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This dissertations focuses on solving the advection problem with the

motivation of simulating transport in porous media. A quadrature based

Eulerian-Lagrangian scheme is developed to solve the nonlinear advection

problem in multiple spatial dimensions. The schemes combines the ideas of

Lagrangian traceline methods with high order WENO reconstructions to com-

pute the mass that flows into a given cell over a time step. These schemes

are important since they have a relaxed CFL constraint, and can be run in

parallel.

In this thesis we provide two improvements to Eulerian-Lagrangian

schemes. To do this an integration based WENO (IWENO) interpolation

technique is derived by reconstructing the primitive function and differenti-

ating. This technique gives a high order reconstruction of the mass at an

arbitrary point.
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This WENO scheme is used to solve the linear advection problem. A

scheme is derived by backwards tracing of quadrature points located on mesh

elements. The mass at these tracepoints is used to compute the mass in the

trace region, without resolving its boundary. This process defines a high order

quadrature Eulerian-Lagrangian WENO (QEL-WENO) scheme that solves the

multi-dimensional problem without the need for a spatial splitting technique.

The second improvement is for solving the nonlinear advection prob-

lem using an approximate velocity field. The velocity field is used to transport

mass in the manner of a standard Eulerian-Lagrangian scheme. Then a flux

correction is applied to compute the flow across the tracelines. The contribu-

tion is to use a variation of the IWENO technique to reduce the stencil size of

this computation.

Numerical results are presented demonstrating the capabilities of the

scheme. An application to two-phase flow in porous media is provided.
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Chapter 1

Introduction

We consider the basic physical phenomena of fluid transport in a veloc-

ity field. This type of problem naturally arises in a diverse variety of fields such

as continuum mechanics and thermodynamics. While the range of application

areas of this dissertation are broad, we will restrict our focus to problems aris-

ing in porous media simulation. The primary goal is to look at transport of

a miscible tracer and of two phases, oil and water, in a petroleum reservoir

system.

For the reservoir problem, the porous media are natural materials such

as rocks, soils and sands. These media are characterized by porosity, which

measures the void space in the material, and permeability, which measures

the ability of a fluid to flow through the void network. Reservoir systems have

large spatial scales, with dimensions in terms of kilometers and potentially

large time scales. For instance, the geological process of CO2 sequestration

lasts for hundreds of years. For this reason, computational simulation of these

phenomena are run on modern parallel supercomputers, and hence we seek to

develop numerical algorithms that are suitable in this setting.
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1.1 Problem

One of the simplest cases for transport in a porous media is the situation

with one substance, the tracer, being transported in another. Conservation of

the tracer mass gives

∂(φc)

∂t
+∇ · (cu−D∇c) = qc(c), (1.1)

where the unknown tracer concentration c(x, t) is transported in a Darcy ve-

locity field u(x, t). The parameter φ(x) is the porosity of the medium, D

is a tensor describing the molecular diffusion and macroscopic dispersion of

the particles based on the pore scale geometry of the medium and qc(c) is an

external source or sink function, possibly describing a well in a reservoir.

This problem contains a parabolic part describing mixing through dif-

fusion; this process smooths data. Equations of parabolic type have an infinite

speed of information propagation, so implicit numerical methods must be used.

There is also an advective or hyperbolic part, describing particle movement

in the velocity field. In the presence of a smooth velocity field and initial

condition, this equations permits the development of discontinuous solutions,

or shocks. Advection equations propagate information at finite speed and ex-

plicit solvers may be used. The differences between the advection and diffusion

processes, makes it natural to use a splitting technique to solve for them in-

dividually. The first step to solve (1.1) using a splitting technique is to solve

the advection equation

∂(φc)

∂t
+∇ · (cu) = qc(c). (1.2)

2



Its solution is then used as an initial condition to solve the diffusion equation

∂(φc)

∂t
−∇ · (D∇c) = 0. (1.3)

For the purpose of this dissertation, we will focus on the advection equation.

However, there are many numerical solvers for the diffusion equation, including

ones based on finite element [12], mixed [13, 33] and discontinuous Galerkin

(DG) [2] methods.

The various types of methods to solve the advection problem can be

categorized by the type of mesh that is used. Eulerian methods, or fixed

grid methods, look to accurately reconstruct the flux across the boundaries

of the elements. These methods have had a good deal of success as they

are accurate while minimizing numerical dispersion errors. Examples of these

schemes include weighted essentially non-oscillatory (WENO) [41, 42, 49, 54,

60] Godnov [15, 27, 50] and DG [7, 65]. These methods all must satisfy the

Courant Friedrichs Levy (CFL) condition which states that the length of a time

step size is limited by the mesh spacing divided by the maximal magnitude

of the velocity field. This condition can require a large number of time steps

to be taken, leading to increased computation time and the accumulation of

numerical dispersion errors over time.

A Lagrangian method, or a moving grid method, attempts to alleviate

the CFL constraint by allowing the grid points to move with the velocity field

over time. These types of methods are challenging to extend to higher dimen-

sions where multiple shock interaction provides a challenge to mesh adaptabil-

3



ity. An example of this type of method is given in [73] by Stockie, Mackenzie

and Russell. In order to concentrate grid points in optimal locations, they

employ a technique that couples a moving mesh equation with the physical

equation.

The final type of method is Eulerian-Lagrangian, or Semi-Lagrangian,

where at every time step there is a projection between and Lagrangian and

Eulerian frameworks. This type of method was first made viable by Douglas

and Russell in 1982 with their development of the Modified Method of Char-

acteristics (MMOC) [32]. Further discussion on the history of these types of

methods is provided in Chapter 3.

1.2 Dissertation Outline

The dissertation is organized as follows. In Chapter 2, we give the

background of the development of WENO schemes. Followed by a detailed

development of a new integration based WENO reconstruction technique, with

numerical results illustrating formal convergence rates.

Chapter 3 provides a review of characteristic methods for advection

problems. We then define a new Eulerian-Lagrangian scheme for the linear

advection problem which has the capability of solving the multi-dimensional

problem without the aid of a spatial splitting technique.

In Chapters 4 and 5, we define a new algorithm for solving the non-

linear advection problem. This algorithm has a compact local stencil for com-

4



puting the flux integral. Numerical results demonstrating the capabilities of

the scheme are presented.

An application to two phase flow is presented in Chapter 6.

This dissertation is finalized in Chapter 7 by giving some conclusions

and suggesting directions for future research.
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Chapter 2

Integration-based WENO (IWENO)

2.1 History of WENO Schemes

Essentially Non-Oscillatory (ENO) schemes were introduced in 1987 in

a paper by Harten, Enquist, Osher and Chakravarthy [41] as a way to develop

a shock capturing method to solve hyperbolic conservation laws. The design of

these schemes involves construction of multiple polynomials over select stencils.

These polynomials have average values on grid intervals that agree with the

cell averaged data coming from the scheme at the given time step. The ENO

scheme adaptively chooses the polynomial on a stencil that avoids shocks in

the data for use in the forward time stepping scheme.

Weighted Essentially Non-Oscillatory (WENO) schemes were later de-

veloped in [49, 54] using a convex combination of all the candidate stencils as

opposed to the single stencil used in ENO schemes. These schemes achieve a

higher order of accuracy in smooth regions, while in regions of discontinuity

weight towards the same stencil as the ENO scheme would adaptively choose.

In addition WENO schemes are computationally preferable to ENO schemes

since they rely on a linear combination of data, instead of the logic state-

ments in ENO schemes. This decreases the total computation time to solve

6



the problem.

There is an extensive literature detailing the many uses of ENO/WENO

schemes for both conservation laws and Hamilton-Jacobi equations. Topics

discussed include the use of ENO/WENO schemes in higher dimensions, on

triangular grids and theory on stencil choice, stability, and choice of basis

functions which can be wavelet, trigonometric or polynomial. In 1997 Shu

wrote a set of self contained lecture notes [71] which serve as a more in-depth

overview of ENO and WENO schemes.

2.1.1 Review of WENO Interpolation

Our interest in WENO schemes is in the interpolation process. To this

end we give a brief overview of the typical WENO reconstruction scheme. We

are interested in computing u(x∗, tn), the value of u at the point x∗ located in

the grid cell I0, given that we have the average value of u on the cells. We are

given n, the degree of the lower order polynomial used in the approximation.

We take a computational grid with points x−n < · · · < xn+1, with correspond-

ing intervals Ii = [xi, xi+1] for i = −n, . . . , n. We further assume that we have

cell averaged data for a function u(x), given by

ūi =
1

xi+1 − xi

∫
Ii

u(x) dx, i = −n, . . . , n. (2.1)

In order to approximate the value of u(x∗) we define n+1 polynomials,

p0, . . . , pn of degree n so that they agree with the cell averaged data, i.e.,∫
Ii

pk dx = (xi+1 − xi)ūi, i = −n+ k, . . . , k, (2.2)

7



I−2 I−1 I0 I1 I2

- x

6

un

︸ ︷︷ ︸
p0︸ ︷︷ ︸

p1︸ ︷︷ ︸
p2

Figure 2.1: WENO Reconstruction Polynomials. Illustration of WENO
reconstruction polynomials pk(x) which are used to approximate the value of
u at a point x∗ ∈ I0.

as shown in Figure 2.1. Taylor series analysis shows that for smooth u(x) the

approximation pk(x
∗) is an approximation of u(x∗) of order n+ 1, i.e.,

pk(x
∗)− u(x∗) = O(hn+1), (2.3)

where h = max |xi+1 − xi|. There is also a polynomial of degree 2n defined

with cell averages agreeing with all the candidate cells that is a higher order

approximation to u(x∗). WENO schemes attempt to find weights ck such that

the linear combination of the polynomials and weights achieves this higher

order
n∑
k=0

ck pk(x
∗)− u(x∗) = O(h2n+1). (2.4)

However, there are situations where such weights cannot be found. A

well known example of this is found in attempting to derive a 3rd order central

WENO scheme. Here the reconstruction point x∗ is the center of the inter-

val I0. As seen in Figure 2.2, the linear reconstructions agree at this point.
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U

︸ ︷︷ ︸
u(x)

︸ ︷︷ ︸
p0︸ ︷︷ ︸

p1

Figure 2.2: The Third Order WENO Midpoint Reconstruction. The
linear interpolation polynomials pk have the same value at the midpoint.

Since any linear combination of these values will yield the same value at the

midpoint, there does not exist coefficients for the linear combination to agree

with the quadratic interpolation. Several different techniques have been used

to get around this difficulty. Levy, Puppo and Russo [53] use the quadratic

polynomial in addition to the linear interpolations in order to achieve this

higher order approximation in smooth regions. Huang, Arbogast and Hung

[47] define a re-averaging technique which converts cell averages on one grid

to cell averages on another. The re-averaging puts the midpoint on a grid

boundary where linear weights are guaranteed to exist. However, this scheme

contains a large implicit stencil. This technique will be further addressed in

Chapter 4.

For the transport schemes we will develop later, we need a high order

approximation at any point x∗ in our mesh. We also want to avoid using

a larger stencil, since this can lead to numerical diffusion in the transport

9



scheme. The rest of this chapter will derive an Integration-based WENO

(IWENO) scheme which addresses this problem.

2.2 IWENO Scheme

We are motived by the work of Carlini, Ferretti and Russo in [19], where

they show that for problems involving nodal interpolation, as opposed to cell

average values, high order reconstructions can be found for any point in the

domain. Furthermore, the weighting functions are simply polynomials of the

position x∗.

We define polynomials Pk of degree n+ 1 that interpolate nodal values

of the primitive function,

U(x) =

∫ x

x0

u(ξ) dξ. (2.5)

This interpolation is shown in Figure 2.3. Results from [19] state that there

are coefficient polynomials ck(x) of degree n− 1 such that for x∗ ∈ I0 there is

a high order reconstruction of the primitive function, i.e.,

U(x)− Pk(x) = O(hr+1), ∀x ∈ I0, (2.6)

U(x)−
n∑
k=0

ck(x)Pk(x) = O(h2r), ∀x ∈ I0, (2.7)

n∑
k=0

ck(x) = 1. (2.8)

Here r+1 = (n+1)+1 is the order of polynomial interpolation of the primitive

function.
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- x

6

un

︸ ︷︷ ︸
P0

︸ ︷︷ ︸
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P2

Figure 2.3: IWENO Reconstruction Polynomials. Illustration of IWENO
reconstruction polynomials Pk(x) which are used to approximate the value of
the primitive function U(x) at a point x∗ ∈ I0.

The Lagrange interpolation satisfies

U(x) = Pk(x) +
U (r+1)γ

(r + 1)!

k+1∏
j=k−r+1

(x− xj) (2.9)

for some γ(x) ∈ (x−k−r+1, xk+1). If u(x) ∈ C([x−k+r+1, xk+1]) then for any

x−k−r+1 ≤ α < β ≤ xk+1

1

β − α

∫ β

α

u(x) dx =
Pk(β)− Pk(α)

β − α
+O(hr). (2.10)

Which comes from (2.9) and the mean value theorem. The limit as α → β

gives

u(α) = P ′k(α) +O(hr). (2.11)

11
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Figure 2.4: IWENO Nodal Values. Cell average data is used to compute
the value of the primitive function at grid nodes.

Using this relation the differentiation of equations (2.6) - (2.8) gives

u(x)− pk(x) = O(hr), ∀x ∈ I (2.12)

u(x)−
n∑
k=0

(
c′k(x)Pk(x) + ck(x) pk(x)

)
= O(h2r−1), ∀x ∈ I (2.13)

n∑
k=0

c′k(x) = 0, (2.14)

where pk(x) is the derivative of Pk(x). Showing the reconstruction of u(x),

n∑
k=0

(
c′k(x)Pk(x) + ck(x) pk(x)

)
, (2.15)

is of order h2r−1. The sum (2.15) is the IWENO reconstruction using linear

weighting coefficients.

