enable online violations detection

both in local properties and global properties. With a novel linear programming

model combined with load balancing, I guarantee predictable behaviors of the run-

time monitors. With a thorough case study both on real rover application and

a complex simulation on distributed robotic planning, I prove Brace as efficient,

201

effective, and practical runtime verification middleware for Cyber-Physical System.

202

Chapter 7

Conclusion

With a three-pronged investigation of verification and validation in CPS

through a literature survey, an on-line survey, and interviews. We found there are

significant research gaps in applying simulation and model checking in CPS verifi-

cation and validation. Many CPS developers now use trial and error as a de facto

standard to debug CPS. To improve the state of the art in CPS verification and vali-

dation, I proposed a multi-component tool-set to define and support CPS assertions.

My first step is to create BraceForce as a supporting infrastructure to get sensing

data from heterogeneous platforms. Then I create BraceAssertion as an intuitive

yet powerful specification language with capabilities to express metric temporal logic

and first order logic. Based on BraceForce and BraceAssertion, I create BraceBind

which is not only able to establish a real-time simulation environment for physical

models from various simulation platforms, but also allows two ways data input to

inform CPS debugging, one from debugging sensor and another from system models.

Finally, I complete the picture by creating Brace as an efficient and effective online

runtime verification middleware which can guarantee predictable behavior for run-

time monitors even with unpredictable surge of (random) events. With BraceForce,

Brace can be easily deployed to different test environment to access various debug-

ging sensors. With BraceAssertion, CPS developers can write simple yet powerful

203

specification to capture interesting properties in CPS application. With BraceBind,

Brace is able to detect bugs in a highly accurate real time simulation environment

without need for laborious, expensive and often infeasible physical deployment.

We evaluate each component in the Brace suite with specifically designed

empirical study, and more specifically using increasingly more complex and suit-

able real CPS application of smart agent systems to test each component in the

Brace suite. The evaluation application evolves from a relatively simple simulation

application with simulated agents, simulated rovers, and simulated networks, to a

testbed with agents running in their own dedicated machine communicating with

each other through real network, and accomplish tasks using distributed negotiation

algorithms (with simulated rovers), finally to physical rovers executing real tasks in

three different real physical environment with a dedicated server assigning tasks.

204

Appendix

205

Appendix A

BraceAssertion

A.1 SCL Syntax and Semantics

SCL [160] is defined in the context of timed state sequences and extends

LTL (with past operator) with two modal operators B (prophecy) and C (history).

These modalities can be annotated by constraints on clock variables. For instance,

the formula B62 φ is true if φ becomes true within 2. A formula of SCL is composed

of (atomic) proposition symbols in a finite set AP , boolean connectives ∨ and ¬,

qualitative temporal operators U (Until) and S (Since), B as prophecy operator, C

as history operator. SCL is as defined by the following grammar:

φ ::= ρ | φ1 ∨ φ2 | ¬φ | ◦φ | 	φ | φ1Uφ2 | φ1Sφ2 |

Bvc φ |Cvc φ (A.1)

where ρ ∈ 2AP , φ1, φ2 are SCL formulas and v∈ {<,6,=,≥, >}. The semantics

of SCL is inductively defined on timed traces. Given a timed trace θ = (σ̄, τ̄), a

formula φ in SCL, a position i ∈ N, the satisfaction relation |= is inductively defined

206

by:

(θ, i) |= ρ iff ρ ⊆ σi;

(θ, i) |= ¬φ iff not (θ, i) |= φ;

(θ, i) |= φ1 ∨ φ2 iff (θ, i) |= φ1 or (θ, i) |= φ2;

(θ, i) |= ◦φ iff (θ, i+ 1) |= θ;

(θ, i) |= �φ iff i > 0 and (θ, i− 1) |= φ;

(θ, i) |= φ1Uφ2 iff there exists j ≥ i such that (θ, j) |= φ2

and for all k, i 6 k < j, (θ, k) |= φ1;

(θ, i) |= φ1Sφ2 iff there exists j, 0 6 j 6 i, such that

(θ, j) |= φ2 and for all k, j < k 6 i, (θ, k) |= φ1;

(θ, i) |=Bvc φ iff there exists j > i, such that (θ, j) |= φ

for all k, i < k < j, (θ, k) 2 φ and τj − τi v c;

(θ, i) |=Cvc φ iff there exists 0 6 j < i, such that

(θ, j) |= φfor all k, j < k < i, (θ, k) 2 φ and

τi − τj v c.

(A.2)

A formula φ is satisfied by a sequence θ iff (θ, 0) |= φ. Based on the SCL gram-

mar A.1, and the semantics A.2, it is straightforward to extend SCL with additional

boolean and temporal operators. Here we listed a few examples in Rule A.3 and the

207

full list is in [160].

boolean: > ≡ ¬φ1 ∨ φ1,⊥ ≡ ¬>, φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2),

φ1 → φ2 ≡ ¬φ1 ∨ φ2;

future: ♦φ1 ≡ >Uφ1 - eventually;

�φ1 ≡ ¬♦¬φ1 - always;

B[l,u] φ ≡B≥l φ ∧ B6u φ - metric intervals;

past: C[l,u] φ ≡C≥l φ ∧ C6u φ - metric intervals.

(A.3)

In [160], SCL is shown to be decidable in PSPACE with a simple decision

process based on ECA.

A.2 BraceAssertion Syntax (in BNF)

The following BNF gives the syntax of the fragment of BraceAssertion to

support qualitative constraints. ¡State¿ is any text description of a given state,

and All refers to any given states and is used to specify global invariants for the

system/component.

<Given Fragment> ::= Given <condition>

<condition> ::= All | (<State Clause>)

<State Clause> ::= (Not) <State>

<Then fragment> :: = Then|Else <Then statement>

<Then statement> ::= (<TemporalOp>) <State>

<TemporalOp> ::= Always | Eventually | Eventually Permanent |

Never

The following BNF gives the syntax of the fragment of BraceAssertion to

support quantitative constraints. Number refers to any real-value1 and Event is a

text description of either an event happened in the system or a predicate.

