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Electricity markets are particularly complex because they must accommodate the un-

derlying physics that govern the electric power system. These physics present non-convexities

in the social welfare maximization problem, also called the economic dispatch problem, solved

by the Independent System Operator (ISO), which is the social planner in this context. The

non-convexity of this problem presents difficulties in computing the social welfare maximizing

dispatch as well as difficulties in deriving a pricing structure that satisfies certain economic

requirements such as revenue adequacy of the ISO and non-negative operating profits for

market participants. This dissertation analyzes two sources of non-convexity that pertain

to two separate market changes that have been recently proposed in Texas. Both proposals

pertain to the real-time electricity market, which clears every 5-minutes and is myopic in

the sense that only the demand at the end of the upcoming 5-minute interval is considered

and no future time intervals are considered in the social welfare maximization problem.

The Electric Reliability Council of Texas (ERCOT) is the ISO in Texas and currently

neglects resistive losses along transmission lines when formulating the economic dispatch

problem. The first part of this dissertation regards a proposed market change to incorpo-

rate transmission losses into the economic dispatch problem. Two general approaches are

considered to accommodate associated non-convexity. Similar to current practice, the first

approach is based on a marginal pricing structure and uses convex approximations that

vii



facilitate efficient computation. By utilizing various approximations, the aforementioned

economic requirements are proven to be satisfied approximately. The second approach is

based on an alternative pricing structure in which prices are chosen to explicitly minimize

the worst-case violation of these economic requirements. For example the prices may be

chosen to minimize the potential revenue shortfall of the ISO. These alternative prices are

termed convex hull prices and can be approximated by use of convex relaxations.

The economic dispatch problem currently used by ERCOT does not endogenously

represent operating reserves to handle contingencies that may occur. Instead, operating re-

serves are currently optimized separately from the electric power generation dispatch. The

second part of this dissertation regards a proposed market change to co-optimize reserve

and generation dispatch in a social welfare maximization problem called a co-optimization

problem. Implementation of the real-time co-optimization problem is being pursued simul-

taneously with a new definition of the primary frequency responsive reserve types considered

in the market. One of these reserve types intends to accommodate standard droop control.

Another of these reserve types is newly introduced and intends to facilitate participation

of fast-acting batteries in primary frequency response. This dissertation derives reserve re-

quirements from first principles that capture the coupling of these two reserve types as well

as their ramping abilities. The newly proposed non-convex requirements represent limits on

the ramp-constrained primary frequency responsive reserve procurement. Placing these non-

convex requirements into a co-optimization problem is proven to result in the satisfaction of

the aforementioned economic requirements.
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Chapter 1

Introduction

Electricity markets enable the trading of electric power as a commodity [36]. The pro-

ducers of this commodity are electric generators that are capable of converting various fuel

types into electric power and providing other services while the consumers vary from individ-

ual households to large industrial plants that gain utility from electrically powered devices.

The exchange of this commodity from producer to consumer occurs through the transmis-

sion and distribution systems, which are networks of electric conductors used to transport

electric power. Unlike traditional commodities, it is very difficult to store large amounts

of electricity, necessitating demand be met identically by supply at all times. Furthermore,

electric power demand is traditionally inelastic and uncertain on short time scales, e.g. 24-

hours, and is accommodated by adjusting the electricity production of electric generators.

As a result, significant coordination is required among electric generators connected to the

same transmission network. For this reason, among others, vertically integrated electricity

providers were established that owned and controlled all electric generators connected to the

same transmission system [83]. These electricity providers historically formed geographical

monopolies and were subject to various inefficiencies including a lack of competition [48].

In the 1980’s and 1990’s many electricity markets throughout the world began re-

structuring in a way that encourages competition [83]. This restructuring requires generator

owners and electric utilities to respectively sell and purchase electricity in a wholesale elec-

tricity market that clears in successive intervals on short time scales in order to satisfy electric

power balance. Electric utilities then absorb price variability by reselling the electricity to

the consumers, e.g. individual households, at a price that varies on slow time scales, e.g.

months, on which these consumers are capable of responding. As of year 2016 approximately

two-thirds of the electricity consumers in the United States purchased electric power through

these restructured electricity markets [29].
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Critical to this restructured market is the Independent System Operator (ISO) that

acts as the social planner of the wholesale electricity market. The ISO is a non-profit regu-

lated entity that is given the task of setting prices for electricity and providing coordinated

dispatch instructions to generators that maximize social welfare in a way that balances elec-

tric power supply and demand, and satisfies various physical constraints imposed by the

electric generators and the transmission system. To do this the ISO must solve the social

welfare maximization problem, which is an optimization problem also called the economic

dispatch problem. Approximate linear models of the underlying power system physics have

been traditionally used to formulate the economic dispatch problem, resulting in a convex op-

timization problem and sound economic principles surrounding the electricity market. This

dissertation studies variations of this economic dispatch problem that are non-convex, where

the non-convexity arises due to a more accurate representation of the underlying power sys-

tem physics. As we will see, a non-convex economic dispatch problem will not only make

the optimization problem difficult to solve computationally, but will also cause important

economic principles surrounding the electricity market to break down. For example, the ISO

may not be able to guarantee revenue adequacy as it may realize a deficit after the market

is cleared.

There are two types of non-convexities presented in the social welfare maximization

problem that are traditionally studied in the literature. First are integer-valued decision

variables that represent commitment decisions made by participating generators. These

integer-valued decision variables represent hourly start-up and shut-down decisions that are

made by each generator throughout the day and allow for start-up costs, no-load costs and

minimum up/down times to be considered in an economic dispatch problem that optimizes

over a time horizon. This type of economic dispatch problem is called the Unit Commitment

(UC) problem and serves as the social welfare maximization problem for the day-ahead

market that is cleared every 24 hours [39]. This type of non-convexity is studied extensively

in other works but will not be addressed in this dissertation.

This dissertation will study the second non-convexity that is traditionally studied

in the literature that pertains to the Alternating Current (AC) model of the transmission

network, which operates at a nominal frequency of 60 Hz in the Americas, 50 Hz in Eu-
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rope, and may vary among other synchronous networks throughout the world. This type

of non-convexity arises through continuously differentiable non-linear equations and cap-

tures physical phenomena occurring on time scales that are much faster than the hourly

commitment decisions being modeled in the UC problem. As a result, this non-convexity

is not only relevant to the day-ahead market, but is also relevant to the real-time market,

which is cleared on a faster time scales of 5-15 minutes. The economic dispatch problem

associated with the real-time market is myopic in the sense that (in its basic formulation)

it only optimizes over a single time interval. To isolate the effect of the non-convexity of

interest this dissertation will abstract away the day-ahead market and focus solely on the

myopic real-time market as well as the associated myopic economic dispatch problem. Issues

associated with multiple intervals in a so-called lookahead economic dispatch problem will

not be addressed in this dissertation.

To operate the system reliably, the ISO is additionally given the task of preparing

for contingencies. Ensuring power balance is met at all times requires provision of electric

power supply/demand that can be called upon in the event of a contingency. For exam-

ple, traditional generators may be operated below their maximum power output capability,

leaving some headroom that can be quickly called upon in the event of a generator being

unexpectedly disconnected from the transmission network. In this case the headroom is

interpreted as a reserve product that is paid for by the ISO in the context of the electricity

market. It is apparent that this reserve product is coupled with the electric power product

for each generator since total generator capacity must be apportioned between electric power

and reserve products. For this reason, many ISO’s in the US have incorporated a reserve

product into the social welfare maximization problem, which is termed the co-optimization

problem as it co-optimizes this reserve product along with the generation. Included in the

co-optimization problem is a reserve requirement that is used to guarantee sufficient reserve

to accommodate specified contingencies.

Contingencies that cause an excess of electric power demand are typically accommo-

dated by up reserve, which represents the ability of a resource to increase its power output.

Similarly, contingencies that cause an excess of electric power generation are typically ac-

commodated by down reserve, which represents the ability of a resource to decrease its power
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output. This dissertation will focus only on up reserve procurement consistent with practice

in US markets; however, the analysis can be extended to the case of up and down reserve.

Henceforth, all references to reserve will imply up reserve unless otherwise specified.

Reliably operating the power system has been a major concern in recent years due to

a dramatic change in the fuel profile of electric generators. Specifically, traditional generators

that burn oil, gas, or coal as fuel are being replaced by cleaner generators that use wind and

solar as their primary fuel. Unlike traditional electric generators, wind and solar generators

exhibit demand-like characteristics in that they are inelastic and uncertain on short time

scales. For this reason the term net demand has been coined to refer to the combination of

traditional demand minus the wind generation and solar generation. As traditional genera-

tors are being replaced by wind and solar generators, net demand fluctuations are increasing

and fewer traditional generators are available, diminishing the electric power system’s ability

to achieve power balance.

To improve power system reliability ISOs throughout the world have recently been

incorporating new reserve products into the electricity market. In general, these reserve

products represent electric power supply that can be called upon in the event of a contingency

in order to sustain electric power balance. In contrast to traditional generators adjusting

their power output to accommodate contingencies, electricity demand might provide the

ability to curtail or electric storage might prepare for discharging during such an event.

These different reserve types exhibit varying effectiveness in responding to contingencies and

the electricity market should be designed in a way that takes advantage of their diverse

properties. This dissertation will study a new reserve type that is capable of exhibiting a

nearly instant change in power output and can be interpreted as demand curtailment or

battery discharging. A novel reserve requirement will be derived from first principles and is

expressed as non-linear constraints that makes the co-optimization problem non-convex.

The Electric Reliability Council of Texas (ERCOT) is the ISO that operates the elec-

tricity market in Texas. To date, the economic dispatch problem used by ERCOT in the

real-time market does not consider reserve and uses a linear approximation of the AC trans-

mission system that neglects electric power losses along the transmission lines. A high-level
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overview of this real-time economic dispatch problem currently used by ERCOT is provided

in Chapter 2. ERCOT is governed by the Public Utility Commission of Texas (PUCT),

which issues electricity market rule changes in the state of Texas. Over the last few years

the PUCT has considered two market rule changes that call for various reserve products to be

co-optimized with the generation dispatch and for the inclusion of transmission losses in the

model of the transmission network. These two market rule changes have been considered sep-

arately by the PUCT and serve as the motivation for the work presented in this dissertation.

Accordingly, Part I of this dissertation will address the non-convexity that arises from the in-

clusion of transmission losses into the economic dispatch problem and Part II will address the

inclusion of multiple reserve products into a real-time co-optimization problem. Consistent

with the PUCT’s analysis, these two market changes will be considered separately [26, 27].

In other words, this dissertation does not consider an economic dispatch problem that both

co-optimizes reserve products and incorporates transmission losses although in practice the

ERCOT market may eventually include both features. Sections 1.1 and 1.2 further introduce

these two topics. Section 1.3 then summarizes the main contributions of this dissertation.

1.1 Economic Dispatch and Transmission Losses

The first non-convexity that will be studied is associated with the Alternating Cur-

rent (AC) transmission network [11]. Power flow through the AC transmission network is

governed by physics that can be represented by continuously differentiable non-linear equa-

tions that are traditionally approximated as being linear. The most common approximation

makes the key assumption that no real power is lost in the transmission network. This

approximation is termed the Direct Current (DC) approximation or DC model and is used

in some electricity markets including the market in Texas [42]. On the other hand, the ma-

jority of electricity markets in North America incorporate transmission line losses into the

social welfare maximization problem associated with both the real-time and day-ahead mar-

kets [21, 22]. ISOs governed by FERC claim to realize significant benefits by incorporating

losses into market operation [42]. In fact, PJM has reported 100 million dollars of savings

per year in energy and congestion costs [78]. These claims have encouraged other ISOs to

consider implementing marginal losses into their economic dispatch [65]. Perhaps more im-
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portantly, the implementation of losses into the social welfare maximization problem allows

for Locational Marginal Prices (LMPs) to accurately reflect the marginal cost of losses. This

allows for LMPs to better guide investment and operational decisions, resulting in long term

benefits as well.

Despite the increased prevalence of marginal losses, a standard economic dispatch

problem has not emerged in industry, so that energy markets that consider marginal losses

have varying implementations [22]. The choice of implementation of marginal losses has

both market price and resource dispatch impacts that may significantly benefit some players

while significantly disadvantaging other players as compared to Alternating Current Optimal

Power Flow (AC OPF) outcomes [5, 11, 12], which we will view as the “gold standard”

for the dispatch problem. To better understand these various implementations, Part I of

this dissertation derives economic dispatch problems from first principles and explains the

various assumptions and approximations required to attain different practical formulations.

Common and unnecessary assumptions are identified and proper choices of tuning parameters

are specified. Certain approximations are shown to increase the error in price and dispatch

outcomes. The following four subsections introduce the topic of each chapter in Part I of

this dissertation.

1.1.1 Detailed AC OPF Problem

The economic dispatch problem that most accurately accounts for transmission line

losses is termed the AC OPF problem. This problem uses the equivalent-Π model for each

transmission line in the AC transmission network and uses no significant assumptions or

approximations except that the three-phase system is operated at a fixed frequency and is

balanced across phases so that per-phase analysis can be used. The AC OPF problem rep-

resents distribution system loads as aggregated loads on the transmission system located at

distribution substations connecting the transmission system to the distribution system. The

aggregated distribution system loads are assumed to be balanced across phases. Distribution

system characteristics are not modeled.

To represent the transmission system, complex current, power, and voltages are mod-
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eled in detail. As is typical when formulating the AC OPF problem, our formulation will

model transmission line capabilities using hard limits on various quantities including real,

reactive, and apparent power flow as well as current magnitude flows. Similarly, generator

capabilities will be modeled as having hard limits on the amount of real and reactive power

they can produce. With this in mind, we recognize that these hard limits can be violated

for short time durations and thus may be considered soft limits in practice. Although gen-

erators are capable of producing both real and reactive power, their costs will be modeled

as being a function of only the real power produced and are assumed convex as is typical in

the literature.

Chapter 3 will derive the AC OPF problem from first principles using both a polar and

rectangular coordinate representation of the complex voltages in the transmission network.

Both formulations include non-convex constraints for each transmission line and bus in the

system. This type of non-convexity is difficult to accommodate because it is prevalent among

the constraints of the problem. In fact, this non-convexity is so difficult to accommodate

that the AC OPF problem has been proven to be generally NP-hard [6, 54]. However,

iterative methods, such as interior point algorithms, can be used to effectively approximate

the solution to the AC OPF problem. Although these algorithms are only, at best, guaranteed

to converge to a local minimum, they often converge to a point that is nearly globally

optimal [9, 14].

Throughout Part I of this dissertation various convex approximations of the AC OPF

problem will be derived. The solution of the convex problems will then be compared to

the identified locally optimal solution of the AC OPF problem, which serves as an intuitive

benchmark. Furthermore, convex approximations will be derived from the two AC OPF

formulations in Chapter 3. We will see that the polar coordinate formulation of the AC

OPF problem yields very accurate approximations that fix voltage magnitudes and assume

small voltage angle differences across each transmission line. We will additionally see that

the rectangular coordinate formulation of the AC OPF problem yields a very tight relaxation

of the AC OPF problem that results in a Semi-Definite Program (SDP).
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1.1.2 Non-Linear Approximations of the Economic Dispatch Problem

The AC OPF problem formulated using polar coordinates for the complex voltages

facilitates a series of approximations that ultimately result in the DC OPF problem, which

uses the DC model of the transmission system. Assumptions used to formulate the DC model

of the transmission system require real and reactive power to decouple, voltage magnitudes

to be fixed to their nominal values, resistances to be much smaller than reactances, and

voltage angle differences across transmission lines to be very small. These assumptions are

often well-satisfied in practice, although may be violated under stressed system conditions.

As mentioned earlier, the DC model of the system does not account for transmission

losses. For this reason, the lossless DC OPF problem is typically augmented with fixed losses

allocated throughout the network as fictitious nodal demand [57, 73, 84]. References [57]

and [73] show that introducing a fixed loss representation to the lossless DC OPF problem

results in price and dispatch values that more accurately represent those from the AC OPF

problem. However, fixed loss representations do not accurately capture the marginal effects

of losses as operating conditions vary. In fact, the real power loss of a transmission line

is more accurately approximated as the product of the line resistance and the squared real

power flowing through the line, and this representation can capture the variation of marginal

losses with operating conditions [40, 81].

To account for losses many previous works augment a lossless DC power flow model

with the quadratic loss model, eg. [56, 57]. This approach is somewhat self-contradictory

because the DC model of the system is only accurate when lines are lossless. Moreover, by

assuming lossless transmission lines it is not clear where the additional load due to losses

should be allocated. Initial formulations allocated all losses to the slack bus [82], which

results in at least some of the losses being modeled as occurring far from the lines that

actually incur the losses. This is particularly problematic for remote resources, such as large-

scale wind and solar. Reference [58] recognized that the solution to the resulting dispatch

problem depended on the choice of slack bus and corrected this problem by introducing Loss

Distribution Factors (LDFs) that fix the fraction of total system losses allocated to each bus.

However, the solution to the dispatch problem in turn depends on the choice of those LDFs
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and the authors do not provide a method for determining these factors and do not clarify

how to remove this fundamental dependence on the choice of LDFs. More accurate models

include the Fictitious Nodal Demand (FND) model from [57] and [40], which allocate half of

the losses of each line to each adjacent bus. However, references [57] and [40] do not formally

justify this loss allocation model. A main contribution of this dissertation is the rigorous

justification of this loss allocation model. Chapter 4 verifies that this is indeed the proper

loss allocation by first principles derivation.

Chapter 4 is based on [32] and presents an economic dispatch problem that we term

the Transmission Constrained Economic Dispatch (TCED) problem. This economic dispatch

problem encompasses the economic dispatch problems from [40, 57] that use the quadratic

loss model as well as a more accurate economic dispatch problems that use fewer approxi-

mations/assumptions. The most accurate form of the TCED problem is derived from the

AC OPF problem in polar coordinates by using the assumptions that real and reactive

power decouple and voltages magnitudes are fixed. This TCED problem is derived from first

principles and does not utilize many of the aforementioned DC assumptions.

Although the TCED problem is non-convex, it is easily solved under the condition

that prices are positive. Under this condition this problem can be solved using the method

currently used in practice by Transpower New Zealand Limited (TPNZ), the ISO in New

Zealand [77]. Specifically, the load over-satisfaction relaxation, which relaxes power balance

by allowing generation to exceed demand (or load) at any location in the transmission net-

work, results in a convex optimization problem. However, this relaxation cannot be used in

the case where prices are negative. Negative prices are not typical but may occur in the elec-

tricity market for two reasons. First, the offered marginal cost of generation by an electric

generator may be negative, reflecting the effective marginal cost of resources that are subsi-

dized volumetrically, as is the case for wind and solar receiving US Federal “Production Tax

Credits.” Second, even if all marginal cost offers are non-negative, transmission constraints

can result in prices that are lower than the lowest marginal cost offer (and therefore possibly

negative) and can result in prices that are higher than the highest marginal cost offer. When

prices are negative the load over-satisfaction relaxation cannot be used and an alternative

method must be used to approximate the solution of the non-convex TCED problem.
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1.1.3 Linear Approximations of the Economic Dispatch Problem

The majority of electricity markets in North America intend to approximate the non-

convex TCED problem from Chapter 4 by first linearizing the loss function around some

base-case state and then introducing loss distribution factors (LDFs) [21]. The resulting lin-

early constrained economic dispatch (LCED) problem is termed the common LCED problem

because it closely represents those used in practice as reported in [21] and [58]. Chapter 5 is

based on [31], which characterizes the approximation errors associated with each of the three

assumptions required to accurately recover the optimal dispatch of the non-convex TCED

problem from the solution of the common LCED problem. This characterization is a main

contribution of this dissertation.

Reference [21] provides a summary of different linearization techniques implemented

by ISOs governed by the Federal Energy Regulatory Commission (FERC), highlighting vari-

ations among ISOs in the choice of base-case state. The common LCED problem derived

in [21] matches that in [58] and is a linearized version of the TCED problem from Chapter 4,

which accommodates a general non-linear loss function. Many recent works have attempted

to improve upon this linearly constrained formulation in different ways. Reference [94] de-

rives a linear pricing technique that does not rely on a choice of base-case state or LDFs.

Reference [56] proposes a dispatch problem resulting in price components that are refer-

ence bus independent. Piece-wise linear representations of losses are accommodated by [75]

and [76] via the load over-satisfaction relaxation, which is accurate under the assumption

that prices are positive. Other work has focused on developing more accurate linear ap-

proximations of the AC OPF problem [19, 20, 69, 96]. Similar linearization procedures have

also been studied in the context of planning problems [1, 97]. Despite the various linearly

constrained formulations suggested in the literature, the common LCED problem from [21]

and [58] remains the most commonly used economic dispatch problem in practice.

Using the AC OPF problem as a benchmark, reference [21] illustrates that prices

associated with the common LCED problem better capture the marginal effect of losses as

compared to economic dispatch problems that represent losses as being fixed. However, using

a simple 2-bus example, [21, section V-A] additionally identifies an issue that is missed by

current practice. Specifically, using intuitive choices of base-case state and LDFs, the optimal
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dispatch of the common LCED problem may be far from feasible for the non-convex TCED

problem from which it is derived. Previous work has addressed similar issues by use of

post-processing methods [91], which, in our context, intend to identify a dispatch that is

feasible for the TCED problem by slightly altering the optimal dispatch of the common

LCED problem. Such post-processing methods do not provide optimality guarantees and

may identify a costly dispatch, as is illustrated in [21, section V-A]. To mitigate this issue, [21]

suggests a successive linearization procedure, which is similar to those from [38] and [13].

This procedure is not guaranteed to converge and requires properly tuned parameters to

encourage convergence. Recognizing that the issue exhibited by the 2-bus test case in [21] is

difficult to rectify, another contribution of Chapter 5 is to identify the source of this issue.

Specifically, this issue occurs if the common LCED problem has multiple minimizers when

the ideal choice of base-case state is used (See Remark 5.12).

Despite the prevalence of the common LCED problem, no previous work has estab-

lished a set of assumptions required to recover the optimal dispatch of the non-convex TCED

problem from the common LCED problem. To establish such assumptions Chapter 5 de-

rives the common LCED problem from the TCED problem in Chapter 4. This chapter also

shows that the common LCED problem may have multiple minimizers, in which case small

perturbations of the base-case state may result in large dispatch approximation error. Fur-

thermore, even if the base-case state matches a minimizer of the non-convex TCED problem,

it is proven that there does not always exist a choice of LDFs such that the optimal dispatch

of the TCED problem is also optimal for the common LCED problem. On the other hand,

such LDFs do exist and are identified for the special case where no line limits are binding.

1.1.4 Convex Hull Pricing

As mentioned earlier, non-convexity associated with the AC OPF problem presents

two issues. The first issue, computing a social welfare maximizing dispatch, has been studied

extensively and the solution of the AC OPF problem can now be very accurately approx-

imated via iterative algorithms. On the other hand, little attention has been given to the

second issue that arises pertaining to market design in the absence of a market equilib-

rium that guarantees revenue adequacy of the Independent System Operator (ISO). In fact,
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reference [8] identifies the problem of pricing non-convexities that arise through the AC

transmission network as an emerging challenge in electricity markets. Chapter 6 is based

on [33], which addresses this pricing problem by proposing Convex Hull Prices (CHPs) that

solve a novel multi-objective minimum uplift problem that balances a trade-off between gen-

erator uplift and Financial Transmission Right (FTR) uplift. For the first time, this chapter

presents a method of approximating CHPs in polynomial-time using a transmission network

model that is general enough to accommodate the AC OPF problem. The proposed multi-

objective minimum uplift problem and the proposed method of approximating CHPs serve

as main contributions of this dissertation.

The problem of designing an energy market in the absence of a market equilibrium is

well studied in the context of the day-ahead market, which centers around a Mixed Integer

Program (MIP) known as the Unit Commitment (UC) problem [72,74], assuming linearized

DC power flow approximations. Similar to the AC OPF problem, the UC problem with

DC power flow is non-convex, is NP-hard and is typically solved using heuristic algorithms

that perform well in practice but do not identify dispatch values with optimality guarantees.

Furthermore, there rarely exist uniform nodal prices that support the optimal dispatch in

the day-ahead market. To overcome this problem CHPs have been proposed, also known as

extended locational marginal prices, along with side-payments that cover lost opportunity

costs of the market participants [35,43].

CHPs represent a solution of an optimization problem that minimizes various uplift

quantities including the aforementioned side-payments, which are not directly funded by

another revenue stream of the ISO and are typically referred to as generator uplift. Refer-

ence [95] points out that the ISO may differentiate between generator uplift and all other

types of uplift, which they aggregate into a single quantity termed the settlement residual,

and thus a minimum uplift formulation should be modeled as having multiple competing ob-

jectives. Our work studies a recommended extension from [95] by incorporating FTR uplift

into a multi-objective minimum uplift formulation that generalizes the standard minimum

uplift formulation by introducing a weight constant representing the value of FTR uplift

relative to generator uplift. We also refer to FTR uplift as Potential Congestion Revenue

Shortfall (PCRS) because it represents the worst possible shortfall of congestion revenue in
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covering FTR payoffs. We will not address other types of uplift in this work, including all

reserve related uplift, pointing to this avenue as a sensible extension.

The Simultaneous Feasibility Condition (SFC) states that the FTR allocation must

represent feasible net real power injections in the transmission network. The SFC is typi-

cally defined using a linear model of the transmission network and is a sufficient condition

for ensuring FTR payoffs are fully covered by congestion revenue [92]. Under certain as-

sumptions, reference [40] extends this traditional congestion revenue adequacy guarantee to

the case where the SFC is defined by a general non-linear model of the transmission net-

work. Traditionally, congestion revenue shortfalls occur only in the event of transmission

line outages, in which case the SFC would not accurately represent the transmission network

at the time of the market clearing. However, reference [55] illustrates that there may be

congestion revenue shortfall without the occurrence of a transmission line outage if the SFC

is defined by a non-linear model of the transmission network due to a non-convex feasible

set of net real power injections. Our work contributes to this literature by relating PCRS

to locational prices using a general definition of the SFC and by comparing the standard

Locational Marginal Prices (LMPs) to CHPs.

Computing CHPs is generally difficult because the uplift as a function of the loca-

tional prices is computationally burdensome to evaluate and is non-smooth. Special-purpose

algorithms for computing CHPs have focused on the simple linear transmission constraints

that are typically used to formulate the UC problem. For example, references [63,80,88–90]

either use linear transmission constraints or neglect transmission constraints altogether. Al-

though [43] and [35] provide analysis of CHPs with general non-linear transmission con-

straints, they later restrict their scope by linearizing these constraints to develop computa-

tional methods. We motivate the inclusion of non-linear constraints into this literature by

reiterating that computational research pertaining to the AC OPF problem has the ultimate

goal of being implemented into ISO market software [11].

Despite utilizing simple transmission models, the aforementioned methods of com-

puting CHPs do not guarantee convergence in polynomial-time. On the other hand, refer-

ence [45] frames CHPs as optimal Lagrange multipliers of a polynomially-solvable convex
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primal counterpart of the minimum uplift problem that we refer to as the primal CHP prob-

lem. To date this approach of computing CHPs has only considered linear models of the

transmission network. This dissertation extends this work by considering a multi-objective

minimum uplift problem along with general non-linear models of the transmission network.

Unfortunately, the associated primal CHP problem is expressed in terms of the convex hull of

the feasible set of net real power injections, which may not be tractable to evaluate for gen-

eral transmission network models. In this case we suggest using state-of-the-art relaxations

initially developed for the AC OPF problem that result in a relaxed primal CHP problem

that can be approximately solved in polynomial-time.

1.2 Co-Optimization and Interdependent Reserve Types

The second non-convexity considered in this dissertation is associated with a real-time

co-optimization problem that considers both generation dispatch and reserve procurement.

Part II is particularly focused on accommodating interdependent reserve types intended to

provide primary frequency control, which are collectively referred to as Responsive Reserve

(RR) in ERCOT [25]. This dissertation will not consider other reserve types that are de-

ployed on slower time scales, such as reserve types intended to provide secondary frequency

control. The reserve types considered in this dissertation contribute to primary frequency

control in fundamentally different ways and thus should be considered as different products

in the context of an electricity market. Furthermore, the different properties of the inter-

dependent reserve types complicates the reserve requirement that ensures sufficient reserve

to accommodate specific contingencies. To better understand these complications we must

provide a brief background on frequency control in the electric power system.

Traditional synchronous generators store kinetic energy in the form of a rotating mass

called a rotor. Mechanical power is input to the rotor from the prime mover, which may vary

from generator to generator. An example of a prime mover is a steam turbine, which may

be powered by the burning of oil, gas, or coal. Electro-mechanical power is output from the

stator that is realized as electric power injected into the transmission network. When the

electric power output of the generator exceeds the mechanical power input to the generator,
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the frequency of the rotor decreases and visa versa. Notice this implies that the electrical

power output of the stator is equal to the mechanical power input from the prime mover

when the frequency is in steady state. When the frequency is not in steady state, the Rate

Of Change Of Frequency (ROCOF) depends on the size of the rotor and other mechanically

coupled rotating mass, which is referred to as inertia. For example, if the inertia is large then

the frequency of the rotor does not change much in response to a power imbalance. Most

importantly, synchronous generators can be damaged if their rotor speed is too high or too

low. Frequency control in an electric power system aims to prevent this from happening.

The electromechanical physics governing a synchronous generator requires the ro-

tational speed of the rotor to be proportional to the voltage frequency at the generator’s

terminals. Additionally, the voltage frequency seen by all generators in a transmission sys-

tem is approximately the same. Frequency control aims to maintain the voltage frequency of

a synchronous transmission network at the same nominal voltage frequency, which is 60 Hz

in the United States. Frequency control is typically split into two categories. Primary fre-

quency control has the intent of arresting frequency decline/incline in the event of a sudden

loss of generation/demand before it reaches some critical voltage frequency threshold at

which generator damage may occur. Secondary frequency control aims to return the fre-

quency to its nominal value after such a contingency event occurs. This dissertation will not

detail secondary frequency control and will instead focus on primary frequency control.

Primary frequency control is traditionally executed by synchronous generators that

provide droop control. Droop control aims to respond quickly to a contingency and as a

result is performed in a distributed manner with no centralized communication to avoid

communication delays. Droop control intends to increase/decrease the mechanical power

output of its prime mover proportionally to the locally measured voltage frequency deviation

from nominal with an associated dead-band. This proportional signal is called the droop

signal and the proportionality constant is called the droop constant. In fact, the droop

signal only serves as a reference signal that is input to a turbine governor, which acts as

the control system surrounding the prime mover. Indeed the goal of the turbine governor

is to attain a mechanical power output of the prime mover that matches the droop signal.

Recognizing that the mechanical power output of the turbine governor is the same as the
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mechanical power input to the rotor, a frequency decline/incline will cause the mechanical

power input to each rotor from each generator in the system to increase/decrease until

the frequency decline/incline is arrested. This effectively prevents the rotor speed of each

generator from reaching dangerously high or low values.