2.2.1 Implementation Details

To implement this scheme we first need to convert our cell averages to

nodal values by using the definition of the primitive function. An illustration

12



of this process is seen in Figure 2.4. The nodal values of the primative function

are sums of the cell averages scaled by their corresponding element size, so

U(xi) = −
∫ x0

xi

u(ξ) dξ = −
−1∏
j=i

(xj+1 − xj)ūj, i < 0, (2.16)

U(x0) =

∫ x0

x0

u(ξ) dξ = 0, (2.17)

U(xi) =

∫ xi

x0

u(ξ) dξ =
i−1∏
j=0

(xj+1 − xj)ūj, i > 0. (2.18)

In order to compute the polynomials as shown in Figure 2.3, a poly-

nomial interpolation can be evaluated using Lagrange interpolation polyno-

mials. The polynomial Pk is defined on the stencil x−n+k, . . . , x1+k and is

reconstructed as

Pk(x) =
1+k∑

i=−n+k

U(xi)L(k,i)(x), (2.19)

where L(k,i)(x) =

j=1+k∏
j=−n+k
j 6=i

(x− xj)
(xi − xj)

. (2.20)

The Lagrange interpolation polynomials, L(k,i), have values at nodes given by

the Kroneker delta, i.e.,

L(k,i)(xj) = δij =

{
1 i = j

0 i 6= j
. (2.21)
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Differentiation of polynomials Pk gives the polynomials pk

pk(x) =
dPk
dx

=
1+k∑

i=−n+k

U(xi)
dLk,i
dx

, (2.22)

where
dLk,i
dx

=
1+k∑

m=−n+k
m 6=i

 1

(x− xm)

1+k∏
j=−n+k
j 6=i

(x− xj)
(xi − xj)

 . (2.23)

Algorithm 1 for the computation of the primitive function and its derivative
on an arbitrary grid.
P = 0
dP = 0
for i = −n+ k, i < 2 + k do

Lag = Ui
Denom = 1.0
for j = 0, j < 4, j 6= i do
Lag ∗= (x− xj)
Denom ∗= (xi − xj)

end for
P += Lag/Denom

dLag = 0
for m = −n+ k, m < k + 2, m 6= i do
dL = Ui
for j = −n+ k, j < k + 2, j 6= m, j 6= i do
dL ∗= (x− xj)

end for
dLag += dL

end for
dP += dLag/Denom

end for

Computationally, an algorithm for this process is given by Algorithm

1. However, this is sensitive to rounding errors, when x is near a grid point.

14



For irregular or adaptive grids using a Newton divided difference algorithm

to compute these polynomials minimizes this problem. For uniform meshes

computing the coefficients of the polynomials ahead of time reduces this error.

The 3rd order reconstruction of Pk(x) and pk(x) on a grid with uniform spacing

h are

Pk(xloc,k) =
(
2U−1+k + xloc,k (−3U−1+k + 4Uk − U1+k)

+ x2
loc,k (U−1+k − 2Uk + U1+k)

)
/ 2, (2.24)

pk(xloc,k) =
(

1/2 ( 3 ū −1+k − ūk)− (ū−1+k − ūk)xloc,k
)
/ h, (2.25)

where xloc,k = (1− k) + α and k = 0, 1

and the 5th order scheme has polynomials

Pk(xloc,k) =
(
U−2+k + xloc,k (−11U−2+k + 18U−1+k − 9Uk + 2.0Uk+1)

+ 3x2
loc,k ( 2U−2+k − 5U−1+k + 4Uk − Uk+1)

+ x3
loc,k (−U−2+k + 3U−1+k − 3Uk + Uk+1)

)
/ 6, (2.26)

pk(xloc,k) =
(

( 11 ū−2+k − 7 ū−1+k + 2 ūk) / 6

− xloc,k( 2 ū−2+k − 3 ū−1+k + ūk)

− x2
loc,k(−ū−2+k + 2 ū−1+k − ūk) / 2

)
/ h (2.27)

where xloc,k = (2− k) + α and k = 0, 1, 2.

These polynomials are evaluated at the local reference position xloc,k defined

through a scaling factor α ∈ [0, 1] describing the relative position of x∗ ∈ I0

namely α = (x∗ − x0)/h.
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Carlini, Ferretti and Russo [19] give the algorithm to compute the linear

weighting coefficients. To do this first set

Wm
k =

−n+k−1∏
j=−n

(xm+1 − xj)
n+1∏
j=2+k

(xj − xm+1), (2.28)

for k,m = 0, . . . , n− 1, then solve the lower triangular matrix problem
W 0

0 0 · · · 0
W 0

1 W 1
1 · · · 0

...
...

. . .
...

W 0
n−1 W 1

n−1 · · · W n−1
n−1



ĉ0

ĉ1
...

ĉn−1

 =


1
1
...
1

 . (2.29)

On a uniform mesh the solution is

ĉk =

(
n

k

)
n!

(2n+ 1)!
hn. (2.30)

Finally, the linear weights are computed from Wm
k as

ck(x) = ĉk

−n+k−1∏
j=−n

(x− xj)
2n−1∏
j=2+l

(xj − x) l = 0, 1, . . . , n− 1, (2.31)

cn(x) = 1−
n−1∑
l=0

ck(x). (2.32)

For a scheme with uniform mesh size we compute these terms directly.

For the 3rd order scheme the coefficients are

c0 (x(α)) = (2− α)/3, c′0 (x(α)) = −1/(3h), (2.33)

c1 (x(α)) = (1 + α)/3, c′1 (x(α)) = 1/(3h). (2.34)

The 5th order scheme has coefficients

c0 (x(α)) = (6− 5α + α2)/20, c′0 (x(α)) = (−5 + 2α)/(20h), (2.35)

c1 (x(α)) = (6 + α− α2)/10, c′1 (x(α)) = (1− 2α)/(10h), (2.36)

c2 (x(α)) = (2 + 3α + α2)/20, c′2 (x(α)) = (3 + 2α)/(20h). (2.37)
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The IWENO scheme in 1D using linear coefficients on a uniform grid is

implemented by solving equation (2.15) using polynomials given in equation

(2.24) - (2.27) and coefficients listed in equations (2.33) - (2.37).

2.2.2 Rounding Errors

In this section we demonstrate the performance of the IWENO algo-

rithm. We will first show that the algorithm is sensitive to rounding error

accumulation. This can be overcome by adjusting the precision of the code,

we will outline these changes, and compare numerical results.

In order to test IWENO we use the 5th order reconstruction polynomi-

als. The point x∗ and relative location α ∈ [0, 1] are given. These parameters

define the center cell

I0 = [x∗ − α∆x, x∗ + (1− α)∆x], (2.38)

where ∆x is the size of the interval, and we assume uniform spacing. We

perform successive grid refinements ∆x = ∆x/2 and analyze the errors.

The function reconstructed is u(x) = sin(πx). The reconstruction is

computed at the point x∗ = 0.716 with relative location α = 0.334. This test

is run with both double and long double precision. The results are in Table

2.1. Double precision should exhibit precision at the 16th digit. However the

IWENO scheme uses a process of differentiation, where we scale out by a factor

of ∆x, this reduces the total number of digits we see for the computation.

For problems where high precision is necessary, using the long double
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∆x−1 Error Order

10 1.49 E-5
20 4.52 E-7 5.04
40 1.39 E-8 5.03
80 4.29 E-10 5.01
160 1.33 E-11 5.01
320 4.20 E-13 4.99
640 4.50 E-14 3.22
1280 8.21 E-15 2.45
2560 1.13 E-14 -0.46
5120 5.53E-13 -5.61

∆x−1 Error Order

10 1.49 E-5
20 4.52 E-7 5.04
40 1.38 E-8 5.03
80 4.29 E-10 5.01
160 1.33 E-11 5.01
320 4.16 E-13 5.00
640 1.28 E-14 5.02
1280 2.65 E-16 5.59
2560 2.00 E-16 0.41
5120 1.28E-16 0.63

Table 2.1: Rounding Errors. The error in computing sin(0.716π) using the
IWENO scheme. The results on the left use double precision, on the right is
long double precision.

precision adds the memory necessary. This is implemented in the scheme by

changing the precision of variables pk and Pk to be of type long double, however

to minimize total storage memory the grid variable x, α, c(x), and c′(x) are

of type double. The numerical results provided were computed in a code that

is implemented in C++. Here we note the use of the math library <cmath>

since it overloads mathematical operations for variable type long double.

2.2.3 Non-Linear Weighting

The IWENO reconstruction detailed previously gives a high order accu-

rate reconstruction technique for smooth data. However when the initial data

is not smooth it is preferable to use a polynomial interpolation whose stencil

does not contain the shock in the data. WENO schemes adjust the weights

of the linear coefficients by an appropriate choice of smoothness indicator, IS.

18



The non-linear weighting polynomials, wk(x), are defined as a function of these

indicators and the linear polynomials ck(x) as

wk =
σk
n∑
i=0

σi

with σi =
ci

(ε+ ISi)p
for k = 0, . . . , n. (2.39)

Here p ≥ 1 is an integer and 0 < ε � 1 is a small number to avoid dividing

by 0. The smoothness indicators ISi are actually in some sense ‘roughness

indicators’ since larger values should indicate that there is a shock in the ith

stencil.

The reconstruction approximation defining the IWENO scheme is

u(x) ≈
n∑
k=0

(
w′k(x)Pk(x) + wk(x) pk(x)

)
. (2.40)

The linear coefficients, ck are choosen such that scheme achieves a high order

of accuracy. We will next show that as long as ck−wk = O(hr−1), we maintain

the accuracy presented in equations (2.6) - (2.14).

Theorem 2.2.1. Let ck(x), pk(x), and Pk(x) satisfy equations (2.6) - (2.14)

and wk(x) be such that ck−wk = O(hr−1), then U(x)−
∑
wkPk = O(h2r) and

u(x)−
∑

(wkpk + w′kPk) = O(h2r−1).

Proof. First we consider the primitive function

U(x)−
∑

wkPk

=
(
U(x)−

∑
ckPk

)
+
∑

(ck − wk)Pk

= O(h2r) +
∑

(ck − wk)(Pk − U) since U
∑

(ck − wk) = U(1− 1) = 0

= O(h2r) +O(hr−1)O(hr+1) = O(h2r).
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Then considering u(x) we have

u(x)−
∑

(wkpk + w′kPk)

=
(
u(x)−

∑
(ckpk + c′kPk)

)
+
∑(

(ck − wk)′Pk + (ck − wk)pk
)

= O(h2r−1) +
∑

(ck − wk)′Pk +
∑

(ck − wk)pk

= O(h2r−1) +
∑

(ck − wk)′(Pk − U) +
∑

(ck − wk)(pk − u)

since U
∑

(c′k − w′k) = U(0− 0) = 0 and u
∑

(ck − wk) = u(1− 1) = 0

= O(h2r−1) +O(hr−2)O(hr+1)k +O(hr−1)O(hr) = O(h2r−1).

In the classic paper [49], Jiang and Shu show that choosing smoothness

indicators of the form
r−1∑
l=1

∫
I

h2l−1
(
p

(l)
k

)2

dx (2.41)

satisfy this requirement, at least for r = 2 or 3, that is schemes of 3rd and 5th

order. For a uniform grid the smoothness indicators for the 3rd order scheme

are

IS0 = (ū−1 − ū0)2, (2.42)

IS1 = (ū0 − ū1)2, (2.43)

and for the 5th order scheme they are

IS0 = 4ū2
−2 + 25ū2

−1 − 31ū−1ū0 + 10ū2
0 + ū−2(−19ū−1 + 11ū0), (2.44)

IS1 = 4ū2
−1 + 13ū2

0 − 13ū0ū1 + 4ū2
1 + ū−1(−13ū0 + 5ū1), (2.45)

IS2 = 10ū2
0 + 25ū2

2 − 19ū1ū2 + 4ū2
2 + ū0(−31ū1 + 11ū2). (2.46)
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The IWENO scheme solves equation (2.40) for a uniform grid we use

reconstruction polynomials (2.24) - (2.27) with weights defined in (4.33), using

coefficients in equations (2.33) - (2.37) and smoothness indicators in equations

(2.42) - (2.46).

2.2.4 Numerical Results in 1D

In this section we will briefly demonstrate the performance the of the

IWENO algorithm. We proceed with the same set up as in section 2.2.2 using

long double precision.

We reconstruct the function u(x) = sin(πx) at the point x = 0.716

with the relative location α = 0.334 in I0. The results for the 3rd and 5th order

schemes are given in Table 2.2. These serve to verify that non-linear weighting

preserves the order of the scheme.

This example is repeated to illustrate the performance at the midpoint

where α = 0.5. Numerical results are given in Table 2.3. On the coarse mesh

we have smaller errors than when α = 0.334. Also, as the mesh size is reduced

there is a super convergence effect where our third order scheme converges

at fourth order, and our fifth order scheme converges at sixth order. This

variability will influence the convergence rate of the transport schemes derived

later.
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∆x−1 Error Order

10 7.16 E-4
20 8.61 E-5 3.06
40 1.05 E-5 3.03
80 1.30 E-6 3.02
160 1.62 E-7 3.01
320 2.02 E-8 3.00
640 2.51 E-9 3.00
1280 3.14 E-10 3.00
2560 3.92 E-11 3.00
5120 4.91 E-12 3.00

∆x−1 Error Order

10 1.49 E-5
20 4.52 E-7 5.04
40 1.39 E-8 5.03
80 4.29 E-10 5.01
160 1.33 E-11 5.01
320 4.16 E-13 5.00
640 1.28 E-14 5.02
1280 2.65 E-16 5.59
2560 2.00 E-16 0.41
5120 1.28E-16 0.63

Table 2.2: IWENO Reconstruction. The error in computing sin(πx) at
x = 0.716 at a relative cell location of 0.334 using the IWENO scheme. The
results on the left are for the 3rd order scheme and on the right is the 5th order
scheme.