1Unit of time can be seconds, minutes, hours

208

<When Fragment> ::= When(<TransitionCondition>)

<TransitionCondition> ::= <InputSymbol> |

<InputSymbol> { <LogicOp> <InputSymbol> }

<InputSymbol> ::= (<temporal condition>) (<Event Clause>)

<Event Clause> ::= (Not) <Event>

<temporal condition> ::= (<ClockQ>) (<ClockT>)

<ClockT> ::= Before | After

<ClockQ> ::= Between <number> And <number> |

Within <number> | Less Than <number> |

More Than <number> | Exactly <number> | Immediately

<LogicOp> ::= And | Or

The following BNF gives the syntax of the fragment of BraceAssertion to

support predicate logics. Simple Event is a text description of an event, Predicate

is a text description of predicate, while Param is a text description of a parameter

which is used in the evaluation of the predicate.

<Event> ::= <Simple Event> | <Predicate Event>

<Predicate Event> ::= <Predicate> With <Params>

<Params> ::= <Param> | <Param> {<Connector> <Param>}

<Connector> ::= And

A.3 BraceAssertion Semantics

Table A.1 lists a few keywords in BraceAssertion and their semantics in

terms of SCL temporal operators, for complete syntax (in Backus-Naur Form) and

semantics (in terms of SCL operators), see [197].

Table A.2 gives some examples of SCL representation of BraceAssertion.

The translation from the full BraceAssertion to SCL is defined inductively on Brace-

Assertion and given in Table 4.2 (we assume that the φ formulas are atomic in the

table).

in Table A.2, the first expression presents typical functional requirement of

bounded time response; the second and fourth ones are to specify exact response

209

Table A.1: Selected Mappings between BraceAssertion Keywords and SCL Tempo-
ral Operators

Keyword Temporal Operator

Always �
Eventually ♦
Eventually Permanent ♦�
Never ¬�
Before B
After C

Table A.2: Comparison of representative temporal expressions

SCL BraceAssertion
�(p→B≤5 q) Given p When Within 5

After p Then q
�(p→B=3 q) Given p When Exactly 3

After p Then q
�(p→ (B>5 p) ∨ (◦�¬p)) Given p When More Than 5

After p Then p
Else Never p

�((C=3 q)→ p) Given q When Exactly 3
After q Then p

�((�<3¬p)→ q) Given Not p When Less Than 3
After Then Always q

�(p→C=3 q) Given All When Exactly 3
Before p Then q

time; the third one is to define periodicity of events; the fifth is to specify alarm;

the last one is to specify minimum distance between events.

210

A.4 Algorithms in BraceAssertion

A.4.1 AspectJ Instrumentation

Algorithm 9 shows the primary pieces of the algorithm the Event Monitor

uses to instrument the program by injecting AspectJ pointcuts. The given, when,

then, else, and whenE parameters refer to those events in the Given, When, Then,

Else, and complemented When for the component indicated by the system-generated

id, cid.

Algorithm 9 Instrumentation (AspectJ Pointcuts)
1: for ∀e ∈ given ∪ when ∪ then ∪ else ∪ whenE do
2: if e.hasClockConstraints then
3: cm← newclockmanager(e)
4: register(cm)

5: if e.isAggregatedEvent then
6: em← neweventmanager(e)
7: register(em)

8: if e.isPredicate then
9: for ∀p ∈ e.parameters do

10: if locateParam(p) then
11: genPointCut(p)
12: else
13: reportParamMissing

14: if locateExecution(e.exeuction) then
15: if locatePredicate(e.predicate) then
16: genCombinedPointCut(e)
17: else
18: reportPredMissing

19: else
20: reportExeMissing

21: if e.isEvent then
22: if locatEvent(e) then
23: genPointCut(e)
24: else
25: reportEventMissing

In Algorithm 9, a clock manager is created and registered with the Event

Monitor to track the recording and predicting clock values for each event bound

with clock constraints (lines 2-4). For each aggregated event, an event manager is

created and registered with the Event Monitor; an event manager is essentially a

211

state machine that records what are the (atomic) events associated with the aggre-

gated event (lines 5-7). For each event bound with a predicate, the algorithm locates

the parameters in the implementation and creates AspectJ pointcuts (lines 9-13);

afterwards the algorithm locates the annotations for each execution and predicate

annotation, and generates AspectJ pointcut to evaluate annotated predicate func-

tion with values of parameters collected at runtime via parameters pointcuts (lines

8-20). All cases other than Predicates are much simpler as the algorithm generates

an Aspect pointcut with either a method invocation, a class constructor, or a single

statement annotated with Event (lines 21-25).

A.4.2 Monitor Synthesis (Main)

In identifying events in Given-When-Then structure, we differentiate be-

tween Proactive and Reactive events. All the clauses defined in Then are Proactive

events where the component makes actions proactively to trigger a state transition.

All the clauses defined in When are either Reactive events where the component

receives input signals either from the environment (e.g., via sensors) or other com-

ponents2, or simply just temporal constraints for a state transition.

We create the Algorithm 10 to identify events in BraceAssertion specifcia-

tion, generate an aggregated event for a set of events in the same structure (e.g., one

aggregated event for the whole set of When statements, another aggregated event is

generated for the whole complemented set of When statements if Else statements are

2BraceAssertion is designed to work on those CPS applications relying on shared variables/mes-
sage to deal with concurrency and distribution

212

specified), generate a state for each aggregated event, and synthesize ECA monitor

and Event Monitor using the following steps: (1) reads the BraceAssertion specifi-

cation file to construct a set of BraceAssertion specifications in line with the BNF

syntax (line 1), this step also deals with challenges posed by And and Or logical

operators in When fragment, which enables more expressive transitions. The rule

is for each event after And, a new When clause will be created; and for each event

after Or, a separate specification are created (e.g., a state transition with When

A Or B are split into a state transition with When A and another with When B,

each of which maintains remaining events in the original when clauses); (2) for each

BraceAssertion specification, assigns a unique id for the component specified, which

is used to generate component-unique aggregated events later (line 3); for the set

of events in each segment (e.g., Given, When, Then) in the specification, generates

an aggregate event for the set, generates a state for the aggregated event, and adds

the aggregated state and event along with the ordinal set of events to the event

records (ers) (lines 4-5); and uses the collected event records (ers) to synthesis

Event Monitor (line 6) and ECA Monitor (line 7).