Traditional droop control operates within Primary Frequency Responsive (PFR) re-

serve. Part II of this dissertation conservatively assumes that generators providing PFR

reserve are the only generators in the system that provide droop control. This assumption

deviates slightly from ERCOT requirements, which instead widen the droop control dead-

band for all generators not providing PFR reserve [25]. In ERCOT PFR reserve will soon be

included in a real-time co-optimization problem. In this context the co-optimization problem

must enforce a reserve requirement that ensures sufficient PFR reserve to accommodate a

specific large contingency by restoring power balance before the critical frequency threshold

is violated. For example, all reserve requirements in ERCOT aim to ensure sufficient reserve

to accommodate the simultaneous outage of the two largest generators in the system. Since

PFR reserve serves the purpose of arresting frequency decline in response to a generator

outage, this requirement necessitates that each generator is capable of deploying its PFR

reserve before the critical frequency threshold is met. For this reason, this dissertation will

distinguish between nominal PFR reserve, which represents an assigned reserve amount that

is necessarily less than the generator’s headroom, and available PFR reserve, which repre-

sents the amount of nominal PFR reserve that is capable of being deployed before the critical

frequency threshold is met. As we will see, some of the nominal PFR reserve may not be

available, particularly if the nominal PFR reserve is very large. Under the assumption that

the turbine governor identically follows the droop signal as intended, a simple linear reserve

requirement is sufficient to ensure adequate PFR reserve procurement, posing no threat to

convexity of the co-optimization problem.

In response to a loss of generation or demand, the Rate Of Change Of Frequency (RO-

COF) tends to decrease as the inertia provided by the generators increases and as the number

of generators providing droop control increases. Traditionally, wind and solar generation do

not provide inertia or primary frequency control because they are inverter-based technologies.

As wind and solar generation continue to replace traditional generators, system-wide iner-
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tia levels are dropping as are the number of generators providing droop control, effectively

increasing the ROCOF in response to a contingency. As the ROCOF increases traditional

generators will become more limited by the ramping ability of their turbine governors. In

other words, the turbine governors will no longer be able to identically follow the droop

signal and the mechanical power input to the rotor will no longer be proportional to the

local frequency deviation because the dynamics associated with the turbine governor will

restrict the mechanical power’s ramping ability. This ramping restriction complicates the

reserve requirement because available PFR reserve becomes dependent on the ROCOF.

As wind and solar generation increase and primary frequency control becomes more

difficult to perform, ISOs are looking for new technologies to improve primary frequency

control. As per Nodal Protocol Revision Request (NPRR) 581 [24], ERCOT has introduced

a new Responsive Reserve (RR) type, termed Fast Frequency Responsive (FFR) reserve,

intended to improve primary frequency control that aims to take advantage of devices capable

of changing their power output nearly instantly. Participants can include fast acting battery

storage or demand curtailment that can respond within a few voltage frequency cycles.

Rather than reacting proportionally to the locally metered frequency deviation, this new

product responds to the frequency in a discrete manner. Specifically, participating devices are

expected to fully deploy all reserve nearly instantly if the frequency violates some threshold.

For example, if the frequency falls below 59.8 Hz, then all participants providing FFR reserve

will instantaneously increase their power output to the extent of their procured FFR reserve

amount. Introducing this reserve type further complicates the reserve requirement because

FFR reserve and PFR reserve serve the same purpose of arresting frequency decline/incline,

inherently coupling these two reserve types. The following two subsections explain how these

complications are addressed by Chapters 7 and 8.

1.2.1 Reserve Requirement for Sufficient Reserve Procurement

Chapter 7 is based on [30] and provides first principle derivations of reserve require-

ments that account for the ramping restrictions of PFR reserve as well as the physical

coupling between PFR and FFR reserve. The proposed reserve requirements serve as a

sufficient condition for maintaining a minimum frequency threshold in response to the two
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largest generators being disconnected from the system, as per ERCOT requirements. To

account for ramping restrictions of the prime mover a simple piecewise linear model with a

ramp rate is adopted from previous work [15].

The proposed reserve requirements are intuitive and provide a straight forward exten-

sion to the aforementioned linear reserve requirements. Specifically, in addition to the simple

linear requirement an additional constraint on the available PFR reserve is introduced that

accounts for the generator’s ramping ability. This additional constraint limits the available

PFR reserve of a single generator and is referred to as the rate-based PFR limit. This limit

is represented as a function that increases with the ramp rate exhibited by the prime mover

of the generator, the total inertia in the system, and the total FFR reserve procured in the

system. We will see that this limit function is non-linear in the total FFR reserve procured.

Chapter 7 further explains the relationship between the proposed rate-based PFR

limit and an alternative reserve requirement previously proposed in [59] that uses equiva-

lency ratios, which intend to represent the value of FFR reserve relative to PFR reserve.

Specifically, under the assumption that the ramp rate of a generator is proportional to its

nominal PFR reserve and under the assumption that the rate-based PFR limit does not vary

with the total FFR reserve procured, the rate-based PFR limit is identical in form to the

equivalency ratio requirement. In other words, this chapter derives the equivalency ratio

reserve requirement from first principles under various assumptions. This first principles

insight into equivalency ratios is novel because previous work [59] only provided insight into

equivalency ratios using empirical results via simulation.

1.2.2 Real-Time Co-Optimization with Rate-Based PFR Limits

Chapter 8 places reserve requirements from Chapter 7 into a real-time co-optimization

problem that determines dispatched generation, procured PFR reserve, and procured FFR re-

serve. Since commitment statuses are assumed constant in myopic real-time co-optimization

problems, inertia levels are assumed fixed. With this in mind, the real-time co-optimization

problem is still non-convex due to the rate-based PFR limit constraint, which is non-linear in

the total procured FFR reserve. We suggest solving this non-convex co-optimization problem

18



using interior point algorithms that are only guaranteed to converge to a local minimum.

Chapter 8 additionally addresses economic issues associated with the non-convexity of

the proposed real-time co-optimization problem. Using a straight-forward pricing structure

for reserve the market participants are shown to have zero lost opportunity cost and thus no

side-payments are required to ensure their incentives are aligned with the ISO dispatch. The

PCRS is additionally shown to be zero and thus congestion revenue adequacy is guaranteed

in the presence of FTRs. However, as is the case for all co-optimization problems, revenue

adequacy cannot necessarily be guaranteed because reserve payments may be considered

out-of-market payments not covered by another revenue stream of the ISO.

Numerical results illustrate the difference between the proposed rate-based PFR limits

and the equivalency ratio requirement proposed by previous work [59]. In comparison, the

rate-based PFR limit encourages diversity in the procured PFR reserve, effectively dispersing

the PFR reserve more evenly among all generators. Furthermore, it is shown that the rate-

based PFR limit results in FFR reserve prices that are significantly larger than those resulting

from the equivalency ratio requirement. As a result, the rate-based PFR limit results in more

out-of-market reserve payments.

1.3 Summary of Contributions

The existing real-time electricity market in ERCOT is myopic and is centered around

a convex ED problem. This dissertation studies non-convexities that could arise due to

two recently proposed market changes. The first proposed market change introduces losses

into the ED problem, resulting in an ED problem with non-linear transmission constraints.

The corresponding non-convexity is studied in detail in Part I of this dissertation. The

second proposed market change introduces interdependent reserve types for primary fre-

quency response into the ED problem. Part II of this dissertation formulates the resulting

co-optimization problem using a non-convex reserve requirement that is derived from first

principles. The main contributions of this dissertation are contained within Chapters 4-8

and are summarized as follows:

• First principles derivation of a transmission line model that generalizes the com-
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mon quadratic loss model, incorporates an FND representation of losses, and re-

sults in a convex TCED problem when using the load over-satisfaction relaxation.

This model includes transmission line limits that account for transmission losses.

(Chapter 4)

• Rigorous justification that the FND representation of transmission losses should

allocate half of the losses of each transmission line to the busses at each end of the

line. (Chapter 4)

• Characterization of the approximation errors associated with each of the three

assumptions required to accurately recover the optimal dispatch of the non-convex

TCED problem from the solution of the common LCED problem. (Chapter 5)

• Observation that the common LCED problem may have multiple minimizers, in

which case small perturbations of the base-case state may result in large dispatch

approximation error. (Chapter 5)

• Proof that there does not always exist a choice of LDFs such that the optimal

dispatch of the TCED problem is also optimal for the common LCED problem

even if the ideal base-case state is used. On the other hand, such LDFs do exist

and are identified for the special case where no line limits are binding. (Chapter 5)

• Proposal of Convex Hull Prices (CHPs) that solve a novel multi-objective minimum

uplift problem that balances a trade-off between generator uplift and Financial

Transmission Right (FTR) uplift. (Chapter 6)

• The first proposed method of approximating CHPs in polynomial-time using a

transmission network model that is general enough to accommodate the AC OPF

problem. (Chapter 6)

• The distinction between nominal PFR reserve, as determined by a generator’s

head-room, and available PFR reserve, as determined by the ramping limitations

of a generator’s turbine governor. (Chapter 7)

• First principles derivation of a rate-based PFR limit that guarantees sufficient

reserve for maintaining a minimum frequency threshold in response to an arbitrarily

large generator outage, under certain assumptions. (Chapter 7)

• First principles derivation of the reserve requirement from [59], which provides
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insight into the nature of equivalency ratios. When initially proposed, this reserve

requirement was derived empirically through simulation. (Chapter 7)

• A novel co-optimization problem formulation using the rate-based PFR limit that

is non-convex. This co-optimization problem is proven to result in zero lost op-

portunity cost for all market participants and zero PCRS when using KKT prices.

(Chapter 8)

• The proposed co-optimization problem with rate-based PFR limit is compared to

the existing co-optimization problem with equivalency ratio requirement from [59].

In comparison, the proposed co-optimization problem results in higher prices for

FFR reserve, more out-of-market reserve payments, and encourages diversity among

the procured PFR, meaning that PFR reserve is dispersed among more generators.

(Chapter 8)
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Chapter 2

Traditional Convex Myopic Electricity Markets

This chapter provides a high-level analysis of myopic electricity markets. A general

economic dispatch (ED) problem is presented that may or may not be convex along with

associated Locational Marginal Prices (LMPs). In fact, the presented general ED problem

and LMPs encompass each of those analyzed in Part I of this dissertation. On the other

hand, Part II of this dissertation does not fit into this framework because it considers co-

optimization problems that incorporate reserve as decision variables.

The market structure in this chapter intends to encompass the current real-time mar-

ket structure used in ERCOT with the day-ahead market abstracted away. In this context

the economic dispatch problem is convex because transmission constraints are assumed to

be convex and reserve procurement is not included. This chapter will highlight important

market principles that are satisfied when the economic dispatch problem is convex including

the ease of computing a social welfare maximizing dispatch, aligned incentives for gener-

ators to follow their dispatch, and the ability to guarantee revenue adequacy of the ISO.

Part I and II of this dissertation then intend to explain the complications that arise when

introducing ERCOT’s newly proposed features into the economic dispatch problem.

We will begin by introducing notation and providing a high-level description of the

transmission network in Section 2.1. We then provide description of the market participants

in Section 2.2. Section 2.3 will then formulate a general economic dispatch problem that

does not consider reserve procurement and may or may not be convex. Locational Marginal

Prices are then defined in Section 2.4. Revenue adequacy is then discussed in Section 2.5

and revenue adequacy is proven for the specific case where the economic dispatch problem

is convex.
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2.1 Notation and Graph Model of Transmission Network

The notation provided in this chapter is consistent with the notation in Parts I and II

of this dissertation. Additional notation will be introduced in Parts I and II as needed. Due

to an abundance of notation that is required in both Parts I and II, the notation introduced

in Part I may not be fully consistent with the notation introduced in Part II and vice versa.

In particular, some symbols that are defined in Part I are redefined in Part II.

Throughout this dissertation lower case subscripts are used to index elements of

matrices/vectors. For example, Mi,j denotes the element in the ith row and jth column of

the matrix M . The ith column of a matrix will be denoted Mi. Furthermore, a vector v

is designated a column vector and the ith element of v is denoted vi. The transpose of a

matrix or vector is denoted with a superscript dagger †. Rn denotes the set of n-dimensional

real vectors. The identity matrix, the matrix of all zeros, and the matrix of all ones are

denoted I, 0, and 1 respectively and are of appropriate dimension. Additional notation will

be introduced throughout the dissertation as necessary.

We will also provide a basic graph theoretic model of the transmission network. Al-

though we do not provide a specific model of the transmission network in this chapter, it

is important to recognize the existence of this underlying graph in order to understand the

various nodal quantities that will be introduced. Specifically, the transmission network is

modeled as a directed graph G = (V,E) where V is the set of nodes (buses) and E is the set of

edges (transmission lines). There are n buses and m transmission lines. To simplify notation

we will introduce the set of bus indices as N = [1, . . . , n], assign an arbitrary unique index to

each bus in V, and refer to each bus by its corresponding index. Similarly, we will introduce

the set of line indices as L = [1, . . . ,m], assign an arbitrary unique index to each line in E,

and refer to each line by its corresponding index. Furthermore, we will introduce the set P

such that each element of this set represents an ordered pair of bus indices corresponding to

each ordered pair of busses in E. With this notation each directed edge (i, j) ∈ P connects

bus i ∈ N to bus j ∈ N and corresponds to a unique index k ∈ L, where i and j are both

integers between 1 and n and k is an integer between 1 and m.

Associated with each node i ∈ N is a locational price λi. This price is said to be
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uniform because it is common to each market participant located at bus i. At this point the

price λi is left general and can take any value.

2.2 Market Participants

The market participants include generators, system demand and FTR holders and

they will now be described in detail. Subsequently, a market equilibrium will be defined and

the pricing problem will be formulated.

2.2.1 Modeling System Demand

The system demand is modeled as constant real power extraction Di at each node

i ∈ N. The demand at node i ∈ N is charged for its consumption in the amount λiDi. The

demand is assumed to be inelastic and is thus not modeled as a profit maximizer.

2.2.2 Modeling Generators and Generator Uplift

Without loss of generality, there is one generator located at each bus in the system

indexed by i ∈ N. The profit of generator i ∈ N is the difference between its total energy

payment and its cost of producing energy. Generator i ∈ N generates an amount of real power

denoted Gi and is modeled as having a quadratic, convex and increasing cost function Ci(·).

The constraints of an individual generator i, termed as private constraints, are represented

by the set Xi and enforce simple generation limits Xi = {Gi : Gi ≤ Gi ≤ Gi}. Each generator

is modeled as a profit maximizer whose maximum profit is a function of its corresponding

locational price and is expressed as follows:

Υi(λi) := max
Gi∈Xi

(λiGi − Ci(Gi)) . (2.1)

In the absence of a market equilibrium, some generators may be dispatched at produc-

tion levels that do not maximize their profit. If the dispatched generation for generator i ∈ N,

denoted Gd
i , does not maximize the generator’s profit, that is, Υi(λi) ̸=

(
λiG

d
i − Ci(G

d
i )
)
and

therefore Υi(λi) >
(
λiG

d
i − Ci(G

d
i )
)
, then the generator has an incentive to deviate from its

dispatched value. If the generator follows its dispatch value, then the generator will experi-
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ence lost opportunity cost in the amount that follows:

Co
i (λi, G

d
i ) =Σ

i∈N
Υi(λi)−

(
λiG

d
i−Ci(Gd

i )
)
. (2.2)

where Gd
i ∈ R represents the dispatched generation for generator i.

As we will see later in this chapter, this issue of misaligned incentives does not occur

in todays real-time market in ERCOT, which uses a convex economic dispatch problem.

However, this dissertation will analyze non-convex economic dispatch problems that do result

in dispatch values that do not maximize generators profits. This issue of misaligned incentives

can be overcome by introducing side-payments that cover the generators’ lost opportunity

cost. In this context a side-payment would be given to a generator under the condition that

they follow the dispatched generation. The side-payment aims to neutralize their incentive

to deviate.

Side-payments to generators are also referred to as generator uplift, are private out-of-

market payments, and are unsatisfactory for a number of reasons highlighted by a recent or-

der made by the Federal Energy Regulatory Committee [70]. For example, to remain revenue

neutral, the ISO must distribute the cost of these side-payments among market participants

introducing potentially unjust tariffs. Additionally, side-payments reduce transparency in

the market making it difficult for generator investment decisions to be made. The research

in this dissertation is aimed, in part, at designing an electricity market that results in low

generator uplift. Chapter 6 will investigate situations where generator uplift is positive.

2.2.3 Modeling Financial Transmission Rights and FTR Uplift

Financial Transmission Rights (FTRs) are financial contracts entitling FTR holders

to a specific revenue stream that results from price differences at system buses. FTRs are

allocated among FTR holders before prices are cleared. There are typically two types of

FTRs, Point-to-Point (PTP) obligations and PTP options [40]. For sake of brevity, we will

only consider PTP obligations in this dissertation.

Let Ξ denote the set of all FTR holders. In its most general form, a PTP obligation

for FTR holder ξ ∈ Ξ can be represented by an FTR allocation vector f (ξ) ∈ Rn where

each element f
(ξ)
k represents a megawatt value injected into the transmission system at node
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k. Each FTR holder receives an FTR payoff in the amount of −λ†f (ξ). The total FTR

payoff to all FTR holders is in the amount of −λ†f , where f := Σ
ξ∈Ξ

f (ξ) is the sum of all

FTR allocation vectors. Different energy markets may choose the allocation vectors f (ξ) in

different ways. These allocation vectors are often chosen using an FTR allocation process

that is beyond the scope of this dissertation. For example, see [40] for a description of FTR

allocation processes.

To elaborate on this model of FTRs, we will provide an intuitive example. In par-

ticular, let’s see how FTRs can be used by market participants to hedge locational price

uncertainty. Consider a simple example where the generator at bus i has a bilateral contract

with the demand at bus j that has been arranged outside of the wholesale electricity market

where the generator plans to produce in the amount G∗
i and the demand plans to consume

Dj. In this case the net wholesale market payment by both market participants is in the

amount λiG
∗
i − λjDj. Suppose these market participants also hold a sparse FTR allocation

vector together such that f
(ξ)
i = G∗

i and f
(ξ)
j = −Dj. Then they will receive an FTR payoff

in the amount −λiG∗
i +λjDj, which is the negative of their net market payment. These two

payments cancel out for any possible price vector λ and so the market participants are effec-

tively able to avoid any uncertainty in the locational prices at bus i and bus j for dispatch

and demand quantities that match their FTR allocation vector.

Energy markets typically choose FTR allocation vectors to satisfy the Simultaneous

Feasibility Condition (SFC) for reasons pertaining to revenue adequacy that will soon become

clear. For the remainder of this chapter, we assume the FTR allocation satisfies the SFC,

which states that the sum of all FTR allocation vectors represent a feasible net real power

injection in the transmission system. The set of feasible net real power injections, denoted

T ⊂ Rn, represents constraints on the net real power injections imposed by the transmission

network that are referred to as coupling constraints as they ultimately relate the demand and

generation at each node to one another. At this point we leave this set general, encompassing

both linear and non-linear power flow models of the transmission system.

Definition 2.1. The FTR allocation satisfies the simultaneous feasibility condition (SFC)

if the sum of all FTR allocation vectors lies in the feasible set of net real power injec-
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tions, e.g., f ∈ T.

Remark 2.1. The feasible set of net real power injections T is left general in the main body

of this chapter and will be further elaborated in Part I of this dissertation. The definition of

this set will include implicit variables such as voltages, net reactive power injections at buses

and power flows on transmission lines. Physical constraints in the transmission network

are enforced, which may include reactive power injection and voltage magnitude limits at

each bus i ∈ N as well as real, reactive or apparent power flow limits on each transmission

line ℓ ∈ L. This set does not place generator limits on net real power injections at buses,

effectively allowing FTRs to be allocated to any bus in the system even if no device is

connected to that bus. □

Remark 2.2. Electricity markets today require each FTR allocation vector f (ξ) to be balanced

in the sense that the elements sum to zero, e.g. 1†f (ξ) = 0. Accordingly, the aforementioned

example would have G⋆
i = −Dj. Of course, requiring each FTR allocation vector to be

balanced is only sensible if the SFCs are defined using a lossless model of the transmission

network. With the goal of introducing loss modeling into the electricity market, this dis-

sertation uses a more general definition of FTRs that allow FTR allocation vectors to be

unbalanced in the sense that their elements may not sum to zero, e.g. 1†f (ξ) ̸= 0. Ac-

cordingly, the aforementioned example may have G⋆
i ̸= −Dj. Unbalanced FTRs have been

studied well in the literature [37, 40] and allow FTRs to hedge locational price differences

caused by losses as well as congestion.

Once the generators (demand) are paid (charged) for producing (consuming) energy,

the ISO is left with additional revenue, called congestion revenue. Let’s denote the realized

net real power injections as T d := Gd −D ∈ T. The congestion revenue is

λ†
(
D −Gd

)
. (2.3)

Congestion revenue is used to fund the FTR payoffs. The congestion revenue is said to be

adequate if it is larger than the total FTR payoffs. It is important for the electricity market

to be structured in a way that encourages congestion revenue adequacy. For this reason

the prices should be chosen such that the congestion revenue covers the worst case FTR
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allocation. The maximum FTR payoff can be written as a function of the prices as follows:

Ψ(λ) := max
f∈T

− λ†f. (2.4)

The Potential Congestion Revenue Shortfall or PCRS, also referred to as FTR uplift,

is written as follows and represents the maximum possible shortfall of congestion revenue:

Cs(λ,Gd) = Ψ(λ)− λ†
(
D −Gd

)
. (2.5)

This value can be interpreted as the maximum FTR payoff Ψ(λ) less the congestion revenue

and is non-negative. It is important to recognize that the PCRS Cs(λ,Gd) represents a

worst case shortfall over all possible FTR allocations. In fact the realized FTR allocation

may allow congestion revenue to cover FTR payoffs even if the PCRS is positive. If the PCRS

satisfies Cs(λ,Gd) = 0, then congestion revenue adequacy is guaranteed, meaning that there

does not exist an FTR allocation that causes a congestion revenue shortfall. In the event

that congestion revenue is unable to cover FTR payoffs then the ISO must allocate the

shortfall among market participants introducing an allocation problem. Proper allocation

of congestion revenue shortfall has been a point of controversy [41]. The research in this

dissertation is aimed, in part, at designing an electricity market that results in low FTR

uplift. Chapter 6 will illustrate a trade-off between achieving low FTR uplift and achieving

low generator uplift in the context of selecting optimal locational prices λ.

2.3 General Economic Dispatch Problem

The economic dispatch problem is central to the proposed market structure. This

problem is written as follows where X = {G ∈ Rn : Gi ∈ Xi ∀i ∈ N} enforces generator lim-

its at each node and the feasible set of net real power injections T is left general, as in

Section 2.2.3.

min
G∈X, T∈T

Σ
i∈N
Ci(Gi) (2.6)

st : Di −Gi + Ti = 0 ∀i ∈ N (2.6a)
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Notice that this problem is written generally to accommodate any non-convexity

associated with the feasible set of net real power injections. In fact, this problem is a

generalization of each optimization problem to be derived in Part I of this dissertation. In

contrast to the specific formulations to appear in Part I, the general ED problem (2.6) is

written in a way that is conceptually convenient for analysis purposes but is not necessarily

written in a way that is convenient computationally. For example it is often possible to

eliminate the decision variable T after specifying the feasible set of net real power injections T.

A solution to this problem consists of a social welfare maximizing dispatch. This solu-

tion may be difficult to compute if the feasible set of net real power injections is non-convex.

As a result, we do not assume that dispatch values represent a social welfare maximizing

dispatch. Instead we will assume that the dispatched generation, denoted Gd, solves the

KKT conditions of the general economic dispatch problem (2.6) (See Remarks 2.3 and 2.4).

Of course, if the problem is convex, then any solution satisfying the KKT conditions is also a

global minimizer, in which case Gd would represent the social welfare maximizing dispatch.

At this point we should note that the economic dispatch problem (2.6) directly mini-

mizes generator fuel costs. However, there may be other costs that affect social welfare that

are not considered in the objective function of this problem. For example, lost opportunity

costs for generators and PCRS may be interpreted as decreasing social welfare but are not

considered in the objective function of problem (2.6).

2.4 Locational Marginal Prices (KKT Prices)

Many concepts associated with price setting are closely related to the Lagrange mul-

tipliers of the power balance constraints (2.6a). Electricity markets commonly use uniform

prices that we term KKT prices and denote by λ⋆ ∈ Rn. These prices are set by first iden-

tifying a solution of problem (2.6) that satisfies the KKT conditions and then setting the

prices to be the Lagrange multipliers of the power balance constraints (2.6a). Under certain

conditions further elaborated in the next section of this chapter, the KKT prices represent

the marginal cost of serving load at each location in the system. For this reason, KKT prices

are often referred to as Locational Marginal Prices (LMPs). Furthermore, LMPs are specific
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to the identified solution of the general ED problem and as a result are algorithm depen-

dent. In other words, different algorithms may produce different LMPs. Below is a general

definition of a KKT price/dispatch pair that only introduces Lagrange multipliers for the

power balance constraints and leaves the sets T and X implicit. This definition follows from

the normal cone definition of the First Order Necessary Conditions (FONCs) as described

in Appendix A (See [71] as well as Remarks 2.4 and 2.3).

Definition 2.2. A KKT price/dispatch pair (λ⋆, G⋆) ∈ Rn×X are such that constraint (2.6a)

holds for some T ⋆ ∈ T along with the following generalized stationarity conditions.

−λ⋆ ∈ NT(T
⋆) and

0 ∈∂ (Ci(Gi)−λ⋆iGi) |G⋆i +NXi(G
⋆
i ) ∀i ∈ N (2.7)

where NT(T
⋆) is the normal cone of the set T at the point T ⋆ and NXi(G

⋆
i ) is the normal

cone of the set Xi at the point G⋆
i . The subdifferential of a general function g(x) evaluated

at a point x⋆ is denoted ∂(g(x))|x⋆ . A formal definition of the normal cone is provided in [71]

and is explained intuitively in Appendix A.

Remark 2.3. We emphasize that a KKT price/dispatch pair may not exist in our general

framework because constraint qualifications may not be satisfied within the set T. It is also

possible that an identified solution satisfying the KKT conditions could represent a saddle

point, local maximum, or local minimum. However, in practice a local minimum to the

AC OPF problem satisfying the KKT conditions is almost always attainable using standard

off-the-shelf software, as is the case for each test case in this dissertation. Furthermore, our

results regarding KKT prices hold if the solution represents a saddle point, local maximum,

or local minimum.

Remark 2.4. Appendix A provides an elaborate description of how the conditions from Defi-

nition 2.2 are related to the common KKT conditions that will be further analyzed in future

chapters. For the special case where the cost function and constraint functions are smooth,

Appendix A proves any dispatch G⋆ that satisfies the traditional KKT conditions for the

general economic dispatch problem (2.6) will also satisfy the conditions from Definition 2.2

for some Lagrange multipliers λ⋆. In fact, there may be multiple such Lagrange multipliers

λ⋆ that satisfy the KKT conditions for generation dispatch G⋆. Our results do not require

such Lagrange multipliers to be unique.
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2.5 A Revenue Adequate Market Equilibrium

In accordance with [43], a decentralized market equilibrium refers to a set of prices,

side-payments and dispatch values for which generators have no incentive to deviate from

their dispatch values. As explained in Section 2.2.2, the proposed side-payments always

ensure a decentralized market equilibrium is realized, whereas payments on the basis of

energy prices alone do not necessarily have this property. To recover the cost introduced by

these side-payments the ISO must introduce tariffs to market participants. In our context

these tariffs must also accommodate any realized congestion revenue shortfall due to FTRs.

The formal definition of a decentralized market equilibrium from [43] addresses this issue by

proposing tariffs be applied to the consumers. By modeling consumers as fixed demand as

in Section 2.2.1, their individual rationality is not compromised by imposing these tariffs.

However, this simple model of fixed demand does not consider more elastic consumers that

respond to energy prices or the long term effects these tariffs may have on consumer behavior.

Furthermore, the allocation of revenue shortfalls by the ISO has been a point of controversy

as pointed out in Sections 2.2.2 and 2.2.3.

This dissertation will expand upon the notion of a decentralized market equilibrium

by additionally requiring revenue adequacy of the ISO to be guaranteed. We will refer to

such a decentralized market equilibrium as a revenue adequate market equilibrium. Note that

our definition of a revenue adequate market equilibrium is consistent with the Competitive

Equilibrium Model (CEM) 1 from [52]. Specifically, we will define a revenue adequate market

equilibrium to be a price dispatch pair (λ,G) that results in zero PCRS and zero side-

payments (or equivalently zero lost opportunity cost for generators). Intuitively, a revenue

adequate market equilibrium guarantees revenue adequacy in the form of side-payments and

FTR payoffs.

Definition 2.3. A revenue adequate market equilibrium is defined to be a price/dispatch pair

(λ,G) that result in zero side-payments and zero PCRS, e.g.

Cs(λ,G)=0 and Co
i (λi,Gi)=0 ∀i ∈ N
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Reference [52] shows that a revenue adequate market equilibrium does not always exist

when defining the feasible set of net real power injections using the full AC-model of the

transmission system. Even if a revenue adequate market equilibrium does exist we still may

not achieve it. Specifically, by theorem 1 of [52] a revenue adequate market equilibrium, as

in Definition 2.3, can only occur if the dispatched generation is a social welfare maximizing

dispatch. As explained in Section 2.3, we do not assume that the dispatched generation

maximizes social welfare and so it is apparent that the market may not be operating in a

revenue adequate equilibrium in general.

Recognizing that the side-payments and PCRS are always non-negative, the lack of

a revenue adequate market equilibrium implies that at least one of these values are positive,

and thus additional costs accrue in the form of generator opportunity costs and/or FTR

underfunding that may be difficult to account for when setting prices. In fact, these costs

are not accounted for in the objective function of the general ED problem. As a result, if the

market is not operating in a revenue adequate market equilibrium, then KKT prices do not

actually represent the marginal cost of serving load at each location in the system. In fact,

this marginal price interpretation of the KKT prices only holds if a revenue adequate market

equilibrium exists, the dispatched generation represents a global minimizer of the general

ED problem, the global minimizer of the general ED problem solves the KKT conditions

with unique Lagrange multipliers, and the AC OPF problem satisfies certain constraint

qualifications [5] that allow KKT prices to exist in the first place. Despite the fact that

KKT prices do not necessarily represent the marginal cost of serving load, we will still use

this term interchangeably with the term LMPs, as is standard practice.

Traditional electricity market formulations are convenient in that the feasible set of

net real power injections is represented by a polytope and thus the general ED problem is

convex. In this case, it is easy to solve the general ED problem for a global minimizer and

KKT prices result in a revenue adequate market equilibrium allowing for the convenient

marginal pricing interpretation to hold. This is formally stated by the following theorem.

Theorem 2.1. Under the assumption that the general ED problem (2.6) is convex, a KKT

price/dispatch pair (λ⋆, G⋆) as in Definition 2.2 will result in a revenue adequate market

equilibrium as in Definition 2.3.
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Proof: The generalized stationarity conditions for (2.7) include necessary conditions

for optimality of each profit-maximizing generation problem (2.1). (Note that the normal

cone definition of the FONCs are generally represented by (A.6) in Appendix A). The

generalized stationarity conditions for (2.7) include necessary conditions for optimality of

the maximum FTR payoff problem (2.4). Since each of these problems are convex, these

conditions are also sufficient for global optimality.

In contrast to Theorem 2.1, numerical results from Section 3.5 will show that a revenue

adequate market equilibrium is not always attainable if the feasible set of net real power

injections T is non-convex. It is important to recognize that approximate convex models

create problems of their own, including the need to make the dispatch satisfy the underlying

non-convex constraints. Numerical results in Section 6.5 illustrate the costs associated with

adjusting the dispatch on fast time scales to achieve feasible net real power injections.

