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Structured matrices refer to matrix valued data that are embedded in an in-

herent lower dimensional manifold with smaller degrees of freedom compared to

the ambient or observed dimensions. Such hidden (or latent) structures allow for

statistically consistent estimation in high dimensional settings, wherein the number

of observations is much smaller than the number of parameters to be estimated.

This dissertation makes significant contributions to statistical models, algorithms,

and applications of structured matrix estimation in high dimensional settings. The

proposed estimators and algorithms are motivated by and evaluated on applications

in e–commerce, healthcare, and neuroscience.

In the first line of contributions, substantial generalizations of existing re-

sults are derived for a widely studied problem of matrix completion. Tractable esti-

mators with strong statistical guarantees are developed for matrix completion under

(a) generalized observation models subsuming heterogeneous data–types, such as

count, binary, etc., and heterogeneous noise models beyond additive Gaussian, (b)

general structural constraints beyond low rank assumptions, and (c) collective esti-

mation from multiple sources of data.
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The second line of contributions focuses on the algorithmic and application

specific ideas for generalized structured matrix estimation. Two specific applica-

tions of structured matrix estimation are discussed: (a) a constrained latent factor

estimation framework that extends the ideas and techniques hitherto discussed, and

applies them for the task of learning clinically relevant phenotypes from Electronic

Health Records (EHRs), and (b) a novel, efficient, and highly generalized algorithm

for collaborative learning to rank (LETOR) applications.
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Chapter 1

Introduction

Matrix valued data capturing interactions between a pair of variables — rep-

resented along rows and columns — occur naturally in various application settings,

e.g., bipartite interactions, network information, spacial interactions in images, co-

variance matrices, etc. Structured matrices refers to matrices that lie in an inherent

low dimensional manifold with restricted degrees of freedom compared to the am-

bient or observed dimensions. A popular example of such a structure is that of

low rank, wherein a matrix Θ∗ ∈ Rd1×d2 can be represented as a product of two

low rank matrices, say U ∈ Rd1×r and V ∈ Rr×d2 with r � min{d1, d2}. In

general, for any matrix that can be represented with smaller number of parameters

compared to its ambient dimension, albeit in an unobserved space, its structure can

be exploited in various statistical estimation and inference problems. Such hidden

low dimensional space of a structured matrix is also commonly referred as its latent

space. More broadly, learning predictive models by exploiting latent space struc-

tures in general vector spaces, not necessarily matrices, has greatly expanded the

scope of classical statistical estimation and has led to a surge of research in high

dimensional estimation problems where the number parameters to be estimated is

comparable to (and potentially much larger than) the number of observed samples

[27, 29, 46, 33, 114, 10, 150, 13, 153, 23, 126].

The focus of this dissertation is on estimators and algorithms for prediction

and inference tasks on structured matrix valued data in high dimensional setting.

1



Latent space Rk

Observation space Rd

k � d

(a) Data in observation space Rd is gener-
ated from hidden variables in low dimen-
sional latent space Rk, k � d.

Θ∗ U

V

(b) Low rank matrix Θ∗ ∈ Rd1×d2 factor-
ized as product of two rank r matrices with
(d1 + d2− r)r � d1d2 degrees of freedom

Figure 1.1: Illustration of high dimensional statistics

Mining the latent space representation of structured matrices has been explored in

numerous applications including dimensionality reduction techniques such as prin-

cipal component analysis (PCA) [83, 146, 43], and non-negative matrix factoriza-

tion (NMF) [98, 101, 148]; topic modeling [72, 19, 110, 124]; collaborative filtering

for recommendation systems [56, 94, 167]; subspace clustering [155, 51, 158, 49];

data imputation [39, 66]; covariance matrix estimation [1]; image denoising and

other computer vision systems [80, 21]; network coding [65]; distance matrix com-

pletion for sensor localization [18, 135]; and more recently for efficient low–rank

approximations [17], among several others. A particular problem of interest in high

dimensional matrix estimation is that of matrix completion. Matrix completion

seeks to recover a low dimensional structured target matrix from noisy measure-

ments of a small fraction of its individual entries. In addition to being a high di-

mensional estimation problem, the matrix completion task is particularly ill–posed

as the observations are not only limited in that the #samples� d1d2, but each ob-

servation is also a highly localized measurement of an individual entry in the ma-

trix. Such localized observations pose additional challenges in analysis of matrix

completion estimators in comparison to traditional high dimensional estimation that

2



assume observations that are global linear combination of all the entries of the target

measured using Gaussian or sub–Gaussian operators [53, 52, 128, 33, 13, 153, 126].

This dissertation develops strong statistical models and algorithms for sub-

stantial generalizations of high dimensional matrix estimation, focusing on but not

limiting to the special case of matrix completion. These models and algorithms are

motivated by and evaluated on significant applications in e–commerce, healthcare,

and neuroscience. The theoretical and empirical results in this dissertation vastly

expand the scope and applicability of structured matrix estimators. Chapters 3–5

address tractable estimators with strong statistical guarantees for matrix completion

problems under (a) generalized observation models subsuming heterogeneous data–

types, such as count, binary, etc., and heterogeneous noise models beyond additive

Gaussian, (b) general structural constraints beyond low rank assumptions, and (c)

collective estimation from multiple sources of data, respectively. In Chapter 6, a

constrained latent factor estimation framework incorporating ideas developed so

far, is discussed for the phenotyping application in healthcare data. Finally, Chap-

ter 7 considers algorithms and applications of structured matrix completion in a

collaborative learning to rank (LETOR) formulation.

1.1 Generalization of Matrix Completion

A key contribution of this dissertation is the substantial generalization of

estimators, statistical analysis, and theoretical guarantees for the high dimensional

structured estimation task of matrix completion. As noted earlier, compared to

typical high dimensional learning settings, the estimators and analysis of matrix

completion are further complicated due to the localized observations. Several novel

statistical tools and techniques have been developed in the literature to handle basic

formulations of the matrix completion task leading to computationally tractable

3



estimators with strong statistical guarantees [26, 25, 30, 87, 88, 58, 127, 93, 91,

89, 115, 79, 64]. However, existing literature on matrix completion are specifically

well adapted for settings where a subset of entries of a low–rank matrix are observed

either deterministically [26], or perturbed by additive noise that is Gaussian [25],

or more generally sub–Gaussian [88, 115].

First, let us consider the observation model. While a Gaussian–like noise

model for continuous valued data is amenable to the subtle statistical analyses re-

quired for the ill–posed problem of matrix completion, it is not always practically

suitable for all data settings encountered in matrix completion applications. For

instance, a Gaussian error model might not be appropriate in recommender systems

based on movie ratings that are either binary (likes or dislikes), or range over the

integers one through five. The noise model captures the uncertainty underlying the

matrix measurements, and is thus an important component of the problem speci-

fication in any application; and it is thus vital for broad applicability of the class

of matrix completion estimators to extend to general noise models. Though the

generalization of noise models might seem like a narrow technical, although im-

portant question, it is related to a broader issue. A Gaussian observation model

implicitly assumes the observed matrix values to be continuous (and thin–tail–

distributed). But in modern applications, matrix data span the gamut of hetero-

geneous data–types including skewed–continuous, and categorical–discrete such as

binary, count–valued etc., among others. For example, patient electronic health

datasets include medication and diagnosis information often recorded as counts,

demographics represented as binary or categorical values, and physical measure-

ments as skewed continuous value data. Note that prior to this work there had been

some work for the specific case of binary data by [45], but generalizations to other

data–types and distributions was largely unexplored. The first problem addressed
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in Chapter 3 involves generalization of matrix completion estimator and analysis to

observations arising from a rich class of natural exponential family of distributions

which includes several popular distributions commonly assumed for heterogeneous

data types and noise models.

Secondly, while low dimensional structural constraints on the target are un-

derstood to be necessary for consistent statistical estimation under high dimensional

settings, an (approximate) low rank structure is only one instance of such structures.

However, prior to the work discussed in this dissertation, the rich literature on statis-

tical guarantees for consistent matrix completion is exclusively limited to the case

of low rank estimation. In the second contribution, a unified statistical analysis of

matrix completion under general norm regularization is derived. The framework of

general norm regularized estimators proposed in Chapter 4 encompasses a vast va-

riety of low dimensional structures encountered in applications including structured

sparseness, superposition structures such as low–rank plus elementwise sparseness,

clustered subspace structures, general convex constraint sets, and atomic norms,

among others.

Finally, for low rank matrix completion with mild noise assumptions, the

known statistical bounds on sample complexity and generalization errors have been

shown to be near optimal (upto logarithmic factors) to the information theoretical

limits [93, 115]. However, in practice, data commonly arise in the form of multiple

matrices sharing correlated information. For example, in e–commerce applications,

data containing user preferences in multiple domains such as news, ads, etc., and

explicit user/item feature information such as demographics, social network, text

description, etc., are made available in the form of a collection of matrices that are

coupled through the common set of users/items. The question here is whether such

a shared structure among a collection of matrices can be leveraged for accurate pre-
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dictions from fewer samples than those required for under single low rank matrix.

This setup is analyzed under a convex estimator for collective matrix completion in

Chapter 5 and non–trivial sample complexity bounds are derived for the estimate

that are optimal for learning from shared information in the entire collection.

1.2 Latent Factor Estimation

Mining low dimensional structures in matrices has wider significance be-

yond the tasks of prediction in high dimensional matrix sensing and completion.

The problem class of latent factor estimation broadly seeks to reason about the

data generation process by identifying the underlying latent structure in the data.

While accurate predictions on unseen data for the end task is highly desirable, of-

ten black box predictions of the target variable alone is insufficient for informed

decision making. In many critical applications, understanding and interpreting the

patterns that generate the predictions is crucial for wider deployment in real life

systems. Latent factor estimation in matrix valued data is typically studied un-

der low rank assumptions, where additional application specific conditions, such

as non–negativity, sparsity, informative priors, etc., are further imposed on the fac-

tors. Common examples include PCA, NMF, topic modeling [19, 110, 124] and

inference in general graphical models [159, 161].

In Chapter 6, an application of latent factor estimation for high–throughput

electronic health record (EHR) driven phenotyping is discussed. The increased

availability of electronic health records (EHRs) have spearheaded the initiative for

precision (personalized) medicine. Essential to this effort is the EHR driven pheno-

typing task of identifying patients with conditions or characteristics of interest from

EHRs. The proposed model incorporates ideas discussed in the earlier chapters to-

wards extracting concise and interpretable phenotypes from heterogeneous EHR
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data generated from multiple sources of care givers (e.g., diagnosis, medications,

and lab reports).

1.3 Collaborative Learning to Rank

A widely popular application of low rank matrix completion is in the col-

laborative preference completion task of jointly learning missing preferences of set

of entities for a shared list of items based on a limited number of observed affin-

ity values, e.g., recommender system [56, 94]. It is commonly assumed that such

entity–item preferences are generated from a small number of latent or hidden fac-

tors, or equivalently, the underlying preference value matrix is assumed to be low

rank. Further, if the observed affinity scores from various explicit and implicit feed-

back are treated as exact (or mildly perturbed) entries of the unobserved preference

value matrix, then the preference completion task naturally fits in the framework of

low rank matrix completion.

Recent research in the preference completion literature have noted that

using a matrix completion estimator for collaborative preference estimation may

be misguided [44, 141, 95] as the observed entity–item affinity scores from im-

plicit/explicit feedback are potentially subject to systematic monotonic transforma-

tions arising from limitations in feedback collection, e.g., quantization and inher-

ent biases. In such case, fitting the exact numerical scores in a matrix completion

may lead to over-fitting and impair generalization performance. Further, despite the

common practice of measuring preferences using numerical scores, predictions are

most often deployed or evaluated based on the item ranking e.g. in recommender

systems, user recommendations are often presented as a ranked list of items without

the underlying scores.
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In the final contribution in Chapter 7, a novel, efficient and highly general-

ized algorithm is developed for the collaborative learning to rank (LETOR) prob-

lem, wherein the underlying low rank preferences are learned by fitting the observed

order, rather than observed numerical scores. The proposed estimator is also capa-

ble of fitting any consistent entity–specific partial ranking over a subset of the items

represented as a directed acyclic graph (DAG), further generalizing standard tech-

niques that can only fit preference scores.
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Chapter 2

Background and Related Work

2.1 Notation

Matrices are denoted by capital letters, X , Θ, M , etc. For a matrix M ,

Mj and M(i) are the jth column and ith row of M respectively, and Mij denotes

the (i, j)th entry of M . Indexes i, j are typically used to index rows and columns

respectively of matrices, and index s is used to index the observations. ei, ej , es,

etc. denote the standard basis in appropriate dimensions∗.

Euclidean norm in a vector space is denoted as ‖x‖2 =
√
〈x, x〉. For a

matrixX with singular values σ1 ≥ σ2 ≥ . . ., common norms include the Frobenius

norm ‖X‖F =
√∑

i σ
2
i , the nuclear norm ‖X‖∗ =

∑
i σi, the spectral norm

‖X‖op = σ1, and the maximum norm ‖X‖∞ = maxij |Xij|. Also let, Sd1d2−1 =

{X ∈ Rd1×d2 : ‖X‖F = 1} and Bd1d2 = {X ∈ Rd1×d2 : ‖X‖F ≤ 1}.

The transpose, trace, and rank of a matrix M are denoted by M>, tr(M),

and rk(M), respectively. The inner product between two matrices is given by

〈X, Y 〉 = tr(X>Y ) =
∑

(i,j) XijYij .

The Singular Value Decomposition of a matrix M ∈ Rd1×d2 , of rank r is

given by a unique factorization (upto signs) of the form M = UΣV >, where,

U ∈ Rd1×r and V ∈ Rd2×r are the left and right singular matrices which have

orthonormal columns, and Σ = diag(σ1, σ2, . . . , σr), such that σ1 ≥ σ2 ≥ . . . σr is

∗for brevity the explicit dependence of dimension is omitted unless necessary
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the matrix of singular values. For matrix M with singular values (σ1, σ2, . . . , σr),

common matrix norms include the nuclear norm ‖M‖∗ =
∑

r σr, the spectral norm

‖M‖2 = σ1, the Frobenius norm ‖M‖F =
√∑

r σ
2
r , and the maximum norm

‖M‖max = max(i,j)Mij .

For a linear subspace, T , the space orthogonal to T is denoted by T⊥ and the

Euclidean projection operator onto a subspace T is denoted by PT . Given an integer

N , [N ] denotes the set {1, 2, . . . , N}. The unit Euclidean sphere and unit Euclidean

ball in Rd1×d2 are denoted by Sd1d2−1 = {X ∈ Rd1×d2 : ‖X‖F = 1} and Bd1d2 =

{X ∈ Rd1×d2 : ‖X‖F ≤ 1}, respectively. ∆d−1 = {x ∈ Rd
+ :
∑n

i=1 xi = 1} denote

the d dimensional probability simplex. P(.) and E(.) denote the probability of an

event and the expectation of a random variable, respectively.

Definition 2.1.1 (Operator Norm). Let P : V → W denote a linear operator. The

operator norm of P is given by ‖P‖op = sup
X∈V\{0}

‖P(X)‖W
‖X‖V

, where ‖.‖V and ‖.‖W are

the Euclidean norms in the respective spaces†.

Definition 2.1.2 (Dual Norm). Given a norm R defined on a Banach space B, the

dual norm R∗ : B∗ → R+ is given by: R∗(X) = sup
Y :R(Y )≤1

〈X, Y 〉.

Definition 2.1.3 (Decomposable Norm [114]). Norm R is said to be decompos-

able over a pair of subspaces (M, M̄⊥) with M ⊆ M̄, if ∀ (X, Y ) ∈ M × M̄⊥,

R(X + Y ) = R(X) + R(Y ).

Definition 2.1.4 (Atomic Norm [33]). Let A denote a set of elementary building

blocks called atoms such that for a subset C of interest, X ∈ C can be expressed as

†Operator norms are in general defined for any pair of norms in the respective spaces, but unless
stated otherwise, the notation will be used to refer the operator norm defined on Euclidean norms.
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a non–negative affine combination of {Ai ∈ A} as X =
∑

i λiAi for some λi ≥ 0.

The atomic norm with respect to A is given by the gauge function of conv(A):

‖X‖A = inf{t > 0 : x ∈ t.conv(A)}.

Atomic norm is a norm whenever A is centrally symmetric, i.e. A ∈ A if and only

if −A ∈ A.

Definition 2.1.5 (Restricted Strong Convexity (RSC)). A function L is said to sat-

isfy Restricted Strong Convexity (RSC) at Θ with respect to a subset S, if for some

RSC parameter κL > 0,

∀∆ ∈ S,L(Θ + ∆)− L(Θ)− 〈∇L(Θ),∆〉 ≥ κL‖∆‖2
F . (2.1)

Definition 2.1.6 (Spikiness Ratio [115]). Spikiness ratio of X ∈ Rd1×d2 is given

by:

αsp(X) =

√
d1d2‖X‖max

‖X‖F
. (2.2)

Definition 2.1.7 (Bregman Divergence). Let φ : dom(φ) → R be a strictly convex

function differentiable in the relative interior of dom(φ). The Bregman divergence

(associated with φ) between x ∈ dom(φ) and y ∈ ri(dom(φ)) is defined as:

Bφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉.

2.2 Related Work

Apart from the following general topics, this dissertation also focuses on

special topics of EHR driven phenotyping and collaborative learning to rank. To

keep the exposition simple, the background and related literature for these topics

are covered in Chapters 6 and 7, respectively.
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2.2.1 Standard Matrix Completion

Matrix completion and its variants encompass a wide range of applications

such as recommendation systems, recovering gene–protein interactions, and mod-

eling text document collections, among others [94, 49, 158]. An broad introduction

to classical applications of the problem is covered by Candes et al. [26, 25] and

Laurent [96]. As noted earlier, much of the existing literature on matrix completion

are specifically well adapted for the special case that assume (a) continuous valued

observations with additive thin tailed noise such as Gaussian [25], or more gener-

ally sub–Gaussian [88, 115] and (b) low rankness of the target, and are evaluated

on exact parameter recovery of a single target matrix. Matrix completion problems

under these assumptions will be referred as Standatd Matrix Completion (SMC) and

is formalized as follows:

Denote the underlying ground truth matrix by Θ∗ ∈ Rd1×d2 . In a matrix com-

pletion setting, a subset of the indices Ω = {(is, js) : is ⊂ [d1], js ⊂ [d2], s =

1, 2, . . . , |Ω|} ⊂ [d1]× [d2] of Θ∗ are observed through an additive noise channel:

ys = Θ∗isjs + ηs, for s = {1, 2, . . . , |Ω|},

where ηs is additive random noise that is assumed to be Gaussian or sub–Gaussian

distributed, or bounded.

Sampling: Ω ⊂ [d1] × [d2] over which Θ∗ is observed is often chosen through

a random sampling scheme. The following common sampling assumptions have

been shown to be equivalent [30]:

• Uniform sampling model: |Ω| entries of Θ∗ are sampled uniformly and inde-

pendently at random:

∀ (i, j) ∈ Ω, i ∼ uniform([d1]), j ∼ uniform([d2]). (2.3)
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• Bernoulli sampling model: each element of [d1] × [d2] is independently in-

cluded in Ω with a fixed probability of 0 < p < 1,

∀ (i, j) ∈ [d1]× [d2], 1(i,j)∈Ω ∼ bernoulli(p), (2.4)

where 1E is an indicator variable for an event E.

The task in standard matrix completion is to recover Θ∗ from partial and

noisy observations, (Ω, {ys}). This task is ill–posed for two reasons:

1. Limited Sample Size: Matrix completion is inherently a high dimensional

estimation problem and low dimensional structural constraints are necessary for

well posed estimation.

2. Localized Observations: In a matrix completion, if a small set of entries

of the target matrix are overly significant or “spiky” compared to rest of the entries,

then a uniform random sampling of observations is likely to miss any informa-

tion on these significant entries and consistent matrix completion is infeasible [26].

Thus, aside from the low dimensional constraints, further assumptions to eliminate

such “spiky” matrices are required for well–posed recovery under localized mea-

surements. Early work analyzing generalization error bounds for various low rank

matrix completion algorithms made stringent matrix incoherence assumptions to

avoid “spiky” matrices [26, 30, 25, 127, 87, 88, 79]. These assumptions have been

made less stringent in more recent results [115, 45] which however guarantees only

approximate recovery in low noise settings. In a more recent work [35] also explore

leverage score sampling scheme which was shown to be necessary for completing

coherent matrix. However, such sampling requires prior knowledge of the elements

of the matrix and this line of work is beyond the scope of this dissertation.

Leveraging developments in general high dimensional estimation, numer-

ous models and algorithms have been developed for matrix completion. Theo-
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retical results for matrix completion typically quantify bounds on sample com-

plexity and parameter recovery error. Nuclear norm is commonly used as a con-

vex surrogate for low rank constraint in low rank matrix sensing and completion

estimators [53, 52, 128]. Early work provide strong statistical analysis for nu-

clear norm minimization based estimators for matrix completion under observa-

tions from thin tailed noise [26, 25, 30, 58, 127]. This line of research generated

interest in efficient algorithms for constrained and regularized nuclear norm min-

imization [81, 22, 147, 109, 77, 108, 12, 75]. More recent work derive approxi-

mate recovery guarantees under less restrictive assumptions on incoherence, sam-

pling distributions, and observation model [115, 93, 91, 89]. Apart from nuclear

norm minimization, other estimators with theoretical guarantees for consistent ma-

trix completion include the spectral methods [87, 88] and alternating minimization

[79, 60, 64]. Besides estimators with theoretical guarantees, a significant line of

work for matrix completion includes probabilistic models and other non–convex

estimators that have been extensively evaluated on various benchmarked empirical

datasets [112, 131, 167, 94]. Extensions of these models to incorporate application–

specific additional sources of information such as covariate information, social net-

work, etc. has also been an active area of research [6, 7, 133, 107, 78]

2.2.2 High dimensional estimation

High dimensional estimation problems, where the number of parameters to

be estimated is much higher than the number of observations are traditionally ill–

posed. However, under low dimensional structural constraints, such problems are

being extensively studied in the recent literature. Early work focused on the non–

asymptotic analysis of estimators for a particular problem of compressed sensing

or sparse estimation [46, 27, 29]. More recent work exploit the geometry of general
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low dimensional structures in analyzing estimators for generalized linear inverse

problems in high dimensions [33, 13, 153, 126]. However, in comparison to matrix

completion with localized measurements, such results in general high dimensional

estimation assume observations that are global linear combination of all the entries

of the target measured using Gaussian or sub–Gaussian operators. In particular,

such Gaussian or sub–Gaussian assumption is used to establish some variant of a

certain restricted isometry property (RIP) of the measurement ensemble [28]. It

has been shown that the localized measurements encountered in matrix completion

do not satisfy RIP-like properties [26], and thus novel statistical techniques are

generally required to extend the results from general high dimensional estimation

to matrix completion settings.

2.3 Background
2.3.1 Probability

Lemma 2.3.1 (Bernstein’s Inequality (moment version)). Let Xi, i = 1, 2, . . . , N

be independent zero mean random variables. Further, let σ2 =
∑

i E[X2
i ], and

M > 0 be such that the following moment conditions are satisfied for p ≥ 2,

E[Xp
i ] ≤ p!σ2Mp−2

2
.

Then the following concentration inequality holds:

P
(∣∣∣
∑

i

Xi

∣∣∣ > u
)
≤ 2 exp

( −u2

2σ2 + 2Mu

)
. (2.5)

Lemma 2.3.2 (Operator Bernstein Inequality [149]). Let Si, i = 1, 2, . . . ,m be i.i.d

self–adjoint operators of dimension N . If there exists constants R and σ2, such that

∀i ‖Si‖op ≤ R a.s., and
∑

i ‖E[S2
i ]‖op ≤ σ2,

then ∀ t > 0 Pr
(
‖∑i Si‖op > t

)
≤ N exp

(
−t2/2
σ2+Rt

3

)
.
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Lemma 2.3.3 (McDiarmid’s Inequality). Let Xi, i = 1, 2, . . . , N be independent

random variables. Consider a function f : RN → R. If ∀i,

sup
X1,X2,...,XN ,X

′
i

|f(X1, X2, . . . , XN)− f(X1, X2, . . . , Xi−1, X
′
i, Xi+1, . . . , XN) ≤ ci,

then,

P(|f(X1, X2, . . . , XN)− Ef(X1, X2, . . . , XN)| > u) ≤ 2 exp

(
−2u2

∑
i c

2
i

)
. (2.6)

Lemma 2.3.4 (Ahlswede-Winter Matrix Bound (Extension)). The Orlicz norm of

a random matrix Z ∈ Rd1×d2 w.r.t to a convex, differentiable and monotonically

increasing function, φ(x) : R+ → R as follows:

‖Z‖φ ,inf{t ≥ 0 : E [φ (|〈Z,Z ′〉|/t))] ≤ 1,

∀ Z ′ ∈ Rd1×d2 , and Z ′ij ∈ [0, 1]}.

Let Z(1), Z(2), . . . , Z(K) be random matrices of dimensions m × n. Let

‖Z(i)‖φ ≤ M , ∀i. Further, σ2
i = max{‖E[Z(i)TZ(i)]‖2, ‖E[Z(i)Z(i)T ]‖2}, and

σ2 =
∑K

i=1 σ
2
i , then

P

(
‖

K∑

i=1

Z(i)‖2 ≥ t

)
≤ d1d2 max

{
e−

t2

4σ2 , e−
t

2M

}
.

The above lemma is an extension noted by [151] (Theorem 1 and a later remark)

for the matrix bounds resulting from [9].

Lemma 2.3.5 (Symmetrization (Lemma 6.3 in [97])). Let F : R+ → R+ be a con-

vex function, and Xi, i = 1, 2, . . . be a sequence of mean zero random variables in

a Banach space B, s.t ∀i,EF‖Xi‖ <∞. Denote a vector of standard Rademacher

variables of appropriate dimension as (εi), then

EF
(1

2
‖
∑

i

εiXi‖
)
≤ EF‖

∑

i

Xi‖ ≤ EF
(

2‖
∑

i

εiXi‖
)
. (2.7)
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Further, ifXi are not centered, then EF
(
‖∑iXi−E[Xi]‖

)
≤ EF

(
2‖∑i εiXi‖

)
.

Lemma 2.3.6 (Contraction Principle). Consider a bounded T ⊂ RN , a standard

Gaussian and standard Rademacher sequence, (gi) ∈ RN and (εi) ∈ RN , respec-

tively. If φi : R→ R, i ≤ N are contractions, i.e. ∀s, t ∈ R, |φi(s)−φi(t)| ≤ |s−t|,
and with φi(0) = 0, then for any convex function F : R+ → R+, the following re-

sults are from Corollary 3.17, Theorem 4.12, and Lemma 4.5, respectively in [97]:

EF
(1

2
sup
t∈T

∣∣∣
N∑

i=1

giφi(ti)
∣∣∣
)
≤ EF

(
2 sup
t∈T

∣∣∣
N∑

i=1

giti

∣∣∣
)

(2.8)

EF
(1

2
sup
t∈T

∣∣∣
N∑

i=1

εiφi(ti)
∣∣∣
)
≤ EF

(
2 sup
t∈T

∣∣∣
N∑

i=1

εiti

∣∣∣
)

(2.9)

EF
(
‖

N∑

i=1

εiti‖
)
≤ EF

(√π

2
‖

N∑

i=1

giti‖
)

(2.10)

2.3.1.1 Natural Exponential Family Distributions

Definition 2.3.1 (Natural Exponential Family). A distribution of a random variable

Y in a normed vector space V is said to belong to the natural exponential family, if

its probability density function characterized by a natural parameter Θ ∈ V∗ can be

written as:

P(Y |Θ) = h(Y ) exp
(
〈Y,Θ〉 −G(Θ)

)
,

where h(Y ) is independent of Θ, and G(Θ) = log
∫
Y
h(Y )e〈Y,Θ〉dY , called the

log–partition function, is a strictly convex and analytic function,.

The Fenchel conjugate of the log–partition function G is given by: F (Y ) ,

supΘ 〈X,Θ〉 − G(Θ). A useful consequence of the exponential family is that the
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negative log–likelihood is a strictly convex and analytic function of the natural pa-

rameters Θ. Further, Banerjee et al. [14] show that the negative log likelihood as

a function of Θ has a bijection with a large class of divergence functions called

Bregman divergences (Definition 2.1.7).

2.3.1.2 Sub–Gaussian and Sub–exponential Random Variables

Definition 2.3.2 (Sub–Gaussian Random Variable [152]). The sub–Gaussian norm

of a random variable X is given by: ‖X‖Ψ2 = supp≥1 p
−1/2(E|X|p)1/p. X is b–

sub–Gaussian if ‖X‖Ψ2 ≤ b < ∞. Equivalently, X is sub–Gaussian if one of the

following conditions are satisfied for some constants k1, k2, and k3 [Lemma 5.5 of

[152]].

(1) ∀p ≥ 1, (E|X|p)1/p ≤ b
√
p, (2) ∀t > 0, P(|X| > t) ≤ e1−t2/k2

1b
2 ,

(3) E[ek2X2/b2 ] ≤ e, or (4) if EX = 0, then ∀s > 0, E[esX ] ≤ ek3s2b2/2.

Definition 2.3.3 (Sub–Exponential Random Variables). A random variable X is

said be sub-exponential if it satisfies one of the following equivalent conditions for

k1, k2, and k3 differing from one other by constants [Definition 5.13 of [152]].

1. P(|X| > t) ≤ e1−t/k1 , ∀ t > 0,

2. ∀p ≥ 1, (E[|X|p])1/p ≤ k2p, or

3. E[eX/k3 ] ≤ e.

The sub–exponential norm is given by:

‖X‖Ψ1 = inf
{
t > 0 : E exp

( |X|
t

)
≤ 2
}

= sup
p≥1

p−1(E[|X|p])1/p. (2.11)

Lemma 2.3.7 (Hoeffding–type inequality, Proposition 5.10 in [152]). Let

X1, X2, . . . , XN be independent centered sub-Gaussian random variables, and let
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K = maxi ‖Xi‖Ψ2 . Then, ∀a ∈ RN and t ≥ 0, ∃ constant c s.t.,

P
(∣∣

N∑

i=1

aiXi

∣∣ ≥ t
)
≤ 2 exp

( −ct2
K2‖a‖2

2

)
. (2.12)

Lemma 2.3.8 (Bernstein–type inequality, Proposition 5.16 in [152]). Let

X1, X2, . . . , XN be independent centered sub-exponential random variables, and

let K = maxi ‖Xi‖Ψ1 . Then ∀a ∈ RN , and t ≥ 0, there exists a constant c s.t.

P
(∣∣

N∑

i=1

aiXi

∣∣ ≥ t
)
≤ 2 exp

(
− cmin

{ t2

K2‖a‖2
2

,
t

K‖a‖∞

})
. (2.13)

Lemma 2.3.9 (Lemma 5.14 in [152]). X is sub–Gaussian if and only if X2 is

sub–exponential. Further, ‖X‖2
Ψ2
≤ ‖X2‖Ψ1 ≤ 2‖X‖2

Ψ2
.