Algorithm 10 Monitor Synthesis (Main)
1: specs← readInputF ile
2: for ∀s ∈ specs do
3: cid← generateComponentId
4: for ∀es ∈ s.gi ∪ s.when ∪ s.then ∪ s.whenE ∪ s.else do
5: ers← ers ∪ aggregate(es, cid)

6: SynthesisEventMon(ers)
7: SynthesisECAMon(ers)

213

A.4.3 Event Monitor Synthesis

Algorithm 11 is the main algorithm to synthesize Event Monitors using the

following steps: (1) for each aggregated event in the BraceAssertion substructures

(e.g., When), creates an event manager (lines 1-2); (2) from a set of events associated

with the aggregated event, adds each event as input event to the event manager and

adds the aggregated event as the output event to the event manager (lines 3-5); (3)

adds the event manager to the global maintained event manager collection (line 6).

Algorithm 11 Event Monitor Synthesis
1: for ∀ae ∈ ers.gi ∪ ers.when ∪ ers.then ∪ ers.whenE ∪ ers.else do
2: em← new eventmanager()
3: for ∀e ∈ ae.events do
4: em.addInputEvent(e)

5: em.addOutEvent(ae)
6: updateEMs(em)

A.4.4 ECA Monitor Synthesis

Algorithm 12 is the main algorithm to synthesize run-time ECA monitors

using the following steps: (1) builds a state transition, that consists of a starting

state, input events, constraints (if have), and an end state, for Given; the starting

state is retrieved by finding a state in a globally shared transition table that can

transit to the aggregate state for the Given, if no such state exists, uses the default

start state (that represents any state) (lines 1-6); (2) builds a state transition for

When, state transition creation logic is similar to Given, except the clock constraints

are aggregated and added to the state transition (line 8) and the starting state is the

aggregate state for Given (line 9); another state transition is created for alternative

path of When (if Else is specified) (lines 10-11); (3) builds a state transition for Then,

214

and creates accepting conditions (accStates) and rejecting conditions (rejStates)

for the automata; the temporal operator (e.g. Eventually) determines different way

of creating the state transition, accepting conditions, and rejection conditions (lines

15-34). We skip the processing of Else, which is almost identical to Then; (4) with

the set of state transitions generated for the current BraceAssertion specifciation,

updates the global transition table (line 35); (5) creates a runtime monitor which

keeps track of the starting state, accepting conditions, and rejecting conditions for

the specification (line 36); (6) adds the runtime monitor to the global maintained

runtime monitor collection (line 37).

A.5 The Case Study - Full Version

We used an existing robot planning system, which is a distributed version

of Generalized Partial Global Planning (GPGP) [116]. This system’s planning al-

gorithm is a version of Anytime A∗ that is customized to distributed planning for

a group of mobile vehicles. Specifically, a group of vehicles is assigned patrols that

must visit a set of specified waypoints. The vehicles negotiate, and each derives

a schedule that contains a subset of the waypoints. The schedules are chosen to

optimize the combined utility of the vehicles.

Each vehicle hosts an intelligent agent that can optimize its actions, au-

tonomously and interactively. Each agent includes a local scheduler, which derives

a schedule based on a current set of tasks assigned for execution; a negotiator,

which coordinates with other agents to derive the schedule; and an execution sys-

tem. An agent’s task structure captures its knowledge about how to accomplish

215

Algorithm 12 ECA Monitor Synthesis
1: if ers.given 6= null then
2: startState← trs.find(ers.given.state)
3: if startState = null then
4: startState = defaultStartState

5: trs← trs ∪ new tr(startState, ers.given)
6: givenState = ers.given.state

7: if ers.when 6= null then
8: clockCons← new clockCons(ers.when)
9: trs← trs ∪ new tr(givenState, ers.when, clockCons)

10: if ers.whenE 6= null then
11: trs← trs ∪ new tr(givenState, ers.whenE, clockCons)

12: whenState = ers.when.state
13: if ers.then 6= null then
14: tempOp← getTempOp(ers.then)
15: if tempOp = null then
16: trs← trs ∪ new tr(whenState, ers.then)
17: trs← trs ∪ new tr(whenState, ers.thenC)
18: accStates← whenState ∪ ers.then.state
19: rejStates← whenState ∪ ers.thenc.state
20: if tempOP = Eventually then
21: trs← trs ∪ new tr(anystate, ers.then)
22: accStates← whenState ∪ ers.then.state
23: if tempOp = EventuallyPermanent then
24: trs← trs ∪ new tr(anystate, ers.then)
25: trs← trs ∪ new tr(anystate, ers.thenC)
26: rejStates← whenState ∪ ers.then.state ∪ ers.thenc.state
27: if tempOp = Always then
28: trs← trs ∪ new tr(whenState, ers.then)
29: trs← trs ∪ new tr(anystate, ers.thenC)
30: accStates← whenState ∪ ers.then.state
31: rejStates← whenState ∪ ers.thenc.state
32: if tempOp = Never then
33: trs← trs ∪ new tr(whenState, ers.then)
34: rejStates← whenState ∪ ers.then.state
35: updateGT (trs)
36: rms← rms ∪ new rm(startState, accStates, rejStates)
37: updateRMs(rms)

certain tasks. A task structure’s root corresponds to a single task. The leaves of

the task structure correspond to atomic actions that are performed in various ways

to accomplish the task; these combinations are determined by the structure itself.

Each agent has a collection of task structures that determines the agent’s overall

capabilities. An external event corresponding to a request to perform a task triggers

an agent’s reasoning about whether and how it can accomplish that task. The result

216

of that reasoning is a schedule that “interweaves” instances of atomic actions from

the agent’s tasks in a time- oriented partial order. The schedule can be changed

dynamically in response to the changing situation.

To accomplish a global task, agents negotiate over multiple attributes (di-

mensions). Consider a simple example with two agents. Agent A asks whether

agent B can perform task T by time 10, and A requests a minimum quality of 8

for the task. B replies that it can do task T by time 10 but only with a quality

of 6; if A can wait until time 15, it can get a quality of 12. A considers which

choice is better for the global system. The negotiation considers both completion

time and achieved quality, and thus the scope of the search space for negotiation is

increased, improving the chance of finding a solution that increases the combined

utility; clearly negotiation is more sophisticated when more agents are involved.

