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Excess enthalpy combustion utilizes heat recirculation, in which heat is transferred from 

hot products to cold reactants to effectively preheat the reactants, in order to achieve 

improved combustion performance through the extension of flammability limits and 

increased burning rate. This research examines the effect of key parameters in excess 

enthalpy combustion on combustion stability, fuel conversion, and product species 

production through experimental and numerical investigation. Operating condition 

parameters that are studied include inlet reactant equivalence ratio and inlet velocity, and 

reactor geometry parameters that are studied include reactor channel height and length.  

Premixed reactants, including gaseous and liquid fuels, are investigated at rich and lean 

conditions. The examination of liquid fuels and the ability of a reactor to support rich and 

lean combustion of both gaseous and liquid fuels is a significant demonstration of a 

reactor’s flexibility for practical applications.  
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This research experimentally and numerically examines excess enthalpy combustion in a 

counter-flow reactor. First, the counter-flow reactor, previously used for thermal partial 

oxidation of gaseous hydrocarbon fuels, is used in experiments to reform a liquid 

hydrocarbon fuel, heptane, to syngas. The effect of inlet operating conditions, including 

reactant equivalence ratio and inlet velocity, on combustion stability and product 

composition is explored. Second, lean combustion is demonstrated through experiments 

in the same counter-flow reactor previously used in reforming studies. The effect of inlet 

operating conditions, including reactant equivalence ratio and inlet velocity, on 

combustion stability and pollutant concentrations in combustion products is studied. An 

analytical model, previously developed for rich combustion, is adapted to qualitatively 

predict the behavior of the counter-flow reactor in response to changes in lean operating 

conditions. Third, lean combustion in the counter-flow reactor is further studied by 

examining the combustion of increasingly complex gaseous and liquid fuels. Again, the 

effect of inlet operating conditions, including reactant equivalence ratio and inlet 

velocity, on combustion stability and pollutant concentrations in combustion products is 

studied. Fourth and finally, a computational scaling study examines the impact of 

counter-flow reactor channel geometry on combustion stability, temperature increase 

above adiabatic values, heat recirculation, and fuel and product species conversion 

efficiency.  
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1 INTRODUCTION 

 

Premixed combustion is the rapid, exothermic reaction of thoroughly mixed fuel and 

oxidizer reactants. One of the most important characteristics of premixed combustion is 

the concept of upper and lower flammability limits, defined as the maximum and 

minimum concentrations of a given fuel in an oxidizer required for self-sustained 

combustion. Flammability limits of fuel and oxidizer mixtures are experimentally 

determined, for example by monitoring temperature, pressure or radiation as a premixed 

flame propagates in a tube or spherical enclosure. Since flammability limits are sensitive 

to specific experimental conditions, standard protocols have been established. Under all 

standards, a mixture is considered to be flammable if a flame is observed to propagate a 

significant distance from the ignition source.  

 

Conventional flammability limits are based upon the conditions of the unburned 

reactants, including the temperature and pressure of the mixture. Reactant mixtures 

beyond conventional flammability limits may be made flammable with no net energy 

addition to the reactor system through a technique called superadiabatic combustion. This 

research studies the superadiabatic combustion of reactant mixtures that are near or 

beyond the conventional flammability limits of the fuels. The influence of controlling 

parameters on superadiabatic combustion characteristics, including combustion stability, 

fuel conversion and product species production, are studied.  
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1.1 Fundamentals of superadiabatic combustion 

 

Equilibrium and flame temperatures of combustion products under adiabatic reaction 

conditions are dependent upon a number of factors, including the composition of the 

reactants and their initial temperature. Addition of energy to fuel/air reactants in the form 

of preheating will translate to a change in product composition as well as an increase in 

equilibrium and flame temperatures. One available source of the energy needed to 

preheat reactants is hot combustion products, from which heat can be recirculated to 

preheat reactants prior to combustion. The idea of heat recirculation from combustion 

products to preheat reactants was proposed by Weinberg in 1971 [1], who suggested that 

temperatures in excess of adiabatic flame temperatures, called superadiabatic 

temperatures, may be achieved without any net addition of energy to the system. Such a 

process is known as superadiabatic or excess enthalpy combustion.  

 

Figure 1 shows the sensible enthalpy of combustion gases as they progress along the flow 

coordinate, and convert from reactant species to product species through combustion. In a 

combustion scenario without heat recirculation, shown by a dashed line in Figure 1, the 

sensible enthalpy of the reactant gases does not change in the flow direction until 

combustion occurs; the enthalpy of combustion is released within the flame and the 

sensible enthalpy of the products increases by that amount. The combustion gases are 

then mostly or completely converted to product species, and their enthalpy is maximized. 

Following combustion, the enthalpy of the product gases remains at this maximum value 

if the system is adiabatic and there are no external losses. If there are losses, as in any 
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practical system, the enthalpy of the product species will decrease by some amount equal 

to the losses, as shown in Figure 1. 

 

 

Figure 1. Combustion gas sensible enthalpy along flow coordinate with (solid line) 

and without (dashed line) heat recirculation 

 

In a combustion scenario with heat recirculation, as shown by the solid line in Figure 1, 

the sensible enthalpy of the reactant gases increases prior to the release of the enthalpy of 

combustion in the flame. This pre-combustion increase is due to energy recirculated by 

heat transfer from hot combustion products to cold incoming reactants. The effect of this 

energy recirculation and enthalpy addition is an increase in the temperature of the 

reactant gases – the reactants are preheated prior to combustion. Following this region of 

preheat, the reactants combust and the enthalpy of combustion is released. The sensible 

enthalpy of the product gases increases by the same amount as in the scenario without 

heat recirculation – that amount is the enthalpy of combustion – but the peak sensible 



4 
 

enthalpy of the gases is now higher than it would be without heat recirculation. The peak 

sensible enthalpy of the product gases is now greater than the adiabatic value by the 

amount of preheat enthalpy, and the gases are at superadiabatic conditions. Following 

combustion and in the absence of external heat losses, the enthalpy of the product gases 

decreases to adiabatic values as the excess enthalpy of the gases is recirculated to 

continue preheating cold reactants. In a practical system, the enthalpy of the product 

gases will decrease to below adiabatic values due to heat losses. 

1.2 Effects of excess enthalpy on combustion 

 

Rich and lean flammability limits denote the high and low limits, respectively, of fuel-to-

air ratios that will burn under given conditions. Flammability limits are dependent upon a 

number of factors, including reactant species, pressure and temperature. Figure 2, 

reproduced from [2], shows the qualitative effect of initial reactant temperature on 

flammability limits. As the temperature of combustion reactants is increased, 

flammability limits on both the fuel-lean and fuel-rich sides of stoichiometry are 

extended. For example, a reactant mixture with fuel (or combustible) concentration and 

temperature indicated by point A in Figure 2 is below the lower flammability limit, and 

therefore not flammable. If, however, the reactant mixture with the same fuel 

concentration is heated to a higher temperature, so that its properties are given by point B 

in Figure 2, the reactant mixture is now above the lower flammability limit, and is 

therefore flammable. The reactant mixtures in this study are at temperatures above their 

respective saturation points and below their auto-ignition temperatures.  
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Figure 2. Effect of reactant temperature on rich and lean flammability limits, 

reproduced from [2] 

 

Superadiabatic combustion effectively preheats reactants with no external or net addition 

of energy to the reactor, and the flammability limits of a fuel/air reactant mixture can be 

extended beyond their conventional limits based upon inlet conditions. Theoretical work 

on mixtures flowing through porous media has shown that any fuel/oxidizer mixture 

should react with sufficient energy addition or heat recirculation [3]. In practice, heat loss 

and material properties limit the amount of heat recirculation achievable; however, the 

operating range can be dramatically broader than that predicted by conventional 

flammability limits based upon initial reactant condition. The US Bureau of Mines 
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published data that detailed known initial temperature effects on flammability limits for 

over 200 combustible species [2]. Hustad and Sonju [4] studied the effect of elevated 

temperature on the lower flammability limit for upward propagating methane/air flames 

in a 1.8 m tube and showed that with no preheating, the lean flammability limit of 

reactants at 25°C was ~5.5% methane by volume. At a temperature of 300°C, the limit 

was lowered to ~3.8%. Wierzba and Wang [5] showed similar results for the lower 

flammability limit of methane at 300°C, and an extension of the rich limit from 14% at 

25°C to 17% at 300°C. Fan et al. [6] studied quenching mechanisms of methane/air in 

microscale quartz channels and observed extension of the lower flammability limit to 

approximately an equivalence ratio (ϕ) of 0.4 as well as a decrease in the quenching 

diameter with increasing wall temperature. More extreme levels of preheating were 

achieved by Maruta et al. [7] who studied combustion in microchannels with channel 

wall temperatures up to 1000°C. Flames were stabilized for equivalence ratios of ϕ = 

0.05-1.9 and over a wide range of inlet velocities (u). 

 

A second aspect of superadiabatic combustion that makes it potentially advantageous is 

the effect of excess enthalpy on burning velocity. An increase in burning velocity occurs 

with an increase in initial reactant temperature [8-11]. This has been described by a 

number of proposed correlations of the form given by Equation 1 

 

      (
 

  
)
 
              (1) 
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where SLo is the burning velocity at the reference temperature To, SL is the burning 

velocity at the unburned reactant temperature of interest T, and a is a value determined by 

data fitting. Konnov [12] reports a number of values in the literature for a for 

stoichiometric methane/air which range from 1.42 to 2.4. Therefore, superadiabatic 

reactor operation may permit increased burning rates, which equates to higher reactor 

throughput.  

1.3 Heat recirculating reactors 

 

Combustion of reactant mixtures beyond conventional flammability limits can be 

accomplished by a number of methods, including catalytic and non-catalytic techniques. 

Some heat-recirculating reactors utilize catalyst to increase reaction rates while operating 

at moderate temperatures. Non-catalytic reactors, which are the focus of this research, 

utilize elevated temperatures to increase reaction rates. They do not have the same fuel 

purity requirements and temperature limits as catalytic reactors, which are restricted by a 

catalyst surface that is prone to damage. 

 

Non-catalytic superadiabatic combustion is a technique that relies on energy addition to 

reactant mixtures in order to elevate reaction temperatures, thereby increasing the rate of 

chemical conversion. Figure 3 illustrates how reactors operate with and without heat 

recirculation. The schematic of a reactor operating without heat recirculation (Figure 3a) 

shows cold reactants entering from the top, reacting in the combustion zone, and leaving 

the reactor in the form of combustion products and at the adiabatic equilibrium 
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temperature, assuming no external losses from the reactor. In contrast, the schematic of a 

reactor operating with heat recirculation (Figure 3b) also shows cold reactants entering 

from the top, but those reactants are preheated by heat transfer from hot combustion 

products in the reactor prior to reacting in the combustion zone. The preheated reactants 

then react in the combustion zone, and leave the combustion zone at temperatures in 

excess of the adiabatic equilibrium temperature, or superadiabatic temperatures. The 

superadiabatic combustion products then transfer their excess enthalpy to incoming cold 

reactants, thereby continuing the steady state heat recirculation, and leave the reactor in 

the form of combustion products and at the adiabatic equilibrium temperature, again 

assuming no external losses from the reactor. 

 

The addition of energy to reactants can be achieved internally or externally. This study 

focuses on internal heat recirculation reactors, in which energy in transferred internally 

by conduction, radiation and convection within the solid and gaseous phases of the 

reactor from hot combustion products to incoming reactants. As a result of this heat 

recirculation, reactants are preheated and peak temperatures within the combustion zone 

can significantly exceed the adiabatic equilibrium temperature, or the temperature 

predicted by chemical equilibrium. This is known as excess enthalpy combustion at 

superadiabatic temperatures [1]. 
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Figure 3. Schematics illustrate generic reactor operating (a) without heat 

recirculation, and (b) with heat recirculation  

 

Various non-catalytic reactors achieve internal heat recirculation through the solid 

material of the reactor itself. In some reactor designs, the combustor consists of a solid 

matrix, such as a reticulated foam or packed bed of spheres [13-17]. This type of reactor 

is called a filtration reactor, and some of these designs do not have a means of stabilizing 

the reaction front which may propagate through the solid matrix. When the front 

propagates downstream, it passes over preheated solid and the gas gains additional 

energy, resulting in significantly superadiabatic temperatures. These high temperatures 

increase reaction rates and potentially result in high fuel conversion efficiencies [18, 19]. 

A disadvantage of this design is that the wave ultimately reaches the end of the reactor 
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requiring periodic restarting or reversal of the flow [20]. Porous media reactors have been 

used in numerous lean and rich combustion studies [13, 21]. 

 

Other reactor designs have a means of stabilizing the reaction front, but these designs 

typically do not achieve temperatures as high as those achieved under propagating 

reaction front conditions. A two section porous media reactor can support a stationary 

combustion zone, and this design has been used to combust lean and rich fuel mixtures 

including methanol, methane, octane and automotive-grade petrol [22, 23]. Alternatively, 

a diverging section of porous media permits stabilized reaction zones for fuel reforming 

and has been used successfully in several studies [24-26].  

 

A Swiss roll reactor [27-29] has been used for both reforming and thermal oxidation [8]. 

In this reactor design, a central combustion chamber is surrounded by alternating inlet 

and outlet flow channels that wrap around the combustion chamber. Cold incoming 

reactants and hot combustion products flow through these channels, and heat from the 

exhaust is transferred through the walls to the incoming reactants. The same basic 

principle is applied in the design of the counter-flow reactor used in this research. This 

reactor consists of straight channels with no predetermined combustion zone location 

within the channels, which simplifies the geometry as compared to other reactor designs 

and permits a wide range of stable operating conditions. Theoretical analyses and 

experimental studies of channel reactors have shown that superadiabatic temperatures, 

increased burning velocities, and broadened flammability limits can be achieved [8, 30-

33].  
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1.4 Counter-flow reactor 

 

The counter-flow reactor is a heat recirculating reactor design consisting of parallel 

channels that recirculate heat from hot products to cold reactants through the walls of 

adjacent channels [34]. Figure 4 is a schematic of the operating principle of the counter-

flow reactor.  The flow direction alternates in adjacent channels so that energy from hot 

combustion products is transferred to cold incoming reactants. The preheated reactants 

may reach temperatures in the combustion zone that are superadiabatic.  

 

Ju et al. [30, 31], using both numerical analysis and experiments of flames in mesoscale 

channels, in which the flame scale is on the order of a few millimeters, achieved 

broadened flammability limits and burning velocities greater than those of adiabatic 

flames. The counter-flow reactor design has been proposed analytically [31, 34, 35] and 

previously validated in experimental studies on the reforming of methane [36] and 

propane [37]. This work expanded upon those initial experimental studies to examine the 

reforming of heptane [38], as well as combustion of lean methane [39], propane and 

heptane [40]. 
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Figure 4. Counter-flow reactor utilizes heat transfer from hot combustion products 

through channel walls to preheat incoming reactants 

 

Figure 5 shows the counter-flow reactor used in this research, which is the same design 

used in previous experimental studies on reforming of methane and propane [36, 37]. 

Ceramic walls, end plugs and porous foam inserts are constructed of silicon carbide. 

Dimensions, including channel width and length, are shown for the reactor utilized in the 

experimental portions of this work. The experimental reactor consists of four 4 mm high 

parallel channels constructed of 1 mm thick silicon carbide (SiC) walls. The reactor is 

17.3 cm long, with a 91.5 mm long main section and two 40.8 mm long reactor heads 

where inlets and outlets are located. Also located in the reactor heads are end plugs, 

which prevent the mixing of combustion products and unreacted fuel/air mixture, and two 

6.4 mm wide sections of SiC porous foam (17.7 pores/cm, 9% density) which act as flow 

straighteners and flame arresters. Two alumina walls spaced 33.6 mm apart enclose the 

SiC channels. Fine wire B-type thermocouples are inserted into the channels through the 

alumina insulation 10 mm apart. They sit flush with the channel wall in order to prevent 

flame holding. The entire reactor is shrouded in alumina insulation in order to minimize 
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heat losses from the system. Further details about the reactor construction can be found in 

Schoegl and Ellzey [36]. 

 

 

 

Figure 5. Counter-flow reactor schematic with components and dimensions 

 

The counter-flow reactor design is distinguished from many other heat-recirculating 

reactors by its lack of a predetermined reaction zone or combustion chamber. As a result, 

operation over a broad range of operating conditions can be achieved, as well as stable, 

non-propagating flame fronts which permit continuous operation over long time spans.  

1.5 Applications of micro- and meso-scale heat recirculating reactor 

 

The extension of flammability limits, achievable through heat recirculation and 

superadiabatic combustion, can be advantageous for a variety of applications. Figure 6 

shows the results of equilibrium composition calculations of methane/air mixtures over a 
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range of equivalence ratios performed by Schoegl [41]. Although equilibrium is not 

necessarily an accurate predictor of the actual magnitudes of species concentrations that 

will be found in combustion products of practical reactors, it is an adequate predictor of 

trends. In the lean regime, at equivalence ratios below stoichiometry but above the lean 

flammability limit, equilibrium predicts nearly complete oxidation of product species, 

and therefore maximum fuel efficiency, but also the formation of undesirable pollutants 

such as nitrogen oxides (NOx) and carbon monoxide (CO) due to high reaction 

temperatures. In the ultra-lean regime, at equivalence ratios below the conventional lean 

flammability limit of reactants based upon their initial conditions, the reactor is a thermal 

oxidizer in which a gaseous stream containing methane or other fuel species in very low 

concentrations reacts and the reactant species, which may be trace pollutants, are 

converted to non-toxic or less polluting compounds. In the rich regime, at equivalence 

ratios above stoichiometry but below the rich flammability limits, products are 

incompletely, or partially, oxidized, and increasing concentrations of H2 and CO are 

observed with increasing equivalence ratio. In the rich regime and the ultra-rich regime, 

at equivalence ratios above the conventional rich flammability limit of reactants based 

upon their initial conditions, the reactor is a fuel reformer and converts the rich fuel/air 

mixture to a gaseous mixture consisting of H2, CO, and other species; this gaseous 

product mixture is known as synthesis gas, or syngas. Syngas can be utilized as a fuel in 

stationary, portable, or remote power systems. Syngas may be used directly, or purified to 

isolate the hydrogen that it contains, and reacted in devices such as generators or fuel 

cells to produce power [42]. Hydrogen-based technologies have been proposed as an 
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alternative to petroleum-based power sources, where the hydrogen can be derived from 

renewable sources.  

 

 

Figure 6. Equilibrium concentrations of major product species of methane/air 

combustion for a range of equivalence ratios [41] 

 

The extension of flammability limits and increase in burning rates, which equates to 

higher reactor throughput, achievable by superadiabatic reactor operation has important 

implications for combustion across a wide range of equivalence ratios, including the 

regions highlighted in Figure 6 where ultra-lean thermal oxidizers and ultra-rich fuel 

reformers operate, and the intermediate region where conventional combustors operate. 
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Extended flammability limits and increased throughput would permit thermal oxidizers to 

process trace pollutants, fuel reformers to produce syngas or hydrogen, and combustors to 

provide hot product gases to drive turbines, thermoelectrics, or other energy conversion 

devices [43], at higher rates.  

1.5.1 Lean combustors 

 

Demands for small scale and portable power sources are increasing for a wide variety of 

applications, including propulsion and electricity generation. As personal and portable 

power systems become increasingly important, there is a need for compact, durable and 

lightweight components that can support these demands. Hydrocarbon fuels currently 

have higher energy density than even the most advanced batteries, therefore combustion-

derived power continues to be preferable for many applications. Small scale combustors 

have been proposed for use in conjunction with mechanical or electrical conversion 

devices, such as micro-turbines and thermoelectrics, to address the increasing need for 

portable power [44-47]. Lean reactant mixtures are desirable in these combustors to 

achieve high system conversion efficiencies because they can permit increased levels of 

fuel conversion and thermal efficiencies as compared to reactant mixtures nearer to 

stoichiometric. There is a tradeoff, however, because progressively leaner mixtures result 

in lower temperatures and reduced heat losses, but require higher volumetric throughput 

to achieve the same input power as their less lean counterparts. Because of this, the 

optimal lean equivalence ratio is dependent on the details of the particular system [46]. 
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There is, therefore, a demand on compact power system combustors to operate under 

varied lean equivalence ratios and with optimal efficiency.  