∆x−1 Error Order

10 3.53 E-5
20 2.22 E-6 3.99
40 1.39 E-7 4.00
80 8.68 E-8 4.00
160 5.42 E-10 4.00
320 3.39 E-11 4.00

∆x−1 Error Order

10 5.16 E-7
20 8.13 E-9 5.99
40 1.27 E-10 6.00
80 1.99 E-12 6.00
160 3.10 E-14 6.00
320 6.51 E-16 5.57

Table 2.3: IWENO Midpoint Reconstruction. The error in computing
sin(πx) at x = 0.716 located at the midpoint of the cell, using the IWENO
scheme. The results on the left are for the 3rd order scheme and on the right
is the 5th order scheme.

22



2.2.5 Reconstruction in Higher Dimensions

The purpose of this section is to outline how this algorithm extends to

multiple spatial dimensions. To do this we first define the primitive function

as

U(x) =

∫ x1

x10

· · ·
∫ xd

xd0

u(ξ) dξd . . . dξ1, x = (x1, · · · , xd). (2.47)

The point x0 = (x10 , . . . , xd0) is a vertex of the center element. Here elements

are of the form

E = [x1i1
, x1i1+1

]×· · ·×[x2id
, x2id+1

], for ij = −n, . . . , n and j = 0, . . . , d.

The function u(x) is the multicomponent derivative of the primitive function,

i.e.,

u(x) =
d

dx1

· · · d
dxd

U(x). (2.48)

For indexing simplicity, the remainder of this section will be presented

for three spatial dimensions. The extension to higher dimensions is straight-

forward. The function U(x) is reconstructed as a tensor product of the 1D

reconstruction polynomials

n∑
k, l,m=0

ck(x1)Pk(x1) cl(x2)Pl(x2) cm(x3)Pm(x3)

=
n∑

k, l,m=0

ck lm(x)Pk lm(x), (2.49)

where the polynomials ck lm(x) and Pk lm(x) are

ck lm(x) = ck(x1) cl(x2) cm(x3), (2.50)

Pk lm(x) = Pk(x1)Pl(x2)Pm(x3). (2.51)
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The function u(x) is computed by

d

dx1

d

dx2

d

dx3

n∑
k, l,m=0

ck lm(x)Pk lm(x), (2.52)

using the product rule for differentiation. These are computed using the one

dimensional equations given in (2.24) - (2.27) and (2.33) - (2.37).

The nonlinear weighting is defined in the usual way as

wk lm(x) =
σk lm(xi)∑
a b c σa b c(x)

with σk lm(x) =
ck lm(x)

(ε+ ISk lm)p
(2.53)

The smoothness indicator, ISk lm must contain information from the entire

polynomial Pk,l,m(x) in order to maintain the high order reconstruction. The-

orem 2.2.1 generalizes to the following result.

Theorem 2.2.2. Let ck lm(x) and Pk lm(x) satisfy the following relations

U − Pk lm = O(∆xr+1
1 + ∆xr+1

2 + ∆xr+1
3 ),

U −
∑

Pk lm ck lm = O(∆x2r
1 + ∆x2r

2 + ∆x2r
3 ),

n∑
γ=0

cγ = 1,

and wk lm(x) be such that the
∑

(ck lm−wk lm) = O(∆xr−1
1 + ∆xr−1

2 + ∆xr−1
3 ).

Then

U −
∑

wk lmPk lm = O(∆x2r
1 + ∆x2r

2 + ∆x2r
3 )

u− d

dx1

d

dx2

d

dx3

∑
wk lm Pk lm = O(∆x2r−1

1 + ∆x2r−1
2 + ∆x2r−1

3 ).

Proof. Follow exactly as in the proof for Theorem 2.2.1 .
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The code implements the standard set of smoothness indicators for a WENO

scheme. In multiple spatial dimensions these are

ISk lm =
r−1∑
|α|=1

∫
E

h2|α|−1
(
p

(α)
k lm

)2

dx. (2.54)

2.2.6 Numerical Results in 2D

In this section we give an example of the performance of the 5th order

IWENO scheme in two spatial dimensions. To do this we define the point

(x∗, y∗) that we wish to reconstruct along with a relative locations α, β ∈ [0, 1]

inside cell I0 that (x∗, y∗) is located. I0 is the rectangular element

[x∗ − α∆x, x∗ + (1− α) ∆x]× [y∗ − β∆y, y∗ + (1− β) ∆y]. (2.55)

The function we reconstruct is u(x, y) = sin(πx + πy). The recon-

struction is computed for the point (x∗, y∗) = (0.489, 0.372) at the relative

locations (α, β) = (0.123, 0.746). We use a uniform grid with ∆x = ∆y, and

analyze the errors as we take successive grid refinements ∆x = ∆x/2. These

are presented in Table 2.4.

Note that the rounding error accumulation for these is more than that

for the 1D problem, the reason is taking a multicomponent derivative of the

primitive function corresponds with dividing out by ∆x twice. If increased

precision is desired quadratic precision can be implemented.

Furthermore the results using non-linear weighting can develop oscilla-

tions in convergence rates. In the example provided, we see what appears to
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∆x−1 Error Order

10 1.40E-5
20 3.98 E-7 5.13
40 1.17E- 8 5.08
80 3.56E- 10 5.04
160 1.17 E- 11 4.92
320 1.64 E-12 2.83
640 1.54 E-11 -3.23

∆x−1 Error Order

10 1.40E-5
20 3.98 E-7 5.13
40 1.17E- 8 5.08
80 3.56E- 10 5.04
160 1.09 E- 11 5.02
320 3.41 E-13 5.00
640 1.37 E-14 4.64

∆x−1 Error Order

10 7.74 E-4
20 3.43E-5 4.50
40 4.52E-7 6.24
80 9.04E-10 8.97
160 1.22E-11 6.21
320 1.64E-12 2.89
640 1.54E-11 -3.23

∆x−1 Error Order

10 7.74 E-4
20 3.43E-5 4.50
40 4.52E-7 6.24
80 9.04E-10 8.97
160 1.15E-11 6.30
320 3.42 E-13 5.06
640 1.36E-14 4.65

Table 2.4: IWENO 2D Reconstruction. The error in computing sin(πx+
πy) using the 5th order IWENO scheme. On the top are results using linear
weighting coefficients, the results on the bottom use non-linear weighting. The
left side is double precision, and the right is long double precision.

be a super convergence effect, however this is due to the larger errors on the

coarse meshes. For the results using the non-linear weighting and long double

precision, the convergence rate for points corresponding to ∆x−1 = 80, . . . , 640

is 5.31, as found through a linear regression analysis.
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Chapter 3

A Quadrature Based Eulerian-Lagrangian

Scheme for Linear Advection

3.1 History of Characteristic Methods

We overview the history of the development of characteristic methods

to solve the advection problem,

ut +∇ · f(u) = q. (3.1)

This equation models the transport of a conserved quantity u, such as mass,

energy or momentum. The fact that u is conserved means that assuming

no mass is created or destroyed over the boundaries of the domain Ω that

the quantity
∫

Ω
u dx is constant in time. The flux function f(u) describes

the local movement of u in the domain and q is an external source term.

One method to theoretically analyze conservation equations is to look at the

characteristics curves ξ(t). These are solutions of the ordinary differential

equation (ODE) ξ′(t) = f ′(u). The solution of the advection problem restricted

to these characteristic curves is constant, i.e.,

d

dt
u
(
ξ(t), t

)
=

∂

∂t
u
(
ξ(t), t

)
+∇u

(
ξ(t), t

)
· ξ′(t)

= ut +∇ · f(u)

= 0. (3.2)

27



The linear advection problem is defined by setting f(u) = v(x, t)u. In this case

the characteristics curves are the same as the streamlines or particle velocity

paths. Characteristic numerical methods are developed by taking advantage of

the solution being constant along these curves as a way to relieve the restrictive

CFL constraint.

Characteristic schemes were first made viable with the modified method

of characteristics (MMOC) defined by Douglas and Russell in [32]. In order to

solve the linear problem on a time interval [tn, tn+1], they develop a method to

backward trace along characteristic curves. Their approach traces node points

x at tn+1 to traceback points x̌ at tn. These values are used to approximate

the derivative in the characteristic direction as

uτ (x, t) ≡
1

(1 + v2)1/2

(
ut + v · ∇u(x, t)

)
≈ u(x, tn+1)− u(x̌, tn)

∆t
, (3.3)

resulting in the finite difference approximation

u(x, tn+1) = u(x̌, tn) + ∆t q. (3.4)

Since this method is based on individual points, it fails to be either mass

or volume conservative. This work was furthered by the introduction of the

modified method of characteristics with adjusted advection (MMOCAA) [30].

This method provides a correction for the global mass balance; however, there

is no local mass conservation.

Eulerian-Lagrangian schemes were then developed in terms of a local

mass balance. These types of methods include various Eulerian-Lagrangian
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localized adjoint methods (ELLAM) [20, 26, 78, 77, 75] which include charac-

teristic mixed methods (CMM) [9]. Instead of tracing node points, an entire

grid element E is traced along the characteristic to a traceback element Ě cre-

ating a tessellation of the domain. This gives local mass conservation, since all

the mass in Ě is numerically transported forward into E. These methods are

not locally volume conservative, since in multiple dimensions it is not possible

to trace the entire boundary of E. Methods were developed tracing a finite

subset of the boundary points and connecting them with a piecewise poly-

nomial interpolation of the boundary. Here the volume of the approximated

traceback element is different than the volume of the theoretical traceback

element. Arbogast and Huang developed the volume corrected characteris-

tic mixed method (VCCMM) [3, 8] by adjusting the locations of the trace

points in a way that ensured the method was both locally mass and volume

conservative.

In 2011 Qiu, Shu and Christlieb [61, 62] derived semi-Lagrangian WENO

finite difference schemes as a way to develop a high order transport scheme.

Their scheme only works for constant velocity. In 2012 Arbogast and Huang

created the Eulerian-Lagrangian WENO (EL-WENO) finite volume scheme

[48] for the linear advection problem. This method does not naturally extend

to higher spatial dimensions without the aid of a splitting technique.

The nonlinear problem is challenging since tracing either characteristic

or particle paths is a function of the solution over the traceline. In 2012

Arbogast, Huang, and Russell [6] solve the nonlinear two-phase flow system
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by tracing particle paths approximately and then adjusting them by solving an

expensive minimization problem. The work later developed in [46] by Arbogast

and Huang extends EL-WENO schemes to the nonlinear problem by solving

the related problem

(ut + vux) + (f(u)x − vux) = q, (3.5)

where v is a chosen as an approximation to either the particle velocity field

f(u)/u or the wave velocity field f ′(u). The linear advection problem is solved

using an EL-WENO technique, leaving a flux correction term which subjects

the method to a relaxed CFL constraint. This method alleviates the need to

solve the minimization problem, however the technique used to solve the flux

correction at a high order accuracy involves a large spatial stencil.

The remainder of this dissertation will be focused on providing improve-

ments to Eulerian-Lagrangian schemes, with the aid of the IWENO technique

derived in Chapter 2. This chapter will be focused on developing a method to

solve the multi-dimensional linear advection equation.

3.2 Quadrature Based Scheme

Let u(x, t) be the mass which is transported in a velocity field v(x, t)

as described by

ut +∇ · (vu) = 0, x ∈ Rd, t ∈ R+,

u(x, 0) = u0(x), x ∈ Rd.
(3.6)
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Figure 3.1: Eulerian-Lagrangian Scheme. Illustration of a theoretical
Eulerian-Lagrangian scheme. All the points in E are traced through the ve-
locity field v in order to find a traceback region Ě. This process also defines a
space-time region E for the time step [tn, tn+1].

We will numerically solve (3.6) using an Eulerian-Lagrangian schemes where

the mass in an element E is given by the mass located in a region Ě defined

through backward characteristic tracing as shown in Figure 3.1. The tracing

is defined at every point in E as the curve x̌(t) satisfying

dx̌

dt
= v(x̌, t), tn ≤ t < tn+1

x̌(tn+1) = x.

(3.7)

This tracing defines a map F (x) : E → Ě. The volume swept out by this trac-

ing is called the space-time traceback region and is denoted E . Furthermore,

the divergence theorem gives the mass in the traceback region Ě is exactly the

same as the mass in the cell E at the future time.∫
E

u(x, tn+1) dx =

∫
Ě

u(x, tn) dx. (3.8)

There is no flow across the boundary since the velocity field is tangent to the
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boundary of E .

Computationally it is not possible in spatial dimensions greater than

one to trace all the points on the boundary of E. Meaning that the trace

back region Ě has unknown geometry. In order to compute the integral over

Ě a coordinate transformation is applied to the mass integral. This transfor-

mation is defined through the map F and the integral after the coordinate

transformation is ∫
Ě

u(x, tn) dx =

∫
E

u(F (x), tn)

∣∣∣∣∂F∂x
∣∣∣∣ dx. (3.9)

Where
∣∣∂F
∂x

∣∣ is the determinant of the Jacobian matrix associated with the

transformation. This integral is computed with a quadrature rule as∑
k

wk u
(
F (xk), t

n
) ∣∣∣∣∂F∂x

∣∣∣∣
x=xk

(3.10)

where xk and wk are quadrature points and weights. This evaluation requires

evaluating two terms. The first is the reconstruction of u at time tn and loca-

tion F (xk) which is computed using the IWENO scheme detailed in Chapter

2. The second term is the determinant of the Jacobian matrix evaluated at

the quadrature point. In section 3.2.1 we develop a system of ODEs that solve

for the Jacobian determinant.

3.2.1 Jacobian Matrix

This section looks at the determinant of the Jacobian Matrix,∣∣∣∣∂F∂x
∣∣∣∣ =

∣∣∣∣∣∣∣
∂F1

∂x1
· · · ∂F1

∂xd
...

. . .
...