Lemma 2.3.10 (Remark 5.18 in [152]). If X is sub–Gaussian (or sub–

exponential), then so is X − EX . Further, ‖X − EX‖Ψ2 ≤ 2‖X‖Ψ2 ; ‖X −
EX‖Ψ1 ≤ 2‖X‖Ψ1 .

2.3.2 Gaussian Width

Definition 2.3.4 (Gaussian Width). Gaussian width of a set S ⊂ Rd1×d2 is a widely

studied measure of complexity of a subset in high dimensional ambient space and

is given by:

wG(S) = EGsup
X∈S
〈X,G〉, (2.14)

where G is a matrix of independent standard Gaussian random variables.

Gaussian width plays a key role high dimensional estimation, and plenty of

tools have been developed for computing Gaussian widths of compact subsets [48,

97, 145, 33]. The existing work is specially well adapted for computing Gaussian

widths for intersection of convex cones with unit norm balls [33], and recent work
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of Banerjee et al. [13] propose a mechanism for exploiting these tools for arbitrary

compact sets. Some key results that aid in computing Gaussian widths are briefly

discussed here. For a cone C ∈ Rd1×d2 , the polar cone is defined as C◦ = {X :

〈X, Y 〉 ≤ 0,∀Y ∈ C}.

2.3.2.1 Direct Estimation

The Gaussian width of a compact set T can be directly estimated as a

supremum of Gaussian process over dense countable subset T̄ of T as wG(T ) =

supX∈T̄ 〈X,G〉. The following properties are often used in direct estimation. These

properties are consolidated from [145], [33] and [13]. In the following statements,

k is a constant not necessarily the same in each occurrence:

• Translation invariant and homogeneous: for any a ∈ R, wG(S+a) = wG(S);

• wG(conv(T )) ≤ wG(T )

• wG(T1 + T2) ≤ wG(T1) + wG(T2)

• If T1 ⊆ T2, then wG(T1) ≤ wG(T2).

• If T1 and T2 are convex, then wG(T1∪T2)+wG(T1∩T2) = wG(T1)+wG(T2)

2.3.2.2 Dudley’s Inequality and Sudakov Minorization

Definition 2.3.5 (Covering Number). Consider a metric d defined on S ⊂ Rd1×d2 .

Given ε > 0, the ε–covering number of S with respect to d, denoted by N(S, ε, d),

is the minimum number of points {X̄1, X̄2, . . . , X̄N(S,ε,d)} such that ∀X ∈ S, there

exists i ∈ {1, 2, . . . ,N(S, ε, d)}with d(X, X̄i) ≤ ε. The set {X̄1, X̄2, . . . , X̄N(S,ε,d)}
is called the ε–cover of S.

Lemma 2.3.11 (Dudley’s Inequality and Sudakov Minoration). If S is compact,
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then for any ε > 0, there exists a constant c s. t.

cε
√

logN(S, ε, ‖.‖F ) ≤ wG(S) ≤ 24

∫ ∞

0

√
N(S, ε, ‖.‖F )dε.

The upper bound is the Dudley’s inequality and lower bound is by Sudakov mino-

ration.

2.3.2.3 Geometry of Polar Cone

Lemma 2.3.12 (Proposition 3.6 and Theorem 3.9 of [33]). If C ⊂ Rd1×d2 is a

non–empty convex cone and C◦ be its polar cone, then:

Distance to polar cone : wG(C ∩ Sd1d2−1) ≤ EG[ inf
X∈C◦

‖G−X‖F ]

Volume of polar cone : wG(C ∩ Sd1d2−1) ≤ 3

√
4

vol(C◦ ∩ Sd1d2−1)

2.3.2.4 Infimum over Translated Cones

Lemma 2.3.13 (Lemma 3 of [13]). Let S ⊂ Rd1×d2 , and given X ∈ S, define

ρ(X) = supY ∈S ‖X − Y ‖F as the diameter of S measured along X . Also define

G(X) = cone(S −X) ∩ ρ(X)Bd1d2 , where Bd1d2 is the unit Euclidean ball. Then,

wG(S) ≤ inf
X∈S

wG(G(X))

2.3.2.5 Generic Chaining

Lemma B.1.1 (from [145]) gives the tightest bounds on the Gaussian width

of a set. The definition of γ2 (B.1) can be used derive tight bounds on the Gaussian

width that are optimal upto constants. Further results and examples on using γ–

functionals for Gaussian width computation can be found in the works of Talagrand

[143, 144, 145].
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Chapter 3

Matrix Completion under Generalized Observations

Recent works have proposed computationally tractable estimators with

strong statistical guarantees for low rank matrix completion under squared loss

minimization over the observed entries. Square loss is implicitly suitable for con-

tinuous valued observations perturbed by additive thin–tailed noise like Gaussian

or bounded noise. Arguably, common applications of matrix completion require

estimators for (a) heterogeneous data–types, such as skewed–continuous, count,

binary, etc., and (b) for heterogeneous noise models (beyond Gaussian). This chap-

ter ∗ considers a generalization of matrix completion under the setting where the

matrix entries are sampled from a known member of the exponential family distri-

butions. A simple convex regularized M–estimator is proposed for this generalized

framework, and unified and novel statistical analyses for this class of estimators are

provided.

3.1 Introduction

The general problem of matrix completion seeks to recover a structured ma-

trix from noisy and partial measurements. The literature on tractable estimators

and statistical guarantees for matrix completion (Section 2.2.1) is specifically well

∗The results in this chapter appear in a conference publication [62]. The coauthors contributed
equally.
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adapted for the setting where a subset of entries of a low rank matrix are observed

either deterministically [26], or perturbed by additive noise that is Gaussian [25],

or more generally sub–Gaussian [88, 115]. While such a thin–tailed noise model

is amenable to the subtle statistical analyses required for the problem of matrix

completion, it is not always practically suitable for all data settings encountered in

matrix completion applications. For instance, such a Gaussian error model might

not be appropriate in recommender systems based on movie ratings that are quan-

tized to either binary values (likes or dislikes), or over a range of integers (one

through five, say). The noise model captures the uncertainty in the underlying ma-

trix measurements, and is an important component of the problem specification in

any application; and it is thus vital for broad applicability of the class of matrix

completion estimators to extend to general noise models.

Though the generalization of noise models might seem like a narrow techni-

cal, although important question, it is related to a broader issue. A Gaussian obser-

vation model implicitly assumes the observed matrix values to be continuous (and

thin–tail–distributed). But in modern applications, matrix data span the gamut of

heterogeneous data–types, including skewed–continuous, and categorical–discrete

such as binary, count–valued etc., among others.

A key question motivated by these considerations seeks the feasibility of

generalization of the standard matrix completion estimators and statistical analyses,

suited for continuous values data with additive thin–tailed noise, to (a) a broader

family of noise models, and (b) heterogeneous data–types. This chapter considers a

generalized matrix completion setting wherein observed matrix entries are sampled

from a known member of a rich family of natural exponential family distributions.

This family of distributions encompass a wide variety of popular distributions in-

cluding Gaussian, Poisson, binomial, negative–binomial, Bernoulli, etc. The choice
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of a particular member of the exponential family can be made depending on the

form of the data and assumptions on the noise channel. For instance, thin–tailed

continuous data are typically modeled using the Gaussian distribution; count–data

are modeled through an appropriate distribution over integers (Poisson, binomial,

etc.), binary data through Bernoulli, categorical–discrete through multinomial, etc.

Contributions:

• In a key contribution, a simple regularized convex M–estimator is proposed

for recovering an underlying matrix from generalized observation models de-

scribed above; and a unified and novel statistical analysis is provided for the

proposed estimator.

• Following a standard approach [114], it is (a) first shown that the negative

log–likelihood of the subset of observed entries satisfies a form of Restricted

Strong Convexity (RSC) (Definition 2.1.5); and (b) under this RSC condition,

the proposed M–estimator satisfies strong statistical guarantees. The first

component showing the RSC condition for generalized class of loss functions

is of independent interest.

• Matrix completion under a broader range of decomposable structures beyond

low rankness is also briefly discussed in this chapter, although this general-

ization will be dealt with in greater detail and generality in Chapter 4.

3.2 Exponential Family Matrix Completion

Denote the underlying target matrix to be recovered by Θ∗ ∈ Rd1×d2 . In the

matrix completion setting considered in this chapter, a subset of individual entries

{Θ∗ij} of Θ∗ are observed indirectly via a noisy channel: specifically, as samples

{Yij} drawn from some known member of natural exponential family (Defini-
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tion 2.3.1):

P(Yij|Θ∗ij) = h(Yij) exp
{
YijΘ

∗
ij −G(Θ∗ij)

}
, (3.1)

where G() is a strictly convex, analytic function called the log–partition function.

Uniformly Sampled Observations: In this paper, a partially observed setting is

considered, where the observations are sampled for a subset of entries of Θ∗ corre-

sponding to indices Ω ⊂ [d1]× [d2]. A uniform sampling model is assumed:

∀ (i, j) ∈ Ω, i ∼ uniform([d1]), j ∼ uniform([d2]). (3.2)

Note that, under the above described sampling scheme, an index (i, j) can be sam-

pled multiple times, in such cases for each instances of (i, j) in Ω (and not just

the unique indices in Ω), and independently sampled Yij for each occurrence are

included in the set of observation (Yij)(i,j)∈Ω.

Given Ω, a linear operator PΩ : Rd1×d2 → Rd1×d2 is defined as:

PΩ(X) =
∑

(i,j)∈Ω

Xijeie
>
j .

With a slight abuse of notation, PΩ(Y ) =
∑

(i,j)∈Ω Yijeie
>
j is also used for the

observation set (Yij)(i,j)∈Ω sampled from (3.1), although Y need not be a matrix.

The matrix completion task now involves estimation of Θ∗ from (Ω, (Yij)(i,j)∈Ω).

3.2.1 Applications

Gaussian (fixed σ2) is typically used to model continuous data, x ∈ R, such as

measurements with additive errors, affinity datasets. Here, G(θ) = 1
2
σ2θ2.

Bernoulli is a popular distribution of choice to model binary data, x ∈ {0, 1}, with

G(θ) = log (1 + eθ). Some examples of data suitable for Bernoulli model include
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social networks, gene protein interactions, etc.

Binomial (fixed N ) is used to model number of successes in N trials. Here,

x ∈ {0, 1, 2, . . . , N}, and G(θ) = N log (1 + eθ). Some applications include pre-

dicting success/failure rate, survey outcomes, etc.

Poisson is used to model count data x ∈ {0, 1, 2, . . .}, such as arrival times, events

per unit time, click–throughs among others. Here, G(θ) = eθ.

Exponential is often used to model positive valued continuous data x ∈ R+, spe-

cially inter arrival times between events. Here, G(θ) = − log (−θ).

3.2.2 Log–likelihood

Denote the gradient map:

g(Θ) , ∇G(Θ) ∈ Rd1×d2 , where g(Θ)ij =
∂G(Θij)

∂Θij

.

It can then be verified that the mean and variance of the distribution P(Yij|Θ∗ij) are

E[Yij] = g(Θ∗ij), and Var(Yij) = ∇2G(Θ∗ij), respectively. The Fenchel conjugate

of the log partition function G, is denoted by: F (X) , supΘ 〈X,Θ〉 −G(Θ).

A useful consequence of the exponential family is that the negative log–

likelihood is convex and differentiable in its natural parameters Θ∗, and moreover

has a bijection with a large class of Bregman divergences (Definition 2.1.7). The

following relationship was first noted by Forster et al. [54], and later rigorously

established by Banerjee et al. [14]:

− logP(Yij|Θij) ∝ BF (Yij, g(Θij)), ∀Yij ∈ dom(F). (3.3)

3.3 Main Result and Consequences

Matrix completion is in general ill–posed and low dimensional structural

constraints on the underlying target matrix Θ∗ are required for well posed estima-
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tion. To formalize the notion of such structural constraints, following [114] it is

assumed that Θ∗ satisfies Θ∗ ∈ M ⊆ M ⊂ Rd1×d2 , for some subspace M ⊆ M,

which contains parameter matrices that are structured similar to the target; the setup

allows the flexibility of working with a superset M of the model subspace that is

potentially easier to analyze.

Assumption 3.3.1. (Decomposable Norm Regularizer) There exists a structure in-

ducing matrix norm R(.) which is decomposable over (M,M
⊥

) (Definition 2.1.7).

Although the main result in this work (Theorem 3.3.1) is applicable for gen-

eral decomposable norms, for the purpose of this chapter, we focus on the special

case of low rank structure induced by nuclear norm which has been previously

shown to be decomposable under appropriately defined subspaces [115]. Matrix

completion under general norm structures will be discussed in greater detail and

generality in Chapter 4.

The second assumption restricts the curvature of the log–partition function.

This is required to establish a form of RSC (Definition 2.1.5) for the loss function. It

can be verified that commonly used members of natural exponential family satisfy

this assumption.

Assumption 3.3.2. The second derivative of the log–partition function G : R→ R

has atmost an exponential decay, i.e,

∇2G(u) ≥ e−η|u|, ∀ u ∈ R, for some η > 0.

Finally, for well posed estimation under matrix completion, additional as-

sumptions besides low dimensional structure is required to avoid missing the most

informative entries in a localized sampling model. restriction on spikiness ratio

is used to preclude “spiky” target matrices in the analysis. Refer Section 2.2.1
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for discussion on this assumption. Recall that the spikiness ratio is defined as:

αsp(Θ) =
√
d1d2‖Θ‖max

‖Θ‖F
(Definition 2.1.6).

Assumption 3.3.3. There exists a known α∗ > 0, such that

‖Θ∗‖max =
αsp(Θ

∗)√
d1d2

‖Θ∗‖F ≤
α∗√
d1d2

.

3.3.1 M–estimator for Generalized Matrix Completion

A regularized M–estimate as is proposed as our candidate parameter ma-

trix Θ̂. The norm regularizer R(.) used is a convex surrogate for the structural

constraints, and is assumed to satisfy Assumption 3.3.1. For a suitable λ > 0,

Θ̂ = argmin
‖Θ‖max≤ α∗√

d1d2

d1d2

|Ω|
[∑

ij∈Ω

− logP(Yij|Θij)
]

+ λR(Θ)

= argmin
‖Θ‖max≤ α∗√

d1d2

d1d2

|Ω|
[∑

ij∈Ω

G(Θij)− YijΘij

]
+ λR(Θ). (3.4)

In the above estimator, for simplicity it is assumed that the domain of the mini-

mizing function spans all or Rd1×d2 . In cases where this is violated, additional con-

straints to restrict Θ to the domain could be imposed on the estimator and the results

and analysis in the following section still hold. The above optimization problem is

a convex program, and can be solved by any off–the shelf convex solvers.

3.3.2 Recovery Results

Let d = max{d1, d2}. Let R∗(.) = supR(X)≤1〈X, .〉 be the dual norm of the

regularizer R(.).

• Given a matrix norm R(.), the maximum and minimum subspace compatibil-
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ity constants of R(.) w.r.t the subspace M are defined as follows:

Ψ(M) = sup
Θ∈M\{0}

R(Θ)

‖Θ‖F
, Ψmin = inf

Θ 6={0}

R(Θ)

‖Θ‖F .

Thus, ∀Θ ∈M, Ψmin‖Θ‖F ≤ R(Θ) ≤ Ψ(M)‖Θ‖F .
• Finally, the following quantity will later be proved to be the RSC parameter

(Definition 2.1.5):

κR(d, |Ω|) := E
[√d1d2

|Ω| R∗
(∑

ij∈Ω

εijeie
∗
j

)]
, (3.5)

where the expectation is over the random sampling index set Ω, and over a

Rademacher sequence {εij : ∀(i, j) ∈ Ω}; here {ei ∈ Rd1}, {ej ∈ Rd2}
are the standard basis. This quantity κR(d, |Ω|) captures the interaction be-

tween the sampling scheme and the structural constraint as captured by the

regularizer (specifically its dual R∗).

Theorem 3.3.1. Let Θ̂ be the estimate from (3.4) with λ
2
≥ d1d2

|Ω| R
∗(PΩ(Y −g(Θ∗)).

Under Assumptions 3.3.1–3.3.3, if |Ω| ≥ c0Ψ2(M)d log d) for large enough c0,

then for any given constant β > 0, ∃ a constant Kβ > 0 such that, us-

ing µL := e
− 2ηα∗√

d1d2

(
Kβ − 64

c0

√
|Ω|κ2

R
(d,|Ω|)

d log d

)
, the following holds with probability

> 1− 4e−(1+β)Ψ4
min log2 d:

‖Θ̂−Θ∗‖2
F ≤ Ψ2(M) max

{
3λ2

2µ2
L

,
c2

0α
∗2d log d

|Ω|

}
,

provided µL > 0. �

In the above theorem, η and α∗ ≥ αsp(Θ
∗)‖Θ∗‖F are constants from As-

sumptions 3.3.2 and 3.3.3, respectively.

An important special case of the problem is when the parameter matrix Θ∗,

is assumed to be of a low rank r � min{d1, d2} commonly induced using the
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decomposable nuclear norm. Let {uk ∈ Rd1} and {vk ∈ Rd2}, k ∈ [r] be the

left and right singular vectors, respectively of Θ∗. Let the column and row span of

Θ∗ be U∗ , col(Θ∗) = span{ui} and V ∗ , row(Θ∗) = span{vj}, respectively.

Define:
M := {Θ : row(Θ) ⊆ V ∗, col(Θ) ⊆ U∗}, and

M
⊥

:= {Θ : row(Θ) ⊆ V ∗⊥, col(Θ) ⊆ U∗⊥}.
(3.6)

It can be verified that, M 6= M, however, M ⊂M.

Corollary 3.3.2. Let Θ∗ be a low rank matrix of rank atmost r � min{d1, d2}. If

further, ∀(i, j), (Yij − g(Θ∗ij)) are sub–Gaussian (Definition 2.3.2) with parameter

b, and |Ω| > c0rd log d for large enough constant c0. Given any β > 0, there

exists constants cβ > 0, Cβ > 0 and Kβ > 0, such that using R(.) = ‖.‖∗ and
λ
2

:= cβ
√
d1d2b

√
d log d
|Ω| in (3.4), w.p. > 1− 4e−(1+β) log2 d − e−(1+β) log(d),

1

d1d2

‖Θ̂−Θ∗‖2
F ≤ Cβ

max{b2, α∗2/d1d2}
µ2
L

(
rd log d

|Ω|

)
,

where µL = Kβe
− 2ηα∗√

d1d2 > 0.

Remark 1: Note that the above results hold for the minimizer Θ̂ of the

convex program in (3.4) for any α∗ ≥ αsp(Θ
∗)‖Θ∗‖F ; in particular it holds with

α∗ = αsp(Θ
∗)‖Θ∗‖F , where 1 ≤ αsp(Θ

∗) ≤
√
d1d2. While in practice α∗ is chosen

through cross–validation, the theoretical bound in Corollary 3.3.2 can be tightened

to the following (if ‖Θ‖F ≥ 1):

‖Θ̂−Θ∗‖2
F

‖Θ∗‖2
F

≤ Cβ
α2

sp(Θ
∗) max {b2, 1}
µ2
L

(
rd log d

|Ω|

)
. (3.7)

Similar bound can be obtained for Theorem 3.3.1.

Remark 2: b2 is a measure of noise per entry; ∀(i, j),Var(Yij − g(Θ∗ij)) ≤
b2. Note that, in the absence stronger matrix incoherence assumptions, only an

approximate recovery is guaranteed even as b→ 0.
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3.3.3 Discussions

The richness of the class of exponential family distributions has been used

in other settings to provide general statistical frameworks. Kakade et al. [85] pro-

vide a generalization of compressed sensing problem to general exponential family

distributions. However, as discussed in Section 2.2.1, the typical analysis from

compressed sensing cannot be immediately extended to matrix completion case,

since the sampling operator PΩ does not satisfy the restricted isometry like proper-

ties. There have been extensions of classical probabilistic PCA [146] from Gaus-

sian noise models to exponential family distributions [43, 113, 57]. There have

also been recent extensions of probabilistic graphical model classes, beyond Gaus-

sian and Ising models, to multivariate extensions of exponential family distribu-

tions [159, 161]. More complicated probabilistic models have also been proposed

in the context of collaborative filtering [112, 131], but these typically involve non–

convex optimization, and it is difficult to extend the rigorous statistical analyses of

the form in this paper (and in the matrix completion literature) to these models.

Finally, prior to this work there had been some work for the specific case of binary

data under Bernoulli distribution by [45], but generalizations to other data–types

and distributions is largely unexplored.

Proof of the results in Appendix A uses elements from Negahban et al. [115]

where authors analyze the case of low rank structure and additive noise, and estab-

lish a form of restricted strong convexity (RSC) for squared loss over subset of

matrix entries (closely relates to the special case, when the exponential family dis-

tribution assumed in (3.1) is Gaussian). However, showing such an RSC condition

for structured matrix entries under the negative log–likelihood losses associated

with general exponential family distributions involved some non-trivial and novel

proof techniques. Further, a much simpler proof of the result is provided that more-
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over only required a low–spikiness condition rather than a multiplicative spikiness

and structural constraint.

3.4 Experiments

Simulated experiments are provided to corroborate the theoretical guaran-

tees, focusing on Corollary 3.3.2 for low rank matrix completion using observations

from any member of the general class of exponential family distributions. Three

well known members of exponential family are studied which are suitable for dif-

ferent data–types, namely Gaussian, Bernoulli, and binomial — popular choices for

modeling continuous valued, binary, and count valued data, respectively.

3.4.1 Experimental Setup

Low rank ground truth parameter matrices Θ∗ ∈ Rd1×d2 are created,

with sizes d ∈ {50, 100, 150, 200} (for simplicity consider square matrices,

d1 = d2 = d). The rank of Θ∗ are set to r = 2 log d. For each d and various

values of |Ω|, subsets Ω ⊂ [d] × [d] are first uniformly sampled, and then obser-

vations (Yij)(i,j)∈Ω are sampled from the different members of exponential family

distributions parameterized by Θ∗.

Evaluation:

For each member of the exponential family of distributions considered, the perfor-

mance of the proposed M–estimator can be measured either in parameter space

as ‖Θ̂−Θ∗‖2F
‖Θ∗‖2F

, or in observation space using an appropriate error metric err(Ŷ , Y ),

where Ŷ is the maximum likelihood estimate of the recovered distribution, Ŷ =

argmaxY P(Y |Θ̂) (RMSE, MAE are used in the plots). From Corollary 3.3.2,

|Ω| = O(rd log d) samples are required for consistent recovery. Thus, the error
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metrics are compared against the “normalized” sample size, |Ω|
rd log d

.

Parameter Recovery Error: The results are plotted (a) against the propor-

tion of the total entries sampled |Ω|
d1d2

(left), and (b) against the “normalized” sample

size |Ω|
rd log d

(right) for comparison. Figures 3.1–3.3 plot the resultant performance

of the proposed estimator for samples from Gaussian, Bernoulli, and binomial dis-

tributions, respectively.
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Figure 3.1: Parameter Error when measured (a) against proportion of the sampled
values, and (b) against the ‘normalized” sample size, when the distribution of the
observations P(Y |Θ∗), is Gaussian
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Figure 3.2: Parameter Error when measured (a) against proportion of the sampled
values, and (b) against the ‘normalized” sample size, when the distribution of the
observations P(Y |Θ∗), is Bernoulli
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Figure 3.3: Parameter Error when measured (a) against proportion of the sampled
values, and (b) against the ‘normalized” sample size, when the distribution of the
observations P(Y |Θ∗), is Binomial

It can be seen from the plots that the error converges to small values pro-

portional to input variance corroborating consistency of estimator; indeed |Ω| >
1.5rd log d samples suffice for convergence. Further, aligning of the curves for

different d against “normalized” sample size (right) corroborates the convergence

rates. Note that the curves do not align against unnormalized sample size (left).

Sample Recovery Error: In Figure 3.4 results for sample recovery show

trends similar to those under parameter recovery. The curves (for different d) plotted

against “normalized” sample size, align and converge corroborating our results.
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Figure 3.4: Appropriate error metric between observation matrix Y , and the MLE
estimate from (3.4) Ŷ , plotted against “normalized” sample size, when entries of Y
are generated from (a) Gaussian, (b) Bernoulli, and (c) binomial distributions
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Chapter 4

Matrix Completion under General Structures

This chapter ∗ presents a unified analysis of matrix completion under gen-

eral low dimensional structural constraints induced by any norm regularization. In

a key contribution, two estimators for the general problem of structured matrix

completion are proposed, and unified upper bounds on the sample complexity and

the recovery error are derived. Further, two intermediate results are derived that

are of independent interest: (a) in characterizing the size or complexity of low di-

mensional subsets in high dimensional ambient space, a certain partial complexity

measure encountered in the analysis of matrix completion problems is character-

ized in terms of a well understood complexity measure of Gaussian widths, and (b)

it is shown that a useful form of restricted strong convexity (RSC) holds for ma-

trix completion problems under general norm regularization. The proposed frame-

work for general norm regularization is motivated by several non-trivial examples

of norm regularized structures, and the special case of the recently proposed spec-

tral k-support norm is analysed in detail.

∗The results in this chapter appear in a conference publication [61]. The coauthors contributed
equally.

35



4.1 Introduction

For well–posed estimation in high dimensional problems, including ma-

trix completion, it is imperative that low dimensional structural constraints are

imposed on the target (Section 2.2.2). For matrix completion, the special case

of low–rank structure has been widely studied and several existing work propose

tractable estimators with near–optimal recovery guarantees for (approximate) low–

rank matrix completion (see Section 2.2.1 for related work). However, the scope

of matrix completion extends for low dimensional structures far beyond simple

low–rankness. This chapter presents a unified statistical analysis of matrix com-

pletion under general low dimensional structures that are induced by any suitable

norm regularization. Two norm–regularized matrix completion estimators are stud-

ied, the constrained norm minimizer, and the generalized matrix Dantzig selector

(Section 4.2.2). The main results in Theorem 4.3.1a–4.3.1b provide unified upper

bounds on the sample complexity and estimation error of these estimators for matrix

completion under a general norm regularization. Existing results on matrix com-

pletion with low rank or other decomposable structures can be obtained as special

cases of Theorem 4.3.1a–4.3.1b.

Such a unified analysis of norm regularized estimators is motivated by re-

cent work on high dimensional estimation using global (sub) Gaussian measure-

ments [33, 10, 150, 13, 153, 23]. A key ingredient in the recovery analysis of high

dimensional estimation involves establishing some variation of a certain Restricted

Isometry Property (RIP) [28] of the measurement operator. It has been shown that

such properties are satisfied by Gaussian and sub–Gaussian measurement operators

with high probability. However, as has been noted before by Candes et al. [26],

owing to highly localized measurements, such conditions are not satisfied for the

matrix completion problem, and the existing results based on global (sub) Gaussian
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measurements are not directly applicable. In fact, one of the questions addressed

is: given the radically limited measurement model in matrix completion, by how

much would the sample complexity of estimation increase beyond the known sam-

ple complexity bounds for global (sub) Gaussian measurements? Theorem 4.3.1

provides an upper bound on the sample complexity for matrix completion, which

is within a log d factor over sample complexity bound for estimation under global

(sub) Gaussian measurements [33, 13, 23]. While the result was previously known

for low rank matrix completion using nuclear norm minimization [115, 89], with a

careful use of results from generic chaining [145], it is shown that the log d factor

suffices for structures induced by any norm! As a key intermediate result, a useful

form of restricted strong convexity (RSC) [116] is derived for the localized mea-

surements encountered in matrix completion over error sets arising from general

norm regularization. The result substantially generalizes existing RSC results for

matrix completion under the special cases of nuclear norm and decomposable norm

regularization [115, 62].

The analysis in this chapter uses tools from generic chaining [145] to char-

acterize the main results (Theorem 4.3.1a–4.3.1b) in terms of the Gaussian width

(Definition 2.3.4) of certain error sets. Gaussian widths provide a powerful geomet-

ric characterization for quantifying the complexity of a structured low dimensional

subset in a high dimensional ambient space. Numerous tools have been devel-

oped in the literature for bounding the Gaussian width of structured sets. A unified

characterization of results in terms of Gaussian width has the advantage that this

literature can be readily leveraged to derive new recovery guarantees for matrix

completion under suitable structural constraints (Section 2.3.2).

In addition to the theoretical elegance of such a unified framework, iden-

tifying useful but potentially non–decomposable low dimensional structures is of
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significant practical interest. The broad class of structures enforced through sym-

metric convex bodies and symmetric atomic sets [33] can be analyzed under this

paradigm (Section 4.2.1). Such specialized structures can capture the constraints

in certain applications better than simple low–rankness. In particular, a non–trivial

example of the spectral k–support norm introduced by McDonald et al. [111] is

discussed in detail.

Contributions:

• Theorem 4.3.1a–4.3.1b provide unified upper bounds on sample complexity

and estimation error for matrix completion estimators using general norm

regularization: a substantial generalization of the existing results on matrix

completion under structural constraints.

• Theorem 4.3.1a is applied to derive statistical results for the special case of

matrix completion under spectral k–support norm regularization.

• (a) An intermediate result, Theorem B.3.2 shows that under any norm regu-

larization, a variant of Restricted Strong Convexity (RSC) holds in the matrix

completion setting with extremely localized measurements. Further, a cer-

tain partial measure of complexity of a set is encountered in matrix comple-

tion analysis (4.9). (b) Another intermediate result, Theorem 4.3.2 provides

bounds on the partial complexity measures in terms of a better understood

complexity measure of Gaussian width. These intermediate results are of

independent interest beyond the scope of this chapter.

4.2 Structured Matrix Completion

Denote the ground truth target matrix as Θ∗ ∈ Rd1×d2; let d=d1+ d2. In the

noisy matrix completion, observations consists of individual entries of Θ∗ observed
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through an additive noise channel. In this chapter, notation G and g are reserved

to denote a matrix and vector, respectively, with independent standard Gaussian

random variables as entries.

Sub–Gaussian Noise: Given, a list of independently sampled standard basis Ω =

{Es = eise
>
js : is ∈ [d1], js ∈ [d2]} with potential duplicates, observations (ys)s ∈

R|Ω| are given by:

ys = 〈Θ∗, Es〉+ ξηs, for s = 1, 2, . . . , |Ω|, (4.1)

where η ∈ R|Ω| is the noise vector of independent sub–Gaussian random variables

with E[ηs] = 0 and Var(ηs) = 1, and ξ2 is scaled variance of noise per observation.

Also, without loss of generality, assume normalization ‖Θ∗‖F = 1.