The cooperative negotiation process can also have many outcomes depending on

the agents’ expended effort. They may find a solution that leads to the maximum

combined utility, they may simply find a solution that increases the combined utility

from their current state, or they may find that there is no solution that increases

the combined utility (at least not with the resources available for the search). In

this paper, we used an instance in which two vehicles cyclically move along their

generated waypoint sets. The utility of visiting a waypoint can change dynamically,

which may change the agents’ schedules.

217

Bibliography

[1] E. Abrahám-Mumm, U. Hannemann, and M. Steffen. Verification of hybrid

systems: Formalization and proof rules in PVS. In Proc. of the 7th IEEE

Int’l Conference on Engineering of Complex Computer Systems, pages 48–57,

2001.

[2] R. Akella and B. M. McMillin. Model-checking BNDC properties in cyber-

physical systems. In Proc. of COMPSAC, pages 660–663, 2009.

[3] A. T. Al-Hammouri. “A comprehensive co-simulation platform for Cyber-

Physical Systems”. Computer Communications, 36(1):8–19, 2012.

[4] R. Albert, I. Albert, and G. L. Nakarado. Structural vulnerability of the

north american power grid. Physical review E, 69(2):025103, 2004.

[5] J. Alglave, A. F. Donaldson, D. Kroening, and M. Tautschnig. “Making soft-

ware verification tools really work”. In Automated Technology for Verification

and Analysis, pages 28–42. Springer, 2011.

[6] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.

volume 104, pages 2–34, 1993.

[7] R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer

science, 126(2):183–235, 1994.

218

[8] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.

JACM, 1996.

[9] R. Alur, L. Fix, and T. A. Henzinger. A determinizable class of timed au-

tomata. In Computer Aided Verification, 1994.

[10] R. Alur, R. P. Kurshan, and M. Viswanathan. Membership questions for

timed and hybrid automata. In Proc. of RTSS, pages 254–263, 1998.

[11] Android sensor framework. http://developer.android.com/guide/topics/

sensors/sensors_overview.html.

[12] ASM. http://asm.ow2.org/.

[13] F. Baccelli, N. Khude, R. Laroia, J. Li, T. Richardson, S. Shakkottai, S. Tavil-

dar, and X. Wu. On the design of device-to-device autonomous discovery. In

Proc. of COMSNETS, pages 1–9, 2012.

[14] R. Baheti and H. Gill. Cyber-physical systems. The Impact of Control

Technology, pages 161–166, 2011.

[15] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking

with SLAM. Communications of the ACM, 54(7):68–76, 2011.

[16] J. Barnes. High integrity software: the SPARK approach to safety and secu-

rity. Addison-Wesley Longman Publishing Co., Inc., 2003.

[17] B. Barre, M. Klein, M. Soucy-Boivin, P. A. Ollivier, and S. Hallé. Mapreduce

for parallel trace validation of ltl properties. In Runtime Verification, 2013.

219

[18] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. Rydeheard. Quan-

tified event automata: Towards expressive and efficient runtime monitors. In

FM 2012: Formal Methods, pages 68–84. 2012.

[19] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime

verification. In Verification, Model Checking, and Abstract Interpretation,

2004.

[20] E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. S. D., Z. E., and

J. Seyster. Adaptive runtime verification. In Proc. of RV, 2012.

[21] D. Basin, F. Klaedtke, and S. Müller. Monitoring security policies with metric

first-order temporal logic. In Proc. of SACMAT, 2010.

[22] D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of

metric first-order temporal properties. In Proc. of LIPICS, 2008.

[23] A. Basu, M. Bozga, and J. Sifakis. “Modeling heterogeneous real-time com-

ponents in BIP”. In Proc. SEFM, pages 3–12, 2006.

[24] A. Bauer and Y. Falcone. Decentralised ltl monitoring. In Proc. of FM.

2012.

[25] A. Bauer, M. Leucker, and C. Schallhart. “Runtime verification for LTL

and TLTL”. ACM Transactions on Software Engineering and Methodology

(TOSEM), 20(4):14, 2011.

[26] Introducing behavior-driven development. http://dannorth.net/introducing-bdd,

2006.

220

[27] D. Becker, R. Rabenseifner, and F. Wolf. Implications of non-constant clock

drifts for the timestamps of concurrent events. In Proc. of Cluster Computing,

pages 59–68, 2008.

[28] R. Bellman. “Dynamic programming and Lagrange multipliers”. Proceed-

ings of the National Academy of Sciences of the United States of America,

42(10):767, 1956.

[29] N. Bjoner, Z. Manna, H. Sipma, and T. Uribe. Deductive verification of

real-time systems using STeP. Theoretical Computer Science, 253(1):27–60,

February 2001.

[30] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-

niaux, and X. Rival. “Design and implementation of a special-purpose static

program analyzer for safety-critical real-time embedded software”. In The

Essence of Computation, pages 85–108. Springer, 2002.

[31] E. Bodden. Verifying finite-state properties of large-scale programs. PhD

thesis, McGill University, 2009.

[32] C. D. Bodemann and F. De Rose. The successful development process with

matlab simulink in the framework of ESA’s ATV project. In Proc. of the 55th

Int’l. Astronautical Congress, 2004.

[33] B. Boehm. Verifying and validating software requirements and design speci-

fications. In IEEE Software, 1984.

221

[34] B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Time-triggered runtime

verification. Formal Methods in System Design, 2013.

[35] J. Botaschanjan, M. Broy, A. Gruler, A. Harhurin, S. Knapp, L. Kof, W. Paul,

and M. Spichkova. “On the correctness of upper layers of automotive sys-

tems”. Formal Aspects of Computing, 20(6):637–662, 2008.

[36] A. Boulis, C.-C. Han, and M. Srivastava. Design and implementation of

a framework for efficient and programmable sensor networks. In Proc. of

MobiSys, 2003.

[37] J. P. Bowen and M. G. Hinchey. Ten commandments revisited: a ten-year

perspective on the industrial application of formal methods. In Proc. of

Formal methods for industrial critical systems, pages 8–16, 2005.