2.6 Summary

This chapter provided a high-level overview of a myopic electricity market structure

that centers around a general ED problem. Market participants are defined to be demand

that consumes electric power, generators that produce electric power, and FTR holders.

Generators that experience lost opportunity cost are provided side-payments, also referred

to as generator uplift. PCRS is defined to be the worst possible shortfall of congestion

revenue in covering FTR payoffs and is referred to as FTR uplift. These uplift quantities

are unsatisfactory because they represent a potential revenue shortfall of the ISO and thus

revenue adequacy cannot be guaranteed when uplift is positive. The remainder of this

dissertation is aimed, in part, at designing an electricity market that results in little uplift.

The market structure presented in this chapter is general enough to encompass the

real-time market structure currently used by ERCOT, which additionally restricts the fea-

sible set of net real power injections to be a polytope. In this special case, the ED problem

becomes convex and LMPs are proven to result in zero generator uplift and zero FTR uplift.

The remainder of this dissertation will focus on two sources of non-convexity that may be

introduced by recently proposed market changes in ERCOT. Part I introduces transmission
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losses into the feasible set of net real power injections, making this set non-convex. It is shown

that revenue adequacy cannot be guaranteed in this setting. Part II introduces interdepen-

dent reserve types for primary frequency response, resulting in a co-optimization problem

with a non-convex reserve requirement. It is shown that this co-optimization problem results

in zero generator uplift and zero FTR uplift when using marginal prices; however, out-of-

market reserve payments may cause the ISO to experience revenue inadequacy. Part III

provides a brief conclusion and future work.
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Part I

Economic Dispatch: Non-Linear
Transmission Models

Part I of this dissertation incorporates accurate non-linear transmission models into

the myopic economic dispatch problem. This part is motivated by Texas’ recent consideration

of implementing transmission loss models into the economic dispatch problem [27]. As

explained in Chapter 1, the Public Utility Commission of Texas (PUCT) has considered

the introduction of transmission losses separately from the introduction of real-time co-

optimization. Consistent with the PUCT’s analysis, this part of the dissertation will not

consider reserve products in the economic dispatch problem.

Chapter 3 formulates the economic dispatch problem that most accurately accounts

for the equivalent-Π model of a transmission line, which is termed the Alternating Current

Optimal Power Flow (AC OPF) problem. Due to the inherent non-convexity of the AC

OPF problem it is generally difficult to solve and results in an electricity market that cannot

guarantee congestion revenue adequacy. This is one reason why ISOs today solve economic

dispatch problems that serve as convex approximations of the AC OPF problem. These

convex approximations are derived in Chapters 4 and 5. Specifically, Chapter 4 formulates

the non-convex Transmission Constrained Economic Dispatch (TCED) problem that can be

solved using a convex relaxation under the condition that prices are positive. Chapter 5

formulates the convex Linearly Constrained Economic Dispatch (LCED) problem from the

TCED problem. Finally, Chapter 6 attempts to accommodate the AC OPF problem by

using algorithms that may only identify a locally optimal solution and suggests mitigating

the congestion revenue adequacy problem using convex hull prices.
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Chapter 3

The AC OPF problem

The most accurately formulated myopic economic dispatch problem is termed the

Alternating Current Optimal Power Flow (AC OPF) problem. The AC OPF problem is

non-convex and NP-hard in general [6, 54]. With this in mind, the AC OPF problem has a

long history pertaining to the way it is formulated and solved [11]. This chapter will derive

two different formulations that are prevalent in the literature [67]. These two formulations

are derived using polar coordinates and rectangular coordinates to represent the complex

voltages at each bus in the transmission network and facilitate very accurate approximations

that will be further investigated in Chapters 4 and 6 respectively. This chapter will show

that the two formulations provided are specific cases of the general ED problem (2.6) from

Chapter 2. Numerical results will provide examples that illustrate how certain economic

principles breakdown due to the non-convexity of the AC OPF problem. Specific test cases

are studied for which there does not exist a revenue adequate market equilibrium.

This chapter will be organized as follows. Section 3.1 will introduce the equivalent-Π

model of a transmission line and derive complex power flow quantities associated with this

model from first principles. Section 3.2 will introduce a simple model for an electrical bus

in a transmission system that may experience shunt losses. Using the derived expressions

from Sections 3.1 and 3.2 two different forms of the AC OPF problem will be derived in

Sections 3.3 and 3.4. Section 3.3 formulates an AC OPF problem using polar coordinates to

express the complex voltages at each bus. This form of the AC OPF problem is convenient

for utilizing standard approximations such as fixed voltage magnitudes and small voltage

angle approximations as will be illustrated in Chapter 4. Section 3.4 formulates the AC

OPF problem in rectangular coordinates, which will ultimately be used to derive a relaxed

version of the AC OPF problem in Chapter 6.
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3.1 Generalized Equivalent Π-Model of a Transmission Line

This section derives complex power flow quantities along an arbitrary transmission

line (i, j) ∈ P using the equivalent-Π model of a transmission line. Figure 3.1 provides

a circuit diagram of the general equivalent-Π model of a transmission line operated at a

nominal frequency. The transmission line (i, j) ∈ P connects bus i ∈ N to bus j ∈ N and is

indexed by ℓ ∈ L. The series impedance of the line is denoted zℓ =
1
yℓ

where yℓ is the series

admittance. The complex voltage at bus i is denoted vi. An ideal transformer is located

near bus i with complex off-nominal turns ratio of aℓ. Shunt admittances are denoted y
(c)
ℓ

where the c superscript indicates that this shunt admittance is largely capacitive. In fact,

this shunt admittance is typically assumed to be purely imaginary; however, in this chapter

we will allow y
(c)
ℓ to have non-zero real part.

KCLKCL 

nodenode

vivi vjvj

Ii,jIi,j

bus ibus i bus jbus j

Ij,iIj,i
KCLKCL

nodenode

vi

aℓ

vi

aℓ
y
(c)
ℓ
y
(c)
ℓ

y
(c)
ℓ
y
(c)
ℓ

zℓzℓ

aℓ : 1aℓ : 1

Figure 3.1: Circuit diagram of transmission line (i, j)∈P indexed by ℓ ∈ L.

The current flowing into the line can be derived using Kirchhoff’s Current Law (KCL)

by summing the currents into the nodes on both sides of the series impedance. The current

flowing into the line from bus i is denoted Ii,j and the current flowing into the line from bus

j is denoted Ij,i. These values satisfy the following expressions:

a∗ℓIi,j =

vi
aℓ
− vj

zℓ
+
vi
aℓ
y
(c)
ℓ =

1

aℓ

(
yℓ + y

(c)
ℓ

)
vi − yℓvj (3.1)

Ij,i =

−vi
aℓ

+ vj

zℓ
+ vjy

(c)
ℓ =

(
yℓ + y

(c)
ℓ

)
vj −

1

aℓ
yℓvi (3.2)

where superscript ∗ denotes complex conjugate (and should be distinguished from super-

script ⋆, which will denote optimal quantities).

37



Notice that the two terms in the middle expression represent the current flowing

through the series impedance and the current flowing through the shunt element. The ex-

pression on the far right-hand side (RHS) simply groups like terms in vi and vj. Furthermore,

the current flowing into the line from bus i traverses a transformer yielding a factor of a∗ℓ

in (3.1).

The complex power flowing into the line can then expressed using Ohms law. Using

the expressions from (3.1) and (3.2) the complex power flowing into the line from bus i and

from bus j are respectively written as follows:

Pi,j + iQi,j =viI
∗
i,j =

(
yℓ + y

(c)
ℓ

a∗ℓaℓ

)∗

viv
∗
i −

y∗ℓ
a∗ℓ
viv

∗
j , (3.3)

Pj,i + iQj,i =vjI
∗
j,i =

(
yℓ + y

(c)
ℓ

)∗
vjv

∗
j −

y∗ℓ
a∗ℓ
vjv

∗
i . (3.4)

To simplify this expression it is common to introduce admittance matrices. With this

in mind we will now introduce a branch admittance matrix Y (i,j) ∈ Cn×n.

Y (i,j) := 1
aℓa

∗
ℓ
(yℓ + y

(c)
ℓ )IiI

†
i − 1

aℓ
yℓIiI

†
j (3.5)

Y (j,i) := (yℓ + y
(c)
ℓ )IiI

†
i − 1

aℓ
yℓIiI

†
j (3.6)

where Ii is the i
th column of the identity matrix, which also represents the ith standard unit

vector. The complex power flow expressions (3.3) and (3.4) can now be consolidated into a

single expression that is valid for both directions. Notice that the second of the following

two expressions simply reverses i and j compared to the first and so they will be collectively

referred to as expression (3.7):

Pi,j + iQi,j = Y
(i,j)∗
i,i viv

∗
i + Y

(i,j)∗
i,j viv

∗
j (3.7a)

Pj,i + iQj,i = Y
(j,i)∗
j,j vjv

∗
j + Y

(j,i)∗
j,i vjv

∗
i (3.7b)

The expression (3.7) can be easily shown to be equivalent to (3.3) and (3.4) algebraically.

The expression (3.7) can then be placed in matrix form by treating v ∈ Cn as a vector of com-

plex voltages. Notice that the second of the following two expressions again simply reverses

i and j compared to the first and so they will be collectively referred to as expression (3.8):
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Pi,j + iQi,j = v†Y (i,j)∗v∗ (3.8a)

Pj,i + iQj,i = v†Y (j,i)∗v∗ (3.8b)

where we interpret superscript ∗ for a vector to mean the complex conjugate of the vector.

The complex power expressions (3.7) and (3.8) will be used to formulate the AC OPF problem

in polar coordinates and rectangular coordinates respectively.

3.2 Bus Model with Shunt Losses

A bus i ∈ N is a connection point at which generators or demand can inject or

extract complex power from the transmission network. The sum of complex power injected

into bus i is termed the net complex power injection. This subsection derives net complex

power injection quantities for an arbitrary bus i ∈ N that may experience complex power

loss due to shunt admittance. With this in mind the net complex power injection at each

bus represents the sum of the complex powers flowing out of the bus through transmission

lines less the shunt losses. The complex shunt element at bus i has admittance denoted

y
(s)
i = g

(s)
i + ib

(s)
i . The net complex power injection at each bus is written as follows:

Ti + iUi =
∑

(i,j)∈P

(Pi,j + iQi,j) +
∑

(j,i)∈P

(Pj,i + iQj,i)− vi(viy
(s)
i )∗ (3.9)

where the third term on the RHS represents the real power loss through the shunt element

located at bus i. With this in mind the value viy
(s)
i represents the complex current flowing

through the shunt element.

Once again, admittance matrices will be introduced to simplify notation. The network

admittance matrix Y ∈ Cn×n will now be defined in terms of the branch admittance matrices

Y (i,i) as follows:

Y :=
∑

(i,j)∈P

Y (i,j) +
∑

(j,i)∈P

Y (i,j) − diag(y(s)) (3.10)

where diag(y(s)) ∈ Cn×n a diagonal matrix with diagonal elements represented by the vector

of bus shunt admittances y(s) ∈ Cn. The net complex power injection expression (3.9) can
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now be simply written as follows:

Ti + iUi = vi

n∑
j=1

Y ∗
i,jv

∗
j (3.11)

The expression (3.11) can be easily shown to be equivalent to (3.9) algebraically. The

expression (3.11) can then be placed in matrix form by treating v ∈ Cn as a vector of

complex voltages and by introducing the bus admittance matrix as Y (i) := IiI
†
iY . The net

complex power injections can now be expressed as follows:

Ti + iUi = v†Y (i)∗v∗ (3.12)

The complex power expressions (3.11) and (3.12) will be used to formulate the AC

OPF problem in polar coordinates and rectangular coordinates respectively.

3.3 AC OPF Problem in Polar Coordinates

First use polar coordinates to formulate the AC OPF problem. In this case the

complex voltage at bus i is denoted vi = Vi∠(θi), where Vi is the voltage magnitude and θi

is the voltage angle. Using polar coordinates the feasible set of net real power injections is

defined by constraints that are sinusoidal in the voltage angle variables and quadratic in the

voltage magnitude variables.

The complex power flow in a transmission line expressed in terms of voltage angle

and voltage magnitude follows from the expression (3.7). With this in mind, denote the ad-

mittance quantities in this expression using polar coordinates as follows: Y
(i,j)
i,i = |Y (i,j)

i,i |∠ςi,j
and Y

(i,j)
i,j = |Y (i,j)

i,j |∠ϖi,j. Multiplying the complex quantities in polar coordinates and using

Eulers formula the complex power flowing into the line from bus i and bus j can be rewritten

as follows:

Pi,j = |Y (i,j)
i,i |V 2

i cos(−ςi,j) + |Y (i,j)
i,j |ViVj cos(θi − θj −ϖi,j) ∀(i, j)∈P and ∀(j, i)∈P (3.13)

Qi,j = |Y (i,j)
i,i |V 2

i sin(−ςi,j) + |Y (i,j)
i,j |ViVj sin(θi − θj −ϖi,j) ∀(i, j)∈P and ∀(j, i)∈P (3.14)

Similarly, an expression for the net complex power injection into a bus in terms

of the voltage angle and voltage magnitude follows from expression (3.11). With this in
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mind, denote the admittance quantities in this expression using polar coordinates as follows:

Yi,j = |Yi,j|∠φi,j. Multiplying the complex quantities in polar coordinates leads to the

following expressions for the net real and reactive power injections into bus i:

Ti = Vi

n∑
j=1

|Yi,j|Vj cos(θi − θj − φi,j) ∀i ∈ N (3.15)

Ui = Vi

n∑
j=1

|Yi,j|Vj sin(θi − θj − φi,j) ∀i ∈ N (3.16)

These expressions are written in terms of real valued variables and so they can then be

placed in an economic dispatch problem that is suitable for standard optimization software.

This economic dispatch problem is termed the AC OPF problem and optimizes over the

vector of nodal generation G ∈ Rn as well as the voltage magnitude and voltage angle

vectors. The AC OPF problem minimizes the cost of generation and is written as follows:

min
G∈Rn,V ∈Rn,θ∈Rn

Σ
i∈N

Ci(Gi) (3.17)

st : Di −Gi = Vi
n∑
j=1

|Yi,j |Vj cos(θi − θj − φi,j) ∀i ∈ N (3.17a)

U i ≤ Vi
n∑
j=1

|Yi,j |Vj sin(θi − θj − φi,j) ≤ Ūi ∀i ∈ N (3.17b)

−P̄i,j ≤ |Y (i,j)
i,i |V 2

i cos(−ςi,j)+|Y (i,j)
i,j |ViVj cos(θi−θj−ϖi,j) ≤ P̄i,j ∀(i, j)∈P and ∀(j, i)∈P (3.17c)

−Q̄i,j ≤ |Y (i,j)
i,i |V 2

i sin(−ςi,j)+|Y (i,j)
i,j |ViVj sin(θi−θj−ϖi,j) ≤ Q̄i,j ∀(i, j)∈P and ∀(j, i)∈P (3.17d)

|Y (i,j)
i,i |2V 4

i +|Y (i,j)
i,j |2V 2

i V
2
j +2|Y (i,j)

i,i ||Y (i,j)
i,j |VjV 3

i cos(θi−θj) ≤ S̄2
i,j ∀(i, j)∈P and ∀(j, i)∈P (3.17e)

0 ≤ Vi ≤ V̄i ∀i ∈ N (3.17f)

Gi ≤ Gi ≤ Ḡi ∀i ∈ N (3.17g)

This AC OPF problem bears resemblance to the economic dispatch problem (2.6).

Generation costs are being minimized in the objective function. The constraint (3.17a) en-

forces real power balance at each node, where the RHS of the constraint is the net real

power injection as expressed in (3.15). Constraint (3.17b) enforces limits on the net reactive

power injection at each bus, where the net reactive power quantity is written as in (3.16).
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Constraints (3.17f) and (3.17g) enforce nodal generation and nodal voltage magnitude con-

straints.

Constraints (3.17c)-(3.17e) enforce line limits where each line limit is assumed sym-

metric in that each flow quantity has the same limit regardless of flow direction. Constraints

(3.17c) and (3.17d) limit the real and reactive power flows on each transmission line and

use the expressions from (3.13) and (3.14). Constraint (3.17e) enforces apparent power con-

straints on each transmission line. With this in mind the squared apparent power flow is

represented by the expression P 2
i,j + Q2

i,j. The left-hand side (LHS) of constraint (3.17e) is

derived by first substituting the expressions for Pi,j and Qi,j from (3.13) and (3.14) and then

applying the angle difference trigonometric identity, which allows for the following equiva-

lence:

cos(θi − θj) = cos(−ϖi,j) cos(θi − θj −ϖi,j) + sin(−ϖi,j) sin(θi − θj −ϖi,j)

The AC OPF problem can be written in the form presented as the general ED problem

(2.6) from Chapter 2. In this context the AC OPF problem uses a feasible set of net real

power injections written as follows:

T = {T ∈ Rn : ∃(V, θ) where (3.15), (3.17b), (3.17c), (3.17d), (3.17e), (3.17f), (3.17g)} (3.18)

It should be apparent that this feasible set of net real power injections is non-convex due

to the sinusoidal and high-order polynomial terms. However, this AC OPF problem has

constraints defined by smooth functions in the decision variables and is able to be solved

to a local minimizer by use of standard iterative algorithms. Also notice that the AC OPF

problem does not enforce contingency constraints as stated in Remark 3.1.

Remark 3.1. Economic dispatch problems used in practice define the feasible set of net real

power injections in a way that ensures the system is capable of operating within short-

term or emergency limits in the event of any single line outage. We do not consider these

contingency constraints in any of the considered problems in this dissertation. In fact, such

contingency constraints are typically not studied in the context of the AC OPF problem

because they would require the introduction of voltage decision variables V and θ for each
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of the m possible line outages, making the AC OPF problem intractable to solve. Such

contingency-constrained problems could be approximated within the framework we develop

by representing the detailed AC equations for the expected non-contingency case, and using

linearized constraints to represent the conditions in the contingency cases. It is typical to

use such linearized constraints in practice.

3.4 AC OPF Problem in Rectangular Coordinates

Let us now use rectangular coordinates to formulate the AC OPF problem. In this

case the complex voltage at bus i is denoted vi = vRe,i+ ivIm,i. Using rectangular coordinates

the feasible set of net real power injections is defined by constraints that are quadratic in

the real and imaginary parts of the voltage variables.

The complex power flow in a transmission line expressed in terms of the real and

imaginary parts of the complex voltage follows from the expression (3.8). With this in mind,

denote the admittance quantities in this expression using rectangular coordinates as follows:

Y (i,j) = G(i,j) + iB(i,j). Multiplying the complex quantities in rectangular coordinates leads

to the following expressions, which hold for each transmission line in both directions, eg.

(i, j) ∈ P and (j, i) ∈ P:

Qi,j= −B(i,j)
i,i

(
v2Re,i+v

2
Im,i

)
+G

(i,j)
i,j (vIm,ivRe,j− vRe,ivIm,j)−B

(i,j)
i,j (vRe,ivRe,j + vIm,ivIm,j) (3.19)

Pi,j= G
(i,j)
i,i

(
v2Re,i+v

2
Im,i

)
+G

(i,j)
i,j (vRe,ivRe,j + vIm,ivIm,j) +B

(i,j)
i,j (vIm,ivRe,j − vRe,ivIm,j) (3.20)

Similarly, an expression for the net complex power injection into a bus in terms of

the real and imaginary parts of the complex voltage follows from expression (3.12). With

this in mind, denote the admittance quantities in this expression using polar coordinates as

follows: Y (i) = G(i) + iB(i). Multiplying the complex quantities in rectangular coordinates

leads to the following expressions for the net real and reactive power injections into bus i:

Ti =G
(i)
i,j(vRe,ivRe,j + vIm,ivIm,j) +B

(i)
i,j (vIm,ivRe,j − vRe,ivIm,j) (3.21)

Ui =G
(i)
i,j(vIm,ivRe,j− vRe,ivIm,j)−B

(i)
i,j (vRe,ivRe,j + vIm,ivIm,j) (3.22)
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Table 3.1: Admittance related matrices used to express the constraints of the AC OPF problem
in a standard quadratic form.

Power Flow Matrices Power Injection Matrices Voltage Matrix

for line (i, j) ∈ P for bus i ∈ N for bus i ∈ N

H(i,j)= 1
2

[
G(i,j)+G(i,j)† B(i,j)†−B(i,j)

B(i,j)−B(i,j)† G(i,j)+G(i,j)†

]
H(i)= 1

2

[
G(i)+G(i)† B(i)†−B(i)

B(i)−B(i)† G(i)+G(i)†

]
M (i)=

[
IiI

†
i 0

0 IiI
†
i

]
Z(i,j)= −1

2

[
G(i,j)+G(i,j)† B(i,j)†−B(i,j)

B(i,j)−B(i,j)† G(i,j)+G(i,j)†

]
Z(i)= −1

2

[
G(i)+G(i)† B(i)†−B(i)

B(i)−B(i)† G(i)+G(i)†

]

To simplify these expressions introduce vector w := [v†Re, v
†
Im]

†. Admittance related

matrices can now be defined as shown in Table 3.1. The expressions (3.19)-(3.22) can now

be expressed as standard quadratic expressions as follows:

Qi,j = w†H(i,j)w (3.23)

Pi,j = w†Z(i,j)w (3.24)

Ti = w†H(i)w (3.25)

Ui = w†Z(i)w (3.26)

The RHS of the expressions (3.23)-(3.26) are written in standard quadratic form and can be

easily placed into an AC OPF problem that optimizes over w ∈ R2n. This AC OPF problem

minimizes the cost of generation and is written as follows:

min
G∈Rn,w∈R2n

Σ
i∈N

Ci(Gi) (3.27)

st : Di −Gi = w†H(i)w ∀i ∈ N (3.27a)

U i ≤ w†Z(i)w ≤ Ūi ∀i ∈ N (3.27b)

−P̄i,j ≤ w†Z(i,j)w ≤ P̄i,j ∀(i, j)∈P and ∀(j, i)∈P (3.27c)

−Q̄i,j ≤ w†H(i,j)w ≤ Q̄i,j ∀(i, j)∈P and ∀(j, i)∈P (3.27d)(
w†Z(i,j)w

)2
+
(
w†H(i,j)w

)2
≤ S̄2

i,j ∀(i, j)∈P and ∀(j, i)∈P (3.27e)

0 ≤ w†Miw ≤ V̄i ∀i ∈ N (3.27f)

Gi ≤ Gi ≤ Ḡi ∀i ∈ N (3.27g)
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Similarly to the polar formulation in (3.17), this rectangular formulation of the AC

OPF problem bears resemblance to the economic dispatch problem (2.6). Generation costs

are being minimized in the objective function. The constraint (3.27a) enforces real power

balance at each node, where the RHS of the constraint is the net real power injection as

expressed in (3.25). Constraint (3.27b) enforces limits on the net reactive power injection at

each bus, where the net reactive power quantity is written as in (3.26). Constraint (3.27f)

enforces nodal voltage magnitude constraints, where the limited quantity is equivalent to

v2Re,i + v2Im,i and M
(i) is defined in Table 3.1. Constraint (3.27g) enforces nodal generation

constraints.

Constraints (3.27c)-(3.27e) enforce line limits where each line limit is assumed sym-

metric in that each flow quantity has the same limit regardless of flow direction. Constraints

(3.27c) and (3.27d) limit the real and reactive power flows on each transmission line and

use the expressions from (3.24) and (3.23). Constraint (3.27e) enforces apparent power con-

straints on each transmission line. With this in mind the squared apparent power flow is

represented by the expression P 2
i,j + Q2

i,j. The LHS of constraint (3.17e) is derived by first

substituting the expressions for Pi,j and Qi,j from (3.24) and (3.23).

Under the assumption that the cost is quadratic, this is very nearly a Quadratically

Constrained Quadratic Program (QCQP), which is a common class of optimization problem

that is well studied and may be easier to solve than general smooth non-convex optimiza-

tion problems. Unfortunately, the apparent power flow constraint (3.27e) is fourth order.

However, this constraint can be made quadratic by introducing intermediate variables and

constraints Qi,j = w†Z(i,j)w and Pi,j = w†H(i,j)w. In this case the apparent power flow

constraint (3.27e) can be introduced to the formulation in order to make the apparent power

flow constraint quadratic, in which case this constraint appears as P 2
i,j + Q2

i,j ≤ S̄2
i,j. As a

result, this problem can indeed be written as a QCQP with the drawback of introducing

additional optimization variables.

This problem is written similarly to the economic dispatch problem (2.6) from Chapter 1.

In this context the feasible set of net real power injections is written as follows:

T={T ∈ Rn : ∃w∈Rn where (3.25), (3.27b), (3.27c), (3.27d), (3.27e), (3.27f), (3.27g)} (3.28)
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It should be noted that this definition of the feasible set of net real power injections is

equivalent to the definition from (3.18) in that a vector T exists in one of these sets if and

only if it exists in the other. The difference between the two definitions lies in the way the

AC OPF problem is formulated. Either form may see benefits as compared to the other.

For example, the rectangular coordinate version of the AC OPF problem yields a very tight

semi-definite programming relaxation that will be discussed in Chapter 6. On the other

hand, the polar coordinate version of the AC OPF problem yields very accurate simplifying

approximations that make the problem easier to solve. These simplifying approximations

will be discussed in Chapters 4 and 5.

3.5 Numerical Results

This section will study situations where a revenue adequate market equilibrium is not

achieved. In Chapter 6 these test cases will be reinvestigated in the context of convex hull

prices, which aim to minimize the worst case revenue shortfall of the ISO.

3.5.1 Simple 3-bus System

This section studies a simple 3-bus power system similar to that in [66] that can be

visualized by the one-line diagram shown in Figure 3.2. This three bus test case will be

revisited in Chapter 6. The net real power injection at buses 1, 2, and 3 are denoted T1, T2,

and T3. The net reactive power injections at buses 1 and 2 are unconstrained. The voltage

magnitudes at buses 1 and 2 are fixed to V1 = 1p.u. and V1 = 1.21p.u. respectively. Bus 3 is

a null bus whose net real and reactive power injection, denoted T2 and U2, are fixed to zero

and has no voltage magnitude constraint. A real power flow limit of 3.5p.u. is placed on the

line connecting bus 1 and bus 2. The maximum feasible voltage angle difference between

bus 1 and bus 2 is approximately 40 degrees and occurs when the system is operating at the

limit of line 1-2.

Notice that the feasible set of net real power injections T is three dimensional; however,

the system will physically operate on a slice of this set along the plane T3 = 0 because there

is neither generation nor load at bus 3. As explained in Remark 2.1, the feasible set of net
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Bus 1Bus 1

Bus 3Bus 3

Bus 2Bus 2
z13 = 0.1216 + 0.0512iz13 = 0.1216 + 0.0512i z23 = 0.0010 + 0.0512iz23 = 0.0010 + 0.0512i

z12 = 0.1226 + 0.1023iz12 = 0.1226 + 0.1023i
|v2| = 1.21p.u.|v2| = 1.21p.u.|v1| = 1p.u.|v1| = 1p.u.

G1G1

D2D2

T3 = 0T3 = 0 U3 = 0U3 = 0

Figure 3.2: One-line diagram of the 3-bus test case with positive PCRS. Impedance values are
given in p.u.

real power injections does not enforce constraints on the net real power injections at buses.

(Note: these constraints are accommodated by the feasible set of each generator Xi in the

economic dispatch problem (2.6)). This means that FTRs can be allocated to bus 3 even

though its net real power injection is physically restricted to zero.

The consumption at bus 2 is fixed to 1p.u., so the net real power injection at bus two

is T2 = −1p.u. In this case there is only one feasible point that represents the solution to

the AC OPF problem (T ⋆1 , T
⋆
2 , T

⋆
3 ) ≈ (5.4077,−1, 0) and therefore Gd

1 = 5.4077p.u. Notice

this operating point accrues large line losses of approximately 4.5p.u. Bus 1 consists of one

generator whose cost in dollars is represented by the following piece-wise linear cost function:

C1(G1) =

{
0.5G1 if G1 ≤ 2
G1 if G1 > 2

Remark 3.2. We assume that the load is valuable enough to maintain operation of the grid

at such high line losses (as opposed to opening a circuit breaker on the transmission line to

terminate grid operation). □

Let’s now identify the LMPs as described in Section 2.4. These prices were found by

solving the AC OPF problem in MATLAB using an interior point method available in the

function ‘fmincon.’ The feasible voltages at buses 1, 2, and 3 are v1 = 1, v2 = 1.0026−0.6774i,

and v3 = 0.8381 − 0.5356i respectively in units of per unit (p.u.). The solver provided the

Lagrange multipliers for the real power balance constraint (6.5a) that solve the KKT condi-

tions for this point. The LMPs for bus 1, 2 and 3 are λ⋆1 = $1/p.u., λ⋆2 = $9.455/p.u., and

λ⋆3 = $9.461/p.u. respectively. The congestion revenue can be easily computed as CR = $4.05.
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The side-payment to the only generator in the 3-bus system (or equivalently the

lost opportunity cost) as defined in Section 2.2.2 is numerically found to be zero. This is

illustrated in Table 3.2. Specifically, the marginal cost of the generator and the LMP seen

by the generator are both equal to $1/p.u.. As a result the generator’s profit will always

be zero and it will not experience any lost opportunity cost. In fact, it can be proven that

side-payments to generators are always zero when using a KKT price-dispatch pair. This is

proven explicitly in Chapter 6 by Theorem 6.1.

Table 3.2: Evaluating lost opportunity cost for the only generator rounding to nearest cent.

Payment ($) Profit ($) Max Profit ($) Lost Opp. Cost ($)

λ⋆1G
d
1 λ⋆1G

d
1 − C1(G

d
1) Υ1(λ

⋆
1) Co

i (λ
⋆
1, G

d
1)

5.41 0 0 0

The PCRS using the identified LMPs as defined in Section 2.2.3 is numerically found

to be $0.26 with an optimal FTR allocation f ⋆ = [5.5929, 6.3464,−7.3892] in units of p.u..

The optimal FTR allocation is computed by solving the FTR payoff maximization problem

(2.4). Typically, in high-dimension, it is not easy to identify the optimal FTR allocation

vector that falls in the non-convex feasible set of net real power injections. However, in

our simple example this can be done by randomly sampling feasible points to initialize a

Newton-Raphson algorithm. The PCRS computation is illustrated in Table 3.3. Specifically,

the congestion revenue is easily found to be $4.05 and the maximum FTR payoff can be

computed as −λ⋆†f ⋆ = 4.31. The PCRS is the difference between the two, amounting to

$0.26.

Table 3.3: Evaluating PCRS for the 3-bus test case rounding to the nearest cent.

Demand Charge ($) Congestion Revenue($) Max. FTR Payoff ($) PCRS ($)

λ⋆2D2 λ⋆2D2 − λ⋆1G
d
1 Ψ(λ⋆) = −λ⋆†f ⋆ Cs(λ⋆, Gd)

9.46 4.05 4.31 0.26

Since we are using LMPs the lost opportunity cost of generators is zero as expected

from Chapter 2. However, the PCRS is non-zero, illustrating that a revenue adequate market
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equilibrium does not exist for this simple test case. Furthermore, the PCRS is approximately

five percent of the total operating cost and is therefore non-negligible.