Uniform Sampling: The entries in Ω are drawn independently and uniformly:

Es ∼ uniform{eie>j : i ∈ [d1], j ∈ [d2]}, for Es ∈ Ω. (4.2)

Let {ek} be the standard basis of R|Ω|. Given Ω, define PΩ : Rd1×d2 → R|Ω| as∗:

PΩ(X) =
∑|Ω|

s=1〈X,Es〉es (4.3)

Structural Constraints For matrix completion with |Ω|< d1d2, low dimensional

structural constraints on Θ∗ are necessary for well–posedness. It is assumed that

for some low–dimensional model space M, Θ∗ ∈M is induced through a surrogate

norm regularizer R(.). No further assumptions are made on R other than it being a

norm in Rd1×d2 .

Low Spikiness As noted earlier for matrix completion under uniform sampling, fur-

ther restrictions on Θ∗ (beyond low dimensional structure) are required to ensure

∗Note that PΩ definition here differs slightly from that in Chapter 3
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that the most informative entries of the matrix are observed with high probabil-

ity (refer Section 2.2.1 for a longer discussion). As in Chapter 3, a restriction on

spikiness ratio is used to preclude “spiky” target matrices in the analysis.

Assumption 4.2.1 (Spikiness Ratio). There exists α∗ > 0, such that

‖Θ∗‖∞ = αsp(Θ
∗)‖Θ

∗‖F√
d1d2
≤ α∗√

d1d2
. �

4.2.1 Special Cases and Applications

Example 1 (Low Rank and Decomposable Norms). Low–rankness is the most

common structure used in many matrix estimation problems including collabora-

tive filtering, PCA, spectral clustering, etc. Convex estimators for low–rank ma-

trix completion using nuclear norm ‖Θ‖∗ regularization has been widely studied

statistically [26, 25, 127, 115, 87, 88, 93, 45, 89, 90]. A brief extension of such

analysis to general decomposable norms (Definition 2.1.3) — norms R, such that

∀X, Y ∈(M,M⊥),R(X+Y )=R(X)+R(Y ) — was explored in [62].

Example 2 (Spectral k–support Norm). A non–trivial and significant example of

norm regularization that is not decomposable is the spectral k–support norm re-

cently introduced by McDonald et al. [111]. Spectral k–support norm is essentially

the vector k–support norm (overlapping group lasso penalty over all groups for k–

sparsity) [11] applied on the singular values σ(Θ) of a matrix Θ ∈ Rd1×d2 .

Without loss of generality, let d̄ = d1 = d2. Let Gk = {g ⊆ [d̄] : |g| ≤ k} be

the set of all subsets [d̄] of cardinality at most k, and let V(Gk) = {(vg)g∈Gk : vg ∈
Rd̄, supp(vg) ⊆ g}. The spectral k–support norm is given by:

‖Θ‖k-sp = inf
v∈V(Gk)

{∑

g∈Gk

‖vg‖2 :
∑

g∈Gk

vg = σ(Θ)
}
, (4.4)

McDonald et al. [111] showed that spectral k–support norm is a special case of

cluster norm [76]. It was further shown that in multi–task learning, wherein the
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tasks (columns of Θ∗) are assumed to be clustered into dense groups, the cluster

norm provides a trade–off between intra–cluster variance, (inverse) inter–cluster

variance, and the norm of the task vectors. These existing work [76, 111] also

demonstrate superior empirical performance of cluster norms (and k–support norm)

over traditional trace norm on bench marked matrix completion and multi–task

learning datasets. However, statistical analysis of matrix completion using spectral

k–support norm regularization has not been previously studied. In Section 4.3.2,

the consequence of Theorem 4.3.1 for this non–trivial special case is discussed.

Example 3 (Additive Decomposition). Elementwise sparsity is a common struc-

ture often assumed in high–dimensional estimation problems. However, in matrix

completion, elementwise sparsity conflicts with Assumption 4.2.1 (as well as more

traditional incoherence assumptions). Indeed, it is easy to see that with high proba-

bility most of the |Ω| � d1d2 uniformly sampled observations will be zero, and an

informed prediction is infeasible. However, elementwise sparse structures can of-

ten be modelled within an additive decomposition framework, where Θ∗ =
∑

k Θ(k)

and each component matrix Θ(k) is in turn structured (e.g. low rank+sparse used

for robust PCA [24]). In such structures, there is no scope for recovering sparse

components outside the observed indices, and it is assumed that: Θ(k) is sparse

⇒ supp(Θ(k)) ⊆ Ω. These cases can be studied within the proposed framework

under additional regularity assumptions that enforces non–spikiness on the super-

posed matrix. A candidate norm regularizer for such structures is the weighted

infimum convolution of individual structure inducing norms [24, 160],

Rw(Θ) = inf
{∑

k

wkRk(Θ
(k)) :

∑

k

Θ(k) = Θ
}
.

Example 4 (Other Applications). Other potential applications including cut matri-

ces [140, 33], structures induced by compact convex sets, norms inducing struc-
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tured sparsity assumptions on the spectrum of Θ∗, etc. can also be handled under

the paradigm of this chapter.

4.2.2 Structured Matrix Estimator

Let R be the norm surrogate for the structural constraints on Θ∗, and R∗

denote its dual norm.

Constrained Norm Minimizer

Θ̂cn = argmin
‖Θ‖∞≤ α∗√

d1d2

R(Θ) s.t. ‖PΩ(Θ)− y‖2 ≤ λcn. (4.5)

Generalized Matrix Dantzig Selector

Θ̂ds = argmin
‖Θ‖∞≤ α∗√

d1d2

R(Θ) s.t.
√
d1d2

|Ω| R∗P∗Ω(PΩ(Θ)− y) ≤ λds, (4.6)

where P∗Ω : RΩ → Rd1×d2 is the linear adjoint of PΩ, i.e. 〈PΩ(X), y〉 = 〈X,P∗Ω(y)〉.

Theorem 4.3.1a–4.3.1b give consistency results for (4.5) and (4.6), respec-

tively, under certain conditions on the parameters λcn > 0, λds > 0, and α∗ > 1. In

particular, these conditions assume knowledge of tight bounds on noise variance ξ2

and spikiness ratio αsp(Θ
∗). In practice, typically ξ and αsp(Θ

∗) are unknown and

the parameters are tuned by validating on held out data.

4.3 Main Results

Define the following “restricted” error cone and its subset:

TR = TR(Θ∗) = cone{∆ : R(Θ∗ + ∆) ≤ R(Θ∗)}, and ER = TR ∩ Sd1d2−1, (4.7)

where recall Sd1d2−1 = {X ∈ Rd1×d2 : ‖X‖F = 1}.
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Let Θ̂cn and Θ̂ds be the estimates from (4.5) and (4.6), respectively. If λcn

and λds are chosen such that Θ∗ belongs to the feasible sets in (4.5) and (4.6),

respectively, then the error matrices ∆̂cn = Θ̂cn − Θ∗ and ∆̂ds = Θ̂ds − Θ∗ are

contained in TR.

Recall definition of Gaussian width wG from (2.14). Further, define the

following norm compatibility constant.

Definition 4.3.1 (Norm Compatibility Constant [116]). The compatibility constant

of a norm R : V→ R under a closed convex cone C ⊂ V is defined as follows:

ΨR(C) = sup
X∈C\{0}

R(X)

‖X‖F
. (4.8)

Theorem 4.3.1a (Constrained Norm Minimizer). Under the problem setup in Sec-

tion 4.2, let Θ̂cn = Θ∗+∆̂cn be the estimate from (4.5) with λcn = 2ξ
√
|Ω|. For large

enough c0, if |Ω| > c2
0w

2
G(ER) log d, then there exists an RSC parameter κc0 > 0

with κc0 ≈ 1−o
(

1√
log d

)
, and constants c1 and c2 such that, with probability greater

than 1− exp (−c1w
2
G(ER))− 2 exp (−c2w

2
G(ER) log d),

1

d1d2

‖∆̂cn‖2
F ≤ 4 max

{
ξ2

κc0
,
α∗2

d1d2

√
c2

0w
2
G(ER) log d

|Ω|

}
.

Theorem 4.3.1b (Matrix Dantzig Selector). Under the problem setup in Sec-

tion 4.2, let Θ̂ds = Θ∗+∆̂ds be the estimate from (4.6) with λds ≥ 2ξ
√
d1d2

|Ω| R∗P∗Ω(η).

For large enough c0, if |Ω| > c2
0w

2
G(ER) log d, then there exists an RSC parameter

κc0 > 0 with κc0 ≈ 1 − o
(

1√
log d

)
, and a constant c1 such that, with probability

greater than 1− exp(−c1w
2
G(ER)),

1

d1d2

‖∆̂ds‖2
F ≤16 max

{
λ2

dsΨ
2
R(TR)

κ2
c0

,
α∗2

d1d2

√
c2

0w
2
G(ER) log d

|Ω|

}
.
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Remarks:

1. If R(Θ) = ‖Θ‖∗ and rank(Θ∗) = r, then w2
G(ER) ≤ 3dr, ΨR(TR) ≤ 8

√
r

and
√
d1d2

|Ω| ‖P∗Ω(η)‖2 ≤ 2
√

d log d
|Ω| w.h.p [33, 53, 115]. Using these bounds in

Theorem 4.3.1b recovers near–optimal results for low rank matrix completion

under spikiness assumption [115].

2. For both estimators, upper bound on sample complexity is dominated by the

square of Gaussian width which is often considered the effective dimension of

a subset in high dimensional space and plays a key role in high dimensional

estimation under Gaussian measurement ensembles. The results show that, in-

dependent of R(.), the upper bound on sample complexity for consistent matrix

completion with highly localized measurements is within a log d factor of the

known sample complexity of ∼ w2
G(ER) for estimation from Gaussian measure-

ments [13, 33, 153, 23].

3. First term in estimation error bounds in Theorem 4.3.1a–4.3.1b scales with ξ2

which is the per observation noise variance. The second term is an upper bound

on error that arises due to unidentifiability of Θ∗ within a certain radius under

the spikiness constraints [115]; in contrast [25] show exact recovery when ξ = 0

using more stringent matrix incoherence conditions.

4. Bound on ∆̂cn from Theorem 4.3.1a is comparable to the result by

Candés et al. [25] for low rank matrix completion under non–low–noise regime,

where the first term dominates, and those of [33, 150] for high dimensional es-

timation under Gaussian measurements. With a bound on w2
G(ER), it is easy to

specialize this result for new structural constraints. However, this bound is po-

tentially loose and asymptotically converges to a constant error proportional to

the noise variance ξ2.

5. The estimation error bound in Theorem 4.3.1b is typically sharper than that in
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Theorem 4.3.1a. However, for specific structures, using application of Theo-

rem 4.3.1b requires additional bounds on R∗P∗Ω(η) and ΨR(TR) besides w2
G(ER).

4.3.1 Partial Complexity Measures

Recall that G ∈ Rd1×d2 , and g ∈ R|Ω| denotes a random matrix and vector

respectively with each entry sampled independently from standard normal distribu-

tion, and wG(S) = E supX∈S〈X,G〉 (Definition 2.3.4).

Definition 4.3.2 (Partial Complexity Measures). Given a randomly sampled Ω =

{Es ∈ Rd1×d2}, and a centered random vector η ∈ R|Ω|, the partial η–complexity

measure of S is given by:

wΩ,η(S) = EΩ,η sup
X∈S−S

〈X,P∗Ω(η)〉. (4.9)

Special cases of η being a vector of standard Gaussian g, or standard

Rademacher ε (i.e. εs ∈ {−1, 1} w.p. 1/2) variables, are of particular interest.

Note: For symmetric η, like g and ε, wΩ,η(S) = 2EΩ,η supX∈S〈X,P∗Ω(η)〉, and the

later expression will be used interchangeably ignoring the constant term. �

Theorem 4.3.2 (Partial Gaussian Complexity). Let S ⊆ Bd1d2 with non–empty

interior, and let Ω be sampled according to (4.2). ∃ universal constants k1, k2, K1

and K2 such that:

wΩ,g(S) ≤ k1

√
|Ω|
d1d2

wG(S) + k2

√
EΩ sup

X,Y ∈S
‖PΩ(X − Y )‖2

2

wΩ,g(S) ≤ K1

√
|Ω|
d1d2

wG(S) +K2 sup
X,Y ∈S

‖X − Y ‖∞.
(4.10)

Also, for centered i.i.d. sub–Gaussian vector η ∈ R|Ω|, ∃ constant K3 s.t.

wΩ,η(S) ≤ K3wΩ,g(S).

Note: For Ω ( [d1] × [d2], the second term in (4.10) is a consequence of

the localized measurements.
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4.3.2 Spectral k–Support Norm

Spectral k–support norm was introduced in Section 4.2.1. The estimators

from (4.5) and (4.6) for spectral k–support norm can be efficiently solved via prox-

imal methods [111]. The analysis for upper bounding the Gaussian width of the

descent cone for the vector k–support norm by [129] is extended to the case of

spectral k–support norm. WLOG let d1 = d2 = d̄. Let σ∗ ∈ Rd̄ be the vector of

singular values of Θ∗ sorted in non–ascending order. Let r ∈ {0, 1, 2, . . . , k − 1}
be the unique integer satisfying: σ∗k−r−1 > 1

r+1

∑p
i=k−r σ

∗
i ≥ σ∗k−r. Denote

I2 = {1, 2, . . . , k− r− 1} and I1 = {k− r, k− r+ 1, . . . , s}. Finally, for I ⊆ [d̄],

(σ∗I )i = 0 ∀i ∈ Ic, and (σ∗I )i = σ∗i ∀i ∈ I .

Lemma 4.3.3. If rank of Θ∗ is s and ER is the error set for R(Θ) = ‖Θ‖k–sp, then

w2
G(ER) ≤ s(2d̄− s) +

((r + 1)2‖σ∗I2‖2
2

‖σ∗I1‖2
1

+ |I1|
)

(2d̄− s).

Proof of the above lemma is provided in the appendix. Lemma 4.3.3 can be

combined with Theorem 4.3.1a to obtain recovery guarantees for matrix completion

under spectral k–support norm.

4.4 Discussions and Comparisons to Related Work

Sample Complexity: For consistent recovery in high dimensional convex

estimation, it is desirable that the descent cone at the target parameter Θ∗ is “small”

relative to the feasible set (enforced by the observations) of the estimator. Thus, it is

not surprising that the sample complexity and estimation error bounds of an estima-

tor depends on a measure of complexity/size of the error cone at Θ∗. Results in this

chapter are largely characterized in terms of a widely used complexity measure of

Gaussian width wG(.), and can be compared with the literature on estimation from

Gaussian measurements.
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Error Bounds: Theorem 4.3.1a provides estimation error bounds that de-

pends only on the Gaussian width of the descent cone. In non–low–noise regime,

this result is comparable to analogous results of constrained norm minimization

[24, 33, 150]. However, this bound is potentially loose owing to data–fit term using

squared loss rather than a matching dual norm, and asymptotically converges to a

constant error proportional to the noise variance ξ2.

A tighter analysis on the estimation error can be obtained for the matrix Dantzig se-

lector (4.6) from Theorem 4.3.1b. However, application of Theorem 4.3.1b requires

computing high probability upper bound on R∗P∗Ω(η). The literature on norms of

random matrices [50, 103, 152, 149] can be exploited in computing such bounds.

Beside, in special cases: if R(.) ≥ K‖.‖∗, then KR∗(.) ≤ ‖.‖op can be used to

obtain asymptotically consistent results.

Finally, under near zero–noise, the second term in the results of Theo-

rem 4.3.1 dominates. In this low noise setting, the bounds are weaker than that of

[24, 88] owing to the relaxation of stronger incoherence assumption. The closest

related work is the result on consistency of matrix completion under decomposable

norm regularization briefly discussed in Section 3.3.2 (refer [62]). Results in this

chapter are a strict generalization to general norm regularized (not necessarily

decomposable) matrix completion. Non–trivial examples of applications where

structures enforced by such non–decomposable norms are of interest are discussed

in Section 4.2.1. Further, in contrast to the results derived in this chapter that

are based on Gaussian width, the RSC parameter in [62] depends on a modified

complexity measure κR(d, |Ω|) (3.5). An advantage of results based on Gaussian

width is that, application of Theorem 4.3.1 for special cases can greatly benefit

from the numerous tools in the literature for the computation of wG(.).
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Chapter 5

Collective Matrix Completion

In this chapter∗ , the collective matrix completion problem of jointly recov-

ering a collection of matrices with shared structure from partial (and potentially

noisy) observations is addressed. The problem is studied under a joint low–rank

structure, wherein each component matrix is low–rank and the latent space of the

low rank factors corresponding to each entity is shared across the entire collection.

A rigorous algebra for the collective–matrix structure is developed, and a convex

estimate for solving the collective matrix completion problem is proposed. The

main result in this chapter provides the first non–trivial theoretical guarantees for

consistency of collective matrix completion. It is shown that, for a subset of entity–

relationship structures defining a collection of matrices (see Assumption 5.3.3),

with high probability, the proposed estimator exactly recovers the true matrices

whenever certain sample complexity requirements (dictated by Theorem 5.4.1) are

met. A scalable approximate algorithm is proposed to solve the proposed convex

program, and the results are corroborated using simulated and real data experi-

ments.

∗The results in this chapter appear in a conference publication [63]. The coauthors contributed
equally.
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5.1 Introduction

In practical applications, data commonly arise in the form of multiple ma-

trices sharing correlated information. For example, in e–commerce applications,

data containing user preferences in multiple domains such as news, ads, etc., and

explicit user/item feature information such as demographics, social network, text

description, etc., are made available in the form of a collection of matrices that

are coupled through the common set of users/items. In such scenarios, the shared

structure among the matrices can be leveraged for better predictions.

In collective matrix completion problem setup, there are K ≥ 2 types of en-

tities, and data consists of a collection of V ≥ 1 interaction matrices called views.

Each view (component matrix) is an affinity relation between a pair of entity types,

e.g. user–movie rating matrix, item–features matrix, etc. The task in collective ma-

trix completion is to simultaneously complete one or more partially observed views

by potentially leveraging data from the entire collection. To this end, a joint low–

rank structure is commonly assumed, wherein each view is individually a low–rank

matrix, and the low dimensional factors for each entity type are shared across all

the views involving that entity type, i.e., for all entity types k, there is a low dimen-

sional factor representation Uk, and each view representing the interaction between

entity types k1 and k2 is a low rank matrix given by Uk1U
>
k2

. One could trivially ad-

dress collective matrix completion through separate low–rank matrix completions;

however, estimators that leverage shared structure are more attractive as they can

potentially alleviate two major problems that arise in standard matrix completion:

1. Data Sparsity: The algorithms and estimators proposed for traditional matrix

completion setting, fail under extremely sparse data. In a collective matrix

setting, this data sparsity issue can be mitigated by transferring information

from one or more related views. For example, in a multiple recommendation
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system where the data consists of ratings of a set of users for a subset of

items in multiple domains, say movies, books and TV shows. It is reasonable

to assume that user interests are related across the domains, and leveraging

this shared information can help mitigate data sparsity.

2. Cold Start: The existing estimators for matrix completion cannot handle an

entire missing row or column in a matrix. This problem, often referred as

cold start, can be overcome in a collective matrix setting if the entity cor-

responding to the missing row/column in a particular view has data in other

views sharing the entity. For example in recommendation systems with ac-

cess to user’s explicit features, recommendation for new user with no known

rating can be provided by jointly factorizing the user–feature and user–item

ratings matrices.

In this chapter a convex estimator is proposed for jointly estimating the a collection

of matrices under joint low rank structure and provide first non–trivial theoretical

guarantees for a large subset of collective matrix structures. Further, a vanilla adap-

tion of the Singular Value Thresholding (SVT) algorithm for the proposed estimate

[20, 22, 147] requires computing the complete SVD of a very large sized blockwise

concatenated matrix (5.2) within each iteration and thus is not scalable to large

datasets. To address sclability, an approximate algorithm is proposed by adapting

Hazan’s algorithm [67] for the proposed convex program.

A closely related work is the paper by Bouchard et al. [20], where the au-

thors propose the first convex estimator for collective matrix completion without

addressing the recovery guarantees of the estimator. Besides the convex estimator,

related work for collective matrix completion includes various non–convex estima-

tors and probabilistic models. A seminal paper on low rank collective matrix fac-

torization is the work by Singh et al. [138], in which the views are parameterized
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by the shared latent factor representation. The latent factors are learnt by minimiz-

ing a regularized loss function over the estimates. A Bayesian model for collective

matrix factorization was also proposed by the same authors [136, 137]. Various al-

gorithms and models for learning collective matrices are summarized in the thesis of

Singh [136]. Collective matrix factorization is also related to applications involving

multi–task learning and tensor factorization [106, 102, 8, 164, 166]. However, this

line of work involves complex non–convex optimizations and is difficult to provide

rigorous statistical analysis for.

Contributions:

• A convex program is proposed for the task of collective–matrix completion

building on a rigorous algebra developed for representation of collective ma-

trix structures (Section 5.2 and 5.3).

• The main result quantified first non–trivial sample complexity bounds for

consistent collective matrix completion. It is shown that for a subset of

entity–relationship structures of the collective matrix, with high probability,

the proposed estimator exactly recovers the true matrices whenever the sam-

ple complexity satisfies ∀k, |Ωk| ∼ O(nkRpolylogN) (Section 5.4.1).

• A scalable approximate algorithm is proposed for the optimization problem

(Section 5.4.3) and the results are corroborated through experiments on sim-

ulated and real life datasets (Section 5.5).

5.2 Collective–Matrix Structure

A collective–matrix structure denoted using script letters, X, M, etc, is used

to represent a collection of pairwise affinity relations among a set of K types of

entities. A collective–matrix X consists of a list of V matrices X = [Xv]
V
v=1 = [Xv :
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v = 1, 2, . . . , V ], wherein each component matrix Xv, called a view, is the affinity

matrix between a pair of entity types rv (along rows) and cv (along columns). In this

chapter, the collective matrices are restricted to static undirected affinity relations,

under which for a given pair of entity types k1, k2 ∈ {1, 2, . . . K}, there is at most

one affinity relation, Xv, defined between k1 and k2.

The entity–relationship structure defining a collective–matrix, is represented

by an undirected graph G, with nodes denoting the K entity types, and an edge

between nodes k1 and k2 implying that a view Xv with either (rv = k1, cv = k2)

or (rv = k2, cv = k1) exists in the collective matrix. Without loss of generality, let

the graph G form a single connected component, if not, each connected component

could be handled separately. An illustration of a collective matrix structure X and

its entity–relationship graph G is given in Figure 5.1 (a)–(b).

Let nk for k = 1, 2, . . . , K denote the number of instances of the kth entity

type, and letN =
∑

k nk. Then ∀v, Xv ∈ Rnrv×ncv and collective–matrices defined

by common entity–relationship graph G, belong to the following vector space:

X = Rnr1×nc1 × Rnr2×nc2 × . . .× RnrV ×ncV

Finally, for v ∈ {1, 2, . . . , V }, I(v) = {(i, j) : i ∈ [nrv ], j ∈ [ncv ]} = [nrv ]× [ncv ]

denotes the set of indices representing the elements in view v.

5.2.1 Equivalent Representations

For mathematical convenience, two alternate (equivalent) representations

are introduced for the collective-matrix structure. These representations will be

used interchangeably.

1. Entity Matrix Set Representation: A collective–matrix X, can be

equivalently represented as a set of K matrices X = [Xk]
K
k=1, such that Xk is a
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matrix formed by concatenating views involving the entity type k, i.e. the views

with either rv = k or cv = k. Let mk =
∑V

v=1 ncv1(rv=k) + nrv1(cv=k), where 1E is

an indicator variable for event E, then:

Xk := hcat{[Xv1(rv=k), X
>
v 1(cv=k)]

V
v=1} ∈ Rnk×mk . (5.1)

2. Block Matrix Representation: Collective–matrices can also be repre-

sented as blocks in a symmetric matrix of size N × N , where N =
∑

k nk [20].

Consider a symmetric matrix Z ∈ SN consisting of K × K blocks, wherein the

(k1, k2) block, denoted as Z[k1, k2], is of dimension nk1 × nk2 . The block matrix

representation of X is denoted as B(X) ∈ SN , such that:

B(X)[k1, k2] =





Xv if ∃v, s.t. rv = k1, cv = k2

X>v if ∃v, s.t. rv = k2, cv = k1

0 otherwise.
(5.2)

Define a projection operator Pv : SN → Rnrv×ncv , such that Pv(Z) = Z[rv, cv].

Alternatively, for any Z ∈ SN , Z = [Pv(Z)]Vv=1 ∈ X

These alternate representations for collective–matrix structure are illustrated in Fig-

ure 5.1 (c) and (d), respectively.

5.2.2 Collective–Matrix Algebra

Collective–Matrix Inner Product 〈X,Y〉 =
∑V

v=1〈Xv, Yv〉 = 1
2

∑K
k=1〈Xk,Yk〉 =

1
2
〈B(X),B(Y)〉.

Standard Orthonormal Basis The standard orthonormal basis for X is given by

{E(v,iv ,jv) : v ∈ [V ], (iv, jv) ∈ I(v)}, where E(v,iv ,jv) ∈ X has a value of 1 in the

(iv, jv)
th element of view v, and 0 everywhere else. Recall that I(v) = [nrv ]× [ncv ].

Collective–Matrix Frobenius Norm ‖X‖F =
√
〈X,X〉.
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Figure 5.1: An illustration of the various collective–matrix representations de-
scribed in Section 5.2

Joint Factorization and Collective–Matrix Rank A collective-matrix X ∈ X is

said to possess an R–dimensional joint factorization structure, if there exists a set

of factors {Uk ∈ Rnk×R}Kk=1, such that ∀v, Xv = UrvU
>
cv . The set of collective–

matrices in X that have a joint factorization structure of dimension R < ∞ is de-

noted by X̄ ⊆ X. For X ∈ X̄, the collective–matrix rank is defined as the minimum

value of R such that an R-dimensional joint factorization exists for X.

5.2.3 Atomic Decomposition of Collective–Matrices

Consider the following atomic set of rank–1 collective–matrices.

A = ext
(
conv{[Pv(uu>)]Vv=1 : u ∈ RN , ‖u‖2 = 1}

)
, (5.3)

where conv(), and ext() return the convex hull, and extreme points of a set, re-

spectively. Recall that N =
∑

k nk, and Pv : SN → Rnrv×ncv extracts the block

corresponding to the view v in an N ×N symmetric matrix. From the block matrix

representation of collective matrices (5.2), it can be noted that X = aff(A ).
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Proposition 5.2.1. A collective–matrix has a joint factorization structure if and

only if it belongs to the conic hull of A , i.e. X̄ = cone(A ).

Proof: X has a joint factorization ⇐⇒ X = Pv(UU
>) for U ∈ RN×k ⇐⇒

X =
∑

k σkPv(uku
>
k ), where ‖uk‖2 = 1, σk ≥ 0 ⇐⇒ X ∈ cone(A ). �

The following functions are defined on A :

1. The gauge function of A will henceforth be referred as the Collective–

Matrix Atomic Norm:

‖X‖A := inf{t > 0 : X ∈ t · conv(A )}. (5.4)

By convention, ‖X‖A =∞ if X ∈ X \ X̄.

2. The support function of A :

‖X‖∗A := sup{〈X,A〉 : A ∈ A }. (5.5)

Remarks

1. ‖X‖A is not always a norm. It is a norm if A is centrally symmetric, i.e. if

A ∈ A ⇔ −A ∈ A .

2. However, ‖X‖A is always a convex function and exhibits many norm–like

properties. ∀X ∈ X, ‖X‖A ≥ 0 and ‖X‖A = 0 iff X = 0 (positivity); ∀a ≥
0, ‖aX‖A = a‖X‖A (positive homogeneity); and ‖X + Y‖A ≤ ‖X‖A +

‖Y‖A (triangle inequality). The only property of norm ‖.‖A does not satisfy

for general A is that of absolute homogeneity, specifically, in general it is

possible that ‖X‖A <∞ and ‖ − X‖A =∞ 6= ‖X‖A .

3. If ‖X‖A is a norm, then ‖X‖∗A is its dual norm.
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5.2.3.1 Primal Dual representation

For all X ∈ X̄, ‖X‖A < ∞, and the atomic norm defined in (5.4), can be

equivalently defined using the following primal and dual optimization problems.

(P ) ‖X‖A = min
{λr≥0}

∑
r λr s.t.

∑
r λrAr = X (5.6)

(D) ‖X‖A = max
Y∈X
〈X,Y〉 s.t. ‖Y‖∗A ≤ 1 (5.7)

Proposition 5.2.2. ∀X ∈ X̄, convex programs (P ) and (D) defined above are equiv-

alent to:

(P ) ‖X‖A = min
Z∈SN

tr(Z) s.t. Pv(Z) = Xv∀ v,

(D) ‖X‖A = max
Y∈X
〈X,Y〉 s.t.

1

2
B(Y) 4 I,

where recall B(.) and Pv from (5.2). �

Finally, define the following set of “sign” collective–matrices:

E (X) = {E ∈ X : ‖X‖A = 〈E,X〉, ‖E‖∗A = 1} (5.8)

5.3 Convex Collective–Matrix Completion

Denote the ground truth collective–matrix as M ∈ X̄. A partially observed

setting is considered in which only a subset of the entries of M are observed under

a random sampling model. Denote the set of observed entries as Ω = {(vs, is, js) :

(is, js) ∈ I(vs), s = 1, 2, . . . , |Ω|}. For conciseness, denote the standard basis

corresponding to the entries in Ω as E(s) = E(vs,is,js), for s = 1, 2, . . . , |Ω|. Consider

two observation models:

1. Noise–free Model: M is observed on Ω without any noise, ∀s, ys = 〈M,E(s)〉.
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2. Additive Noise Model: The values of M on Ω are observed with additive

random noise, i.e. ∀s, ys = 〈M,E(s)〉+ ηs.

The task in collective–matrix completion is to recover M from {ys}|Ω|s=1. Given Ω

and X ∈ X, define the following projection:

PΩ(X) =
V∑

v=1

∑

(i,j)∈I(v)

1[(v,i,j)∈Ω]〈X,E(v,i,j)〉E(v,i,j). (5.9)

5.3.1 Assumptions

Assumption 5.3.1 (R–dimensional joint factorization). The ground truth

collective–matrix M is assumed to have a collective–matrix rank of R � N , i.e.

∃{Uk ∈ Rnk×R}, such that ∀v, Mv = UrvU
>
cv . �

Analogous to matrices, ∀X ∈ X̄, define the following:

T (X) =aff{Y ∈ X̄ : ∀ v, rowSpan(Yrv) ⊆ rowSpan(Xrv)

or rowSpan(Ycv) ⊆ rowSpan(Xcv)} (5.10)

T⊥(X) ={Y ∈ X̄ : ∀ v, rowSpan(Yv) ⊥ rowSpan(Xv)

and colSpan(Yv) ⊥ colSpan(Xv)} (5.11)

Note: the entity matrix set representation (5.1) is used in (5.10).

For conciseness, T (M) and T⊥(M) will henceforth be denoted simply as T

and T⊥, respectively. Let PT and PT⊥ be projection operators onto T (or T (M)),

and T⊥ (or T⊥(M)), respectively.