[38] D. Broman, P. Derler, and J. Eidson. “Temporal issues in cyber-physical

systems”. Journal of the Indian Institute of Science, 93(3):389–402, 2013.

[39] W. Brunette, R. Sodt, R. Chaudhri, M. Goel, M. Falcone, J. V. Orden, and

G. Borriello. Open data kit sensors: a sensor integration framework for

android at the application-level. In Proc. of MobiSys, pages 351–364, 2012.

[40] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang, J. Zhao, and X. Li. Toward

online hybrid systems model checking of cyber-physical systems’ time-bounded

short-run behavior. ACM SIGBED Review, 8(2):7–10, 2011.

[41] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: a frame-

work for simulating and prototyping heterogeneous systems. In Readings in

222

hardware/software co-design, 2001.

[42] F. Chen and G. Roşu. Java-MOP: A monitoring oriented programming envi-

ronment for java. In Proc. of TACAS. 2005.

[43] H. X. Chen. Simulink and vc-based hardware-in-the-loop real-time simulation

for ev.

[44] J. Chomicki. Efficient checking of temporal integrity constraints using bounded

history encoding. Trans. on Database Systems, 1995.

[45] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new sym-

bolic model verifier. In Computer Aided Verification, pages 495–499, 1999.

[46] R. Clarisó and J. Cortadella. “The octahedron abstract domain”. In Static

Analysis, pages 312–327. 2004.

[47] E. M. Clarke, B. Krogh, A. Platzer, and R. Rajkumar. Analysis and veri

cation challenges for cyber-physical transportation systems. 2008.

[48] E. M. Clarke and P. Zuliani. Statistical model checking for cyber-physical

systems. In Automated Technology for Verification and Analysis, pages 1–12.

2011.

[49] R. Colgren. Efficient model reduction for the control of large-scale systems.

In Efficient Modeling and Control of Large-Scale Systems, pages 59–72. 2010.

[50] E. COMPUTING. Cyber-physical systems. 2009.

223

[51] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints.

In Proc. of the 4th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages, pages 238–252, 1977.

[52] I. Craggs. Really small message broker. http://www.alphaworks.ibm.com/

tech/rsmb/.

[53] J. W. Creswell. Qualitative inquiry and research design: Choosing among the

five traditions. Sage publications, 2012.

[54] J. W. Creswell and A. L. Garrett. “The” movement” of mixed methods

research and the role of educators”. South African Journal of Education,

2008.

[55] D. Crockford. The application/json media type for javascript object notation

(json). 2006.

[56] Sony dynamic android sensor hal. https://github.com/sonyxperiadev/

DASH.

[57] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Hybrid

Systems III, pages 208–219. 1996.

[58] P. Derler, E. A. Lee, and A. S. Vincentelli. Modeling cyber–physical systems.

Proc. of the IEEE, 100(1):13–28, 2012.

[59] A. Deutsch. “Static verification of dynamic properties”. PolySpace White

Paper, 2004.

224

[60] V. D’silva, D. Kroening, and G. Weissenbacher. “A survey of automated tech-

niques for formal software verification”. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 27(7):1165–1178, 2008.

[61] P. Edara, A. Limaye, and K. Ramamritham. Asynchronous in-network pre-

diction: Efficient aggregation in sensor networks. ACM Trans. on Sensor

Nets., 4(4), 2008.

[62] J. El-khoury, F. Asplund, M. Biehl, F. Loiret, and M. Törngren. “A Roadmap

Towards Integrated CPS Development Environments”.

[63] H. Elmqvist, S. E. Mattsson, and M. Otter. Modelica-a language for physical

system modeling, visualization and interaction. In Proc. of the IEEE Int’l

Symposium on Computer Aided Control System Design, pages 630–639, 1999.

[64] P. Emanuelsson and U. Nilsson. “A comparative study of industrial static

analysis tools”. Electronic notes in theoretical computer science, 217:5–21,

2008.

[65] C. Fetzer and F. Cristian. An optimal internal clock synchronization algo-

rithm. In Proc. of COMPASS, 1995.

[66] Functional mock-up interface. http://www.fmi-standard.org.

[67] M. D. Fraser, K. Kumar, and V. K. Vaishnavi. Strategies for incorporating

formal specifications in software development. Comm. of the ACM, 1994.

225

[68] P. Fritzson and P. Bunus. Modelica-a general object-oriented language for

continuous and discrete-event system modeling and simulation. In Simulation

Symposium, 2002. Proceedings. 35th Annual, pages 365–380. IEEE, 2002.

[69] P. Fritzson and V. Engelson. Modelica - a unified object-oriented language

for system modeling and simulation. In Proc. of ECOOP. 1998.

[70] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. “CADP 2011: a toolbox for

the construction and analysis of distributed processes”. International Journal

on Software Tools for Technology Transfer, 15(2):89–107, 2013.

[71] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The

nesC language: A holistic approach to networked embedded systems. In Proc.

of PLDI, pages 1–11, 2003.

[72] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler. “The

nesC language: A holistic approach to networked embedded systems”. In

Acm Sigplan Notices, volume 38, pages 1–11, 2003.

[73] A. Gholkar, A. Isaacs, and H. Arya. Hardware-in-loop simulator for mini

aerial vehicle. In Sixth Real-Time Linux Workshop, 2004.

[74] D. Goswami, R. Schneider, and S. Chakraborty. Co-design of cyber-physical

systems via controllers with flexible delay constraints. In Proc. of ASP-DAC,

2011.

[75] L. Grunske and P. Zhang. “Monitoring probabilistic properties”. In Proc.

ESEC/FSE, pages 183–192, 2009.

226

[76] H. Gupta, V. Navda, S. Das, and V. Chowdhary. Efficient gathering of

correlated data in sensor networks. ACM Trans. on Sensor Networks, 4(1),

2008.

[77] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. “Verification of real-time

systems using linear relation analysis”. Formal Methods in System Design,

11(2):157–185, 1997.

[78] Z. Han and B. Krogh. Reachability analysis of hybrid control systems using

reduced-order models. In Proc. of American Control Conference, volume 2,

pages 1183–1189, 2004.

[79] M. Harakawa, H. Yamasaki, T. Nagano, S. Abourida, C. Dufour, and J. Bélanger.