3.5.2 Examples on Standard Test Cases

The example in the previous section is contrived to show extreme characteristics. To

see whether similar results might occur in more practical systems, consider the much larger

test cases available from the NESTA archive [17]. The AC OPF problem in polar coordinates

is solved using the PowerModels package in Julia [16] along with the interior point solver

IPOPT [87]. It is important to recognize that the interior point algorithm is only capable of

converging to a local minimum, so the identified dispatch may not be a global minimum of

the AC OPF problem. As stated in Section 2.5, the PCRS must be positive if the dispatch

is not globally optimal for the AC OPF problem.

Table 3.4 provides a comparison of side-payments and PCRS when using LMPs. We

provide results for six systems with 162 buses, 189 buses, 300 buses, 2224 buses, 2383 buses,

and 3012 buses. Computing the PCRS for a given set of prices requires solving the non-

convex max FTR payoff problem (2.4). The provided PCRS values are computed using an

interior point solver in Julia that identifies a local maximum of problem (2.4). Since we are

only guaranteeing a local maximimum of the FTR maximization problem, the PCRS values

provided in the table underestimate the true PCRS value.

As expected, LMPs result in zero side-payments to generators and positive PCRS. The

PCRS may be very large with respect to the total operating cost as in test case 162 ieee dtc

(approximately 32%) or very small as in test case 3012wp mp (approximately 0.07%). Aside

from the test cases studied in this dissertation, many of the test cases in the NESTA archive

result in PCRS values that are greater than 0.1% of total operating cost. On the other hand,

very few test cases in the NESTA archive result in PCRS values that are greater than 1%

of total operating cost.

3.6 Conclusions

This chapter derived the AC OPF problem using both rectangular and polar coor-

dinates from first principles. Both versions are non-convex but are significantly different in
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Table 3.4: Results for NESTA Test Cases. All amounts are in dollars per hour. Computational
time is determined using a computer with a 2.7 GHz processor.

LMPs
(for AC OPF) Total

Test Side Operating Computational
Case Payments PCRS Cost Time (sec)

162 ieee dtc ∼ 0 1,352.92 4,230.23 0.66
189 edin ∼ 0 1.22 849.29 0.59
300 ieee ∼ 0 36.87 16,891.27 1.14
2224 edin ∼ 0 520.76 38,127.69 17.23
2383wp mp ∼ 0 13,681.00 1,868,511.77 15.42
3012wp mp ∼ 0 1,815.44 2,600,842.72 33.47

form. Chapters 4 and 5 will show that the polar coordinate formulation is convenient for

deriving simplifying approximations. Chapter 6 will show that the rectangular coordinate

formulation is convenient for deriving a convex relaxation that results in a semi-definite

program.

Numerical results illustrate two problems associated with the AC OPF problem. First

is the difficulty in solving the AC OPF problem. Interior point algorithms seem to work well;

however, they are only guaranteed to converge to local minima. The second problem is the

general lack of a revenue adequate market equilibrium. Specifically, the test cases studied in

this section result in positive PCRS.

Since the PCRS is positive for each test case in this chapter the ISO is not guaranteed

revenue adequacy because congestion revenue may not cover FTR payoffs. Now that we

have identified a problem associated with revenue adequacy for the ISO, we should naturally

consider how to fix this problem. Chapter 6 directly addresses this problem by proposing a

different pricing structure called convex hull pricing that aims to minimize the weighted sum

of PCRS and generator side-payments. Chapter 6 will explain how to approximate convex

hull prices using relaxations and will revisit these examples to illustrate the improvement in

PCRS when using convex hull prices.
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Chapter 4

Non-Linear Approximations of the AC OPF Problem

Standard economic dispatch problems that consider line losses are linear approxima-

tions of a non-convex economic dispatch problem formulated by fixing voltage magnitudes

and assuming the decoupling of real and reactive power, which we term the Transmission

Constrained Economic Dispatch (TCED) problem. This chapter formulates and analyzes

a general form of the TCED problem, incorporating and generalizing the Fictitious Nodal

Demand (FND) model [57], resulting in a slack bus independent formulation that provides

insight into standard formulations by pointing out commonly used but unnecessary assump-

tions and by deriving proper choices of “tuning parameters.” The proper choice of loss

allocation is derived to assign half of the losses of each transmission line to adjacent buses,

justifying approaches in the literature. Line constraints are proposed in the form of voltage

angle difference limits and are proven equivalent to various other line limits including cur-

rent magnitude limits and mid-line power flow limits. The formulated TCED problem with

marginal losses consistently models flows and loss approximations, results in approximately

correct outcomes and is proven to be reference bus independent. Various approximations of

this problem are compared using realistically large transmission network test cases.

This chapter is an extension of the work in [32] and is organized as follows. Section 4.1

provides a model of a transmission line using the assumption that voltage magnitudes are

fixed. We explain how this model is a generalization of other models used in the literature

and outline various common approximations. Section 4.2 uses a general transmission line

model to formulate the non-convex TCED problem that utilizes line constraints in the form

of voltage angle difference limits across each transmission line. The relaxed TCED problem

is then formulated using the load over-satisfaction relaxation. The relaxed TCED problem

is shown to have the same global minimizer as the TCED problem under the condition

that the LMPs are positive and is shown to be convex when using specific approximations.
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Section 4.2 continues to explain how the voltage angle limit parameters can be chosen to

indirectly enforce limits on various physical parameters associated with a transmission line.

Section 4.3 provides empirical results analyzing the error of the various approximations as

well as their relation to the AC OPF problem.

4.1 Transmission Line Model

Figure 4.1 provides a circuit diagram of the general equivalent-Π model of a trans-

mission line (i, j) ∈ P that is operated at a nominal frequency. The transmission line is

indexed by ℓ ∈ L and connects bus i ∈ N to bus j ∈ N. This circuit is similar to that

in Figure 3.1 but differs from it in the treatment of the series element. In particular, to

facilitate discussion of loss models, the series impedance of the line is divided into two parts

and separated by an intermediate node c located at a fractional distance d from from bus j.

The total series impedance is denoted zℓ = rℓ + ixℓ where rℓ is the series resistance and xℓ

is the series reactance. The series impedance separating node c from bus j is in the amount

dzℓ. We assume that the shunt conductances are zero, ie. the real part of y
(c)
ℓ is zero, and

thus no real power flows through the shunt elements. As in Chapter 3, the complex voltage

at bus i is denoted vi = Vi∠(θi) in polar coordinates, where Vi is the voltage magnitude and

θi is the voltage angle. An ideal transformer is located near bus i with complex off-nominal

turns ratio of aℓ = τℓ∠(ψℓ).

dd

bus jbus jbus ibus i

vivi vjvj
vi

aℓ

vi

aℓ

aℓ : 1aℓ : 1

y
(s)
ℓ
y
(s)
ℓ

y
(s)
ℓ
y
(s)
ℓ

(1− d)zℓ(1− d)zℓ dzℓdzℓ

node cnode c

Figure 4.1: Circuit diagram of an arbitrary line ℓ connecting bus i to bus j.
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4.1.1 Real Power Flow on a Transmission Line

We consider the flow of real power in the series element of the equivalent-Π model

of a transmission line. Assuming fixed voltage magnitudes, the real power flowing through

node c in the series element in the direction of bus j at an arbitrary fractional distance d is

represented by the following function:

F̂ℓ(Θℓ, d) :=gℓ(
d
τ2ℓ
V 2
i − (1− d)V 2

j )− bℓ
τℓ
ViVj sin(Θℓ−ψℓ)− gℓ

τℓ
ViVj(2d− 1) cos(Θℓ−ψℓ), (4.1)

where yℓ = 1/zℓ = gℓ + ibℓ and Θℓ = θi − θj. This model is a generalization of that in [84]

and is derived explicitly in Appendix C.1. Notice that this function requires knowledge of

the fixed voltage magnitudes. Reference [84] suggests different ways of choosing the fixed

voltage magnitudes including using the state estimated values or a local minimizer of the

AC OPF problem.

4.1.2 Loss Function and Approximations

From (4.1), the real power flowing into the line from bus i and from bus j are respec-

tively expressed as F̂ℓ(Θℓ, 1) and −F̂ℓ(Θℓ, 0). The loss function for the line represents the

real power loss across the line and is derived by summing these two values:

L̂ℓ(Θℓ) := gℓ(V
2
j + 1

τ2ℓ
V 2
i )− 2gℓ

τℓ
ViVj cos(Θℓ − ψℓ). (4.2)

ISOs may desire a simpler quadratic approximation in order to utilize quadratic programming

software. A very accurate approximation uses a third order Taylor expansion of the cosine

function in (4.2) around Θℓ = ψℓ. This approximation results in a quadratic model of losses

since the coefficient of the third order term is zero, with quartic error on the order of
gℓViVj
24τℓ

Θ4
ℓ :

L̂ℓ(Θℓ) ≈ gℓ(V
2
j + 1

τ2ℓ
V 2
i )−

gℓ
τℓ
ViVj(2− (Θℓ − ψℓ)

2). (4.3)

Note that this approximation does not rely on any assumption that the line resistance is small

compared to the reactance. Though very accurate, using this approximation in practice still

requires some knowledge of how to fix the voltage magnitudes and tap ratios. An ISO may

desire a simpler model that fixes voltage magnitudes to 1 p.u. and tap ratios to aℓ = 1.

Fixing these values results in the following approximation:

L̂ℓ(Θℓ) ≈ gℓΘ
2
ℓ . (4.4)
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Perhaps the most commonly used approximation equates the line losses to the product of

resistance of the line and squared DC power flow across the line. We can arrive at this

approximation from (4.4) by additionally assuming rℓ ≪ xℓ:

L̂ℓ(Θℓ) ≈ rℓ(
1
xℓ
Θℓ)

2. (4.5)

This final approximation of the loss function is by far the simplest and carries the inter-

pretation that losses are equal to the resistance times the squared DC power flow where

the DC power flow is given by 1
xℓ
Θℓ. This interpretation is often used naively without an

understanding of the several approximations used to get to this point.

4.1.3 Fictitious Nodal Demand Representation

An FND representation of our transmission line model can be derived from (4.1) and

(4.2). Notice that we can express the real power flowing into the line from adjacent buses as

follows, for an arbitrary fractional distance d:

F̂ℓ(Θℓ, 1) =F̂ℓ(Θℓ, d) + (1− d)L̂ℓ(Θℓ), (4.6)

−F̂ℓ(Θℓ, 0) =− F̂ℓ(Θℓ, d) + dL̂ℓ(Θℓ). (4.7)

These expressions lead to an FND model depicted in Figure 4.2 that is similar to that shown

in [84]. Specifically, a lossless transfer of real power from bus i to bus j occurs in the

amount F̂ℓ(Θℓ, d). Losses are then represented as fictitious demand at bus i in the amount

(1 − d)L̂ℓ(Θℓ) and at bus j in the amount dL̂ℓ(Θℓ). This FND model is equivalent to (4.1)

in the sense that the buses see the same net real power injection.

bus jbus jbus ibus i

dd

F̂ℓ(Θℓ, d)F̂ℓ(Θℓ, d)

(1−d)L̂ℓ(Θℓ)(1−d)L̂ℓ(Θℓ) dL̂ℓ(Θℓ)dL̂ℓ(Θℓ)

Figure 4.2: One-line diagram of the FND representation of the proposed transmission line model.
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4.1.4 Mid-line Power Flows and Approximations

A crucial observation is that d can be chosen to simplify the form of the resulting

model. When d = 1
2
the cosine term in (4.1) drops out, simplifying the expression for the

lossless real power flow F̂ℓ(Θℓ,
1
2
) in the FND model (4.6) and (4.7). This value is termed

the mid-line power flow and is written as follows:

F̂ℓ
(
Θℓ,

1
2

)
= 1

2
gℓ(

1
τ2ℓ
V 2
i − V 2

j )− bℓ
τℓ
ViVj sin(Θℓ − ψℓ). (4.8)

We will see that with this choice of d, a linear approximation to F̂ℓ is accurate to second

order in Θℓ. This choice of d is also convenient because of the symmetry of losses that occur

around the mid-point of the line. Specifically, the second term on the RHS of (4.6) and (4.7)

are identically 1
2
L̂ℓ(Θℓ). This expression for the mid-line power flow is also in [84].

Unfortunately, the exact expression for the mid-line power flow (4.8) is not convex

in the vicinity of Θℓ ≈ 0. However, a very accurate linear approximation can be attained

through a second order Taylor expansion at Θℓ = ψℓ. This approximation results in a linear

model since the coefficient of the second order term is zero, with cubic error on the order of
bℓViVj
6τℓ

Θ3
ℓ :

F̂ℓ
(
Θℓ,

1
2

)
≈ 1

2
gℓ(

1
τ2ℓ
V 2
i − V 2

j )− bℓ
τℓ
ViVj(Θℓ − ψℓ). (4.9)

Fixing the voltage magnitudes to 1p.u. and off-nominal tap ratios to aℓ=1 further simplifies

the previous approximation to:

F̂ℓ
(
Θℓ,

1
2

)
≈ −bℓΘℓ. (4.10)

Similar to the derivation of loss approximations in Section 4.1.2, a final approximation often

utilized in practice assumes rℓ ≪ xℓ, leading to the following expression:

F̂ℓ
(
Θℓ,

1
2

)
≈ 1

xℓ
Θℓ. (4.11)

With respect to the FND representation of our model, this approximation can be interpreted

as the combination of lossless DC power flow and line losses distributed equally to adjacent

buses. In fact, this interpretation is also consistent with with the FND formulation from [57]

and [40], which suggest half losses of each line be allocated to both adjacent buses. Our
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derivation shows that the allocation resulting from the choice d = 1
2
is particularly advan-

tageous in that it results in a simple expression for the flow that is well approximated by a

linear function. This observation does not appear to have been recognized previously in the

literature; however, the authors of [40,57] may have had this advantage in mind in proposing

FND.

4.1.5 Squared Current Magnitude and Approximations

The squared magnitude of the current flowing into the transmission line from bus i and

bus j can be represented as functions of the voltage angle difference Θℓ and will be denoted

Îij(Θℓ) and Îji(Θℓ) respectively. These functions are explicitly derived in Appendix C.2 and

are respectively written as follows:

Îij(Θℓ) :=
|yℓ|2
τ2ℓ

(
χ2
ℓ

τ2ℓ
V 2
i +V

2
j −

2χℓ
τℓ
ViVj cos(ϕℓ−ψℓ+Θℓ)

)
, (4.12)

Îji(Θℓ):= |yℓ|2
(

1
τ2ℓ
V 2
i +χ

2
ℓV

2
j −

2χℓ
τℓ
ViVj cos(ϕℓ+ψℓ−Θℓ)

)
, (4.13)

where χℓ and ϕℓ are defined to be the magnitude and angle of the complex number

zℓ(y
(c)
ℓ + yℓ) respectively, so that zℓ(y

(c)
ℓ + yℓ) = χℓ∠(ϕℓ). Notice that this complex number

is approximately 1 because the shunt admittance is typically much smaller than the series

admittance. As a result χℓ ≈ 1 and ϕℓ ≈ 0. In the following, we consider Îij(Θℓ). The

function Îji(Θℓ) can be handled similarly.

Similar approximations to those in Sections 4.1.2 and 4.1.4 can be used for the squared

current magnitude function. The first approximation uses a third order Taylor expansion

of the cosine function in (4.12) around Θℓ = −ϕℓ + ψℓ. This approximation results in a

quadratic function, with quartic error on the order of
2χℓ|yℓ|2ViVj

24τ3
(Θℓ + ϕℓ − ψℓ)

4:

Îij(Θℓ)≈
(
χ2
ℓ

τ2ℓ
V 2
i +V

2
j −

χℓ
τℓ
ViVj

(
2−(Θℓ+ϕℓ−ψℓ)2

))|yℓ|2
τ2ℓ
. (4.14)

In the case where shunt admittance y
(c)
ℓ is negligible we have χℓ = 1 and ϕℓ = 0. Additionally

fixing the voltage magnitudes to 1p.u. and the off-nominal tap ratio to a= 1 simplifies the

previous approximation as follows:

Îij(Θℓ) ≈ |yℓ|2Θ2
ℓ . (4.15)
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In the case where rℓ ≪ xℓ we have yℓ ≈ ibℓ. The approximation (4.15) then simplifies

to the following:

Îij(Θℓ) ≈ ( 1
xℓ
Θℓ)

2. (4.16)

This final approximation of the squared current magnitude is the simplest and carries

the interpretation that the per unit current magnitude is equal to the per unit magnitude of

the DC power flow.

4.1.6 General Transmission Line Model

We have now introduced multiple approximations of the loss function L̂ℓ(·), the mid-

line power flow function F̂ℓ(·, 12), and the squared current magnitude function Îij(·). We now

introduce definitions of more general functions that encompass all outlined approximations.

We begin with the general loss function Ľℓ(·) that encompasses exact expressions for losses

and any realistic loss function approximation, including any one of the forms on the RHSs

of (4.2)-(4.5). Consistent with properties of losses, the general loss function is required to

be convex in the vicinity of the origin as well as symmetric about the point ψℓ. Resistances

are realistically assumed to be positive, resulting in strict convexity. Note that a function

with a check mark ˇ represents an approximation to its exact counterpart denoted with a

hat symbol ˆ.

Definition 4.1. A general loss function of angles, denoted Ľℓ : R → R, is a function with

the following properties: strictly convex on the subdomain Dℓ := [−π
2
+ψℓ,

π
2
+ψℓ], continu-

ously differentiable, non-negative, symmetric about the point ψℓ and strictly monotonically

increasing on the subdomain Dℓ+ := [ψℓ,
π
2
+ ψℓ].

Similarly, the general mid-line power flow function F̌ℓ(·) encompasses all functional

forms on the RHSs of (4.8)-(4.11). This general function highlights the monotonic property

of the mid-line power flow function for angle differences near the origin. Although the mid-

line power flow function is typically monotonically increasing this definition is left general

to accommodate potentially positive susceptance values (or equivalently negative reactance

values), in which case the function would be monotonically decreasing.
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Definition 4.2. A general mid-line power flow function of angles, denoted F̌ℓ : R → R, is

strictly monotonic on the subdomain Dℓ and is continuously differentiable.

The general squared current magnitude function Ǐij(·) encompasses all functional

forms outlined by (4.12)-(4.16). This general function highlights the convexity of the squared

current magnitude function near the origin as well as its symmetry about the point −ϕℓ+ψℓ.

Definition 4.3. A general squared current magnitude function of angles, denoted Ǐij : R → R,

is a function with the following properties: convex on the subdomain

D̃ℓ := [−π
2
− ϕℓ + ψℓ,

π
2
− ϕℓ + ψℓ], strictly monotonically increasing on the subdomain

D̃ℓ+ := [−ϕℓ + ψℓ,
π
2
− ϕℓ + ψℓ], symmetric about the point −ϕℓ + ψℓ, and continuously dif-

ferentiable.

The remainder of this chapter provides results using these more general functions and

is therefore pertinent to typical dispatch formulations that utilize the simplest functional

forms outlined by (4.5), (4.11), and (4.16) and also pertinent to the exact functional forms

outlined by (4.2), (4.8), and (4.12).

4.2 Transmission Constrained Economic Dispatch

This section formulates a non-convex economic dispatch problem using the general

transmission line model from the previous section that we refer to as the Transmission

Constrained Economic Dispatch (TCED) problem. This problem formulation enforces line

limits using simple bounds on the voltage angle difference across each transmission line.

We then explain that this TCED problem can be represented as a convex relaxed TCED

problem under the condition that prices are positive and an affine approximation of the

mid-line power flow function is used. Finally, we explain how the voltage angle difference

bounds can be chosen to enforce limits on a variety of line related quantities.

4.2.1 Real Power Injections and Loss Distribution Factor Approximation

The net real power injections at each bus can be expressed by summing the associated

injections into each transmission line incident to it. To express the net real power injections

as a function of voltage angles we will utilize the FND model (4.6) and (4.7) evaluated at the
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midpoint of each line d = 1
2
along with arbitrary approximations for the loss function and

mid-line power flows outlined in Section 4.1. For convenience, we introduce a vector valued

function L : Rm → Rm that maps voltage angle differences to line losses. The ℓth element

of this vector valued loss function is defined as Lℓ(Θ) := Ľℓ(Θℓ) where Θ ∈ Rm is a vector

of voltage angle differences, consistent with the established notation. Similarly, the vector

valued function F : Rm → Rm maps voltage angle differences to mid-line power flows. The

ℓth element of this vector valued function is defined as Fℓ(Θ) := F̌ℓ(Θℓ).

The net real power injections at each bus in the system can be represented as a vector

valued function of voltage angle differences, denoted T : Rm → Rn:

T (Θ) := 1
2
|A|† L(Θ) + A†F (Θ), (4.17)

where the branch-bus incidence matrix of the graph G is denoted A ∈ Rm×n. Specifically, A

is sparse and the row representing line ℓ connecting bus i to bus j has element i equal to

1 and j equal to −1. The element-wise absolute value of the branch-bus incidence matrix

is denoted |A|, also known as the unoriented incidence matrix of graph G. Intuitively, the

function T (·) can be interpreted at each bus as being the sum of net real injections into

incident lines due to lossless real power transfers together with half of the losses of each

incident line.

Since the voltage angles θ ∈ Rn only enter each equation through the differences Θℓ,

one degree of freedom can be removed by assigning an arbitrary angle reference bus ρ ∈ N

and setting θρ = 0. The vector of voltage angle differences can now be written as Θ = Ȧθ̇

where θ̇ ∈ Rn−1 is the vector of voltage angles with element ρ removed and the matrix

Ȧ ∈ Rm×(n−1) is the incidence matrix A with column ρ removed.

Reference [58] introduced loss distribution factors to distribute losses throughout the

transmission system. Loss distribution factors can be thought of as an approximation to the

function of net real power injections T (Θ). A vector of distribution factors denoted η ∈ Rn
+

sum to one and represent the fraction of total system losses allocated to each bus. The

associated approximation to the function representing net real power injections is written as

follows:

T (Θ) ≈ η1†L(Θ) + A†F (Θ). (4.18)
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At a particular operating point, it is possible to choose η so that the left and RHS

of (4.18) match exactly. However, it is not generally possible to choose η to make this true

generally and not possible to make partial derivatives of the LHS and RHS of (4.18) match

exactly (See Section 5.2.5). In particular, notice that the rank of η1† is one and the rank of

the unoriented incidence matrix |A| is at least n−1 under the assumption that the system

graph is fully connected [86]. That is, we cannot choose η to satisfy η1† = 1
2
|A|†. Thus the

approximation on the RHS of (4.18) is never an exact representation of the function T (Θ).

Instead, the proper choice of loss distribution factors will change with state θ̇. The proper

choice of loss distribution factors is further addressed in Section 5.2.5.

4.2.2 Transmission Constrained Economic Dispatch Problem

The TCED problem optimizes over the nodal generation represented by vector G∈Rn

and the voltage angle vector θ̇ ∈ Rn−1. The cost of generation is represented by the function

C(G) := Σ
i∈N
Ci(Gi) where C : Rn → R is assumed convex. The nodal demand is considered

fixed and is represented by D ∈ Rn. The Transmission Constrained Economic Dispatch

(TCED) problem is:

min
G∈Rn,θ̇∈Rn−1

C(G) (4.19)

st : T (Ȧθ̇) = G−D (4.19a)

¯
G ≤ G ≤ Ḡ (4.19b)

Θ ≤ Ȧθ̇ ≤ Θ (4.19c)

Constraint (4.19a) is a vector equality constraint that represents real power balance

at each node. Constraints (4.19b) enforce generator output limits and constraints (4.19c)

represent limits on voltage angle differences across each transmission line. Section 4.2.4

will explain how to choose the voltage angle difference limits to indirectly enforce limits on

various line related quantities including current magnitude and mid-line power flow.

Remark 4.1. Throughout this chapter we will assume that any vector of voltage angle dif-

ferences Θ satisfying (4.19c) also satisfies the constraint Θℓ ∈ Dℓ ∩ D̃ℓ for each line ℓ, where

Dℓ and D̃ℓ are from Definitions 4.1 and 4.3. This assumption effectively enforces limits on

the voltage angle differences Θ that should hold for any practical power system.
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Note that there is no explicit slack bus in this formulation, since real power balance

is represented at each bus, so the formulation is independent of choice of slack bus. There is

an explicit reference bus and Theorem 4.1 below shows that the formulation is independent

of choice of reference bus.

Theorem 4.1. Consider two instances of the TCED problem (4.19) defined using different

reference buses. The reduced voltage angle vectors associated with the first and second in-

stances of the problem are defined to be θ̇∈Rn−1 and θ̈∈Rn−1 respectively. Let (G⋆, θ̇⋆) be a

solution to the first instance of the problem. There exists some θ̈⋆∈Rn−1 such that (G⋆, θ̈⋆)

is a solution to the second instance of the problem.

Proof: Let Ȧ and Ä be the reduced brach-bus incidence matrices for the first and

second instances of the problem respectively. The matrices Ȧ and A have the same range

space because any given row of A can be written as a linear combination of the other rows in

A (ie. A1 = 0). Similarly Ä and A have the same range space. Thus Ȧ and Ä have the same

range space. As a result, there must exist some θ̈⋆ such that Äθ̈⋆ = Ȧθ̇⋆. It follows that there

exists a θ̈⋆ such that (G⋆, θ̈⋆) is feasible for the second instance of the problem. Notice that

this implies the second instance of the problem has an optimal value no greater than the

optimal value of the first instance. Furthermore, there does not exist a feasible point of the

second instance of the problem that achieves a lower optimal value than the first instance,

else a similar argument shows that a feasible point can be constructed for the first instance

that has a lower cost than (G⋆, θ̇⋆). Thus both instances have the same optimal value and

there exists a θ̈⋆ such that (G⋆, θ̈⋆) is optimal for the second instance of the problem.

The Locational Marginal Prices (LMPs), denoted λ⋆ ∈ Rn, represent the sensitivity

of the optimal value of the TCED problem (4.19) with respect to the demand vector D,

assuming such sensitivities exist. In fact, the LMPs are independent of the choice of reference

bus because the optimal value of the TCED problem (4.19) is independent of the choice of

reference bus for any D ∈ Rn as stated in Theorem 4.1. Of course this simple analysis

assumes that LMPs are well defined. Section 5.1.4 explicitly defines LMPs and decomposes

the LMP into energy, loss and congestion components.
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Remark 4.2. A clear relationship must be established between the TCED problem and the

gold standard AC OPF problem, as specified in Chapter 3. Under the assumption that

shunt conductances are negligible, the exact TCED problem defined by (4.2), (4.8), and

(4.12) can be derived from the AC OPF problem by fixing the voltage magnitudes and

removing all constraints that involve reactive power quantities, including reactive power

balance constraints at buses. Thus, if the voltage magnitudes are fixed to values that match

the solution of the AC OPF problem, then the TCED problem formulated here will act as a

relaxation of the AC OPF problem, obtaining a lower optimal objective value. Of course, in

practice the solution to the AC OPF problem will not be available when fixing the voltage

magnitudes, so these quantities must be approximated.

4.2.3 Load Over-Satisfaction Relaxation

A relaxed version of the TCED problem that uses the load over-satisfaction relaxation

can be obtained from problem (4.19) by replacing the real power balance equality constraints

(4.19a) with inequality constraints that permit the delivery of excess generation [75]. With

this in mind, the relaxed TCED problem is written as follows:

min
G∈Rn,θ̇∈Rn−1

C(G) (4.20)

st : T (Ȧθ̇) ≤ G−D (4.20a)

¯
G ≤ G ≤ Ḡ (4.20b)

Θ ≤ Ȧθ̇ ≤ Θ (4.20c)

If this relaxed TCED problem results in positive LMPs, then its solution also solves the

TCED problem (4.19). To understand this intuitively, first assume that the optimal solution

of this problem solves the Karush-Kuhn-Tucker (KKT) conditions and then recognize that

the LMPs of the relaxed TCED problem are represented by the optimal Lagrange multipliers

of constraint (4.20a). If these Lagrange multipliers are positive, then constraint (4.20a) must

be binding at optimality by the complementary slackness condition [5]. As a result, the

optimal solution of the relaxed TCED problem (4.20) is feasible and thus optimal for the

TCED problem (4.19).

The relaxed TCED problem (4.20) is convex under the condition that an affine ap-
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proximation of the mid-line power flow function F (·) is used as is the case for approximations

(4.9), (4.10), and (4.11). To see this, first notice that the objective function is convex by

assumption and constraints (4.20b) and (4.20c) are convex because they are linear. Finally,

the function T (·) is convex as defined in (4.17) because the mid-line power flow function is

affine and the vector valued loss function L(·) is convex on the domain of the TCED prob-

lem (4.20) as follows from Definition 4.1 and Remark 4.1. Constraint (4.20a) is additionally

convex because the function T (·) is convex and appears on the LHS of the inequality.

The relaxed TCED problem (4.20) is written similarly to the general economic dis-

patch problem (2.6) from Chapter 1. In this context the feasible set of net real power injec-

tions is written as follows:

T={T (Ȧθ̇) : ∃θ̇∈Rn−1 where (4.20a), (4.20b), (4.20c)} (4.21)

It should be emphasized that this definition of the feasible set of net real power injections

is convex when using approximations (4.9), (4.10), and (4.11) of the mid-line power flow

function F (·) and thus LMPs achieve a revenue adequate market equilibrium as follows from

Theorem 2.1. Similar results regarding revenue adequacy using the load over-satisfaction

relaxation appear in previous work [77].

4.2.4 Characterizing Line Limits

The TCED problem (4.19) should enforce line limits that represent the physical abili-

ties of the transmission line. For this reason it is appropriate to limit a real power quantity or

current quantity using approximations outlined in the previous section. Unfortunately, such

constraints are non-linear and may even be non-convex. This subsection explains how to

enforce such limits by reformulating them to be in the standard form of constraints (4.19c),

which place bounds on the voltage angle difference across each transmission line.

We will consider three types of line limits. Namely, limits on the real power flow

enforced at the mid-point of the transmission line, limits on the squared current magnitude

flowing into either side of the transmission line, and limits on the real-power loss across

the transmission line. Remark 4.3 additionally explains that the apparent power flowing
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into either side of a transmission line can be enforced using limits on the squared current

magnitude flowing into either side of the transmission line. By reformulating these line limits

to the same form as constraints (4.19c) this section implies that the TCED problem (4.19)

encompasses all such limits without loss of generality.

4.2.4.1 Mid-Line Power Flow Limits

First consider real power flow limits enforced at the mid-point of the transmission

line. Interpreted as lossless real power flow limits in the FND model from Section 4.1.3,

these constraints are written as follows.

−F̄ℓ ≤ F̌ℓ(Θℓ) ≤ F̄ℓ (4.22)

We assume F̄ℓ is in the image of F̌ℓ(·) on the subdomain Dℓ, denoted F̌ℓ[Dℓ]. As a result,

limits on the mid-line power flow are easy to enforce because the function F̌ℓ(·) is strictly

monotonic on the specified subdomain. Define the function F̌−1
ℓ : F̌ℓ[Dℓ] → Dℓ as the inverse

of F̌ℓ(·) on the specified subdomain. This inverse function is strictly monotonic on F̌ℓ[Dℓ],

allowing constraints (4.22) to be written as follows. Notice that these constraints are in the

same form as (4.19c).