 

There are also applications for small scale thermal oxidizers capable of rendering trace 

amounts of hydrocarbons or other VOCs into less harmful product species. A good 

example of one such application has been proposed by Chen and Ronney [48] who 

proposed the use of a Swiss roll reactor in a gas mask to eliminate air contaminants at 

concentrations well below the conventional lean flammability limit. 

1.5.2 Rich reformers 

 

Another potential application for small scale non-catalytic heat recirculating reactors is 

local syngas or hydrogen production at the site of use. In recent years interest has 

increased in hydrogen-based technologies, such as fuel cells, to replace petroleum-

dependent power generation. Syngas or hydrogen can be used directly in internal 

combustion engines and solid-oxide fuel cells (SOFC), or processed to separate hydrogen 

for other applications such as proton exchange membrane (PEM) fuel cells [42]. One of 

the largest impediments to the implementation of such technologies, however, is the lack 

of infrastructure for the production and distribution of hydrogen [42]. There are currently 

significant cost and safety challenges associated with large-scale hydrogen storage and 

distribution. There is currently a limited hydrogen pipeline network, and hydrogen is 

expensive to store and transport in either gaseous or liquid form. Hydrogen gas has low 

volumetric energy density at standard conditions, and a significant amount of energy 
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must be expended to compress it to a density suitable for transportation. Liquid hydrogen 

requires cryogenic systems, and a large amount of energy is required for liquefaction and 

storage. These challenges are overcome if hydrogen is produced at the site of use from 

fuels that are more readily transported. Therefore, onboard or localized reforming of 

more readily transported or locally procured fuels may be a practical solution [49]. These 

include natural gas and liquid hydrocarbon fuels [50, 51]. An abundance of hydrogen is 

bound in organic fuels such as natural gas, petroleum-based fuels, and biofuels, and the 

syngas or molecular hydrogen needed for fuel cells can be generated from such sources. 

Liquid fuels, in particular, are generally readily transported and have high volumetric 

energy density, making them a favorable fuel option for field applications [50, 51].   

 

Known methods of syngas production include steam reforming and partial oxidation, of 

which steam reforming currently accounts for the majority of hydrogen generation in the 

US. One major limitation of steam reforming is the use of a catalyst, which is both 

expensive and prone to degradation and poisoning, thereby limiting the process to 

relatively narrow operating conditions, moderate temperatures, and high quality reactants 

[52]. Another major limitation of steam reforming is that it is less economical at small 

scales, meaning hydrogen produced at the site of use is more expensive than fuel that can 

be delivered through conventional means such as gasoline [53]. Therefore, small scale 

non-catalytic reformers have the potential to meet hydrogen production needs in small 

field or portable power applications. The ability to reform liquid fuels on a small scale 

and at the site of use therefore has the potential to replace or supplement batteries for 

energy storage.  
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1.5.3 Other systems 

 

Finally, it is important to note that research into excess enthalpy combustion has 

relevance to combustion systems that are not specifically designed to incorporate heat 

recirculation from hot combustion products to cold reactants. Conventional combustors, 

often constructed of highly conductive materials and radiative enclosures, are potentially 

conducive to heat recirculation. Therefore, the findings of the current research may be 

pertinent to understanding fuel conversion and operational stability in those systems as 

well. 

1.6 Objectives 

 

The primary objective of this research is to further the understanding of non-catalytic 

combustion of fuel- and oxidizer-enriched, or rich and lean, hydrocarbon fuel mixtures, 

in which heat recirculation is utilized to increase the enthalpy of the reaction zone in 

order to extend flammability limits and increase burning rates. In particular, the effects of 

operating conditions, including equivalence ratio and inlet velocity of incoming reactants, 

and reactor geometry on combustion stability and fuel conversion to product species in 

heat recirculating reactors are examined.  

 

This research objective is accomplished through experiments and computations of rich 

and lean combustion in a non-catalytic counter-flow reactor. The non-catalytic counter-
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flow reactor is utilized because of its geometric simplicity compared to other heat-

recirculating reactors. Additionally, the counter-flow reactor has significant potential for 

utilization in portable power applications; therefore, the characterization of its operation 

on a variety of fuels and over a wide range of operating conditions, as well as the impact 

of geometric scaling, significantly advances the technology towards industrial 

implementation. 

 

Experiments include the examination of multiple fuels, including gaseous and liquid 

fuels, and comparison of data to previously-acquired and published experimental data, 

calculations of equilibrium composition based upon initial reactant conditions, and one-

dimensional flame simulations. Gaseous fuels that are tested in this study include 

methane, which is the simplest hydrocarbon, has well-understood chemistry, and is 

therefore favorable as a research fuel; and propane, which is a more complex 

hydrocarbon than methane, and has more widespread usage. The liquid fuel examined in 

this study is n-heptane, which is an important surrogate component for logistical fuels.  

 

The counter-flow reactor utilized in this research consists of multiple reactor channels. 

Combustion in channels or tubes has widespread importance and is the subject of 

extensive research. Therefore, the impact of counter-flow reactor channel geometric 

scaling on combustion has significant implications for the optimization of numerous 

reactor designs. Computations in this study examine rich combustion in the non-catalytic 
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counter-flow reactor as a function of reactor channel geometry. Computational modeling 

allows for time- and resource-efficient examination of multiple reactor geometries and a 

wide range of operating conditions. Additionally, characteristic values can be quantified 

in computations that are not readily measured in experiments. Methane is utilized in this 

study because its chemistry is well-understood, and can be accurately modeled.  

1.7 Methodology 

 

Experiments were performed using three hydrocarbon fuels: methane, propane and n-

heptane. Methane and propane are gaseous at ambient conditions, which makes the 

premixing and feeding of reactants to the reactor relatively straightforward. Liquid fuels, 

including n-heptane, are more difficult to use in experimentation than gaseous fuels due 

to the required heating and vaporization of liquid fuels prior to premixing and 

combustion of reactant mixtures. Heating and vaporization were performed external to 

the counter-flow reactor, and a vaporization and premixing chamber was designed and 

constructed for this study. 

 

Rich combustion of n-heptane to produce hydrogen-rich syngas was performed in the 

counter-flow reactor, and this is described in detail in Chapter 2. This was the first liquid 

fuel to be reformed in the counter-flow reactor, and the results of this study supplement 

previous studies of rich methane and propane combustion in the counter-flow reactor, to 

reveal common trends of combustion stability, fuel conversion and product species 
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production as a function of operating conditions. Data was also compared to calculations 

of equilibrium composition based upon initial reactant conditions, and previously-

published experimental data obtained using a different type of heat recirculating reactor, 

called a filtration reactor. 

 

Lean combustion of methane, propane and n-heptane was performed in the counter-flow 

reactor. This study was the first investigation of lean combustion using the counter-flow 

reactor. Initially, methane was examined experimentally, and a previously developed 

analytical model was adapted to simulate changes in flame front location and temperature 

profiles in response to changes in lean reactor operating conditions. Data was also 

compared to calculations of equilibrium composition based upon initial reactant 

conditions. This work in described in Chapter 3.  

 

Following the study of lean methane combustion using the counter-flow reactor, lean 

combustion of more complex fuels, propane and liquid n-heptane, was examined 

experimentally and is described in detail in Chapter 4. The data obtained for lean 

combustion of all three fuels was compared to reveal common trends of combustion 

stability, fuel conversion and pollutant species production as a function of operating 

conditions. Data was also compared to calculations of equilibrium composition based 

upon initial reactant conditions. 
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Finally, a computational study was performed to study the impact of reactor geometric 

scaling on rich methane combustion stability, fuel conversion and syngas production. 

Scaled reactors were modeled in ICEM CFD, and simulations were conducted in ANSYS 

FLUENT using full methane combustion kinetics mechanism GRI 2.11. Several user-

defined functions were utilized to supplement ANSYS FLUENT capabilities. A range of 

channel heights and lengths were tested, and the computational results were compared to 

equilibrium calculations and one-dimensional flame simulations performed using 

Cantera. This study is described in detail in Chapter 5. 
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2 SYNGAS PRODUCTION FROM HEPTANE IN A NON-CATALYTIC 

COUNTER-FLOW REACTOR 

 

The focus of this study was the demonstration and quantification of liquid fuel reforming 

in the counter-flow reactor. This work is described below, and was published as E.L. 

Belmont, S.M. Solomon, J.L. Ellzey, Combust. Flame 159 (2012) 3624-3631. 

2.1 Introduction 

 

One of the compelling characteristics of non-catalytic reactors is their ability to operate 

on a wide variety of fuels. There have been numerous studies on the production of syngas 

from gaseous fuels [52, 54-56], but fewer have done so from liquid fuels. In this study, 

the first liquid fuel reforming in the counter-flow reactor was established, using heptane 

as fuel. The results augment those obtained on an identical reactor using methane [36] 

and propane [37]. Heptane is a particularly interesting liquid fuel as it is often used as a 

single-component, or one element of a multi-component, surrogate for commercial fuels 

[57-60]. Dixon et al. [61] presented experimental and numerical analyses of syngas 

production from heptane in a porous media reactor. Equivalence ratio (ϕ) and inlet 

velocity (u) were varied, and exhaust gas hydrogen concentrations were found to increase 

with both of these parameters. These trends are similar to those found in previous 

filtration combustion studies [23, 62]. In the results of Dixon et al. [61], maximum 

hydrogen conversion efficiencies of approximately 80% were achieved at ϕ between 2.5 

and 3.5 at u = 60 cm/s, and at the highest tested inlet velocity of 80 cm/s and ϕ = 2.5. 



25 
 

Maximum CO conversion efficiencies of approximately 90% were observed at similar 

conditions. Pastore and Mastorakos [62] reformed heptane to syngas in a two-section 

porous burner and obtained comparable results to Dixon et al. [61] at some operating 

conditions but with a more limited stable burner range. Al-Hamamre [63] numerically 

studied the thermal partial oxidation of heptane by equilibrium and kinetic analyses over 

a range of equivalence ratios and preheat temperatures, and found a maximum reforming 

efficiency of 87% at ϕ = 3.1 and preheat temperatures of 1300K or greater. Furthermore, 

reforming efficiency for all tested equivalence ratios was observed to increase with 

reactant preheat temperature up to approximately 1100K, above which reforming 

efficiency remained nearly constant with further increases in preheat temperatures. 

 

The earlier study of the porous media reactor operating on heptane provided guidance for 

this work.  In that study [61], the reactor operated near the conventional flammability 

limits of heptane without prohibitive soot formation causing any observed degradation in 

performance. At more extreme conditions, soot buildup did pose a challenge, and Dixon 

et al. [61] developed a regeneration procedure that is utilized in this study as well, in 

which soot depositions can be removed by purging the reactor with air. The non-catalytic 

surfaces of the counter-flow reactor imply that small amounts of soot deposits should not 

degrade the performance as long as the channel dimensions and wall properties are not 

significantly changed due to buildup, thus opening the possibility of using fuels that may 

produce more soot. 
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In this work, we focused on conversion of heptane to syngas in the counter-flow reactor.  

The stable operating limits were determined as a function of reactant equivalence ratio 

and inlet velocity. Additionally, concentrations of major product species, including 

hydrogen and carbon monoxide, and minor hydrocarbon product species, including 

methane, acetylene and ethylene, were quantified over a wide range of reactant 

equivalence ratios and inlet velocities. Hydrogen species, hydrogen energy, and total 

energy conversion efficiencies were determined as a function of operating conditions, 

including equivalence ratio and inlet velocity. These quantities were compared to 

previously obtained data for the same reactor operating on rich methane [36] and rich 

propane [37]. 

2.2 Experimental approach  

2.2.1 Experimental apparatus 

 

Liquid fuel is vaporized and premixed with air, prior to being introduced to the counter-

flow reactor, via a custom-designed and built vaporization and mixing chamber. n-

Heptane (Fisher Scientific, HPLC grade) is pumped to an atomizing nozzle mounted 

inside the mixing chamber. Air is fed to the mixing chamber using a Hastings mass flow 

controller. Downstream of the controller but upstream of the mixing chamber, the total 

air is split between the atomizing nozzle and a heater by a control valve. The heated air is 

introduced into the annular space surrounding the nozzle in order to vaporize the 
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atomized heptane and prevent condensation of heptane on the mixing chamber walls. The 

atomized fuel/air mixture exits the vaporization and mixing chamber where it is 

vaporized and mixed with the heated air, and fuel/air reactant mixture is then fed into a 

manifold that splits the flow among the four channels. The delivery system, from the 

mixing chamber to the inlet ports, is wrapped in heat tape and monitored using K-type 

thermocouples to maintain the system above 150 °C. Figure 7 is a schematic that shows 

the vaporization and mixing chamber, as well as the manifold piping that feeds premixed 

fuel and air to the counter-flow reactor. 

 

 

 

Figure 7. Vaporization and mixing chamber, and manifold piping to reactor inlets 

 

Exhaust gas composition is analyzed using a Varian CP 4900 gas chromatograph (GC) 

with three columns: a molecular sieve (Molsieve) measures diatomic hydrogen (H2), 

nitrogen (N2), oxygen (O2), carbon monoxide (CO) and methane (CH4); a porous polymer 

unit (PPU) gives concentrations of carbon dioxide (CO2), ethylene (C2H4), ethane (C2H6), 
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acetylene (C2H2) and propane (C3H8); and a CP-SIL column detects larger hydrocarbons 

(i-,n-) butane, (i-,n-) pentane, n-hexane and n-heptane. In order to quench reactions 

outside of the reactor and prevent moisture accumulation in the GC, exhaust samples are 

drawn from the reactor exhaust through a quartz probe. The sample then passes through 

inert Silco Steel tubing and a filter before entering the GC. Previous findings [37] showed 

slightly lower H2 and CO product concentrations from outside channels and minimal 

variation of composition with position within a single channel except near the alumina 

walls. Exhaust samples in this study were taken from the center channels, which are 

expected to be most representative of interior channels in scaled up reactors, and the 

sample probe was placed at the middle of the channel exit. 

2.2.2 Experimental method 

 

The start-up procedure began with warming the system to above 150 °C using both 

heating tape and heated air flowing through the reactant delivery system and the reactor. 

A slightly rich, vaporized, premixed heptane/air mixture was then introduced to the 

system and ignited at the channel outlets at an inlet velocity of 50 cm/s. Flame fronts 

propagated upstream in the reactor channels until they stabilized downstream of the 

porous SiC flow straighteners. Operating conditions were gradually adjusted to ϕ = 3.0 

and u = 125 cm/s, where the reactor was operated until temperatures stabilized. The 

initial warm-up phase took approximately 30-45 minutes. 
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Experiments included determination of stable operating conditions, and studying the 

effect of inlet velocity and equivalence ratio variation on exhaust gas composition. Test 

conditions were considered stable if combustion could be sustained in the main reactor 

section for ten minutes. Alumina reactor wall temperatures in each of the four channels 

were monitored throughout the experiments. Gas temperatures were not directly 

measured due to the tendency of thermocouples inserted into the channels to act as flame 

holders; however, an analytical model of the counter-flow reactor predicts peak gas 

temperatures significantly above the maximum wall temperatures [35]. Peak temperatures 

were recorded after the reactor stabilized at a given set point, and showed less than ± 5 °C 

variation during the time of continuous operation at that set point and while exhaust gas 

samples were taken. All data presented in this study were taken at operating points that 

met the above criterion for stability, and no directional drift in measured temperatures or 

species concentrations was observed with repeated sampling. 

 

Inlet velocity and equivalence ratio were changed in steps of ∆u = 15 cm/s and ∆ϕ = 0.1, 

respectively, and the inlet velocity was specified at standard conditions of 25 °C and 1 

atm. Results were obtained for variation of inlet velocity from 50-200 cm/s with 

equivalence ratio held constant at 3.0, and variation of equivalence ratio from 2.9-3.8 

with inlet velocity held constant at 125 cm/s. The inlet velocity range was restricted at the 

upper limit in order to avoid damage to the reactor due to wall temperatures approaching 

1300 °C, while the lower limit was determined by flame instability and extinction. The 

equivalence ratio range was limited by flashback on the lean end of the tested range, in 

which the flame propagated upstream into the porous SiC foam in the reactor channel, 
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and blow-off on the rich end, where the flame front propagated out the end of the reactor. 

Significant deposits of soot and pyrolytic graphite [64] were observed during extended 

periods of operation at the highest tested equivalence ratios and inlet velocities. For all 

experimental conditions reported in this paper, the soot build-up was prevented by briefly 

interrupting the fuel and purging the reactor with air for 10-20 seconds before continuing 

the experiments. At high equivalence ratio and inlet velocity operating points, where soot 

buildup was most likely, the reactor was purged approximately every 20 minutes.  

 

At each operating point, five consecutive GC measurements were taken and the first two 

were discarded to ensure that any residual gases in the sample line had been eliminated. 

Each operating point was tested twice, giving a total of six data points. Total uncertainty 

was calculated at each operating point as the root-sum-square of the contributing 

uncertainties. Therefore the uncertainty of GC results is due to repeatability of 

measurements, calculated using a student-t distribution, calibration gases, with specified 

uncertainties of 1-5%, and the GC itself with uncertainty of 1% of the maximum 

calibrated value for each species. The error bars shown in plotted results represent 

average uncertainties for each set of operating conditions. Inlet velocity uncertainty is 

due to uncertainties of 1% of the air flow controller maximum flow rate and 2% of the 

rotameter maximum flow rate, as well as an estimated 5% tolerance of the channel cross-

sectional area. Equivalence ratio uncertainty is due to contributions from the air flow 

controller and rotameter. Inlet velocity uncertainty increases with increasing u, where δu 

= ±4.0 cm/s at u = 50 cm/s and δu = ±10.3 cm/s at u = 200 cm/s. Equivalence ratio 
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uncertainty increases slightly with increasing ϕ but more significantly with decreasing u, 

with δϕ = ±0.05 at u = 200 cm/s and δϕ = ±0.20 at u = 50 cm/s.  

2.3 Results and Discussion 

2.3.1 Operating range 

 

One of the critical aspects of the counter-flow reactor is the ability to recirculate heat 

from the hot products in one channel to the incoming reactants in the neighboring 

channel. The preheating increases the burning rate for a reactant mixture compared to 

standard conditions. The combustion zone stabilizes at a position in the reactor where the 

burning rate is balanced by the local velocity. For example, increasing the equivalence 

ratio from 3.2 to 3.6 at a fixed inlet velocity results in lower heat release and the stable 

position for the flame is further downstream in the channel where the heat recirculation is 

more significant. Ultimately as the equivalence ratio is increased further, heat release and 

recirculation are insufficient compared to heat losses and the flame blows off. If instead 

heat release is increased compared to heat losses, for example by lowering the 

equivalence ratio from 3.2 to 2.8 at a constant inlet velocity, then the combustion zone 

will migrate upstream to a stable position where heat recirculation is reduced. With 

further reduction in equivalence ratio the flame will propagate into the porous flow 

straighteners and flash back. 

 



32 
 

Figure 8 shows the stable operating conditions for premixed rich heptane/air reactants. As 

the velocity increases, flashback occurs at leaner conditions. For example, flashback 

occurs at ϕ = 2.9 at an inlet velocity of 50 cm/s. At u = 200 cm/s, where heat release and 

the burning rate are greater, flashback occurs at the leaner condition of ϕ = 2.7. Similarly, 

blow-off occurs at ϕ = 4.0 when the inlet velocity is 50 cm/s and ϕ = 3.6 when the inlet 

velocity is 200 cm/s. Extinction occurs at inlet velocities below 50 cm/s due to excessive 

heat losses relative to heat release rates.  The two sets of test conditions at which exhaust 

gas composition were evaluated, ϕ = 3.0 with inlet velocity varied from 50-200 cm/s and 

u = 125 cm/s with equivalence ratio varied from 2.9-3.8, are highlighted in the figure.  