∂Fd
∂x1

· · · ∂Fd
∂xd

∣∣∣∣∣∣∣ . (3.11)
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The map F : E → Ě is defined pointwise by particle tracing through the

velocity field; that is, the components of the Jacobian are of the form

∂Fi
∂xj

=
∂x̌i
∂xj

. (3.12)

The value of these terms at t = tn+1 is understood since x̌(tn+1) = x or

(x̌1(tn+1), . . . , x̌d(t
n+1)) = (x1, . . . , xd) and

∂x̌i
∂xj

∣∣
t=tn+1 = δij. (3.13)

Here δij is the Kroneker delta, associated with the identity matrix. In order

to get the values of the components at tn, we take the time derivative, which

can be related to the gradient of the velocity field as

d

dt

∂x̌i
∂xj

=
∂

∂xj

dx̌i
dt

=
∂vi(x̌i, t)

∂xj
= ∇vi ·

(
∂x̌1

∂xj
, · · · , ∂x̌d

∂xj

)
. (3.14)

This sets up a system of ODEs

d

dt
σij = ∇vi(x̌, t) · (σ1 j, . . . , σd j), (3.15)

d

dt
x̌ = v, (3.16)

σi,j(t
n+1) = δij, (3.17)

x̌(tn+1) = x, (3.18)

where σij = ∂x̌i
∂xj

. The solution of the system at t = tn gives the components

of the Jacobian Matrix at any point. This is evaluated for the finite subset of

quadrature points and used to compute the value of the determinant at these

locations.
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An alternative method is to solve

d

dt

∣∣∣∣∂x̌∂x
∣∣∣∣ =

∣∣∣∣∂x̌∂x
∣∣∣∣ (∇ · v) (3.19)

for the determinant without resolving the individual components as derived in

[39].

3.2.2 Local Conservation

Previous work with Eulerian-Lagrangian schemes guaranteed a local

mass conservation since the elements tessellated the domain, and mass was

directly transported forward. Since the quadrature scheme only traces select

points and not the entire domain, it is neither locally mass nor volume con-

servative. In this section, we will derive a volume conservation equation and

demonstrate how to determine the number of quadrature points to use in the

scheme.

The volume difference of an element E and that of its traceback element

Ě is the integral over E of the divergence of the velocity field, i.e.∫
E
∇x · v dV = |E| − |Ě|. (3.20)
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This is verified in two spatial dimensions by noting∫
E
∇x · v dV =

∫
E
∇x,t ·

(
v

1

)
dV

=

∫
∂E

(
v

1

)
· ηx,t dA

=

∫
E

(
v

1

)
·
(

0

1

)
dx+

∫
Ě

(
v

1

)
·
(

0

−1

)
dx

+
4∑
i=1

∫
Si

(
v

1

)
· ηx,t dx

=

∫
E

1 dx+

∫
Ě

−1 dx+
4∑
i=1

∫
Si

0 dx

= |E| − |Ě|;

here Si denotes a face of the traceback region. A normal vector to a given

surface Si must be orthogonal to the tangent vector on the surface which is

(x̌(t), t)′ = (v, 1). This explains why the the dot product over these surfaces

in the direction of the normal is zero. A scheme is called volume conservative

if equation (3.20) is satisfied. When ∇ · v = 0, we say the flow is divergence

free, and in this case volume conservation is simply |E| = |Ě|.

For the quadrature based scheme, the volume conservation equation

is used to evaluate a local volume error. The right hand side of (3.20) is

evaluated using the coordinate transformation with respect the the map F
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and with quadrature points, xk, and weights, wk, as

|E| − |Ě| = |E| −
∫
Ě

1 dA

= |E| −
∫
E

∣∣∣∣∂F∂x
∣∣∣∣
tn
dA

= |E| −
∑
k

wk

∣∣∣∣∂F∂x
∣∣∣∣
(xk, tn)

.

(3.21)

The left hand side is similarly computed as∫
E
∇x · v dV =

∫ tn+1

tn

∫
E(t)

∇x · v dAdt

=
∑
j

w̃j

∫
E(tj)

∇x · v dA

=
∑
j

w̃j

∫
E

(∇x · v)

∣∣∣∣∂F∂x
∣∣∣∣
tj

dA

=
∑
j

w̃j
∑
k

wk (∇x · v)

∣∣∣∣∂F∂x
∣∣∣∣
(xk, tj)

,

(3.22)

where w̃j and tj are the quadrature weights and points in time. The local

volume error estimate is the difference between equations (3.21) and (3.22),

|E| −

(∑
k

wk

∣∣∣∣∂F∂x
∣∣∣∣
(xk, tn)

)
−

(∑
j

w̃j
∑
k

wk (∇x · v)

∣∣∣∣∂F∂x
∣∣∣∣
(xk, tj)

)
. (3.23)

The code adaptively chooses the number of quadrature points such that the

volume error on a given element is less than a preset tolerance.

Local mass conservation means that the mass on element Ě is forward

transported to E that is
∫
E
u dA =

∫
Ě
u dA. Since quadrature is used to solve

for the mass on Ě this requirement is not satisfied. In order to minimize

this error a fifth order IWENO reconstruction scheme is used to compute
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u(F (xk), t
n) and the selection of the quantity of quadrature points helps to

reduce the error associated with computing
∣∣∂F
∂x

∣∣
xk

. In addition, a global mass

error is monitored by checking the difference in total mass at the initial state

with the total mass at a given time step.

3.2.3 Algorithm

The problem is solved on a uniform grid with spacing ∆x in the x-

direction and ∆y in the y-direction, as is required by the IWENO interpolation

scheme to construct the primitive function. The following procedure gives the

algorithm to compute the mass at tn+1 for a given element.

1. Start with an initial number of quadrature points nq. For the two di-

mensional problem we use a tensor product of quadrature points; that

is, in both spatial directions we use nq points for a total of n2
q quadra-

ture points. Then solve the system of ODE’s (3.15)-(3.18) to obtain the

values of x̌, y̌ and |∂F
∂x
| for each quadrature point. The numerical solver

implemented in our code is the fifth order components of the Runge-

Kutta 45 scheme [35] proposed by Fehlberg in 1969, it is defined by the

Butcher tableau in Table 3.1. For complex velocity fields and large time

steps it is necessary to take multiple micro time steps in the Runge-Kutta

scheme.

2. Use the values of the determinant of the Jacobian |∂F
∂x
| to compute the

local volume error in equation (3.23). If the error is greater than the set
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0
1/4 1/4
3/8 3/32 9/32
12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104
1/2 -8/27 2 -3544/2565 1859/4104 -11/40

16/135 0 6656/12825 28561/56430 -9/50 2/55

Table 3.1: Runge-Kutta Butcher Tableau. The fifth order Runge-Kutta
scheme used to solve the ODE system (3.15)-(3.18).

tolerance, the number of quadrature points is incremented by one and

step 1 is repeated to solve for x̌, y̌ and |∂F
∂x
| associated with the new set

of quadrature points.

3. Evaluate u(x̌, y̌, tn) using the IWENO scheme given in Chapter 2.2.5.

The values u(x̌, y̌, tn) and |∂F
∂x
| are used to solve equation 3.10 which

approximates the total mass in the element at tn+1.

3.2.4 Numerical Results in 1D

In this section numerical results for a variety of linear advection prob-

lems are provided. The problem is set up by giving the initial condition u0(x)

and the velocity field v and its Jacobian J = dv
dx

that the mass will transport

in. A periodic boundary condition is implemented for all of the examples and

the tolerance for the volume computation is set at 1E−9. The global mass

loss is verified to be less in magnitude than the computed error. These errors
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are presented using the discrete L1 norm

||un − ūn||1 :=
∑
i

∣∣∣∣1h
∫
Ei

u(x, tn) dx− ūni
∣∣∣∣h, (3.24)

and the discrete L∞ norm

||un − ūn||∞ := sup
i

∣∣∣∣1h
∫
Ei

u(x, tn) dx− ūni
∣∣∣∣ . (3.25)

The quadrature rule use for the numerical results is Gaussian Quadra-

ture [45] which on the reference element [−1, 1] has points and weights listed

in Table 3.2. The order of the approximation is ∆x2nq−1. In order to maintain

fifth order accuracy the scheme initializes the number of quadrature points

at nq = 3. There are other natural choices for the quadrature rule such as

Gauss-Lobatto which includes points on the boundary; however, this partic-

ular quadrature rule did not produce significantly different results from the

Gaussian quadrature and requires a greater number of points to achieve a

given order of accuracy.

3.2.4.1 Example: Constant Speed Transport

We first test our scheme with the simple case of constant speed trans-

port with velocity v(x, t) = 1 where vx = 0. The initial condition is u0(x) =

sin(πx) for x ∈ [0, 2]. The exact solution is u(x, t) = u0(x − t). The trace

points and determinant of the Jacobian are computed using the Runge-Kutta

scheme using 1 time step. This is more than sufficient since the trace points

are of the form x̌ = x−∆t and
∣∣∂x̌
∂x

∣∣ = 1 and are solved exactly using the single

Runge-Kutta time step.
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Gaussian Quadrature

nq xi wi

1 0 2

2 ±
√

1
3

1

3
0 8

9

±
√

3
5

5
9

4
±
√

3
7
− 2

7

√
6
5

18+
√

30
36

±
√

3
7

+ 2
7

√
6
5

18−
√

30
36

5

0 128
225

±1
3

√
5− 2

√
10
7

322+13
√

70
900

±1
3

√
5 + 2

√
10
7

322−13
√

70
900

Gauss-Lobatto Quadrature

nq xi wi

2 ±1 1

3
0 4

3

±1 1
3

4

1
5

√
5 5

6

±1 1
6

5

0 32
45

±1
7

√
21 49

90

±1 1
10

6

±
√

1
21

(7− 2
√

7) 1
30

(14 +
√

7)

±
√

1
21

(7 + 2
√

7) 1
30

(14−
√

7)

±1 1
15

Table 3.2: Quadrature Rules. The quadrature points xi and weights wi on
a reference element [−1, 1]. On the left is Gaussian quadrature, on the right
is Gauss-Lobatto quadrature.
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Numerical results in Table 3.3 are at t = 1.5 at three different time

steps. The first is for ∆t = 0.1 here elements will trace exactly to other

elements in the domain. The results show the error to be within the rounding

error of the scheme. The second choice of time step is ∆t = 0.12 the results

show 5th order convergence. For the final test ∆t = 4.5∆x this is 4.5 times

the CFL time limit of a fixed grid WENO scheme where

∆tCFL = ∆x/max |v| = ∆x.

. The results show a larger error accumulation in comparison to taking a small

fixed number of time steps.

3.2.4.2 Example: Time Dependent Velocity

This example uses the velocity v = sin(t) with vx = 0. The initial

condition is again u0(x) = sin(πx) for x ∈ [0, 2]. The analytical solution to

this problem is u(x, t) = u0(x+ 1 + cos(t)). The trace points and determinant

of the Jacobian are computed using the Runge-Kutta scheme with a single

step. The error results at t = 1.5 using 10 time steps are listed in Table 3.4

show the 5th order convergence rate.

3.2.4.3 Example: Spatially Dependent Velocity

The most challenging test we run in 1D is with the velocity v = sin(x)

with vx = cos(x). The initial condition is u0(x) = 1 for x ∈ [0, 2π]. The
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N Error L1 Order Error L∞ Order
∆t = 0.1

20 4.62E-15 - 6.23E-15 -
40 1.45E-14 - 1.84E-14 -
80 4.82E-14 - 1.09E-13 -
160 9.00E-14 - 3.74E-13 -
320 2.09E-13 - 1.82E-12 -
640 3.74E- 13 - 6.28E-12 -

∆t = 0.12
10 4.93 E-3 - 3.81 E- 3 -
20 1.42E- 4 5.11 1.11E- 4 5.10
40 2.54E- 6 5.80 2.00E- 6 5.79
80 1.35E- 7 4.23 1.06E- 7 4.23
160 2.25E- 9 5.91 1.77E- 9 5.91
320 1.32E- 10 4.09 1.04E- 10 4.09
640 2.25E- 12 5.87 6.37E- 12 4.02
LR 5.12 4.92

∆t = 4.5∆x
10 7.89E-4 - 5.69 E-4 -
20 3.06E- 5 4.69 3.90E-5 3.87
40 1.66E-6 4.21 1.94E-6 4.33
80 6.31E-8 4.71 1.09E-7 4.15
160 8.19E-9 2.95 6.64E-9 4.04
320 2.25E-10 4.08 E-10 4.03
640 5.93E-11 4.63 E-11 3.14
LR 4.03 4.00

Table 3.3: Constant Transport Test 1D. Error and convergence order for
transport with velocity v = 1 at time t = 1.5 with ∆t = 0.1, 0.12, and
4.5∆x. LR stands for linear regression, and the order is the slope of the linear
regression line through all the data points.
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N Error L1 Order L1 Error L∞ Order L∞

10 2.92 E-3 - 2.26 E-3 -
20 9.71 E-5 4.91 7.65 E-5 4.89
40 8.20 E-7 6.89 6.42 E-7 6.90
80 3.90 E-8 4.39 3.06 E-8 4.39
160 3.83 E-9 3.35 3.00 E-9 3.35
LR 5.04 5.03

Table 3.4: Time Dependent Transport Test 1D. Error and convergence
order for transport with velocity v = sin(t) at time t = 1.5 with ∆t = 0.15.

analytical solution to this problem is

u(x, t) =
sin
(
2 arctan(e−t tan(x/2))

)
sin(x)

. (3.26)

The trace points and determinant of the Jacobian are computed using the

Runge-Kutta scheme using NRK = 10 micro time steps. This value NRK

was sufficient to keep the volume conservation equation within the required

tolerance, and experimentation using a larger value of NRK did not improve the

error results. These results are presented in Table 3.5 at t = 1 with ∆t = 0.1.