F̌−1
ℓ (−F̄ℓ) ≤ Θℓ ≤ F̌−1

ℓ (F̄ℓ) (4.23)

4.2.4.2 Real Power Loss Limits

Line limits are typically chosen to prevent transmission lines from overheating. The

production of heat is a direct result of the real-power loss across the line. For this reason

it may be appropriate to limit the real-power loss across the transmission line. Such a

constraint would be of the following form for a given line indexed by ℓ.

Ľℓ(Θℓ) ≤ L̄ℓ (4.24)

where L̄ℓ is the constant real-power loss limit and is assumed to lie in the image of Ľℓ(·) on

the subdomain Dℓ, denoted Ľℓ[Dℓ]. In fact, this constraint is convex because the function

Ľℓ(∆θℓ) is convex on the subdomain Dℓ and can be directly implemented into an economic
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dispatch problem. However, this limit can also be enforced using simple bounds on the

voltage angle difference across the line, as in constraints (4.19c).

Recall that Ľℓ(·) is symmetric about the point ψℓ and so constraint (4.24) can be writ-

ten as Ľℓ(|Θℓ−ψℓ|+ψℓ) ≤ L̄ℓ. From definition 4.1, Ľℓ(·) is strictly monotonically increasing

on the subdomain Dℓ+ and so it is invertible on this subdomain. Define Ľ−1
ℓ : Ľℓ[Dℓ+] → Dℓ+

to be the inverse of the function Ľℓ(·) restricted to the subdomain Dℓ+. This inverse function

is also strictly monotonically increasing on Ľℓ[Dℓ+], allowing constraints (4.24) to be written

as follows. Notice that this constraint can be easily placed in the same form as (4.19c).

|Θℓ − ψℓ|+ ψℓ ≤ Ľ−1
ℓ (L̄ℓ) (4.25)

4.2.4.3 Current Magnitude Limits

It may be more appropriate to limit the magnitude of the current flowing into the

transmission line. A limit on the squared magnitude of the current flowing into the line is

represented by the following constraint.

Ǐij(Θℓ) ≤ Ī2ℓ (4.26)

where Īℓ is the constant current magnitude limit and Ī2ℓ is assumed to lie in the image of Ǐij(·)

on the subset D̃ℓ, denoted Ǐij[D̃ℓ]. Notice that Ǐij(·) is symmetric about the point −ϕℓ + ψℓ

and is strictly monotonically increasing on the domain D̃ℓ+ and so it is invertible on this

subdomain. Define Ǐ−1
ij : Ǐij[D̃ℓ+] → D̃ℓ+ to be the inverse of the function Ǐij(·) restricted

to the subdomain D̃ℓ+. This inverse function is also strictly monotonically increasing on

Ǐij[D̃ℓ+], allowing constraint (4.26) to be rewritten as constraint (4.27).

|Θℓ + ϕℓ − ψℓ| − ϕℓ + ψℓ ≤ Ǐ−1
ij (Ī

2
ℓ) (4.27)

This constraint can be easily placed in the same form as (4.19c).

−Ǐ−1
ij (Ī

2
ℓ) + 2ψℓ − 2ϕℓ ≤ Θℓ ≤ Ǐ−1

ij (Ī
2
ℓ) (4.28)
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Remark 4.3. Since voltage magnitudes are assumed fixed, the magnitude of current flowing

into either side of a transmission line is proportional to the magnitude of the apparent power

flowing into that side of the transmission line. Thus limits on the magnitude of apparent

power flow (MVA limits) can be enforced using squared current magnitude limits (4.26) and

(4.27).

4.3 Numerical Results

This section provides an empirical analysis of three realistically large test cases pro-

vided by version 6.0 of the MATPOWER toolbox in MATLAB [98]. The 3375wp test case

is a 3,375 bus representation of the Polish power system during the winter 2007-2008 winter

evening peak with a total fixed demand of 48, 362 MW. The 2869pegase test case is a 2,869

bus representation of the European high voltage transmission network with a total fixed

demand of 132, 437 MW. The 6515rte test case is a 6,515 bus representation of the French

transmission network with a total fixed demand of 107, 264 MW. The two larger test cases

are fully described in [47]. For each test case the MVA rating of each transmission line is

interpreted as a current magnitude limit and line limits are enforced as in Section 4.2.4.3.

We consider six different optimization problems for each test case: the AC OPF prob-

lem, the exact TCED problem and four approximations to the exact TCED problem. Each

optimization problem is solved by the interior-point algorithm provided by the MATLAB

function FMINCON with user supplied analytical gradients/Hessians using a standard lap-

top with a 2.7 GHz processor. Due to the non-convexity of each problem, global optimality

cannot be guaranteed in general and the interior point algorithm may converge to a local

minimizer. That being said, we are able to verify that a global minimizer was identified for

each of the four approximations for test cases 6515rte and 2869pegase by use of the load

over-satisfaction relaxation.

The AC OPF problem fully captures the coupling of real and reactive power and

optimizes over voltage magnitudes. At the optimal dispatch of the AC OPF problem, the

operating cost of test cases 6515rte, 2869pegase, and 3375wp are $109, 767, $133, 993, and

$7, 404, 635 respectively. The exact TCED problem (4.19) is defined by the exact expressions

of each function provided earlier in this chapter (4.2), (4.8), (4.12) and (4.17) and is formu-
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lated by fixing voltage magnitudes to the identified local minimizer of the AC OPF problem.

As described in Remark 4.2, this problem should act as an approximation to the AC OPF

problem but should obtain a lower optimal objective value. The identified local minimizer

of the AC OPF problem is used to initialize the interior point algorithm for the exact TCED

problem. The dispatch approximation error ∆G ∈ Rn represents the difference between the

identified optimal dispatch of the TCED problem of interest and that of the exact TCED

problem. Similarly the objective approximation error ∆C represents the difference between

C(G) evaluated at the identified optimal dispatch of the TCED problem of interest and that

of the exact TCED. Finally, ∆λ represents the difference between the identified price vector

associated with the problem of interest and that of the TCED problem.

As explained in Section 4.2.3, the TCED problem and the relaxed TCED problem

have the same global minimizer if the LMPs are positive. Furthermore, the relaxed TCED

problem is convex when using any of the approximations to the mid-line power flow function

in Section 4.1.4. This allows us to verify that the interior point methods identified global

Table 4.1: This table compares the solution of multiple different TCED problems to that of the
exact TCED problem using three realistically large test cases. The error quantities are denoted
with ∆ and represent the difference between identified optimal quantities of the problem of interest
and those of the exact TCED problem. The reported time is an average over 10 runs. The total
dispatched generation for each problem is denoted 1†G.

Test Aprx. Aprx. Eqns. ∆C 1†G ∥∆G∥1 ∥∆G∥∞ mean(λ⋆)min(λ⋆)/max(λ⋆) max
i∈N

|∆λi|
λ⋆
i

∥Θ∥∞ time

Case Num. F̌ℓ / Ľℓ / Ǐij / T ($) (MW) (MW) (MW) ($/MW) ($/MW) (rad) (sec)

Exact (4.2)/(4.8)/(4.12)/(4.17) 0 109764 0 0 1.08 0.87 / 2.52 0 0.3822 10
1 (4.3)/(4.9)/(4.14)/(4.17) 2.36 109762 159.29 31.06 1.08 0.87 / 2.53 0.0891 0.3730 8

6515 2 (4.4)/(4.10)/(4.15)/(4.17) -184.57 1099498622.52 658.90 1.07 0.97 / 1.43 0.4306 0.4255 8
rte 3 (4.5)/(4.11)/(4.16)/(4.17) -72.21 1098378793.72 664.70 1.07 0.97 / 1.41 0.4394 0.4254 24

4 (4.5)/(4.11)/(4.16)/(4.18) 47.92 1097178012.29 679.46 1.07 0.96 / 1.55 0.3829 0.4255 27
AC OPF -3.38 109768 908.16 103.87 1.08 0.56 / 2.48 0.5257 0.3822 152

Exact (4.2)/(4.8)/(4.12)/(4.17) 0 133982 0 0 1.02 0.99 / 1.12 0 0.2429 4
1 (4.3)/(4.9)/(4.14)/(4.17) 2.14 133980 58.06 5.21 1.02 0.99 / 1.12 0.0011 0.2422 3

2869 2 (4.4)/(4.10)/(4.15)/(4.17) -167.57 1341502124.47 190.99 1.02 0.98 / 1.14 0.0330 0.2780 3
pegase 3 (4.5)/(4.11)/(4.16)/(4.17) -134.32 1341171971.91 188.48 1.02 0.98 / 1.13 0.0177 0.2743 7

4 (4.5)/(4.11)/(4.16)/(4.18) -94.62 1340773739.75 972.89 1.02 0.98 / 1.12 0.0132 0.2710 10
AC OPF -11.29 133993 581.57 22.25 1.02 0.99 / 1.11 0.0222 0.2438 6

Exact (4.2)/(4.8)/(4.12)/(4.17) 0 49190 0 0 146.70 0.00 / 454.89 0 0.2639 8
1 (4.3)/(4.9)/(4.14)/(4.17) 344.10 49188 32.79 16.58 146.66 0.00 / 454.58 0.9604 0.2624 5

3375 2 (4.4)/(4.10)/(4.15)/(4.17) -33629.36 49266 2267.75 309.97 151.26 0.00 / 971.06 5.7514 0.2625 6
wp 3 (4.5)/(4.11)/(4.16)/(4.17) -13737.40 49228 1011.08 245.73 149.27 0.00 / 460.28 1.6180 0.2726 6

4 (4.5)/(4.11)/(4.16)/(4.18) -7382.55 49184 911.03 244.28 148.55 0.00 / 459.67 539.2388 0.2612 7
AC OPF -8.43 49188 118.84 54.03 147.42 0.00 / 469.40 0.9943 0.2629 180
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optima for test cases 6515rte and 2865pegase when using each of the four approximations

to the exact TCED problem. However, we emphasize that this approach cannot always be

taken in the case where there exists an LMP that is non-positive as in test case 3375wp.

See [77] for a description of the problems that may arise when LMPs are non-positive. In

fact, the identified optimal dispatch for test case 3375wp using the relaxed TCED problem

results in a generation dispatch that does not satisfy real power balance with equality as in

(4.19a). We found no large test cases with any strictly negative LMPs.

The remainder of this section analyzes Table 4.1, which provides detailed information

about the six aforementioned optimization problems solved for each test case. The identified

local minimizers of the AC OPF problem and the approximations 1-4 are directly compared

to that of the exact TCED problem. Approximation 1 uses Taylor expansions to obtain a very

accurate quadratically constrained program. Approximation 2 additionally assumes voltage

magnitudes are nominal, tap ratios are nominal and shunt susceptances are much smaller

than series susceptances. Approximation 3 additionally assumes that series resistances are

much smaller than series reactances. Approximation 4 additionally uses the load distribution

factor approximation with the LDFs chosen to allocate all losses to the slack bus, which is

designated by each individual test case description. The third column of the table explicitly

states the equations used in each approximation.

Remark 4.4. From Table 4.1, the voltage angle difference across each line falls well within the

limits from Remark 4.1, which approximately constrains |Θℓ| to be lower than π
2
≈1.5707.

4.3.1 TCED Problem vs. AC OPF

We begin by comparing the TCED problem (4.19) to the AC OPF problem provided

by MATPOWER. Each test case follows the trend outlined in Remark 4.2. Specifically, the

exact TCED problem acts as a relaxation to the AC OPF problem as it attains a lower

optimal value. However, the optimal values of both problems are close to each other relative

to the total system cost.

It is perhaps more important to analyze the difference in the generation dispatch

between the exact TCED problem and the AC OPF problem. The 1-norm of the nodal

dispatch approximation error, denoted ∥∆G∥1, is relatively small, realizing values of no more
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than 1% of total system demand. In contrast, the infinity norm of the nodal dispatch error is

potentially significant because it represents a MW value that is seen entirely by a single bus.

In fact, marginal generators see the largest change in dispatch. The sum of all dispatched

generation is denoted 1†G and is similar across all approximations.

A similar conclusion can be drawn for the LMPs identified by both problems. In

general LMPs are very similar for both problems, illustrated by nearly identical mean LMPs.

However, the LMP at an individual bus may be significantly different between the problems

as illustrated by the maximum normalized difference of nodal price denoted
|∆λ|
λ⋆i

. Although

this value is very small for test case 2869pegase, at least one bus in test case 3375wp has an

LMP change of over 99% in magnitude.

4.3.2 Approximations of the Exact TCED Problem

Table 4.1 quantifies how well the solution of each TCED formulation approximates the

solution of the exact formulation. Approximation 1 is the most accurate in terms of nodal

dispatch and LMP approximation error. This is expected because only accurate Taylor

expansion approximations are used.

Approximation 2 experiences a drastic increase in approximation error because it

introduces multiple assumptions including nominal tap ratios, negligible shunt susceptances

and nominal voltage magnitudes.

Approximation 3 additionally assumes rℓ ≪ xℓ and the resulting approximate loss

function tends to underestimate real power losses as compared to approximation 2. This can

be seen by noticing that the total dispatched generation is lower for approximation 3.

Approximation 4 is equivalent to approximation 3 but with all losses allocated to

the slack bus. Notice that the nodal dispatch error has a large infinity norm, ∥∆G∥∞,

because the load profile changes significantly. For this reason approximation 4 can be very

inaccurate. For example the 1-norm of the nodal dispatch error is nearly doubled in test case

2869pegase. This underlines the concern about loss formulations having potentially adverse

affect on particular generators due to the location of the slack bus.
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4.4 Summary

This chapter derives a generalized non-convex TCED problem with marginal losses

that consistently models flow and loss approximation, results in approximately correct out-

comes and is proven to be reference bus independent. A hierarchy of approximations for

this problem are outlined and common unnecessary assumptions are identified along with

proper choices of “tuning parameters.” For example, nodal loss allocation is derived from

first principles to assign half losses of each line to its adjacent buses. Additionally, line limit

constraints are derived in the form of current magnitude limits and mid-line power flow limits

and are enforced as simple bounds on the voltage angle difference on each transmission line.

Empirical results are provided that illustrate the general trend of increasing approximation

error as more approximations are used. Furthermore, the identified local minimizer of the

exact TCED problem is shown to very closely match the certified global minimizer of an

approximate TCED problem solved via the load over-satisfaction relaxation. Certain ap-

proximations increase the error in price and dispatch outcomes; however, the approximation

that allocates losses to the slack bus is very inaccurate and results in significant dispatch

and LMP errors.

Each of the formulations in this chapter have been nonlinear and have been solved

using a general interior-point method intended for nonlinear problems. The numerical results

illustrated that these problems can be solved quickly (less than 30 seconds) even at large

scale. In the next chapter, we consider linearized approximations that can be solved by

large-scale linear programming software, which converges an order of magnitude faster than

the solvers used for the nonlinear problems. Although easier to solve, these linear programs

require more approximations to formulate. The next chapter additionally analyzes this

approximation error.
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Chapter 5

Linearly Constrained Economic Dispatch Problems

The underlying TCED problem derived in Chapter 4 is non-convex. Although the

TCED problem can be represented as a convex problem when LMPs are positive using the

load over-satisfaction relaxation, this technique cannot be used if LMPs are generally non-

positive. For this and other reasons the non-convex TCED problem is typically approximated

by the convex problem obtained by linearizing the constraints around some base-case state.

Electricity prices and dispatch decisions are then chosen based on the resulting linearly-

constrained economic dispatch (LCED) problem. Different LCED problems have been sug-

gested in the literature and they are all derived using one of two linearization techniques,

which we call direct and indirect linearization, respectively. Various formulations in the lit-

erature use Loss Distribution Factors (LDFs), as introduced in Section 1.1.2 and discussed

in Section 4.2.1. An LCED problem often used in practice that uses LDFs as reported in [22]

and [58] is derived using indirect linearization and is termed the common LCED problem.

This chapter studies the assumptions required to recover the optimal dispatch of the non-

convex TCED problem from the solution of the common LCED problem. We show that the

common LCED problem may have multiple minimizers, in which case small perturbations of

the base-case state may result in large dispatch approximation error. Furthermore, even if

the base-case state matches a minimizer of the non-convex TCED problem, it is proven that

there does not always exist a choice of LDFs such that the optimal dispatch of the TCED

problem is also optimal for the common LCED problem. On the other hand, such LDFs do

exist and are identified for the special case where no line limits are binding.

This chapter is based on the following publication to which the coauthors contributed equally: Manuel
Garcia and Ross Baldick. “Approximating economic dispatch by linearizing transmission losses.” IEEE
Transactions on Power Systems, (Accepted 2019).
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Despite the prevalence of the common LCED problem, no previous work has es-

tablished a set of assumptions required to recover the optimal dispatch of the non-convex

TCED problem from the common LCED problem. To establish such assumptions this

chapter derives the common LCED problem from the non-convex TCED problem in Chap-

ter 4 restricted to linear approximations of the mid-line power flow function, which we

label as the TCED problem with angles or Optimization A (Opt. A). To illustrate the as-

sumptions used to attain the common LCED problem, four intermediate problems, namely,

Opt. B, C, D, and E, are also derived that are not individually novel but constitute a conve-

nient route for the derivation. Figure 5.1 outlines the sequence of problems derived to attain

the common LCED problem or Opt. F. This derivation ultimately proves that a specific

dispatch that is optimal for the TCED problem with angles (Opt. A) is also optimal for

the common LCED problem (Opt. F) under two key assumptions. This specific dispatch

can be efficiently recovered from the common LCED problem (Opt. F) under the additional

assumption that the common LCED problem has a unique optimal dispatch.

TCED w/ 
Angles

Opt. A

TCED w/o 
Angles

Opt. B

Direct 

LCED 

Opt. C

Indirect 
LCED 

Opt. D

Common 
LCED 

Opt. F

LDF LCED 

Opt. E

Equiv. 
Sec. 5.1.3

Equiv.
Sec. 5.2.3
and 5.2.4

Approx. 
Sec. 5.2.2

Approx.
Sec. 5.2.5

Equiv.
Sec. 5.2.6

Equiv. Non-Convex 
Problems 

Equiv. Linear 
Problems

Equiv. Linear 
Problems w/ LDFs

θ̇
0
≈ θ̇

⋆
θ̇
0
≈ θ̇

⋆

γ
′
≈1αγ

′
≈1α

Figure 5.1: Diagram outlining the derivation structure of Chapter 5. Vertical connections with
arrows pointing in both directions indicate equivalence of the two connected problems, meaning
any dispatch that is optimal for one is also optimal for the other. Horizontal connections pointing
in only one direction indicate that both problems share an optimal dispatch, namely the base-case
dispatch, under the appropriate assumptions.

The derivation begins in Section 5.1 by eliminating voltage angles from the TCED

problem with angles (Opt. A) yielding an ED problem that optimizes over generation dis-

patch and nodal loss allocation variables. This problem is termed the TCED problem without
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angles (Opt. B) and is shown to be equivalent to the TCED problem with angles (Opt. A),

where two problems are said to be equivalent if any dispatch that is optimal for one is also

optimal for the other.

The fundamental linearization theory in [40] uses a first order Taylor expansion of

the constraints with respect to all optimization variables about the base-case state and

its associated base-case dispatch. We call this direct linearization. Section 5.2.2 derives

the direct LCED problem (Opt. C) by applying direct linearization to the TCED problem

without angles (Opt. B). The first key assumption, termed Assumption 5.1, requires the

base-case dispatch to satisfy the Karush-Kuhn-Tucker (KKT) conditions and represent an

optimal dispatch of the TCED problem without angles (Opt. B). A result from [40] can then

be applied to show that the same base-case dispatch is optimal for the direct LCED problem

(Opt. C). A related practical question is how close does the base-case state need to be to

a minimizer of the underlying non-convex problem for the approximate LCED problem to

result in a good dispatch approximation (See Remark 5.5).

Another approach is to linearize with respect to only the net real power injections

using total derivatives of implicit functions. We call this indirect linearization. In fact, the

common LCED problem (Opt. F) is derived using indirect linearization as in [21] and [58].

Section 5.2.3 derives the intermediate indirect LCED problem (Opt. D) by applying indi-

rect linearization to the TCED problem without angles (Opt. B). Section 5.2.3 establishes

equivalence of the indirect LCED problem (Opt. D) and the direct LCED problem (Opt. C),

showing any dispatch that is optimal for one of these problems is also optimal for the other.

Section 5.2.4 then explains how to compute the LMPs from Lagrange multipliers of the indi-

rect LCED problem (Opt. D), which differ from those of the direct LCED problem (Opt. C).

We additionally emphasize that the indirect linearization technique requires loss sensitivities

to be computed as the solution of equations with a large Jacobian matrix during each market

interval, e.g. every 5-15 minutes for the real-time market, which may be computationally

burdensome.

Section 5.2.5 introduces LDFs to the indirect LCED problem (Opt. D) to obtain the

LDF LCED problem (Opt. E). Section 5.2.5 additionally explains that under Assumption 5.1
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there do not generally exist LDFs that allow the base-case dispatch to solve the LDF LCED

problem. However, under the assumption that no line limits are binding such LDFs do exist

and are identified in Section 5.2.5. The second key assumption, termed Assumption 5.2,

effectively asserts that no line limits are binding.

Finally, Section 5.2.6 formulates the common LCED problem (Opt. F) by eliminating

the loss allocation variables and introducing a single loss variable in their place. The LDF

LCED problem (Opt. E) is shown to be equivalent to the common LCED problem (Opt. F).

Furthermore, the derivation outlined in Figure 5.1 shows that the base-case dispatch is opti-

mal for the common LCED problem under Assumptions 5.1 and 5.2. However, Section 5.2.7

emphasizes that the common LCED problem (Opt. F) may have multiple optimal dispatches,

some of which may not be feasible for the TCED problem with angles (Opt. A). As a re-

sult, it may be difficult to recover an optimal dispatch of the TCED problem with angles

(Opt. A) by solving the common LCED problem (Opt. F) using standard off-the-shelf op-

timization software. The third and final key assumption, termed Assumption 5.3, requires

the common LCED problem (Opt. F) to have a unique optimal dispatch. Under Assump-

tions 5.1, 5.2, and 5.3 the base-case dispatch, which is optimal for the TCED problem with

angles (Opt. A), is the unique optimal dispatch of the common LCED problem (Opt. F),

and can be easily recovered.

Section 5.3 provides numerical results intended to illustrate two key findings that

point out significant dispatch approximation errors may occur when certain assumptions are

violated. The first key finding states that very small perturbations to the ideal base-case state

can result in significantly large dispatch approximation error if the common LCED problem

(Opt. F) has multiple minimizers. This is illustrated in Section 5.3.1 using an intuitive

2-bus example as well as a larger more realistic test case. The second key finding states

that significant dispatch approximation error may occur when Assumption 5.2 is violated,

even if Assumptions 5.1 and 5.3 hold. This is illustrated in Section 5.3.2 using an intuitive

3-bus example that is highly resistive and heavily congested. However, a larger more realistic

test case is used to illustrate that violating Assumption 5.2 typically results in insignificant

dispatch approximation error.
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5.1 Transmission Constrained Economic Dispatch

We begin by reiterating previously established notation from Chapter 2. Lower case

subscripts are used to indicate elements of matrices. For example the element in the ith row

and jth column of matrix M is denoted Mi,j. The ith column of matrix M is denoted Mi.

The transpose of a matrix is denoted with a superscript †, for exampleM †, and a superscript

−† represents the inverse transpose of a matrix. The set of n dimensional real numbers is

denoted Rn. A vector v ∈ Rn is designated a column vector and its ith element is denoted

vi. The element-wise absolute value of a matrix or vector is denoted |M | or |v| respectively.

The identity matrix, the matrix of all zeros, and the matrix of all ones are denoted I, 0,

and 1 respectively and are of appropriate dimension. The branch-bus incidence matrix of

the graph G is denoted A ∈ Rm×n. Specifically, A is sparse and the row representing line k

connecting bus i to bus j has element i equal to 1 and element j equal to −1. In this context

bus i is arbitrarily assigned to be the sending bus and power flow is designated positive when

flowing from bus i to bus j.

5.1.1 Transmission-Constrained Economic Dispatch with Angles

The Transmission-Constrained Economic Dispatch (TCED) problem (4.19) from Sec-

tion 4.2.2 with a linear form of the mid-line power flow function F (·) is adopted. This problem

optimizes over the nodal generation dispatch vector G ∈ Rn and the vector of voltage angles

excluding the known angle at the bus ρ ∈ N, which will be termed the angle reference bus.

A dot over a vector represents that vector with element ρ removed. For example the vector

of voltage angles is denoted θ ∈ Rn and the vector of voltage angles excluding the angle at

the angle reference bus is denoted θ̇ ∈ Rn−1. Similarly, a dot over a matrix represents that

matrix with column ρ removed. For example, the matrix Ȧ ∈ Rm×(n−1) is equivalent to A

with column ρ removed.

The TCED problem with angles (Opt. A) is written as follows. Voltage magnitudes

are assumed constant and all equal to one per unit. The nodal demand is considered fixed

and is represented by D ∈ Rn. The cost of generation is represented by the function

C(G) := Σ
i∈N
Ci(Gi) where C : Rn → R is assumed convex.
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min
P∈Rn,θ̇∈Rn−1

C(G) (Opt. A)

st : 1
2
|A|† L(Ȧθ̇) +H†θ̇ = G−D (A1)

¯
G ≤ G ≤ Ḡ (A2)

¯
F ≤ BȦθ̇ ≤ F̄ (A3)

Constraint (A1) represents the real power balance at each bus in the system as in

constraint (4.19a). The vector valued loss function is denoted L : Rm → Rm and maps

voltage angle differences to line losses. This function is assumed to be convex on the domain

of the problem and is assumed to be continuously differentiable. Half of each line’s losses

are assigned to its incident buses as Fictitious Nodal Demand (FND) as in Chapter 4. In

the interest of deriving a linearly-constrained economic dispatch problem, we assume a linear

approximation of the mid-line power flow function described in Section 4.1.4 and represented

by H†θ̇, where H := Ȧ†BA is termed the reduced weighted Laplacian matrix and represents

the weighted Laplacian matrix of the underlying system graph with row ρ removed. In

the expression for H, the matrix B ∈ Rm×m is full rank and diagonal where the diagonal

elements represent the edge weights of the underlying system graph and can be interpreted

as transmission line susceptances. Constraint (A2) enforces generator output limits and

constraint (A3) enforces line limits in the form of mid-line power flow limits as described in

Section 4.2.4.1.

Remark 5.1. The lossless DC OPF problem is identical to the TCED problem with angles

(Opt. A) if the loss function L(·) is replaced by the zero vector 0. This lossless DC OPF

problem is linearly constrained, convex, and easy to solve.

5.1.2 General TCED Problem without Angles

Many references, e.g. [21] and [58], analyze the energy market with respect to an

economic dispatch problem that optimizes over dispatch and loss variables. We will derive

four such problems that optimize over the nodal dispatch vector and a nodal loss allocation

vector N ∈ Rn. These four problems, Opt. B, C, D, and E respectively, can each be expressed

as the following general TCED problem without angles. The price reference bus (or slack
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bus) is designated as bus σ ∈ N. Throughout this chapter a ring over a vector represents

that vector with element σ removed. Similarly, a ring over a matrix represents that matrix

with column σ removed, e.g. Å.

min
G∈Rn,N∈Rn

C(G) (Opt. j)

st : 1†(G−D −N) = 0 (j1)

Λj(P̊, N ; D̊) = 0 (j2)

¯
G ≤ G ≤ Ḡ (j3)

¯
F ≤ S(G̊− D̊ − N̊) ≤ F̄ (j4)

Constraint (j1) represents real power balance. Constraint (j3) represents generator

output limits. Constraint (j4) represents limits on the mid-line power flow on each transmis-

sion line expressed in terms of shift factors S := BȦH̊−†. Note that the matrix H̊ is invertible

under the standard assumption that the system graph is fully connected. The nodal loss

allocation constraint (j2) incorporates a general function Λj( · , · ;D̊) :Rn−1×Rn→Rn, which

takes the constant parameter D̊ ∈ Rn−1 as an additional argument. This general function

will be defined differently for each of the next four optimization problems formulated in this

chapter. These four problems will be differentiated by j taking values B, C, D, and E.

Remark 5.2. Opt. j has one more decision variable and equality constraint than Opt. A. Opt. j

is also conveniently formulated because there is one linear overall real power balance con-

straint and all non-convexity is concentrated to constraint (j2).

The Lagrangian function is central to the First Order Necessary Conditions (FONCs)

for optimality. The Lagrangian function of Opt. j is written as follows. The arguments of

this function are partitioned into three categories, namely: primal variables, dual variables,

and constant parameters. An equation number is assigned to each term for future reference.
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Φj(N,G;κ, γ, µ̄,
¯
µ, β̄,

¯
β;D) := (5.1)

C(G) (5.1a)

+ κ1†(−G+D +N) (5.1b)

+ γ†Λj(G̊,N ; D̊) (5.1c)

+
¯
β†(

¯
G−G) (5.1d)

+ β̄†(G− Ḡ) (5.1e)

+ µ̄†
(
S(G̊− D̊ − N̊)− F̄

)
(5.1f)

+
¯
µ†
(
¯
F − S(G̊− D̊ − N̊)

)
. (5.1g)

Here the Lagrangian function is defined with: κ ∈ R representing the Lagrange mul-

tiplier of the overall real power balance constraint (j1); γ ∈ Rn representing the Lagrange

multipliers of the nodal loss allocation constraint (j2); (β̄,
¯
β) ∈ Rn×Rn representing the La-

grange multipliers of the generator output constraint (j3); and (µ̄,
¯
µ) ∈ Rm×Rm representing

the Lagrange multipliers of the line limit constraint (j4).

The KKT conditions for some pair of primal variables (G,N) require the existence of

corresponding Lagrange multipliers that jointly satisfy the primal feasibility, dual feasibil-

ity, complementary slackness, and stationarity conditions [5]. Primal feasibility requires the

primal variables to satisfy constraint (j1)-(j4). Dual feasibility requires the dual variables

associated with inequality constraints β̄,
¯
β, µ̄ and

¯
µ to be non-negative. Complementary

slackness requires each of the terms (5.1d)-(5.1g) to equate to zero. The stationarity con-

dition requires the partial derivative of the Lagrangian function to be zero with respect to

the primal variables G and N . The stationarity condition is as follows, where the partial

derivatives of Φj with respect to Nσ, Gσ, N̊ , and G̊ are represented by (5.2), (5.3), (5.4),

and (5.5) respectively:
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0=κ+∇NσΛj(G̊,N ; D̊)γ, (5.2)

0=∇GσC(G)− κ+ β̄σ −
¯
βσ, (5.3)

0=κ1+∇N̊Λj(G̊,N ; D̊)γ + S†(
¯
µ− µ̄), (5.4)

0=∇G̊C(G)−κ1+∇G̊Λj(G̊,N ;D̊)γ− S†(
¯
µ−µ̄)+˚̄β−˚

¯
β. (5.5)

5.1.3 Transmission-Constrained Economic Dispatch without Angles

By choosing the function Λj appropriately Opt. j can be made equivalent to the

TCED problem with angles (Opt. A) in that any optimal dispatch for one of these problems

is also optimal for the other. In particular, Sections 5.1.3.1-5.1.3.3 show that Opt. A is

equivalent to the following TCED problem without angles.