These values were selected because the reactor operating range is relatively large and 

equilibrium predicts that the conversion of heptane to hydrogen is maximum at an 

equivalence ratio of 2.9. 

 

 

Figure 8. Stable and unstable operating conditions, with highlighted operating 

points where exhaust gas composition was analyzed 
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2.3.2 Combustion temperature and exhaust gas composition 

 

Although equilibrium calculations should not necessarily predict the products of the 

reactor, they do form a standard for comparison of trends as well as degree of reaction 

progression. In Table 1, equilibrium values are determined for a constant pressure, 

adiabatic system. Wet and dry equilibrium values are tabulated for ϕ = 3.0 and ϕ = 3.5, 

where dry values do not include water in the equilibrium composition and will be used 

for comparison against experimental results. Oxygen, heptane, and most other 

hydrocarbons including C2H2, C2H6 and C3H8 are not present in significant amounts in 

the equilibrium composition. Methane is the only unburned hydrocarbon present in non-

negligible amounts, and its concentration increases with increasing equivalence ratio. 

Another compositional change that correlates to an increasing ϕ is the appearance of solid 

carbon. The adiabatic equilibrium temperature is predicted to decrease from 808.9 °C to 

774.6 °C as equivalence ratio increases from ϕ = 3.0 to ϕ = 3.5. 
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ϕ 3.0 3.0 3.5 3.5

WET DRY WET DRY

 T (°C) 808.9 808.9 774.6 774.6

H2 [%] 26.61 26.82 28.00 28.33

H2O 0.75 -- 1.15 --

CO 23.46 23.64 20.51 20.75

CH4 0.29 0.29 0.49 0.49

C2H2 <1E-5 <1E-5 <1E-5 <1E-5

C2H6 <1E-5 <1E-5 <1E-5 <1E-5

C3H8 <1E-5 <1E-5 <1E-5 <1E-5

N2 48.17 48.54 44.50 45.01

C(s) 0.00 0.00 4.35 4.40  

Table 1. Equilibrium values of adiabatic equilibrium temperature and product 

composition for premixed heptane/air reactant mixtures of ϕ = 3.0 and ϕ = 3.5 

 

Figure 9 and Figure 10, and Figure 11 and Figure 12, show experimental measurements 

of exhaust gas composition and peak reactor wall temperatures as functions of 

equivalence ratio and inlet velocity, respectively. A key feature of heat recirculating 

reactors is their ability to produce superadiabatic temperatures, which are necessary to 

increase reaction rates and achieve high conversion efficiency [61, 65]. Figure 9 and 

Figure 11 illustrate that the peak wall temperature for all cases is superadiabatic. 

Temperatures follow the trend of equilibrium and exceed the adiabatic equilibrium 

temperature by 190-460 °C in constant equivalence ratio tests, and 290-380 °C in 

constant inlet velocity tests.  

 

Figure 9 also shows the impact of varying equivalence ratio on major exhaust 

components H2 and CO. Experimental measurements of CO concentration show little 

change over the range of tested equivalence ratios, and results are within the average 
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uncertainty. In contrast to equilibrium values, experimental measurements of H2 

concentrations decrease with increasing equivalence ratio. Despite peak reactor 

temperatures in excess of theoretical adiabatic temperatures, both H2 and CO 

concentrations are below equilibrium values. This is attributed to a significant amount of 

unconverted hydrocarbons and is indicative that the reactions did not proceed to 

equilibrium within the residence time of the reactor. Such results have been suggested in 

calculations done previously by Al-Hamamre et al. [25] for methane, in which an initial 

sharp increase in product concentration is observed, followed by a more gradual increase 

towards equilibrium over time scales that are significantly longer than those that exist in 

the present experiments. 

 

Figure 10 shows experimental values of intermediate hydrocarbons in the reactor. Total 

unburned hydrocarbons (UHC) increase monotonically from 5.2% to 9.8% with 

increasing equivalence ratio. Methane and ethylene, with H/C ratios of 4 and 2 

respectively, both increase with equivalence ratio while acetylene, with an H/C ratio of 1, 

decreases. This shows that hydrogen is increasingly bound in hydrocarbons rather than in 

diatomic hydrogen. Ethane, propane and i-butane concentrations increase with increasing 

equivalence ratio, but are at all points present in amounts less than 0.2% and are not 

shown. At high equivalence ratios, the results show carbon monoxide near equilibrium 

and measured UHC in excess of equilibrium. The amount of carbon in exhaust species 

that are not measured by GC can be estimated using a carbon balance. Based on the 

species that are measured by GC, with carbon numbers up to C7, it is expected that the 

unmeasured species are larger hydrocarbons and possibly soot. At the highest 
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equivalence ratio of 3.8, the experimental carbon balance shows that ~11% of incoming 

carbon is contained in species not measured by the GC. In contrast, equilibrium predicts 

that ~25% of incoming carbon goes to form solid carbon product. Therefore, in 

experiments there are higher values of measured UHC than equilibrium predicts but 

lower values of higher hydrocarbons and soot. 

 

Combustion chemistry literature provides insight into oxidation of rich hydrocarbon 

mixtures and aids in interpretation of these trends. n-Heptane oxidation is initiated via H 

abstraction by H, O or OH radicals. The resultant heptyl radical is then susceptible to 

breakdown by β-scission to produce ethylene and pentyl radical. The latter undergoes 

repeated further β-scission to produce ethylene and a methyl radical. Ethylene may react 

with an O radical to form a methyl radical and HCO, or in fuel rich mixtures ethylene 

undergoes further H abstraction by H and OH radicals to produce a vinyl radical, which 

quickly reacts to form acetylene. Therefore acetylene appears as a product further along 

in the progression of the complex hydrocarbon breakdown process. Methane can form 

through multiple pathways, both as an early and a late breakdown product [66]. Constant 

inlet velocity results show via the correlation of methane with ethylene trends that its 

formation is not predominantly due to further reduction of acetylene.  

 

Although hydrocarbons larger than C7 were not measured, soot formation was observed 

at high equivalence ratios and inlet velocities. The data are too limited to draw 

conclusions about the pathway of polycyclic aromatic hydrocarbons (PAH) formation, 

but it is interesting to note that acetylene, which is present at all operating points in 
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excess of equilibrium concentrations, participates in the chemistry of formation of PAH, 

a precursor to soot [66]. 

 

 

Figure 9. Exhaust gas and equilibrium concentrations of H2 and CO, and peak wall 

and adiabatic equilibrium temperatures for u = 125 cm/s and varying ϕ 
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Figure 10. Exhaust gas concentrations of CH4, C2H2, C2H4 and total UHC, and 

equilibrium concentrations of CH4 (equilibrium concentrations of C2H2 and C2H4 

are negligible and not shown) for u = 125 cm/s and varying ϕ 

 

Figure 11 shows the impact of inlet velocity on peak reactor wall temperature and on the 

concentrations of H2 and CO. Equilibrium values are shown for comparison. In 

experiments with increasing velocity, the volumetric heat release rate increases resulting 

in higher peak temperatures. The H2 concentration is influenced by two competing effects 

in this system. Higher temperatures increase the reaction rate and result in faster fuel 

conversion [36, 61], however, increased velocities imply shorter residence times which 

may counteract the influence of the higher temperatures [37]. These competing effects 
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corresponding increase in carbon monoxide at lower inlet velocities suggests that larger 

intermediate hydrocarbons not measured by the GC may be present at the lowest u. 

Molecular hydrogen is formed as those species are further broken down, while carbon 

remains bound in the smaller intermediate hydrocarbon species. 

 

Figure 12 shows exhaust gas concentrations of CH4, C2H2 and C2H4, as well as total 

UHC, for ϕ = 3.0 and varying u. All other measured hydrocarbons are present in levels 

less than 0.1%. Total unburned hydrocarbons remain constant within the margin of 

uncertainty at an average value of 5.5% up to an inlet velocity of 155 cm/s, above which 

the total decreases monotonically to 4.4% at 200 cm/s. Acetylene, which is a species 

formed late in hydrocarbon breakdown, initially increases in concentration with 

increasing inlet velocity up to 80 cm/s and subsequently decreases at higher inlet 

velocities. Methane and ethylene increase with inlet velocity up to u = 155 cm/s, above 

which concentrations decrease with further increase in velocity. Ethylene is less reduced 

than acetylene and forms earlier in hydrocarbon breakdown. The existence of a peak 

acetylene value followed by ethylene and methane maxima at higher inlet velocities 

suggests that fuel breakdown is diminished by decreased residence time. At the highest 

inlet velocities, ethylene and methane concentrations as well as total measured unburned 

hydrocarbons decrease. In conjunction with no increase in H2 levels and visual 

observation of significant soot formation, the results suggest that fuel breakdown is 

promoted by high temperatures but intermediate species may form larger soot precursors 

instead of further reduction at the highest inlet velocities.  
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Figure 11. Exhaust gas and equilibrium concentrations of H2 and CO, and peak wall 

and adiabatic equilibrium temperatures for ϕ = 3.0 and varying u 

 

Figure 12. Exhaust gas concentrations of CH4, C2H2, C2H4 and UHC, and 

equilibrium concentrations of CH4 (equilibrium concentrations of C2H2 and C2H4 

are negligible and not shown) for ϕ = 3.0 and varying u 
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2.3.3 Fuels comparisons 

 

The conversions of methane [36] and propane [37] to syngas were investigated in earlier 

studies using the counter-flow reactor design. The current results for heptane are 

compared to those from the previous publications using three metrics: species conversion 

efficiency, and species and total energy conversion efficiencies. 

 

Species conversion efficiency, also called species yield, compares actual species 

production to the theoretical maximum based on the amount of that species’ components 

bound in the reactant fuel stream. Equation 2 gives H2 conversion efficiency, which is the 

number of moles generated compared to the number of moles of hydrogen bound in the 

heptane feedstock. 
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           (2) 

    

Species energy conversion efficiency represents the amount of chemical energy bound in 

a product species compared to the total chemical energy in the reactant fuel. Chemical 

energy is represented by the lower heating value (LHV) in kJ/kmol at standard 

conditions. Equation 3 gives H2 energy conversion efficiency. 
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Total energy conversion efficiency compares the chemical energy bound in all of the 

energy containing product species to the initial chemical energy of the reactant fuel. The 

difference between the two is the sum of energy lost to surroundings and sensible 

enthalpy of the product gas. Equation 4 gives total energy conversion efficiency. 
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           (4) 

 

Figure 13, Figure 14 and Figure 15 show experimental and equilibrium results of 

methane, propane and heptane reforming in terms of the above three metrics for 

experiments in which inlet velocity was held constant at 125 cm/s and equivalence ratio 

was varied. Experiments were conducted over different equivalence ratio ranges because 

of differences in stability when operating the reactor with the three fuels. As previously 

discussed, the combustion zone is stable within the reactor when the local velocity equals 

the burning rate, which is a function of temperature and reactant species. Variation in 

temperature between the three studies is due to differences in the adiabatic equilibrium 

temperatures of different reactant species, equivalence ratios, and levels of preheat. 

Heptane and propane have higher adiabatic equilibrium temperatures than methane. In 

addition, heptane is preheated to maintain the vapor phase; therefore preheated heptane 

has a higher adiabatic equilibrium temperature than propane. For example, the adiabatic 



43 
 

equilibrium temperatures of propane and heptane at 25 °C for ϕ = 2.9 are 850 °C and 847 

°C, whereas the equilibrium temperature of heptane increases to 934 °C when the 

reactants are preheated to 150 °C. Due to these differences, an equivalence ratio and 

velocity combination that is in the stable range but near the flashback limit for methane 

will be outside the stable range for propane. The same is true for propane and heptane. A 

comparison of burner maps for the three studies [36, 37] further illustrates these stability 

differences.  

 

Methane is the only one of the three fuels that shows a maximum value in the 

experimental results of hydrogen species (Figure 13) and energy (Figure 14) conversion 

efficiencies under the tested conditions. Methane, propane and heptane efficiencies 

decrease with increasing equivalence ratio above ϕ = 2.2, and experimental conversion 

efficiencies are significantly less those predicted by equilibrium at these points, despite a 

peak hydrogen conversion efficiency for heptane predicted at ϕ = 2.9 by equilibrium. The 

occurrence of peak conversion efficiency at equivalence ratios below those predicted by 

equilibrium is consistent with the results of Al-Hamamre et al. [25] for methane, in which 

incomplete conversion occurs on counter-flow reactor timescales. This suggests that 

propane and heptane might also produce peak H2 at a leaner operating point if such stable 

operation were possible but, as discussed in Section 2.3.1, leaner operation is limited by 

flashback and therefore these points could not be tested. The results also indicate that the 

current reactor design does not permit complete fuel conversion at high equivalence 

ratios. 
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Figure 13. Experimental and equilibrium values of H2 conversion efficiencies of 

methane [36], propane [37] and heptane reforming with constant u = 125 cm/s and 

varying equivalence ratio 

 

Figure 14. Experimental and equilibrium H2 energy conversion efficiencies of 

methane [36], propane [37] and heptane reforming with constant u = 125 cm/s and 

varying equivalence ratio 
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Experimental values of total energy conversion efficiencies show trends and values 

similar to equilibrium (Figure 15) for the three data sets. In each case, unburned 

hydrocarbon concentrations increase with increasing equivalence ratio [36, 37], and the 

chemical energy bound in those hydrocarbons contributes significantly to the total. Peak 

reactor temperatures decrease with increasing equivalence ratio for all three fuels [36, 

37]. This lessens convective and radiative losses to the environment as well as energy 

required to increase product gas enthalpy.  

 

 

Figure 15. Experimental and equilibrium total energy conversion efficiencies of 

methane [36], propane [37] and heptane reforming with constant u = 125 cm/s and 

varying equivalence ratio 
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Figure 16 shows the results of methane, propane and heptane reforming in terms of 

species and energy conversion efficiencies for experiments in which inlet velocity was 

varied from 50-200 cm/s and equivalence ratio was held constant at ϕ = 2.2 for methane, 

ϕ = 2.4 for propane and ϕ = 3.0 for heptane. All conversion efficiencies, with the 

exception of methane total energy conversion efficiency, increase initially with inlet 

velocity and show little change at higher u. The initial increase supports the discussion 

above for heptane that conversion improves with increased energy release rates and 

resultant higher peak temperatures. The marginal change over the remainder of the tested 

inlet velocity range suggests that product composition is affected by competing effects of 

increased temperature, which promotes conversion, and reduced residence time, which 

inhibits conversion. The decrease in total energy conversion efficiency of heptane at the 

highest u is attributed to the formation of soot, which consists of high chemical energy 

species that are not accounted for by GC measurements. 

 

Heptane conversion has also been studied in filtration reactors consisting of a column of 

porous media, which showed a broader operating range of 1.4-3.8 in comparison to the 

stable range of 2.8-3.9 in the counter-flow reactor [61]; however both reactors were 

tested at or near an equivalence ratio of 2.9, where peak hydrogen conversion efficiency 

is estimated from equilibrium calculations to occur. The tested range in the current study 

also partially overlaps the equivalence ratio range of 2.5-3.5 that was estimated by Dixon 

et al. [61] to be favorable conditions for heptane reforming in a filtration reactor.  Pastore 

and Mastorakos [62] reported that the peak conversion efficiencies for heptane occurred 

at equivalence ratios of 1.8- 2.5 depending on the reactor.   These differing values of the 
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optimum equivalence ratio indicate that conversion is sensitive to the details of the 

reactor and operating conditions. 

 

Peak H2 conversion efficiencies from the counter-flow reactor were less than those 

obtained in porous media, from which efficiencies of greater than 80% were obtained. 

Hydrocarbon product concentrations in the porous reactor were significantly lower than 

those measured in the counter-flow reactor, at less than 1% compared to 5.8%, indicating 

more complete fuel breakdown. Peak temperatures in porous media were in excess of 

1400 °C at ϕ = 3.0 and u = 60 cm/s, compared to 1190 °C at ϕ = 3.0 and u = 125 cm/s in 

the counter-flow reactor. Residence times for the porous media and counter-flow reactors 

were approximately the same at these operating conditions, with both on the order of 100 

ms. The difference in conversion efficiency is attributed to higher peak temperatures in 

the porous media reactor [37, 67].  
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Figure 16. H2, H2 energy and total energy conversion efficiencies of methane (ϕ = 

2.2) [36], propane (ϕ = 2.4) [37] and heptane (ϕ = 3.0) with varying inlet velocity 

2.4 Conclusions 

 

In this study we examined, experimentally, non-catalytic reforming of heptane to produce 

hydrogen-rich syngas in a counter-flow reactor. A key advantage of this reactor is that the 

reaction zones are stationary, which permits continuous operation and practical 

applications.  Stable operation of the reactor with premixed heptane/air reactants was 

established for equivalence ratios between 2.8 and 3.9 and inlet velocities between 50 

cm/s and 200 cm/s. Peak wall temperatures were monitored throughout reactor operation 

and were at all points in excess of the adiabatic equilibrium temperature, thus excess-

enthalpy flames were achieved through internal heat recirculation.  
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Exhaust gas composition was measured using gas chromatography for two sets of tests: 

equivalence ratio was varied from 2.9-3.8 with inlet velocity held constant at 125 cm/s, 

and equivalence ratio was held constant at 3.0 with inlet velocity varied from 50-200 

cm/s. H2 concentration decreased with increasing equivalence ratio from a maximum of 

14.5% to a minimum of 10.6%, while CO concentration remained nearly constant around 

17.0%. Both H2 and CO concentrations showed little dependence overall on inlet 

velocity, with the former varying from 12.8-14.4% and the latter varying between 16.6-

17.5%. The largest effect of inlet velocity was found at the lower end of the tested range 

where rates of heat release and temperatures are lower. 

 

In all cases, unburned hydrocarbons were measured in excess of concentrations predicted 

by equilibrium composition. Total unburned hydrocarbon levels increased with 

increasing equivalence ratio. Soot was noted with significant formation observed at 

higher equivalence ratios and inlet velocities. These results and observations strongly 

suggested that the extent of fuel breakdown is reduced by insufficient reaction rate and 

residence time.  

 

The results of this study showed trends similar to previously published studies on syngas 

production from methane and propane using the counter-flow reactor [36, 37]. Each fuel 

had H2 species and energy conversion efficiencies below equilibrium values, but total 

conversion efficiencies were comparable to equilibrium. In addition, energy-dense 

unburned hydrocarbon concentrations were in excess of equilibrium with concentrations 
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an order of magnitude higher than predicted by equilibrium at the highest tested 

equivalence ratios in this study. The comparison between the different fuels indicates 

that, although the stable operating range for heptane does include the theoretically 

optimal value as predicted by hydrogen conversion efficiencies calculated from 

equilibrium, the current reactor design does not permit complete fuel conversion at high 

equivalence ratios. In addition, the formation of soot at some conditions suggests the 

importance of operating at more moderate conditions for optimal performance.  

 

This study demonstrated the fuel flexibility of the counter-flow reactor by reforming a 

liquid fuel, and results supplemented previous reforming studies on the counter-flow 

reactor. Peak H2 conversion efficiency was significantly lower than that attained via 

filtration combustion in porous media, an alternate method of non-catalytic reforming. 