Lemma 5.3.1. ∀X ∈ X̄, X ∈ T⊥ iff 〈X,Y〉 = 0, ∀Y ∈ T .

The lemma is proved in Appendix C.1.
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As with matrix completion, in a localized observation setting, consistent

recovery is infeasible if any entry in M is overly significant (Refer Section 2.2.1).

Thus, it is required that every element in M have some significant information about

the model subspace T . This is enforced through the following analogue of incoher-

ence conditions for matrix completion [26, 58].

Assumption 5.3.2 (Incoherence). ∃ (µ0, µ1) such that the following incoherence

conditions with respect to standard basis are satisfied for all E(v,i,j):

‖PT (E(v,i,j))‖2
F ≤

µ0R

mrv

+
µ0R

mcv

(5.12)

∃EM ∈ E (M) ∩ T , s.t. 〈E(v,i,j),EM〉2 ≤
µ1R

N2
(5.13)

Recall E (M) from (5.8), and mk =
∑V

v=1 ncv1(rv=k) + nrv1(cv=k)

Note that ‖PT (E(v,i,j))‖2
F is upper bounded by a sum of norms of projections

of mrv and mcv dimensional standard basis (in Rmrv and Rmcv ) onto the R dimen-

sional latent factor space. Equation (5.12) ensures that no single latent dimension

is overly dominant. �

Further, in Section 5.2.2 it was noted that in general X̄ ⊆ X, and the set

of atoms spanning X̄ defined in (5.3) need not be centrally symmetric. This poses

subtle challenges in analyzing the consistency of collective–matrix completion. To

mitigate these difficulties, a restricted set of collective–matrix structures is consid-

ered, under which X = X̄.

Assumption 5.3.3 (Bipartite G). Recall from Section 5.2 that the entity–

relationship structure of X is represented through an undirected graph G. Assume

that G is bipartite, or equivalently G does not contain any odd length cycles.
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Using induction, it can be easily verified that Assumption 5.3.3 is equivalent

to the condition, X = X̄. Under this assumption, ‖.‖A and ‖.‖∗A are norms, and

‖X‖∗A = 1
2
λmax(B(X)) ≤ 1

2
‖B(X)‖2.

Note: for the well–posedness of collective–matrix completion, some vari-

ation of Assumptions 5.3.1, and 5.3.2 is necessary. However, it is not clear if As-

sumption 5.3.3 is necessary. �

Assumption 5.3.4 (Sampling Scheme). For all k, define Ωk = {(vs, is, js) ∈ Ω :

rvs = k or cvs}. Let |Ωk| be the expected number of observations in Ωk.

For s = 1, 2, . . . , |Ω|, independently (a) sample ks : ks = k w.p. |Ωk|
2|Ω| ;

(b) sample iks ∼ uniform([nk]); and (c) sample jks ∼ uniform([mk]). For s =

1, 2, . . . , |Ω|, (vs, is, js) is the element corresponding to the (iks , jks) in Mks .

For a given v ∈ [V ] and (i, j) ∈ I(v), and s = 1, 2, . . . , |Ω|:

P
(
(v, i, j) = Ωs

)
=

|Ωrv |
2|Ω|nrvmrv

+
|Ωcv |

2|Ω|ncvmcv

(5.14)

Remarks:

1. Why |Ωk|?: For consistent recovery of M, the low dimensional factors of M,

{Uk ∈ Rnk×R} need to be learnt. For a given k, information about Uk is en-

tirely contained in Mk. Intuitively for consistent recovery, sample complexity

bounds are needed on individual |Ωk|. Thus, the sampling scheme is chosen

in terms of the expected number of observations within each entity type.

2. Hoeffdings’s inequality can be used to show that the cardinality of Ωk con-

centrates sharply around |Ωk|.
3. Note that the notation for cardinality of the set is overloaded: |Ωk| is the ex-

pected cardinality of the set Ωk, while |Ω| is the number of samples observed.
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5.3.2 Atomic Norm Minimization

Collective–matrix rank of M ∈ X̄ is given by:

rank(M) = min
{λr≥0}

∑
r 1λr 6=0 s.t.

∑
r λrAr = M,

where Ar ∈ A . However, minimizing the rank of a collective matrix is intractable,

thus the atomic norm (5.4) is proposed as a convex surrogate for the rank function

leading to the following convex estimator under noise–free model:

M̂ = argmin
X∈X̄

‖X‖A s.t. PΩ(X) = PΩ(M). (5.15)

The above convex formulation can be suitably modified in the presence of additive

noise. For the additive-noise model, the following estimators are equivalent.

M̂ = argmin
X∈X̄

‖X‖A s.t. ‖PΩ(X−M)‖2
F ≤ ω2, (5.16)

M̂ = argmin
X∈X̄

‖PΩ(X−M)‖2
F s.t. ‖X‖A ≤ η, (5.17)

M̂ = argmin
X∈X̄

‖PΩ(X−M)‖2
F + γ‖X‖A . (5.18)

The estimators are theoretically equivalent in the sense that for some combination

of ω, t, and γ, the estimate from the three convex programs are identical. In prac-

tice, the parameters are set through cross validation, and the choice of a convex

program for noisy collective–matrix completion is often made from the algorithmic

considerations.

5.4 Main Results

In this section, the theoretical and algorithmic aspects of collective–matrix

completion using the proposed estimator are discussed. Thorem 5.4.1 provides

the first non–trivial sample complexity bounds under which the convex program
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in (5.15) exactly recovers the ground truth matrix with high probability. In Sec-

tion 5.4.3, a scalable greedy algorithm is proposed for solving noisy collective–

matrix completion using the convex program in (5.17). In comparison to the al-

gorithms proposed by Bouchard et. al. [20], the proposed algorithm has a better

computational complexity, and strong convergence guarantees.

5.4.1 Consistency under Noise–Free Model

In the proof section the following quantity is used which scales atmost asN4

for general Ω and as N2 under the sample complexity conditions of Theorem 5.4.1:

κΩ(N) =
3|Ω|

√
maxk

|Ωk|
nkmk

mink
|Ωk|
nkmk

Recall that |Ωk| is the expected cardinality of Ωk = {(v, i, j) ∈ Ω : rv = k or cv =

k}, |Ω| is the cardinality of Ω, nk is the number of instances of type k, R is the

collective–matrix rank of M, and µ0 and µ1 are the incoherence parameters (As-

sumption 5.3.2).

Theorem 5.4.1. Under Assumption 5.3.1–5.3.4, if

(i) ∀k, |Ωk| > C0µ0nkRβ logN log (NκΩ(N)) and |Ωk|
nkmk

≥ c |Ω|
N2 , and

(ii) |Ω| > C1 max{µ0, µ1}NRβ logN log (NκΩ(N)),

for large enough constants c, C0, andC1, then for the noise–free observation model,

the convex program in (5.15) exactly recovers the true collective–matrix M with

probability greater than 1−N−β − C2N
−β log (NκΩ(N)) for a constant C2.

5.4.2 Discussion and Directions for Future Work

As noted earlier, for consistent recovery of M, the low dimensional factors

of M, {Uk ∈ Rnk×R} need to be learnt. For a given k, information about Uk
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is entirely contained in PΩk(Mk). Thus, an obvious lower bound on the sample

complexity for well-posedness is given by |Ωk| ∼ O(nkR). The results presented

are optimal upto a poly–logarithmic factor.

A trivial way to address the collective–matrix completion task is to perform

matrix completion on the component matrices independently. Since a joint low–

rank structure also imposes low rank structure on the component matrices, this is

feasible if each component matrix satisfies the sample complexity requirements of

standard matrix completion, i.e. |Ωv| > Cµ0R(nrv +ncv) log(nrv +ncv). However,

the proposed collective matrix completion setting leverages the shared structure

introduced by the jointly factorizability of collective–matrices to obtain a better

sample complexity.

The collective–matrix completion problem can also be cast as standard ma-

trix completion problem of completing an incomplete N ×N symmetric matrix, in

which blocks corresponding to the collective–matrix are partially observed. How-

ever, the existing theoretical results on the consistency of matrix completion algo-

rithms require either uniform random sampling [26, 87, 79], or coherent sampling

[35] of the entries of the matrix; and these results cannot be directly applied for

blockwise random sampled matrix. Thus, the results in this chapter provide a strict

generalization to existing matrix completion results for the task of collective–matrix

completion.

5.4.3 Algorithm

Recently, Jaggi et. al. [77] proposed a scalable approximate algorithm for

solving nuclear norm regularized matrix estimation by casting nuclear norm min-

imization as a semi definite program (SDP), and then using the approximate SDP

solver of Hazan [67]. The robust estimate for collective atomic norm proposed in
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Proposition 5.2.2, is of similar flavor. Using Proposition 5.2.2, the optimization

problem in (5.17) for solving noisy collective–matrix completion can be cast as the

following SDP:

min
Z<0,

V∑

v=1

‖PΩv(Mv − Pv(Z))‖2
F s.t. tr(Z) ≤ η, (5.19)

where Ωv = {(vs, is, js) ∈ Ω : vs = v}. Hazan’s algorithm to solve (5.19) is given

in Algorithm 1.

Algorithm 1 Hazan’s Algorithm for Convex Collective–Matrix Completion (5.19)

Rescale loss function as f̂η(Z) =
∑

v ‖PΩv(Mv − Pv(ηZ))‖2
F

Initialize Z(1)

for all t = 1, 2 . . . , T = 4
ε

do
Compute u(t) = approxEV

(
−∇f̂η(Z(t)), 1

t2

)

αt := 2
2+t

Z(t+1) = Z(t) + αtu
(t)u(t)>

return [Pv(Z
(T ))]Vv=1

Lemma 5.4.2. Algorithm 1 solves (5.17) upto ε error in time O
( |Ω|
ε2

)
.

Proof: From Theorem 2 of Hazan’s work [67], the proposed algorithm re-

turns an estimate with primal–dual error of atmost ε in 4Cf
ε

iterations, where Cf

is a curvature constant. For squared loss, Cf ≤ 1 (Lemma 4 in [77]). Iteration

t in the algorithm involves computing an 1
t2

–approximate largest eigen value of a

sparse matrix with |Ω| non–zero elements. Using Lanczos algorithm, each iteration

requires O( |Ω|
t

) computation. �

In comparison to the proposed algorithm, the SVT algorithm proposed by

Bouchard et. al. [20] converges inO( 1√
ε
) iterations, however, each iteration requires

computing all the non–zero eigenvectors of aN×N matrix, which has significantly
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higher computational cost. For the task of matrix completion, Jaggi et. al. [77]

observe upto ∼ 5x speedup on Hazan’s algorithm over SVT algorithm.

5.5 Experiments
5.5.1 Simulated Experiments

Low–rank ground truth collective–matrices with K = 4, V = 3 were sim-

ulated, where view 1 is a relation between entity types 1 and 2, view 2 is a relation

between entity types 1 and 3, and view 3 is a relation between entity types 2 and

4 respectively. For simplicity assume a common nk = n. Collective matrices with

n ∈ {100, 250, 500} with rank to R = 2 log n were generated. The matrices

were partially observed with the fraction of observed entries, |Ω|∑
v nrvncv

varying in

[0.1, 0.2, . . . , 1] and the errors were plotted against the unnormalized fraction of

observations, |Ω|∑
v nrvncv

in Figure 5.2a, and against the normalized sample com-

plexity provided by the theoretical analysis, mink
|Ωk|

nkR logN
in Figure 5.2b. It can

be seen from the plots that the error decays with increasing sample size, indeed

|Ωk| > 1.5nkR logN samples suffice for the errors to decay to a very small value.

The aligning of the curves (for different n) given the normalized sample size cor-

roborates the theoretical sample complexity requirements.

5.5.2 Experiments with Commercial News Recommendation Dataset

The proposed approach was evaluated on two datasets from a commercial

news recommendation engine. The entities include users, news articles, and news–

categories. The datasets consists of two views (a) user–article click information in

a 3hr time window, (b) an aggregation of the categories clicked by users was used

to train a classifier that gives a dense and complete user–category preference.
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Figure 5.2: Error convergence against normalized and unnormalized sample size

The first dataset “News–Cold–Start”, consists of ∼ 180K users, ∼ 750

articles, and 34 categories. In this dataset, ∼ 25000 users have only one click.

Randomly chosen negative samples were added to give dataset of ∼ 1.25 million

user–article ratings, and ∼ 1.4 million user–category annotations. The dataset was

split in 80 : 10 : 20 proportion as training, validation, and test. The 20% of the test

dataset contains cold start users with no rating information. In the second dataset

“News–No–Cold–Start”, all the cold start users in the test dataset were removed

leading to a much smaller datasets consisting of ∼ 6500 users, ∼ 750 articles and

34 categories, with ∼ 150K user–article ratings and ∼ 50K user–category ratings

(including the randomly chosen negatives). The negatives in each dataset were

sampled independently in each cross–validation iteration to remove bias.

Mean absolute error (MAE) on the test dataset obtained from the proposed

Hazans algorithm for Collective–Matrix Completion (CMF–Hazans) and Standard

Matrix Factorization (SMF) are reported in Table 5.1.
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Method News-Cold-Start News-No-Cold-Start
CMF–Hazans 0.27408± 0.00016 0.21559± 0.00143
SMF 0.29051± 0.00074 0.21488± 0.00076

Table 5.1: MAE of the predictors on the two news recommendation datasets

It is observed that collective matrix factorization does not add much value

for warm–start cases as the ratings give accurate predictor. On the other hand, for

test dataset consisting on both warm–start and cold–start test cases, the proposed

joint estimation potentially leverages the information in the user–category affinities

and shows significant improvement.
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Chapter 6

Phenotyping using Structured Estimation

The increased availability of electronic health records (EHRs) have spear-

headed the initiative for precision medicine using data driven approaches. Essential

to this effort is the ability to identify patients with certain medical conditions of

interest from simple queries on EHRs, or EHR-based phenotypes. Existing rule–

based phenotyping approaches are extremely labor intensive. Instead, dimensional-

ity reduction and latent factor estimation techniques from machine learning can be

adapted for phenotype extraction with no (or minimal) human supervision.

Building on the results of Chapter 3–5, this chapter proposes to identify

an easily interpretable latent space shared across various sources of EHR data as

potential candidates for phenotypes. By incorporating multiple EHR data sources

(e.g., diagnosis, medications, and lab reports) available in heterogeneous datatypes

in a generalized Collective Matrix Factorization (CMF), the proposed methods can

generate rich phenotypes. Further, easy interpretability in phenotyping application

requires sparse representations of the candidate phenotypes, for example each phe-

notype derived from patients’ medication and diagnosis data should preferably be

represented by handful of diagnosis and medications, (5–10 active components).

The CMF framework is extended for learning and interpretable phenotypes from

multiple sources of EHR data. Non–negativity and sparsity inducing constraints

are imposed to enhance the interpretability of the candidate phenotypes. The pro-

posed model is applied on EHR data from Vanderbilt University Medical Center.
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6.1 Introduction

EHR-driven phenotyping refers to the task of identification of a set of clin-

ical features or characteristic indicative of a medical condition from EHR data and

has been a major focus of EHR data analyses [118]. Phenotypes are important for

targeting patients for screening tests and interventions, improving multisite clinical

trials, and to support surveillance of infectious diseases and rare disease compli-

cations. While existing efforts (e.g., eMerge Network, Phenotype KnowedgeBase,

and the SHARPn program) have illustrated the promise of EHR–driven phenotypes,

state of the art phenotype development generally requires an iterative and collabo-

rative effort between clinicians and IT professionals to compose a series of rules for

reproducible queries of EHR databases [74, 117]. A single phenotype takes sub-

stantial time, effort, and expert knowledge to develop. Data mining tools such as

support vector machines [32], active learning approaches [36] and inductive logic

programming [123], have been recently used to partially automate the phenotyping

process. Yet, these work require annotated samples to obtain good performance.

As such annotations are expensive and time consuming to obtain, it is of interest to

investigate unsupervised learning tools for automated phenotyping.

Phenotyping can be viewed as a form of dimensionality reduction of EHR

data, where each phenotype or medical condition of interest represents a latent

space [74] and the rich literature in the field of machine learning for latent space

estimation can be suitably adapted to automate and speed up the phenotype ex-

traction process. Several factors contribute to the quality of phenotypes extracted

from EHR data, and it is advantageous to consider these factors in choosing the

appropriate dimensionality reduction tools for phenotyping. A review of the top 10

phenotypes across different studies showed that several data sources are typically

used to define a phenotype [134]. Additionally, EHR data is commonly available
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in heterogeneous datatypes. For example, laboratory test results are often in the

form of a real–valued number, patient demographic information can be encoded as

a binary value, and procedure codes contain the number of times, a non-negative

integer, the procedure is performed. Thus, an automated phenotyping process that

can incorporate data from heterogeneous datatypes and diverse sources can help

identify rich existing as well as novel medical concepts.

Recent work has illustrated the promise of tensor factorization to generate

phenotypes with minimal human supervision [71, 154, 68]. Latent space shared

by various modes of higher order tensors are easier to interpret; and also more ac-

curately capture the multi–source nature of phenotypes. However, rich multi–way

interactions required to form tensors is often not available in existing EHR data, for

example, in a simple 3rd order patient-diagnosis-medication tensor, the (i, j, k)th

entry of the observation requires detailed information on the number of times pa-

tient i was prescribed medication k in response to diagnosis j. In practice, much of

the EHR data is available in flat formats that are more readily represented as ma-

trices rather than tensors, e.g., a patient-diagnosis and a patient-medication matrix.

Moreover, maintaining infrastructure to record and store higher order multi–way

interactions is resource–intensive as the number of such possible interactions expo-

nentially increase with each additional source. Alternatively, tensors constructed by

approximating higher order interactions from flat format data could lead to noisy

correlations and biased results. These motivate the exploration of tools that directly

work with multiple sources of matrix valued data.

In this chapter, unsupervised models are proposed for learning phenotypes

from EHR data that are available as a collection of matrices. Collective Matrix

Factorization (CMF) [138] (also see Chapter 5) is an effective tool for identifying

a latent space shared across multiple sources of data. In CMF, a collection of re-
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lated matrices are jointly factorized into low–rank factors that are shared across the

entire collection. For the phenotyping application, various structural and method-

ological modifications are introduced to the basic CMF model towards enhancing

interpretability of candidate phenotypes.

• Heterogeneous datatypes: Each source of EHR data can contain diverse

datatype representations, such as numeric, count, or integer elements. Thus, it

is desirable to use loss functions that are appropriate for the data in each source.

The class of Bregman divergences are chosen to be appropriate for the phenotyp-

ing application as this class includes divergence functions appropriate for various

datatypes, including continuous real–valued, binary and count data (Chapter 3).

• Collective Factorization: The challenge in effectively combining hetero-

geneous divergences in a collective matrix factorization is that such divergences

often span different numerical scales and simple unweighted combinations tend to

overfit datatypes or source matrices whose divergences are in the higher numerical

range. An effective heuristic approach to estimate appropriate weights for individ-

ual source matrices.

• Non–negativity and Sparsity: Physically interpretable latent factors are

necessary to extract clinically meaningful phenotypes from EHR data. Non–

negative matrix factorization (NMF) [120, 98] in comparison to the more tradi-

tional principal component analysis (PCA) provides better interpretability of the

low–rank factors as sum–of–parts representation. Such non–negativity constraints

can be readily extended into the CMF framework. Further, sparsity of latent factors

representing the phenotypes plays a crucial role in the usefulness of the phenotypes

as human experts need to analyze the factors and conduct further investigation to

validate its clinical relevance. Thus, each phenotype should be ideally be repre-

sented by very few active components (≤ 10 non–zero loading of entities) from
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each source. In one of the proposed variations of the generalized collective NMF

formulation, convex sparsity inducing constraints are introduced to enhance the in-

terpretability of extracted latent factors.

The proposed models were empirically evaluated on real EHR data from

Vanderbilt University. The clinical relevance of the extracted phenotypes were eval-

uated by domain experts.

6.2 Related Work

Inferring low–dimensional representation of matrix data is a fundamental

problem in machine learning. PCA [83], the most popular and widely used tool

dimensionality reduction, learns latent factors as low rank matrices whose values

are unconstrained and can contain both positive and negative entries. However, in

many applications it is desirable to interpret the low rank factors as physical con-

cepts and negative entries often contradict physical reality. This motivated a related

line of dimensionality reduction techniques called the Non–Negative Matrix factor-

ization (NMF) [120, 98]. Several existing work extend matrix factorization tools

to analyze data from multiple matrices. Collective matrix factorization (CMF) and

its non–negative variants [138] incorporate information from multiple sources of

matrix data using shared latent variables/factors. Alternatively, regularized NMF

variants have been proposed combining data from multiple sources [165, 104]. The

tools for matrix valued data have also been generalized to higher order tensors, or

multi–way arrays (see [92] for a review). Variants of non-negative tensor factoriza-

tion (NTF) based on CANDECOMP–PARAFAC, one of the most popular tensor

decomposition models have been applied to extract interpretable latent/hidden fac-

tors, e.g. [42, 99, 41, 2, 164, 3] and references therein. However, most of these

methods primarily utilize the least square loss and may not be appropriate for all
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data types. This work builds on these tools to propose techniques for efficiently

extracting structured latent factors from multiple sources of heterogeneous EHR

data. The primary focus is on the interpretability of the low–dimensional factors as

meaningful phenotypes.

Although existing phenotyping methods rely on a labor–intensive process,

unsupervised models have been proposed to leverage the vast amount of EHR data

for automatic phenotype discovery. These models include the use of probabilistic

graphical models to cluster patient’s longitudinal trajectories [132], deep learning to

detect characteristic patterns in clinical time series data [34], and generative mod-

els on static data [37]. Yet these methods are not scalable and are ill-suited for

incorporating data from patients over a prolonged period of time (6+ months). Re-

cent work has illustrated the promise of NTF to generate phenotypes with minimal

human supervision using data over several years [70, 71, 154, 68]. However, as

noted earlier, a tensor representation is not always available in EHR data, at least

not without introducing assumptions and potentially biasing the results.

6.3 Phenotyping from EHR Data

The notations used in the rest this chapter are summarized in Table 6.1.

The patient EHR data from V sources, such as medications, diagnosis, laboratory

measurements, etc. are represented as matrix valued data whose rows correspond

to a common set of patients, and columns represent entities from the respective

sources (medications, diagnosis, laboratory measurements, etc.). Let d0 denote the

number of patients, and for each source v ∈ {1, 2, . . . , V }, let dv denote the number

of unique entities within the source v. The collection of V matrices containing EHR

data from multiple sources is denoted by X = [Xv]
V
v=1, where Xv ∈ Rd0×dv denotes

the matrix data from source v.
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Notation Description

Input
v=1, 2, . . . , V Index over V sources of EHRs, e.g. medication, diagnosis, etc.
d0 Number of patients
dv Number of entities in source type v
Xv ∈ Rd0×dv EHR data matrix from source v
X = [Xv]

V
v=1 Collection of V EHR data matrices

Dv Bregman divergence appropriate for approximating Xv

Estimates
X̂ = [X̂v]

V
v=1 Estimate of X from models

W ∈ Rd0×r Patients’ loading along the R dimensional latent space
Hv ∈ Rdv×r Latent factor representation for features in source v
bv ∈ Rdv Bias factors associated with columns of the data matrix Xv

Table 6.1: Additional notations for phenotyping using structured estimation

6.3.1 Dataset Overview

The proposed models are evaluated on an EHR data set from Vanderbilt

University Medical Center. This section contains a brief exploration of the data and

the empirical results.

The dataset consists of de-identified electronic medical records correspond-

ing to the first∼10,000 patients in BioVU∗, the Vanderbilt DNA databank, spanning

over 20 years. The details of the inclusion and exclusion criteria for the databank

are described in [130]. For evaluation purposes, a subset of data containing the case

and control patients for type–2 diabetes and resistant hypertension is used. These

patients and their labels were selected by using the respective rule–based pheno-

type algorithms defined in the Phenotype KnowledgeBase†. However, the labels

∗https://victr.vanderbilt.edu/pub/biovu/
†https://phekb.org
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from these rule-based algorithms were not used in the phenotyping models which

are learned in a completely unsupervised setting.

Although the proposed model is general enough to be applied to multiple

data types, the empirical study work with counts of diagnoses and medications for

evaluation purposes. The diagnosis codes, in the form of International Classifica-

tion of Disease, 9th edition (ICD-9) codes, were grouped using the PheWAS code

groups‡, a custom-developed hierarchy which currently contains ∼ 1600 groups.

Medications were aggregated based on Medical Subject Headings (MeSH) pharma-

cological actions provided by the RxClass REST API, a product of the US National

Library of Medicine. Note that a medication may belong to multiple categories.

Figure 6.1 provides example aggregations performed on the original table for the

purpose of the study.

Finally, BioVU dataset assigns an index (reference) date to each patient,

which corresponds either to the date where the criteria was met (case patients) or

the last encounter date (control patients). The EHR records of patients falling in

the date range of one year prior to their index date up until the index date were

used in the experiments. Any patient without at least one diagnosis and medication

during the relevant time period was not included in the study. The resulting data set

contains 2039 patients, 936 diagnosis groups, and 161 medication classes.

The dataset is summarized in Table 6.2 and the top five diagnosis and med-

ication categories that appear in the data are shown in Table 6.3.

‡http://phewas.mc.vanderbilt.edu/
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Pa#ent	   Date	   ICD-‐9	  Code	   ICD-‐9	  Descrip#on	  

1	   07/12/2009	   381.81	   Dysfunc2on	  of	  
Eustachian	  tube	  

1	   07/12/2009	   388.30	   TINNITUS	  NOS	  

1	   08/24/2009	   463	   Acute	  tonsilli2s	  

2	   09/07/2007	   724.1	   Pain	  in	  thoracic	  spine	  

2	   09/07/2007	   724.2	   Lumbago	  

ICD-9 Diagnosis Table 

Pa#ent	   Date	   Medica#on	  

3	   07/25/2012	   Fosamax	  

3	   07/25/2012	   Propranolol	  

3	   07/25/2012	   Tylenol	  

3	   08/15/2012	   Acetaminophen	  

3	   08/15/2012	   Docusate	  sodium	  

Medication Table 

Pa#ent	   Date	   PheWAS	   PheWAS	  Descrip#on	  

1	   07/12/2009	   381	   O22s	  media	  and	  Eustachian	  tube	  disorders	  

1	   07/12/2009	   388	   Other	  disorders	  of	  ear	  

1	   08/24/2009	   465	   Acute	  upper	  respiratory	  infec2ons	  of	  
mul2ple	  or	  unspecified	  sites	  

2	   09/07/2007	   724	   Other	  and	  unspecified	  disorders	  of	  back	  

2	   09/07/2007	   724	   Other	  and	  unspecified	  disorders	  of	  back	  

PheWAS Diagnosis Table 

Pa#ent	   Date	   Subclass	  

3	   07/25/2012	   Bone	  resorp2on	  inhibitors	  

3	   07/25/2012	   An2arrhythmic	  agents;	  Beta-‐adrenergic	  blocking	  agents	  

3	   07/25/2012	   Analgesics	  

3	   08/15/2012	   Analgesics	  

3	   08/15/2012	   Laxa2ves	  

RxNorm Classes 

Figure 6.1: Examples of the aggregation from ICD-9 diagnosis codes to PheWAS
code groups and original medications to the MeSH pharmacological actions classes.

v Source Matrix Xv d0 × nv Datatype

1 Patient–Diagnosis 2039× 936 Count
2 Patient–Medication 2039× 161 Count

Table 6.2: Dataset summary of BioVU dataset used for phenotyping.

6.4 Structured Collective Matrix Factorization for Phenotyping

For each source v ∈ [V ], Xv is approximated by structured estimates X̂v

which incorporates model constraints appropriate for effective phenotyping.

6.4.1 Heterogeneous Datatypes

In EHR data from multiple sources, each source matrix Xv may contain

data represented in diverse datatypes (e.g., binary values for demographics, count

values for medications, or continuous values for laboratory measurements). In the

proposed phenotyping models, the data fidelity of X̂v is quantified using an appro-

priately chosen source–specific divergence Dv(Xv, X̂v). The divergence functions

are selected from a class of Bregman divergence 2.1.7. The motivation for using

Bregman divergences are two fold (cf. Chapter 3). Bregman divergences include
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Source Top five entities

Diagnosis Hypertension; Incision, excision, and division of other
bones; Ischemic Heart Disease; Secondary malignant neo-
plasm of respiratory and digestive systems; Disorders of
lipoid metabolism.

Medication Analgesics; Vitamins; Anticonvulsants; Anxiolytics, seda-
tives, and hypnotics; Antihyperlipidemic agents.

Table 6.3: The top five diagnosis and medications of the patients in the study.

rich classes of loss functions that are appropriate for a variety of datatypes including

(weighted) squared loss for continuous valued data, logistic loss for binary valued

data, and generalized KL divergence for count valued data among others [54, 14].

These loss functions are also equivalent to the negative log–likelihood of members

of exponential family distributions including Gaussian, Bernoulli, Poisson, expo-

nential among others [54, 14]. Thus, the domain knowledge of data distribution

can be potentially incorporated in choosing the appropriate divergence. Secondly,

Bregman divergences are strictly convex and differentiable in the first parameter,

and accurate and tractable estimators for X̂v can be developed using gradient de-

scent and alternating minimization algorithms.

In the dataset described in Section 6.3.1, as both the matrices described in

Section 6.3.1 have count valued data, the generalized KL divergence given by the

following equation is used as the divergence for both sources:

D(X, X̂) =
∑

ij

X̂ij −Xij +Xij log
Xij

X̂ij

. (6.1)
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6.4.2 Generalized Collective NMF (CNMF)

As noted earlier, non–negativity constraints on the patient loading and la-

tent factor matrices allow for better interpretability as sum–of–parts representation.

A generalized collective NMF (CNMF) is proposed as a basic model for extract-

ing phenotypes from multiple sources of patient data available in heterogeneous

datatypes. In Section 6.4.3, additional structures are introduced to enhance inter-

pretability.

Each source of EHR data v is associated with a structured latent factor ma-

trix Hv ∈ Rdv×R, and these factors jointly span a shared latent space. The columns

of Hv concatenated across the V sources are potential candidates for phenotypes.

The loading of the patients along these latent dimensions are given by the matrix

W ∈ Rd0×R. Additionally, the raw EHR data often contains generic features that

are not necessarily indicative of any medical condition of interest. For example,

medications like pain reliever, laboratory measurements like body temperature, etc.

are frequently encountered in patient data, but are not discriminative of patient con-

ditions. EHR data from such frequent and non–discriminative features are captured

through an explicit (and potentially dense) column or feature bias factor bv ∈ Rnv

for each source v.

For v ∈ [V ], the source Xv is approximated as WH>v + 1b>v , where 1 is

a vector of all ones in appropriate dimensions. A Bergman divergence Dv appro-

priate for each source is used to measure the data fidelity of the estimate to the

observed data. Finally, as the heterogeneous divergences are in different scales, the

divergences are weighted using parameters αv, v = 1, 2, . . . , V . The basic CNMF
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estimator is given by the following optimization problem.