Optimization B. The TCED problem without angles is defined to be Opt. j with Λj specified

by:

ΛB(G̊,N ; D̊) :=N − 1
2
|A|†L

(
ȦH̊−†(G̊− D̊− N̊)

)
. (5.6)

Sections 5.1.3.1 through 5.1.3.3 derive the TCED problem without angles (Opt. B)

from the TCED problem with angles (Opt. A). Each step taken in the reformulation preserves

the set of feasible dispatch variables G, implying any dispatch that is optimal for one of these

problems is also optimal for the other. Both problems additionally have the same optimal

objective value and as a result the sensitivity of the optimal objective value with respect to

D is the same for both problems under the assumption that the sensitivity is well defined.

5.1.3.1 Loss Allocation Vector

We first introduce the nodal loss allocation vector N ∈ Rn as a decision variable

in Opt. A along with the constraint:

N = 1
2
|A|† L(Ȧθ̇). (5.7)

79



5.1.3.2 Real Power Balance Constraint

By (5.7), we can replace the first term in the real power balance constraint (A1) in

Section 5.1.1 by N to obtain:

N +H†θ̇ = G−D. (5.8)

Note that H1 = 0, left multiply the LHS and RHS of (5.8) by the full rank matrix

[1,̊I]† and re-arrange to obtain:

0 = 1†(G−D −N), (5.9)

H̊†θ̇ = G̊− D̊ − N̊. (5.10)

Since [1,̊I]† is full rank, constraints (5.9) and (5.10) hold if and only if constraint (5.8) holds.

Since H̊ is invertible, constraint (5.10) can be re-arranged to:

θ̇ = H̊−†(G̊− D̊ − N̊). (5.11)

5.1.3.3 Eliminate Voltage Angles

In summary, we first introduced constraint (5.7) along with variable N . We then re-

placed the real power balance constraint (A1) from Section 5.1.1 with equivalent constraints

(5.11) and (5.9). We now substitute the expression for θ̇ from constraint (5.11) into con-

straints (5.7) and (A3). The resulting optimization problem is equivalent to Opt. B but with

additional constraint (5.11). Since θ̇ is otherwise unconstrained, constraint (5.11) can be

removed resulting in Opt. B.

Definition 5.1. Let the generation dispatch G⋆ and the nodal loss allocation N⋆ represent

a local minimizer of the TCED problem without angles (Opt. B) with associated Lagrange

multipliers κ⋆, γ⋆, µ̄⋆,
¯
µ⋆, β̄⋆, and

¯
β⋆ that solve the KKT conditions for the TCED problem

without angles (Opt. B) under the assumption that such a local minimizer exists.
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5.1.4 Locational Marginal Prices

The Locational Marginal Prices (LMPs), denoted λ⋆, are defined to be the partial

derivative of the Lagrangian function with respect to the demand vector D:

λ⋆ := ∇DΦB(N
⋆, G⋆;κ⋆, γ⋆, µ̄⋆,

¯
µ⋆, β̄⋆,

¯
β⋆;D). (5.12)

where ΦB represents the Lagrangian function (5.1) for the TCED problem without angles

(Opt. B). The LMP can be decomposed as λ⋆ := e+ l+ c, where e is the energy component

associated with Lagrange multiplier κ, l is the loss component associated with Lagrange

multipliers γ, and c is the congestion component associated with Lagrange multipliers (µ̄,
¯
µ).

The congestion and loss components of the LMP at the price reference bus are zero, that is

cσ := 0 and lσ := 0. The remaining LMP components are explicitly written as follows:

e :=κ⋆1, (5.13)

l̊ :=1
2
H̊−1Ȧ†∇L(Ȧθ̇⋆) |A| γ⋆, (5.14)

c̊ :=S†(
¯
µ⋆ − µ̄⋆). (5.15)

where θ̇⋆ = H̊−†(G̊⋆ − D̊ − N̊⋆).

Remark 5.3. As explained in Section 5.1.3 the sensitivity of the optimal objective value with

respect to D is the same for Opt. A and Opt. B under the assumption that the sensitivity

is well defined. This implies that the LMPs for both problems are the same. Furthermore,

Opt. A is a special case of the TCED problem (4.19), with the mid-line power flow function

restricted to a linear form. As a result, Opt. B and the TCED problem (4.19) have the same

LMPs when the mid-line power flow function is restricted to a linear form.

Remark 5.4. The loss and congestion components of the LMP are zero at the price reference

bus highlighting the dependency of these components of the LMP on the choice of price

reference bus. On the other hand, the LMP is not dependent on the choice of price reference

bus as explained in Section 4.2.2 with respect to the TCED problem (4.19).

5.1.5 FTRs and Congestion Revenue Adequacy

The TCED problem without angles (Opt. B) is non-convex. ISOs governed by FERC

intend to solve this problem by linearizing the non-linear constraints of the TCED problem
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without angles (Opt. B) around some base-case state resulting in a convex LCED problem as

will be discussed elaborately in the next section. It is important to note that the congestion

revenue adequacy guarantee from Section 2.5 does not apply to the TCED problem without

angles (Opt. B) or to the LCED problems in the next section. Specifically, the revenue

adequacy guarantee from Section 2.5 does not hold for Opt. B because it is non-convex.

Furthermore, the revenue adequacy guarantee from Section 2.5 does not apply to the LCED

problems in the next section because the base-case state changes on a day-to-day basis

and the SFCs must be fixed at the time of the FTR auction, which may occur months or

even years in advance of market clearing. For this reason and others, ISOs governed by

FERC do not consider losses when defining the SFCs. Specifically, the SFCs are defined

by the following polytope, which matches the line limit constraints (j4) and power balance

constraints (j1). Notice that this definition of the SFCs is convex and does not depend on

the base-case state, allowing it to be fixed far in advance of the market clearing.

T :=
{
f ∈ Rn :

¯
F ≤ Sf̊ ≤ F̄ and 1†f = 0

}
. (5.16)

As explained in Remark 2.2, electricity markets today require each FTR allocation vector f (ξ)

to be balanced in the sense that the elements sum to zero, e.g. 1†f (ξ) = 0. This requirement

is possible to enforce because the SFCs are lossless as in (5.16), which requires 1†f = 0.

ISOs in the US typically price FTRs based on the congestion component c of the LMP

defined by (5.15) as opposed to the LMP λ⋆ defined by (5.12). In this case, the payoff received

by the FTR holder will be very close to the value −λ⋆†f (ξ) under the assumption that the

loss component of the LMP l is very small. To see this, notice that −λ⋆†f (ξ) = −(c+ l)†f (ξ)

because e†f (ξ) = 0 when the FTR allocation vector is balanced 1†f (ξ) = 0. For this reason,

FTRs can still be used to approximately hedge the LMP uncertainty as described intuitively

in Section 2.2.3. More specifically, FTRs in practice can only be used to hedge the congestion

component of the LMP c and not the loss component of the LMP l.

In this section, the congestion revenue remains λ⋆†(D−G) as previously stated in (2.3);

however, the total FTR payoff now differs from Section 2.2.3 and is now written as −c†f .
As a result, we must give a congestion revenue adequacy guarantee that differs from the

guarantee provided in Section 2.5. This subsection will provide a different revenue adequacy
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guarantee that accommodates this alternative payoff. Specifically, the following theorem

states that the total FTR payoff is upper bounded by the congestion revenue under the

condition that the LMPs are non-negative. This theorem can be applied when using the

SFCs defined in (5.16) along with FTR payoffs defined by −c†f . Reference [40] provides a

similar revenue adequacy guarantee and also explains intuitively why the potential congestion

revenue shortfall (PCRS) is typically small when prices are negative.

Theorem 5.1. Suppose the FTR allocation satisfies the SFCs so that f ∈ T where T is defined

in (5.16). Let the point (G⋆, N⋆) satisfy the KKT conditions of the TCED problem without

angles (Opt. B). If the LMPs λ⋆ as defined in (5.12) are all non-negative, then the congestion

revenue λ⋆†(D−G⋆) is greater than or equal to the FTR payoff c†f , where c is the congestion

component of the LMP as defined in (5.15).

f ∈ T and λ⋆ ≥ 0 ⇒ λ⋆†(D −G⋆) ≥ c†f

Proof: See Appendix B.

It also is important to recognize that FTR payoffs −c†f (ξ) do not depend on the

choice of angle reference bus ρ or slack reference bus σ if the FTR allocations vectors f (ξ)

are balanced. Proof of this is not provided in this dissertation, see [58] for a discussion of

this issue. Reference [58] explains that the congestion component of the LMP c at any given

bus will depend on the choice of slack reference bus σ; however, the differences across busses,

e.g. Ac, will not.

5.2 Linearly Constrained Economic Dispatch

The economic dispatch problems formulated in the previous section are non-convex

and may be difficult to solve. For this reason it is typical for ISOs to use approximations

that result in a convex problem. Today ISOs use linearization techniques to simplify non-

convex economic dispatch problems into convex linearly-constrained problems. In this section

we present a sequence of four linearly-constrained economic dispatch problems, respectively,

Opt. C, D, E, and F, ultimately resulting in the common LCED problem (Opt. F) used in [21]
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and [58]. Presenting the sequence of problems highlights the nature of the approximations

used in practice.

Section 5.2.1 describes linearization about a base-case state, which is fundamental to

all of the linearization approaches. Section 5.2.2 derives the direct LCED problem (Opt. C),

which serves as an approximation to the TCED problem without angles (Opt. B) as explained

by a result from [40]. Section 5.2.3 introduces the indirect LCED problem (Opt. D) and

proves that it is equivalent to Opt. C. Section 5.2.4 then explains how to compute the loss

component of the LMP from Lagrange multipliers of the indirect LCED problem (Opt. D).

LDFs are then introduced to the indirect LCED problem in Section 5.2.5 to obtain the LDF

LCED problem (Opt. E). This problem is shown to be a good approximation of the indirect

LCED problem under the additional assumption that no line limits are binding. The common

LCED problem (Opt. F) is derived in Section 5.2.6 and is shown to be equivalent to the LDF

LCED problem (Opt. E). Section 5.2.7 then introduces a uniqueness assumption required

to efficiently recover an optimal dispatch of the TCED problem with angles (Opt. A).

5.2.1 Linearization about Base-Case State

The linearization procedure will use a first order approximation around a base-case

state θ̇0. Associated with the base-case state are the base-case nodal loss allocation vec-

tor N0 := 1
2
|A|†L(Ȧθ̇0) and the base-case generation dispatch vector G0 := H†θ̇0 +N0 +D.

Note that by construction the base-case values θ̇0 and G0 satisfy all equality constraints

in Opt. A and the base-case values N0 and G0 satisfy all equality constraints in Opt. B.

In the real-time market the base-case state is often chosen to match the output of

the state estimator. Similarly, in the day ahead market the base-case state is often chosen

by predicting the future system state based on historical data. However, other choices of

base-case state are used in practice. For example, another common method constructs a

base-case state from the optimal dispatch of an alternative form of the economic dispatch

problem [21]. A simple example of an alternative form of the economic dispatch problem

is the lossless DC OPF problem. Note that previous work has concluded that a minimizer

of the lossless DC OPF problem can be used as the base-case to effectively approximate
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losses [79].

5.2.2 Direct Linearization

Reference [40] suggests directly linearizing the nodal loss allocation constraint

ΛB(G̊,N ; D̊) = 0 with respect to decision variables G̊ and N using a first order Taylor

expansion. The gradient of the LHS with respect to G̊ is −1
2
H̊−1Ȧ†∇L(Ȧθ̇0)|A| and the

gradient of the LHS with respect to N̊ is I̊† + 1
2
H̊−1Ȧ†∇L(Ȧθ̇0)|A|. With this in mind, the

direct LCED problem is defined as follows.

Optimization C. The direct LCED problem is defined to be Opt. j with Λj specified by:

ΛC(G̊,N ; D̊) :=N− 1
2
|A|†L

(
ȦH̊−†(G̊0−D̊−N̊0)

)
− 1

2
|A|†∇L†(Ȧθ̇0)ȦH̊−†((G̊−G̊0)−(N̊−N̊0)). (5.17)

Note that with the specification of ΛC as in (5.17), Opt. C has linear constraints.

With cost function C(·) assumed convex, Opt. C is a convex problem. If the cost function

C(·) is linear, then Opt. C is a linear program.

The following assumption provides conditions under which an optimal dispatch of

the TCED problem without angles (Opt. B) is also optimal for the direct LCED problem

(Opt. C).

Assumption 5.1. The base-case dispatch and nodal loss allocation vectors (G0,N0) represent a

local minimizer of the TCED problem without angles (Opt. B) and solve the KKT conditions

for the TCED problem without angles (Opt. B) along with some Lagrange multipliers κ0, γ0,

µ̄0,
¯
µ0, β̄0, and

¯
β0.

We will employ this assumption for the remainder of this section. Notice that the

LMPs are well defined under Assumption 5.1 and are expressed as in Section 5.1.4. Under

Assumption 5.1, [40] proves that (G0, N0) along with Lagrange multipliers κ0, γ0, µ̄0,
¯
µ0,

β̄0,
¯
β0 satisfy the KKT conditions for the direct LCED problem (Opt. C), implying that the

base-case dispatch P 0 is optimal for the direct LCED problem, which is a convex program

with linear constraints as mentioned above. This result is easy to verify by noting that
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these values satisfy the stationarity condition and the primal feasibility condition for both

problems. Additionally note that the dual feasibility condition and complementary slackness

conditions are identical for both problems.

Remark 5.5. A base-case state θ̇0 satisfying Assumption 5.1 is termed an ideal base-case

state. However, in practice Assumption 5.1 will only be approximately true and the base-case

values (G0, N0) will fall in the vicinity of a minimizer of the TCED problem without angles

(Opt. B). Section 5.3 explains the conditions under which this is a reasonable approximation.

Specifically, Section 5.3.1 studies test cases where this approximation does not work well and

Section 5.3.2 studies test cases where this approximation does work well.

5.2.3 Indirect Linearization

In this section we take another approach, similar to that of [21] and [58], by deriving

loss sensitivities with respect to nodal net real power injections about the base-case state.

To do this we must first define the nodal loss allocation as an implicit vector valued function

of the net real power injections at the non-price reference buses Ñ : Rn−1 → Rn. The vector

of net real power injections is denoted T ∈ Rn and is interpreted as the generation dispatch

vector less the demand vector G−D. The function Ñ is defined implicitly by the relationship

between N and G̊− D̊ in the constraint ΛB(G̊,N ; D̊) = 0 from the TCED problem without

angles (Opt. B), and therefore satisfies:

Ñ(T̊ ) := 1
2
|A|†L

(
ȦH̊−†(T̊ − ˚̃N(T̊ ))

)
. (5.18)

The loss sensitivity matrix is denoted∇Ñ : Rn−1→R(n−1)×n and is defined to be the Jacobian

of Ñ with respect to its argument. The nodal loss allocation vector can then be approximated

using a simple first order Taylor expansion of the function Ñ(T̊ ) evaluated at the base-case

net real power injections T̊ 0 := G̊0−D̊. The indirect LCED problem is as follows.

Optimization D. The indirect LCED problem is defined to be Opt. j with Λj specified by:

ΛD(G̊,N ; D̊) :=N−Ñ(G̊0−D̊)−∇Ñ(G̊0−D̊)†(G̊−G̊0). (5.19)
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We derive the loss sensitivity matrix ∇Ñ in Theorem 5.2 below. Theorem 5.2 al-

lows us to prove equivalence of linear constraints ΛC(G̊,N ; D̊) = 0 and ΛD(G̊,N ; D̊) = 0.

Specifically, these constraints are equivalent in that one constraint holds if and only if the

other holds. This can be proven algebraically by substituting the expression for the loss

sensitivity matrix, ∇Ñ , from Theorem 5.2 into the expression for ΛD(G̊,N ; D̊) from (5.19).

As a result, the direct LCED problem (Opt. C) and the indirect LCED problem (Opt. D)

are equivalent in that any optimal dispatch of one of these problems is also optimal for the

other. Also notice that computing the loss sensitivity matrix, ∇Ñ , requires the inversion of

a large Jacobian matrix.

Theorem 5.2. Assuming the matrix I+1
2
H̊−1Ȧ†∇L(Ȧθ̇0)|Å| is invertible, the columns of the

loss sensitivity matrix evaluated at T̊ 0 corresponding to the non-price reference buses are
expressed as:

∇˚̃N(T̊ 0)= 1
2
H̊−1Ȧ†∇L(Ȧθ̇0)|Å|(I+1

2
H̊−1Ȧ†∇L(Ȧθ̇0)|Å|)−1.

The column of the loss sensitivity matrix evaluated at T̊ 0 corresponding to the price reference
bus is expressed as:

∇Ñσ(T̊
0) =1

2
(I−∇ ˚̃N(T̊ 0))H̊−1Ȧ†∇L(Ȧθ̇0)|Aσ|.

Proof: Differentiating all rows of (5.18) excluding the price reference bus around the

point T̊ 0 yields the following:

∇˚̃N(T̊ 0)= 1
2
H̊−1Ȧ†∇L(Ȧθ̇0)|Å|− 1

2
∇˚̃N(T̊ 0)H̊−1Ȧ†∇L(Ȧθ̇0)|Å|.

Algebraic manipulation yields the following and the result then follows by the assumption

on invertibility:

∇ ˚̃N(T̊ 0)(I+1
2
H̊−1Ȧ†∇L(Ȧθ̇0)|Å|)= 1

2
H̊−1Ȧ†∇L(Ȧθ̇0)|Å|.

Differentiating the row of (5.18) corresponding to the price reference bus yields the

expression for ∇Ñσ(T̊
0).
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5.2.4 Equivalent Loss Component of LMP

The expression for the loss component of the LMP in terms of the Lagrange multipliers

of the indirect LCED problem (Opt. D) evaluated at the base-case point (G0, N0) is as follows:

l̊ = ∇D̊ΛD(G̊
0, N0; D̊)γ′ = ∇Ñ(G̊0−D̊)γ′, (5.20)

where lσ = 0 and (G0, N0) along with Lagrange multipliers κ0, γ′, µ̄0,
¯
µ0, β̄0,

¯
β0 satisfy the

KKT conditions for the indirect LCED problem (Opt. D). Of course this expression is slightly

different than the expression given for the loss component of the LMP from (5.14). This is

because the Lagrange multipliers γ′ corresponding to the indirect LCED problem (Opt. D) do

not match the Lagrange multipliers γ0 corresponding to the direct LCED problem (Opt. C).

For the remainder of this chapter γ′ will denote the optimal Lagrange multiplier for the

constraint ΛD(G̊,N ; D̊) = 0 of the indirect LCED problem (Opt. D).

The following theorem derives a relationship between the Lagrange multipliers of the

direct LCED problem (Opt. C) and the indirect LCED problem (Opt. D). By Theorem 5.3

below, the KKT point from Assumption 5.1, with γ0 replaced by γ′, solves the KKT con-

ditions for the indirect LCED problem (Opt. D). As a result, the base-case dispatch G0 is

optimal for the indirect LCED problem (Opt. D). In addition, the expressions of the loss

component of the LMP from (5.14) can be obtained from the expression (5.20) by substitut-

ing γ′ and ∇Ñ(G̊0−D̊) using the expressions from Theorems 5.2 and 5.3.

Theorem 5.3. Let (G0, N0) along with Lagrange multipliers κ0, γ0, µ̄0,
¯
µ0, β̄0,

¯
β0 satisfy the

KKT conditions for the direct LCED problem (Opt. C). Then (G0, N0) along with Lagrange

multipliers κ0, γ′, µ̄0,
¯
µ0, β̄0,

¯
β0 satisfy the KKT conditions for the indirect LCED problem

(Opt. D) where γ′σ = γ0σ and

γ̊′=(I+ 1
2
H̊−1Ȧ†∇L(Ȧθ̇0)|Å|)̊γ0+ 1

2
H̊−1Ȧ†∇L(Ȧθ̇0)|Aσ|γ0σ.

Proof: Notice that the primal feasibility, dual feasibility, and complementary slackness

conditions do not include γ and are identical for Opt. C and Opt. D. Therefore, by hypothesis

these conditions also hold for Opt. D. It remains to show that the stationarity conditions

(5.2)-(5.5) hold for Opt. D. Notice that the stationarity conditions for Opt. C and Opt. D
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differ only by their loss terms and so we need only show equivalence of the partial derivatives

of the loss terms for both problems.

1) Stationarity Condition w.r.t. Nσ

For Opt. D we have ∇NσΛD(G̊
0, N0; D̊)γ′=γ′σ. Replacingγ

′
σ with its given expression

yields γ0σ =∇NσΛC(G̊
0, N0; D̊)γ0, matching Opt. C.

3) Stationarity Condition w.r.t. N̊

For Opt. D we have ∇N̊ΛD(G̊
0, N0; D̊)γ′ = γ̊′. Substituting the given expression for

γ̊′ results in ∇N̊ΛC(G̊
0, N0; D̊)γ0, matching Opt. C.

2) Stationarity Condition w.r.t. G̊

For Opt. D we have

∇G̊ΛD(G̊
0, N0; D̊)γ′ =−∇ ˚̃N(G̊0−D̊)̊γ′−∇Ñσ(G̊

0−D̊)γ′σ.

Substituting the expression for ∇ ˚̃N(G̊0−D̊) from Theorem 5.2, substituting the given

expressions for γ̊′ and γ′σ, and rearranging the expression algebraically results in the following:

∇G̊ΛC(G̊
0, N0; D̊)γ0 =− 1

2
H̊−1Ȧ†∇L(Ȧθ̇0)|Å|̊γ0

− 1
2
H̊−1Ȧ†∇L(Ȧθ̇0)|Aσ|γ0σ,

again matching Opt. C.

5.2.5 Loss Distribution Factor LCED Problem

To reduce the number of optimization variables many references, including [21] and [58],

introduce Loss Distribution Factors (LDFs) in the form of a vector η ∈ Rn where 1†η = 1

and typically η ∈ Rn
+. Each LDF represents the fraction of total system losses allocated to

node i. Recognizing that the total system losses are represented by the function 1†Ñ(G̊−D̊),

the LDF LCED problem is defined as follows.

Optimization E. The LDF LCED problem is defined to be Opt. j with Λj specified by:

ΛE(G̊,N;D̊)=N−η
(
1†Ñ(G̊0−D̊)+1†∇Ñ(G̊0−D̊)†(G̊−G̊0)

)
. (5.21)
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References [21] and [58] only provide intuitive choices of LDFs that are not proven

optimal. In fact, there may not exist LDFs that allow the base-case dispatch to be optimal

for the LDF LCED problem (Opt. E). To see this notice that the constraint ΛE(G̊,N;D̊) = 0

reduces to N0 = η1†N0 when evaluated at the base-case values (G0, N0). For this constraint

to be satisfied we must have the following choice of LDFs:

η := 1
1†N0N

0. (5.22)

Remark 5.6. References [21] and [58] suggest the use of LDFs according to (5.22). However,

these references do not prove if or when such LDFs are optimal. Section 5.3.2 illustrates that

the LDFs from (5.22) are not always optimal but typically result in very small approximation

error.

Unfortunately, the LDFs in (5.22) do not generally allow the stationarity condition

for the LDF LCED problem (Opt. E) to be satisfied at the KKT point from Assumption 5.1.

To see this notice that the stationarity conditions for the LDF LCED problem (Opt. E)

and the indirect LCED problem (Opt. D) differ only by their loss terms. In order for these

problems to be equivalent, the partial derivative of the loss term in the Lagrangian function

from Opt. E with respect to G̊ must be equivalent to that of Opt. D. This partial derivative

is written as follows:

∇G̊ΛE(G̊,N ; D̊)γ′ =−∇Ñ(G̊0−D̊)1η†γ′,

=−∇Ñ(G̊0−D̊)1( 1
1†N0N

0)†γ′. (5.23)

In general this partial derivative does not match that of the indirect LCED problem (Opt. D),

which is expressed as ∇G̊ΛD(G̊,N ; D̊)γ′ = −∇Ñ(G̊0−D̊)γ′. A sufficient condition for the

base-case dispatch to be optimal for the LDF LCED problem (Opt. E) requires that γ′ be

proportional to the vector of ones as embodied in Assumption 5.2 below. We will employ

Assumption 5.2 for the remainder of this section and we will consider some test cases for

which it is also satisfied; however, it is important to note that this assumption is not generally

true.

Assumption 5.2. The optimal Lagrange multipliers γ′ associated with the indirect LCED

problem (Opt. D) are uniform. E.g. there exists some α ∈ R such that γ′ = 1α.
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To understand Assumption 5.2 it is useful to analyze the stationarity condition for

the indirect LCED problem (Opt. D) with respect to N as defined by (5.2) and (5.4), which

is as follows:

κ0 + γ′σ = 0 and 1κ0 + γ̊′ + S†(
¯
µ0 − µ̄0) = 0

This shows that the Lagrange multipliers γ′ = −1κ0 − c are indeed uniform if and

only if the congestion component of the LMP c is zero as defined in Section 5.1.4, in which

case γ′ = −1κ0. In turn, the congestion component of the LMP is zero if no line limits

from constraint (j4) are binding at the base-case values (G0, N0), leading to the statement

in Remark 5.7. This is because non-binding line limits require that
¯
µ0 = µ̄0 = 0 by the

complementary slackness condition.

Remark 5.7. Assumption 5.2 holds if no line limits from constraint (j4) are binding at the

base-case values (G0, N0).

The following theorem states that the base-case dispatch G0 is optimal for the LDF

LCED problem (Opt. E) under Assumptions 5.1 and 5.2.

Theorem 5.4. Let (G0, N0) along with Lagrange multipliers κ0, γ′, µ̄0,
¯
µ0, β̄0,

¯
β0 satisfy

the KKT conditions for the indirect LCED problem (Opt. D) where γ′ = 1α. Then (G0, N0)

along with the same Lagrange multipliers also satisfy the KKT conditions for the LDF LCED

problem (Opt. E).

Proof: Notice that the primal feasibility, dual feasibility, and complementary slackness

conditions are identical for Opt. D and Opt. E and by hypothesis these conditions therefore

hold for Opt. E. It remains to show that the stationarity conditions (5.2)-(5.5) hold for

Opt. E. Notice that the stationarity conditions for Opt. D and Opt. E differ only by their

loss terms and so we need only show equivalence of the partial derivatives of the loss terms

for both problems. First, the partial derivatives with respect to N and Gσ are equivalent for

both problems:

∇NΛj(G̊0, N0; D̊)1α = 1α and ∇GσΛj(G̊0, N0; D̊)1α = 0.
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Furthermore, the partial derivative with respect to G̊ is equivalent for both problems.

This is shown as follows:

∇G̊ΛE(G̊
0, N0; D̊)1α =−∇Ñ(G̊0−D̊)1( 1

1†N0N
0)†1α,

=−∇Ñ(G̊0−D̊)1α.

5.2.6 Common LCED Problem

The commonly formulated economic dispatch problem represents the total system

losses as a single decision variable ν ∈ R as opposed to representing the loss allocation to

each node as individual decision variables. This effectively eliminates n−1 decision variables

and n− 1 constraints, making the problem much easier to solve. Using notation similar

to [21], the common LCED problem (Opt. F) is written as follows:

min
G∈Rn,ν∈R

C(G) (Opt. F)

st : 1†(G−D − ην) = 0 (F1)

ν = LF †(G−D) + q (F2)

¯
G ≤ G ≤ Ḡ (F3)

¯
F ≤ S(G̊− D̊ − η̊ν) ≤ F̄ (F4)

This formulation is similar to the general TCED problem without angles (Opt. j).

In fact, the objective function and the generation output limit constraint are identical to

those of Opt. j. The power balance constraint (F1) and line limit constraint (F4) represent

constraints (j1) and (j4) after replacing the nodal loss allocation vector N with the expres-

sion ην. Constraint (F2) represents the total system losses where q ∈ R is an offset constant

and LF ∈ Rn represents the sensitivity of the total system losses with respect to the net real

power injections. Notice this formulation enforces transmission line limits despite the use of

Assumption 5.2, which effectively assumes no line limits are binding.

References [21] and [58] observe that different approximations of LF can be used and

they derive three different versions of LF using total derivatives and implicit functions. With

respect to our formulation the loss sensitivity vector is defined based on the loss sensitivity
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matrix as L̊F = ∇Ñ(G̊0−D̊)1 and LFσ = 0. Our formulation also uses a constant offset

term of q = 1†Ñ(G̊0−D̊) + 1†∇Ñ(G̊0−D̊)†(D̊ − G̊0). Using these definitions of LF and q

the loss constraint (F2) is as follows:

ν =1†Ñ(G̊0−D̊)+1†∇Ñ(G̊0−D̊)†(G̊−G̊0). (5.24)

Using this proposed definition of the loss sensitivity vector LF and offset constant q, it

should now be apparent that the common LCED problem (Opt. F) is equivalent to the LDF

LCED problem (Opt. E) in that any optimal dispatch of one problem is also optimal for the

other. This is because both problems have the same feasible set of dispatch variables G. In

fact, a feasible solution of the common LCED problem (G, ν) can be constructed from any

feasible solution of the LDF LCED problem (G,N) where ν = 1†N . Similarly, a feasible

solution of the LDF LCED problem (G,N) can be constructed from any feasible solution of

the common LCED problem (G, ν) where N = ην.

Remark 5.8. Although we do not prove this explicitly, the base-case values G0 and ν0 = 1†N0

indeed satisfy the KKT conditions of the common LCED problem (Opt. F) along with

Lagrange multipliers κ0, α, µ̄0,
¯
µ0, β̄0,

¯
β0 under Assumptions 5.1 and 5.2. Furthermore, in

agreement with (5.20) the loss price can now be expressed as l = LFα. It is interesting

to note that this expression of the loss price can also be derived from the common LCED

problem (Opt. F) when considering the loss sensitivity matrix LF and the offset constant q to

be constant parameters independent of the demand vector D. This may be counter-intuitive

because LF and q are indeed (implicitly) defined in terms of the demand vector D.

5.2.7 Recovering a Locally Optimal Dispatch

Recall that, by Assumption 5.1, the base-case values (G0, N0) represent a local mini-

mizer of the TCED problem without angles (Opt. B). Thus far we have shown that the

base-case generation dispatch G0 is locally optimal for the TCED problem with angles

(Opt. A) and is globally optimal for the common LCED problem (Opt. F) under Assump-

tions 5.1 and 5.2. However, as mentioned in the introduction, the common LCED problem

(Opt. F) may have multiple optimal dispatch vectors, some of which may not be optimal or

even feasible for the TCED problem with angles (Opt. A). This is an issue because standard
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off-the-shelf optimization software used to solve the common LCED problem (Opt. F) only

identifies one of potentially multiple optimal dispatch vectors. An additional assumption is

required to guarantee the identified dispatch matches the base-case dispatch G0.

Assumption 5.3. The common LCED problem (Opt. F) has a unique minimizer (G, ν).

Remark 5.9. The common LCED problem (Opt. F) is said to have a unique optimal dispatch

if Assumption 5.3 holds true. Similarly, the common LCED problem (Opt. F) is said to have

multiple minimizers or multiple optimal dispatch vectors if Assumption 5.3 does not hold

true.

Assumption 5.3 ensures that the common LCED problem has a unique optimal

dispatch. Under Assumptions 5.1, 5.2, and 5.3 the unique optimal dispatch for the com-

mon LCED problem (Opt. F) is indeed locally optimal for the TCED problem with angles

(Opt. A) and represents the base-case dispatch G0. Under these three assumptions a locally

optimal dispatch for the TCED problem with angles (Opt. A) can be identified by solving

the common LCED problem (Opt. F) using standard off-the-shelf optimization software.