Real-time simulation of a complete pmsm drive at 10 µs time step. In Proc.

of IPEC, 2005.

[80] J. Harrison and J. Harrison. Theorem proving with the real numbers. 1998.

[81] N. He, P. Rümmer, and D. Kroening. Test-case generation for embedded

simulink via formal concept analysis. In Proc. of DAC, 2011.

[82] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo. Middleware to

support sensor network applications. IEEE Network, 18(1):6–14, 2004.

[83] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for

hybrid systems. In Computer aided verification, pages 460–463, 1997.

[84] J. Hill and D. Culler. A wireless embedded sensor architecture for system-level

optimization. Technical report, UC Berkeley, 2002.

227

[85] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System

architecture directions for networked sensors. In Proc. of ASPLOS, 2000.

[86] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ. In Proc. of AOSD,

2004.

[87] A. Himmler. Openness requirements for next generation hardware-in-the-loop

testing systems. In AIAA Modeling and Simulation Technologies Conference,

National Harbor, Maryland, 2014.

[88] P. Hintjens. ZeroMQ: Messaging for Many Applications. 2013.

[89] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for

automatic verification of probabilistic systems. In Tools and Algorithms for

the Construction and Analysis of Systems, pages 441–444. 2006.

[90] G. J. Holzmann. Basic spin manual, 1980.

[91] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata

theory, languages, and computation. ACM SIGACT News, 2001.

[92] J. Hsiang and M. Rusinowitch. On word problems in equational theories.

1987.

[93] R. Huuck, A. Fehnker, S. Seefried, and J. Brauer. “Goanna: Syntactic soft-

ware model checking”. In Automated Technology for Verification and Analy-

sis, pages 216–221. Springer, 2008.

228

[94] V. Jakkula and D. Cook. Mining sensor data in smart environment for tem-

poral activity prediction. In Proc. of KDD (Poster), 2007.

[95] Z. Jiang, M. Pajic, and R. Mangharam. Cyber–physical modeling of im-

plantable cardiac medical devices. Proc. of the IEEE, 100(1):122–137, 2012.

[96] D. Jin, P. O. Meredith, and G. Rosu. Scalable parametric runtime monitoring.

2012.

[97] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. “Why don’t software

developers use static analysis tools to find bugs?”. In Proc. ICSE, pages 672–

681, 2013.

[98] T. Jones and G. A. Koenig. A clock synchronization strategy for minimizing

clock variance at runtime in high-end computing environments. In Proc. of

SBAC-PAD, 2010.

[99] G. Jourjon, T. Rakotoarivelo, and M. Ott. From learning to researching, ease

the shift through testbeds. In Proceedings of Tridentcom 2010, pages 496–505,

2010.

[100] jsonbeans. http://code.google.com/p/jsonbeans/.

[101] M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han. Dust-

miner: troubleshooting interactive complexity bugs in sensor networks. In

Proc. of the 6th ACM conference on Embedded network sensor systems, pages

99–112, 2008.

229

[102] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski,

and G. Heiser. “Comprehensive formal verification of an OS microkernel”.

ACM Transactions on Computer Systems (TOCS), 32(1):2, 2014.

[103] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-

duwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. “seL4: Formal verifica-

tion of an OS kernel”. In Proc. SOSP, pages 207–220, 2009.

[104] N. Kosmatov, G. Petiot, and J. Signoles. “An optimized memory monitoring

for runtime assertion checking of C programs”. In Runtime Verification, pages

167–182, 2013.

[105] R. Koymans. “Specifying real-time properties with metric temporal logic”.

Real-time systems, 2(4):255–299, 1990.

[106] E. Kuleshov. Using ASM framework to implement common bytecode trans-

formation patterns. In Proc. of AOSD, 2007.

[107] H. J. La and S. D. Kim. “A service-based approach to designing cyber physical

systems”. In Proc. ICIS, pages 895–900, 2010.

[108] Labview user manual. http://autnt.fme.vutbr.cz/lab/FAQ/labview/SimulationModule_

UserManual_371013c.pdf.

[109] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int’l Journal

on STTT, 1(1):134–152, 1997.

[110] G. T. Leavens, A. L. Baker, and C. Ruby. “JML: a Java modeling language”.

In Formal Underpinnings of Java Workshop (at OOPSLA), 1998.

230

[111] E. A. Lee. Cyber-physical systems-are computing foundations adequate. In

Position Paper for NSF Workshop On Cyber-Physical Systems: Research Mo-

tivation, Techniques and Roadmap, volume 2, 2006.

[112] E. A. Lee. “Computing foundations and practice for cyber-physical sys-

tems: A preliminary report”. University of California, Berkeley, Tech. Rep.

UCB/EECS-2007-72, 2007.

[113] E. A. Lee. Cyber physical systems: Design challenges. In Proc. of ISORC,

2008.

[114] K. R. M. Leino. “Efficient weakest preconditions”. Information Processing

Letters, 93(6):281–288, 2005.

[115] K. R. M. Leino and W. Schulte. “A Verifying Compiler for a Multi-threaded

Object-Oriented”. Software System Reliability and Security, 9:351, 2007.

[116] V. Lesser, K. Decker, T. Wagner, et al. Evolution of the GPGP/TAEMS

Domain-Independent Coordination Framework. Autonomous Agents and

Multi-Agent Systems, 2004.

[117] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.

Computer, 26(7):18–41, 1993.

[118] P. Levis. Experiences from a decade of TinyOS development. In Proc. of

OSDI, 2012.

[119] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. In

Proc. of ASPLOS, pages 85–95, 2002.

231

[120] F. Lin, A. Rahmati, and L. Zhong. Dandelion: A framework for transparently

programming phone-centered wireless body sensor applications for health. In

Proc. of Wireless Health, 2010.

[121] J. Lin, S. Sedigh, and A. Miller. Towards integrated simulation of cyber-

physical systems: a case study on intelligent water distribution. In Proc. of

DASC, pages 690–695, 2009.

[122] G. Lipovszki and P. Aradi. Simulating complex systems and processes in

LabVIEW. Journal of mathematical Sciences, 132(5):629–636, 2006.

[123] C. Liu, K. Wu, and J. Pei. An energy-efficient data collection framework

for wireless sensor networks by exploiting spatiotemporal correlation. IEEE

Trans. on Parallel and Distributed Systems, 18(7):1010–1023, 2007.