X̂ = argmin
{X̂v}v∈[V ]

V∑

v=1

αvDv(Xv, X̂v),

s.t. X̂v = WH>v + 1b>v for v=1, 2, . . . , V,

W ∈ Rd0×R
+ , Hv ∈ Rdv×R

+ , bv ∈ Rdv
+ .

(6.2)

6.4.2.1 Computing {αv : v = 1, 2, . . . , V }

As noted earlier, since the divergences associated with difference datatypes

span different numerical scales, unweighted objective in (6.2) will tend to overfit

the matrices whose divergences are in the higher numerical range. An effective

heuristic approach is proposed to estimate contribution of each source matrix Xv

in the joint estimation. To motivate the idea, consider a source matrix Xv. If a

joint factorization is not required, i.e. W need not be shared, then the optimization

problem in (6.2) can be solved as V independent structured factorization X̃ ind
v =

WvH
>
v + 1b>v without the weights αv. In a preprocessing step, for each source and

independent factorization of the form X̃ ind
v is learned by minimizing Dv(Xv, X̃

ind
v )

assuming the sources to be independent of each other. The resultant divergence

from independent factorization is treated as the effective scale of divergence for

each source. In order to assign equal importance to all source matrices, the choice

of ∀v, αv = 1

Dv(Xv ,X̃ ind
v )

is proposed.

6.4.3 Sparsity–inducing CNMF (SiCNMF)

As phenotypes learned form data analysis tools are further investigated by

human experts, it is desirable that candidate phenotypes learned from EHRs are

sparse combinations of the source entities, i.e., columns Hv are sparse.
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To illustrate sparsity–inducing constraints for enhanced interpretability, first

consider a single source of EHR data matrix X ∈ Rd0×n and an appropriate diver-

gence function D(.). Explicit sparsity constraints on the factor matrix H lead to in-

tractable combinatorial optimization problems. A commonly used convex surrogate

for sparsity involves restricting the `1 norm of the columns of H , i.e., constraints of

the form {‖H(k)‖1 ≤ s : k ∈ [R]}, for some parameter s. However, in (6.2) if the

scaling of W is unrestricted, then due to multiplicative nature of the factorization,

restrictions on norm of H tend to be ineffective as any scaling of H can be easily

absorbed by W . Thus, additionally the scale of W is constrained using a Frobe-

nius norm constraint of the form ‖W‖F ≤ η, for another parameter η. Note that, s

and η effectively work as single parameter due to the multiplicative update. Thus,

WLOG,fix s = 1 and use η as a tunable parameter to control the sparsity level.

The following generalized SiCNMF model is proposed as an extension of

vanilla CMF which incorporates (a) sparsity–inducing and non–negativity con-

straints for enhanced interpretability, (b) feature specific bias factors {bv : v ∈ [V ]}
to capture data specific offsets, and (c) appropriately weighted heterogeneous di-

vergences to handle varied datatypes.

X̂ = argmin
{X̂v}v∈[V ]

V∑

v=1

αvDv(Xv, X̂v),

s.t. X̂v = WH>v + 1b>v for v=1, 2, . . . , V,

W ∈ Rd0×R
+ , Hv ∈ Rdv×R

+ , bv ∈ Rdv
+ ,

‖W‖F ≤ η, ‖H(k)
v ‖1 = 1 ∀k ∈ [R],

(6.3)

where recall that H(k)
v is the kth column of Hv, and αv are either (a) all ones (un-

weighted SiCNMF), or (b) computed using the methodology described in Sec-

tion 6.4.2.1 (weighted SiCNMF). Note that the higher the value of η, the weaker

the sparsity constraint. In the limiting case of η = ∞, the model is equivalent to
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the heterogeneous collective non–negative matrix factorization (CNMF) as scaling

constraints of Hv are captured by W .

6.5 SICNMF: Algorithm Details

For any set of Bregman divergences {Dv : v = 1, 2, . . . V } and positive

parameters η, {αv} > 0 , the optimization problem (6.3) is convex in [(Hv, bv) ∀v]

when W is fixed and vice versa. The proposed algorithm uses alternating mini-

mization to solve (6.3) where each iteration alternatively minimizes [(Hv, bv) ∀v]

and W , while keeping the other fixed. Each such component update involves min-

imizing a smooth convex objective subject to convex constraint set and is solved

using projected gradient decent algorithm with backtracking line search to deter-

mine step size [101].

Recent work has shown that projected gradient methods are computation-

ally competitive and have better convergence properties than standard multiplicative

update approaches [101]. Moreover, compared to multiplicative updates, projected

gradient descent based algorithms can be easily extended for convex constraints be-

yond simple non–negativity. Although [101] ignore the KL divergence problem as

ill-defined, a more recent work [40] provide convergence for related tensor factor-

ization task by showing that the convex hull of the level sets of the KL divergence

problem is compact. To project onto the simplex, the simple and fast algorithm

proposed by Chen and Ye is used [38].

The algorithm for solving (6.3) is summarized in Algorithm 2.
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Algorithm 2 Alternating minimization for (6.3) using projected gradient descent
Input: EHR data Xv, Dv(.) for v = 1, 2, . . . , V
Parameters: Divergence weights {αv} and tunable sparsity inducing parameter
η ∈ (0,∞)
while not converged do

Ŵ =
argmin
W≥0

V∑

v=1

αvDv(Xv,WĤ>v + 1b̂>v )

s.t. |W‖F ≤ η, W ≥ 0.
for v ∈ [V ] do

Ĥv, b̂v =
argmin
Hv≥0,bv≥0

Dv(Xv, ŴH>v + 1b>v )

s.t. ∀k, ‖H(k)
v ‖1 = 1.

return Patient loadings Ŵ , factors/phenotypes {Ĥv} and feature biases {b̂v}

6.6 Experiments

The generalized KL–divergence (6.1) is used as loss function for both ma-

trices (patient by diagnosis and patient by medication) in the collective matrix fac-

torization models as well as the baselines described in the following subsection.

6.6.1 Baseline Models

The primary focus of this work is the clinical relevance of candidate pheno-

types obtained from unsupervised dimensionality reduction techniques. Since the

Vanderbilt data contains flat files associated with the diagnosis codes and medica-

tions, construction of the patient–medication and patient–diagnosis matrices for the

collective matrix factorization models were straightforward. The proposed models

of CNMF (6.2) and SiCNMF (6.3) are compared with two baseline models de-

scribed below:

• Non–negative matrix factorization (NMF) [98]: In order to evaluate tra-

ditional NMF in identifying a shared latent space, the patient information is
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aggregated into a third matrix, diagnosis by medication, wherein each ele-

ment represents the number of patients who have at least one occurrence of

both the diagnosis and the medication during the one year time window of

the dataset. It is important to note that under this construction, a patient with

two encounters almost one year apart, one with the diagnosis A and one with

medication B would be counted in the (A,B)th entry of the matrix. A non–

negative matrix factorization model with the generalized KL divergence as

the objective and no sparsity constraints is performed on the diagnosis by

medication matrix.

• Marble [71]: Marble is a sparse non–negative tensor factorization model that

has been used to obtain highly effective and interpretable phenotypes pro-

vided a multiway tensor EHR data is available. However, the BioVU dataset

does not have rich multi–way interactions to easily construct tensors. For

example, in a patient–diagnosis–medication tensor, a entry xijk denotes the

number of times a patient i was prescribed medication k in order to treat a

diagnosis j. To construct tensors from available flat files, these interactions

were approximated by assuming that a medication was used to treat a specific

diagnosis if both diagnosis and medication occur within a one week time in-

terval, that is the counter for xijk is incremented if patient i was prescribed

medication k within one week of an encounter with diagnosis j. Marble ap-

plied to this approximated tensor is the second baseline used in experiments.

The baselines described above are compared to three CMF based models

described in this chapter: (a) CNMF (6.2) which does not incorporate the spar-

sity inducing constraints, (b) unweighted SiCNMF which incorporates sparsity–

inducing constraints proposed in Section 6.4.3, but uses a simple aggregation of

various source divergences, i.e., solves (6.3) with αv = 1 for all v ∈ [V ], and finally
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(c) weighted SiCNMF which incorporates both the sparsity–inducing structure and

the weights αv computed using the heuristic described in Section 6.4.2.1.

All the models described above involve non–convex optimization and the

estimates from the algorithm are sensitive to initialization. To mitigate this issue

from local minima, each algorithm was run independently multiple times and pick

the run with best fit to the objective. All the competing models learn a R = 20 rank

factorization.

6.6.2 Sparsity–accuracy trade off: Data fit

The sparsity of the candidate phenotypes plays a crucial role in the inter-

pretability and wider applicability of the estimates. Concise representations allow

domain experts to more easily reason about a particular group of patients queried

using the phenotypes. As noted earlier, while non–negativity constraint in matrix

and tensor factorization inherently induce sparsity as a by–product, there is no ex-

plicit control over the sparsity levels. Thus in order to deriving extremely sparse

phenotypes involve, sparsity inducing regularization was introduced, whose spar-

sity levels can be controlled by an tunable knob of η in (6.3).

The expected sparsity–accuracy trade-off in the data fit can be observed in

Figure 6.2. Note that higher values of η in (6.3) correspond to a weaker sparsity

constraints as the W factor can more easily absorb the scaling constraint on Hv.

6.6.3 Type-2 diabetes and Resistant hypertension prediction

With relaxed sparsity constraints, while a monotonic decay of objective

function on training data fit as observed in Figure 6.2 is expected, such a monotonic

accuracy trade-off does extend for predictions on held out test datasets. Besides im-

proving interpretability, the sparsity constraints further function as regularization to
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Figure 6.2: Sparsity–accuracy trade-off in data fit of weighted SiCNMF. Sparsity
is measured as the median number of non-zero entries in columns of the phenotype
matrices concatenated from all sources {Ĥv : v = 1, 2, . . . , V }. (a) Each box plot
represents the spread of the number of non–zeros in R = 20 candidate phenotypes
learned from weighted SiCNMF using η represented along the x–axis in (6.3). (b)
Plot of decay of divergence between the fitted estimate and the observed data as the
sparsity constraint is relaxed using higher η. Note that the values of η along x–axis
are not in linear scale and higher values correspond to weaker sparsity–inducing
regularization.

prevent overfitting.

To quantitatively evaluate the effectiveness of the extracted phenotypes,

consider the classification problem of predicting two chronic conditions prevalent

in the patient population of the dataset (Section 6.3.1): (a) type-2 diabetes, and (b)

resistant hypertension. As described in Section 6.3.1, for each patient in the dataset,

the class labels for these chronic conditions were estimated from rule-based pheno-

typing algorithm from PheKb.

The full dataset of ∼ 2000 patients is divided into 5 stratified cross valida-
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Figure 6.3: Sparsity–accuracy tradeoff in prediction of (a) Type–2 diabetes and (b)
resistant hypertension. The results are for weighted SiCNMF, but similar trade-
off was also observed for unweighted SiCNMF. Note that x–axis is not linear and
higher η leads to lower sparsity (more number of non-zeros in phenotype represen-
tations)

tion folds of 80% training and 20% test patients. For each cross-validation fold, the

models described in Section 6.6.1 were applied on training EHR dataset to extract

the phenotype matrices {Ĥ train
v : v ∈ [V ]}. It is clarified that, for all the competing

models, the phenotypes (latent factors) were extracted (a) only from EHR data of

patients in the training set, and (b) the estimates were learned in a completely un-

supervised setting. In particular, the test EHR data and the labels were not used in

the phenotype extraction phase. For each patient, the R dimensional loading along

the phenotype/latent space spanned by {Ĥ train
v : v ∈ [V ]} is used as features for

learning the classifiers. Such representations are computed by projecting the EHR

matrix into the fixed phenotype factors. For CMF variants, the features for a patient
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with EHR [Xpatient
v ] is given by:

W patient = argmin
W≥0

∑

v

αvDv(X
patient
v ,WH train

v + 1btrain>
v ).

The sparsity–accuracy trade-off in prediction performance on held out

dataset is plotted in Figure 6.3. Although, the predictive performance at various

η levels are comparable, the mild regularization effect of sparsity constraints can be

observed the plots.

6.6.4 Sparsity and Prediction Comparison to Baseline Models

In this subsection, the performance CMF based estimators is compared to

strong baselines models.

6.6.4.1 Sparsity

The sparsity patterns obtained by the competing phenotyping algorithms

described in Section 6.6.1 are compared in Figure 6.4. As expected, the sparsity of

SiCNMF models are better than those of non–sparsity–inducing CNMF and NMF

models. NMF [98] on dense aggregated data which does not incorporate explicit

sparsity constraints learns dense factor matrices. Note that CNMF models multiple

sparse matrices jointly learns much sparser factors compared to NMF on single

aggregated matrix. Marble [71] induces sparsity by truncation and achieves the

best sparsity performance.

6.6.4.2 Prediction

The classification performance of baseline models for predicting type-2 di-

abetes and resistant hypertension are compared in Figure 6.5. As NMF uses aggre-

gated data of patients and there is no effective approach to learn individual patient

86



●

●

0

250

500

750

NMF Marble SiCNMF
(unweighted)

SiCNMF
(weighted)

CNMF

N
on

−
ze

ro
s 

in
 P

he
no

ty
pe

s

Figure 6.4: Box plots showing the inherent sparsity induced by the models.

representations in the phenotype space. Thus, NMF is excluded from this set of ex-

periments. Instead, the classifiers learned on full concatenated EHR matrix is used

as an additional baseline for prediction performance. Note that the concatenated

EHR matrix has > 1000 features compared to the 20 dimensional representation

of the rest of the models. It is observed that the phenotype based models with 20

dimensional feature representation have comparable performance. However, the

classifiers from full EHR matrix with > 1000 features outperforms the phenotype–
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Figure 6.5: Accuracysparsity tradeoff in prediction
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based models. While the EHR matrix provides a richer set of features for prediction

performance, the high dimensional EHR data are not not useful for phenotyping ap-

plications and interpretability.

6.6.5 Clinical Relevance of Phenotypes

The phenotypes extracted from the models described above are evaluated

by a human expert for clinical relevance. For reasonable evaluation of the pheno-

types by humans, it is desirable that each phenotype be represented by a very small

number of diagnoses and medications groups. Based on a round of feedback from

a clinical expert, in post processing, just the top 5 medications and top 5 diagnosis

from phenotypes learned from all the models were retained for evaluations in this

section.

The clinical relevance of the resulting phenotypes were evaluated from the

phenotyping models by conducting a survey with a domain expert. The domain

expert was given 20 phenotypes from each model to assess and were not informed

apriori the correspondence between the models and the results. For each of the

individual phenotypes, the experts assigned one of three values: (1) yes – it was

clinically meaningful, (2) possible – the phenotype has some clinical meaning-

fulness, and (3) no – it was not meaningful at all.

The annotated results for the models are compared in Figure 6.6. The re-

sults show that weighted CMF based algorithms perform significantly better in pro-

ducing potentially clinical meaningful groupings. In an earlier work, Ho et. al.

[71] show that for tensor valued data, Marble is very effective for phenotyping.

The improved performance of CMF based algorithms compared to Marble signifies

the shortcomings of approximating the tensor from flat files, besides the additional

computational cost of factorizing higher order tensors. Moreover, the improved
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performance of weighted SiCNMF compared to unweighted SiCNMF corroborates

the efficacy of the weighing scheme described in Section 6.4.2.1.

NMF Marble SiCNMF
(unweighted)

SiCNMF
(weighted)

CNMF
0

5

10

15

20
Yes Possible No

Figure 6.6: Distribution of the clinical relevance scores across the various models.

Although SiCNMF on data that contains only the case patients could poten-

tially yield more clinically relevant phenotypes, the experiments were intended to

demonstrate the unsupervised nature of the algorithm on a heterogeneous patient

population.

Finally, Tables 6.4 and 6.5 show examples of phenotypes derived from

weighted SiCNMF and CNMF, that were rated to be clinically meaningful by the

domain experts.
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Diagnosis Medication

ischemic heart disease; hypertension; disorders
of lipoid metabolism; late effects of cerebrovas-
cular disease; occlusion of cerebral arteries;

antihyperlipidemic agents;
cholinesterase inhibitors; an-
tianginal agents; analgesics;
antiplatelet agents;

chronic airway obstruction, not elsewhere clas-
sified; other diseases of lung; dyspnea and res-
piratory abnormalities; pneumonia, organism
unspecified; hypertension;

bronchodilators; antiarrhyth-
mic agents; calcium chan-
nel blocking agents; antiviral
agents; medical gas;

malignant neoplasm of colon; rheuma-
toid arthritis and other inflammatory pol-
yarthropathies; malignant neoplasm of rectum,
rectosigmoid junction, and anus; secondary
malignant neoplasm of respiratory and diges-
tive systems; disorders involving the immune
mechanism;

immunosuppressive agents;
antirheumatics; antimetabo-
lites; antipsoriatics; adrenal
cortical steroid;

Table 6.4: Phenotypes from weighted–SiCNMF (η = 500) that were evaluated as
“clinically meaningful” by a domain expert.
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Diagnosis Medication

ischemic heart disease; hypertension; disor-
ders of lipoid metabolism; unspecified chest
pain; myocardial infarction;

antianginal agents; antihyper-
lipidemic agents; vasodilators;
antiplatelet agents; angiotensin
converting enzyme inhibitors

heart failure; atrial fibrillation and flutter; hy-
pertension; pulmonary heart disease; dysp-
nea and respiratory abnormalities;

diuretics; antiarrhythmic agents;
calcium channel blocking agents
bronchodilators;aldosterone re-
ceptor antagonists;

malignant neoplasm of colon; rheuma-
toid arthritis and other inflammatory pol-
yarthropathies; regional enteritis; malignant
neoplasm of rectum, rectosigmoid junction,
and anus; ulcerative colitis;

immunosuppressive agents; an-
tirheumatics; analgesics; vita-
mins; antimetabolites;

chronic kidney disease (CKD); diabetes mel-
litus, type 2 Complications peculiar to cer-
tain specified procedures; other and unspec-
ified anemias; diabetes mellitus, Type 1;

antidiabetic agents; miscella-
neous antibiotics; sulfonamides;
recombinant human erythropoi-
etins; glucose elevating agents;

Table 6.5: Phenotypes from CNMF (no sparsity constraints) that were evaluated as
clinically meaningful by a domain expert.
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Chapter 7

Collaborative Preference Completion from Partial
Rankings

In this chapter, a novel and efficient algorithm for low rank matrix estima-

tion in a collaborative learning to rank (LETOR) framework is developed, which

involves jointly estimating individualized rankings for a set of entities over a shared

set of items, based on a limited number of observed affinity values. The approach

exploits the observation that while preferences are often recorded as numerical

scores, the predictive quantity of interest is the underlying rankings. Thus, attempts

to closely match the recorded scores may lead to overfitting and impair generaliza-

tion performance. Instead, an estimator is proposed that directly fits the underlying

rank order, combined with nuclear norm constraints to encourage low rank parame-

ters. Besides (approximate) correctness of the ranking order, the proposed estimator

makes no generative assumption on the numerical scores of the observations. One

consequence is that the proposed estimator can fit any consistent entity–specific

partial ranking over a subset of the items represented as a directed acyclic graph

(DAG), generalizing standard techniques that can only fit preference scores. De-

spite this generality, for supervision representing total or blockwise total orders,

the computational complexity of the proposed algorithm is within a log factor of

the standard algorithms for nuclear norm regularization based estimates for matrix

completion.
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7.1 Introduction

Collaborative preference completion is the task of jointly learning bipartite

(or dyadic) preferences of set of entities for a shared list of items, e.g., user–item

interactions in a recommender system [56, 94]. It is commonly assumed that such

entity–item preferences are generated from a small number of latent or hidden fac-

tors, or equivalently, the underlying preference value matrix is assumed to be low

rank. Further, if the observed affinity scores from various explicit and implicit feed-

back are treated as exact (or mildly perturbed) entries of the unobserved preference

value matrix, then the preference completion task naturally fits in the framework of

low rank matrix completion [94, 167].

Recent research in the preference completion literature have noted that

using a matrix completion estimator for collaborative preference estimation may

be misguided [44, 141, 95] as the observed entity–item affinity scores from im-

plicit/explicit feedback are potentially subject to systematic monotonic transforma-

tions arising from limitations in feedback collection, e.g., quantization and inherent

biases. Such monotonic transformations can significantly increase the rank of the

observed preference score matrix, thus adversely affecting recovery using low rank

matrix completion methods [55]. Further, despite the common practice of mea-

suring preferences using numerical scores, predictions are most often deployed or

evaluated based on the item ranking e.g. in recommender systems, user recommen-

dations are often presented as a ranked list of items without the underlying scores.

Indeed several authors have shown that favorable empirical/theoretical performance

in mean square error for the preference matrix often does not translate to better per-

formance when performance is measured using ranking metrics [44, 141, 95]. Thus,

collaborative preference estimation may be better posed as a collection of coupled

learning to rank (LETOR) problems [105] that seek to jointly learn the preference
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rankings of a set of entities, particularly exploiting the low dimensional latent struc-

ture of the underlying preference values.

This chapter considers preference completion in a general collaborative

LETOR setting. Importantly, while the observations are assumed to be reliable

indicators for relative preference ranking, their numerical scores may be quite de-

viant from the ground truth low rank preference matrix. Therefore, the aim in this

chapter is to address preference completion under the following generalizations:

1. In a simple setting, for each entity, a score vector representing the its observed

affinity interactions is assumed to be generated from an arbitrary monotonic

transformation of the corresponding entries of the ground truth preference ma-

trix. No further generative assumptions is made on the observed scores beyond

monotonicity with respect to the underlying low rank preference matrix.

2. A more general setting is also considered, where observed preferences of each

entity represent specifications of a partial ranking in the form of a directed

acyclic graph (DAG) – the nodes represent a subset of items, and each edge

represents a strict ordering between a pair of nodes. Such rankings may be en-

countered when the preference scores are consolidated from multiple sources

of feedback, e.g., comparative feedback (pairwise or listwise) solicited for inde-

pendent subsets of items. This generalized setting cannot be handled by standard

matrix completion without some way of transforming the DAG orderings into a

score vector.

This work is in part motivated by an application to neuroimaging meta-

analysis as outlined in the following. Cognitive neuroscience aims to quantify the

link between brain function with behavior. This interaction is most often measured

in humans using Functional Magnetic Resonance Imaging (fMRI) experiments that

measure brain activity in response to behavioral tasks. After analysis, the conclu-
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sions are often summarized in neuroscience publications which include a table of

brain locations that are most actively activated in response to an experimental stim-

ulus. These results can then be synthesized using meta-analysis techniques to derive

accurate predictions of brain activity associated with cognitive terms (also known as

forward inference) and prediction of cognitive terms associated with brain regions

(also known as reverse inference).

Contributions:

• A convex estimator for low rank preference completion is proposed using limited

supervision, addressing: (a) arbitrary monotonic transformations of preference

scores; and (b) partial rankings over items and simple generalization error bounds

for a surrogate ranking loss that quantifies the trade–off between data–fit and

regularization (Section 7.5).

• Efficient algorithms for the estimate are proposed under total and partially or-

dered observations. In the case of total orders, in spite of increased generality,

the computational complexity of the proposed algorithm is within a log factor of

the standard convex algorithms for matrix completion (Section 7.4).

• The proposed algorithm is evaluated for a novel application of identifying asso-

ciations between brain–regions and cognitive terms from the neurosynth dataset

[162] (Section 7.6). Such a large scale meta-analysis synthesizing information

from the literature and related tasks has the potential to lead to novel insights

into the role of brain regions in cognition and behavior.

7.2 Related Work

Matrix Completion: The bulk of the matrix completion works discussed

in the precvious chapters including those in the context of ranking/recommendation

applications focus on (a) fitting the observed numerical scores using squared loss,
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and (b) evaluating the results on parameter/rating recovery metrics such as root

mean squared error (RMSE). The shortcomings of such estimators and results

using squared loss in ranking applications have been studied in some recent re-

search [47, 44]. Motivated by collaborative ranking applications, there has been

growing interest in addressing matrix completion within an explicit LETOR frame-

work. [157] and [95] propose estimators that involve non–convex optimization

problems and their algorithmic convergence and generalization behavior are not

well understood. Some recent works provide parameter recovery guarantees for

pairwise/listwise ranking observations under specific probabilistic distributional as-

sumptions on the observed rankings [122, 119]. In comparison, the estimators and

algorithms in this paper are agnostic to the generative distribution, and hence have

much wider applicability.

Learning to rank (LETOR): LETOR is a structured prediction task of

rank ordering relevance of a list of items as a function of pre–selected features

[105]. Currently, leading algorithms for LETOR are listwise methods [31], which

fully exploit the ranking structure of ordered observations, and offer better mod-

eling flexibility compared to the pointwise [100] and pairwise methods [69, 82].

A recent listwise LETOR algorithm proposed the idea of monotone retargeting

(MR) [5], which elegantly addresses listwise learning to rank (LETOR) task while

maintaining the relative simplicity and scalability of pointwise estimation. MR was

further extended to incorporate margins in the margin equipped monotonic retar-

geting (MEMR) formulation [4] to preclude trivial solutions that arise from scale

invariance of the initial MR estimate in [5]. The estimator proposed in the paper

is inspired from the idea of MR and will be revisited later in the paper. In col-

laborative preference completion, rather than learning a functional mapping from

features to ranking, we seek to exploit the low rank structure in jointly modeling
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the preferences of a collection of entities without access to preference indicative

features.

Single Index Models (SIMs) Finally, literature on monotonic single index

models (SIMs) also considers estimation under unknown monotonic transforma-

tions [73, 86]. However, algorithms for SIMs are designed to solve a harder prob-

lem of exactly estimating the non–parametric monotonic transformation and are

evaluated for parameter recovery rather than the ranking performance. In general,

with no further assumptions, sample complexity of SIM estimators lends them un-

suitable for high dimensional estimation. The existing high dimensional estimators

for learning SIMs typically assume Lipschitz continuity of the monotonic transfor-

mation which explicitly uses the observed score values in bounding the Lipsciptz

constant of the monotonic transformation [84, 55]. In comparison, the proposed

model is completely agnostic to the numerical values preference scores.

7.3 Preference Completion from Partial Rankings

Let the unobserved true preference scores of d2 entities for d1 items be de-

noted by a rank r � min {d1, d2} matrix Θ∗ ∈ Rd1×d2 . For each entity j ∈ [d2], a

partial or total ordering of preferences for a subset of items denoted by Ij ⊂ [d1] is

observed. Let nj = |Ij| denote the length of the ranked list of observed preferences

associated with entity j, so that Ωj = {(i, j) : i ∈ Ij} denotes the entity-item index

set for j, and Ω =
⋃
j Ωj denotes the index set collected across entities. Let PΩ

denote the sampling distribution for Ω. The observed preferences of entity j are

typically represented by a listwise preference score vector y(j) ∈ Rnj .

∀j ∈ [d2], y(j) = gj(PΩj(Θ
∗ +W )), (7.1)

97



where each (gj) are an arbitrary and unknown monotonic transformations, and

W ∈ Rd1×d2 is some non–adversarial noise matrix sampled from the distribution

PW . The preference completion task is to estimate a unseen rankings within each

column of Θ∗ from a subset of orderings (Ωj, y
(j))j∈[d2].

As (gj) are arbitrary, the exact values of (y(j)) are inconsequential, and the

observed preference order can be specified by a constraint set parameterized by a

margin parameter ε as follows:

Definition 7.3.1 (ε–margin Isotonic Set). The following set of vectors are isotonic

to y ∈ Rn with an ε > 0 margin parameter:

Rn
↓ε(y) = {x ∈ Rn : ∀ i, k ∈ [n], yi < yk ⇒ xi ≤ xk − ε}.

In addition to score vectors, isotonic sets of the form Rn
↓ε(y) are equivalently

defined for any DAG y = G([n], E) which denotes a partial ranking among the ver-

tices, with the convention that (i, k) ∈ E ⇒ ∀x ∈ Rn
↓ε(y), xi ≤ xk − ε. Note that

in Definition 7.3.1 that ties are not broken at random, e.g., if yi1 = yi2 < yk, then

∀x ∈ Rn
↓ε(y), xi1 ≤ xk− ε, xi2 ≤ xk− ε, but no particular ordering between xi1 and

xi2 is specified.

Let y(k) denote the kth smallest entry of y ∈ Rn. Three special cases of an

observation y representing a partial ranking over [n] are distinguished.

(A) Strict Total Order: y(1) < y(2) < . . . < y(n).

(B) Blockwise Total Order: y(1) ≤ y(2) ≤ . . . ≤ y(n), with K ≤ n unique values.

(C) Arbitrary DAG: Partial order induced by a DAG y = G([n], E).

7.3.1 Monotone Retargeted Low Rank Estimator

Consider any scalable pointwise learning algorithm that fits a model to exact

preferences scores. Since no generative model (besides monotonicity) is assumed
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for the raw numerical scores in the observations, in principle, the scores y(j) for

entity j can be replaced or retargeted to any ranking-preserving scores, i.e., by

any vector in R
nj
↓ε (y

(j)). Monotone Retargeting (MR) [5] exploits this observation

to address the combinatorial listwise ranking problem [105] while maintaining the

relative simplicity and scalability of pointwise estimates (regression). The key idea

in MR is to alternately fit a pointwise algorithm to current relevance scores, and

retarget the scores by searching over the space of all monotonic transformations of

the scores. The proposed approach extends and generalizes monotone retargeting

for the preference prediction task.

The algorithm is first motivated for the noise free setting, where it is clear

that Θ∗Ωj ∈ R
nj
↓ε (y

(j)), so a candidate preference matrix X lies in the intersection of

(a) the data constraints from the observed preference rankings {XΩj ∈ R
nj
↓ε (y

(j))},
and (b) the model constraints – in this case low rankness induced by constraining

the nuclear norm ‖X‖∗. For robust estimation in the presence of noise, the noise

free approach is extended by incorporating a soft penalty on constraint violations.

Let z ∈ R|Ω|, and with slight abuse of notation, let zΩj ∈ Rnj denote vector of the

entries of z ∈ R|Ω| corresponding to Ωj ⊂ Ω. Upon incorporating the soft penalties,

the monotone retargeted low rank estimator is given by:

X̂ = Argmin
X

min
x∈R|Ω|

λ‖X‖∗ + 1
2
‖z − PΩ(X)‖2

2

s.t. ∀j, zΩj ∈ R
nj
↓ε (y

(j)),
(7.2)

where the parameter λ controls the trade–off between nuclear norm regularization

and data fit, and X̂ is the set of minimizers of (7.2). The proposed estimate can

handle arbitrary monotonic transformation of the preference scores and provides

higher flexibility compared to the standard matrix completion.

Note that Rn
↓ε(y) is convex, and ∀λ≥ 1, the scaling λRn

↓ε(y) = {λx ∀ x ∈
Rn
↓ε(y)} ⊆ Rn

↓ε(y). Although (7.2) is specified in terms of two parameters, due to
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the geometry of the problem, it turns out that λ and ε are not jointly identifiable, as

discussed in the following proposition.