The numerical results section investigates errors associated with relaxing each of these three

assumptions.

5.3 Numerical Results

This section provides numerical results intended to illustrate two key findings that

point out significant dispatch approximation errors may occur when certain assumptions

are violated. Section 5.3.1 illustrates the first key finding that small perturbations to

the ideal base-case state can result in significantly large dispatch approximation error if

Assumption 5.3 fails to hold. Associated errors are illustrated using an intuitive 2-bus test

case as well as a realistically large test case with 2383 buses, neither of which enforce line

limits so that Assumption 5.2 holds. Section 5.3.2 then illustrates the second key finding

that significant dispatch approximation error may occur when Assumption 5.2 fails to hold

even if Assumptions 5.1 and 5.3 hold. Associated errors are illustrated using an intuitive

3-bus test case as well as the same 2383 bus test case as in Section 5.3.1 but with line limits

enforced. In this specific example, introducing transmission line limits to the 2383 bus test
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case causes the common LCED problem (Opt. F) to have a unique optimal dispatch and we

show that there is no dispatch approximation error despite the presence of transmission con-

gestion. This suggests that realistic systems may not experience significant approximation

error when Assumption 5.2 fails to hold. Section 5.3.2 continues to select different base-case

states that introduce dispatch approximation error into the 2383 bus test case when enforc-

ing line limits. Since the uniqueness Assumption 5.3 holds for this specific test case, small

perturbations to the ideal base-case state result in little dispatch approximation error.

In this section the kth diagonal element of B is Bkk=
1
xk

and the kth element of the

vector valued loss function is Lk(Θ) = rk
x2k
Θ2
k where the impedance of line k ∈ L is rk + ixk

and Θ ∈ Rm represents the voltage angle difference across each transmission line Ȧθ̇. The

LDFs η are chosen as in (5.22). A computer with a 2.0 GHz processor is used.

5.3.1 Multiple Minimizers of the Common LCED Problem

This subsection studies two test cases that satisfy Assumptions 5.1 and 5.2; however,

the common LCED problem (Opt. F) has multiple minimizers for these two test cases,

violating Assumption 5.3. In this context small perturbations to the ideal base-case state

are shown to result in a common LCED problem (Opt. F) with a unique optimal generation

dispatch; however, this unique optimal generation dispatch differs significantly from the

desired generation dispatch G⋆ that solves the TCED problem with angles (Opt. A), resulting

in large generation dispatch approximation error. This is shown using an intuitive 2-bus test

case as well as a large test case with 2383 buses. In this subsection neither test case enforces

line limits so that Assumption 5.2 holds (See Remark 5.7).

5.3.1.1 2-Bus Test Case

A one-line diagram of the 2-bus test case is provided in Figure 5.2 along with various

parameters of the test case. Notice that the transmission line is highly resistive and has no

transmission limit. All system demand is located at bus 2 and is fixed to D2=100p.u. The

demand is co-located with expensive generation with cost function C2(G2)=G2. The gener-

ation at bus 2 is unlimited so that 0≤G2≤∞. Inexpensive generation is located remotely at

bus 1 as the cost of this generator is C1(G1)=0.6G1. The inexpensive generation is limited
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as 0≤G1≤60p.u. The total system cost C(G) is the sum of the individual generator costs.

Bus 1 is designated the angle reference bus and the price reference bus so that σ = ρ = 1.

The resulting system state is θ̇= θ2.

Bus 2Bus 2

Bus 1Bus 1

D2D2 G2G2

G1G1

Figure 5.2: 2-bus system one-line diagram. The demand is fixed atD2 =100p.u. The generators
have cost functionsC1(G1)=0.6G1 andC2(G2)=G2. The line has per-unit impedance of 0.01+i0.01
and has no limit so that F̄1=−

¯
F1=∞.

Figure 5.3 plots the set of all feasible generation dispatch vectors for the TCED

problem with angles (Opt. A) as a black curve. The gray arrows in this figure repre-

sent the objective descent direction. The unique optimal generation dispatch vector is

G⋆ = [28.125, 78.125]†p.u., is represented by the star in the figure, and is intuitively the

feasible generation dispatch vector that is furthest downstream in the descent direction.

The associated optimal vector of voltage angles is θ̇⋆ = θ⋆2 = −0.25 radians.

The black dashed line represents the set of all feasible generation dispatch vectors for

the common LCED problem (Opt. F) when using the ideal base-case state θ̇0 = θ̇⋆. Notice

that the descent direction is perpendicular to the black dashed line and as a result all feasible

generation dispatch vectors are optimal. Since the common LCED problem (Opt. F) has

multiple minimizers, Assumption 5.3 does not hold. Additionally, only one of the infinitely

many minimizers of Opt. F is feasible for the TCED problem with angles (Opt. A).

In practice the ideal base-case state is typically estimated. To emulate this, linearize

around the base-case state θ̇⋆+δ where δ = 0.07 radians represents a small perturbation.

The resulting linear feasible set of generation dispatch vectors is represented by the dashed

gray line. Furthermore, the common LCED problem (Opt. F) now has a unique optimal

generation dispatch vector G ≈ [60, 55.559]†p.u. that is represented by the black circle and

also significantly differs from the desired generation dispatch vector G⋆. The dispatch ap-
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Figure 5.3: Illustration of the feasible set of dispatch vectors G for various ED problems associated
with the 2-bus test case.

proximation error vector is ∆G = G−G⋆ ≈ [31.875,−22.566]†p.u., which is large compared

to G⋆.

Perturbing the ideal base-case state in the other direction also results in large dispatch

approximation error. Specifically, linearizing around the base-case state θ̇⋆−δ results in the

linear feasible set of generation dispatch vectors represented by the solid gray line. In this

case the common LCED problem (Opt. F) has a unique optimal generation dispatch vector

G ≈ [0, 92.242]†p.u. that is represented by the black diamond and also significantly differs

from the desired generation dispatch vector G⋆. The dispatch approximation error vector is

∆G = G−G⋆ ≈ [−28.125, 14.117]†p.u., which is again large compared to G⋆.

Remark 5.10. Similarly large approximation error remains for an arbitrarily small pertur-

bation δ > 0. Alternatively, similarly large approximation error remains after adding slight

curvature to the objective descent direction that might arise from a small positive quadratic

coefficient in the cost function.

Remark 5.11. The lossless DC OPF problem yields a unique optimal generation dispatch

vector of G = [60, 40]†p.u. for the 2-bus test case. In fact, the lossless DC OPF problem

and the TCED problem with angles (Opt. A) both have unique optimal generation dispatch
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vectors; however, the common LCED problem (Opt. F) has multiple optimal generation

dispatch vectors when the base-case state matches its ideal value θ̇⋆.

Remark 5.12. Reference [21, section V-A] makes a similar observation regarding a different

2-bus test case. In their example the common LCED problem (Opt. F) also has multiple

minimizers when the ideal base-case state is chosen. Rather than perturbing the base-case

state, as is done in this chapter, they perturb the bids of the generators. Keeping the

base-case state fixed, they show that a small perturbation in generator bids can result in

significant dispatch approximation error. This observation is consistent with the observations

made here.

5.3.1.2 Test Case 2383wp without Line Limits Enforced

Now consider the test case 2383wp from the NESTA archive, which represents the

Polish power system during the 1999-2000 winter evening peak [17]. Line limits are not en-

forced to ensure that Assumption 5.2 holds. The identified minimizer of the TCED problem

with angles (Opt. A) is found using the interior point algorithm provided by the MATLAB

function FMINCON and takes 17.10sec. to converge. The optimal objective value of this

problem is C(G⋆)=$1865459.40.

Let’s first analyze the common LCED problem (Opt. F) with the base-case state

chosen to match the identified minimizer of the TCED problem with angles (Opt. A) θ̇0 = θ̇⋆

in order to satisfy Assumption 5.1. In this case the loss sensitivity matrix ∇Ñ(G̊0−D̊) takes

26.13sec. to compute due to the inverse computation. There exist multiple optimal dispatch

vectors G for the common LCED problem (Opt. F), some of which are not feasible for the

TCED problem with angles (Opt. A). To illustrate this we use an interior point algorithm

provided by Artelys KNITRO software to solve the common LCED problem (Opt. F) with

different supplied initial guesses [10]. Table 5.1 compares the identified minimizers of both

problems where ∆G ∈ Rn represents the difference between G⋆ and the identified optimal

dispatch of the common LCED problem (Opt. F) and ∆C represents the difference between

C(G⋆) and the optimal objective value of the common LCED problem (Opt. F).

Turning to the first row of Table 5.1, the main body of this chapter proves that
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G = G⋆ and ν = 1†N⋆ is a minimizer of the common LCED problem (Opt. F). When

supplying this as the initial guess, the algorithm immediately converges to a dispatch that

nearly matches G⋆. Notice that the associated errors, ∆G, are very small relative to the total

dispatch generation ∥G⋆∥1 = 49231.67MW and the optimal objective values of both problems

are nearly identical. However, ∆G is not identically zero due to insignificant computational

error.

Table 5.1: Results for test case 2383wp without line limits enforced and with the ideal base-
case state θ̇0= θ̇⋆. The error quantities are denoted with ∆ and represent the difference between
identified optimal quantities of Opt. A and Opt. F.

Initial Guess for the ∥∆G∥1 ∥∆G∥∞ |∆C| Solver

Interior Point Algorithm (MW) (MW) ($) Time (s)

G = G⋆ and ν = 1†N⋆ 1.73 0.88 0.00 5.52

Typical Operating Point 21.65 10.70 0.00 5.33

Minimizer of lossless DC OPF 308.77 152.77 0.00 7.61

To demonstrate that Opt. F has multiple minimizers, two alternative initial guesses

were supplied as shown in the second and third rows of Table 5.1. The first alternative

was constructed from the typical operating point provided by the test case description. The

second alternative was constructed from the minimizer of the lossless DC OPF problem,

which was solved using the DC OPF function available in MATPOWER [98]. When using

these alternative initial guesses the algorithm converges to dispatch values that do not match

G⋆ but do attain the same optimal objective value C(G⋆). Furthermore, these identified

dispatch values are not feasible for the TCED problem with angles (Opt. A).

Similar to the simple 2-bus example, a small perturbation of the base-case state

results in significantly large dispatch approximation error. To illustrate this we perturb

the ideal base-case state θ̇⋆ by a perturbation vector δ ∈ Rn−1 that was sampled from a

normal distribution with zero mean and a diagonal covariance matrix of 10−10 × I. The

specific sample drawn from this distribution has the properties ∥δ∥∞ = 3.6× 10−5 radians

and ∥δ∥1 = 0.018 radians. The resulting common LCED problem appears to have a unique

optimal dispatch because the same dispatch is identified when using any initial guess for
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the interior point algorithm. The dispatch approximation error is ∥∆G∥1 = 314.70 MW and

∥∆G∥∞ = 156.19 MW. This dispatch approximation error is significant compared to the

small perturbation δ.

5.3.2 LDF Approximation Error with Congestion

This subsection studies test cases that satisfy Assumptions 5.1 and 5.3; however,

transmission line congestion causes Assumption 5.2 to be violated. A highly resistive 3-bus

test case with significant transmission congestion is used to illustrate the potential dispatch

approximation errors associated with Assumption 5.2. Although associated errors are large

for this extreme 3-bus test case, they are typically very small in practice as is illustrated

by the 2383 bus test case with line limits enforced. In fact, this test case exhibits no error

despite having transmission congestion. To illustrate error associated with Assumption 5.1

alternative choices of base-case state are investigated that introduce dispatch approximation

error into the 2383 bus test case.

5.3.2.1 3-Bus Test Case

Figure 5.4 provides the details of the 3-bus test case in a one-line diagram. The

generation dispatch values G have no upper limit but are restricted to be non-negative, e.g.

¯
G = 0. The system is highly resistive as the impedance of each line is rk + ixk = 0.01 + i0.01

in units of p.u. The cost function is given by C(G)=C1(G1)+C2(G2)+C3(G3). Bus 1 is

assigned to be the slack bus and the reference bus.

L
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in
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in
e
1

L
in
e
1

Line 3Line 3

Bus 1Bus 1 Bus 3Bus 3

Bus 2Bus 2

G1G1 G3G3

G2G2 D2=100D2=100p.u.p.u.

Figure 5.4: 3-bus system one-line diagram. The line limits F̄=−
¯
F are such that F̄2=F̄3=∞ and

F̄1=11p.u. The generators have cost functions C1(G1)=G2
1, C2(G2)=100G2

2 and C3(G3)=0.01G2
3.
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The minimizer of the TCED problem with angles (Opt. A) isG⋆ ≈ [82.38, 6.81, 123.61]†

and θ̇⋆ ≈ [−0.690, 0.110]† in units of p.u. and radians respectively. The ideal base-case state

is chosen θ̇0 = θ̇⋆ and thus the base-case dispatch isG0 =G⋆. The line limit for line 1 is binding

and the congestion component of the LMP is non-zero, taking the value c=[0, 137.26,−137.26]†

in units of dollars per p.u. Notice that Section 5.2.5 draws no conclusion regarding whether

or not G0 is optimal for the LDF LCED problem (Opt. E).

As expected the base-case point G0 and ν0 :=1†N0 is feasible for the common LCED

problem (Opt. F); however, this point is not optimal. An alternative unique optimal dispatch

G of Opt. F is identified that is not feasible for the TCED problem with angles (Opt. A). The

optimal objective value for the common LCED problem (Opt. F) is $11512.63, which is $62.36

lower than the optimal objective value for the TCED problem with angles (Opt. A). The

optimal dispatch for the common LCED problem (Opt. F) is G=[86.96, 6.17, 122.41]†p.u.

and the dispatch approximation error is G⋆−G=[−4.58, 0.64, 1.20]†. This highly resistive

network exhibits small error, suggesting this approximation is typically accurate.

5.3.2.2 Test Case 2383wp with Line Limits Enforced

Consider the same test case as Section 5.3.1 but with line limits enforced. The

identified minimizer of the TCED problem with angles (Opt. A) is found using the interior

point algorithm provided by FMINCON and takes 18.81sec. to converge. The optimal

objective value of this problem is C(G⋆)= $1890940.57. There are 4 congested lines with

binding limits, which is a small amount relative to the 2896 total transmission lines.

When using the ideal base-case state θ̇0 = θ̇⋆ the common LCED problem (Opt. F)

appears to have a unique minimizer because the interior point algorithm converges to the

same point with any choice of initial guess. Notice that test case 2383wp has the unusual

property that its common LCED problem (Opt. F) has a unique minimizer when enforcing

line limits but has multiple minimizers when line limits are not enforced. This property is

not typical as many other test cases in the NESTA archive do not have this property.

We consider four different base-case states when formulating the common LCED

problem (Opt. F). Each of the four versions of this problem appear to have a unique
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minimizer because the interior point algorithm converges to the same point for any choice

of initial guess. Since there is a unique minimizer, we are able to take advantage of the

much faster dual simplex algorithm provided by MOSEK, which does not allow for a user

supplied initial guess [4]. Table 5.2 provides numerical results for each of the four choices

of base-case state. Notice that the solver times are much faster and the optimal generation

dispatch vector G⋆ is exactly recovered when setting the base-case state to its ideal value

θ̇0 = θ̇⋆. Note that the loss sensitivity matrix ∇Ñ(G̊0−D̊) requires approximately 28 seconds

of computation time for each base-case state.

Since the common LCED problem (Opt. F) now has a unique optimal dispatch when

using the ideal base-case state, small perturbations of the base-case state should result in

small approximation errors. This is illustrated by using the same perturbed base-case state

θ̇⋆ + δ as in Section 5.3.1.2. Notice that the dispatch approximation error is very small as

compared to the error witnessed in Section 5.3.1.2. In fact, we should expect the dispatch

approximation error to disappear as the perturbation becomes smaller, e.g. ∥δ∥ → 0.

Table 5.2: Results for test case 2383wp with line limits enforced. The error quantities are denoted
with ∆ and represent the difference between identified optimal quantities of Opt. A and Opt. F.

Choice of ∥θ̇⋆− θ̇0∥1 ∥∆G∥1 ∥∆G∥∞ |∆C| Solver

Base-Case State, θ̇0 (radians) (MW) (MW) ($) Time (s)

Local Min. of Opt. A, θ̇⋆ 0.00 0.00 0.00 0.00 1.26

Small Perturbation, θ̇⋆+ δ 0.02 0.08 0.04 0.95 1.33

Min. of Lossless DC OPF 34.15 73.95 29.67 1061.11 1.10

Typical Operating Point 257.68 501.37 306.58 24007.79 1.37

As discussed in Section 5.2.1, the ideal base-case state θ̇⋆ is not known in practice.

We now consider two alternative choices of base-case state θ̇0. First, is the minimizer of

the lossless DC OPF problem. The second alternative is determined by solving power flow

equations at the typical operating point provided by the test case description. The power flow

equations and the lossless DC OPF problem are solved using MATPOWER. Table 5.2 shows

that the generation dispatch error is small relative to the total generation, which satisfies
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∥G⋆∥1 = 25108.74MW. Furthermore, the minimizer of the lossless DC OPF problem serves

as a better base-case state in terms of the generation dispatch error.

5.4 Summary

Using first-order Taylor expansions, this chapter derived several convex linearly con-

strained approximations to the non-convex economic dispatch problem from Chapter 4. A

sequence of four linearly constrained approximations are derived, ultimately resulting in the

common Linearly Constrained Economic Dispatch (LCED) problem, which is characterized

with respect to the underlying non-convex economic dispatch problem. Throughout the

chapter various approximation errors are identified including errors pertaining to the choice

of base-case state and errors pertaining to the common LCED problem having multiple solu-

tions. This chapter also highlights that there may not exist LDFs that recover the solution

to the underlying non-convex economic dispatch problem under congested conditions even

if the base-case state matches the solution to the underlying non-convex economic dispatch

problem. However, if no transmission line limits are binding, then such LDFs do exist and

are identified.
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Chapter 6

Convex Hull Pricing

The previous two chapters provided convex approximations of the non-convex AC

OPF problem for which there exist algorithms that provably converge to a globally optimal

solution. On the other hand, the there exist algorithms to solve the non-convex AC OPF

problem that perform well in practice but do not identify a generation dispatch with general

optimality guarantees. Over the past decade a significant amount of research has focused

on developing such algorithms. With this in mind, many recent works have developed relax-

ations to tightly approximate the AC OPF problem, e.g. [18,49,51,60–62,67,85]. Although

these methods identify a dispatch that is not guaranteed to be feasible, a nearly optimal

feasible dispatch along with corresponding LMPs can be recovered via primal-dual interior

point methods.

This chapter investigates the use of a potentially sub-optimal dispatch that is feasible

for the AC OPF problem and may be identified using any of the aforementioned algorithms.

However, as explained in Section 2.5, reference [52] shows that a revenue adequate market

equilibrium does not always exist for the AC OPF problem. Furthermore, by theorem 1

of [52] a revenue adequate market equilibrium, as in Definition 2.3, can only occur if the

globally optimal dispatch is identified for the AC OPF problem. For this reason our proposed

pricing structure should account for costs associated with generator uplift and FTR uplift.

Convex Hull Prices (CHPs) are proposed and are defined to solve a novel multi-

objective minimum uplift problem that captures the trade-off between generator side-payments

This chapter is based on the following publication: Manuel Garcia, Harsha Nagarajan, and Ross Baldick.
“Convex hull pricing for the AC optimal power flow problem.” IEEE Transactions on Control of Network
Systems, (Accepted 2019). The first author designed the model, designed and implemented the computational
studies, and wrote the manuscript with support from the coauthors.
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and potential congestion revenue shortfall. A convex primal counterpart of this multi-

objective minimum uplift problem, termed the primal CHP problem, is formulated in terms

of the convex hull of the set of feasible net real power injections. Indeed the term Convex

Hull Price derives from the result that the CHPs are equivalent to the optimal Lagrange

multipliers of the primal CHP problem. However, depending on the chosen model of the

transmission network, the convex hull of the feasible set of net real power injections may be

intractable to evaluate. In this case CHPs are approximated using state-of-the-art convex

relaxations that are efficiently solvable. This is the first proposed method of approximating

CHPs in polynomial-time that is general enough to accommodate the non-linear transmis-

sion constraints in the AC OPF problem. In our abstract myopic market setting we show

that tight relaxations of the AC OPF problem can be used to effectively approximate CHPs

that decrease potential congestion revenue shortfall significantly with little effect to side-

payments.

This chapter serves as an initial effort to incorporate non-linear models of the trans-

mission network into a general convex hull pricing framework. As mentioned in Section 1.1.4,

all special-purpose algorithms for computing CHPs have focused the Unit Commitment (UC)

problem with linear transmission constraints. In an initial effort to incorporate non-linear

transmission models, this chapter focuses on an abstract myopic market that considers only a

single time period, consistent with the entirety of this dissertation. In other words, we focus

on the non-convexity of interest by analyzing CHPs associated with the AC OPF problem,

which does not incorporate integer decision variables representing generator commitment

statuses. However, similar relaxation techniques can be used to approximate a solution of

a multi-objective minimum uplift problem in a more general setting that includes generator

commitment (See Remark 6.1).

In the context of the AC OPF problem, we show that standard LMPs always result in

zero generator uplift and non-negative FTR uplift because the generator models are convex

and the transmission network model is non-convex. Using LMPs, the total FTR uplift reaches

over 32% of the total operating cost for an IEEE test case with 162 buses and over 13% of

the total operating cost for a NESTA test case with 2224 buses [17]. This implies that the

consideration of non-linear transmission constraints may be significant in the context of FTR
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uplift. Since generator uplift is zero when using LMPs, CHPs will actually increase generator

uplift as compared to LMPs, which is starkly different from the typical observations made

in the context of the UC problem. We also find that CHPs can be effectively approximated

using the Semi-Definite Programming (SDP) relaxation. In fact, if the weight parameter

representing the relative value of FTR uplift to generator uplift is set lower than 0.72, then

approximate CHPs for the 162 bus test case reduce the total uplift by over 30% of the total

operating cost without introducing any generator uplift. This promising result is dampened

by noting that the SDP relaxation is unable to be solved efficiently for large test cases

with over 1000 buses. We emphasize the difficulty of solving large SDPs and point out

that SDPs are only approximately solvable in polynomial-time, with arbitrarily small fixed

approximation error [2]. Two other state-of-the-art convex relaxations are also analyzed that

are more computationally efficient, but tend to result in higher uplift payments for the test

cases analyzed.

This chapter is organized as follows. Section 6.1 explains that LMPs may result in

positive FTR uplift and proves that LMPs always result in zero side-payments to generators.

Section 6.2 formulates the CHP optimization problem as a multi-objective minimum uplift

problem and shows that CHPs support a revenue adequate market equilibrium if such prices

exist. Section 6.3 then derives the primal CHP problem from a general form of the AC OPF

problem and CHPs are proven to be the optimal Lagrange multipliers of the primal CHP

problem. A general relaxation technique is then proposed to approximate the primal CHP

problem. Throughout the main body of this chapter, the model of the transmission network is

left general. In fact, many of the results may be general enough to apply to other systems that

are subject to non-linear transportation constraints, provided the respective relaxations well

approximate the feasible regions. Section 6.5 then focuses on the fully detailed AC model of

the transmission network, provides examples where a revenue adequate market equilibrium

does not exist and illustrates many of the concepts discussed. Section 6.6 concludes and

provides directions to pursue in future work.
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6.1 LMPs and Revenue Inadequacy

The following theorem states that a KKT price/dispatch pair as in Definition 2.2

always results in zero side-payments to generators, which is a byproduct of the private

constraint sets Xi being convex. This highlights a fundamental difference between LMPs

and CHPs in the context of the AC OPF problem. While CHPs minimize the sum of side-

payments and PCRS, LMPs result in zero side-payments. As a result CHPs tend to increase

side-payments and decrease PCRS as compared to LMPs. This tendency of CHPs in the

context of the AC OPF problem is starkly different from from the tendency that has been

observed in previous work. Specifically, CHPs tend to lower side-payments to generators in

the context of the Unit Commitment (UC) problem with a linear model of the transmission

network, as in [80] and [45]. The difference is due to the fact that the private constraints Xi

are the source of non-convexity in the UC problem, whereas the network constraints are the

source of the non-convexity in the AC OPF problem.

Theorem 6.1. A KKT price/dispatch pair as in Definition 2.2 results in zero side-payments

to generators, eg. Co
i (λ

⋆
i , G

⋆
i ) = 0 ∀i ∈ N.

Proof: The generalized stationarity conditions (2.7) include necessary conditions for

optimality of each profit-maximizing generation problem (2.1). Since each problem (2.1) is

convex, these conditions are also sufficient for global optimality.

6.2 Multi-objective Minimum Uplift Problem

To reduce deficit it is in the interest of the ISO to have low side-payments and PCRS.

CHPs are defined as an optimal solution to a pricing problem that minimizes the weighted

sum of these values and is referred to as the CHP problem or the multi-objective minimum

uplift problem.

Definition 6.1. The Convex Hull Prices (CHPs) minimize the weighted sum of potential

congestion revenue shortfall and total side-payments, are denoted λ̂, and are defined using

a positive weight parameter α > 0 that represents the value of PCRS relative to generator

side-payments.

λ̂ ∈ argmin
λ∈Rn

(
αCs(λ,Gd) + Σ

i∈N
Co
i (λi, G

d
i )

)
(6.1)
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Recalling that side-payments and PCRS are always non-negative and recognizing

that the weight parameter α is defined to be positive, it is apparent that CHPs must form a

revenue adequate market equilibrium, as in Definition 2.3, with any given dispatch values Gd

if such prices exist. Furthermore, the ISO may prefer PCRS over side-payments because the

PCRS only represents a potential shortfall whereas the side-payments represent an actual

shortfall. For this reason, the weight parameter will likely be chosen to be less than one.

The CHP problem (6.1) is similar to the multi-objective minimum uplift problem

from [95], but explicitly incorporates FTR uplift into the formulation as suggested in their

future work section. Our formulation also includes non-linear transmission constraints, which

has not been investigated in a multi-objective setting. When the weight parameter is set

to α = 1 the CHP problem (6.1) is consistent with the formulation in [43] and [35], which

provide a high-level analysis that is capable of accommodating non-linear transmission mod-

els. However, the special-purpose algorithm designed to solve the minimum uplift problem

in [43] and [35] is restricted to linear transmission models.

The objective function of the CHP problem (6.1) is intuitively convex in the price

variables λ because it is the sum of individual functions that represent the maximum of affine

functions in λ. However, despite convexity, this problem is still difficult to solve in general

because its objective function is difficult to evaluate and is non-smooth. In fact, references [6]

and [54] show that it is generally NP-hard to identify a feasible point of the maximum FTR

payoff problem from (2.4), which must be solved to evaluate the PCRS function from (2.5)

denoted Cs(λ,Gd).

6.3 Approximating Extended Locational Marginal Prices

This section explains how CHPs can be approximated as the optimal Lagrange mul-

tipliers of a convex optimization problem. We begin by formulating the convex primal CHP

problem. The CHPs are then proven equivalent to optimal Lagrange multipliers of the con-

vex primal CHP problem. We then explain how to approximate the convex primal version

of the CHP problem using convex relaxations. This section leaves the feasible set of net real

power injections T general.
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6.3.1 Primal Formulation of the CHP Problem

The primal CHP problem is very similar in form to the general ED problem. This

formulation incorporates the dispatched net real power injections T d := Gd − D and the

weight parameter α into the real power balance constraints. Notice that the this generalized

version of the real power balance constraints reduces to the standard real power balance

constraints when α = 1. The primal CHP problem is written as follows:

min
G∈X, T∈conv(T)

Σ
i∈N
Ci(Gi) (6.2)

st : Di −Gi + αTi + (1− α)T di = 0 ∀i ∈ N (6.2a)

where conv(T) is the convex hull of T.

A key insight that helps in computing CHPs is that any optimization problem with a

linear objective function and a compact feasible set has the same optimal value after relaxing

the feasible set to its convex hull [28]. Under the assumption that T is compact we have the

following equivalence:

min
T∈T

λ†T = min
T∈conv(T)

λ†T (6.3)

This fact allows for the partial Lagrangian dual function of the primal CHP problem,

denoted L(λ) to be written in the following convenient form:

L(λ) := Σ
i∈N

min
Gi∈Xi

(Ci(Gi)−λiGi)+α min
T∈T

λ†T+λ†
(
(1−α)T d+D

)
. (6.4)

The following Theorem 6.2 establishes CHPs as a maximizer of this partial Lagrangian

dual function. Though similar to results in other work regarding CHPs, e.g. [80], this result

accounts for weight constant α and general non-linear transmission models assumed by the

set T. If the weight parameter is set to α = 1 then the partial Lagrangian dual function

is independent of the dispatched generation Gd, and thus CHPs do not depend on the

dispatched generation. As opposed to LMPs, this is a potential benefit using CHPs with

α = 1. It should be noted that there are analogous observations in the context of the

UC problem, where CHPs are also independent of, for example, sub-optimality of the UC

solution.
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Theorem 6.2. A maximizer of the partial Lagrangian dual function L(λ) from (6.4) is also

a minimizer of the CHP problem (6.1) and thus represents CHPs.

Proof: A maximizer of the partial Lagrangian dual function (6.4) is unchanged by

adding and subtracting the term Σ
i∈N
λiT

d
i and subtracting the constant Σ

i∈N
Ci(G

d
i ). Noting

that T di = Gd
i −Di, we obtain the following expression:

L(λ)−Σ
i∈N
Ci(G

d
i )= Σ

i∈N

(
λiG

d
i−Ci(Gd

i )−Υi(λi)
)
−α(λ†T d+Ψ(λ)).

By (2.5) and (2.2), this expression is equivalent to the negative of the objective function of

the CHP problem (6.1). The result directly follows.

As summarized in the following theorem, a maximizer of the partial Lagrangian dual

function L(λ) from (6.4) can be recovered as the optimal Lagrange multipliers of constraints

(6.2a). Indeed the term Convex Hull Price is derived from this key result, which is similar

to results in other work, e.g. [45].

Theorem 6.3. Optimal Lagrange multipliers of constraints (6.2a) minimize the CHP problem

(6.1) and thus represent CHPs.
Proof: Equation (6.3) implies that the function L(λ) from (6.4) represents the partial

Lagrangian dual function for problem (6.2). Furthermore, strong duality holds for problem

(6.2) when dualizing only linear constraints because it is a convex problem with a non-empty

feasible set. The result follows from Theorem 6.2.

6.3.2 Approximating CHPs

Unfortunately, the convex hull of the set of feasible net real power injections conv(T)

may be intractable to evaluate, as is the case when using the fully detailed AC model of

the transmission network [53]. In this case the primal CHP problem must be relaxed using

a conservative convex set relax(T) ⊇ conv(T) that can be expressed in closed form. The

relaxed primal CHP problem is written as follows and the approximate CHPs, denoted λ̄, are

found as the optimal Lagrange multipliers of the nodal real power balance constraint (6.5a).

min
G∈X, T∈relax(T)

Σ
i∈N
Ci(Gi) (6.5)

st : Di −Gi + αTi + (1− α)T di = 0 ∀i ∈ N (6.5a)

The Lagrange multipliers of constraint (6.5a) can be recovered from a slightly reformulated
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problem that represents a general convex relaxation of the AC OPF problem. To see this,

reformulate the relaxed primal CHP problem by dividing the real power balance constraint

by α to yield an equivalent problem that can be interpreted as a general convex relaxation of

the AC OPF problem where the demand vector is represented as D̃i=
1
α
Di +

1−α
α
T di . In this

context the generators must be redefined to have a generation amount of G̃i=
1
α
Gi, a cost

function of C̃i(G̃i)=Ci(αG̃i), and private constraints of X̃i :={G̃i :
1
α
Gmin
i ≤G̃i≤ 1

α
Gmax
i }. The

resulting reformulation will produce Lagrange multipliers that differ from those of constraint

(6.5a) by a factor of α. This allows CHPs to be approximated using algorithms initially

developed to approximately solve convex relaxations of the AC OPF problem that are proven

to converge in polynomial-time.