Differences were attributed to higher peak temperatures in the porous media reactor, 

which has higher specific surface area for heat transfer as compared to the counter-flow 

reactor under investigation. Furthermore, although the tested equivalence ratio range in 

this study does include ϕ = 2.9, where peak conversion efficiency is predicted to occur by 

equilibrium, previous studies predict peak conversion efficiencies over a range of ϕ = 1.8 

to ϕ = 3.5. The results of hydrogen conversion in this study indicate that the optimum 

equivalence ratio might be outside the operating range of the counter-flow reactor. The 

parametric study of reactor geometry, described in Chapter 5, gives insight into 

optimization of the counter-flow to improve reactor performance.  
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3 EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF LEAN 

PREMIXED METHANE/AIR COMBUSTION IN A MESOSCALE 

COUNTER-FLOW REACTOR 

 

The second focus of this research was the first demonstration of lean combustion in the 

counter-flow reactor. This work is described below, and was published as E.L. Belmont, 

I. Schoegl, J.L. Ellzey, Proc. Combust. Inst. 34 (2013) 3361–3367. 

3.1 Introduction  

 

Various lean combustor designs rely on heat recirculation for increased reaction rates. A 

review of lean methane combustion in porous media was conducted by Wood and Harris 

[13]. Numerous studies have utilized a monolith or packed bed to achieve the combustion 

of lean and ultra-lean reactant mixtures. Mathis and Ellzey [22] used a two section porous 

burner to stabilize combustion of methane/air mixtures with equivalence ratios of 0.6-

0.75 and inlet velocities (u) of 40-190 cm/s, which correspond to firing rates of 834-3961 

kW/m
2
. Exhaust emissions of carbon monoxide (CO), nitrogen oxides (NOx) and 

unburned hydrocarbons (UHCs) were below 35, 10 and 25 ppm, respectively, for all 

operating points. Smucker and Ellzey [68] computationally and experimentally 

investigated the combustion of lean propane/air and methane/air mixtures in a similar but 

larger diameter burner over a range of equivalence ratios from 0.6-0.7 and inlet velocities 
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from 20-120 cm/s for methane. Emissions of CO, NOx and UHCs were less than 35, 15 

and 5 ppm, respectively.  

 

Other heat recirculating reactor designs have been utilized in the study of lean 

combustion. One design utilizes annular porous media to vaporize and preheat lean fuel 

and air entering a combustor [69]. Another category of heat recirculating reactors, 

constructed of mesoscale flow channels, has been used to study lean combustion. An 

investigation of one reactor of this type, a Swiss roll combustor [33], demonstrated that 

the lean flammability limit of propane was extended from 0.51 to 0.18 at mixture inlet 

velocities significantly in excess of adiabatic laminar flame speeds [8]. The analytical 

model of channel combustors by Ronney [32] illustrated the influence of heat 

recirculation on operating limits.  

 

In this study, the straight-channel counter-flow reactor is investigated as a combustor and 

thermal oxidizer. This study is the first demonstration of its use to stabilize flames at lean 

equivalence ratios. Methane is studied experimentally and analytically, where the latter 

was achieved through modification of a previously developed analytical model [35]. The 

stable combustion limits of lean methane in the counter-flow reactor are determined as a 

function of reactant equivalence ratio and inlet velocity. Additionally, concentrations of 

major pollutant species, including NOx, CO, and unburned hydrocarbons (UHCs) are 

quantified over a range of reactant equivalence ratios and inlet velocities. Emissions 

indices of CO and NOx as a function of firing rates are presented. 
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3.2 Experimental method 

3.2.1 Experimental apparatus 

 

Methane and air are metered using mass flow controllers, and premixed prior to being 

introduced to the counter-flow reactor. Exhaust concentrations of CO, NOx and UHCs 

were measured using Rosemount Analytical analyzers. Samples were drawn from the 

reactor exhaust through an uncooled quartz probe with an inner diameter of 2 mm and 

inert tubing, and dried before analysis. Previous findings [37] showed slightly lower 

concentrations of product species from outside channels and minimal variation of 

composition with position within a single channel except near the alumina walls. Exhaust 

samples in this study were taken from the center channels, which are expected to be most 

representative of interior channels in scaled up reactors, at the middle of the channel exit. 

3.2.2 Experimental method 

 

The start-up procedure began by burning a near-stoichiometric methane/air mixture at the 

reactor outlets at an inlet velocity of 50 cm/s. Once the reactor heads warmed, the 

reaction fronts propagated upstream in the channels until they stabilized downstream of 

the porous SiC flow straighteners. Operating conditions were gradually adjusted to ϕ = 

0.44 and u = 125 cm/s, where the reactor was operated until temperatures stabilized. The 

initial warm-up phase took approximately 30-45 minutes. 
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Experiments included the determination of stable operating conditions, and the effect of 

inlet velocity and equivalence ratio variation on exhaust gas concentrations of CO, NOx 

and UHCs. Test conditions were considered stable if combustion was sustained in the 

main reactor section for ten minutes at constant temperatures. Alumina reactor wall 

temperatures in each of the four channels were monitored throughout the experiments. 

Gas temperatures were not directly measured due to the tendency of thermocouples 

inserted into the channels to act as flame holders. Peak wall temperatures were recorded 

after the reactor stabilized at a given operating point, and showed less than ± 5 °C 

variation during the time of continuous operation at that point and while exhaust gas 

samples were taken. 

 

Inlet velocity was specified at standard conditions of 25 °C and 1 atm. Emissions results 

were obtained for variation of inlet velocity from 60 to 225 cm/s with equivalence ratio 

held constant at 0.44, and variation of equivalence ratio from 0.41 to 0.48 with inlet 

velocity held constant at 125 cm/s. The tested range corresponds to firing rates of 664 to 

2490 kW/m
2
. Emissions concentrations in parts per million (ppm) are reported as 

measured on a dry basis. Emission indices for CO and NOx were calculated using the 

molecular weight of NO as representative of NOx. Peak wall temperatures were limited 

to under 1300 °C in order to avoid damage to the reactor, thus the inlet velocity range 

was restricted at the upper limit and some operating points were not tested for stability at 

high inlet velocities.  
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Each operating point was tested twice. Total uncertainty was calculated at each point as 

the root-sum-square of the contributing uncertainties. Therefore the uncertainty of 

emissions results is due to repeatability of measurements, calculated using a student-t 

distribution, calibration gases and the analyzers. Average uncertainty for CO and NOx is 

equal to +/- 10 ppm and +/- 2 ppm, respectively, and average uncertainty for UHCs is +/- 

16 ppm. Inlet velocity uncertainty is due to uncertainties of the air and methane flow 

controllers, as well the channel cross-sectional area. Equivalence ratio uncertainty is due 

to contributions from the air and methane flow controllers. Average uncertainties for inlet 

velocity and equivalence ratio are +/- 10.3 cm/s and +/- 0.03, respectively. Temperature 

uncertainty is attributed to contributions from repeatability of measurements, the 

thermocouples, and the data acquisition system, and average uncertainty is estimated to 

be +/- 12 °C. 

3.3 Analytical model 

 

An analytical model was developed by Schoegl and Ellzey [35] to investigate the 

operating principle of the reactor and obtain qualitative predictions of its behavior in 

response to changes in rich combustion operating conditions. A complete description of 

the model can be found in [35] where it was developed for analysis of the counter-flow 

reactor as a fuel reformer. A summary of the model and description of its recalibration for 

lean reactants is described below.  
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The purpose of the one-dimensional model is to provide insight into the general 

performance of the counter-flow reactor. The model assumes constant thermophysical 

properties, and combustion is modeled using activation energy asymptotics. Radiative 

heat losses are included through a boundary condition in the wall temperature solution. 

The model solves for non-dimensional wall temperature (Tw) and gas temperature (Ti) 

along a normalized x coordinate. The location of the reaction zone is determined 

indirectly to be where the local reaction rate produces a burning speed that is equal to the 

local velocity, which is the condition for stability. Operating conditions are specified by 

equivalence ratio, inlet temperature To, and ambient temperature T∞. Properties of the 

reactor are specified using non-dimensional parameters which can be found in [35].  

 

The gas temperatures in two adjacent channels are coupled by heat transfer through a 

common conducting wall. Equation 5 gives the normalized steady-state energy 

conservation equations and includes conduction and convection, transport, external losses 

and chemical reactions, given by 

 

    

    
 

   [(   )   
 

 
(     )     ]           (5a) 

   

    

     
 

 

   

  
 

 

  
(     )  

      

                (5b)  

 

where indices i = 1,2 denote individual channels and Tad is the normalized adiabatic 

flame temperature. Equation 6 is the species conservation equation which includes 
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diffusion, transport and reactions, and gives the concentration of the limiting reactant 

species yi as 
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where Le is the Lewis number and   is the inlet velocity non-dimensionalized by the 

adiabatic flame speed of the reference case. Equation 7 represents the reaction terms wi, 

which are modeled as point sources using activation energy asymptotics [70] by 
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where  (      ) are Dirac delta functions at the combustion locations     . The 

normalized activation energy β is equal to Ze/γ, where the Zeldovich number Ze is given 

by   
     

       
  , the prime (′) denotes a dimensional quantity,   

  is the activation 

energy,     
  is the adiabatic temperature rise of a mixture over the unburned mixture   

 , 

and    is the universal gas constant. The scaling factor γ is equal to     
      

  where 

    
  is the adiabatic equilibrium temperature of the reference case.  

 

Chemical reactions are modeled using single-step, first-order, irreversible Arrhenius 

kinetics. The activation energy is calibrated for lean methane/air mixtures using laminar 

flame speeds for various preheating levels at the equivalence ratios of interest calculated 

with Cantera [71] and GRI 3.0 [72]. Adiabatic flame temperature and flame speed at the 
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reference condition ϕ = 0.5 and   
  = 177.0 °C are used for the non-dimensionalization of 

the model. Equation 8 is utilized to obtain the activation energy by fitting β at each 

equivalence ratio 

 

|  |     
 (        )

         
            (8) 

 

where Tc,i are adiabatic flame temperatures normalized by the reference temperature. The 

normalized adiabatic flame temperature Tad  is equal to 1 at ϕ = 0.50; at other equivalence 

ratios, it is the adiabatic flame temperature resulting in a mass flux equal to the reference 

case in detailed simulations, which matches flame speeds within the context of the 

constant density approximation used for this model. Table 2 gives the conditions 

resulting in constant mass flux and the resultant values for the calibrated activation 

energies. 

 

Table 2. Calibrated activation energies derived from calculated temperatures and 

flame speeds 

ϕ 

 

  
   

(°C) 

   
   

(°C) 

∆   
  

(°C) 

    

(cm/s)   
  (kJ/mol) 

0.42 316 1285 696 20.2 249.7 

0.44 281 1295 741 19.1 247.2 

0.46 247 1305 786 17.9 244.2 
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Due to the simplifications used in the analytical model, its use is limited to qualitative 

predictions of reactor behavior. It is, however, able to illustrate the stabilization 

mechanism of the reactor and the trends of temperature and reaction zone location in 

response to variations in reactant equivalence ratio and inlet velocity. 

3.4 Results and Discussion 

3.4.1 Operating range 

 

Figure 17 shows the stable operating range of the reactor in terms of inlet velocity and 

both standard and normalized equivalence ratio [66]. The combustion process becomes 

unstable due to either flashback, in which the reaction front propagates upstream past a 

section of porous flow straightener in the reactor channel, blow-off, in which the reaction 

front propagates out of the outlet of the reactor channel, or extinction. In addition to the 

data presented in this paper for operation in the lean regime, data from an earlier study 

[36] on rich methane/air mixtures is also shown. The stable operating points on both the 

rich and lean sides are beyond the conventional flammability limits.  
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Figure 17. Stability map for counter-flow reactor operating on lean (this study) and 

rich ([36]) methane/air reactants, with both stable (ST) and unstable points due to 

flashback (FB), blow-off (BO) and extinction (EX) shown as a function of inlet 

velocity and both standard and normalized equivalence ratios 

 

In terms of standard equivalence ratio, the stable operating range on the lean side is 

considerably narrower than that on the rich side.  Stability is strongly influenced by the 

temperature of the products and the resultant preheating of the reactants in the 

neighboring channel. It is known that in comparison to the rich side of stoichiometric, the 

temperature of the products changes more rapidly with standard equivalence ratio on the 

lean side resulting in a smaller range of stable conditions. Due to the asymmetry inherent 

in the standard equivalence ratio definition, the stability range is also presented in terms 

of normalized equivalence ratio. In normalized form, the width of the stable range in the 
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rich regime is approximately 60% broader than the lean, which is attributed to differences 

in chemical kinetics between the two regimes.  

3.4.2 Analytical model 

 

The stable operating range (Figure 17) shows that equivalence ratio and inlet velocity can 

be changed independently while stability is maintained within the reactor. There are no 

predetermined flame stabilization points within the channel; therefore the combustion 

zone freely adjusts to a new position within the channel following a change in 

equivalence ratio or inlet velocity. The combustion zone moves to a position where 

sufficient heat is gained from the adjacent channel and reactants are preheated to the 

point where the burning velocity equals the local velocity, and stability is maintained.  

 

Figure 18 shows the results of the analytical model for gas and wall temperature profiles 

for varying equivalence ratio from 0.42 to 0.46 with inlet velocity held constant at 125 

cm/s, as well as experimental temperature measurements taken along the axial length of a 

reactor channel while operating at these conditions, normalized by axial position and 

overlaid onto the analytical domain. Figure 19 shows the results of the model and 

experimental measurements for varying inlet velocity from 75 to 175 cm/s with 

equivalence ratio held constant at 0.44.  
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Figure 18. Analytical model (AM) gas (Tg) and wall (Tw) temperatures and 

experimental (EXP) temperatures measured along axial position in channel for 

varying ϕ and u = 125 cm/s 

 

Figure 19. Analytical model (AM) gas (Tg) and wall (Tw) temperatures and 

experimental (EXP) temperatures measured along axial position in channel for 

varying u and ϕ = 0.44 
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In both cases, the inlet temperature was specified at 577 °C to account for preheating that 

occurs in the reactor heads. The combustion zone is identified by a sharp increase in gas 

temperature, while the wall temperature shows a broader profile. The combustion zone 

adjusts its location towards the center of the reactor following a decrease of ϕ or an 

increase in u in Figure 18 and Figure 19, respectively. For increasing ϕ (at fixed u), the 

temperature of the flame increases and less preheat is required for the mixture to react 

and so the flame stabilizes nearer the entrance than for the cases at lower ϕ which require 

greater preheating (Figure 18). For increasing u (at fixed ϕ), the reactants travel further 

into the channel before reaching the critical temperature for combustion (Figure 19). 

Through this adjustment in combustion zone location a burning velocity is attained that 

equals the local velocity.  

 

Wall temperatures also respond to changes in ϕ or u, both in magnitude and broadness of 

temperature profile. As ϕ is increased (Figure 18) or u is decreased (Figure 19) and the 

combustion zone shifts upstream, hot products flow over the remaining length of the 

channel. This condition, as well as conduction through the wall, results in the broad 

profile predicted by the model. Similarly, as ϕ is decreased or u is increased and the 

reaction zone shifts towards the center of the reactor, the central portion of the wall 

receives more heat and the peak temperature zone in the wall is narrower. Experimental 

temperature measurements are in qualitative agreement with the results of the analytical 

model in terms of relative values at the tested operating points.  
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While the analytical results can only be interpreted qualitatively due to simplifications in 

the model, they do accurately capture temperature trends and the general conditions 

under which flashback and blow-off occur, which are at high ϕ-low u and low ϕ-high u, 

respectively.  The results of this study can also be compared to a previous study in which 

the counter-flow reactor was operated as a fuel reformer, and the analytical model was 

used to predict its behavior under fuel rich conditions [35]. In that study the model 

similarly predicted changes in combustion zone location in response to changes in ϕ and 

u. In the case of fuel rich conditions the combustion zone migrated downstream for 

increases in u, as in this study. However, the zone migrated downstream for increases in 

ϕ because more preheating is required to attain the same peak reaction temperature as a 

rich mixture becomes progressively richer, analogous to the case for a lean mixture 

becoming progressively leaner. Therefore the model indicates that the stabilization 

method for rich and lean mixtures in the counter-flow reactor is similar.  

3.4.3 Emissions 

 

Figure 20 shows the variation of CO, NOx and UHC concentrations measured in the 

reactor exhaust, peak reactor channel wall temperatures, and calculated adiabatic 

equilibrium flame temperature for varying equivalence ratio with inlet velocity held 

constant at 125 cm/s.  

 

Peak reactor wall temperatures are above the adiabatic flame temperatures, or 

superadiabatic, for each of the tested equivalence ratios. The measured wall temperatures 
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in these experiments are less than 1300 °C. However, the results of the analytical model 

suggest that peak gas temperatures are significantly higher, with gas temperatures 

predicted by the model to be as much as 780 °C higher than peak wall temperatures. 

Therefore, NOx is expected to form through the thermal and prompt NO mechanisms in 

these experiments [66].  

 

The concentration of CO is observed to increase with decreasing equivalence ratio. This 

is in contrast to the product composition that is predicted by thermodynamic equilibrium, 

which suggests a decrease in CO concentration with decreasing ϕ. However, the results of 

this study are in agreement with those attained previously by Xu et al. [73] for 

experiments in porous media, in which CO concentrations rose from under 100 ppm at 

equivalence ratios of 0.49 and higher, to over 200 ppm at the lowest tested equivalence 

ratio of 0.42. Similarly, Francisco et al. [74] reported a significantly higher CO emission 

index for methane/air mixtures of ϕ = 0.45 as compared with higher equivalence ratios, 

although stable velocity operating ranges differed slightly as well. Other studies have 

noted the importance of temperature in promoting consecutive oxidation of methane to 

CO and CO2 [75, 76]. This is seen in the experimental results of this study, where 

temperature decreases from 1203 °C at ϕ = 0.48 to 1108 °C at ϕ = 0.41.   
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Figure 20. CO, NOx and UHC concentrations and peak wall temperature 

measurements (T), as well as adiabatic equilibrium temperature (Tad), for varying ϕ 

with u = 125 cm/s 

 

Figure 21 shows CO, NOx and UHC concentrations, peak wall temperatures, and 

calculated adiabatic equilibrium flame temperature in the reactor exhaust for varying inlet 

velocity with equivalence ratio held constant at ϕ = 0.44. Consistent with results for other 

reactors of this scale, peak temperatures decrease with inlet velocity as the heat losses to 

ambient dominate over the rate of chemical energy release within the reactor [36, 37]. 

Peak wall temperatures range from 912 to 1272 °C at the lowest and highest tested inlet 

velocities, respectively.  These wall temperatures are superadiabatic at inlet velocities 

above 100 cm/s.  
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NOx concentrations are below 13 ppm at all tested points. At the lowest tested inlet 

velocities of 50 and 75 cm/s, the CO concentration drops from the peak value that occurs 

at 100 cm/s. UHCs are detected at and below an inlet velocity of 100 cm/s, and measured 

UHC concentrations increase with decreasing inlet velocity from 5 to 110 ppm at 100 and 

60 cm/s, respectively. The results indicate that some fuel is not broken down at these low 

temperature conditions. No UHCs are detected at inlet velocities above 100 cm/s, 

indicating that the fuel is broken down and the conversion becomes more complete with 

lower CO values at the higher velocity and temperature conditions.  