Proposition 7.3.1. The optimization in (7.2) is jointly convex in (X, z). Further,

∀γ > 0, (λ, γε) and (γ−1λ, ε) lead to equivalent estimators, specifically X̂(λ, γε) =

γ−1X̂(γ−1λ, ε).

Since, positive scaling of X̂ preserves the resultant preference order, using

Proposition 7.3.1 without loss of generality, only one of ε or λ requires tuning with

the other remaining fixed. In the experiments ε is chosen arbitrarily, and tune λ

using validation.

7.4 Optimization Algorithm

The optimization problem in (7.2) is jointly convex in (X, z). Further, it

is later shown that the proximal operator of the non–differential component of the

estimate λ‖X‖∗ +
∑

j I(zΩj ∈ R
nj
↓ε (y

(j))) is efficiently computable. This motivates

using the proximal gradient descent algorithm [121] to jointly update (X, z). A

fixed step size of α = 1/2 is used and the resulting updates are as follows:

• X Update: Singular Value Thresholding The proximal operator for τ‖.‖∗ is

the singular value thresholding operator Sτ . For X with singular value decompo-

sition X = UΣV and τ ≥ 0, Sτ (X) = Usτ (Σ)V, where sτ is the soft threshold-

ing operator given by sτ (x)i = max{xi − τ, 0}.
• z Update: Parallel Projections For hard constraints on z, the proximal operator

at v is the Euclidean projection on the constraints given by z ← argminz‖z −
v‖2

2, s.t. zΩj ∈ R
nj
↓ε (y

(j)) ∀j ∈ [d2]. These updates decouple along each en-

tity (column) zΩj and can be trivially parallelized. Efficient projections onto

R
nj
↓ε (y

(j)) are discussed Section 7.4.1.
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Algorithm 3 Proximal Gradient Descent for (7.2) with input Ω, {y(j)
j }, ε and

paramter λ
for k = 0, 1, 2, . . . , Until (stopping criterion)

X(k+1) =Sλ/2

(
X(k) +

1

2
(P∗Ω(z(k) −X(k)

Ω )
)
, (7.3)

∀j, z(k+1)
Ωj

= Proj
R
nj
↓ε (yj)

(z(k)
Ωj

+X
(k)
Ωj

2

)
. (7.4)

7.4.1 Projection onto Rn
↓ε(y)

The following definitions that are used in characterizing Rn
↓ε(y).

Definition 7.4.1 (Adjacent difference operator). The adjacent difference operator in

Rn, denoted by Dn : Rn → Rn−1 is defined as (Dnx)i = xi−xi+1, for i ∈ [n−1].

Definition 7.4.2 (Incidence Matrix). For a directed graph G(V,E), the incidence

matrix AG ∈ R|V |×|E| is such that: if the j th directed edge ej ∈ E is from ith node

to kth node, then (AG)ij = 1, (AG)kj = −1, and (AG)lj = 0, ∀l 6= i or k.

Projection onto Rn
↓ε(y) is closely related to the isotonic regression problem

of finding a univariate least squares fit under consistent order constraints (without

margins). This isotonic regression problem in Rn can be solved exactly in O(n)

complexity using the classical Pool of Adjacent Violators (PAV) algorithm [59, 16]

PAV(v) = argmin
z′∈Rn

||z′ − v||2 s.t. z′i − z′i+1 ≤ 0. (7.5)

Simple adaptations of isotonic regression can be used for projection onto ε-margin

isotonic sets for the three special cases of interest as summarized in Table 7.1.

(A) Strict Total Order: y(1) < y(2) < . . . y(n)

In this setting, the constraint set can be characterized as Rn
↓ε(y) = {x : Dnx ≤
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−ε1}, where 1 is a vector of ones. For this case projection onto Rn
↓ε(y) differs from

(7.5) only in requiring an ε–separation and a straight forward extension of the PAV

algorithm [16] can be used. Let dsl ∈ Rn be any vector such that 1 = −Dnd
sl,

then by simple substitutions, ProjRn↓ε(y)(x) = PAV(x− εdsl) + εdsl.

(B) Blockwise Total Order: y(1) ≤ y(2) ≤ . . . ≤ y(n)

This is a common setting for supervision in many preference completion applica-

tions, where the listwise ranking preferences obtained from ratings over discrete

quantized levels 1, 2, . . . , K, with K � n are prevalent. Let y be partitioned into

K ≤ n blocks P = {P1, P2, . . . PK}, such that the entries of y within each partition

are equal, and the blocks themselves are strictly ordered,

i.e., ∀k ∈ [K], sup y(Pk−1)< inf y(Pk) = sup y(Pk) < inf y(Pk+1),

where P0 = PK+1 = φ, and y(P ) = {yi : i ∈ P}.

Let dbl ∈ Rn be such that dbl
i =

∑K
k=1 k Ii∈Pk is a vector of block indices

dbl = [1, 1, ..
∣∣2, 2, ..

∣∣K,K, ..,K]>. Let ΠP be a set of valid permutations that per-

mute entries only within blocks {Pk ∈ P}, then Rn
↓ε(y) = {x :∃π∈ΠP ,Dnπ(x) ≤

−εDnd
bl}. The following steps are proposed to compute ẑ = ProjRn↓ε(y)(x) in this

case:

Step 1. π∗(x) s.t. ∀k ∈ [K], π∗(x)Pk = sort(xPk)

Step 2. ẑ = PAV (π∗(x)− εdbl) + εdbl.
(7.6)

The correctness of (7.6) is summarized by the following Lemma.

Lemma 7.4.1. Estimate ẑ from (7.6) is the unique minimizer for

argmin
z
‖z − x‖2

2 s.t. ∃π ∈ ΠP : Dnπ(z) ≤ εDnd
bl.
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(C) Arbitrary DAG: y = G([n], E)

An arbitrary DAG (not necessarily connected) can be used to represent any con-

sistent order constraints over its vertices, e.g., partial rankings consolidated from

multiple listwise/pairwise scores. In this case, the ε–margin isotonic set is given by

Rn
↓ε(y) = {x : A>G x ≤ −ε1} (c.f. Definition 7.4.2). Consider dDAG ∈ Rn such that

ith entry dDAG
i is the length of the longest directed chain connecting the topological

descendants of the node i. It can be easily verified that, the isotonic regression algo-

rithm for arbitrary DAGs applied on x− εdDAG gives the projection onto Rn
↓ε(y). In

this most general setting, the best isotonic regression algorithm for exact solution

requires O(nm2 +n3 log n2) computation [142], where m is the number of edges in

G. While even in the best case ofm = o(n), the computation can be prohibitive, this

case is included for completeness. Also note that this case of partial DAG ordering

cannot be handled in the standard matrix completion setting without consolidating

the partial ranks to total order.

Rn↓ε(y) ProjRn↓ε(y)(x) Computation

(A) {x : Dnx ≤ −ε1} PAV(x− εdsl) + εdsl O(n)

(B)
{
x :
∃π∈ΠP ,
Dnπ(x) ≤ −ε1

}
π∗
−1

P

(
PAV(π∗P (x)− εdbl) + εdbl) O(n log n)

(C) {x : A>G x ≤ −ε1} IsoReg(x− εdDAG,G)+εdDAG O(n2m+ n3 log n)

Table 7.1: Summary of algorithms for ProjRn↓ε(y)(x)

7.4.2 Computational Complexity

Let H(X, z) := 1
2
‖PΩ(X)− z‖2

2, and

fλ(X) = min
z
λ‖X‖∗ +H(X, z) s.t. zΩj ∈ R

nj
↓ε (y

(j)).

It can be derived that ∇X,zH is 2–Lipscitz continuous. The following proposition

is a standard result on convergence of proximal gradient descent [121].
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Proposition 7.4.2. If (X(k), z(k)) are the sequence of updates from Algorithm 3,

them for some X̄ ∈ X̂λ, (a) fλ(X
(k)) − fλ(X̄) ≤ 1

k
‖X(0) − X̄‖F , and

(b) limk→∞X
(k) = X̄.

Compared to proximal algorithms for standard matrix completion [22, 108],

the additional complexity in Algorithm 3 arises in the z update (7.4), which is a

simple substitution z(k) = X
(k)
Ω in standard matrix completion. For total orders,

the z update of (7.4) is highly efficient and is asymptotically within an additional

log |Ω| factor of the computational costs for standard matrix completion.

7.5 Generalization Error

The estimator and the algorithms described so far are independent of the

sampling distribution generating (Ω, {yj}). In this section a generalization error

bound for (7.2) is derived under simple assumptions on the observations.

Recall that yj are (noisy) partial rankings of subset of items for each user,

obtained from gj(Θ
∗
j+Wj) whereW is a noise matrix and gj are unknown and arbi-

trary transformations that only preserve that ranking order within each column. For

simplicity, provide generalization error bounds for observations with linear order

which can be analogously extended to partial order from DAGs.

7.5.1 Sampling

For a fixed noise matrix W and ground truth Θ∗, assume the following sam-

pling distribution:

Assumption 7.5.1 (Sampling (PΩ)). Let be c0 a fixed constant and R be pre–

specified parameter denoting the length of single listwise observation. For s =
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1, 2, . . . , |S| = c0d2 log d2,

j(s) ∼ uniform[d2], I(s) ∼ randsample([d1], R),

Ω(s) = {(i, j(s)) : i ∈ I(s)}, y(s) = gj(s)(PΩ(s)(Θ
∗ +W )).

(7.7)

Further, the following notation is defined:

∀j, Ij =
⋃
s:j(s)=j I(s), Ωj =

⋃
s:j(s)=j Ω(s), and nj = |Ωj|. (7.8)

For each column j, the listwise scores {y(s) : j(s) = j} jointly define a consis-

tent partial ranking of Ij as the scores are subsets of a monotonically transformed

preference vector gj(Θ∗j + Wj). This consistent ordering is represented by a DAG

y(j) = PartialOrder({y(s) : j(s) = j}). Also note that O(d2 log d2) samples en-

sures that each column is included in the sampling with high probability, This fol-

lows from standard concentration results on uniform sampling.

Definition 7.5.1 (Projection Loss). Let y = G([n], E) or y ∈ Rn define a partial

ordering or total order in Rn, respectively. The following convex surrogate loss is

defined over the partial rankings.

Φ(x, y) = minz∈Rn↓ε(y) ‖x− z‖2

Theorem 7.5.1 (Generalization Bound). Let X̂ be an estimate from (7.2). With

appropriate scaling let ‖X̂‖F = 1 , then for constants K1 K2, the following holds

with probability greater than 1− δ over all observed rankings {y(j),Ωj : j ∈ [d2]}
drawn from (7.7) with |S| ≥ c0d2 log d2:

Ey(s),Ω(s)Φ(X̂Ω(s), y(s)) ≤ 1

|S|

|S|∑

s=1

Φ(X̂Ω(s), y(s))

+K1
‖X̂‖∗ log1/4 d√

d1d2

√
d log d

R|S| +K2

√
log 2/δ

|S| .
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Theorem 7.5.1 quantifies the test projection loss over a random R length

items I(s) drawn for a random entity/user j(s). The bound provides a trade–off

between observable training error and complexity defined by nuclear norm of the

estimate. Finally, in contrast to sample complexity results often seen for exact

matrix completion (like [26, 127]), although, Theorem 7.5.1 does not provide a–

priori guarantee on the performance the estimate, such generalization error bounds

are useful to quantify test errors in terms of observable quantities of training error

and estimate complexity [15]. Moreover, ground truth recovery guarantees in the

style of [127, 26, 87] typically require additional assumptions on the generative

model to uniquely identify a point estimate.

7.6 Experiments

Movielens Dataset: Movielens∗ is a movie recommendation website adminis-

tered by GroupLens Research. The competitive benchmarked movielens 100K

dataset † is used, which consists of 943 users and 1682 items, and Ratings are

partially ordered – taking one of 5 values in the set {1.0, 2.0, . . . , 5.0}. The two

train/test splits provided with the dataset are used and the results are compared to

the baselines of standard matrix completion (SMC) and ranking based collaborative

filtering algorithm called Cofi-Rank [157]. In each split, a different list of 10 items

are held out for each user in the test set. All algorithms rank the set of items for

each user, and the score is averaged across users. Table 7.2 presents the results of

evaluation on the Movielens dataset.

The models are evaluated on three ranking metrics: Kendall Tau, Normal-

∗movielens.umn.edu
†www.grouplens.org/node/73
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Kendall Tau NDCG@5 Precision@5

MR Preference Completion 0.3858 (0.0175) 0.8010 (0.0021) 0.7005 (0.0130)
Standard Matrix Completion 0.3584 (0.0012) 0.7875 (0.0055) 0.6897 (0.0022)
COFI-Rank 0.3101 (0.0057) 0.7711 (0.0008) 0.6735 (0.0004)

Table 7.2: Comparison of ranking performance on Movielens 100K dataset. Higher
values are better.

ized Discounted Cummulative Gain or NDCG at top 5 and Precision at top 5 (See

[105] for evaluation metrics). Note that test set consists of a list of 10 items per

user. It can be observed that the proposed retargeted matrix completion (RMC)

outperforms SMC and Cofi-Rank [157] in terms of Kendall Tau, NDCG@5 and

Precision@5 [105].
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Figure 7.1: Comparison of ranking performance of proposed method, RMC for
Retargeted Matrix Completion, with Standard Matrix Completion (SMC) using nu-
clear norm minimization. For all the three popular ranking metrics shown, higher
values are better[5].

Neurosynth Dataset: As discussed in the introduction, from Neurosynth an as-

sociation matrix between ∼ 3000 terms by 1000 consolidated brain regions is ex-
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tracted, where the entries indicate the number of times a term/task and a brain region

are mentioned in the same manuscript. Using this data, the reverse inference task is

considered – the ranking of cognitive concepts for each brain region. As acknowl-

edged by the developers of Neurosynth[163], the literature scraping approach is

inherently noisy, and hence the numerical values may not be precise. Thus, ranking

based approaches may be preferable to a parametric modeling approach. Further,

the given brain regions × term matrix is inherently sparse, as many associations

are never observed. The proposed estimator in (7.2) is compared against stan-

dard low rank matrix completion using nuclear norm minimization. The results in

Fig. 7.1show that the proposed estimate from (7.2) significantly outperforms stan-

dard matrix completion in term of popular ranking metrics, namely Spearman τ ,

Kendall ρ and NDCG [5].
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Chapter 8

Conclusions and Furture Work

This dissertation makes several contributions towards extending the statisti-

cal and empirical results on structured matrix estimation. In Chapters 3–5, tractable

estimators with strong statistical guarantees are developed for matrix completion

problems. The results in these chapters substantially extend the scope of prov-

able matrix completion. The existing analysis for provable matrix completion are

restricted to completion of a low rank structured matrix from observations under

noiseless of additive thin–tailed noise distributions. In Chapter 3, the recovery re-

sults for matrix completion is extended to observations arising from a rich class of

exponential family of distributions. This class of distributions are often the distri-

butions of choice to model a variety of common datatypes and noise models. In

Chapter 4, a unified statistical analysis is derived for matrix completion under gen-

eral low dimensional structural constraints that can be enforced using any norm

regularization. Several significant structures in high dimensional learning beyond

low–rankness, including those arising from superposition structure, atomic norms

and convex constraints can be analyzed under this framework. In Chapter 5, collec-

tive estimation from multiple sources of data is addressed. First non–trivial sample

complexity result is derived for the collective matrix completion problem of learn-

ing completion of multiple matrices sharing a joint low dimensional structure. In-

termediate results arising in the proofs of these chapters are of independent interest

beyond the scope of this dissertation.

109



In Chapter 6, unsupervised, structured collective matrix factorization tools

that incorporates various application specific constraints into a joint low rank fac-

torization framework is proposed. Unsupervised learning approaches for automated

phenotyping has the potential to enable improved clinical trials, properly target pa-

tients for screening tests and interventions, and support surveillance of infectious

diseases. This framework is used for phenotype extraction from multi–source EHR

data from Vanderbilt University. The clinical relevance of extracted candidate phe-

notypes is evaluated by domain experts and the results show improved performance

over naive baselines. The utility of the phenotype descriptions is further quan-

titatively evaluated on the classification of case and control patients with Type-2

diabetes and hypertension.

Finally, in Chapter 7, algorithms and applications for the problem of col-

laboratively ranking multiple preference lists is discussed. A general setting is

considered, wherein the observed preferences are either (a) numerical scores that

are arbitrary monotonic transformations of the underlying low rank matrix values,

or (b) DAG’s representing partial orders. In both these cases, using matrix com-

pletion for estimating missing preferences is misguided or not applicable. A novel

convex estimator efficient algorithm for the collaborative LETOR task is proposed,

wherein a missing low rank preferences of the entities are learned by fitting the total

or partial ordering of the observed preferences rather than the numerical scores. Re-

markably, in the case of complete order, the complexity of our algorithm is within

a log factor of the state–of–the–art algorithms for standard matrix completion. The

efficacy proposed estimator is validated by experiments on real data applications.
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8.1 Future Work

In Chapters 3–5, the matrix completion problems analyzed assume that the

observations (Xij) are sampled independently from the other entries. Further, the

probability of observing a specific entry Xij , under uniform sampling is indepen-

dent of the noise channel or the distribution P(Xij|Θ∗ij). However, in some appli-

cations, it might be beneficial to have a sampling scheme involving dependencies

among the observed entries as well among the sampled entries and the noise chan-

nel. In future work, it would be interesting to extend the analysis of this dissertation

to such a dependent sampling settings.

The phenotyping applications discussed in Chapter 6, can also be extend

along several directions. EHR data is often subject to noise and missing data. Fur-

ther, in latent factor estimation using non-convex optimization algorithms, the es-

timated latent factors are typically interchangeable and lack identifiability. It is

of interest to investigate algorithms under domain specific constraints for learning

identifiable phenotypes that are robust to (a) missing data, (b) noise in data, and

(c) varying patient populations. Moreover, in certain datasets a fully shared latent

space is overly restrictive and models that allow for partial sharing of latent space

could be explored in future work.

Finally, the collaborative learning to rank framework discussed in Chap-

ter 7 could be extended along both theoretical and application domains. Stronger

theoretical guarantees for the estimator and the algorithms under common cases

of ranking observation are a potential line of exploration. Collaborative ranking

problems that incorporate knowledge of features associated with entities and items

could also be investigated within the monotone retargeting framework. Moreover,

the preliminary results motivate future collaboration with neuroscience practition-

ers in extending the results towards developing systems for significant applications.
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Appendix A

Proof of Results in Chapter 3

A.1 Proof of Theorem 3.3.1

Proof of Theorem 3.3.1 involves two key steps:

• Show that, under assumptions Assumption 3.3.1–3.3.3, RSC of the form in

Definition 2.1.5 holds for the loss function in (3.4) over a large subset of the

solution space.

• When the RSC condition holds, the result follows from a few simple calcula-

tions; we handle the case where RSC does not hold separately.

Let ∆̂ = Θ̂ − Θ∗. Recall the notation αsp(∆) =
√
d1d2‖∆‖max

‖∆‖F
. Consider two cases,

depending on whether the following condition holds for the constant c0 > 0 in

Theorem 3.3.1:

αsp(∆̂) ≤ 1

c0Ψ(M)

√
|Ω|

d log d
. (A.1)

Case 1: Suppose condition in (A.1) does not hold; so that αsp(∆̂) > 1
c0Ψ(M)

√
|Ω|

d log d
.

From the constraints of the optimization problem (3.4), we have that ‖∆̂‖max ≤
‖Θ̂‖max + ‖Θ∗‖max ≤ (2α∗/

√
d1d2). Thus,

‖∆̂‖F =

√
d1d2‖∆̂‖max

αsp(∆̂)
≤ 2c0α

∗

√
Ψ2(M)d log d

|Ω| . (A.2)

Case 2: Suppose condition in (A.1) does hold. Then, the following theorem shows
that an RSC condition of the form in Definition 2.1.5 holds.
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Theorem A.1.1 (Restricted Strong Convexity). For c0 given by Theorem 3.3.1, let

αsp(∆̂) ≤ 1
c0Ψ(M)

√
|Ω|

d log d
. For large enough c0, given any constant β > 0, there

exists constant Kβ > 0 such that, under the assumptions in Theorem 3.3.1, w.p.
> 1− 4e−(1+β)Ψ4

min log2 d:

d1d2

|Ω|
∑

ij∈Ω

BG(Θ̂ij,Θ
∗
ij) ≥ µL‖∆̂‖2

F ,

where µL = e
− 2ηα∗√

d1d2

(
Kβ − 64

c0

√
|Ω|κ2

R
(d,|Ω|)

d log d

)
.

As noted earlier, such an RSC result for the special case of squared loss
under low–rank constraints was shown in [115]. The theorem in Section A.3.

Lemma A.1.2. Let Θ̂ be the minimizer of (3.4). If λ
2
≥ d1d2

|Ω| R
∗(PΩ(Y − g(Θ∗)),

then:
d1d2

|Ω|
∑

(i,j)∈Ω

BG(Θ̂ij,Θ
∗
ij) ≤

3λΨ(M)

2
‖Θ∗ − Θ̂‖F

The proof is provided in Appendix A.4.1. �

Remaining steps of the proof of Theorem 3.3.1: Thus, if αsp(∆̂) ≤
1

c0Ψ(M)

√
|Ω|

d log d
, and µL > 0, from Theorem A.1.1 and Lemma A.1.2, w.h.p.:

µL‖∆̂‖2
F ≤

d1d2

|Ω|
∑

ij∈Ω

BG(Θ̂ij,Θ
∗
ij) ≤

3λΨ(M)

2
‖∆̂‖F (A.3)

From (A.2) and (A.3), under assumptions of Theorem 3.3.1, w.p. > 1 −
4e−(1+β)Ψ4

min log2 d,

‖∆̂‖2
F ≤ Ψ2(M) max

{
3λ2

2µ2
L

,
α∗2c2

0d log d

|Ω|

}
.

A.2 Proof of Corollary 3.3.2

Using the definition of M
⊥

in (3.6), M = span{uix
>, yvj

> : x ∈ Rn, y ∈
Rm}. Let PU∗ ∈ Rm×m and PV ∗ ∈ Rd×d, be the projection matrices onto the
column and row spaces (U∗, V ∗) of Θ∗, respectively. Then, ∀X ∈ Rd1×d2 , XM =
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PU∗X + XPV ∗ − PU∗XPV ∗ . Also, rk(PU∗) = rk(PV ∗) = rk(Θ∗) = r. Thus,
∀Φ ∈M, rk(Φ) ≤ 2r; and hence,

Ψ(M) = sup
Φ∈M\{0}

‖Φ‖∗
‖Φ‖F

≤
√

2r. Further, Ψmin = 1.

The following proposition by [115] is used to bound κR(d, |Ω|) in Theorem 3.3.1.

Lemma A.2.1. If Ω ⊂ [d1] × [d2] is sampled using uniform sampling and |Ω| >
d log d, then for a Rademacher sequence {εij, ∀(i, j) ∈ Ω},

E
[ 1

|Ω|‖
∑

ij∈Ω

√
d1d2εijeie

∗
j‖2

]
≤ 10

√
d log d

|Ω| .

This follows from Lemma 6 of [115], using |Ω| > d log d. �

Thus, for large enough c0 > 640, using κR(d, |Ω|) = 10
√

d log d
|Ω| in Theo-

rem A.1.1, for some K ′β > 0,

µL = e
− 2ηα∗√

d1d2

(
Kβ −

640

c0

)
= K ′βe

− 2ηα∗√
d1d2 . (A.4)

Finally, to prove the corollary, we derive a bound on ‖PΩ(Y − g(Θ∗))‖2 using the
Ahlswede–Winter Matrix bound (Lemma 2.3.4). Let φ(x) = ψ2(x) = ex

2 − 1;
and let Z(ij) ,

√
d1d2(Yij − g(Θ∗ij))eie

>
j , such that,

√
d1d2

|Ω| ‖PΩ(Y − g(Θ∗))‖2 =

‖ 1
|Ω|
∑
ij∈Ω

Z(ij)‖2.

From the equivalence of sub-Gaussian definitions Definition 2.3.2, there ex-
ists a constant c1 such that ‖Yij − g(Θ∗ij)‖φ ≤ c1b, ∀(i, j). Since, Z(ij) has a single
sub–Gaussian element

√
d1d2(Yij − g(Θ∗ij)), ‖Z(ij)‖ψ2 ≤ c1

√
d1d2b. Further,

E[Z(ij)TZ(ij)] = E[d1d2(Yij − g(Θ∗ij))
2eje

∗
j ]

(a)
= d1d2E(ij∈Ω)EY (Yij − g(Θ∗ij))

2eje
∗
j

(b)

≤ d1d2b
2E(ij∈Ω)[eje

∗
j ]

(c)
= d1d2b

2 1

d2

Id2×d2 , (A.5)

where (a) follows from Fubini’s Theorem, (b) follows as (Yij − g(Θ∗ij))
is b-sub–Gaussian, and (c) follows from the uniform sampling
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model. Similarly, E[Z(ij)Z(ij)T ] = d1d2b
2Id1×d1 . Define σ2

ij :=

max{E[Z(ij)TZ(ij)],E[Z(ij)Z(ij)T ]} ≤ db2

In Lemma 2.3.4, using σ2 :=
∑

ij∈Ω σ
2
ij = d|Ω|b2, M = c1

√
d1d2b ≤ c1db,

and t = |Ω|δ,

P
(∥∥ 1

|Ω|
∑

ij∈Ω

Z(ij)
∥∥

2
≥ δ
)
≤ d2 max

{
e−

δ2|Ω|
4db2 , e

− δ|Ω|
2c1db

}
.

If |Ω| > c0d log d for large enough c0 > 0, then for any constant C, using δ =

Cb
√

d log d
|Ω| ,

P

(√
d1d2

|Ω| ‖PΩ(Y − g(Θ∗))‖2 ≥ Cb

√
d log d

|Ω|

)
≤ d2e−

C2

4
log d. (A.6)

Re-parameterizing the constants: for β > 0, ∃Cβ > 0 such that with probability

greater than 1 − e(1+β) log d,
√
d1d2

|Ω| ‖PΩ(Y − g(Θ∗))‖2 ≤ Cβb
√

d log d
|Ω| . Thus, using

Ψmin ≥ 1, µL = K ′βe
− 2ηα∗√

d1d2 (from (A.4)), and λ
2

:= Cβ
√
d1d2b

√
d log d
|Ω| in Theo-

rem 3.3.1 leads to the corollary.

A.3 Proof of Theorem A.1.1
Lemma A.3.1 (Lemma 1 of [114]). Define the following subset:

V = {Θ ∈ Rd1×d2 : R(Θ
M
⊥) ≤ 3R(ΘM)},

where recall (M,M
⊥

) from Assumption 3.3.1, and ΘM is the projection of Θ onto
the subspace M. If Θ̂ is the minimizer of (3.4), and λ

2
≥ d1d2

|Ω| R
∗(PΩ(Y − g(Θ∗)),

then ∆̂ = Θ̂−Θ∗ ∈ V. �

Lemma A.3.2. Under Theorem A.1.1, consider the subset

E =
{

∆ ∈ V : αsp(∆) ≤ 1

c0Ψ(M)

√
|Ω|

d log d
, ‖∆‖F = 1

}
.
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Given any constant β > 0, there exists a constant kβ > 0, such that w.p. > 1 −
4e−(1+β)Ψ4

min log2 d, ∀ ∆ ∈ E:

∣∣∣d1d2

|Ω|
∑

ij∈Ω

∆2
ij − 1

∣∣∣ ≤16R(∆)

c0Ψ(M)

√
|Ω|κ2

R(d, |Ω|)
d log d

+
kβR(∆)

c2
0Ψ(M)

.

Proof is provided in Appendix A.4.2. �

From the assumptions in Theorem A.1.1 and Proposition A.3.1, ∆̂

‖∆̂‖F
∈ E.

Also, ∆̂ ∈ V⇒ R(∆̂) ≤ R(∆̂M) +R(∆̂
M
⊥) ≤ 4R(∆̂M) ≤ 4Ψ(M)‖∆̂‖F . Further,

∀ (i, j) ∈ Ω, ∃vij ∈ [0, 1], s.t.

BG(Θ̂ij ,Θ
∗
ij) = G(Θ̂ij)−G(Θ∗ij)− g(Θ∗ij)(Θ̂ij −Θ∗ij)

= ∇2G((1− vij)Θ∗ij + vijΘ̂ij)∆̂
2
ij

(a)

≥ e
− 2ηα∗√

d1d2 ∆̂2
ij . (A.7)

where (a) holds as |(1 − vij)Θ
∗
ij + vijΘ̂ij| ≤ ‖Θ∗‖max + ‖Θ̂‖max ≤ 2α∗√

d1d2
, and

∇2G(u) ≥ e−η|u| (Assumption 3.3.2).

Using Lemma A.3.2 and (A.7), for large enough c0, if |Ω| >

c0Ψ2(M)d log d, then Kβ := 1 − 4kβ
c20

> 0. Finally, let µL := e
− 2ηα∗√

d1d2

(
Kβ −

64
c0

√
|Ω|κ2

R
(d,|Ω|)

d log d

)
; if µL > 0, then w.h.p., d1d2

|Ω|
∑

ij∈ΩBG(Θ̂ij,Θ
∗
ij) ≥ µL‖∆̂‖2

F .

A.4 Proofs of Lemma
A.4.1 Proof of Lemma A.1.2

Let ∆̂ = Θ̂−Θ∗.

R(Θ̂) = R
(
Θ∗ + ∆̂M + ∆̂

M
⊥
)
≥ R

(
Θ∗ + ∆̂

M
⊥
)
− R

(
∆̂M

)

= R
(
Θ∗
)

+ R
(
∆̂

M
⊥
)
− R

(
∆̂M

)
(A.8)
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The above inequalities hold due to triangle inequality, and decomposability of R
over Θ∗ ∈M and ∆

M
⊥ ∈M

⊥
.

d1d2

|Ω|
∑

(i,j)∈Ω

BG(Θ̂ij,Θ
∗
ij)

=
d1d2

|Ω|
[ ∑

(i,j)∈Ω

G(Θ̂ij)− YijΘ̂ij −G(Θ∗ij) + YijΘ
∗
ij + 〈PΩ(Y − g(Θ∗), ∆̂〉

]

(a)

≤ λR(Θ∗)− λR(Θ̂) +
d1d2

|Ω| R
∗(PΩ(Y − g(Θ∗)))R(∆̂)

(b)

≤ λR(∆̂M)− λR(∆̂
M
⊥) +

λ

2
R(∆̂M + ∆̂

M
⊥)

(c)

≤ 3λ

2
R(∆̂M)− λ

2
R(∆̂

M
⊥)

≤ 3λΨ(M)

2
‖Θ∗ − Θ̂M‖F ≤

3λΨ(M)

2
‖Θ∗ − Θ̂‖F (A.9)

where (a) follows as Θ̂ is the minimizer of (3.4) and using Cauchy Schwartz, (b)
follows from (A.8) and using d1d2

|Ω| R
∗(PΩ(Y − g(Θ∗)) ≤ λ

2
, and (c) follows from

triangle inequality. �

A.4.2 Proof of Lemma A.3.2

Recall that V = {∆ : R(∆
M
⊥) ≤ 3R(∆M)}. To prove Lemma 4, consider

the nuclear norm ball SR(t) = {∆ : R(∆) ≤ t}.