3.2.4.4 Example: Shu’s Linear Test

The final example in 1D is the standard test case Shu’s linear test

[14]. In this case v(x, t) = 1 and vx = 0, and the analytical solution is

u(x, t) = u0(x− t). The initial condition is
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N Error L1 Order L1 Error L∞ Order L∞

10 6.39 E-2 - 3.27 E-3 -
20 3.63 E-3 4.13 7.65 E-5 3.61
40 2.12 E-4 4.10 6.42 E-7 3.75
80 7.13 E-6 4.89 3.06 E-8 3.98
160 1.85 E-7 5.27 3.00 E-9 5.32
LR 4.58 4.10

Table 3.5: Spatially Dependent Transport Test 1D. Error and conver-
gence order for transport with velocity v = sin(x) at time t = 1 with ∆t = 0.1.

u0(x) =



1
6
(G(x, β, z − δ) +G(x, β, z + δ) + 4G(x, β, z)), 0.2 ≤ x ≤ 0.4

1, 0.6 ≤ x ≤ 0.8

1− |10(x− 1.1)|, 1 ≤ x ≤ 1.2
1
6
(F (x, α, a− δ) + F (x, α, a+ δ) + 4F (x, α, a)), 1.4 ≤ x ≤ 1.6

0, otherwise,

where

G(x, β, z) = e−β(x−z)2 and F (x, α, a) =
√

max(1− α2(x− a)2, 0).

The constants are set to a = 0.5, z = 0.3, δ = 0.005, α = 10, and β =

log(2)/(36δ2). This test is designed to see the resolution properties of a given

scheme. One time step in used in the Runge-Kutta scheme solving the ODE

system. Two tests are run, the first is for the number of elements N = 200 the

second is for N = 201. The problem is solved after 4 rotations at time t = 8

using 20 time steps. The solutions at the final time are in Figure 3.2. The

first case exhibits similar behavior to the first test in Section 3.2.4.1. There

is no visible diffusion and the global mass error is within rounding error. The
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Figure 3.2: Shu’s Linear Test 1D. Numerical solutions for Shu’s Linear Test
at time t = 8 with 20 time steps. On the left there are 200 grid elements and
on the right there are 201 elements.

second test we run with N = 201 this time trace element are no longer the

same as grid elements. In this case some diffusion accumulates, and the global

mass error is of the magnitude 1E−4.

3.2.5 Numerical Results in 2D

In 2D the the linear advection equation is

ut + (a1u)x + (a2u)y = 0, (3.27)

where the velocity is v = (a1, a2) with Jacobian J(v) =

(
(a1)x (a1)y
(a2)x (a2)y

)
. The

discrete L1 norm is

||un − ūn||1 :=
∑
i,j

∣∣∣∣∣ 1

h2

∫
Ei,j

u(x, tn) dA− ūni,j)

∣∣∣∣∣h2, (3.28)

and the discrete L∞ norm is

||un − ūn||∞ := sup
i,j

∣∣∣∣∣ 1

h2

∫
Ei,j

u(x, tn) dA− ūni,j)

∣∣∣∣∣ . (3.29)

All the numerical examples in this section use a tolerance of 1E−9 for the

volume computation, and use periodic boundary conditions on the uniform

grid with ∆x = ∆y.
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N Error L1 Order Error L∞ Order

10 2.34 E-2 - 9.02 E-3 -
20 4.30 E-4 5.76 1.67 E-4 5.75
40 2.10 E-5 4.36 8.24 E-6 4.32
80 4.06 E-7 5.69 1.59 E-7 5.69
160 2.04 E-8 4.32 8.00 E-9 4.32
LR 5.03 5.02

Table 3.6: Constant Transport Test 2D. Error and convergence order for
transport with velocity v = (1, 1) at time t = 1.2 with ∆t = 0.12.

3.2.5.1 Example: Constant Speed Transport

The first example we give is for the constant velocity field v = (1, 1)

with Jacobian J(v) =

(
0 0
0 0

)
. The initial condition is u0(x, y) = sin(π(x+y))

for (x, y) ∈ [0, 2]2. The analytic solution is u(x, y, t) = sin(π(x+ y− 2t)). The

ODE system is solved using one Runge-Kutta time step, which is sufficient

to solve for the trace points and Jacobian exactly. The error at time t = 1.2

using 10 time steps is given in Table 3.6 which shows the theoretical 5th order

convergence rate.

3.2.5.2 Example: Rigid Body Rotation

Two dimensional rigid body rotation is described by

ut −
(
(y − 1)u

)
x

+
(
(x− 1)u

)
y
, (3.30)

for (x, y) ∈ [0, 2]2. The Jacbobian of the velocity field is(
0 −1
1 0

)
. (3.31)

46



N Error L1 Order Error L∞ Order

10 1.23 E-3 - 1.49 E-3 -
20 1.33 E-4 3.2 1.46 E-4 3.35
40 5.44 E-6 4.6 8.15 E-6 4.16
80 1.23 E-7 5.5 2.07 E-7 5.3
160 2.90 E-8 2.1 1.33 E-8 4.0
LR 4.08 4.3

Table 3.7: Rigid Body Rotation Test 2D. Error and convergence order for
transport with velocity v = (1− y, x− 1) at time t = 1 with ∆t = 0.1.

The initial condition is a smooth radial bump function

u(x, y, 0) =
2

5
[ψ
(
1 + r(x, y)

)
ψ
(
1− r(x, y)

)
+ 1], (3.32)

r(x, y) =
√

(x− 1)2 + (y − 1)2, (3.33)

with ψ(s) = e−1/s2 for s > 2 and ψ(s) = 0 otherwise. The Runge-Kutta

scheme uses one time step. The numerical results at time t = 1 using 10 time

steps are presented in Table 3.7.

3.2.5.3 Example: Swirling and Deforming Velocity

The final and most severe test is obtained using a swirling deformation

flow where the velocity field is given by

a1(x, y) = sin2
(πx

2

)
sin(πy)g(t) (3.34)

a2(x, y) = − sin2
(πy

2

)
sin(πx)g(t). (3.35)

The function g(t) introduces a time dependance to the flow field

g(t) = 2 cos(πt/T ) (3.36)
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Figure 3.3: Swirling Deforming Flow 2D. On the left is the initial condi-
tion, on the right is the numerical solution at t = T/2.

this equation solved on a time interval t ∈ [0, T ]. This velocity field has

flow that slows down and reverses directions so that the initial condition is

recovered at the final time T . The initial condition is on the domain [0, 2]2

and is a radial bump function centered at the point (0.7, 0.7). Figure 3.3

illustrates the initial condition and the solution at t = T/2. This test has a

Jacobian given by

(a1)x = 2π cos(πx/2) sin(πx/2) sin(πy) cos(πt/T ), (3.37)

(a1)y = 2π sin(πx/2)2 cos(πy) cos(πt/T ), (3.38)

(a2)x = −2π sin(πy/2)2 cos(πx) cos(πt/T ), (3.39)

(a2)y = −2π cos(πy/2) sin(πy/2) sin(πx) cos(πt/T ). (3.40)

Numerical results in Table 3.8 are for the solution at T = 1 using ∆t = 0.1

and 10 micro time steps for the Runge-Kutta scheme.
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N Error L1 Order Error L∞ Order

10 2.95 E-3 - 2.03 E-2 -
20 8.99 E-4 1.7 4.87 E-3 2.06
40 9.22 E-5 3.29 8.34 E-4 2.55
80 4.58 E-6 4.33 9.12 E-5 3.19
160 1.17 E-7 5.28 3.48 E-6 4.71
LR 3.82 3.08

Table 3.8: Swirling and Deforming Flow 2D. Error and convergence order
for transport with a time and spatially dependent velocity field at time t = 1
with ∆t = 0.1.
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Chapter 4

EL-WENO for Nonlinear Advection in 1D

We follow the method of Arbogast and Huang in [46] solving the non-

linear problem ut + f(u)x = 0 by solving the related problem

(
ut + (vu)x

)
+
(
f(u)− vu

)
x

= 0, (4.1)

for an appropriately chosen velocity v. After integrating over the space-time

region E(v) their method uses an EL-WENO scheme to solve the linear advec-

tion problem and uses a quadrature rule to solve for the flux integral∫
E(v)

(f(u)− vu)x dA =

∫
∂E(v)

(
f(u)− vu

0

)
· ηx,t dx. (4.2)

This requires the evaluation of u along the boundary of the space-time region.

The 5th order scheme of Arbogast and Huang computes this using a Runge-

Kutta method that requires a 17 point stencil.

Arbogast and Huang were motivated by the CWENO schemes of Levy

Puppo and Russo [51, 53, 52]. This chapter first reviews CWENO schemes as

a way to understand the stencil for computing the integral of the flux term.

This is a reasonable framework since it is easier to understand in a fixed mesh

setting and the EL-WENO method generalizes to a fixed mesh WENO method

when the velocity field v is zero.
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The purpose of this chapter is to provide a new algorithm for com-

puting the flux term (4.2) using a compact local stencil. Concluding with

numerical results directly comparing these methods and demonstrating formal

convergence rates for the new scheme.

4.1 CWENO Flux Stencil

Central WENO schemes solve for the staggered cell averages

ūn+1
i+1/2 = 1/h

∫ xi+1

xi

R(x, tn) dx

+
∆t

∆x

m∑
l=0

γl[f(u(xi, t
n + βl∆t))− f(u(xi+1, t

n + βl∆t))], (4.3)

where R is a piecewise polynomial reconstruction of the cell averaged data.

The values γl, βl are quadrature weights and points describing the intermediate

times tn + βl∆t where u is computed. An illustration of this scheme is shown

in Figure 4.1.

A Natural Continuous Extension (NCE) [85] of a Runge Kutta scheme

is used to evolve the mass u at the fixed position xi in time. The concentration

changes in time according to the nonlinear advection equation as ut = f(u)x
∣∣
xi

.

The NCE Runge-Kutta scheme provides uniform accuracy for the solution in

the time interval [tn, tn+1]. Each v-stage Runge Kutta method of order p has a

NCE of order d ≤ p. That is there exist polynomials bi(θ), i = 1, .., v of degree
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Figure 4.1: Central WENO Scheme. An illustration of a time step in
a central WENO scheme. The staggered grid element average ūn+1

i+1/2 at the

advanced time tn+1 is computed from the reconstructed solution R(x) over
the interval [xi, xi+1] at the time tn and a computation of the flux across the
midpoints over the time interval [tn, tn+1].

at most d where

u(tn + θ∆t) = u(tn) + ∆t
v∑
i=1

bi(θ)g
(i), (4.4)

g(i) = F

(
tn + ∆tci, u

n + ∆t
v∑
j=1

aijg
(j)

)
, (4.5)

ci =
∑
j

aij, (4.6)

F (τ, u(τ)) = −fx(u(tn + τ)) (4.7)

defines the NCE. The underlying Runge-Kutta scheme is determined by the

selection of matrix a and vector b. When matrix a is lower triangular the

scheme is explicit. These schemes are useful since they evaluate u at multiple

times along the line x = xi without solving for the parameters g at each time

separately.

The 5th order CWENO method uses a 4-stage Runge Kutta scheme. At
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Figure 4.2: Implicit Stencil for CWENO5 Flux Computation A depic-
tion of the 4-stage Runge Kutta stencil using a 5 point WENO reconstruction
for computing the derivative f(u(xi, t))x.

time tn the values of u(xi+m) are evaluated at the 17 points withm = −8, . . . , 8.

Then a 5 point WENO reconstruction scheme is used to get f(u(xi+m))x for

m = −6, . . . , 6. The value of u at these 13 points are evolved to the sec-

ond Runge-Kutta stage. They are used in the WENO scheme to evaluate

f(u(xi+m))x for m = −4, . . . , 4. These value of u at these 9 points is com-

puted at stage 3, where the value of f(u(xi+m))x is reconstructed for 5 points

with m = −2, . . . , 2. At the fourth stage these values are used to compute

f(u(xi))x. This process is illustrated in Figure 4.2. In a standard CWENO

scheme this stencil is implicitly defined since at each stage all the grid points

are evolved at the same time.

This method was used by Arbogast and Huang in their EL-WENO

scheme solving the nonlinear problem except for each traceline x̌(t) they tem-

porarily freeze the velocity field and explicitly compute these terms for each

grid point separately. There is a detailed explanation of this procedure in their
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paper [46]. The contribution in this chapter is to use a variation of the IWENO

scheme to develop an alternative method for computing the flux integral with

a compact local stencil.

4.2 A Flux Corrected EL-WENO Scheme

This section will develop a complete algorithm for solving the flux cor-

rected EL-WENO scheme for the nonlinear advection problem. This is done

by solving the related problem (4.1) in an Eulerian-Lagrangian setting. In

order to define the velocity field v the characteristic equation

dξ

dt
= ṽ(x̌, t), tn ≤ t < tn+1, (4.8)

ξ(tn+1) = x, (4.9)

is solved at node points. Here ṽ is an approximation to either the particle

velocity field f(u)/u or the wave velocity field f ′(u). The velocity field v

at a grid point is the constant value vi = xi−ξi
∆t

and the velocity on element

Ei = [xi, xi+1] is the linear interpolation

v(xi+α) = (1− α)vi + αvi+1 (4.10)

with xi+α = xi + α∆x, where α ∈ [0, 1]. The tracelines at grid points are

x̌i(t) = xi(t
n+1)− vi (tn+1 − t). (4.11)

This velocity also defines the space-time region E(v) and the trace region Ě(v)

for every element.
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The scheme is defined by integrating over the space-time region E(v)∫
E(v)

∇x,t ·
(
vu

u

)
dA+

∫
E(v)

∇x,t ·
(
f(u)− vu

0

)
dA = 0, (4.12)

and applying the divergence theorem∮
∂E(v)

(
vu

u

)
·
(
ηx
ηt

)
dS +

∮
∂E(v)

(
f(u)− vu

0

)
·
(
ηx
ηt

)
dS = 0. (4.13)

The boundary of the space-time region ∂E(v) has 4 sides. They are Ei with out-

ward unit normal vector η =
(

0
1

)
, Ěi with η =

(
0
−1

)
, Si with η =

(−1
vi

)
/
√

1 + v2
i

and Si+1 with η =
(

1
−vi+1

)
/
√

1 + v2
i+1 . This is depicted in Figure 4.3. Substi-

tuting these in the equation yields∫
Ei

un+1 dx =

∫
Ěi

un dx+

∫
Si

(
f(u)− vu

) dσ√
1 + v2

i

−
∫
Si+1

(
f(u)− vu

) dσ√
1 + v2

i+1

. (4.14)

In order to solve the right hand side we apply a two step approach The first

step is a reconstruction R(x) of the integral of the concentration u on the trace

element Ě using WENO techniques. The second step is to solve for the flux

integral approximately using a quadrature rule∫
Si

f(u)− vu dσ√
1 + v2

i

=

nq∑
k=1

wk ∆t

(
f
(
u(xk, tk)

)
− viu(xk, tk)

)
, (4.15)

where nq is the number of quadrature points, and (xk, tk) and wk are the

quadrature locations and weights. Since the point (xk, tk) is on Si it satisfies

the relation

xk = x̌i(t
n) + vi(tk − tn). (4.16)
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Figure 4.3: Flux Corrected EL-WENO Scheme. An illustration of a time
step in a flux corrected EL-WENO scheme. The grid element average ūn+1

i

at the advanced time tn+1 is computed from the reconstructed solution, R(x),
over the interval [x̌i, x̌i+1] at the time tn, and a correction for flux values across
the trace lines.