[124] D. Locke. Mq telemetry transport (mqtt) v3. 1 protocol specification. IBM

developerWorks Technical Library, 2010.

[125] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic. Achiev-

ing repeatability of asynchronous events in wireless sensor networks with en-

virolog. Technical report, 2006.

[126] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Şerbănuţă, and

G. Roşu. Rv-monitor: Efficient parametric runtime verification with simulta-

neous properties. In Runtime Verification, 2014.

[127] J. Magnetto Neff. Under Construction: Working at the Intersections of Com-

position Theory, Research, and Practice, chapter Grounded Theory: A Critical

232

Research Methodlogy. 1998.

[128] R. Mattolini and P. Nesi. “An interval logic for real-time system specifica-

tion”. IEEE Transactions on Software Engineering, 27(3):208–227, 2001.

[129] B. Miller, F. Vahid, and T. Givargis. Application-specific codesign platform

generation for digital mockups in cyber-physical systems. In Proc. of ESLsyn,

2011.

[130] D. Mills. Network time protocol (version 3) specification, implementation and

analysis. 1992.

[131] D. L. Mills. Internet time synchronization: the network time protocol. IEEE

Trans. on Comm., 1991.

[132] A. Miné. “The octagon abstract domain”. Higher-Order and Symbolic Com-

putation, 19(1):31–100, 2006.

[133] S. Mitra, T. Wongpiromsarn, and R. M. Murray. Verifying cyber-physical

interactions in safety-critical systems. IEEE Security & Privacy, 11(4):28–37,

2013.

[134] T. A. Moehlman, V. R. Lesser, and B. L. Buteau. Decentralized negotia-

tion: An approach to the distributed planning problem. Group decision and

Negotiation, 1992.

[135] W. Mueller, M. Becker, A. Elfeky, and A. DiPasquale. Virtual prototyping of

cyber-physical systems. In Proc. of ASP-DAC, 2012.

233

[136] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan. “The design of

bug fixes”. In Proc. ICSE, pages 332–341, 2013.

[137] A. Murugesan, S. Rayadurgam, and M. Heimdahl. Using models to address

challenges in specifying requirements for medical cyber-physical systems.

[138] S. Nadimi and B. Bhanu. Physics-based models of color and ir video for

sensor fusion. In Proc. of MFI, pages 161–166, 2003.

[139] S. Nath. ACE: exploiting correlation for energy-efficient and continuous con-

text sensing. In Proc. of MobiSys, pages 29–42, 2012.

[140] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,

T. Bapty, J. Batteh, H. Tummescheit, and C. Sureshkumar. Model-based

integration platform for fmi co-simulation and heterogeneous simulations of

cyber-physical systems. In Proc. of International Modelica Conference, 2014.

[141] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant

for higher-order logic. 2002.

[142] U. Nordström, J. D. Lopez, and H. Elmqvist. Automatic fixed-point code

generation for modelica using dymola. The Modelica Association, 2006.

[143] Open dynamics engine. http://www.ode.org.

[144] Open systemc initiative. http://www.systemc.org.

[145] J. Ouaknine and J. Worrell. “Some recent results in metric temporal logic”.

In Formal Modeling and Analysis of Timed Systems, pages 1–13. 2008.

234

[146] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–

144, 2004.

[147] Paho - mqtt client. http://eclipse.org/paho/clients/java/.

[148] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam. Safety-critical

medical device development using the UPP2SF model. ACM Transactions on

Embedded COmputing Systems, 2014. (to appear).

[149] D. L. Parnas. Really rethinking’formal methods’. Computer, 43(1):28–34,

2010.

[150] L. Pike, S. Niller, and N. Wegmann. Runtime verification for ultra-critical

systems. In Runtime Verification, 2012.

[151] L. Pike, N. Wegmann, S. Niller, and A. Goodloe. Copilot: monitoring em-

bedded systems. Innovations in Systems and Software Engineering, 2013.

[152] A. Pnueli. “The temporal logic of programs”. In 18th Annual Symposium on

Foundations of Computer Science, pages 46–57, 1977.

[153] A. Pnueli, A. Zaks, and L. Zuck. “Monitoring interfaces for faults”. Elec-

tronic Notes in Theoretical Computer Science, 144(4):73–89, 2006.

[154] R. Purandare, M. B. Dwyer, and S. Elbaum. Optimizing monitoring of finite

state properties through monitor compaction. In Proc. of ISSTA, pages

280–290, 2013.

235

[155] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler, and A. Ng. ROS: An open-source robot operating system. In

Proc. of the Open Source Software Workshop of ICRA, 2009.

[156] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems:

the next computing revolution. In Proc. of DAC, pages 731–736, 2010.

[157] T. Rakotoarivelo, G. Jourjon, and M. Ott. Designing and orchestrating repro-

ducible experiments on federated networking testbeds. Computer Networks,

63:173–187, Apr. 2014.

[158] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin.

Sympathy for the sensor network debugger. In Proc. of the 3rd Int’l Conf.

on Embedded networked sensor systems, pages 255–267, 2005.

[159] J. F. Raskin and P. Y. Schobbens. State clock logic: A decidable real-time

logic. In Proc. of HART, 1997.

[160] J. F. Raskin and P. Y. Schobbens. The logic of event clocks: decidability,

complexity and expressiveness. IFAC, 1998.

[161] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,

R. Siracusa, H. Liu, and M. Singh. Overview of ORBIT radio grid testbed

for evaluation of next-generation wireless network protocols. In Wireless

Communication and Networking Conference (WCNC 2005), 2005.

[162] U. Raza, A. Camerra, A. Murphy, T. Palpanas, and G. Picco. What does

model-driven data acquisition really achieve in wireless sensor networks? In

236

Proc. of PerCom, pages 85–94, 2012.

[163] K. Romer and J. Ma. Pda: Passive distributed assertions for sensor networks.

In Proc. of IPSN, pages 337–348, 2009.

[164] U. Sammapun, I. Lee, and O. Sokolsky. “RT-MaC: runtime monitoring and

checking of quantitative and probabilistic properties”. In Proc. RTCSA,

pages 147–153, 2005.