 

 

Figure 21. CO, NOx and UHC concentrations and peak wall temperature 

measurements (T), as well as adiabatic equilibrium temperature (Tad), for varying u 

and ϕ = 0.44 
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Both sets of data, for varying ϕ and u, can be further understood by examining the 

dependence of pollutant formation and peak temperature on firing rate. Figure 22 shows 

these dependencies, with CO and NOx emissions presented in terms of emission index 

(EICO and EINOx, respectively), defined as mass flow rate of a pollutant species of 

interest (in grams) divided by the mass flow rate of fuel (in kilograms). EICO and EINOx 

are plotted separately for the variation of inlet velocity or equivalence ratio, while peak 

temperature data sets have been combined. EICO shows a negative correlation with firing 

rate for operating points where no UHCs are detected, however the correlation differs 

depending on which parameter, u or ϕ, is being varied. EINOx, on the other hand, shows 

a positive correlation with firing rate as a function of ϕ, but generally decreases with 

increasing firing rate as a function of u at firing rates above those where UHCs are 

detected. The detection of UHCs suggests a minimum firing rate for the system operating 

at a given ϕ. It can also be seen that firing rate and temperature are closely related, 

despite variation in equivalence ratio and inlet velocity in the combined set of data. The 

increase of reactor temperature with firing rate has been observed in previous studies as 

well [22, 68, 77].  
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Figure 22. Emission indices of CO (EICO) and NOx (EINOx), and peak reactor wall 

temperature (T) over a range of tested firing rates for the variation of equivalence 

ratio (ϕ) and inlet velocity (u) 

3.5 Conclusion 

 

Experimental and analytical results were presented for the combustion of lean 

methane/air mixtures in a mesoscale counter-flow reactor. This reactor design has been 

studied previously for conversion of rich methane/air, propane/air and heptane/air 

mixtures; this is the first study focused on the oxidation of lean mixtures. 

 

The analytical model, previously derived for reforming studies in the counter-flow 

reactor, was recalibrated for combustion of lean methane/air reactants and applied over 

the range of experimentally tested operating conditions. Results were in qualitative 
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agreement with reaction front location trends and temperature measurements taken along 

the axial position of the reactor channels during experiments. The results highlighted the 

stabilization mechanism of the reactor as well as modes of destabilization, and showed 

rich and lean behavior to be similar. 

 

Stability was experimentally determined over a range of inlet velocities and equivalence 

ratios below the conventional flammability limit of methane at inlet conditions. 

Emissions of CO and NOx ranged from 35 to 143 ppm and 5 to 25 ppm, respectively, and 

CO generally decreased with increasing inlet velocity and equivalence ratio. UHCs were 

detected at the lowest firing rates suggesting that a minimum firing rate is necessary for 

optimal performance. 

  



71 
 

4 LEAN HEPTANE AND PROPANE COMBUSTION IN A NON-

CATALYTIC PARALLEL-PLATE COUNTER-FLOW REACTOR  

 

The third focus of this research expanded upon the demonstration and quantification of 

lean methane combustion in the counter-flow reactor to examine more complex fuels: 

propane and heptane. This work is described below, and was published as E.L. Belmont, 

J.L. Ellzey, Combust. Flame 161(4) (2014) 1055–1062. 

4.1 Introduction 

 

Previous studies on the counter-flow reactor have demonstrated its ability to convert fuel-

rich reactants of methane [36], propane [37] and heptane [38] to hydrogen-rich syngas. 

The same reactor has been operated with fuel-lean mixtures of methane [39]. In this 

study, increasingly complex fuels are studied: propane and heptane. The latter, being a 

liquid fuel, has importance as a single-component, and part of a multi-component, 

surrogate for logistical fuels [78]. Furthermore, the demonstration of fuel-lean liquid 

combustion in the counter-flow reactor is an important demonstration of its fuel-

flexibility for field applications because liquid fuels are generally safer and easier to 

transport than gaseous fuels.  

 

Another important consideration for reactor operation in field applications is the 

operating points at which combustion can be sustained in the device. In order for a 

combustor to be widely applicable for different applications, the ability to operate over a 
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broad range of equivalence ratios and firing rates is desirable. As shown in the study of 

lean methane combustion in the counter-flow reactor, and described in Chapter 3, stable 

combustor operation over a broad range of equivalence ratios and inlet velocities (u) is 

necessary to achieve a wide range of firing rates while minimizing pollutant emissions 

[39]. 

 

Combustion stability as a function of reactant equivalence ratio and inlet velocity is 

determined for lean propane and lean heptane in the counter-flow reactor. Lean stability 

results are compared to previously obtained stability results for counter-flow reactor 

operation in the rich regimes for both fuels. Counter-flow combustor emissions 

measurements of carbon monoxide (CO), nitrogen oxides (NOx) and unburned 

hydrocarbons (UHCs) are analyzed in this study for lean operation on propane and 

heptane, and results are compared to previously obtained emissions measured for lean 

methane combustion. Reactor channel wall temperatures are compared to adiabatic 

equilibrium temperatures to determine superadiabicity. The results of lean methane, 

propane and heptane combustion in the counter-flow reactor are examined to understand 

the influence of superadiabatic operation on operating range and emissions. 

4.2 Materials and Methods 

4.2.1 Experimental Apparatus 
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Premixed fuel and air are provided to the counter-flow reactor using mass flow 

controllers for propane and air, and a pump for heptane. Heptane is vaporized and 

premixed with air via a custom-designed and built vaporization and mixing chamber. 

Heptane is vaporized prior to entering the reactor. A detailed description of the heptane 

vaporization system used in this study is available in Belmont et al. [38] and described in 

Section 2.2.1. 

 

Concentrations of carbon monoxide (CO), nitrogen oxides (NOx), and unburned 

hydrocarbons (UHCs) were measured in the reactor exhaust using Rosemount Analytical 

analyzers. Samples were drawn through an uncooled quartz probe with a 2 mm inner 

diameter and inert tubing, and dried before analysis. A previous study [37] showed 

slightly lower product species concentrations from outside channels, and minimal 

variation of composition within a single channel except near the alumina walls. In 

consideration of these findings, exhaust samples in this study were taken from the center 

channels at the middle of the channel exit. Therefore, the data produced in this study is 

expected to be representative of interior channels in scaled up reactors. 

4.2.2 Experimental Method 

 

The start-up procedure began by burning a near-stoichiometric mixture of the fuel of 

interest at the reactor outlets at an inlet velocity of 50 cm/s. The reaction fronts 

propagated upstream in the channels once the reactor heads had warmed sufficiently, and 

stabilized downstream of the porous SiC flow straighteners. Operating conditions were 
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then gradually adjusted to the reference conditions for each fuel, and were maintained at 

those values until temperatures stabilized. References conditions for propane and heptane 

were ϕ = 0.41 and u = 125 cm/s. 

 

The warm-up phase took approximately 45 minutes. Experiments included the 

determination of stable operating conditions and the exhaust gas concentrations of CO, 

NOx and UHCs for each fuel over a range of inlet velocities and equivalence ratios. Test 

conditions were considered stable if combustion was sustained in the main reactor section 

for ten minutes at constant temperatures. Reactor wall temperatures were monitored in 

each of the four channels throughout the experiments. Gas temperatures were not 

measured directly due to the tendency of thermocouples inserted into the channel to act as 

flame holders. Peak wall temperatures were recorded at stable reactor conditions and 

showed less than ±5°C variation during that time and while exhaust gas samples were 

taken. Reactor temperatures were limited to less than 1300°C through the restriction of 

tested operating conditions in order to avoid damage to the reactor. 

 

Following the warm-up phase and stabilization at the reference conditions, equivalence 

ratio or inlet velocity was adjusted to the desired test values. Inlet velocity was specified 

at standard conditions of 25°C and 1 atm. Emissions results were obtained over a range 

of inlet velocities with equivalence ratio held constant at ϕ = 0.41, and over a range of 

equivalence ratios with inlet velocity held constant at 125 cm/s. Emissions concentrations 

in parts per million (ppm) are reported as measured on a dry basis.  
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Each operating point was tested twice. Total uncertainty was calculated at each point as 

the root-sum-square of the contributing uncertainties. The uncertainty of emissions 

results is due to repeatability of measurements as calculated using a student-t distribution, 

the calibration gases and the analyzers. Average uncertainties of CO, NOx and UHC 

measurements for propane and heptane are ±13, 2 and 16 ppm and ±28, 2 and 1 ppm, 

respectively. Inlet velocity uncertainty is due to uncertainties of the mass flow controllers 

for air and propane, the pump for heptane, and the channel cross-sectional area. 

Equivalence ratio uncertainty is due to contributions from the flow controllers and pump. 

Average uncertainties of inlet velocity and equivalence ratio are ±10 cm/s and ±0.03 for 

propane, and average uncertainties of inlet velocity and equivalence ratio are ±10 cm/s 

and ±0.04 for heptane. Temperature uncertainty is attributed to contributions from 

repeatability of measurements, the thermocouples, and the data acquisition system. 

Average temperature uncertainties for propane and heptane are estimated to be ±16°C 

and ±20°C, respectively. 

4.3 Results and Discussion 

4.3.1 Operating Range 

4.3.1.1 Propane 

 

Figure 23 is a stability plot for counter-flow reactor operation on propane, where 

operating conditions are defined in terms of inlet velocity and both standard and 
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normalized equivalence ratio. Normalized equivalence ratio, defined as ϕ/(1+ϕ), permits 

direct comparison of rich and lean operating regimes because it compensates for the 

inherent asymmetry in the definition of standard equivalence ratio [66].  

 

 

Figure 23. Stability map for counter-flow reactor operation on lean and rich [37] 

propane/air reactants, with stable (ST) and unstable points due to flashback (FB), 

blow-off (BO) and extinction (EX) shown as a function of inlet velocity and both 

standard and normalized equivalence ratios. Lean and rich flammability limits for 

propane/air reactants at inlet conditions are indicated. 

 

The conditions where the reactor operates stably, as well as conditions where operation 

becomes unstable, are shown. Combustor instability can occur as flashback, in which the 

reaction front propagates upstream past a section of porous flow straightener in the 

reactor channel; blow-off, in which the reaction front propagates out of the outlet of the 

reactor channel; or extinction, in which the rate of heat loss exceeds the rate of heat 
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release and combustion is not sustained. In addition to stability data acquired for lean 

combustor operation, previously obtained data for reactor operation on fuel-rich mixtures 

of propane [37] are included in the plot. Taken together, a broader understanding of 

stable reactor operation is attained. 

 

Some operating points were not tested at high inlet velocities in order to avoid damage to 

the reactor due to high temperatures. Lean operation is achieved at minimum and 

maximum propane standard equivalence ratios of 0.36 and 0.44, over a range of inlet 

velocities from 60 to 225 cm/s. These conditions correspond to Reynolds numbers of 

approximately 100-600 based upon inlet conditions, putting reactor operation in the 

laminar regime. Stable operation in the lean regime is entirely below the conventional 

lean flammability limit of propane, ϕ = 0.51, while the stable rich range spans from 

below to above the conventional rich flammability limit, ϕ = 2.5 [2]. In normalized form, 

the width of the stable rich regime is approximately 35% broader than the lean. 

4.3.1.2 Heptane 

 

Figure 24 is a stability plot for counter-flow reactor operation on heptane, where 

operating conditions are defined in terms of inlet velocity and both standard and 

normalized equivalence ratio. The operating conditions where the reactor operates stably, 

as well as conditions where operation becomes unstable due to flashback, blow-off or 

extinction, are shown. In addition to stability data acquired for lean combustor operation, 
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previously obtained data for reactor operation on fuel-rich mixtures of heptane [38] are 

included in the plot.  

 

Lean operation is achieved at minimum and maximum heptane standard equivalence 

ratios of 0.37 and 0.46, over a range of inlet velocities from 100 to 225 cm/s. The 

minimum stable inlet velocity, 100 cm/s, is significantly higher than previously tested 

fuels, methane and propane, which stabilized at 60 cm/s. Destabilization by extinction at 

the lower velocity limit, which occurs at 75 cm/s for heptane combustion at ϕ =0.41 in 

the counter-flow reactor, has been observed in previous studies as well [36, 39]. This 

mode of destabilization results from the low rate of enthalpy input at low inlet velocities, 

while the rate of heat loss is a function of reactor temperature, which does not change 

proportionately. Stable operation in the lean regime is significantly below the 

conventional lean flammability limit of heptane, ϕ = 0.56, while the stable rich range 

spans from below to slightly above the conventional rich flammability limit, ϕ = 3.8 [2]. 

In both standard and normalized form, the width of the stable rich regime is significantly 

broader than the lean.  
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Figure 24. Stability map for counter-flow reactor operation on lean and rich [38] 

heptane/air reactants, with stable (ST) and unstable points due to flashback (FB), 

blow-off (BO) and extinction (EX) shown as a function of inlet velocity and both 

standard and normalized equivalence ratios. Lean and rich flammability limits for 

heptane/air reactants at inlet conditions are indicated. 

4.3.2 Emissions 

 

Exhaust emissions of CO, NOx and UHCs, and peak wall temperature measurements are 

reported for lean reactor operation on heptane and propane, and these results are 

compared to previously published data for methane [39]. Results are presented for two 

sets of tests: variation of inlet velocity with equivalence ratio held constant, and variation 

of equivalence ratio with inlet velocity held constant.    
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4.3.2.1 Effect of Inlet Velocity  

 

For a specified equivalence ratio, the equilibrium temperature is fixed and is not affected 

by volumetric flow rate.  In a practical reactor, however, increasing the inlet velocity at a 

specified equivalence ratio increases the firing rate while altering the ratio of volumetric 

heat release to external heat loss, which is primarily affected by convection from the 

outside surface area. In addition, the residence time in the reactor decreases with 

increasing velocity.  These two factors of temperature and residence time are important in 

the formation of emissions. 
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Figure 25. (a) CO exhaust concentration and peak wall temperature (Tw) for lean 

counter-flow combustor operation on heptane, propane and methane [39], and (b) 

UHC exhaust concentration and peak wall temperature measured for lean counter-

flow combustor operation on propane and methane [39] are shown. UHCs are 

undetected at all tested heptane operating points and are not shown. A range of inlet 

velocities are tested with equivalence ratio held constant at ϕ = 0.41 for heptane and 

propane, and ϕ = 0.44 for methane. Calculated adiabatic equilibrium temperatures 

(Tad) for the tested equivalence ratios of each fuel are shown. Subadiabatic, near-

adiabatic and superadiabatic operating regions, defined in terms of peak wall 

temperature, are also shown. 
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Figure 25a shows CO exhaust concentrations and peak measured wall temperatures for 

lean reactor operation on heptane, propane and methane [39] as a function of inlet 

velocity. Figure 25b shows UHC exhaust concentrations and peak wall temperatures for 

propane and methane. For heptane, UHCs were undetected at all points and are not 

included in Figure 25b. In order to facilitate direct comparison of the data presented in 

this study to other bodies of work, these results are presented in terms of standard 

equivalence ratio. Inlet velocity varies from 60 to 225 cm/s with equivalence ratio held 

constant at ϕ = 0.44 for methane and ϕ = 0.41 for propane, and from 100 to 200 cm/s for 

heptane at ϕ = 0.41. Calculated adiabatic equilibrium temperatures for each fuel at the 

tested equivalence ratios are shown. Propane and heptane data were acquired at ϕ =0.41, 

as highlighted in the stability maps shown in Figure 23 and Figure 24, where broad 

ranges of stable inlet velocities were achieved for both fuels. In the earlier study [39], it 

was found that methane flames stabilized over a broad range of inlet velocities at an 

equivalence ratio of ϕ =0.44. Although this small difference in equivalence ratio 

complicates the comparison of the different fuels, it is still instructive to examine the 

trends associated with changes in inlet velocity, which significantly affect reactor 

temperatures. This effect is attributed to an increase in the ratio of volumetric heat release 

within the reactor to heat losses from the surface of the reactor as inlet velocity increases. 

The change in reactor temperatures strongly impacts reaction rates, and therefore 

emissions. 
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Additionally, regions of combustor operation are defined based upon peak wall 

temperatures, and are indicated in Figure 25a and Figure 25b. While peak gas 

temperatures are expected to be superadiabatic at all operating points based upon 

previous theoretical analyses [35, 39], peak wall temperatures are a readily measured 

indicator of reactor conditions. Peak wall temperatures are the lowest temperatures 

experienced by the reaction zone; this has significant implications for reaction chemistry 

and quenching, and therefore emissions. The operating regions are designated as 

subadiabatic, near-adiabatic, and superadiabatic depending on the value of the peak 

reactor wall temperature relative to the adiabatic temperature, where near-adiabatic 

operation is identified where peak reactor temperatures are within approximately 50°C.   

 

Propane combustion produces peak reactor wall temperatures that vary from 890 to 

1233°C at the lowest and highest tested inlet velocities, respectively, and are 

superadiabatic at inlet velocities above 100 cm/s. The positive correlation of peak wall 

temperature with inlet velocity is also shown for methane [39], as well as in previous 

studies [36-38]. This is a result of increased rate of heat release within the reactor with 

increasing velocity compared to rate of heat loss to the surroundings. Heptane 

combustion produces a similar temperature trend, with peak wall temperatures increasing 

from 1046 to 1149°C with increasing inlet velocity. Heptane has a narrower stable 

operating range than propane and methane at the tested equivalence ratios; instability 

occurs at inlet velocities below 100 cm/s and above 200 cm/s. 
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The CO concentration from heptane combustion decreases from 259 ppm to 133 ppm 

with increasing inlet velocity. CO concentration from propane also decreases with 

increasing inlet velocity above 75 cm/s, with minor variation at the highest tested inlet 

velocities that is within calculated uncertainty. At the lowest tested inlet velocity of 50 

cm/s, the concentration of CO is significantly less than the peak value of 123 ppm that 

occurs at 75 cm/s. UHCs from propane are detected at inlet velocities of 50 and 75 cm/s. 

 

The results of propane combustion show temperature and CO trends that are similar to 

methane [39]. Detection of UHCs at the lowest tested inlet velocities indicates 

incomplete fuel breakdown for both fuels. The absence of measured UHCs for heptane is 

attributed to the narrower stable operating range of heptane within the counter-flow 

reactor, which is limited to a minimum inlet velocity of 100 cm/s. It is anticipated that 

UHCs would be detected if heptane flames could be stabilized in the reactor at lower inlet 

velocities, following trends observed for methane and propane, however the current 

reactor geometry does not support heptane flames at inlet velocities below 100 cm/s at ϕ 

= 0.41. 
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Figure 26. NOx exhaust concentration and peak wall temperature (Tw) measured 

for lean counter-flow combustor operation on heptane, propane and methane [39]. 

Inlet velocity is varied with equivalence ratio held constant at ϕ = 0.41 for heptane 

and propane, and ϕ = 0.44 for methane. Adiabatic equilibrium temperatures (Tad) 

for the range of tested equivalence ratios of each fuel are shown. Subadiabatic, near-

adiabatic and superadiabatic operating regions, defined in terms of peak wall 

temperature, are also shown. 

 

Figure 26 shows NOx exhaust concentrations for combustion of lean heptane, propane 

and methane [39]. Results are presented for inlet velocities from 60 to 225 cm/s with 

equivalence ratio held constant at ϕ = 0.41 for propane and ϕ = 0.44 for methane, and 

from 100 to 200 cm/s for heptane at ϕ = 0.41. Peak measured wall temperatures and 

calculated adiabatic equilibrium temperatures are shown. Additionally, regions of 
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combustor operation, defined by subadiabatic, near-adiabatic and superadiabatic peak 

wall temperatures, are indicated. 

 

NOx concentration is below 13 ppm at all tested points. The highest NOx measurements 

occur at 125 cm/s for propane, and the concentrations decrease with increasing and 

decreasing inlet velocities from that point. The same trend is observed for methane 

combustion [39]. The initial increase in NOx with inlet velocity is attributed to 

temperature dependence, whereas the variation at higher inlet velocities is largely within 

the estimated uncertainty. A slight decrease at the highest tested inlet velocities is 

attributed to decreased residence times at these conditions. Similar effects of inlet 

velocity on emissions have been observed in other studies [14, 15].  

 

Heptane combustion produces the highest NOx concentration at the lowest tested inlet 

velocity. Concentration decreases with an increase in inlet velocity, and remains constant 

within the estimated uncertainty over the remainder of the tested inlet velocities.  