The evolution of u along Si is computed using a NCE Runge-Kutta scheme

that uses the differentiation technique presented for the IWENO scheme.

This method can be extend to two spatial dimensions by using a Strang

splitting technique where the conservation equation

ut + f1(u)x + f2(u)y = 0, for (x, y) ∈ R2, t > 0, (4.17)

u(x, y, 0) = u0(x, y), for (x, y) ∈ R2, (4.18)

is solved by decoupling to a series of one dimensional problems. We do not

provide details for this sort of algorithm, instead in Chapter 5 this flux cor-

rection technique is combined with the QEL-WENO scheme of Chapter 3 to

provide a method for the nonlinear problem in multiple spatial dimensions.
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4.2.1 Mass Reconstruction

There are two choices of methods to compute the mass integral∫
Ěi

u(x, tn) dx. (4.19)

The first is the QEL-WENO scheme given in Chapter 3. The second choice,

which is the one implemented in the code for the numerical results presented

in this chapter, is the standard EL-WENO method. The reason for this choice

is it allows direct comparison of the computation of the flux term for the two

different techniques. In the paper [48] developing the EL-WENO technique,

Arbogast and Huang provide a detailed explanation of the mass integration. In

this section I will briefly outline their method and give the details to implement

it for schemes of 3rd and 5th order.

Trace regions on a given element are explicitly defined as Ěn
j = [x̌j, x̌j+1].

They are viewed as a union of subintervals of grid elements Ei of the form

1. [xi, xi+1], when the whole Ei is contained in Ěn
j ;

2. [xi, xi+α], 0 < α < 1, when x̌nj+1 intersects Ei but not x̌nj ;

3. [xi+β, xi+1], 0 < β < 1, when x̌nj intersects Ei but not x̌nj+1;

4. [xi+β, xi+α], 0 < β < α < 1, when Ěn
j is contained in Ei.

High order reconstruction of u over these types of subintervals can be computed

as integrals over type 1 and type 2 subintervals by noticing that type 3 and 4
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subintervals are combinations of type 1 and 2 subintervals. Type 3 subintervals

are

[xi+β, xi+1] = [xi, xi+1]− [xi, xi+β] (4.20)

and type 4 subintervals are

[xi+β, xi+α] = [xi, xi+α]− [xi, xi+β]. (4.21)

This gives a way of breaking the integral over any subinterval into a sum of

integrals over type 1 and type 2 subintervals. Since the integral over a type

1 subinterval is ∆xūi, it suffices to demonstrate how to compute a high order

reconstruction of the integral over a type 2 subinterval.

To get the high order reconstruction of the integral over a type 2 subin-

terval a WENO scheme is used. Define m+1 polynomials, p0, . . . , pm, of degree

m such that ∫
Ii

pk dx = ∆xūi, i = −m+ k, . . . , k, (4.22)

as shown in Figure 2.1. The value of m is 1 or 2 for the 3rd and 5th or-

der schemes respectively. We denote Pk as the integral of pk over a type 2

subinterval for the 3rd order scheme these polynomials are

P0 =
α∆x

2

(
ūi−1(1− α) + ūi(1 + α)

)
, (4.23)

P1 =
−α∆x

2

(
ūi(−3 + α) + ūi+1(1− α)

)
, (4.24)
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and for the 5th order scheme they are

P0 =
α∆x

6

(
ūi−2(−1 + α2) + ūi−1(5− 3α− 2α2)

+ ūi(2 + 3α + α2)
)
, (4.25)

P1 =
α∆x

6

(
ūi−1(2− 3α + α2) + ūi(5 + α− 2α2)

+ ūi+1(−1 + α2)
)
, (4.26)

P2 =
α∆x

6

(
ūi(11− 6α + α2) + ūi+1(−7 + 9α− 2α2)

+ ūi+2(2− 3α + α2)
)
. (4.27)

Linear weighting coefficients are chosen such that

m∑
k=0

ck Pk −
∫ xi+α

xi

u(x) dx = O(∆x2m+1). (4.28)

For the 3rd order scheme the linear coefficients are

c0 = (2− α)/3 and c1 = (1 + α)/3. (4.29)

For the fifth order scheme the linear coefficients are

c0 = (−3 + α)(−2 + α)/20, (4.30)

c1 = (3− α)(2 + α)/10, (4.31)

c2 = (1 + α)(2 + α)/20. (4.32)

The nonlinear weighting polynomials wk(x) are defined as a function of the

linear coefficients and of a set of smoothness indicators IS as

wk =
σk
m∑
i=0

σi

with σi =
ci

(ε+ ISi)p
for k = 0, . . . ,m. (4.33)
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Here p ≥ 1 is an integer and 0 < ε� 1 is to avoid dividing by zero. The stan-

dard smoothness indicator for a WENO scheme are chosen, these are defined

as
m∑
l=1

∫
I

h2l−1
(
p

(l)
k

)2

dx. (4.34)

The smoothness indicators for the third order scheme are

IS0 = (ūi−1 − ūi)2, (4.35)

IS1 = (ūi − ūi+1)2, (4.36)

and for the fifth order scheme they are

IS0 =
13

12
(ūi−2 − 2ūi−1 + ūi)

2 +
1

4
(ūi−2 − 4ūi−1 + 3ūi)

2, (4.37)

IS1 =
13

12
(ūi−1 − 2ūi + ūi+1)2 +

1

4
(ūi−1 − ūi+1)2, (4.38)

IS2 =
13

12
(ūi − 2ūi+1 + ūi+2)2 +

1

4
(ūi − 4ūi+1 + 3ūi+2)2. (4.39)

The high order approximation of the mass in a type 2 subinterval is∫ xi+α

xi

u(x) dx ≈
m∑
k=0

wkPk, (4.40)

which is computed using equations (4.23)-(4.39). This completes the details

for the high order mass integration over the trace region Ě.

4.2.2 Flux Correction

The flux correction is computed by solving equation (4.15). The value

of u changes along the side S in time according to the derivative

du(x(t), t)

dt
=
∂u

∂x

dx

dt
+
∂u

∂t
. (4.41)
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Where along S the relation between x and t is given by equation (4.16) and

dx
dt

= v. Also ut = −f(u)x substituting these gives

du(x(t), t)

dt
= uxv − f(u)x. (4.42)

This equation is solved numerically using a NCE Runge-Kutta scheme. The

value of u is used to evolved along S according to

u
(
(x̌(tn), tn) + θ∆t(v, 1)

)
= u(x̌(tn), tn) + ∆t

v∑
i=1

bi(θ)g
(i) (4.43)

g(i) = F

(
(x̌(tn), tn) + ci∆t(v, 1), u(x̌(tn), tn) + ∆t

v∑
j=1

aijg
(j)

)
(4.44)

F
(
(x, t), u(x, t)) = (uxv − fx(u)

)
. (4.45)

The matrix a and the vector b(θ) for the third order scheme are

b1(θ) = −1/2θ2 + θ, b2(θ) = 1/2θ2 (4.46)

and

a =

(
0 0
1 0

)
. (4.47)

For the fifth order scheme they are

b1(θ) = 2/3θ3 − 3/2θ2 + θ, b2(θ) = −2/3θ3 + θ2, (4.48)

b3(θ) = b2(θ), b4(θ) = 2/3θ3 − 1/2θ2, (4.49)

and

a =


0 0 0 0

1/2 0 0 0
0 1/2 0 0
0 0 1 0

 . (4.50)
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To use this Runge-Kutta scheme the values of u are first reconstructed

on a local stencil. For the trace point x̌ the stencil is x̌ + γ∆x where for the

3rd order scheme

γ = −1/2, 0, 1/2 (4.51)

and for the 5th order scheme

γ = −1/2,−1/4, 0, 1/4, 1/2. (4.52)

At each point on the stencil the concentration u(x̌+γ∆x, tn) is evaluated using

an IWENO reconstruction over the elements Ek−m, . . . , Ek+m where x̌ ∈ Ek,

here m is the degree of the lower order polynomial used in the reconstruction.

In order to compute ux and f(u)x from these points a nodal variation

of the IWENO scheme is used. The following explains the computation of ux

and it is straightforward to use the points f(u) in the same processes to get

f(u)x. Polynomials Pk(x) are constructed such that

Pk(xi) = ui, i = −m+ k, . . . , k + 1, (4.53)

and linear coefficients ck(x) are found optimizing the value of the reconstruc-

tion at the point x ∈ Ek
m∑
k=0

ck(x)Pk(x) = u(x) +O(∆x2m+1). (4.54)

The results in chapter 2 guarantee the existence of these polynomials and

coefficients and provides an algorithm for computing them. Since this is a

nodal based interpolation instead of a cell average based interpolation these
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polynomials are different than those presented in Chapter 2, for completeness

they are listed at the end of this section. Following the IWENO strategy we

take the derivative of the reconstruction

m∑
k=0

c′k(x)Pk(x) + ck(x)pk(x) = u′(x) +O(∆x2m) (4.55)

where pk(x) = P ′k(x). The weighting coefficients are modified as in (4.33) with

smoothness indicators
m∑
l=1

∫
I

h2l−1
(
p

(l)
k

)2

dx. (4.56)

This gives the reconstruction

u′(x) ≈
m∑
k=0

w′k(x)Pk(x) + wk(x)pk(x) (4.57)

which is evaluated at all the points on the stencil x̌ + γ∆x. These values are

used to advance the Runge-Kutta Scheme to the next stage where the same

procedure is applied.

The polynomials, linear coefficients, and smoothness indicators for the

3rd order scheme are

P0 = (1 + α)ui − αui−1, p0 = (ui − ui−1)/h, (4.58)

P1 = (1− α)ui + αui+1, p1 = (ui+1 − ui)/h, (4.59)

c0 = (1− α)/2, c′0 = −1/2, (4.60)

c1 = (α + 1)/2, c′1 = 1/2, (4.61)

IS0 = (ui − ui−1)2, and IS1 = (ui+1 − ui)2. (4.62)
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For the fifth order scheme they are

P0 =
1

2
(α(α + 1)ui−2 − 2α(α + 2)ui−1 + (α + 1)(α + 2)ui), (4.63)

P1 =
1

2

(
−2
(
α2 − 1

)
ui + (α− 1)αui−1 + α(α + 1)ui+1

)
, (4.64)

P2 =
1

2
((α− 2)((α− 1)ui − 2αui+1) + (α− 1)αui+2), (4.65)

p0 =
1

2h
((2α + 1)ui−2 − 4(α + 1)ui−1 + (2α + 3)ui), (4.66)

p1 =
1

2h
((2α− 1)ui−1 +−4αui + (2α− 1)ui+1), (4.67)

p2 =
1

2h
((2α− 3)ui − 4(α− 1)ui+1 + (2α− 1)ui+2), (4.68)

c0 =
1

12
(α− 2)(α− 1), c′0 = (2α− 3)/(12h), (4.69)

c1 = −1

6
(α− 2)(α + 2), c′1 = −α/(3h), (4.70)

c2 =
1

12
(α + 1)(α + 2), c′2 = (2α + 3)/(12h), (4.71)

IS0 =
13

12
(ūi−2 − 2ūi−1 + ūi)

2 +
1

4
(ūi−2 − 4ūi−1 + 3ūi)

2 (4.72)

IS1 =
13

12
(ūi−1 − 2ūi + ūi+1)2 +

1

4
(ūi−1 − ūi+1)2 (4.73)

IS2 =
13

12
(ūi − 2ūi+1 + ūi+2)2 +

1

4
(ūi − 4ūi+1 + 3ūi+2)2. (4.74)

The 3rd order scheme uses α = −1, 0, 1 and h = ∆x/2; the 5th order scheme

uses α = −2,−1, 0, 1, 2 and h = ∆x/4.
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4.2.3 The Relaxed CFL Condition

For the nonlinear problem there are 2 natural choices for the approxi-

mate trace velocity ṽ. The first is ṽ = f ′(u) for some fixed value of u. Since

u is constant along characteristics, this choice should give a small error in

the flux correction step. The nonlinear problem can admit solutions where

the characteristics collide and if no CFL constraint is applied the scheme will

collapse. The standard CFL constraint for a fixed mesh method limits the

time step to the time when characteristics at grid point xi arrives at the next

grid point xi+1 or xi−1 this time step is given as ∆t ≤ ∆x
max |f ′(u)| . The related

problem (ut + (vu)x) + (f(u)− vu)x has a relaxed CFL condition

∆t ≤ ∆tCFL :=
h

max |f ′(u)− v|
(4.75)

as illustrated in Figure 4.4 This CFL condition was identified by Stockie

Mackenzie and Russell [73] where they used a velocity perturbation to solve

their Moving Mesh Method. Later used by Arbogast and Huang in [46]

note that this is the same condition needed for the flux corrected Eulerian-

Lagrangian schemes. This condition states that the time step is small enough

that waves from neighboring cells don’t intersect across tracelines.

A second choice for ṽ is the particle velocity field f(u)/u where again

u(x, t) is fixed. This minimized the number of particles flowing across the

boundary, and again should lead to a small flux correction.