[165] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone. “Taming dr.

frankenstein: Contract-based design for cyber-physical systems*”. European

journal of control, 18(3):217–238, 2012.

[166] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise, S. Kowalewski, and

K. Wehrle. KleeNet: discovering insidious interaction bugs in wireless sensor

networks before deployment. In Proc. of the 9th ACM/IEEE Int’l Conf. on

Information Processing in Sensor Networks, pages 186–196, 2010.

[167] T. Schreiber. Android binder: Android interprocess communication. Mas-

ter’s thesis, Ruhr-Universitat Bochum, 2011.

[168] Scpsolver - an easy to use java linear programming interface. http://

scpsolver.org//.

[169] A. Shakhimardanov, N. Hochgeschwender, M. Reckhaus, and G. K. Kraet-

zschmar. Analysis of software connectors in robotics. In Proc. of IROS,

2011.

237

[170] J. Shi, J. Wan, H. Yan, and H. Suo. A survey of cyber-physical systems. In

Proc. of WCSP, pages 1–6. IEEE, 2011.

[171] S. Sierla, B. M. OHalloran, T. Karhela, N. Papakonstantinou, and I. Y.

Tumer. Common cause failure analysis of cyber–physical systems situated

in constructed environments. Research in Engineering Design, pages 1–20.

[172] J. Sifakis. “A framework for component-based construction”. In Proc.

SEFM, pages 293–299, 2005.

[173] N. Simulator. “ns-2”, 1989.

[174] A. P. Sistla, M. Žefran, and Y. Feng. “Runtime monitoring of stochastic

cyber-physical systems with hybrid state”. In Runtime Verification, pages

276–293, 2012.

[175] H. Siy and L. Votta. Does the modern code inspection have value? In Proc.

of ICSM, page 281, 2001.

[176] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse. Macrode-

bugging: Global views of distributed program execution. In Proc. of SenSys,

2009.

[177] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse. Macrode-

bugging: Global views of distributed program execution. In Proc. of the 7th

Int’l Conf. on Embedded networked sensor systems, pages 141–154, 2009.

238

[178] R. A. Thacker, K. R. Jones, C. J. Myers, and H. Zheng. Automatic abstrac-

tion for verification of cyber-physical systems. In Proc. of ICCPS, pages

12–21, 2010.

[179] A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In

Hybrid Systems: Computation and Control, pages 465–478. 2002.

[180] J. Tretmans and E. Brinksma. “Torx: Automated model-based testing”.

2003.

[181] S. Tripakis and C. Courcoubetis. Extending promela and spin for real time.

In Tools and Algorithms for the Construction and Analysis of Systems, pages

329–348. 1996.

[182] K. Wan, D. Hughes, K. L. Man, and T. Krilavicius. “Composition challenges

and approaches for cyber physical systems”. In Proc. NESEA, pages 1–7,

2010.

[183] K. Wan, K. Man, and D. Hughes. Specification, analyzing challenges and

approaches for cyber-physical systems (cps). Engineering Letters, 18(3), 2010.

[184] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods:

Practice and experience. CSUR, 2009.

[185] C. W. W. Wu, D. Kumar, B. Bonakdarpour, and S. Fischmeister. Reducing

monitoring overhead by integrating event-and time-triggered techniques. In

Runtime Verification, 2013.

239

[186] C. Yang and R. Cardell-Oliver. An efficient approach using domain knowledge

for evaluating aggregate queries in WSN. In Proc. of ISSNIP, 2009.

[187] C. Yang, R. Cardell-Oliver, and C. McDonald. Combining temporal and

spatial data suppression for accuracy and efficiency. In Proc. of ISSNIP,

2011.

[188] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clairvoyant: a compre-

hensive source-level debugger for wireless sensor networks. In Proc. of the 5th

Int’l Conf. on Embedded networked sensor systems, pages 189–203, 2007.

[189] H. Yoon, J. Kim, T. Rakotoarivelo, and M. Ott. Mobility emulator for dtn and

manet applications. In 4th ACM Workshop on Wireless Network Testbeds,

Experimental Evaluation and Characterization (WiNTECH), 2009.

[190] Y. Zhang, I.-L. Yen, F. B. Bastani, A. T. Tai, and S. Chau. “Optimal adap-

tive system health monitoring and diagnosis for resource constrained cyber-

physical systems”. In Proc. ISSRE, pages 51–60, 2009.

[191] Z. Zhang, J. Porter, E. Eyisi, G. Karsai, X. Koutsoukos, and J. Sztipanovits.

Co-simulation framework for design of time-triggered cyber physical systems.

In Proc. of ICCPS, 2013.

[192] X. Zheng. Physically informed assertions for cyber physical systems develop-

ment and debugging. In Proc. of Percom, 2014.

[193] X. Zheng. Physically informed assertions for cyber physical systems develop-

ment and debugging. In Proc. PERCOM Workshops, pages 181–183, 2014.

240

[194] X. Zheng, C. Julien, S. Khurshid, and M. Kim. On the state of the art in

verification and validation in cyber physical systems. FSE submitted, 2014.

[195] X. Zheng, C. Julien, R. Podorozhny, and F. Casses. Braceassertion: Runtime

verification of cyber-physical systems. In Proc. of MASS, page under review.

IEEE, 2015.

[196] X. Zheng, C. Julien, R. Podorozhny, F. Casses, and R. Thierry. Brace: A

practical on-line monitoring framework for cps. In Proc. of Middleware, page

under review. IEEE, 2015.

[197] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez. Braceassertion: Behavior-

driven development for cps application. http://goo.gl/XpTksg.

[198] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez. Braceassertion:behavior-

driven development for cps applications. Technical Report UTARISE-2015-

002, 2014.

[199] X. Zheng, D. Perry, and C. Julien. Braceforce: A middleware to enable sensing

integration in mobile applications for novice programmers. In ACM/IEEE

First International Conference on Mobile Software Engineering and Systems

(MOBILESoft), page to appear. IEEE, 2014.

[200] X. Zheng, D. Perry, and C. Julien. Braceforce: Software engineering support

for sensing in cps applications. In ACM/IEEE 5th International Conference

on Cyber-Physical Systems (ICCPS), page to appear. IEEE, 2014.

241