4.3.2.2 Effect of Equivalence Ratio  

 

For a fixed inlet velocity, a change in equivalence ratio changes the reactor firing rate 

while maintaining an approximately constant residence time.  The necessary firing rate is 

determined by process requirements, while environmental considerations dictate 

acceptable emissions levels. 
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Figure 27 shows CO exhaust concentrations and peak wall temperatures for lean reactor 

operation on heptane, propane and methane [39]. Equivalence ratios are varied from 0.38 

to 0.45 for heptane, 0.37 to 0.44 for propane and 0.41 to 0.48 for methane, with inlet 

velocity held constant at u = 125 cm/s. Calculated adiabatic equilibrium temperatures for 

each fuel at the tested equivalence ratios are also shown. The widths of stable 

equivalence ratio ranges are the same for each fuel at an inlet velocity of 125 cm/s, where 

all emissions were measured for equivalence ratio variation. However, as can be seen in 

the stability maps shown in Figure 23 and Figure 24, and in the previously published lean 

methane investigation [39] described in Chapter 3, the upper and lower limits of these 

stable ranges vary between the different fuels. Methane in particular exhibits a stable 

range that is shifted more significantly towards stoichiometric as compared to the other 

two tested fuels. Because there are no flameholders in the counter-flow reactor, stable 

operation is obtained when the inlet flow is balanced by the burning rate, which is a 

function of equivalence ratio, preheat temperature, heat losses, heat recirculation, and 

fuel chemistry. 
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Figure 27. CO exhaust concentration and peak wall temperature (Tw) measured for 

lean counter-flow combustor operation on heptane, propane and methane [39] with 

varying ϕ and inlet velocity held constant at u = 125 cm/s are shown, as well as 

calculated adiabatic equilibrium temperatures (Tad) for the range of tested 

equivalence ratios of each fuel 

 

Both heptane and propane combustion result in modest increases of peak wall 

temperatures with equivalence ratio from 1046 to 1149°C and 1071 to 1146°C, 

respectively. This trend is consistent with the results for methane [39]. The positive 

correlation of temperature with equivalence ratio for both fuels is also in agreement with 

trends predicted by chemical equilibrium. Comparison of measured and equilibrium 

temperatures shows that peak wall temperatures are superadiabatic at all tested methane 

and propane equivalence ratios. Peak wall temperatures for heptane are superadiabatic at 

equivalence ratios below 0.42, and are subadiabatic at the highest tested equivalence 
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ratios. Peak wall temperatures as a function of equivalence ratio are generally within 

50
o
C of the adiabatic equilibrium temperature for all fuels, and are considered to be in the 

near-adiabatic regime, thus the three operating regimes identified in Figure 25 and Figure 

26 are not identified in Figure 27 and Figure 28. 

 

The measured CO concentration for propane combustion initially increases slightly with 

increasing equivalence ratio from ϕ = 0.37 to ϕ = 0.39, however the variation in this 

range is within calculated uncertainty. At higher equivalence ratios, CO concentration 

decreases with increasing equivalence ratio from a peak value of 106 ppm to 50 ppm at 

the highest tested equivalence ratio of 0.44. Likewise, the measured CO concentration for 

heptane combustion decreases from a peak value of 373 ppm at the lowest tested 

equivalence ratio of 0.38 to 99 ppm at the highest tested equivalence ratio of 0.45. This 

trend is in agreement with the results for methane, which show a decrease in CO 

concentration with increasing equivalence ratio across the tested range. As was 

previously observed with methane [39], this negative correlation is in contrast to 

chemical equilibrium, which indicates an increase in CO concentration as equivalence 

ratio approaches stoichiometry. However, the measured values for heptane and propane 

combustion are significantly in excess of equilibrium, which predicts less than 1 ppm of 

CO at all tested equivalence ratios. Mesoscale reactors are particularly prone to reaction 

quenching at the channel walls as compared to larger reactors due to increased surface 

area-to-volume ratios, which leads to incomplete combustion. An additional challenge of 

high surface area-to-volume ratios in mesoscale reactors is the increased heat loss at 

channel walls, which produces lower reaction temperatures and therefore decreased 
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reaction rates. Reactor temperatures and heat loss are also highly dependent on inlet 

conditions, including inlet velocity and equivalence ratio, which significantly impact the 

rate of volumetric heat release. The observed CO trend is attributed to a dependence on 

reactor temperature, which increases with equivalence ratio and drives the oxidation of 

CO toward CO2 and equilibrium. Similar CO trends have been observed in other 

mesoscale combustor studies [14, 39]. 

 

 

 

Figure 28. NOx exhaust concentration and peak wall temperature (Tw) measured 

for lean counter-flow combustor operation on heptane, propane and methane [39] 

with varying ϕ and inlet velocity held constant at u = 125 cm/s are shown, as well as 

adiabatic equilibrium temperatures (Tad) calculated for the range of tested 

equivalence ratios of each fuel 
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Figure 28 shows NOx exhaust concentrations for lean reactor operation on heptane, 

propane and methane [39]. Results are presented for varying equivalence ratio with inlet 

velocity held constant at u = 125 cm/s. Again, peak wall temperatures and calculated 

adiabatic equilibrium temperatures are shown. The measured NOx concentration for 

heptane and propane combustion increases with increasing equivalence ratio from 5 ppm 

at ϕ = 0.37 to 17 ppm at ϕ = 0.44. The same trend is observed for methane combustion 

[39]. 

 

Unburned hydrocarbons are undetected at all tested equivalence ratios for lean heptane, 

propane and methane combustion at an inlet velocity of u = 125 cm/s, indicating 

complete fuel breakdown.  

4.3.3 Effect of Superadiabatic Operation 

 

The peak reactor wall temperatures measured during experiments are categorized as 

subadiabatic, near-adiabatic and superadiabatic relative to the calculated adiabatic 

equilibrium temperature of the unburned fuel mixture, and are labeled accordingly in 

Figure 25 and Figure 26. In a reactor that operates without heat recirculation, 

temperatures will necessarily be subadiabatic everywhere because of unavoidable heat 

losses from the system. In a heat-recirculating reactor, however, temperatures in excess 

of the adiabatic equilibrium temperature can be achieved through conduction and 

radiation by the solid structure of the reactor, and through convection by the gas. 

Previous theoretical analyses of the counter-flow reactor indicate that peak gas 
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temperatures within the reactor channels are significantly in excess of wall temperatures 

[35, 39]. Furthermore, experiments and computations of stationary flames in ducts 

constructed of low thermal conductivity materials show that wall temperatures in such 

systems are significantly less than centerline peak temperatures and adiabatic 

temperatures [79-81]. While peak gas temperatures at the centerlines of the reactor 

channels are therefore expected to be significantly higher than peak wall temperatures, 

the latter are more readily measured without interfering with reactor dynamics, such as by 

flameholding. Furthermore, reactor wall temperatures are quite important in determining 

quenching and heat loss rates. Therefore, peak wall temperatures provide an important 

and practical metric by which reactor performance can be evaluated and monitored. The 

results of this study reveal common trends in fuel emissions as the peak wall 

temperatures change with varying inlet conditions of equivalence ratio or inlet velocity. 

Regions of operation can be distinguished in terms of peak wall temperature, where 

distinct trends are noted depending on the value of the peak wall temperature relative to 

the calculated adiabatic equilibrium temperature. The results highlight the importance of 

achieving significantly superadiabatic peak temperatures within the reactor channels, 

which will result in near-adiabatic or superadiabatic wall temperatures due to heat losses 

at external surfaces, in achieving favorable emissions.  

 

The current analysis of peak reactor wall temperature relative to calculated adiabatic 

equilibrium temperature is distinguished from a global definition of superadiabatic 

performance that is used in the discussion of heat recirculating reactors, which refers to 

the peak temperature in the gas phase of the reactor relative to the calculated adiabatic 
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equilibrium temperature. The peak wall temperatures observed in this study approach or 

are above the calculated adiabatic equilibrium temperatures for each fuel. Therefore, 

based upon previous theoretical and experimental analyses of heat recirculating reactors 

[2, 35, 39, 66, 79] which account for heat losses at the wall at all conditions, all reported 

cases in this study most likely exhibit superadiabatic temperatures at the centerline of the 

reactor channel, and operation would therefore be deemed superadiabatic by global 

definition. The current analysis, however, focuses on the categorization of peak wall 

temperature relative to calculated equilibrium temperature, and uses the designation of 

subadiabatic, near-adiabatic and superadiabatic to convey the relative magnitudes of 

these values. 

 

Inlet velocity has a significant effect on the peak wall temperature, which is as much as 

200
o
C greater than the adiabatic temperature at the conditions tested in this study. In 

Figure 25 and Figure 26, regions of subadiatic, near-adiabatic, and superadiabatic peak 

wall temperature conditions have been identified. Stable operation for heptane was not 

obtained at significantly subadiabatic wall temperature conditions.  For methane and 

propane, high levels of UHCs are detected at subadiabatic wall temperature conditions, 

and NOx concentrations are low.  These results are consistent with incomplete 

combustion. 

 

At conditions where near-adiabatic wall temperatures were measured, CO peaks and then 

decreases with increasing inlet velocity for all fuels and UHCs are not detected at the 

highest tested inlet velocities in this regime.  The variation of NOx among the different 
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fuels in this region is not consistent: concentrations increase for propane and methane and 

decrease for heptane.  It should be noted, however, that all NOx concentrations are less 

than 15 ppm. 

 

At conditions where superadiabatic peak wall temperatures were measured, the emissions 

of all reported species are fairly constant with the exception that CO for heptane/air 

continues to decrease. 

 

A negative correlation of CO with temperature is observed in all data, except those points 

where UHCs are detected for methane and propane (Figure 25 and Figure 27). These 

products are far from equilibrium values, which predict less than 1 ppm for both CO and 

UHCs. In contrast, no UHCs are detected for heptane combustion. Likewise, no 

significantly subadiabatic wall temperatures are measured at any stable heptane operating 

points. The stable range of inlet velocities is narrower for heptane as compared to 

methane and propane. Flashback occurs at a higher inlet velocity for heptane compared to 

the other two fuels, and the lowest stable velocity is limited to approximately where the 

measured peak wall temperatures become subadiabatic. In contrast, methane and propane 

are able to stabilize at significantly subadiabatic wall temperatures, but UHCs are 

measured at these points (Figure 25).  

 

Heptane is likewise limited at the high end of the tested inlet velocity range by blow-off 

at 225 cm/s, whereas methane and propane are stable at this condition. Peak wall 

temperature values are lower for heptane than methane and propane across the tested 
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range of inlet velocities (Figure 25 and Figure 26). Flame temperature and speed are 

strongly dependent on reactant temperature; therefore peak wall temperature and burning 

rate within the reactor are expected to be highly dependent on the extent of counter-flow 

heat exchange from combustion products in order to preheat counter-flowing reactants in 

adjacent channels. Since the counter-flow reactor requires burning rate to equal reactant 

velocity in order to operate stably, insufficient preheating of reactants leads to heptane 

blow-off at high inlet velocities.  

 

The results of lean methane, propane and heptane combustion suggest significant changes 

in stability and emissions behavior when the peak wall temperatures become 

subadiabatic. Emissions concentrations indicate that low wall temperatures in the 

subadiabatic peak wall temperature regime do not promote sufficient reaction rates for 

complete fuel breakdown, and increasing wall temperatures into the adiabatic and 

superadiabatic regimes drive reactions toward equilibrium. Emissions and stability range 

results suggest that combustor operation with peak wall temperatures in the near-

adiabatic and superadiabatic regimes is desirable for allowing increased firing rates and 

decreased emissions. The most significant decline in emissions is seen in the transition 

from subadiabatic to near-adiabatic peak wall temperatures, while further temperature 

increase into the superadiabatic regime produces marginal additional advantage. The 

more significant advantage of operation in the superadiabatic wall temperature regime is 

found in extension of the stable combustor operating range, as highlighted by the absence 

of heptane stability in the subadiabatic wall temperature regime. This finding is in 

agreement with a previous investigation of preheated flames [82]. 
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In contrast to the previous cases in which peak wall temperature was significantly 

affected by changes in velocity, the peak wall temperature as a function of equivalence 

ratio (Figure 27 and Figure 28) is generally within 50
o
C of the adiabatic equilibrium 

temperature at the tested inlet velocity of 125 cm/s for each fuel, and is considered to be 

in the near-adiabatic regime. Emissions of CO decrease and NOx increase with increasing 

equivalence ratio for all three fuels. Measured concentrations are significantly above 

equilibrium values, and the observed trends are attributed to temperature dependence. 

 

While the data for equivalence ratio variation with an inlet velocity of 125 cm/s show 

peak wall temperatures in the near-adiabatic regime, Figure 25 and Figure 26 indicate 

that an increase or decrease in the inlet velocity may result in a shift of the peak wall 

temperatures into the superadiabatic or subadiabatic regimes. The effects of such a shift 

on stability and emissions can be anticipated based upon the results for inlet velocity 

variation.   

4.4 Conclusions 

 

Lean premixed combustion of heptane and propane was studied in a heat recirculating 

mesoscale counter-flow reactor. This reactor design has previously been used to study the 

oxidation of lean methane, as well as the conversion of rich heptane, propane and 

methane reactant mixtures to hydrogen-rich synthesis gas. The current study expands the 

established capability of the counter-flow reactor to operate in the lean combustion 
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regime on increasingly complex fuels. In particular, liquid fuels are generally easier and 

safer to transport than gaseous fuels, and are studied because of their logistical 

importance. 

 

Results included reactor stability maps for heptane and propane combustion that show 

stable operating points, as well as points where operation became unstable due to 

flashback, blow-off or extinction, for rich and lean reactant mixtures. Emissions of CO, 

NOx and UHCs were presented for lean heptane and propane operation and compared to 

previously obtained results for lean methane operation. Additionally, operating regions 

were defined in terms of peak reactor wall temperatures. Similarities in trends between 

the three tested fuels highlight the correlation of emissions with peak reactor wall 

temperature, and support previous findings that a minimum firing rate is necessary for 

optimal performance. Further analysis highlights the importance of achieving peak wall 

temperatures near, or in excess of, the calculated adiabatic equilibrium temperature of the 

fuel at inlet conditions in heat-recirculating reactors for emissions minimization and 

stable range extension. 

  



98 
 

5 EFFECT OF GEOMETRIC SCALE ON HEAT RECIRCULATION AND 

SYNGAS PRODUCTION IN A NON-CATALYTIC COUNTER-FLOW 

REFORMER 

 

The fourth focus of this research examined the effect of channel reactor geometric scaling 

on syngas production from methane. This work is described below, and is under review 

by Combustion Science and Technology. 

5.1 Introduction 

 

A computational model of the counter-flow reactor was previously developed to study the 

reaction zone characteristics of rich methane combustion, in which the reactor channels 

were modeled in two dimensions, and the detailed GRI 2.11 kinetics mechanism was 

used. The model was validated against experimental results, where the impact of inlet 

velocity and equivalence ratio operating conditions on combustion zone characteristics 

was successfully modeled [81].  

 

This study utilizes the computational model to study the impact of geometric scaling on 

rich methane reforming in the counter-flow reactor. Scalability is an important 

consideration for portable power applications, as well as for large-scale, stationary 

applications. In either case, reactor scaling may be achieved by changing the geometry of 
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the individual channels or by altering the number of parallel channels [83]. This study 

focuses on geometry at the individual channel scale.  

 

Many experimental heat recirculation reactors used in research are mesoscale, in which 

the flame scale is on the order of a few millimeters. This scale is convenient for 

laboratory use and manufacturability. The optimal size for a given application, however, 

may depend on other factors including portability and stable operating range 

requirements.  

 

Previous research has found significant effects of geometric parameters on reactor 

stability. Studies of parallel-plate reactors examined the effect of channel width and 

length, as well as wall thickness [84-86]. Findings suggest that there is a tradeoff 

involved in varying these parameters, and that, in turn, suggests the potential for 

optimization. One example of this tradeoff is recognized with regard to varying channel 

width. Operating under an assumption of a constant Nusselt number of approximately 4, 

convective heat transfer between gases and channel wall is inversely proportional to the 

channel width. Conversely, the increase in the surface area-to-volume ratio with 

decreasing channel width leads to increased heat losses to the environment. Similarly, 

when considering the variation of channel length, increased length translates to increased 

residence time, which may permit increased fuel conversion to combustion product 

species. Increased length, however, also increases surface area from which heat losses to 

the surroundings can occur.  
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Several studies have examined the effects of geometric scaling on the combustion 

stability and performance of mesoscale, heat-recirculating combustors [87]. The 

parameters that have been examined include channel wall thickness and material in 

Swiss-roll and parallel-channel reactors [84, 85, 88, 89], as well as channel length [90] 

and channel width [84, 89, 91-94]. Kaisare and Vlachos [86] numerically studied the 

effect of reactor length, wall thickness and reactor opening size on flame stability in 

micro- and mesoscale channel reactors.  

 

The effect of scaling the counter-flow reactor on non-catalytic fuel reforming is the focus 

of this computational study, where reactor channel length or height are varied from the 

original dimensions examined in previous experimental [36-40] and analytical 

investigations [35, 39]. The impact of scaling on methane reforming is quantified in a 

number of ways: reactor operating range, efficiency of reactant conversion to hydrogen 

and carbon monoxide, efficiency of methane fuel conversion, efficiency of heat 

recirculation from hot combustion products to incoming cold reactants, and degree of 

superadiabicity, defined as the ratio of peak temperatures to equilibrium temperatures, 

achieved in the reactor. Computational investigation of reactor operating range and 

chemical species conversion provides an efficient means of testing numerous reactor 

geometries. Quantification of heat recirculation efficiency and degree of superadiabicity 

provides insights into reactor operation that are not readily measured during 

experimentation. Heat recirculation efficiency in the counter-flow reactor is compared to 

that achieved in a porous reactor [95]. 
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5.2 Numerical Model 

 

The data presented in this study were obtained from simulations performed using the 

computational fluid dynamics (CFD) code Fluent 14.5.  The CFD code solves 

conservation of mass, energy and species equations and the low Mach-number Navier-

Stokes equations. The conservation of mass is given by 

 

   

  
   (   )                                                 (9) 

 

and the conservation of momentum is given by 

 

 (   )

  
   (    )         ̅          (10) 

 

where    is fluid density,   is the velocity vector, and   is the static pressure. The stress 

tensor,  ̅, represents viscous forces. The effect of the sections of porous media within the 

reactor channels on fluid dynamics is accounted for by the momentum source term,  , in 

Equation 10. The momentum source representation of porous media is modeled in Fluent 

as including two components, viscous and inertial losses, where the former is dominant in 

laminar flows such as those in the current investigation. The viscous resistance of the 

porous media is specified as 3.846e7 m^-2. The fluid is approximated by the ideal gas 

law, thus fluid density is given by       (     ) where   is the ideal gas constant,   

is temperature and    is the molecular weight of the gas.  
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Conservation of energy for the fluid phase is given by 

 

  
 (   )

  
   ( (     ))    (     ∑      )            (11) 

 

where              and   is sensible enthalpy, defined for incompressible fluid as 

  ∑       with    as the mass fraction of species  . Thermal conductivity is given by  , 

  represents Fickian species diffusive flux, and       is a volumetric source term that 

includes the heat of chemical reactions.  

 

Conservation of energy for the solid phase is given by 

 

 (    )

  
   (    )             (12) 

 

where      represents user-defined sources that account for volumetric external ambient 

heat losses, and radiation between gray surface channel walls and porous zones. Solid 

thermal conductivity, ks, is defined as 50 W/m-K using manufacturer specifications of the 

silicon carbide used in experimental counter-flow reactors. Net radiative heat flux, qk, at a 

channel surface includes incoming and outgoing fluxes, qk,i and qk,o respectively, where 

the incoming and outgoing fluxes are given by 

 

         
  (   )        (13a) 
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        ∑ ∫                (13b) 

 

where solid emissivity, ϵ, is defined as 0.85, σ is the Stefan-Boltzmann constant, Tk is the 

surface temperature, and Fdk-dj is the view factor between surfaces k and j.  