The choice of ṽ depends on the solution of the given problem, however

for the problems we ran numerical tests on there was no significant difference.
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Figure 4.4: Relaxed CFL Constraint An illustration of relaxed CFL cond-
tion, orange line is fixed grid location, blue line has slope max(f ′(u))−1, green
line has slope v−1. The fixed grid CFL condition is when the wave reaches the
next grid point. The relaxed CFL condition describes the time when the wave
reaches the Lagrangian traceline.

The numerical results for this dissertation are presented with ṽi = f ′(ui).

4.3 Numerical Results

We follow the numerical examples provided by Arbogast and Huang in

[46] since this method differs only in the computation of the flux integral it

provides the natural comparison for studying the changes to the scheme. In

their paper they demonstrate that without computing the flux term, inaccurate

particle tracing leads to both a lack of accuracy and poor performance at

capturing shocks. In this section we will not reproduce results of this type,

we will simply analyze the performance of this algorithm in comparison with

their scheme. Numerical results will first be presented for the linear problem,

followed by the non-linear problem. Error results are presented with discrete

L1 and L∞ norms as given in equations (3.24) and (3.25).
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Figure 4.5: Shu’s Linear Test Numerical solutions for Shu’s Linear Test at
time t = 2 with 4 time steps. On the left is the 3rd order scheme, and on the
right is the 5th order scheme.

We first present results to modeling the linear transport problem. This

is useful for the following reasons, first it illustrates the scheme in a context that

is simple to interpret. The second reason is that exactly computing tracelines

while taking large time steps can be an expensive procedure. As a way to

minimize the computational effort one can trace through the approximated

velocity field and then compute the flux integral provided in this chapter.

4.3.0.1 Constant Speed Transport

We first test our scheme on the linear problem ut+ux = 0 with analytic

solution u(x, t) = u0(x− t). Since trace points are simply x−∆t we randomly

perturb these points with a uniform distribution in [−0.2∆x, 0.2∆x], so that

the flux across the traceline is nonzero. We apply this to the initial condition

given by Shu’s Linear Test as described in Section 3.2.4.4. The test is run on

a mesh with 200 elements. The results at T = 2 using 4 time steps shown in

Figure 4.5 show no visible oscillations or diffusion.
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N Error L1 Order Error L∞ Order
3rd order scheme

80 1.74 E-1 - 8.33 E-1 -
160 2.06 E-3 6.40 6.97 E-3 6.90
320 4.36 E-5 5.56 5.43 E-4 3.68
640 6.63 E-6 2.71 1.22 E-4 2.15
1280 4.73 E-7 3.81 1.20 E-5 3.34
2560 2.48 E-8 4.26 4.45 E-7 4.76
5120 1.50 E-9 4.05 1.39 E-8 5.00
10240 9.72 E-11 3.95 1.40 E-9 3.30

LR 4.21 3.96
5th order scheme

40 2.25 E-3 - 1.77 E-3 -
80 4.08 E-5 5.79 3.20 E-5 5.79
160 6.80 E-7 5.91 5.34 E-7 5.90
320 1.08 E-8 5.96 8.58 E-9 5.96
640 1.73 E-10 5.98 1.36 E-10 5.98
1280 3.48 E-12 5.63 2.62 E-11 2.37

Table 4.1: Time Dependent Transport Test 1D Results for the flux cor-
rected EL-WENO method with v = sin(t).

4.3.0.2 Time Dependent Velocity

This example uses the velocity v = sin(t). The initial condition is

again u0(x) = sin(πx) for x ∈ [0, 2]. The analytical solution to this problem is

u(x, t) = u0(x+ 1 + cos(t)). The trace points are evaluated using RK4 with a

single time step. The error results at t = 4 using ∆t = 20∆x are listed in Table

4.1 show high convergence rates. The 5th order results here are comparable

to those of the EL-WENO method of Arbogast and Huang who also see a

converge rate at around 6 for this problem.
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4.3.0.3 Space Dependent Velocity

For this test the velocity is given as v = sin(x) with an initial condition

that u0(x) = 1 for x ∈ [0, 2π]. The analytical solution to this problem is

u(x, t) =
sin
(
2 arctan(e−t tan(x/2))

)
sin(x)

. (4.76)

These results are presented in Table 4.2 at t = 1 with ∆t = 5∆x. The

trace points are evaluated using a single time step of RK4. Numerical results

confirm formally high order convergence. The results of the 5th order scheme

are similar in magnitude to the method of Arbogast and Huang.

4.3.0.4 Burgers’ Equation

The final numerical example we give is for Burgers’ equation ut +

(1/2u2)x = 0. We first solve this equation for the initial condition

u0(x) =

{
1.0, x ∈ [0.6, 1.4],

0.5, otherwise
(4.77)

which develops shock and rarefaction waves. Numerical results are shown in

Figure 4.6 on a grid with 100 points at time t = 0.5 with ∆t = .02. The

5th order scheme has better resolution near the rarefaction wave than the 3rd

order scheme.

The second initial condition we use is u(x, 0) = u0(x) = 0.75+0.25 sin(πx)

for x ∈ [0, 2]. The mass forms a shock at time t = 4/π. Numerical results in

Table 4.3 are computed before the shock forms at t = 1 with ∆t = 4∆x. The

analytical solution is computed numerically by solving the fixed point problem

u(x, t)− (0.75 + 0.25 sin(πx̌)) = 0 (4.78)
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N Error L1 Order Error L∞ Order
3rd order scheme

20 9.63 E-3 - 5.11 E-2 -
40 5.25 E-3 0.87 4.41 E-3 .212
80 1.08 E-3 2.28 1.86 E-3 1.25
160 1.75 E-4 2.62 5.65 E-4 1.72
320 2.61 E-5 2.74 1.52 E-4 1.89
640 3.33 E-6 2.97 3.77 E-5 2.01
1280 4.23 E-7 2.98 7.54 E-6 2.32
2560 5.28 E-8 3.00 9.25 E-7 3.02

5th order scheme
20 9.40 E-4 - 6.94 E-4 -
40 1.47 E-4 2.67 1.60 E-4 2.11
80 1.01 E-5 3.87 1.75 E-5 3.19
160 4.25 E-7 4.57 7.45 E-7 4.55
320 1.51 E-8 4.81 2.61 E-8 4.83
640 5.05 E-10 4.91 8.64 E-10 4.92
1280 1.65 E-11 4.94 2.79 E-11 4.95

Table 4.2: Spatially Dependent Transport Test 1D Results for the flux
corrected EL-WENO method with v = sin(x).
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Figure 4.6: Burgers’ Equation: Example 1 Numerical solutions for Burg-
ers’ equation at time t = 0.5. On the left is the 3rd order scheme, and on the
right is the 5th order scheme. The red is the analytical solution.
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N Error L1 Order Error L∞ Order
3rd order scheme

40 8.34 E-4 - 7.43 E-3 -
80 1.51 E-4 2.47 1.56 E-3 2.25
160 1.91 E-5 2.95 2.96 E-4 2.40
320 2.22 E-6 3.13 6.79 E-5 2.13
640 2.90 E-7 2.93 1.09 E-5 2.64

5th order scheme
40 2.13 E-4 - 1.89 E-3 -
80 8.34 E-6 4.67 1.12 E-4 4.08
160 6.99 E-7 3.58 1.35 E-5 3.05
320 2.87 E-8 4.60 7.34 E-7 4.21
640 1.17 E-9 4.62 3.21 E-8 4.51

Table 4.3: Burgers’ Equation Results for the flux corrected EL-WENO
method.

for the trace location x̌ using a Newton iteration. This is solved at quadrature

points x on the element which are then used to compute the average value

of u used in the error equation. The code implements a 5 point Gaussian

quadrature rule for this computation. The code is then tested after the shock

formation at t = 2 with ∆t = 2∆x the results in Figure 4.7 show that the

method captures a sharp front at the shock.
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Figure 4.7: Burgers’ Equation: Example 2 Numerical solutions for Burg-
ers’ equation at time t = 1. On the left is a grid with 40 elements and on the
right there are 80 elements. The black dots are the solution of the 3rd order
scheme and the red circles are for the 5th order scheme.
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Chapter 5

QEL-WENO for Nonlinear Advection in 2D

In this chapter we will combine the ideas of the previous chapters in

order to solve the 2 dimensional nonlinear conservation problem

ut +∇ · f(u) = 0, (5.1)

u(x, y, t = 0) = u0(x, y), (5.2)

where f(u) = (f1(u), f2(u)).

5.1 The Space-Time Region, E(v)

We define the approximate velocity field by taking an approximate

characteristic tracing at the boundary nodes. To solve this we define an ap-

proximated velocity field ṽ(x, y, t), that is specific to the flux function f(u).

We apply a characteristic tracing, at the nodes of the grid xi, yj through the

chosen approximate velocity field ṽ(x, y, t):

(ξ1, ξ2)t = (ṽ1, ṽ2), (5.3)

ξ(tn+1) = (xi, yj). (5.4)

This tracing defines the traceback points (x̌i, y̌j) = ξ(tn) . We define the

velocity v at the nodes as the constant value vi,j =
(
xi−x̌i

∆t
,
yj−y̌j

∆t

)
. These are
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used to define the velocity field over the element Eij = [xi, xi+1]× [yj, yj+1] as

the bilinear interpolation

v(xi+α, yj+β) = (1− β)(1− α)vi,j + (1− β)αvi+1,j

+ β(1− α)vi,j+1 + αβvi+1,j+1 (5.5)

for (α, β) ∈ [0, 1]2. The velocity field on Eij has two components v(x, y) =

(a1(x, y), a2(x, y)). This defines the space-time region E = E(v) and traceback

region Ě = Ě(v) as a function of the velocity field.

5.2 The Flux Corrected Problem

We now solve the related problem(
ut +∇ · (a1u, a2u)

)
+∇ · (f1(u)− a1u, f2(u)− a2u) = 0, (5.6)

u(x, y, t = 0) = u0(x, y). (5.7)

Integrating over E gives∫
E
ut +∇ ·

(
a1u

a2u

)
dV +

∫
E
∇ ·
(
f1(u)− a1u

f2(u)− a2u

)
dV = 0. (5.8)

Applying the divergence theorem over the space time region this equation

becomes ∫
E

un+1 dA−
∫
Ě

un dA+

∮
∂E

f1(u)− a1u
f2(u)− a2u

0

 ·
νxνy
νt

 dS (5.9)

The mass on cell E at tn+1 is given by∫
E

un+1 dA =

∫
Ě

un dA−
∮
∂E

f1(u)− a1u
f2(u)− a2u

0

 ·
νxνy
νt

 dS. (5.10)
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In chapter 3 we gave the algorithm to solve the integral over Ě using a quadra-

ture scheme. We remark that since the velocity field at every point is constant

we do not need to apply an ODE solver to compute the trace points as they

are simply (x̌, y̌) = (x, y) − v(xi+α, yj+β)∆t for (x, y) ∈ Ei,j. The Jacobian

can be computed directly using the linear trace and

∂v

∂x
=

1

∆x
[(1− β)(vi+1,j − vi,j) + β(vi+1,j+1 − vi,j+1)], (5.11)

∂v

∂y
=

1

∆y
[(1− α)(vi,j+1 − vi,j) + α(vi+1,j+1 − vi+1,j)] (5.12)

to solve for the components ∂x̌
∂y

, ∂x̌
∂x

, ∂y̌
∂y

and ∂y̌
∂x

directly.

This leaves a method to solve for∮
∂E

f1(u)− a1u
f2(u)− a2u

0

 ·
νxνy
νt

 dS =
3∑
i=0

∫
Si

f1(u)− a1u
f2(u)− a2u

0

 ·
νxνy
νt

 dS (5.13)

which will use the technique detailed in Chapter 4. However we will be explicit

about this extension to higher dimensions. We note that the faces E and Ě

have outward normals ±(0, 0, 1) and do not contribute to this sum, which is

over the 4 remaining surfaces.

5.2.1 Surface Parameterization

The goal of this section is to define a parameterization of the Surface

Si of the form

r(γ, t) = x(γ, t) ı̂ + y(γ, t) ̂ + t k̂, (5.14)
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where (γ, t) ∈ [0, 1]× [tn, tn+1] = D. This allows us compute (5.13) as

∫
D

f1(u)− a1u
f2(u)− a2u

0

 ·
νx(γ,t)

νy(γ,t)

νt

 ||rγ × rt|| dA. (5.15)

The outward unit normal on a surface with a parameterization r(γ, t) is given

by

ν =
rγ × rt
||rγ × rt||

, (5.16)

which gives the flux integral over D as

∫
D

f1(u)− a1u
f2(u)− a2u

0

 · (rγ × rt) dA. (5.17)

We will solve this using quadrature for both γ and t.