1. Show that,

P

(
sup

∆∈E∩SR(t)

∣∣∣d1d2

|Ω|
∑

ij∈Ω ∆2
ij − 1

∣∣∣ > 8t
c0Ψ(M)

√
|Ω|κ2(d,|Ω|)
d log d

+
kβt

2c20Ψ(M)

)
is

small; where κ(d, |Ω|) is a quantity that depends only on the dimensions d
and |Ω|. This is done by:

(a) Bounding the expectation, E
[

sup
∆∈E∩SR(t)

∣∣∣d1d2

|Ω|
∑

ij∈Ω ∆2
ij − 1

∣∣∣
]

(b) Showing an exponential decay of the tail.

2. Then use a peeling argument [125] to derive at the result in Lemma A.3.2.

118



A.4.2.1 Bounding Expectation

Note that ∀ ∆ ∈ E, E[d1d2

|Ω|
∑

ij∈Ω ∆2
ij] = ‖∆‖2

F = 1. Thus, by using stan-
dard symmetrization argument (Lemma 6.3 of [97], with a Rademacher sequence,
{εij,∀ ij ∈ Ω}, we have:

E
[

sup
∆∈E∩SR(t)

∣∣∣d1d2

|Ω|
∑

ij∈Ω

∆2
ij − 1

∣∣∣
]
≤ 2d1d2

|Ω| E
[

sup
∆∈E∩SR(t)

∣∣∣
∑

ij∈Ω

εij∆
2
ij

∣∣∣
]

(A.10)

Also, ∀∆ ∈ E, φij(∆) ,
∆2
ij

2 sup
∆∈E
‖∆‖max

is a contraction, and ∀∆ ∈ E, ‖∆‖max =

αsp(∆)√
d1d2
≤ 1

c0Ψ(M)
√
d1d2

√
|Ω|

d log d
.

Thus, using Theorem 4.12 of [97] in (A.10),

E
[

sup
∆∈E∩SR(t)

∣∣∣d1d2

|Ω|
∑

ij∈Ω

∆2
ij − 1

∣∣∣
]

≤ 8

c0Ψ(M)

√
|Ω|

d log d
E

[
sup

∆∈E∩SR(t)

∣∣∣
√
d1d2

|Ω|
〈∑

ij∈Ω

εijeie
∗
j ,∆

〉∣∣∣
]

(a)

≤ 8t

c0Ψ(M)

√
|Ω|

d log d
E

[√
d1d2

|Ω| R∗
(∑

ij∈Ω

εijeie
∗
j

)]
(A.11)

where (a) follows from Cauchy–Schwartz and as R(∆) ≤ t. Note that
R∗
(∑

ij∈Ω εijeie
∗
j

)
is independent of ∆ and depends only on d and |Ω|. Let

κ(d, |Ω|) ≥ E

[
√
d1d2

|Ω| R∗
(∑

ij∈Ω εijeie
∗
j

)]
be a suitable upper bound.

E
[

sup
∆∈E∩SR(t)

∣∣∣d1d2

|Ω|
∑

ij∈Ω

∆2
ij − 1

∣∣∣
]
≤ 8t

c0Ψ(M)

√
|Ω|κ2(d, |Ω|)

d log d
(A.12)
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A.4.2.2 Tail Behavior

Let Gt(Ω) , sup
∆∈E∩SR(t)

∣∣∣d1d2

|Ω|
∑

ij∈Ω ∆2
ij− 1

∣∣∣. Let Ω′ ⊂ [d1]× [d2] be another

set of indices that differ from Ω in exactly one element. We then have:

Gt(Ω)−Gt(Ω
′) = sup

∆∈E∩SR(t)

∣∣∣d1d2

|Ω|
∑

ij∈Ω

∆2
ij − 1

∣∣∣− sup
∆∈E∩SR(t)

∣∣∣d1d2

|Ω|
∑

kl∈Ω′

∆2
kl − 1

∣∣∣

≤ d1d2

|Ω| sup
∆∈E∩SR(t)

(∣∣∣
∑

ij∈Ω

∆2
ij − 1

∣∣∣−
∣∣∣
∑

kl∈Ω′

∆2
kl − 1

∣∣∣
)

≤ d1d2

|Ω| sup
∆∈E∩SR(t)

(∣∣∣
∑

ij∈Ω

∆2
ij −

∑

kl∈Ω′

∆2
kl

∣∣∣
)

≤ 2d1d2

|Ω| sup
∆∈E∩SR(t)

‖∆‖2
max ≤

2

c2
0Ψ2(M)d log d

By similar arguments on Gt(Ω
′) − Gt(Ω), we conclude that |Gt(Ω) − Gt(Ω

′)| ≤
2

c20Ψ2(M)d log d
. Therefore, using Mc Diarmid’s inequality, we have P(|Gt(Ω) −

E[Gt(Ω)]| > δ) ≤ 2 exp
(
− c40δ

2Ψ4(M)d2 log2 d

2|Ω|

)
. Fix δ = 2k1t

c20Ψ(M)
for appropriate

constant k1. Recall that Ψmin = inf
X\{0}

R(X)
‖X‖F

≤ Ψ(M). Using |Ω| ≤ d2,

P
(
Gt(Ω) >

8t

c0Ψ(M)

√
|Ω|κ2(d, |Ω|)

d log d
+

2k1t

c2
0Ψ(M)

)
≤ 2 exp

(
−2k2

1t
2Ψ2

min log2 d
)

A.4.2.3 Peeling Argument

Consider the following sets, S` = {∆ ∈ E : 2`−1Ψmin ≤ R(∆) ≤ 2`Ψmin},
for all (integers) ` ≥ 1. Since, ∀∆ ∈ E, R(∆) ≥ Ψmin‖∆‖F = Ψmin, for each
∆ ∈ E, ∆ ∈ S` for some ` ≥ 1. Further, if for some ∆ ∈ E,

∣∣∣d1d2

|Ω|
∑

ij∈Ω ∆2
ij−1

∣∣∣ >
16R(∆)

c0Ψ(M)

√
|Ω|κ2(d,|Ω|)
d log d

+ 4k1R(∆)

c20Ψ(M)
, then for some `:

∣∣∣d1d2

|Ω|
∑

ij∈Ω

∆2
ij − 1

∣∣∣ > 16(2`−1)Ψmin

c0Ψ(M)

√
|Ω|κ2(d, |Ω|)

d log d
+

4k12`−1Ψmin

c2
0Ψ(M)

=
8(2`Ψmin)

c0Ψ(M)

√
|Ω|κ2(d, |Ω|)

d log d
+

2k1(2`Ψmin)

c2
0Ψ(M)

(A.13)
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Thus,

P
(

sup
∆∈E

∣∣∣∣
d1d2

|Ω|
∑

ij∈Ω

∆2
ij − 1

∣∣∣∣ >
16R(∆)

c0Ψ(M)

√
|Ω|κ2(d, |Ω|)

d log d
+

4k1R(∆)

c2
0Ψ(M)

)

≤
∞∑

`=1

P
(
G2`(Ω) >

8(2`Ψmin)

c0Ψ(M)

√
|Ω|κ2(d, |Ω|)

d log d
+

2k1(2`Ψmin)

c2
0Ψ(M)

)

≤
∞∑

`=1

2 exp (−2k2
122lΨ4

min log2 d)
(a)

≤
∞∑

`=1

2 exp(−4 log 2 k2
1`Ψ

4
min log2 d)

≤ 2e−4k2
1Ψ4

min log2 d

1− e−4k2
1Ψ4

min log2 d
≤ 4e−4k2

1Ψ4
min log2 d

(A.14)

where (a) follows as x ≥ log x for x > 1, and the last step holds for d > 1. The
lemma follows by re-parametrization of constants in terms of β.
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Appendix B

Proof of Results in Chapter 4

B.1 Results from Generic Chaining

In this section, K denotes a universal constant, not necessarily the same at

each occurrence.

Definition B.1.1 (Gamma Functional (Definition 2.2.19 in [145])). Given a com-

plete pseudometric space (T, d), an admissible sequence is an increasing sequence

(An) of partitions of T such that |A0| = 1 and |An| ≤ 22n for n ≥ 1. For α > 0,

define the Gamma functional γα(T, d) as follows:

γα(T, d) = inf
(An)n≥0

sup
t∈T

∑

n≥0

2n/α∆d(An(t)), (B.1)

where inf is over all admissible sequences (An), An(t) is the unique element of An

that contains t, and ∆d(A) is the diameter of the set A measured in metric d.

Lemma B.1.1 (Majorizing Measures Theorem (Theorem 2.4.1 in [145])). Given

a closed set T in a metric space, let (Xt)t∈T be a centered Gaussian process in-

dexed by t ∈ T , i.e. (Xt) are jointly Gaussian. For s, t ∈ T , let dX(s, t) :=
√
E(Xs −Xt)2 denote the canonical pseudometric associated with (Xt). Then,

1

K
γ2(T, dX) ≤ E sup

t∈T
Xt ≤ Kγ2(T, dX).

In particular, for the canonical Gaussian process (
∑

i tigi)t∈T ,

1

K
γ2(T, ‖.‖F ) ≤ wG(T ) ≤ Kγ2(T, ‖.‖F ).
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Lemma B.1.2 (Theorem 2.4.12 in [145]). Let (Xt)t∈T be a centered Gaussian pro-

cess with canonical distance dX =
√

E(Xs −Xt)2. Let (Yt)t∈T be another cen-

tered process indexed by the same set T , such that

∀s, t ∈ T, u > 0, P(|Ys − Yt| > u) ≤ 2 exp
(
− u2

2d2
X(s, t)

)
,

then, E sups,t∈T |Ys − Yt| ≤ KE supt∈T Xt. If further, (Yt)t∈T is symmetric, then

E supt |Yt| ≤ E sups,t∈T |Ys − Yt| = 2E supt∈T Yt.

Note: From the definition of sub–Gaussian random variables (Section 2.3.1.2), us-

ing the above lemma, sub–Gaussian complexity measures can be directly bounded

by Gaussian complexities.

Lemma B.1.3 (Theorem 3.1.4 in [145]). Let T be a compact set with non–empty

interior. Consider a translation invariant random distance dω on T , that depends

on a random parameter ω; and let d(s, t) =
√

Ed2
ω(s, t), then :

(
Eγ2

2(T, dω)
)1/2 ≤ Kγ2(T, d) +K

(
E sup
s,t∈T

d2
ω(s, t)

)1/2

B.2 Proof of Theorem 4.3.2

Let the entries of Ω = {Es = eise
>
js : s = 1, 2, . . . , |Ω|} be sampled from

(4.2). Define the following random process over S:

(XΩ,g(X))X∈S,where XΩ,g(X) = 〈X,P∗Ω(g)〉 =
∑

s〈X,Es〉gs. (B.2)

The following lemmata are proved in Appendix B.5.

Lemma B.2.1. For a compact subset S ⊆ Rd1×d2 with non–empty interior, ∃ con-

stants k1, k2 such that:

wΩ,g(S) = E sup
X∈S

XΩ,g(X) ≤ k1

√
|Ω|
d1d2

wG(S) + k2

√
E sup
X,Y ∈S

‖PΩ(X − Y )‖2
2.
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Lemma B.2.2. There exists constants k3, k4, such that for compact S ⊆ Bd1d2 with

non–empty interior

E sup
X,Y ∈S

‖PΩ(X − Y )‖2
2 ≤ k3

|Ω|
d1d2

w2
G(S) + k4( sup

X,Y ∈S
‖X − Y ‖∞)wΩ,g(S)

From Lemma B.2.2, the following holds:

√
E sup
X,Y ∈S

‖PΩ(X − Y )‖2
2

(a)

≤ K3

√
|Ω|
d1d2

wG(S)+
√
k4wΩ,g(S) sup

X,Y ∈S
‖X − Y ‖∞

(b)

≤ K3

√
|Ω|
d1d2

wG(S) +K4( sup
X,Y ∈S

‖X − Y ‖∞) +
1

2
wΩ,g(S), (B.3)

where (a) follows from triangle inequality, (b) using
√
ab ≤ a/2 + b/2. Bound on

wΩ,g(S) in Theorem 4.3.2 follows by using (B.3) in Lemma B.2.1.

The statement in Theorem 4.3.2 about partial sub–Gaussian complexity fol-

lows from a standard result in empirical process given in Lemma B.1.2.

B.3 Proof of Theorem 4.3.1
Define the following set of β–non–spiky matrices in Rd1×d2 for constant c0

from Theorem 4.3.1:

A(β)=

{
X : αsp(X) =

√
d1d2‖X‖∞
‖X‖F

< β

}
. (B.4)

Define, β2
c0

=

√
|Ω|

c2
0w

2
G(ER) log d

(B.5)

Case 1: Spiky Error Matrix When the error matrix from (4.5) or (4.6) has large

spikiness ratio, following bound on error is immediate using ‖∆̂‖∞ ≤ ‖Θ̂‖∞+

‖Θ∗‖∞≤2α∗/
√
d1d2 in (2.2).
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Proposition B.3.1 (Spiky Error Matrix). For the constant c0 in Theorem 4.3.1a,

if αsp(∆̂cn) /∈ A(βc0), then ‖∆̂cn‖2
F ≤ 4α∗2

β2
c0

= 4α∗2
√

c20w
2
G(ER) log d

|Ω| . An analogous

result also holds for ∆̂ds. �

Case 2: Non–Spiky Error Matrix Let ∆̂ds, ∆̂cn ∈ A(βc0). Recall from (4.1), that

y − PΩ(Θ∗) = ξη, where η ∈ R|Ω| consists of independent sub–Gaussian random

variables with E[ηs] = 0, Var(ηs) = 1. Further, as η is sub–Gaussian, let ‖ηs‖Ψ2 ≤ b

for a constant b.

B.3.1 Restricted Strong Convexity (RSC)

Recall TR and ER from (4.7). An important step in the proof of Theo-

rem 4.3.1 involves showing that over a subset of TR, a form of RSC (2.1) is satisfied

by a squared loss penalty.

Theorem B.3.2 (Restricted Strong Convexity). Let |Ω| > c2
0w

2
G(ER) log d, for

large enough constant c0. There exists a RSC parameter κc0 > 0 with κc0 ≈
1 − o

(
1√

log d

)
, and a constant c1 such that, the following holds w.p. greater that

1− exp(−c1w
2
G(ER)),

∀X ∈ TR ∩ A(βc0),
d1d2

|Ω| ‖PΩ(X)‖2
2 ≥ κc0‖X‖2

F .

Proof in Appendix B.4 combines tools from empirical process along with Theo-

rem 4.3.2. �

B.3.2 Constrained Norm Minimizer

Lemma B.3.3. Under the conditions of Theorem 4.3.1, let b be a constant such that

∀s, ‖ηs‖Ψ2 ≤ b. There exists a universal constant c2 such that, if λcn≥2ξ
√
|Ω|, then

w.p. greater than 1− 2 exp (−c2|Ω|), (a) ∆̂ds ∈ TR, and (b) ‖PΩ(∆̂cn)‖2≤2λcn. �
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Using λcn =2ξ
√
|Ω| in (4.5), if ∆̂cn∈A(βc0), then using Theorem B.3.2 and

Lemma B.3.3, w.h.p.

‖∆̂cn‖2
F

d1d2

≤ 1

κc0

‖PΩ(∆̂cn)‖2
2

|Ω| ≤4ξ2

κc0
. (B.6)

B.3.3 Matrix Dantzig Selector

Proposition B.3.4. λds ≥ ξ
√
d1d2

|Ω| R∗P∗Ω(η) ⇒ (a) ∆̂ds ∈ TR; (b)
√
d1d2

|Ω| R∗P∗Ω(PΩ(∆̂ds))≤2λds.

Above result follows from optimality of Θ̂ds and triangle inequality. Also,
√
d1d2

|Ω| ‖PΩ(∆̂ds)‖2
2 ≤
√
d1d2

|Ω| R∗P∗Ω(PΩ(∆̂ds))R(∆̂ds) ≤ 2λdsΨR(TR)‖∆̂ds‖F ,

where recall norm compatibility constant ΨR(TR) from (4.8). Finally, using Theo-

rem B.3.2, w.h.p.

‖∆̂ds‖2
F

d1d2

≤ 1

|Ω|
‖PΩ(∆̂ds)‖2

2

κc0
≤4λdsΨR(TR)

κc0

‖∆̂ds‖F√
d1d2

. (B.7)

Theorem 4.3.1 follows from Proposition B.3.1, (B.6) and (B.7).

B.4 Proof of Theorem B.3.2

Statement of Theorem B.3.2:

Let |Ω| > c2
0w

2
G(ER) log d, for large enough constant c0. There exists a RSC param-

eter κc0 > 0 with κc0 ≈ 1 − o
(

1√
log d

)
, and a constant c1 such that, the following

holds w.p. greater that 1− exp(−c1w
2
G(ER)),

∀X ∈ TR ∩ A(βc0),
d1d2

|Ω| ‖PΩ(X)‖2
2 ≥ κc0‖X‖2

F .
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Proof: Recall that TR = cone{∆ : R(Θ∗ + ∆) ≤ R(Θ∗) and ER = TR ∩ Sd1d2−1.

Using the properties of norms, it can be easily verified that for the non–trivial case

of Θ∗ 6= 0, TR is a cone with non–empty interior. Theorem 4.3.2 is used as a key

result in this proof.

Define ĒR = TR∩Bd1d2 . ĒR ⊃ ER is a compact subset of TR with non–empty

interior, which satisfies the conditions of Theorem 4.3.2. Also, since TR ∩ A(βc0)

is a cone, the following can be easily verified:

wΩ,g(ĒR ∩ A(βc0)) = wΩ,g(ER ∩ A(βc0))

wG(ĒR ∩ A(βc0)) = wG(ER ∩ A(βc0)) ≤ wG(ER)
(B.8)

Define a random variable V (Ω) = supX∈ER∩A(βc0 )

∣∣∣d1d2

|Ω| ‖PΩ(X)‖2
2 − 1

∣∣∣.
Note that: for X ∈ ER ∩ A(βc0), Ed1d2

|Ω| ‖PΩ(X)‖2 = 1; and

for X ∈ ĒR ∩ A(βc0), ‖X‖∞ ≤ βc0√
d2d2
‖X‖2

F ≤
βc0√
d2d2

.

B.4.1 Expectation of V (Ω)

Recall that Ω = {Es : s = 1, 2, . . . |Ω|} are sampled uniformly form stan-

dard basis for Rd1×d2 , (εs) are a sequence of independent Rademacher variables,

and wG(.) denotes the Gaussian width. For constant k1, k2, k3 not necessarily same

in each occurrence:

EV (Ω)
(a)

≤ 2d1d2

|Ω| E sup
X∈ER∩A(βc0 )

∣∣∣
|Ω|∑

s=1

〈X,Es〉2εs
∣∣∣

(b)

≤ k1βc0

√
d1d2

|Ω| E sup
X∈ER∩A(βc0 )

∣∣∣
|Ω|∑

s=1

〈X,Es〉εs
∣∣∣

= k1βc0

√
d1d2

|Ω| wΩ,ε(ER ∩ A(βc0)) = k1βc0

√
d1d2

|Ω| wΩ,ε(ĒR ∩ A(βc0))

(c)

≤ k1

√
β2
c0
w2
G(ER)

|Ω| + k2

β2
c0

|Ω|
(d)

≤ k3

c0

√
log d

, (B.9)
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where (a) follows from symmetrization (Lemma 2.3.5), (b) from contraction prin-

ciple as φk(〈X,Es〉) = 〈X,Es〉2
2 supX∈ER∩A(βc0 ) ‖X‖∞

is a contraction (Lemma 2.3.6), (c)

follows from Theorem 4.3.2, and (d) using |Ω| > c2
0w

2
G(ER) log d.

B.4.2 Concentration about EV (Ω)

Given Ω, let Ω′ ⊂ [m] × [n] be another set of indices that differ from Ω in

exactly one element. Then:

V (Ω)− V (Ω′) = sup
X∈ER∩A(βc0 )

∣∣∣d1d2

|Ω|
∑

ij∈Ω

X2
ij − 1

∣∣∣− sup
X∈ER∩A(βc0 )

∣∣∣d1d2

|Ω|
∑

kl∈Ω′

X2
kl − 1

∣∣∣

≤ d1d2

|Ω| sup
X∈ER∩A(βc0 )

(∣∣∣
∑

ij∈Ω

X2
ij −

∑

kl∈Ω′

X2
kl

∣∣∣
)

≤ 2d1d2

|Ω| sup
X∈ER∩A(βc0 )

‖X‖2
∞ ≤

2β2
c0

|Ω| . (B.10)

By similar arguments on V (Ω′)− V (Ω), |V (Ω)− V (Ω′)| ≤ 2β2
c0

|Ω| . Therefore, using

Mc Diarmid’s inequality (2.6), P(V (Ω) > EV (Ω) + δ) ≤ exp
(
−c′1 δ

2|Ω|
β4
c0

)
. Using

δ = 1
c0
√

log d
,

P

(
V (Ω) >

k′3
c0

√
log d

)
≤ exp

(
− c1w

2
G(ER)

)
,

where c0 is a constant that can be chosen independent of k3. Choosing c0 large

enough, set κc0 := 1− δc0 = 1− k′3
c0
√

log d
close to 1. �

B.5 Lemmata in Proof of Theorem 4.3.1 and Theorem 4.3.2
B.5.1 Proof of Lemma B.2.1

Recall definition of (XΩ,g(X))X∈S from (B.2): XΩ,g(X) =
∑

s〈X,Es〉gs.
By Fubini’s theorem EΩ,g supX∈S XΩ,g(X) = EΩEg supX∈S XΩ,g(X). Further,
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• Given random variable Ω, (XΩ,g(X)) is a Gaussian process with a translation

invariant canonical distance given by dΩ(X, Y ) = ‖PΩ(X − Y )‖2
2.

• d(X, Y ) :=
√

EΩd2
Ω(X, Y ) =

√
|Ω|
d1d2
‖X − Y ‖F

Using Lemma B.1.1, Eg supX∈S XΩ,g(X) ≤ Kγ2(S, dΩ), and the following holds:

wΩ,g(S) = EΩEg sup
X∈S

XΩ,g(X) ≤ KEΩγ2(S, dΩ)
(a)

≤
√

EΩγ2
2(S, dΩ)

(b)

≤ K

√
|Ω|
d1d2

γ2(S, ‖.‖F ) +K
√

E sup
X,Y ∈S

‖PΩ(X − Y )‖2
2, (B.11)

where (a) follows from Jensen’s inequality, (b) from Lemma B.1.3 and noting that

by Definition B.1.1 ∀M > 0, γ2(T,Mḋ) = Mγ2(T, d). Lemma B.2.1 now follows

from (B.11) and Lemma B.1.1. �

B.5.2 Proof of Lemma B.2.2

Using triangle inequality, :

E sup
X,Y ∈S

‖PΩ(X − Y )‖2
2 ≤ E sup

X,Y ∈S
|‖PΩ(X − Y )‖2

2 − E‖PΩ(X − Y )‖2
2|

+ sup
X,Y ∈S

E‖PΩ(X − Y )‖2
2. (B.12)

Further,

sup
X,Y ∈S

E‖PΩ(X − Y )‖2
2 =

|Ω|
d1d2

sup
X,Y ∈S

‖X − Y ‖2
F ≤

|Ω|
d1d2

γ2
2(S, ‖.‖F ), (B.13)
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where the last inequality follows from the definition of γα. Finally, the following

set of equations hold:

E sup
X,Y ∈S

∣∣‖PΩ(X − Y )‖2
2 − E‖PΩ(X − Y )‖2

2

∣∣

= E sup
X,Y ∈S

∣∣
|Ω|∑

s=1

〈X − Y,Es〉2 − E〈X − Y,Es〉2
∣∣

(a)

≤ 2EΩ,(εs) sup
X,Y ∈S

|
|Ω|∑

s=1

〈X − Y,Es〉2εs|

(b)

≤ k′4 sup
X,Y ∈S

‖X − Y ‖∞EΩ,g sup
X,Y ∈S

|
|Ω|∑

s=1

〈X − Y,Es〉gs|

(c)

≤ 2k′4 sup
X,Y ∈S

‖X − Y ‖∞EΩ,g sup
X∈S
|
|Ω|∑

s=1

〈X,Es〉gs|

(d)

≤ 4k′4 sup
X,Y ∈S

‖X − Y ‖∞wΩ,g(S), (B.14)

where (εs) are standard Rademacher variables, i.e. εs ∈ {−1, 1} with equal proba-

bility, (a) follows from symmetrization argument (Lemma 2.3.5), (b) follows from

contraction principles (Lemma 2.3.6) and using φ(〈X,Es〉) = 〈X,Es〉2
2 supX∈S ‖X‖∞

as a

contraction, (c) follows from triangle inequality, and (d) follows from gs being sym-

metric (Lemma 2.2.1 in [145]). The lemma follows by combining (B.12), (B.13),

and (B.14), along with Lemma B.1.1. �

B.5.3 Proof of Lemma B.3.3

Recall that η ∈ R|Ω| is a vector of centered, unit variance sub-Gaussian

random variables. Further, let ‖ηs‖Ψ2 ≤ b, for some constant b (Definition 2.3.2).

Combining Lemma 2.3.9 and Lemma 2.3.10: η2
s and η2

s − 1 are sub–exponential

with ‖η2
s − 1‖Ψ1 ≤ 2‖η2

s‖Ψ1 ≤ 4‖ηs‖Ψ2 ≤ 4b2. Thus, using Lemma 2.3.8, for a
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constant c′2,

P
(∣∣∣ 1

|Ω|

|Ω|∑

s=1

η2
s − 1

∣∣∣ > τ
)
≤ 2 exp

(
− c′2|Ω|min

{ τ 2

16b4
,
τ

4b2

})
. (B.15)

Choosing τ to be an appropriate constant, ‖PΩ(Θ∗) − y)‖2 ≤ 2ξ
√
|Ω| ≤ λcn w.p.

greater than 1 − exp(−c2τ |Ω|), and the lemma follows from the optimality of Θ̂cn

and triangle inequality.

B.6 Spectral k–Support Norm

Recall the following definition of spectral k–support norm ‖Θ‖k–sp from

(4.4):

‖Θ‖k–sp = inf
v∈V(Gk)

{∑

g∈Gk

‖vg‖2 :
∑

g∈Gk

vg = σ(Θ)
}
, (B.16)

where Gk = {g ⊆ [d̄] : |g| ≤ k} is the set of all subsets [d̄] of cardinality at most k,

and V(Gk) = {(vg)g∈Gk : vg ∈ Rd1 , supp(vg) ⊆ g}.

Proposition B.6.1 (Proposition 2.1 in [11]). For Θ ∈ Rd̄×d̄ with singular values

σ(Θ) = {σ1, σ2, . . . , σd̄}, such that σ1 ≥ σ2 ≥ . . . ,≥ σd̄. Then,

‖Θ‖k–sp =

(
k−r−1∑

i=1

σ2
i +

1

r + 1

(
d̄∑

i=k−r

σi

)2) 1
2

, (B.17)

where r ∈ {0, 1, 2, . . . , k − 1} is the unique integer satisfying σk−r−1 >

1
r+1

∑d1

i=k−r σi ≥ σk−r. �

B.6.1 Proof of Lemma 4.3.3

Statement of Lemma 4.3.3

If rank of Θ∗ is s and ER is the error set from R(Θ) = ‖Θ‖k–sp, then
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w2
G(ER) ≤ s(2d̄− s) +

((r + 1)2‖σ∗I2‖2
2

‖σ∗I1‖2
1

+ |I1|
)

(2d̄− s).

�

Proof The following lemmas are stated from existing work.

Lemma B.6.2 (Equation 60 in [129]). Let z be an s ≥ k sparse vector in Rp, and let

z̃ is the vector z sorted in non increasing order of |zi|. Denote r ∈ {0, 1, 2, . . . , k−
1} to be the unique integer satisfying

|z̃k−r−1| >
1

r + 1

p∑

i=k−r

|z̃i| ≥ |z̃k−r|.

Define I2 = {1, 2, . . . , k − r − 1}, I1 = {k − r, k − r + 1, . . . , s}, and I0 =

{s+ 1, s+ 2, . . . , p}; and let z̃I denote the vector z̃ restricted to indices in I . Then

the sub–differential of the vector k–support norm denoted by ‖.‖vk-sp at w is given

by:

∂‖z‖vk-sp =
1

‖z‖vk-sp

{
z̃I2 +

1

r + 1
‖z̃I1‖1(sign(z̃I1) + hI0) : ‖h‖∞ ≤ 1

}
,

Lemma B.6.3 (Theorem 2 in [156]). Let R : Rd1×d2 → R+ be an orthogonally

invariant norm; i.e. R(X) = φ(σ(X)) such that φ : Rd1 → R+ is a symmetric

gauge function satisfying: (a) φ(x) > 0 ∀x 6= 0, (b) φ(αx) = |α|φ(x), (c) φ(x +

y) ≤ φ(x) + φ(y), and (d) φ(x) = φ(|x|).

Further let ∂φ(x) denote the sub–differential of φ at x. Then for X ∈ Rd̄×d̄

with singular value decomposition (SVD) X = UXΣXV
>
X and σX = diag(ΣX), the

sub–differential of R(X) is given by:

∂R(X) = {UXDV >X : D = diag(d), and d ∈ ∂Φ(σX)}.
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Since spectral k–support norm of a matrix X = UXΣXV
>
X is the vector

k–support norm applied to the singular values σX = diag(ΣX), Lemma B.6.2 and

B.6.3 can be used to infer the following:

∂‖X‖k–sp =
{
UXDV

>
X : diag(D) ∈ 1

‖σX‖vk-sp

{
σXI2 +

‖σXI1‖1

r + 1
(1I1+hI0) : ‖h‖∞ ≤ 1

}}
.

(B.18)

where 1 ∈ Rd̄ denotes a vector of all ones.

The error cone for R(.) = ‖.‖k–sp is given by the tangent cone:

TR = cone{∆ : ‖Θ∗ + ∆‖k–sp ≤ ‖Θ∗‖k–sp},

and the polar of the tangent cone – the normal cone is given by

T∗R = NR(Θ∗) = {Y : 〈Y,X〉 ≤ 0 ∀X ∈ TR} = cone(∂R(Θ∗))

Let Θ∗ = U∗Σ∗V ∗> be the full SVD of Θ∗, such that σ∗ = diag(Σ∗) ∈ Rd̄ and

σ∗1 ≥ σ∗2 . . . ≥ σ∗
d̄
. Let u∗i and v∗i for i ∈ [d̄] denote the ith column of U∗ and V ∗,

respectively. Further, let the rank of Θ∗ be rk(Θ∗) = ‖σ∗‖0 = s.