 

Conservation of species is given by 

 

 (    )

  
   (     )                (14) 

 

where the net rate of production of species  ,   , is the sum of Arrhenius reaction rates for 

  reactions. Combustion chemistry is modeled using detailed reaction chemistry 

mechanism GRI 2.11. Further details about the numerical model can be found in [81]. 

5.2.1 Model Geometry 

 

Figure 29a is a schematic of the four-channel reactor used in previous experimental 

investigations [36-40]. Figure 29b is a schematic of the computational domain of the 

original reactor geometry, with dimensions of the counter-flow reactor used in previous 

experimental reforming and thermal oxidation studies. The domain is reduced to one 

half-channel, which lessens the computational load significantly, through the use of 

symmetry and a user-defined function (UDF). Channel plane symmetry in the y-direction 

is imposed at y = 0, and temperature symmetry in the x-direction is imposed by a UDF at 
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x = 0. External losses are accounted for by radiative wall ends and convective losses from 

the wall in the direction perpendicular to the x-y plane. Therefore, the computational 

model approximates the reactor as an infinite number of parallel channels in the y-

direction. 

 

  a)                             

 

 b)     

 

 

Figure 29. (a) A schematic of the four-channel reactor and (b) the computational 

domain of the original reactor geometry (VR=1.0) 

 

The reactors modeled in this study are scaled relative to the volume of the original reactor 

(122 cm
3
) by a volume ratio, defined as 

            (  )  
                        

                          
           (15) 



105 
 

where the scaled reactor volume is achieved by varying either channel height or main 

reactor section length, while maintaining the other dimension at the reference, original 

reactor value. Geometry is additionally constrained by maintaining the original reactor 

head length, and channel wall thickness is maintained at the original value of 1 mm. 

Volume ratios of 0.75, 1.0 and 1.25 are investigated, where volume ratio 1.0 (VR=1.0) 

corresponds to the original reactor design and dimensions. Table 3 shows the dimensions 

of each scaled reactor.  

 

Table 3. Counter-flow reactor dimensions for volume ratios (VR) 0.75, 1.0 and 1.25, 

obtained by varying channel height (h) or channel length (L) with the other 

dimension held constant at its original, reference value 

 

Volume Ratio 

(VR) 

Reactor ID Channel height 

(mm) 

Total channel length 

(mm) 

1.0 VR=1.0 4.0 173.1 

0.75 VR(h)=0.75 2.7 173.1 

1.25 VR(h)=1.25 5.3 173.1 

0.75 VR(L)=0.75 4.0 129.8 

1.25 VR(L)=1.25 4.0 216.4 
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5.2.2 Solution Approach 

 

Scaled reactors were modeled in ANSYS ICEM CFD. The initial model grids had axial 

and transverse spacing equal to that used in Schoegl and Ellzey [81]. A base case of each 

reactor model was run for 20k time steps of size 2e-5 seconds at inlet conditions of ϕ = 

2.2 and u = 125 cm/s in order to achieve ignition and initial stabilization of the flame 

front in the main reactor section of the channel. The solution of the base case was then 

used as an initial solution for each tested equivalence ratio and inlet velocity operating 

point. Solutions were continued until steady state was achieved, where steady state was 

determined to occur when the flame front velocity within the main section of the reactor 

model was less than 0.5 mm/s. Flame front location was determined by the location of 

peak H radical concentration.  

 

After steady state was achieved, the mesh for each case was refined in a three phase 

process.  Each mesh was locally refined in regions of high concentrations of specific 

chemical species, following Schoegl and Ellzey [81]. This process effectively increased 

the mesh resolution up to 64-fold around the combustion zone by partitioning 

quadrilateral elements into four sub-elements. Following each stage of mesh refinement, 

simulations were continued for a total of 5k additional time steps of size 1e-5 seconds. 

After the third refinement, the spatial discretization solution technique was changed from 

first-order upwind to second-order upwind, and the final result was obtained after an 

additional 3k time steps of size 1e-5 seconds. The Semi-Implicit Method for Pressure 
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Linked Equations (SIMPLE) algorithm was used for pressure-velocity coupling during 

the transient calculations. 

5.3 Results and Discussion 

 

Results are presented below for each of the five scaled reactors over the range of tested 

inlet velocities and equivalence ratios. Data include operating conditions where a 

stationary reaction zone was achieved in the main section of the reactor at steady state, as 

well as heat recirculation efficiency, gas and wall temperature ratios, and hydrogen, 

carbon monoxide and methane conversion efficiencies at those steady state points.  

5.3.1 Operating Range 

 

Each of the five reactor geometries were tested over a range of inlet velocities and 

equivalence ratios to determine which operating points produce a stationary flame front 

solution in the main section of the reactor channel, which corresponds to stable reactor 

operating points in experimental studies. Inlet velocity was varied from 50-200 cm/s in 

increments of 25 cm/s at ϕ = 2.2, and equivalence ratio was varied from ϕ = 1.4-2.6 in 

increments of 0.2 at u = 125 cm/s. Figure 30 shows the operating limits within these 

ranges for the three reactor geometries that were scaled by channel height. Beyond the 

limits of operating range, the flame front is either upstream of the main reactor section at 

the porous media flow straightener, which corresponds to flashback in experimental 
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investigations, or the flame front propagates out of the channel exit, which corresponds to 

blow-off in experimentation. 

 

In the case of equivalence ratio variation, the computations indicate flashback and blow-

off at equivalence ratios below and above the lowest and highest tested equivalence 

ratios, respectively, for which solutions are obtained in the main reactor section. When 

the volume ratio is increased by increasing channel height, the equivalence ratio at which 

flashback occurs decreases. For VR(h)=0.75, flashback occurred at ϕ = 1.8. For VR=1.0 

and VR(h)=1.25, flashback occurred at ϕ = 1.6 and ϕ = 1.4, respectively. The results 

show a shift in equivalence ratio operating range towards stoichiometric as channel 

height is increased. Nearly all of the tested equivalence ratios are above the flammability 

limit of ϕ = 1.67 for methane at inlet conditions, and preheating of reactants is required to 

achieve the observed extension of flammability limits [96]. Therefore, the operating 

range results suggest that preheating through internal heat recirculation within the reactor 

becomes more effective with decreasing channel height. As channel height increases, 

axial convection begins to dominate over transverse heat and mass diffusion, where the 

latter are required for conversion of fuel at the channel plane of symmetry.  

 

In the case of inlet velocity variation, the two lower volume ratio reactors (VR(h)=0.75 

and VR=1.0) produced stationary flame fronts in the main reactor section over the entire 

tested inlet velocity range, while the VR(h)=1.25 solution did not result in a flame within 

the reactor, indicating blow-off, at u = 150 cm/s. Therefore the largest volume ratio 

reactor, VR(h)=1.25, is the only one of the three reactors scaled by height that is limited 



109 
 

over the tested inlet velocity range. Blow-off occurred at u = 150 cm/s because the 

reactants were insufficiently preheated to raise the burning rate to equal the reactant feed 

rate, which is the criterion for operation in the counter-flow reactor. Similar results were 

observed in Oh et al. [88] and Norton et al. [84], where larger channel widths resulted in 

lower reaction rates due to slow heat transfer from the wall where ignition starts [23] 

towards the reactants at the channel plane of symmetry. In contrast, smaller separation 

distances between channel walls produce thinner reaction zones with larger temperature 

and composition gradients. 

 

 

Figure 30. Operating limits for counter-flow reactors scaled to smaller and larger 

volume ratios by varying channel height (VR(h)=0.75 and VR(h)=1.25) and original 

reactor geometry (VR=1.0) over the tested range of inlet velocities, u = 50-200 cm/s 

at ϕ = 2.2, and the tested range of equivalence ratios, ϕ = 1.4-2.6 at u = 125 cm/s. 
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Figure 31 shows the operating limits within the ranges of tested inlet velocities and 

equivalence ratios for the three reactor geometries scaled by channel length. In the case 

of equivalence ratio variation, flashback occurred at decreasing equivalence ratios as 

volume ratio increased: ϕ = 1.8 for VR(L)=0.75, ϕ = 1.6 for VR=1.0 and ϕ = 1.4 for 

VR(L)=1.25. Blow-off occurred at ϕ = 2.4 for the reactor with the shortest length, 

VR(L)=0.75, whereas a solution was obtained at the upper end of the tested equivalence 

ratio range for the longer reactors VR=1.0 and VR(L)=1.25. In the case of inlet velocity 

variation, the two longer reactors, VR(L)=1.25 and VR=1.0, produced solutions 

throughout the tested range of u = 50-200 cm/s. The lowest volume ratio reactor with 

shortest channel length, VR(L)=0.75, had an operating range of u = 100-150 cm/s, due to 

flashback at 75 cm/s and blow-off at 175 cm/s.  

 

The results suggest that operating range increases with channel length, however 

VR(L)=0.75 and VR=1.0 produced operating points throughout the tested inlet velocity 

range and therefore the extents of inlet velocity operating range were not tested. It is 

likely that there is an optimal channel length for maximum operating range; as channel 

length increases, surface area and thus heat loss also increase, however there is also 

increased axial distance for the reaction front to stabilize. Since there is no predetermined 

combustion zone location in the main section of the reactor, the flame front is free to 

stabilize at the point where the burning velocity equals the local inlet velocity. For 

example, increasing the equivalence ratio from ϕ = 2.0 to ϕ = 2.2 at a fixed inlet velocity 
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results in lower heat release. The flame front will then stabilize further downstream, 

where the heat recirculation is more significant and the reactants can be further preheated 

prior to combustion. Likewise, the flame front location will adjust to changes in inlet 

velocity at a fixed equivalence ratio; the flame front will shift downstream in response to 

an increase in inlet velocity, where additional heat recirculation will provide sufficient 

preheating for the burning velocity to equal the reactant feed rate. The reactor scaled 

down by channel length, VR(L)=0.75, has the most limited axial distance within the main 

section for the reaction front to adjust to changes in operating conditions before blow-off 

or flashback will occur, thus its operating range is significantly narrower than longer 

reactors VR=1.0 and VR(L)=1.25. 

 

Figure 31. Operating range for counter-flow reactors scaled to smaller and larger 

volume ratios by varying channel length, VR(L)=0.75 and VR(L)=1.25, and original 

reactor geometry, VR=1.0, over the tested range of inlet velocities, u = 50-200 cm/s 

at ϕ = 2.2, and the tested range of equivalence ratios, ϕ = 1.4-2.6 at u = 125 cm/s. 
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5.3.2 Heat Recirculation Efficiency 

 

The counter-flow reactor transfers heat by conduction and radiation upstream from hot 

combustion products in the post-flame region to cold reactants in the preheat region.  

Heat is also transferred through the channel walls to the unburned reactants counter-

flowing in the adjacent channels, thereby preheating the reactants. Figure 32 shows 

temperature profiles for the channel wall and gas at the reactor channel plane of 

symmetry, obtained for the original reactor geometry (VR=1.0) at operating conditions of 

ϕ = 2.2 and u = 125 cm/s. The preheat zone is identified as the region between the 

channel inlet and the point where wall and gas temperatures are equal. Upstream of this 

point, the wall temperature exceeds the gas temperature and heat is transferred to the gas. 

The two sections of porous media flow straighteners (PM) are identified, and the impact 

of these conductive inserts on increasing the gas temperature can be seen. Downstream of 

the preheat zone, the reaction zone occurs and gas temperatures exceed wall 

temperatures. Heat is then transferred from the gas to the wall, where it conducts and 

radiates upstream and preheats reactants in adjacent channels.  
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Figure 32. Gas (Tgas) and wall (Twall) temperature profiles along the axial length of 

a counter-flow reactor channel, obtained from the original reactor geometry 

(VR=1.0) with inlet conditions of ϕ = 2.2 and u = 125 cm/s. The preheat zone is 

identified, as well as the locations of the two sections of porous media flow 

straighteners (PM), the high thermal conductivity of which contributes to 

preheating the reactants. 

 

The amount of heat transferred to the reactants in the preheat zone is obtained by 

integrating the heat flux into the channel upstream of the reaction zone, from the inlet to 

the point where the gas and solid temperatures are equal and the flux equals zero. Heat 

recirculation efficiency is a measure of this heat transfer and is defined as 
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     (16) 

 

where firing rate is calculated based upon the lower heating value of methane. 

 

Figure 33 shows the calculated heat recirculation efficiency for each of the five scaled 

reactors as a function of equivalence ratio. All reactors show a decrease in heat 

recirculation efficiency with increasing equivalence ratio. A significant increase in 

efficiency is found with decreasing channel height, where the smallest channel height 

VR(h)=0.75 shows approximately 30% and 26% heat recirculation efficiency at ϕ = 2.0 

and ϕ = 2.2, respectively, versus 19% and 18% efficiency produced by the largest channel 

height VR(h)=1.25. The increase in heat recirculation efficiency with decrease in volume 

ratio is attributed to the increase in wall surface area for heat transfer per unit of gas 

volume as channel height decreases. The shift of equivalence ratio operating range 

towards progressively richer equivalence ratios with decrease in channel height, shown in 

Figure 30 and discussed in Section 5.3.1, is attributed to this increased heat recirculation 

efficiency; the more effective preheating provided by increased heat recirculation 

efficiency permits the combustion of progressively richer reactant mixtures.  
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Figure 33. Heat recirculation efficiency is shown for each of the scaled reactors, 

including those scaled by channel height (VR(h)=0.75 and VR(h)=1.25) and those 

scaled by channel length (VR(L)=0.75 and VR(L)=1.25), as a function of equivalence 

ratio at u = 125 cm/s.  

 

Heat recirculation efficiency decreases slightly with increasing channel length, where the 

shortest reactor length VR(L)=0.75 produced efficiencies of 25% and 22% versus 22% 

and 20% observed for the longest reactor length VR(L)=1.25 at ϕ = 2.0 and ϕ = 2.2. This 

trend is attributed to greater amounts of heat loss from longer reactors with larger 

external surface area. Additionally, flame fronts shift further downstream with increase in 

equivalence ratio. This brings the locations of peak gas temperatures in adjacent channels 

closer to the longitudinal center, which minimizes heat loss and temperature decrease of 

hot combustion gases prior to preheating reactants in adjacent channels. Thus the heat 

recirculation efficiency of the longest reactors, VR(L)=1.25 and VR=1.0, appear to 

converge with increasing equivalence ratios, where the flame fronts in both reactors are 
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approaching the channel center along the axial length. The shortest reactor channel 

length, VR(L)=0.75, has limited equivalence ratio operating range, but the peak reactor 

temperatures are in close axial proximity to the preheat zones of adjacent channels at the 

points where operation is attained.  

 

Figure 34 shows the calculated heat recirculation efficiency for each of the five scaled 

reactors as a function of inlet velocity. A decrease in efficiency with increasing inlet 

velocity is observed for all reactors except that with the smallest channel height, 

VR(h)=0.75, which shows a peak efficiency at u = 150 cm/s. The decrease in efficiency 

exhibited by most reactors is attributed to the decrease in residence time with increasing 

inlet velocity, which impacts fuel conversion and heat release. A similar trend was 

observed in Barra et al. [95]. The different trend exhibited by VR(h)=0.75 is likewise 

attributed to fuel conversion efficiency and peak temperatures in this reactor.  

 

As was observed in Figure 33 for the variation of equivalence ratio, heat recirculation 

efficiency is observed to increase with decreasing channel height and channel length, 

with the largest difference observed between VR(h)=0.75 and VR(h)=1.25. 
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Figure 34. Heat recirculation efficiency is shown for each of the scaled reactors, 

including those scaled by height (VR(h)=0.75 and VR(h)=1.25) and those scaled by 

length (VR(L)=0.75 and VR(L)=1.25), as a function of inlet velocity at ϕ = 2.2. 

 

5.3.3 Temperature Ratio 

 

Excess enthalpy reactors recirculate energy from hot combustion products to preheat 

incoming reactants, which increases the enthalpy of the reaction zone. This can permit 

the combustion of reactant mixtures at equivalence ratios beyond the flammability limits 

of those mixtures at inlet conditions, as shown in Figure 30 and Figure 31 where the 

majority of stable points tested in the scaled reactors are above the methane rich 

flammability limit of ϕ = 1.67 [2]. The preheating of reactants through internal heat 

recirculation will also result in higher peak temperatures within the reactor than those that 

would occur with non-preheated reactants at inlet conditions. The peak temperatures 

achieved in the counter-flow reactor simulations are compared to two values that are 
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characteristic of a rich methane flame: peak temperature in the spatially-resolved 

temperature history of an adiabatic flame, calculated here using Cantera, and the 

adiabatic equilibrium temperature. In the case of non-preheated rich combustion at 

ambient reactor inlet conditions, the peak flame temperature exceeds the equilibrium 

temperature because endothermic reforming reactions cause a decrease in temperature 

from the peak flame value as the flame composition approaches equilibrium. For 

example, a numerically-simulated methane/air flame of  =1.6 and initial reactant 

temperature of 300 K will produce a peak flame temperature of 1858 K and a final 

equilibrium temperature of 1832 K. The computational model utilized in this study 

allows the determination of the gas preheat temperature within the reactor channel, 

including the maximum preheat temperature that is achieved prior to combustion. 

Spatially-resolved flame calculations performed for reactants at those maximum preheat 

temperatures provide the peak flame temperature that can be expected as a result of heat 

recirculation and chemistry effects. The scaled reactors tested in this study at inlet 

conditions of  =1.6, VR(h)=1.25 and VR(L)=1.25, achieved maximum preheat 

temperatures of 1290 K and 1450 K, respectively. Spatially-resolved flame calculations 

performed using Cantera reveal peak flame temperatures of 2550 K and 2649 K for these 

initial reactant temperatures, respectively. By comparison, maximum temperatures within 

the scaled reactors tested in this study at inlet conditions of  =1.6 and initial reactant 

temperature 300 K are 2539 K for reactor VR(h)=1.25 and 2642 K for reactor 

VR(L)=1.25. These temperatures significantly exceed the characteristic temperatures of 

the non-preheated adiabatic flame, indicating significant heat recirculation and preheating 



119 
 

within the reactor, but nearly achieve the theoretical maximum flame temperatures 

predicted as a result of the achieved preheating. Thus, both heat recirculation and 

chemistry effects contribute to the maximum flame temperatures observed in the reactors. 

The other tested reactors supported steady-state flames at inlet conditions of  ≥1.8, 

which is above the flammability limit of methane at 300 K. Therefore, a similar 

temperature comparison is not done for other conditions and reactors. 

  

The comparison of maximum reactor temperatures to maximum and equilibrium 

temperatures calculated for adiabatic flames highlights the effect of internal heat 

recirculation on raising the peak reactor temperature above adiabatic flame values, in 

addition to permitting the extension of flammability limits. The extent to which 

temperatures may exceed the adiabatic flame and equilibrium temperatures depends upon 

the preheat temperature achieved by the reactants, and therefore the amount of heat 

recirculated as well as the amount of heat loss from the reactor. Peak reactor temperatures 

are therefore reflective of the effectiveness of heat recirculation. A temperature ratio is 

defined as a measure of superadiabicity, or extent of temperature increase above the 

adiabatic equilibrium temperature, as 

 

                  
                            

                                 
          (17) 

 

Temperature ratio is defined in terms of both peak gas and peak wall temperatures, where 

the latter is more readily measured during experimentation.  
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Figure 35. Separated by a dashed line, gas (above) and wall (below) temperature 

ratios are shown for each of the scaled reactors, including those scaled by height 

(VR(h)=0.75 and VR(h)=1.25), those scaled by length (VR(L)=0.75 and 

VR(L)=1.25), and original reactor geometry (VR=1.0), as a function of equivalence 

ratio at u = 125 cm/s. 