This parameterization is defined on each surface independently. Let

(xp, yp) and (xq, yq) be adjacent nodes of Ei,j We will consider the face de-

scribed by these 2 points and their traceback points (x̌p, y̌p) and (x̌q, y̌q). The

surface r(γ, t) = (x(γ, t), y(γ, t), t) is described by

x(γ, t) = xp(1− γ) + xqγ

−
(

(xp − x̌p)
∆t

(1− γ) +
(xq − x̌q)

∆t
γ

)
(tn+1 − t), (5.18)

y(γ, t) = yp(1− γ) + yqγ

−
(

(yp − y̌p)
∆t

(1− γ) +
(yq − y̌q)

∆t
γ

)
(tn+1 − t). (5.19)
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The partial derivatives of r with respect to γ and t are

rγ =
∂x(γ, t)

∂γ
ı̂ +

∂y(γ, t)

∂γ
̂ +

∂t

∂γ
k̂

= (xq − xp) +

(
(xp − x̌p)

∆t
− (xq − x̌q)

∆t

)
(tn+1 − t)̂ı

+ (yq − yp) +

(
(yp − y̌p)

∆t
− (yq − y̌q)

∆t

)
(tn+1 − t)̂

+ 0k̂ (5.20)

and

rt =
∂x(γ, t)

∂t
ı̂ +

∂y(γ, t)

∂t
̂ +

∂t

∂t
k̂

=

(
(xp − x̌p)

∆t
(1− γ) +

(xq − x̌q)
∆t

γ

)
ı̂

+

(
(yp − y̌p)

∆t
(1− γ) +

(yq − y̌q)
∆t

γ

)
̂

+ 1k̂. (5.21)

Using these the flux integral over the surface is the integral∫
D

(f1(u)− a1u)(rγ · (0, 1, 0)) + (f2(u)− a2u)(rγ · (−1, 0, 0)) dA. (5.22)

5.2.2 Quadrature

We solve (5.22) with a quadrature rule in space γ and time t

nq∑
k=1

w̃k

nq∑
l=1

wl

(
(f1(u)− a1u)(rγ · (0, 1, 0))

+ (f2(u)− a2u)(rγ · (−1, 0, 0))

)
, (5.23)
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where the function f and the mass u and the vector r are functions of the

quadrature points γk and tl. To compute this we need to know the value of

u(x(γk, tl), y(γk, tl), tl). We compute this term using the strategy in Chapter

4. We note that for a fixed γ, the mass u changes in time along the line

(x(t), y(t), t) as

du

dt
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
+
∂u

∂t

= uxa1 + uya2 − f1(u)x − f2(u)y (5.24)

This is solved using the NCE Runge Kutta Scheme in Chapter 4. The details

of the IWENO scheme are presented in Chapter 2, taking the tensor product

of the 1D polynomials given in Chapter 4. The smoothness indicators are

defined in the standard way.

5.3 Numerical Results

5.3.0.1 Example: Swirling Deforming Flow

Two dimensional problem with a swirling and deforming velocity field

as described in section 3.2.5.3 is applied. A Runge-Kutta scheme using a single

time step is used to trace the element nodes. Figure 5.1 shows the numerical

results for 10 times steps on a grid with 60 elements in both directions. The

error results listed in Table 5.1 show that for coarse grids we get the similar

error results as the linear QEL-WENO method. The formal convergence rates

are not seen here possibly due to rounding error accumulation or a subtle bug

in the code.
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Figure 5.1: Flux Corrected Swirling and Deforming Flow Numerical
results for a radial bump function in a swirling and deforming velocity field at
various times with ∆t = 0.1.
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N Error L1 Order Error L∞ Order

10 3.20 E-3 - 2.64 E-2 -
20 1.03 E-3 1.63 8.44 E-3 1.64
40 1.10 E-4 3.22 9.06 E-4 3.21
60 3.47 E-5 2.84 6.41 E-4 0.85
80 3.70 E-5 -0.22 1.78 E-3 -3.54

Table 5.1: Flux Corrected Swirling and Deforming Flow. Error and
convergence order for transport with a time and spatially dependent velocity
field at time t = 1 with ∆t = 0.1.

5.3.0.2 Example: Burgers’ Equation

The final example is the two dimensional Burgers’ Equation

ut + (u2/2)x + (u2/2)y = 0, (x, y) ∈ [0, 2]2, t > 0, (5.25)

with the initial condition

u(x, y, 0) =

{
sin2(πx) sin2(πy), for(x, y) ∈ (0, 1)2

0, otherwise.
(5.26)

The problem is solved using the wave velocity vij = uij for the approximate

tracing. The solution with 40 grid elements in each direction and ∆t = ∆x is

shown in Figure 5.2 at times t = 0, 1, 2 and 3. The solution shows the method

captures the sharp front of the shock.
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Figure 5.2: Flux Corrected 2-D Burgers’ Solution at times t = 0, 1, 2 and
3 using 40 grid elements in each direction and ∆t = ∆x.
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Chapter 6

Two Phase Flow

One application of the Quadrature Eulerian Lagrangian method is to

simulate the transport part of the incompressible two phase flow problem.

There is a broad set of literature [24, 57, 66, 67, 69, 74, 80, 81] developing

the physical equations and analyzing numerical methods to solve flow and

transport in porous media. This chapter will provide an overview of the two-

phase flow problem and include details of our implementation.

Let α = w, n refere to the wetting and non-wetting phases of the

fluid. The two-phase flow problem for the Darcy velocity uα, pressure pα and

saturation sα is described by the partial differential equations

uα = −Kaλrα(sα)(∇pα − ραg) in Ω× J, (6.1)

∂t(φsα) +∇ · uα = qa in Ω× J, (6.2)

uα · ν = 0 on ∂Ω× J, (6.3)

sn(x, 0) = s0
n(x) in Ω, (6.4)

where Ω is the spatial domain, J is the time domain, Ka is the medium absolute

permeability, Let krα is the relative permeability, µα is the viscosity and λrα
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is the relative mobility defined as

λrα =
krα
µα

, (6.5)

qα is the external source/sink, ν is the normal, ρα is the density of the fluid

and g is the gravitational acceleration.

sw + sn = 1. (6.6)

p is the pressure, We also consider the effects of capillary pressure, which is

modeled as

pc(sw) = pn − pw. (6.7)

6.1 Global Pressure Formulation

The global pressure formulation of the above flow equation was intro-

duced for incompressible two phase flow in [1, 21], and extended as a method

to solve three phase flow in [22, 23].

6.1.1 Pressure Equation

To minimize the coupling between the pressure and saturation, we use

a global pressure formulation. This global pressure is

p = p(sw) = p0 −
∫ sw

0

λrw
λrt

p′c ds. (6.8)
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We also define a total velocity, volumetric injection rate and mobility as

ut = un + uw, (6.9)

qt = qn + qw, (6.10)

λrt = λrn + λrw. (6.11)

By summing each phase in Darcy’s Law (6.1) and the Mass Conservation (6.2)

we get an elliptic pressure equation in mixed form

∇ · ut = qt in Ω× J, (6.12)

ut = −Kaλrt

(
∇p− λrwρw + λrnρn

λrt
g

)
in Ω× J. (6.13)

6.1.2 Saturation Equation

We solve for the wetting phase α = w and use (6.6) to solve for the non-

wetting phase. Combining the mass conservation equation (6.2) with Darcy’s

Law (6.1) we derive the saturation equation as

∂t(φsw) +∇
(
λrw
λrt

ut

)
+∇ ·

[
a
λrnλrw
λrt

(
∇pc + (ρw − ρn)g

)]
= qw. (6.14)

6.2 Discretization

To discretize the problem we choose p, ut, and sw as the primary vari-

ables for solving equations (6.1)-(6.4). We use an implicit pressure explicit

saturatuation (IMPES) scheme for solving the two phase problem.
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6.2.1 Discretization of Flow

Mortar mixed finite elements are a well-known technique used to solve

the flow problem. In [58, 59] a fully implicit formulation is used to solve a

non-linear interface problem. This work was extended in [11, 37, 38, 83, 84]

where preconditioning techniques are developed to aid in solving the problem.

We use these types of techniques, and use code developed by Hailong Xiao;

details of his method and can be found in [82].

For the examples provided we use Raviart-Thomas [64] spaces of lowest

order (RT0). The space (Vh, Wh) is used to approximate

(
(Kaλrt)

−1ut, v
)
− (p,∇ · v) = −

(
λrwρw + λrnρn

λrt
g, v

)
∀v ∈ Vh, (6.15)

(∇ · ut, w) = (qt, w) ∀w ∈ Wh. (6.16)

6.2.2 Discretization of Transport

As discussed in Chapter 1, the two terms in the transport problem have

very different behaviors. In order to solve this equation over a time step we

use an operator splitting technique to solve for the hyperbolic part (advection)

and parabolic part (diffusion) separately. We solve

∂t(φsw) +∇
(
λrw
λrt

ut

)
= 0 (6.17)

using the QEL-WENO techniques provided in Chapters 5. Then we use the

solution as an initial condition to solve for

∂t(φsw) +∇ ·
[
a
λrnλrw
λrt

(
∇pc + (ρw − ρn)g

)]
= qw. (6.18)
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In order to deal with the degenerate diffusion coefficient α(s) = Kaλrnλrw/λrt

we use a mixed finite element method [10, 25, 68] computed with a rectangle

quadrature rule, or cell centered finite differencing. This method is given as

(φsn+1, w) + (∆t∇ · γ, w) = (φsn, w), (6.19)

(γ, v)Q = (α(s)[p′c(s) γ̂ + (ρw − ρn)g∇z], v)Q, (6.20)

(γ̂, ω)Q = −(s,∇ · ω)Q. (6.21)

6.3 Numerical Example

We run a simulation for 7 days taking time steps of 0.02 [days]. The

computational domain is (x, y) ∈ [0, 35]× [0, 35][m] solved on a uniform mesh

with 35 elements in each spatial dimension. The initial condition reflects

gravitation equilibrium with initial saturation set at 0.4 at a depth 35 [m]. The

boundary has a no flow condition. The inflow source term is on the elements

with (x, y) ∈ [0, 1]×[0, 32][m] and the outflow is on (x, y) ∈ [31, 32]×[0, 32][m]

with respective flow rates of ±10[/day]. The rock porosity is constant at 0.2,

and the permeability is given in Figure 6.1. This figure also shows the initial

pressure and velocity field for the problem. The Brooks-Corey model [17, 18]

is used to generate the capillary pressure and relative permeability curves

pc = pes
−1/λ
w , (6.22)

krw = s(2+3λ)/λ
w , (6.23)

krn = (1− sw)2(1− s(2+λ)/λ
w ), (6.24)
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Figure 6.1: Permeability and Flow On the left is the permeability. On the
right is the initial pressure and velocity.

where pe is the entry pressure and λ is the pore-size distribution index. For all

of the numerical examples provided we take pe = 0.5[psi] and λ = 2 as shown

in Figure 6.2. The water and oil viscosities are 0.5[cp] and 2.5[cp] respectively.

The densities of water and oil are respectively 1[g/cm3] and 0.7[g/cm3].

The numerical results of this simulation are shown in 6.3. These results

show the fluid moving through the channels. The solution is not monotone,

suggesting that a flux splitting technique might be needed for this problem.

There are two improvements we suggest for future investigation. The first is to

improve the velocity model to include a cross flow. This can be done using the

higher order Raviart Thomas space RT1 or the Brezzi Douglas Marini space

BDM1 [16]. The higher order velocity field will increase the accuracy of the

particle tracing in the QEL-WENO scheme and allow for larger time steps to
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Figure 6.2: Brooks-Corey Model Capillary pressure is on left and relative
mobilities are on the right.

be taken.

The second improvement is to change the implementation of the source

term. Currently the source term is implemented in the diffusion equation.

This is a not a physical interpretation of the injection process. The source

term should be included with the advection solve and implemented in the

method described in the VCCMM where they trace the fluid forward out of

the injection wells. The current implementation is subject to local oscillation

around the wells since the QEL-WENO method can transport the fluid a larger

spatial distance than where the injected fluid can reach with the diffusion

solver.
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Figure 6.3: Two-Phase Transport Solution The solution to the two-phase
flow problem using the Flux Corrected QEL-WENO Scheme.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Eulerian-Lagrangian algorithms are numerical methods solving advec-

tion equations. The goal in the development of these types of schemes is to

utilize time steps significantly larger than the CFL limited time step of fixed

mesh methods. The computational time of tracing the characteristics is mit-

igated since the problems naturally can be decomposed to solve different cell

blocks on multiple processors. These schemes have recently been combined

with the reconstruction techniques of WENO schemes which provide a high

order accuracy.

In order to aid in the development of these schemes we have presented

the new IWENO interpolation technique. This interpolation procedure allows

for a high order reconstruction of the function at any point in the rectangular

domain. The key idea in this method is to reconstruct the primitive function

and the differentiate. These polynomials are weighted in the standard WENO

way so that the interpolation avoids using a stencil that contains a shock in

the data. These schemes achieve the theoretical order of accuracy.

This interpolation technique aided the development of two new strate-
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gies for solving the advection problem. The first is to solve the linear advection

problem by using a quadrature rule to integrate the traceback region. This

allows for reconstruction of the mass in the traceback region without out resolv-

ing its boundary. This method fails to be either mass or volume conservative,

however criteria was developed to choose a sufficient number of quadrature

points to ensure that the volume error was within an acceptable tolerance.

Numerical results demonstrate the formally high order convergence rate for

smooth problems.

The second application of IWENO is for the nonlinear problem which

is solved using a flux correction technique. The IWENO technique is used

to compute the integral of the flux across the approximated boundary. This

technique was implemented in one spatial dimension. Numerical results were

presented demonstrating its performance. The numerical results are very sim-

ilar to the previous technique of Arbogast and Huang. The compact stencil

improves the ability for the scheme to be run across multiple processors.

The final addition of this thesis is to combine the quadrature scheme

with the flux-correction scheme in higher spatial dimensions. This is done

through approximate characteristic tracing at element nodes to define a bilin-

ear velocity field which is used in the quadrature scheme. Numerical results

were presented.
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7.2 Future Work

7.2.1 Conservation

The major limitation of the QEL-WENO method is that it fails to be

conservative. There is an underlying algebraic system to the scheme ūn+1 =

Mūn, where M is a matrix with coefficients that depend on the scheme. It

has been shown that the scheme is volume conservative is the column sum of

M = 1, and mass conservative if the row sum of M = 1. Future research

would include an investigation of methods to adjust the resulting algebraic

system in a way to improve the mass conservation of the scheme.

7.2.2 CWENO3

Central WENO schemes are important fixed mesh methods since they

allow for mass transport without an artificial flux splitting technique. How-

ever due to technical reasons these schemes did not exist for odd orders until

recently due to challenges in reconstructing the midpoint. The IWENO tech-

nique presented here gives a way around this problem. In addition the idea of

using a compact stencil to compute the flux across the edge has the potential

of providing a less diffusive solution.

7.2.3 Applications

There are multiple applications in reservoir simulation such as unsta-

ble miscible displacement that the QEL-WENO algorithm can be applied to.

Another direction for future research is testing the performance on systems of
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coupled conservation laws such as the Euler Equations.
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