Like for the vector case, denote r ∈ {0, 1, 2, . . . , k − 1} to be the unique

integer satisfying σ∗k−r−1 >
1

r + 1

p∑

i=k−r

σ∗i ≥ σ∗k−r. Define I2 = {1, 2, . . . , k − r −

1}, I1 = {k − r, k − r + 1, . . . , s}, and I0 = {s+ 1, s+ 2, . . . , p}; Also define the

subspace:

T = span{u∗ix> : i ∈ I2 ∪ I1, x ∈ Rd̄} ∪ span{yv∗>i : i ∈ I2 ∪ I1, y ∈ Rd̄}

Let T⊥ be the subspace orthogonal to T and let PT and PT⊥ be the projection

operators onto T and T>, respectively. From (B.18),

NR(Θ∗) =

{
Y = U∗DV ∗> : D = diag

(
t
r + 1

‖σ∗I1‖1

σ∗I2+t1I1+thI0

)
: t ≥ 0, ‖h‖∞ ≤ 1

}
,
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Finally, from Lemma 2.3.12,

w2
G(TR ∩ Sd̄d̄−1) ≤ EG inf

X∈NR(Θ∗)
‖G−X‖2

F

≤ EG inf
t>0

‖h‖∞≤1

∥∥∥PT (G)− t r + 1

‖σ∗I1‖1

∑

i∈I2

σ∗i u
∗
i v
∗>
i + t

∑

i∈I1

u∗i v
∗>
i + PT⊥(G)− t

∑

i∈I0

hiu
∗
i v
∗>
i

∥∥∥
2

F

Let PT⊥(G) =
∑

i∈I0 σi(PT⊥G)u∗i v
∗>
i be the decomposition of P⊥T (G) in the basis

of of {u∗i v∗>i }i∈I0 . Taking t = ‖PT⊥(G)‖op = maxi∈I0 σi(PT⊥(G)), and hi =

σi(PT⊥(G))/‖PT⊥(G)‖op ≤ 1,

w2
G(TR∩Sd̄d̄−1) ≤ EG‖PT (G)‖2

F +

(
(r + 1)2‖σ∗I2‖2

2

‖σ∗I1‖2
1

+|I1|
)
EG‖PT (G)‖2

2. (B.19)

Lemma 4.3.3 follows by using EG‖PT (G)‖2
F = s(2d̄ − s) and EG‖PT (G)‖2

op ≤
2(2d̄− s) from [33].

B.7 Extension to GLMs

This section provides directions for extending the work to matrix comple-

tion under generalized linear models. This section has not been rigorously formal-

ized. An accurate version will be included in a longer version of the paper.

Consider an observation model wherein the observation matrix Y is drawn

from a member of natural exponential family parametrized by a structured ground

truth matrix Θ∗, such that:

P(Y |Θ∗) =
∏

ij

p(Yij) e
YijΘ

∗
ij−A(Θ∗ij), (B.20)

where A : dom(Θij) → R is called the log–partition function and is strictly con-

vex and analytic, and p(.) is called the base measure. This family of distributions

encompass a wide range of common distributions including Gaussian, Bernoulli,
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binomial, Poisson, and exponential among others. In a generalized linear matrix

completion setting [62], the task is to estimate Θ∗ from a subset of entries Ω of Y ,

i.e. (Ω,PΩ(Y )).

A useful consequence of exponential family distribution assumption for ob-

servation matrix is that the negative log–likelihood loss over the observed entries

is convex with respect to the natural parameter Θ∗, and have a one-to-one corre-

spondence with a rich class of divergence functions called the Bregman Divergence

[54, 14]. The negative log likelihood is proportional to:

LΩ(Θ) =
∑

(i,j)∈Ω

A(Θij)− YijΘij

The following regularized matrix estimator is proposed for generalized matrix com-

pletion:

Θ̂re = argmin
‖Θ‖∞≤ α∗√

d1d2

d1d2

|Ω| LΩ(Θ) + λreR(Θ). (B.21)

Hypothesis 1. Let Θ̂re = Θ∗ + ∆̂re. In addition to the assumptions in Section 4.2,

assume that for some η ≥ 0, ∇2A(u) ≥ e−η|u|∀ u ∈ R. The following result holds

for any fixed γ > 1. Define:

T̃R,γ = cone{∆ : R(Θ∗+∆) ≤ R(Θ∗)+
1

γ
R(Θ∗)}, and ẼR,γ = T̃R,γ∩Sd1d2−1.

(B.22)

Let λre ≥ γ d1d2

|Ω| R
∗(∇LΩ(Θ∗)), and for some c0, |Ω| >

(
γ+1
γ−1

)2

c2
0w

2
G(ẼR,γ) log d.

There exists a constant k1 such that for large enough c0, there exists κc0 > 0, such

that with high probability,

‖∆̂re‖2
F ≤4α∗2

(γ + 1

γ − 1

)2

max

{
λ2

reΨ
2
R(T̃R,γ)

ζ(η, α∗)κ2
c0

,
c2

0w
2
G(ẼR,γ) log d

|Ω|

}
,

where ζ(η, α∗) = e
−4ηα∗√
d1d2 , and α∗, wG(.), and ΨR(.) are notations from Section 5.4.
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The conjectures follows by combining the results in this paper along with

the results from [13], and [62]. This result is beyond the scope of this paper and

will be dealt with more rigorously in a longer version of the paper.
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Appendix C

Proof of Results in Chapter 5

C.1 Proof of Lemma 5.3.1

Recall that:

T = T (M) =aff{Y ∈ X̄ : ∀ v, rowSpan(Yrv) ⊆ rowSpan(Mrv)

or rowSpan(Ycv) ⊆ rowSpan(Mcv)}

T⊥ = T⊥(M) ={Y ∈ X̄ : ∀ v, rowSpan(Yv) ⊥ rowSpan(v)

and colSpan(Yv) ⊥ colSpan(Mv)}

Need to show that ∀X ∈ X̄, X ∈ T⊥ iff 〈X,Y〉 = 0, ∀Y ∈ T .

=⇒ Let X ∈ {X ∈ X̄ : 〈X,Y〉 = 0,∀Y ∈ T}, if X /∈ T⊥, then ∃v such that

atleast one of the statements below hold true:

(a) rowSpan(Xv) 6⊥ rowSpan(Mv), or

(b) colSpan(Xv) 6⊥ colSpan(Mv)

WLOG let us assume that (a) is true, the proof for the other case is analo-

gous. Consider the decompositon Xv = X
(1)
v + X

(2)
v such that rowSpan(X

(1)
v ) ⊥

rowSpan(Mv) and rowSpan(X
(2)
v ) ⊆ rowSpan(Mv). Consider the collective ma-

trix Y such that Yv′ = X
(2)
v if v′ = v, and Yv′ = 0 otherwise. Clearly, Y ∈ T and

〈X,Y〉 6= 0, a contradiction.

⇐= If X ∈ T⊥, then by the definitions, ∀Y ∈ T , 〈X,Y〉 =
∑

v〈Xv, Yv〉 = 0.

137



C.2 Proof of Theorem 5.4.1

The proof uses ideas of dual certificate from existing matrix comple-

tion literature [26, 30, 127], and further adapts the golfing scheme introduced by

Gross et al. [58], for constructing the dual certificate.

Let M̂ = M + ∆ be the output of the convex program in (5.15). Key steps

in the proof are:

1. Show that under the sample complexity requirements of Theorem 5.4.1,

‖PT (∆)‖F can be upper bounded by a finite multiple of ‖PT⊥(∆)‖F , where

T and T⊥ are defined in 5.10 and 5.11, respectively.

2. Under the above condition, show optimality of M for (5.15) if a dual certifi-

cate Y satisfying certain conditions exists.

3. Adapt the golfing scheme to construct Y.

C.2.1 Bound on ‖PT (∆)‖F

Let p(v, i, j) = |Ωrv |
2nrvmrv

+ |Ωcv |
2ncvmcv

= |Ω|P
(
(v, i, j) = Ωs

)
. Define the

following operators for s = 1, 2, . . . , |Ω|:

Rs : X→ 1
p(vs,is,js)

〈X,E(s)〉 E(s), and (C.1)

RΩ : X→∑|Ω|
s=1 Rs(X) with E[RΩ] = I, (C.2)

where I is the identity operator, and recall that E(s) = E(vs,is,js).

Lemma C.2.1. Let ∀ k, |Ωk| ≥ c0µ0nkRβ logN for a sufficiently large constant

c0. Then, under the assumptions in Section 5.3.1, the following holds w.p. greater

than 1−N−β ,

‖PTRΩPT − PT‖op ≤ 1
2
.

Proof in Appendix C.3. �
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Let MΩ(v, i, j) denote the multiplicity of (v, i, j) in Ω, i.e. MΩ(v, i, j) =
∑

s 1(v,i,j)=(vs,is,js). Note that MΩ(v, i, j) ≤ |Ω|, and mink
|Ωk|
nkmk

≤ p(v, i, j) ≤
maxk

|Ωk|
nkmk

. Further, for all X,

‖RΩ(X)‖F =
∥∥∥

V∑

v=1

∑

(i,j)∈I(v)

MΩ(v, i, j)

p(v, i, j)
〈X,E(v,i,j)〉E(v,i,j)

∥∥∥
F
≤ |Ω|

mink
|Ωk|
nkmk

‖X‖F ,

(C.3)

and w.h.p,

‖RΩPT (∆)‖2
F ≥

1

maxk
|Ωk|
nkmk

〈RΩPT (∆),PT (∆)〉

=
1

maxk
|Ωk|
nkmk

〈PTRΩPT (∆),PT (∆)〉 ≥ 1

2 maxk
|Ωk|
nkmk

‖PT (∆)‖2
F ,

(C.4)

where the last inequality follows from Lemma C.2.1.

Combining (C.3) and (C.4), along with 0 = ‖RΩ(∆)‖F ≥ ‖RΩPT (∆)‖F −
‖RΩPT⊥(∆)‖F ,

‖PT (∆)‖F ≤
1

2
κΩ(N)‖PT⊥(∆)‖F , (C.5)

where κΩ(N) =
3|Ω|
√

maxk |Ωk|/nkmk
mink |Ωk|/nkmk

.

C.2.2 Optimality of M

Lemma C.2.2. Under assumptions in Section 5.3.1, for a sufficiently large constant

c0, let |Ωk| ≥ c0µ0nkRβ logN ∀k. If there exists a dual certificate Y = PΩ(Y)

satisfying the following conditions, then M is the unique minimizer to (5.15) w.p.

greater than 1−N−β:

1. ‖PT (Y)− EM‖F ≤ 1
κΩ(N)

, and

2. ‖PT⊥(Y)‖∗A ≤ 1/2
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where recall EM from Assumption 5.3.2.

Proof is provided in the Appendix C.3.

C.2.3 Constructing Dual Certificate

The proof is completed by constructing a dual certificate Y satisfying the

conditions in Lemma C.2.2. Partition Ω into p ≥ c1 log (NκΩ(N)) partitions

denoted by Ω(j), for j = 1, 2, . . . , p. The partitioning is done such that for all

j: (a) |Ω(j)
k | > c0µ0βRnk logN and |Ω(j)

k |
nkmk

≤ c |Ω
(j)|
N2 for all k, and (b) |Ω(j)| >

c2 max{µ0, µ1}βRN logN , where Ω
(j)
k = {(v, i, j) ∈ Ω(j) : rv = k or cv = k}.

Define W0 = EM where EM is the sign matrix from Assumption 5.3.2.

Define the following processes for j = 1, 2, . . . s.t. :

Yj =
∑j

j′=1RΩ(j′)Wj′−1 = RΩ(j)Wj−1 + Yj−1, and Wj = EM − PT (Yj). (C.6)

Note that ∀ j, PΩ(Yj) = Yj , and PT (Wj) = Wj .

1. Claim: Yp for p ≥ c1 log (NκΩ(N)) satisfies the first condition in

Lemma C.2.2:

Proof: It is easy to verify that 1
2
E(v,i,j) ∈ A for all basis vectors E(v,i,j); and

from Assumption 5.3.3, −1
2
E(v,i,j) ∈ A . Thus,

∀X ∈ X̄, ‖X‖∗A =
∑

A∈A

〈X,A〉 ≥ 1

2
max

v∈[V ],(i,j)∈I(v)
|〈X,E(v,i,j)〉| ≥ 1

2N
‖X‖F .

Also, 1 = ‖EM‖∗A ≥ 1
2N
‖EM‖F , and PT (Yp) − EM = Wp. Using the above

inequalities,

‖PT (Yp)− EM‖F = ‖Wp−1 − PTRΩ(p)Wp−1‖F
(a)

≤ 1

2
‖Wp−1‖F

≤ 1

2p
‖EM‖F

(b)
<

1

κΩ(N)
(C.7)
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where (a) follows from Lemma C.2.1, and (b) follows for large enough c1 s.t.

p > c1 log (NκΩ(N)).

2. The proof for second condition follows directly from the analogous proof for

standard matrix completion by Recht [127]. It is derived for completeness in

Appendix C.3.3.

C.3 Proof of Lemmata in Appendix C.2
C.3.1 Proof of Lemma C.2.1

Recall Rs and RΩ from (C.1) and (C.2), and X =
V∑

v=1

∑

(i,j)∈I(v)

〈X,E(v,i,j)〉E(v,i,j).

Hence,

PT (X) =
V∑

v=1

∑

(i,j)∈I(v)

〈PT (X),E(v,i,j)〉E(v,i,j) =
V∑

v=1

∑

(i,j)∈I(v)

〈X,PT (E(v,i,j))〉E(v,i,j)

Define Vs := PTRsPT : X → 1
p(vs,is,js)

〈X,PT (E(s))〉PT (E(s)), where p(v, i, j) =
|Ωrv |

2nrvmrv
+ |Ωcv |

2ncvmcv
.

Thus, E[Vs] = 1
|Ω|PT , and

‖Vs‖op = sup
‖X‖F=1

1

p(vs, is, js)
〈X,PT (E(s))〉‖PT (E(s))‖F =

1

p(vs, is, js)
‖PT (E(s))‖2

F

(a)

≤ 1

p(vs, is, js)

(
µ0R

mrvs

+
µ0R

mcvs

)
(b)

≤ 1

c0β logN
, (C.8)

where (a) follows from Assumption 5.3.2, and (b) follows as ∀k, |Ωk| >

c0µ0nkRβ logN .

(i) Bound on ‖Vs − E[Vs]‖op

‖Vs − E[Vs]‖op

(a)

≤ max (‖Vs‖op, ‖E[Vs]‖op)

≤ max (
1

c0β logN
,

1

Ω
) =

1

c0β logN
(C.9)
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where (a) follows as both Vs and E[Vs] are positive semidefinite.

(ii) Bound on
∑|Ω|

s=1 ‖E[(Vs − E[Vs])
2]‖op.

E[(Vs)
2(X)] = E

[
1

p(vs, is, js)2
〈X,PT (E(s))〉‖PT (E(s))‖2

FPT (E(s))

]

4
1

c0β logN
E
[

1

p(vs, is, js)
〈X,PT (E(s))〉PT (E(s))

]

=
1

|Ω|c0β logN
PT (X). (C.10)

‖E[(Vs − E[Vs])
2]‖op = ‖E[V2

s]− (E[Vs])
2]‖op

≤max (‖E[V2
s]‖op, ‖(E[Vs])

2‖op)
(a)

≤ 1

|Ω|c0β logN
, (C.11)

where (a) follows as ‖PT‖op ≤ 1.

Thus, σ2 :=
∑|Ω|

s=1 ‖E[(Vs − E[Vs])
2]‖op ≤ 1

c0β logN

(iii) Lemma follows from applying (i) and (ii) above in operator Bernstein in-

equality (Lemma 2.3.2).

C.3.2 Proof of Lemma C.2.2

Recall that under the assumptions in Section 5.3.1, ‖ · ‖A is norm, and by

the sub–differential characterization of norms the following holds:

∂‖M‖A =conv{Y : 〈M,Y〉 = ‖M‖A , ‖Y‖∗A ≤ 1}

=conv{E + W : E ∈ E (M),W ∈ T⊥, ‖W‖∗A ≤ 1}
(C.12)

Recall E (M) from (5.8). In particular the set {EM + W : W ∈ T⊥, ‖W‖∗A ≤ 1} ⊂
∂‖M‖A , where EM is the sign vector from Assumption 5.3.2.

Given any ∆,with PΩ(∆) = 0, consider any W ∈ T⊥, such that
‖PT⊥(∆)‖A = 〈W,PT⊥(∆)〉 and EM + W ∈ ∂‖M‖A . Let Y = PΩ(Y) be a
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dual certificate satisfying the conditions stated in the Lemma.

‖M + ∆‖A
(a)

≥ ‖M‖A + 〈EM + W− Y,∆〉
= ‖M‖A + 〈EM − PT (Y),PT (∆)〉+ 〈W− PT⊥(Y),PT⊥(∆)〉
(b)

≥ ‖M‖A − ‖EM − PT (Y)‖F ‖PT (∆)‖F + ‖PT⊥(∆)‖A (1− ‖PT⊥(Y)‖∗A )

(c)

≥ ‖M‖A −
1

2
κΩ(N)‖EM − PT (Y)‖F ‖PT⊥(∆)‖F +

1

2
‖PT⊥(∆)‖A

(d)
> ‖M‖A , (C.13)

where (a) follows as 〈∆,Y〉 = 0, (b) follows from triangle inequality, (c) fol-

lows as ‖PT⊥(Y)‖∗A ≤ 1
2

and 1
2
κΩ(N)‖PT⊥(∆)‖F ≥ ‖PT (∆)‖F w.h.p. (from

(C.5)), and (d) follows as ‖EM − PT (Y)‖F < 1
κΩ(N)

and using ‖X‖A =

minZ<0 tr(Z) s.t.Pv[Z] = Xv ∀v ≥ minZ<0 ‖Z‖F s.t.Pv[Z] = Xv ∀v ≥ ‖X‖F .

C.3.3 Dual Certificate–Bound on ‖PT⊥Yp‖∗A

Recall that Yp from Appendix C.2.3 following a golfing scheme introduced

by Gross et al. [58]. The proof for the second property of the dual certificate,

extends directly from the analogous proof for matrix completion by Recht [127].

‖PT⊥Yp‖∗A ≤
p∑

j=1

‖PT⊥RΩ(j)Wj−1‖∗A =

p∑

j=1

‖PT⊥(RΩ(j) − I)Wj−1‖∗A

≤
p∑

j=1

‖(RΩ(j) − I)Wj−1‖∗A (C.14)

Denote max(v,i,j) |〈X,E(v,i,j)〉| = ‖X‖max. The following lemmas are directly

adapted from Theorem 3.5 and Lemma 3.6 in [127]:

Lemma C.3.1. Let Ω be any subset of entries of size |Ω| sampled independently

such that E[RΩ(W)] = W, then for all β > 1 and N ≥ 2, the following holds with
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probability greater than 1−N−β provided |Ω| > 6Nβ logN , and |Ωk|
nkmk

≥ |Ω|
N2 ;∀k:

‖(RΩ − I)W‖∗A ≤ ‖B(RΩW)−B(W)‖op ≤
√

8βN3 logN

3|Ω| ‖W‖max (C.15)

Proof. The proof is obtained by applying the steps described for the analogous proof

in [127] on ‖B(RΩW) − B(W)‖op. For s = 1, 2, . . . , |Ω|, let Vs = B(Rs(W)),

then B(RΩW) − B(W) =
∑|Ω|

s=1(Vs − E[Vs]) is a sum of independent zero mean

random variables. From the proof of Theorem 3.5 in the work by Recht [128], for

any N ×N matrix Z, ‖Z‖op ≤ N‖Z‖max.

(i) for n ≥ 2,

‖Vs − E[Vs]‖op ≤ ‖Vs‖op + ‖E[Vs]‖op

(a)

≤ N2

|Ω|‖W‖max +
N

|Ω|‖W‖max ≤
3N2

2|Ω|‖W‖max

where (a) follows as 1
p(v,i,j)

≤ 1

mink
|Ωk|
nkmk

≤ N2

|Ω| if |Ωk|
nkmk

≥ |Ω|
N2 ;∀k.

(ii) The following holds:

‖E[(Vs − E[Vs])
2]‖2 ≤ max {‖E[V2

s]‖2, ‖(E[Vs])
2‖2},

‖(E[Vs])
2‖2 =

1

|Ω|2‖B(W)‖2
2 ≤

N2

|Ω|2‖W‖
2
max, and

‖E[V2
s]‖2 =

1

|Ω|
∥∥∥

V∑

v=1

∑

(i,j)∈I(v)

1

p(v, i, j)
〈W,E(v,i,j)〉2B(E(v,i,j))

∥∥∥
2

≤ N2

|Ω|2‖W‖
2
max

∥∥∥
V∑

v=1

∑

(i,j)∈I(v)

B(E(v,i,j))
∥∥∥

2
≤ N3

|Ω|2‖W‖
2
max.

The proof follows by using Lemma 2.3.2 with t =
√

8βN3 logN
3|Ω| ‖W‖max. �

Lemma C.3.2. If ∀k, |Ωk| ≥ c0βnkR logN , and the assumptions in Section 5.3.1

are satisfied, then for sufficiently large c0, the following holds with probability
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greater that 1−N−β:

∀W ∈ T, ‖PTRΩW−W‖max ≤
1

2
‖W‖max (C.16)

Proof: Using union bound and noting that
∑

v nrvncv ≤ N2:

P(‖PTRΩW−W‖max >
1

2
) ≤ N2P(〈PTRΩW−W,E(v,i,j)〉 > 1/2 for any(v, i, j))

For each (v, i, j), sample E(s′) = E(vs′ ,is′ ,js′ ) according to the sampling distribution

in Assumption 5.3.4. Define Ψ(v,i,j) = 〈E(v,i,j),PTRs′W − 1
|Ω|W〉. Recall the defi-

nition of Rs. Now each entry of PTRΩW−W is distributed as
∑|Ω|

s=1 Ψ
(s)
(v,i,j), where

Ψ
(s)
(v,i,j) are iid samples of Ψ(v,i,j).

Further: |Ψ(v,i,j)| ≤ 1
p(v,i,j)

‖PT (E(v,i,j))‖2
F |〈E(v,i,j),W〉| ≤ 1

c′β logN
‖W‖max.

Also, E[Ψ2
(v,i,j)] = E[ 1

p(v,i,j)2 〈E(v,i,j),W〉2〈E(v,i,j),E(s′)〉2] ≤ 1
|Ω|c′β logN

, where the

expectation is over s′. Standard Bernstein inequality (2.5) can be used with the

above bounds to prove the lemma. �

Remaining steps in the proof: Using the above lemmas in the (C.14):

‖PT⊥Yp‖∗A ≤
p∑

j=1

‖(RΩ(j) − I)Wj−1‖∗A
(a)

≤
p∑

j=1

√
8βN3 logN

3|Ω(j)| ‖Wj−1‖max

(b)

≤ 2

p∑

j=1

2−j

√
8βN3 logN

3|Ω(j)| ‖EM‖max

(c)

≤ 2

p∑

j=1

2−j

√
8βµ1RN logN

3|Ω(j)|
(d)

≤ 1

2
, (C.17)

where (a) follows from Lemma C.3.1, (b) from Lemma C.3.1 as Wj = Wj−1 −
PTRΩWj−1, (c) from the second incoherence condition stated in Assumption 5.3.2,

and finally (d) if for large enough c1, |Ω(j)| > c1µ1βRN logN .
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Finally, the probability that the proposed dual certificate Yp fails the condi-

tions of Lemma C.2.2 is given by a union bound of the failure probabilities of (C.7),

and Lemma C.3.1 and C.3.1 for each partition Ω(j): 3c1 log (NκΩ(N))N−β; thus

proving Theorem 5.4.1.
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Appendix D

Appendix for Preference Completion from Partial
Rankings

D.1 Estimator and Algorithm
D.1.1 Proof of Proposition 7.3.1

Statement of the Proposition: The optimization in (7.2) is jointly convex

in (X, z). Further, ∀γ > 0, (λ, γε) and (γ−1λ, ε) lead to equivalent estimators,

specifically X̂(λ, γε) = γ−1X̂(γ−1λ, ε).

Proof: Let fλ,ε(X) = min
z∈R|Ω|

λ‖X‖∗ + 1
2
‖z − PΩ(X)‖2

2

s.t. ∀j, zΩj ∈ R
nj
↓ε (y

(j)),

.

We have,

fλ,γε(X) = min
z
λ‖X‖∗ +

1

2
‖z − PΩ(X)‖2

2 s.t. zΩj ∈ R
nj
↓γε(y

(j)),

(a)
= min

z̄
λ‖X‖∗ +

1

2
‖γz̄ − PΩ(X)‖2

2 s.t. z̄Ωj ∈ R
nj
↓ε (y

(j)),

= γ2min
z̄

λ

γ
‖X/γ‖∗ +

1

2
‖z̄ − PΩ(X/γ)‖2

2 s.t. z̄Ωj ∈ R
nj
↓ε (y

(j)),

= γ2fγ−1λ,ε(X/γ),

(D.1)

where (a) follows from reparameterizing the optimization using z̄ = z/γ as the ge-

ometry of Rnj
↓γε(y

(j)) which is set of linear constraints of the form zi−zk ≤ γε. From

above set of equations, if X ∈ Argmin
X

fλ,γε(X), then γ−1X ∈ Argmin
X

fγ−1λ,ε(X).
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D.1.2 Proof of Lemma 7.4.1

Statement of the Lemma: Consider the following steps,

Step 1. π∗(x) s.t. ∀k ∈ [K], π∗(x)Pk = sort(xPk)

Step 2. ẑ = PAV (π∗(x)− εdbl) + εdbl.
(D.2)

Estimate ẑ is the unique minimizer for

argmin
z
‖z − x‖2

2 s.t. ∃π ∈ ΠP : Dnπ(z) ≤ εDnd
bl.

Proof: A version of the lemma for linear orders was proved in [5]. In

general,

min
z
‖z − x‖2

2 s.t. ∃π ∈ ΠP : Dnπ(z) ≤ εDnd
bl

= min
z,π∈ΠP

‖z − x‖2
2 s.t. Dnπ(z) ≤ εDnd

bl

(a)
= min

w
min
π∈ΠP

‖π−1(w + εdbl)− x‖2
2 s.t. Dnw

≤ 0
(b)
= min

w:Dnw≤0
min
π∈ΠP

‖w + εdbl − π(x)‖2
2

(c)
= min

w:Dnw≤0
‖w + εdbl − π∗(x)‖2

2, (D.3)

where π∗(x) is the update from Step 1 stated above, (a) follows reparametrizing

w := π(z)− εdbl, (b) follows as for all permutations π using ‖x‖2
2 = ‖π(x)‖2

2, and

(c) follows form Proposition D.1.1 as Dnw ≤ 0 from constraints and εDnd
bl ≤ 0

by construction. The final minimization is solved using Step 2. �

Proposition D.1.1. For any sorted z ∈ Rn such Dnz ≤ 0, π∗ = argmin
π∈ΠP

‖z −
π(x)‖2

2, where π∗ is the permutation from Step 1.

ΠP allows for all possible permutations within each partition Pk. Proposi-

tion follows from optimality of sorting within each block. �
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D.2 Generalization Error
D.2.1 Background

Definition D.2.1 (Rademacher Complexity). Let X1, X2, . . . , Xn ∈ X be drawn iid

from a distribution PX . For a function class F : X→ A, the empirical Rademacher

complexity is defined as,

R̂n(F) = Eσ sup
f∈F

( 1

n

n∑

i=1

σif(Xi)
)
,

where σ1, σ2, . . . , σn are iid Rademacher variables, i.e., ±1 with probability 1/2.

The Rademacher complexity with respect tp PX is then defined as Rn(F) =

EPXR̂n(F).

Theorem D.2.1 (Generalization Error Bound (Corollary 15 in [15])). Consider a

loss function ` : Y× Rm → [0, 1] and a bounded function class F : X → Rm such

that F is a direct sum of F1,F2, . . . ,Fm. Further, if ` is L–Lipschitz continuous with

respect to Euclidean distance on Rm and is uniformly bounded. Let {(Xi, Yi), i =

1, 2, . . . , n} be sampled form a distribution PX,Y . Then there exists a constant c

such that, for any integer n and any δ ∈ (0, 1), with probability atleast 1− δ, over

all sample of length n, the following holds for every f ∈ F:

EX,Y `(Y, f(X)) ≤ 1

n

n∑

i=1

`(Yi, f(Xi)) + cL
m∑

i=1

R̂n(Fm) +

√
8 log(2/δ)

n

D.2.2 Proof of Theorem 7.5.1

Lemma D.2.2. φ(., y) is convex and 2–Lipschitz continuous with respect to `2 norm.

Proof: Convexity follows form Φ being a marginal of a convex function.

For a any convex set C and its projection operator PC , we have the following for all
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x, x′:

|‖x− PC(x)‖2 − ‖x′ − PC(x′)‖2| ≤ ‖x− PC(x)− x′ + PC(x′)‖2

≤ ‖x− x′‖2 + ‖PC(x)− PC(x′)‖2 ≤ 2‖x− x′‖2

Consider a vector class of functions in RR, FR = {Ω(s) → XΩ(s) ∈ RR :

‖X‖∗ ≤M}, where Ω(s) are sampled as in the main paper. Also, consider another

function classes Fij = {(i, j) → Xij : ‖X‖∗ ≤ M}. It can be seen that FR is an

R way direct sum of Fij . In order to use Theorem D.2.1, we need to estimate the

Rademacher complexity of Fij .

Lemma D.2.3. Let Ω = ∪jΩj obtained from combining samples form Assump-

tion 7.5.1. The distribution of Ω is equivalent to uniformly sampling with replace-

ment |Ω| = c0d2R log d2 entries from [d1]× [d2].

Proof : For k = 1, 2 . . . |Ω|, ∀(i, j) ∈ [d1]× [d2],

P((i, j) = Ωk) = 1
d1d2

.

Thus, given (i, j) ∈ [d1]× [d2], P((i, j) ∈ Ω) = |Ω|
d1d2

. �

Lemma D.2.4 (Theorem 29 in [139]). For a universal constantK, the Rademacher

complexity of matrices in Rd1×d2 of trace norm M , over uniform sampling of index

pairs Ω is bounded by the following whenever |Ω| > d log d

R({‖X‖∗ ≤M}) ≤ K
M log1/4 d√

d1d2

√
d log d

|Ω| (D.4)

From Lemma D.2.3, it can be seen that Lemma D.2.4 applies to samples

drawn according to Assumption 7.5.1.

For the function class FR = {Ω(s) → XΩ(s) : ‖X‖∗ ≤ M}, for some

M . The theorem now follows by using the Rademacher complexity bound in

Lemma D.2.4 and Lipschitz continuity of Φ(., y) from D.2.2 in Theorem D.2.1.
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