 

Figure 35 shows gas and wall temperature ratios for each of the five scaled reactors as a 

function of equivalence ratio. All temperature ratios are above unity, indicating 

superadiabatic peak gas and wall temperatures at all equivalence ratios. Gas temperature 

ratios are also significantly higher than wall temperature ratios at all points, where the 

latter are the temperatures typically measured during experimentation. Both gas and wall 

temperature ratios increase with equivalence ratio, suggesting that higher levels of 

preheat, and therefore increasingly superadiabatic conditions, are required to achieve 
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reactor operation at equivalence ratios increasingly above the conventional flammability 

limit. Gas temperature ratios are highest in the reactors with decreased channel height and 

length, VR(h)=0.75 and VR(L)=0.75, and lowest in the reactors with increased channel 

height and length, VR(h)=1.25 and VR(L)=1.25.  

 

 

Figure 36. Separated by a dashed line, gas (above) and wall (below) temperature 

ratios are shown for each of the scaled reactors, including those scaled by height 

(VR(h)=0.75 and VR(h)=1.25), those scaled by length (VR(L)=0.75 and 

VR(L)=1.25), and original reactor geometry (VR=1.0), as a function of inlet velocity 

at ϕ = 2.2. 

 

Figure 36 shows gas and wall temperature ratios for each of the five scaled reactors as a 

function of inlet velocity. All temperature ratios are above unity, indicating 

superadiabatic peak gas and wall temperatures at all inlet velocities. Gas temperature 

ratios are also significantly higher than wall temperature ratios at all points. Gas 
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temperature ratios are highest in the reactors with decreased channel height and length, 

VR(h)=0.75 and VR(L)=0.75, and lowest in the reactors with increased channel height 

and length, VR(h)=1.25 and VR(L)=1.25. This correlates with heat recirculation 

efficiency trends observed in Figure 34 and discussed in Section 5.3.2. Gas temperature 

ratios generally show a slight increase with inlet velocity at the lowest tested inlet 

velocities, and a decrease with inlet velocity at the highest tested values. This is attributed 

to a low rate of heat release at the lowest firing rates, where heat losses may have a 

significant impact on reactor temperatures, and incomplete fuel conversion at the highest 

firing rates due to decreased residence time.  

5.3.4 Hydrogen Conversion Efficiency 

 

The goal of hydrocarbon reforming is the production of syngas consisting primarily of 

hydrogen and carbon monoxide, of which hydrogen is often the higher valued product. 

Hydrocarbon reforming is carried out at rich conditions, where partial oxidation will 

occur due to oxidizer deficiency of the reactants. Equilibrium predicts an increase in 

hydrogen product concentration with increasing reactant equivalence ratio. The 

equilibrium yield is not necessarily achievable in a practical reactor, however, due to 

limited residence time for reaction. Hydrogen production in the counter-flow reactor is 

defined in terms of hydrogen conversion efficiency as 

                        
                        

                            
      (18) 
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where thermodynamic equilibrium provides a theoretical maximum concentration, and 

hydrogen conversion efficiency quantifies the actual hydrogen yield relative to this value. 

 

 

Figure 37. Hydrogen conversion efficiencies are shown for each of the scaled 

reactors, including those scaled by height (VR(h)=0.75 and VR(h)=1.25) and those 

scaled by length (VR(L)=0.75 and VR(L)=1.25), as a function of equivalence ratio at 

u = 125 cm/s. 

 

Figure 37 shows hydrogen conversion efficiencies for each of the five scaled reactors as a 

function of equivalence ratio. All reactors show a decrease in conversion efficiency with 

increasing equivalence ratio. The results for the original reactor geometry, VR=1.0, are in 

agreement with experiment findings that hydrogen conversion efficiency, as defined 

above, decreases from approximately 95% to 75% as equivalence ratio is increased from 

ϕ = 1.8 to ϕ = 2.4 [36]. Computational reactor conversion efficiencies exceed 100% at the 
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lowest tested equivalence ratios, where hydrogen product concentration exceeds the yield 

predicted by equilibrium for reactants at 300 K. Equilibrium predicts a shift in primary 

hydrogen-containing products from water towards diatomic hydrogen as reactant 

temperature is increased. Since reactants are preheated within the counter-flow reactor, 

hydrogen production in excess of that predicted by equilibrium for 300 K products, and 

therefore conversion efficiencies above 100%, are reasonable.  

 

Trends observed in hydrogen conversion efficiencies are similar to those observed in 

temperature ratio and heat recirculation efficiency variation with height and length 

scaling: hydrogen conversion efficiencies are slightly higher in the reactors with 

decreased channel height and length, VR(h)=0.75 and VR(L)=0.75, as compared to 

original reactor geometry, VR=1.0, and lowest in the reactors with increased channel 

height and length, VR(h)=1.25 and VR(L)=1.25. Overall, however, there is little 

difference in hydrogen conversion efficiency between the reactors at most tested 

equivalence ratios. This suggests that heat recirculation and reactant preheating are 

necessary for flammability limit extension, but do not significantly impact product 

composition in many cases. This finding is in agreement with a study of burner-stabilized 

flames of preheated, premixed methane and air [96]. The lack of significant impact of 

reactor length on product composition is also suggested by the previous findings of 

Kaisare and Vlachos [86], who concluded that burner length is unlikely to impact reactor 

operation significantly because homogeneous combustion is largely localized. 
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Figure 38 shows hydrogen conversion efficiencies for each of the five scaled reactors as a 

function of inlet velocity. All reactors except for VR(L)=0.75 show an increase in 

conversion efficiency with inlet velocity at low firing rates, and all except VR(h)=0.75 

show a decrease in conversion efficiency with inlet velocity at high firing rates. This 

suggests that optimal operation occurs around the middle of the tested inlet velocity 

range, where firing rate is sufficiently high to dominate over external losses but not high 

enough to limit conversion by decreased residence time. The results for VR(h)=0.75 

suggest that this reactor may be able to operate at higher inlet velocities beyond the tested 

range. 

 

 

Figure 38. Hydrogen conversion efficiencies are shown for each of the scaled 

reactors, including original reactor geometry (VR=1.0), those scaled by height 

(VR(h)=0.75 and VR(h)=1.25) and those scaled by length (VR(L)=0.75 and 

VR(L)=1.25), as a function of inlet velocity at ϕ = 2.2. 
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5.3.5 Carbon Monoxide and Methane Conversion Efficiencies 

 

Carbon monoxide is a major component of syngas and, like hydrogen, is valued for its 

heating value and utility in industrial applications. CO is produced in high concentrations 

under rich combustion conditions where partial oxidation of carbon will occur due to the 

oxidizer deficiency of the reactants. Equilibrium predicts an increase in carbon monoxide 

concentration with increasing reactant equivalence ratio, and carbon monoxide 

production in the counter-flow reactor is defined relative to equilibrium by the CO 

conversion efficiency as 

                        
                        

                            
.       (19) 

 

Hydrogen (Eq. 18) and carbon monoxide (Eq. 19) conversion efficiencies indicate 

reaction progress towards theoretical completion, where theoretical completion is defined 

by product equilibrium composition based upon inlet conditions. An additional important 

measure of reactor performance is efficiency of fuel utilization within the reactor. Fuel 

conversion efficiency is defined as 

                         
 ̇        ̇       (      )

 ̇        ̇       (           )
       (20) 

 

where  ̇   
is the molar flow rate of methane, the subscripts in and out indicate reactants 

into and products out of the reactor, respectively, and the subscripts actual and 
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equilibrium indicate the molar flow rate in the simulation reactor products and the 

predicted molar flow rate in a theoretical equilibrium product composition, respectively. 

 

Figure 39 shows CO and CH4 conversion efficiencies for each of the five scaled reactors 

as a function of equivalence ratio. CH4 conversion efficiency shows a decrease in fuel 

conversion with increasing equivalence ratio. CH4 conversion efficiency is 100% at the 

lowest tested equivalence ratios, and decreases with increasing equivalence ratios above 

ϕ = 1.8. This decrease is attributed to a decrease in peak reactor temperature; the 

temperature ratios in Figure 35 show an increase in superadiabicity with equivalence 

ratio, but these temperature ratios indicate a decrease in gas and wall temperatures with 

increasing equivalence ratios because of the significant decrease in equilibrium 

temperature over this range. This decrease in reactor temperature slows reaction progress 

towards equilibrium, including fuel breakdown. 

 

Peak CO conversion efficiency was found to occur between ϕ = 1.8 and ϕ = 2.0 in Figure 

39, with a decrease in efficiency at higher and lower equivalence ratios. A significant 

decrease in CO conversion efficiency is observed at the highest tested equivalence ratios, 

which is attributed to low reactor temperatures and incomplete fuel conversion at these 

operating points.  
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Figure 39. CO and CH4 conversion efficiencies are shown for each of the scaled 

reactors, including original reactor geometry (VR=1.0), those scaled by height 

(VR(h)=0.75 and VR(h)=1.25) and those scaled by length (VR(L)=0.75 and 

VR(L)=1.25), as a function of equivalence ratio at u=125 cm/s. 

 

Figure 40 shows CO and CH4 conversion efficiencies for each of the five scaled reactors 

as a function of inlet velocity. CH4 conversion efficiency generally shows little change 

across the range of tested inlet velocities, however slight changes and trends can be 

observed. These same trends are observed, with much greater differences between data 

values, in CO conversion efficiencies of the five scaled reactors. It is noteworthy that the 

trends observed in CO conversion efficiency closely resemble those observed in H2 

conversion efficiency in Figure 38. All reactors except for VR(L)=0.75 show an increase 

in conversion efficiency with inlet velocity at low velocities, and all reactors except 

VR(h)=0.75 show a decrease in conversion efficiency with inlet velocity at high 
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velocities. CO conversion efficiency results, like H2 conversion efficiencies, suggest that 

optimal operation may occur around the middle of the tested inlet velocity range.  

 

 

 

Figure 40. CO and CH4 conversion efficiencies are shown for each of the scaled 

reactors, including original reactor geometry (VR=1.0), those scaled by height 

(VR(h)=0.75 and VR(h)=1.25) and those scaled by length (VR(L)=0.75 and 

VR(L)=1.25), as a function of inlet velocity at ϕ = 2.2. 

5.4 Conclusions 

 

A computational study was undertaken to determine the effect of geometric scale on fuel 

reforming in a meso-scale parallel-plate counter-flow reactor. Length and height of the 

reactor channels were scaled relative to the original dimensions of the counter-flow 
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reactor that has been used in previous analytical and experimental investigations. Results 

were quantified in terms of operating range, heat recirculation efficiency, temperature 

ratio, and hydrogen, carbon monoxide and methane fuel conversion efficiencies.  

 

Reactor operating range was found to be strongly impacted by channel scaling. 

Decreasing channel height resulted in a shift in operating range towards higher 

equivalence ratios. Decreasing channel length resulted in a significant narrowing of the 

equivalence ratio and inlet velocity operating ranges. Most operating points were above 

the conventional rich flammability limit and adiabatic flame speed of methane/air 

combustion based upon inlet conditions, which highlights the importance of heat 

recirculation in achieving operation of the counter-flow reformer at these conditions.  

Heat recirculation efficiency and temperature ratios were found to be significantly higher 

for reactors with decreased channel height. These findings indicate more effective heat 

recirculation with smaller channel height, where channel wall surface area-to-gas volume 

ratio is increased and the transverse distance for mass and heat diffusion is reduced. 

Channel length showed a less significant impact on heat recirculation, with shorter 

channel lengths producing slightly higher heat recirculation efficiencies and temperature 

ratios than longer lengths. 

Hydrogen conversion efficiency decreased with increasing equivalence ratio for all 

reactors, with slightly higher conversion efficiencies found for reduced channel height 

and length. Carbon monoxide efficiency decreased with increasing equivalence ratio over 

the majority of the tested range, with a slight increase in efficiency with equivalence ratio 
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observed at the lowest tested equivalence ratios. Methane equivalence ratio decreased 

with equivalence ratio from 100% at the lowest tested equivalence ratios to 

approximately 95% at the highest tested equivalence ratios. 

Hydrogen conversion efficiency initially increased with inlet velocity at the lowest tested 

firing rates, and decreased at the highest tested inlet velocities, suggesting that an optimal 

firing rate exists. Carbon monoxide and methane conversion efficiency trends closely 

resembled those of hydrogen conversion efficiency. Methane conversion efficiency 

varied little between 95-98% over the tested range of inlet velocities.  

Scaled down reactors were achieved by decreasing reactor channel height and length, 

although the latter resulted in a significantly narrowed operating range. The results of this 

study highlight the effectiveness of small scale reactor channels in achieving heat 

recirculation and significantly superadiabatic temperatures. These, in turn, permit the 

effective extension of flammability limits to operation at rich equivalence ratios. While 

increasing heat recirculation may be required to significantly extend the reactor operating 

range, the results of this study suggest that superadiabatic temperatures serve to extend 

the flammable range of operating points but otherwise do not strongly impact hydrogen 

conversion efficiencies.  
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6 CONCLUSIONS AND RECOMMENDATIONS 

 

The effect of key operating condition and reactor geometry parameters on excess 

enthalpy combustion of fuels was investigated experimentally and numerically in this 

research. Operating condition parameters that were tested include inlet reactant 

equivalence ratio and inlet velocity, and reactor geometry parameters that were tested 

include reactor channel height and length. The impact of variation of these parameters on 

combustion stability, fuel conversion and product composition was examined. Premixed 

fuel and air reactants were examined at lean and ultra-lean equivalence ratios, and rich 

and ultra-rich conditions.  

Lean combustion produces hot product gases that can be used for thermomechanical 

energy production, and ultra-lean thermal oxidation can facilitate the conversion of low 

heating value reactants. Rich and ultra-rich combustion produces product gases that 

contain significant amounts of hydrogen and carbon monoxide, called synthesis gas or 

syngas, which can be used as a fuel, converted to another high value product, or purified 

for the hydrogen that it contains. Despite the differences in the compositions and 

applications of reactant mixtures on the lean and rich sides of stoichiometry, there are 

common challenges in their chemical conversion that can be met through the use of 

superadiabatic combustion. Two key challenges that are common to lean and rich 

combustion, including ultra-lean and ultra-rich, is the limitation of flammability limits, 

beyond which a reactant mixture will not readily combust, and reaction rates, which 
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decrease dramatically as equivalence ratio deviates from stoichiometry towards lean or 

rich conditions. 

Heat recirculating reactors can be utilized to address these challenges, in which energy 

can be recirculated from hot combustion products to preheat cold reactants, thereby 

increasing the enthalpy of the reaction zone with no net addition of energy to the system. 

The preheated reactants and increased enthalpy of the reaction zone permit the extension 

of flammability limits, when the limits are defined in terms of incoming reactant 

conditions, and an increase in burning rate as compared to the adiabatic flame speed 

based upon inlet conditions. A particular type of heat recirculating reactor, known as a 

counter-flow reactor, was used in this research. 

There are a number of parameters that are characteristic of reactor design and operation, 

and which have the potential to strongly impact combustion stability, fuel conversion and 

product composition. This research examines several of these critical parameters, 

including reactant equivalence ratio and inlet velocity, and reactor channel height and 

length. 

The experimental portions of this research included the first demonstrations of liquid fuel 

reforming, and lean combustion of gaseous and liquid fuels, in the counter-flow reactor. 

The demonstration of reactor operation under these conditions is critical to establishing 

the fuel and application flexibility of the counter-flow reactor. The variation of inlet 

conditions, including inlet velocity and reactant equivalence ratio, was found to have a 

similar impact on combustion stability for all tested fuels, and in both the rich and lean 
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regimes. When inlet velocity was varied, an increase in inlet velocity shifted the stable 

equivalence ratio range towards stoichiometry, while a decrease in inlet velocity shifted 

the stable equivalence ratio range away from stoichiometry towards leaner or richer 

equivalence ratios. When equivalence ratio was varied, a change in equivalence ratio 

away from stoichiometry resulted in a decrease in stable inlet velocities, while a change 

in equivalence ratio towards stoichiometry lead to an increase in stable inlet velocities. 

These trends, common between rich and lean combustion of gaseous and liquid fuels, 

highlight a requirement of combustion stability in the counter-flow reactor: the local inlet 

velocity must be equal to the burning rate. The burning rate of rich and lean reactant 

mixtures is significantly influenced by reactant temperature, which is dependent upon the 

amount of heat recirculation achieved in the reactor. 

Heptane reforming, with the goal of syngas production, was performed in the counter-

flow to study the impact of inlet velocity and reactant equivalence ratio on syngas yield. 

When the maximum hydrogen production was achieved in the combustion of rich 

heptane reactants, 42% of the hydrogen bound in the heptane fuel was converted to 

diatomic hydrogen, H2. The maximum amount of energy originally bound in the 

incoming heptane fuel that became bound in H2 product in the reactor exhaust was 18%, 

while the maximum total energy bound in the product species was 75% of the energy 

bound in the incoming reactants. The presence of high energy hydrocarbon species in the 

exhaust, significantly in excess of levels predicted by equilibrium, contributed to the high 

total energy conversion efficiency and indicates incomplete fuel conversion. Inlet 

velocity was found to have little impact on product composition except at the lowest 
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tested inlet velocities, where a significant decrease in H2 production and an increase in 

unburned hydrocarbons were observed; this effect is attributed to an increased ratio of 

external heat loss to chemical heat release at low firing rates. The variation of reactant 

equivalence ratio did show a strong impact on product composition. 

Lean combustion of methane, propane and heptane in the counter-flow reactor also 

showed a greater impact of equivalence ratio variation on exhaust pollutant species 

production as compared to the variation of inlet velocity. The exception to this was 

observed at the lowest tested inlet velocities, where measured temperatures within the 

reactor decreased below the calculated adiabatic equilibrium temperature based upon 

reactant conditions, dubbed subadiabatic temperatures, and fuel conversion became 

incomplete as indicated by the detection of unburned hydrocarbons. The effects of low 

inlet velocity operation are attributed to the increased ratio of external heat losses to 

chemical energy release within the reactor, as was observed in heptane reforming. The 

variation of equivalence ratio showed a significant and consistent effect on measured 

product species for all three tested fuels: CO decreased and NOx increased as equivalence 

ratio approached stoichiometry. The observed trends are attributed to strong temperature 

dependence of the formation of both product species. 

The computational portion of this study investigated the impact of reactor geometric 

scaling on combustion stability and syngas production in the counter-flow reactor. Based 

upon results of experimental rich and lean combustion, the trends observed in the 

computational study are expected to have implications for lean combustion in scaled 

reactors as well. Similar to the results of experimental counter-flow investigations, the 
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variation of equivalence ratio was found to have a more significant effect on product 

composition as compared to the variation of inlet velocity. A decrease in product yields 

with increasing equivalence ratio, channel height and channel length was observed in the 

computational study of methane reforming, and a similar effect of equivalence ratio 

variation on product yield was observed in the experimental study of heptane reforming 

in the counter-flow reactor. The computations, which permit the quantification of 

characteristic quantities that are not readily measured in the reactor, indicate a decrease in 

heat recirculation efficiency with increasing equivalence ratio, as well as increasing 

channel height and length. Thus, the computations highlight the importance of effective 

heat recirculation for combustion stability and product species composition.  

Based upon the results of this work, recommendations for future study include the 

characterization of preheated flames for the development of accurate chemical kinetics 

mechanisms at equivalence ratios near and beyond ambient-condition flammability 

limits. By utilizing experimental setups that are simpler than the counter-flow reactor, 

such as a flat flame burner that can be approximated as a one-dimensional system, the 

two- and three-dimensional effects that are present in heat-recirculating reactors can be 

eliminated, and the chemistry of combustion at extreme equivalence ratios can be 

isolated. The results of such studies will allow for increased accuracy in the modeling of 

combustion in heat recirculating reactors, which operate largely beyond the conditions 

where chemical kinetics mechanisms are validated. The study of one-dimensional 

preheated flames will also permit the quantification of soot formation through the use of 

laser diagnostic tools, such as laser extinction or laser induced incandescence, which 



137 
 

would permit the carbon balance on rich combustion, such as the rich reforming in the 

counter-flow reactor performed in this study, to be closed.   
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