Intuitively, approximate CHPs minimize a function that represents an upper bound

on the weighted sum of side-payments and PCRS. The conservative nature of this upper

bound is dependent on the how well the convex relaxation represents the convex hull and on

the magnitude of the weight parameter α. The following theorem makes this result explicit.

Theorem 6.4. Approximate CHPs, denoted λ̄ and defined as the optimal Lagrange multipliers

of constraint (6.5a), satisfy:

λ̄∈argmin
λ∈Rn

(
αCs(λ,Gd)+ Σ

i∈N
Co
i (λi,G

d
i )+α (Ψr(λ)−Ψc(λ))

)
(6.6)

where Ψr(λ) := max
f∈relax(T)

− λ†f (6.7)

and Ψc(λ) := max
f∈conv(T)

− λ†f (6.8)

Proof: From the same process as the proof in Theorem 6.2, the prices λ̄ maximize the

following equation:

Σ
i∈N

(λiG
d
i−Ci(Gd

i )−Υi(λi))−α(λ†T d +Ψr(λ)) (6.9)

By substituting the expression for generator uplift Co
i (λi,G

d
i ), adding and subtracting the

term αΨ(λ), and noting that (6.3) implies Ψ(λ) = Ψc(λ) we attain the following:

Σ
i∈N
Co
i (λi,G

d
i )−α(λ†T d +Ψ(λ))+ α(Ψc(λ)−Ψr(λ))
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This is the negative of the objective function of (6.6).

From Theorem 6.4, the objective function minimized by approximate CHPs is similar

to that of CHPs from Definition 6.1. When the relaxed set relax(T) accurately represents

the convex hull conv(T), CHPs match approximate CHPs because Ψr(λ) = Ψc(λ). Also

notice that the upper bound being minimized will be tighter if the weight parameter α > 0

is smaller. Fortunately, as we discussed in Section 6.2, this weight parameter should be less

than one. Of course approximate CHPs may match CHPs even if the relaxed set of feasible

net real power injections does not match the convex hull. Future work will identify sufficient

conditions for exactness.

Remark 6.1. Further studies should generalize Theorems 6.2, 6.3, and 6.4 to accommodate

the UC problem over a 24 hour period. Such a generalization requires problems (6.2) and

(6.5) to be restated such that the private constraint set of each generator Xi is replaced by

its convex hull conv(Xi) and the cost function of each generator is replaced by its convex

envelope, both of which are explicitly characterized in [45].

6.4 Shor’s Rank Relaxation

This section provides a specific relaxation that will be used to approximate CHPs in

Section 6.5. This relaxation is derived from the AC OPF problem in rectangular coordinates

as described in Section 3.4 and is similar to other formulations in the literature [51,68]. First

recognize that the decision variable w ∈ R2n in problem (3.27) only appears in quadratic

terms of the form w†Mw, where M is an appropriately chosen quadratic coefficient ma-

trix. Using properties of the trace operator, each of these quadratic terms can be generally

rewritten as w†Mw = Tr(Mww†). Subsequently, the decision variable w will only appear in

the form of ww† and can thus be replaced by a matrix W restricted to be positive definite

and rank 1. These restrictions are written as W ∈ S2n×2n
+ and rank(W ) = 1 where S2n×2n

+

represents the set of symmetric positive semi-definite 2n × 2n matrices. With this in mind

problem (3.27) can be equivalently rewritten as follows:
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min
G∈Rn,W∈S2n×2n

+

Σ
i∈N
Ci(Gi) (6.10)

st : Di −Gi = Tr(H(i)W ) ∀i ∈ N (6.10a)

U i ≤ Tr(Z(i)W ) ≤ Ūi ∀i ∈ N (6.10b)

−P̄i,j ≤ Tr(Z(i,j)W ) ≤ P̄i,j ∀(i, j)∈P and ∀(j, i)∈P (6.10c)

−Q̄i,j ≤ Tr(H(i,j)W ) ≤ Q̄i,j ∀(i, j)∈P and ∀(j, i)∈P (6.10d)

Tr(Z(i,j)W )2 + Tr(H(i,j)W )2 ≤ S̄2
i,j ∀(i, j)∈P and ∀(j, i)∈P (6.10e)

0 ≤ Tr(MiW ) ≤ V̄i ∀i ∈ N (6.10f)

Gi ≤ Gi ≤ Ḡi ∀i ∈ N (6.10g)

rank(W ) = 1 (6.10h)

Shor’s rank relaxation is attained by removing the rank constraint. This relaxation

results in a convex optimization problem; however, the problem still must be placed in

standard SDP form, which requires a linear objective function and constraints that are only

linear and semi-definite. With this in mind we will assume that the cost function for each

generator takes the quadratic form Ci(Gi) = ci,2G
2
i + ci,1Gi + ci,0. To make the objective

function linear we will enforce the constraint Ci(Gi) ≤ ti for each generator i ∈ N and

minimize the value Σ
i∈N
ti. The final step required to attain an SDP in standard form uses

Schur’s complement to reformulate the convex quadratic constraints. The SDP relaxed AC

OPF problem is as follows:
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min
t∈Rn,G∈Rn,W∈S2n×2n

+

Σ
i∈N
ti (6.11)

st : Di −Gi = Tr(H(i)W ) ∀i ∈ N (6.11a)

U i ≤ Tr(Z(i)W ) ≤ Ūi ∀i ∈ N (6.11b)

−P̄i,j ≤ Tr(Z(i,j)W ) ≤ P̄i,j ∀(i, j)∈P and ∀(j, i)∈P (6.11c)

−Q̄i,j ≤ Tr(H(i,j)W ) ≤ Q̄i,j ∀(i, j)∈P and ∀(j, i)∈P (6.11d) S̄2
i,j −Tr(Z(i,j)W ) −Tr(H(i,j)W )

−Tr(Z(i,j)W ) 1 0
−Tr(H(i,j)W ) 0 1

 ⪰ 0 (6.11e)

0 ≤ Tr(MiW ) ≤ V̄i ∀i ∈ N (6.11f)

Gi ≤ Gi ≤ Ḡi ∀i ∈ N (6.11g)[
−ci,1Gi − ci,0 + ti −√

ci,2Gi

−√
ci,2Gi 1

]
⪰ 0 ∀i ∈ N (6.11h)

This problem is written in standard SDP form. In fact, it can also be expressed in

the form provided in (6.5) recognizing that the net real power injections are expressed as

follows:

Ti = Tr(H(i)W ) ∀i ∈ N. (6.12)

In this case the relaxed feasible set of net real power injections is written as follows:

relax(T)={T∈Rn : ∃Wwhere (6.12), (6.11b), (6.11c), (6.11d), (6.11e), (6.11f), (6.11g)}(6.13)

It should be apparent that this relaxed feasible set of net real power injections is convex

because it is described by linear and semi-definite constraints. However, this set also requires

a large number of variables to be introduced to the problem, increasing the dimension of the

search space, and making the problem difficult to solve.

6.5 Numerical Results

This section extends the examples from Section 3.5. Specifically, Section 3.5 identifies

positive PCRS for various test cases when using the fully detailed non-convex feasible set of

net real power injections T defined in Chapter 3, which models real and reactive power as well

as voltage magnitude. We will begin with the simple 3-bus example from Section 3.5.1 and
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we will compute approximate CHPs by applying the standard Semi-Definite Programming

(SDP) relaxation to obtain the convex relaxed set relax(T) as described in Section 6.4. We

then move onto larger, more realistic networks, to which we apply three different relaxations

including the SDP relaxation, the Quadratic Convex (QC) relaxation, and the Second-Order

Cone (SOC) relaxation. The standard LMPs from Section 3.5 are compared to approximate

CHPs for each relaxation. The weight parameter α from Definition 6.1 is set to one for all

examples except the final example that illustrates the effect of varying α for a test case with

162 buses.

The loss-less DC approximation of the feasible set of net real power injections will be

denoted TDC. This section will additionally analyze prices, termed DCLMPs, that are found

as the Lagrange multipliers of the real power balance constraint of the DC OPF problem,

which is equivalent to problem (2.6) with T = TDC where TDC is defined by the loss-less DC

approximation from Chapter 4.

The optimal dispatch as determined by the DC OPF problem should be dispatched

along with DCLMPs; however, this dispatch may not be feasible for the true transmission

network, whose feasible set of net real power injections is represented by the set T. For this

reason control action must be taken on fast time scales to attain a feasible dispatch. This

section will assume that fast control action adjusts generator outputs to attain the optimal

dispatch from the AC OPF problem T ⋆. This assumption idealizes fast time scale control,

which typically does not minimize cost.

In this section the SFC is defined using the true set of feasible net real power injections

T; however, when using the DC OPF problem the SFC is typically defined using the DC

approximation TDC. This alternative definition of the SFC would not allow all financial

transactions to achieve a full hedge because it does not consider losses. This is out of

the scope of this dissertation. See [41] for a more detailed description of FTRs. To avoid

confusion the remainder of this section will not specify PCRS when using DCLMPs.

6.5.1 Simple 3-bus System

This section studies the simple 3-bus power system described in detail in Section 3.5.1.

The one-line diagram of this system is provided in Figure 6.1. The feasible set of net real
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power injections at buses 1 and 2 form an elliptical shape illustrated in Figure 6.2. Notice

that the feasible set of net real power injections T is now three dimensional; however, the

elliptical shape in Figure 6.2 represents a slice of this set at the plane T3 = 0. As explained

in Remark 2.1, the feasible set of net real power injections does not enforce constraints on

the net real power injections at buses. (Note: these constraints are accommodated by the

feasible set of each generator Xi in the general ED problem (2.6)). This means that FTRs

can be allocated to bus 3 even though its net real power injection is physically restricted to

zero.

Bus 1Bus 1

Bus 3Bus 3

Bus 2Bus 2
z13 = 0.1216 + 0.0512iz13 = 0.1216 + 0.0512i z23 = 0.0010 + 0.0512iz23 = 0.0010 + 0.0512i

z12 = 0.1226 + 0.1023iz12 = 0.1226 + 0.1023i
|v2| = 1.21p.u.|v2| = 1.21p.u.|v1| = 1p.u.|v1| = 1p.u.

G1G1

D2D2

T3 = 0T3 = 0 U3 = 0U3 = 0

Figure 6.1: One-line diagram of the 3-bus test case. Repeated from Figure 3.2.

The consumption at bus 2 is fixed to 1p.u., so the net real power injection at bus

two is T2 = −1p.u. In this case the only feasible point is the green dot in Figure 6.2. This

green dot will represent the solution to the AC OPF problem (T ⋆1 , T
⋆
2 , T

⋆
3 ) ≈ (5.4077,−1, 0).

Notice this operating point accrues large line losses of approximately 4.5p.u. Bus 1 consists

of one generator whose cost in dollars is represented by the following piece-wise linear cost

function:

C1(G1) =

{
0.5G1 if G1 ≤ 2
G1 if G1 > 2

6.5.1.1 DCLMPs

The loss-less DC approximation of the feasible set of net real power injections TDC is

represented by the red line in Figure 6.2a. The black dot represents the optimal dispatch

produced by the DC OPF problem; however, this point is not feasible for the true system.

We assume that control on a fast time scale is able to adjust the generator dispatch values
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(a) Feasible Set of Net Real Power Injections

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

(b) Zoomed version of Fig.6.2a

Figure 6.2: This figure illustrates the feasible set of net real power injections along with its
rank relaxed counterpart and its approximate DC counterpart. Figure 6.2a illustrates the feasible
set of net real power injections in black along with its SDP relaxed version in grey and its DC
approximated version in red. This feasible set is represented in two dimensions because bus three
is a null-bus. Figure 6.2b is a zoomed in version of Figure 6.2a. Contours of the objective function
in problem (2.4) are shown for the case of approximate CHPs and LMPs.

to attain the solution to the AC OPF problem, which is represented by the green dot in

Figure 6.2.

The DCLMPs can be recovered as the Lagrange multipliers of the real power balance

constraints of the DC OPF problem. Since no line limits are binding these prices are the same

at each bus λDC
1 =λDC

2 =λDC
3 =$0.5/p.u.. These prices along with the optimal dispatch of the

AC OPF problem P ⋆ result in a generator side-payment of Co
1(λ

DC
1 , T ⋆1 )=(1−λDC

1 )T ⋆1 =$2.7.

6.5.1.2 LMPs

The LMPs were identified in Section 3.5.1, as described in Section 2.4. The LMPs

for bus 1, 2 and 3 are λ⋆1 = $1/p.u., λ⋆2 = $9.455/p.u., and λ⋆3 = $9.461/p.u. respec-

tively. The congestion revenue can be easily computed as CR = $4.05. The side-payments

to the generator is zero as proven by Theorem 6.1 and the payment to the generator is

in the amount $5.41. We found the PCRS to be $0.26 with an optimal FTR allocation

f = [5.5929, 6.3464,−7.3892] in units of p.u.
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The contour lines represented by the objective function of the FTR payoff maximiza-

tion problem (2.4) are shown in Figure 6.2. The contour lines associated with the LMPs

are represented by black dotted lines and are parallel to the tangent line at the green dot.

The optimal FTR allocation occurs at the point where the contour lines are tangent to the

feasible set of net real power injections T. This point coincides with the dispatched set point

represented by the green dot. Furthermore, at this point the Congestion Revenue Shortfall

(CRS) is zero. This means that there does not exist an FTR allocation in the plane plotted

in Figure 6.2 that results in congestion revenue shortfall. However, this plane restricts the

FTR allocation for bus 3, f3, to be zero. Since the set of net real power injections T is

three dimensional, we need to expand our analysis to three dimensional FTR allocation vec-

tors. In fact, Section 3.5.1 identified the PCRS to be $0.26 with an optimal FTR allocation

f = [5.5929, 6.3464,−7.3892] in units of p.u..

6.5.1.3 Approximate CHPs

Let’s now identify the approximate CHPs using the SDP relaxation from [66]. These

prices were found by solving the relaxed primal CHP problem (6.5) with α = 1 using the

CVX package in MATLAB [34]. The solver provides the optimal Lagrange multipliers for the

real power balance constraint (6.5a), which are equivalent to the approximate CHPs. The

approximate CHPs for bus 1, 2 and 3 are λ̄1=$1/p.u., λ̄2=$5.890/p.u., and λ̄3=$5.920/p.u..

Since λ̄1 = λ̂1 the generator side-payment remains zero and the generator payment remains

$5.41.

The contour lines associated with the FTR payoff maximization problem (2.4) when

using approximate CHPs are represented by gray dashed lines in Figure 6.2 and are parallel

to the tangent line at the blue dot. The optimal FTR allocation when using the approximate

CHPs occur at the point where the contour lines are tangent to the feasible set of net real

power injections T. This point is represented by the red dot. Since the red dot does not

coincide with the green dot, the FTR payoff at this point will be larger than the congestion

revenue. We can conclude that the approximate CHPs introduce the possibility of positive

CRS in the plane of FTR allocation vectors where f3 = 0. As mentioned previously, this

analysis should be extended to the three dimensional SFCs.
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The PCRS using the identified CHPs is numerically found to be $0.21 with an optimal

FTR allocation f ⋆ = [4.7284,−9.2816, 8.3189] in units of p.u.. The optimal FTR allocation is

computed by solving the FTR payoff maximization problem (2.4). The PCRS computation

is illustrated in Table 6.1. Specifically, the congestion revenue is easily found to be $0.48 and

the maximum FTR payoff can be computed as −λ⋆†f ⋆ = $0.69. The PCRS is the difference

between the two, amounting to $0.21.

Table 6.1: Evaluating PCRS for using approximate CHPs rounding to the nearest cent.

Demand Charge ($) Congestion Revenue($) Max. FTR Payoff ($) PCRS ($)

λ⋆2D2 λ⋆2D2 − λ⋆1G
d
1 Ψ(λ⋆) = −λ⋆†f ⋆ Cs(λ⋆, Gd)

5.89 0.48 0.69 0.21

6.5.2 Examples on Standard Test Cases

Let’s now consider the much larger NESTA test cases that were studied in Sec-

tion 3.5.2 [17]. We consider three different relaxations of the feasible set of net real power

injections when formulating the relaxed primal CHP problem (6.5). First is the SDP re-

laxation, which is implemented using the MATPOWER toolbox in MATLAB [68]. Some

of the NESTA test cases can be solved exactly using the SDP relaxation. Such test cases

yield zero side-payments and zero PCRS when using LMPs. Instead, we focus on test cases

that cannot be solved exactly using the SDP relaxation and yield positive PCRS when using

LMPs. We also consider the QC relaxation described in [18] and the SOC relaxation de-

scribed in [46]. Both the QC and SOC relaxations are implemented using the PowerModels

package in Julia [16].

Table 6.2 provides a comparison of side-payments and PCRS when using LMPs,

approximate CHPs and DCLMPs. We provide results for six systems with 162 buses, 189

buses, 300 buses, 2224 buses, 2383 buses, and 3012 buses. When computing approximate

CHPs we set the weight parameter to α=1. By varying the weight parameter 0 < α < 1

we would expect to achieve PCRS and side-payments that fall between the two extremes

produced by approximate CHPs and LMPs. Computing the PCRS for a given set of prices

requires solving the non-convex max FTR payoff problem (2.4). The provided PCRS values
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Table 6.2: Results for NESTA test cases. All amounts are in dollars per hour. For large test
cases, a penalty is added to the objective function in the SDP-relaxed problem, associated values
are denoted with an asterisk. The side-payments when using DCLMPs are ideal, assuming that
fast control action optimizes cost, associated values are denoted with a triangle. PCRS values are
omitted for DCLMPs to avoid confusion regarding the definition of the SFC. The weight parameter
is α = 1. The results pertaining to LMPs and total operating costs match those in Table 3.4

LMPs DCLMPs Approximate CHPs Approximate CHPs Approximate CHPs
(for AC OPF) (for DC OPF) with SDP Relaxationwith QC Relaxationwith SOC Relaxation Total

Test Side Side Side Side Side Operating
Case Payments PCRS PaymentsPCRSPayments PCRS Payments PCRS Payments PCRS Cost

162 ieee dtc ∼ 0 1,352.92 6.66△ - 0.11 42.55 127.48 26.87 127.33 28.94 4,230.23
189 edin ∼ 0 1.22 4.66△ - 0.05 0.74 0.25 0.77 0.25 0.77 849.29
300 ieee ∼ 0 36.87 257.40△ - 0.03 14.77 3.12 128.18 3.15 130.88 16,891.27
2224 edin ∼ 0 520.76 75.92△ - 79.26∗ 343.47∗ 1,392.20 738.48 1,838.29 430.59 38,127.69
2383wp mp ∼ 0 13,681.00 289.12△ - 1,572.55∗ 4,023.87∗ 5,552.60 7,145.92 5,601.56 7,513.18 1,868,511.77
3012wp mp ∼ 0 1,815.44 6,303.82△ - 2,411.54∗ 1,348.35∗ 12,907.15 6,179.91 12,882.12 6,924.57 2,600,842.72

are computed using an interior point solver in Julia that identifies a local maximum of

problem (2.4).

As explained in Section 3.5.2, LMPs result in zero side-payments to generators and

positive PCRS. The PCRS may be very large with respect to the total operating cost as

in test case 162 ieee dtc (approximately 32%) or very small as in test case 3012wp mp

(approximately 0.07%). Furthermore, DCLMPs introduce a small amount of side-payments

to generators, although these values will likely be much larger in practice where control on

fast time scales is imperfect.

Approximate CHPs from the SDP relaxation perform well for the three smallest test

cases. That is, as compared to LMPs, they tend to increase side-payments by a small

amount and decrease PCRS significantly. Furthermore, approximate CHPs result in much

lower side-payments as compared to DCLMPs.

Unfortunately, the MATPOWER algorithm used to solve the SDPs was unable to

converge for the three largest test cases. For these cases we use a software package that

employs an additional approximation by placing a penalty in the objective of the SDP-

relaxed problem to encourage convergence [64] (associated quantities are denoted with an

asterisk). The penalty parameters were adjusted for each individual test case. Despite using

an additional approximation, the resulting approximate CHPs are still able to reduce PCRS

as compared to LMPs.
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Approximate CHPs from the QC and SOC relaxations result in similar PCRS and

generator side-payments. These approximate CHPs result in higher generator side-payments

and PCRS as compared to approximate CHPs from the SDP relaxation. In fact, these

approximate CHPs increase the PCRS as compared to LMPs for test cases 300 ieee and

3012wp mp.

0 0.5 1 1.5

0

0.05

0.10

0.15

42.50

42.60

42.70

Figure 6.3: Competing objectives for test case 162 ieee dtc.

To provide insight into the trade-off between PCRS and side-payments, let’s analyze

approximate CHPs for the test case 162 ieee dtc using the SDP relaxation. Figure 6.3 shows

the generator side-payments and PCRS as the weight parameter α varies from 0 to 1.5.

As expected, side-payments increase in α, PCRS decreases in α, and the trajectories pass

through their associated values in Table 6.2 when α = 1. Interestingly, as the parameter α

decreases, the side-payments reach zero at the point α = 0.72 and cannot decrease further.

At this point the PCRS remains constant at $42.67. In fact, choosing parameter α below

0.72 results in approximate CHPs that achieve savings in PCRS of over 30% of the total

operating cost as compared to LMPs while still maintaining zero side-payments.

6.6 Conclusions and Future Directions

This chapter incorporates non-linear models of the transmission system into the exist-

ing Convex Hull Pricing framework. In the context of the AC OPF problem we theoretically

prove and empirically observe the tendency of CHPs to increase generator side-payments as

compared to LMPs, which is significantly different from the behavior of CHPs in the context

of the UC problem with linear network models. We define CHPs as the optimal solution to a

novel multi-objective minimum uplift problem that captures the trade-off between generator
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side-payments and PCRS. For the first time, we present a method of approximating CHPs

using non-linear transmission constraints that are general enough to accommodate the AC

OPF problem. Specifically, CHPs are approximated by the optimal Lagrange multipliers

of the relaxed primal CHP problem, which can be approximately solved using well-known

polynomial-time algorithms that approximately solve relaxed versions of the AC OPF prob-

lem. We provide a theoretical result illustrating that approximation accuracy can be im-

proved by tightening the relaxation used or by placing more value in generator side-payments

as compared to PCRS using the parameter α.

Examples show that FTR uplift may be large when using LMPs, motivating the

inclusion of non-linear models of the transmission network into the CHP framework. We then

approximate CHPs using SDP, QC, and SOC relaxations of the AC transmission network.

The SDP relaxation is shown to effectively approximate CHPs; however, existing algorithms

used to solve this relaxed SDP problem do not scale well with the size of the transmission

network. In fact, using the SDP relaxation we are able to identify CHPs that significantly

reduce PCRS while hardly effecting generator side-payments.

Future work will extend the concepts from this chapter to the unit commitment

problem. Of course the unit commitment problem does not incorporate the full AC model of

the transmission system as it is implemented today. However, the unit commitment problem

implemented today does account for a non-linear transmission model using the linearization

techniques derived in Chapters 4 and 5. For this reason future work will define the feasible

set of net real power injections T using the approximate non-linear transmission models

derived in Chapter 4. In fact, when using these approximate non-linear transmission models

we believe the exact CHPs can be recovered by use of the load over-satisfaction relaxation

under the condition that all CHPs are positive.
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Part II

Co-Optimization: Interdependent
Reserve Types

Part II of this dissertation incorporates reserve procurement into the economic dis-

patch problem. The resulting problem is called a co-optimization problem because it op-

timizes the reserve products along with the electric generation product. The Electric Re-

liability Council of Texas (ERCOT) is currently planning to implement a co-optimization

problem into the real-time electricity market in Texas [26]. As explained in Chapter 1, the

Public Utility Commission of Texas (PUCT) has considered the introduction of real-time

co-optimization separately from the introduction of transmission losses. Consistent with the

PUCT’s analysis, this part of the dissertation will use a linear model of the transmission

network that does not account for transmission losses.

Co-optimization problems enforce a reserve requirement that necessitates the pro-

curement of sufficient reserve to accommodate specific contingencies. For example, ERCOT

requires reserve capable of withstanding the simultaneous outage of the two largest gener-

ators [59]. Chapter 7 derives various reserve requirements from first principles including a

novel requirement termed the rate-based PFR limit and an existing requirement termed the

equivalency ratio requirement, which has only been studied empirically in previous work [59].

Chapter 8 places the derived reserve requirements into a co-optimization problem. This

chapter compares and contrasts the equivalency ratio requirement, which results in a con-

vex co-optimization problem, and the rate-based PFR limit, which results in a non-convex

co-optimization problem.
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Chapter 7

Reserve Requirements

ERCOT recently redefined the reserve types considered in the electricity market in

Texas. As per Nodal Protocol Revision Request (NPRR) 863, all reserve types that con-

tribute to primary frequency response are referred to as Responsive Reserve (RR) and in-

clude Primary Frequency Responsive (PFR) reserve and Fast Frequency Responsive (FFR)

reserve [25]. All other reserve types considered in ERCOT are deployed on slower time scales

and will not be considered throughout Part II of this dissertation. This chapter derives re-

quirements for RR that are unaffected by all the neglected slower acting reserve types.

PFR reserve is defined to accommodate standard droop control provided by tradi-

tional generators. The amount of PFR reserve provided by generator i will be denoted ri.

This chapter conservatively assumes that generators contracting to provide PFR reserve are

the only generators in the system that actually do provide droop control. This assump-

tion deviates slightly from ERCOT requirements, which instead widen the droop control

dead-band for all generators that are not contracting to provide PFR reserve [25]. The

definition and implementation of FFR reserve was recently introduced by NPRR 581 and

accommodates fast acting resources that are capable of changing their power output almost

instantaneously [24]. Any resource can provide FFR reserve if it experiences little to no

ramping limitations; however, this type of reserve is primarily intended for new battery

technologies such as lithium ion batteries and so, for brevity, the word battery will generally

be used in reference to FFR reserve. The amount of FFR reserve provided by battery j will

be denoted bj.

This introduction section will first outline a general reserve requirement that ensures

the system is capable of accommodating a large loss of generation of size L. Intuitively,

this requirement will additionally ensure sufficient reserve to accommodate any less severe

124



contingencies (See Remark 7.1). To ensure reserve procurement is capable of accommodating

a generator outage (possibly including multiple simultaneous unit outages) of size L, we must

satisfy the following general requirement:

1†r + 1†b ≥ L (7.1)

In the context of primary frequency control, accommodating a generator outage of

size L requires that the voltage frequency trajectory remain above some critical frequency

threshold denoted ωmin, which is 59.4Hz in ERCOT. This critical frequency threshold typ-

ically represents the point at which firm load begins to disconnect from the system as an

emergency precaution to avoid a system wide blackout (See Remark 7.2). As explained in

Section 1.2, this requires power balance between mechanical prime mover power and net elec-

trical consumption to be met before the frequency falls below the critical frequency threshold.

Unlike FFR reserve, PFR reserve may not be capable of providing all procured reserve within

this time constraint due to turbine governor ramping limitations. With this in mind, the

PFR reserve amount appearing in the requirement (7.1), denoted ri, must be available to

be deployed before the critical frequency threshold is met and thus we will hence-forth re-

fer to this quantity as the available PFR reserve. In contrast, the nominal PFR reserve,

denoted Ri, will refer to the product quantity that generator i is contracting to provide in

the electricity market. Intuitively, the nominal PFR reserve will represent the minimum of

the head-room of the generator and the generator’s offered PFR capacity. In our context

the head-room of the generator is the generator’s capacity Ḡi less its generation dispatch

value Gi and the generator’s offered PFR capacity, denoted R̄i, is an offered quantity in the

electricity market representing the maximum amount of nominal PFR reserve the generator

is willing to provide. The distinction between nominal PFR reserve, as determined by the

head-room, and the available PFR reserve, as determined by governor ramping limitations,

is essential to understanding and analyzing the role and value of FFR reserve.

Remark 7.1. All reserve requirements in ERCOT aim to ensure sufficient reserve to accom-

modate the simultaneous outage of the two largest generators in the system and thus L

is chosen to be the combined capacity of the two largest generators, which approximately

amounts to 2750MW [59]. Additionally, the requirement (7.1) intuitively ensures sufficient

125



reserve to accommodate any less severe contingencies. For example, this requirement will

ensure sufficient Responsive Reserve to accommodate fluctuations in net demand caused by

variable wind generation. This is because net demand fluctuations are small compared to L

on the short time scales pertaining to primary frequency response.

Remark 7.2. Although the critical frequency threshold intuitively represents the point at

which firm load begins to disconnect from the system, firm load in ERCOT begins to dis-

connect from the system at a frequency of 59.3Hz, which is conservatively set 0.1Hz below

the critical frequency threshold of ωmin = 59.4Hz. In other words, reserve requirements are

designed to maintain the frequency above ωmin = 59.4Hz, which is 0.1Hz higher than the

frequency at which firm load begins to disconnect from the system [59]. This 0.1Hz margin

accommodates, for example, errors in frequency measurement that may occur during the

transient conditions accompanying a large generator outage.

It is apparent that the available PFR reserve should be constrained to be less than the

nominal PFR reserve, e.g. ri ≤ Ri. However, the available PFR reserve for a generator may

also be limited by other factors including the ramping ability of the generator and the time

taken to reach the critical frequency threshold. With this in mind, this chapter will provide

different limits that can be placed on the available PFR reserve to ensure it can be delivered

before the critical frequency threshold is met. Each of these PFR reserve limits utilize

different turbine governor models that account for the ramping ability of PFR reserve. The

first such limit, presented in Section 7.3, is termed the rate-based PFR limit, and is derived

from a turbine governor model that assumes a constant ramp rate. The second such limit,

presented in Section 7.4.1, is termed the proportional PFR limit, and is derived from a turbine

governor model that assumes the ramp rate is proportional to the generator’s nominal PFR

reserve. The third such limit, presented in Section 7.4.2, is termed the equivalency ratio

PFR limit and is consistent with the reserve requirement provided by [59] that is based on

empirical analysis of ERCOT system responses under various conditions of inertia.

The rest of this chapter discusses the following. Section 7.1 provides a model of the

three contributors to arresting frequency decline in the event of a large generator outage:

inertia, PFR reserve, and FFR reserve. This section distinguishes between nominal PFR
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reserve and available PFR reserve. This section additionally explains the traditional offered

PFR capacity limit, which is derived from a droop signal that is proportional to frequency

deviations. The remainder of the chapter builds towards the derivation of other PFR reserve

limits that consider turbine governor ramping limitations and guarantee that the critical

frequency threshold is not violated. Section 7.2 models the ramping limitations of a turbine

governor using a simple time delay followed by a constant ramp rate. This section continues

by providing a system wide model of the frequency response that also utilizes a simple time

delay followed by a constant ramp rate. Section 7.3 then uses the constant ramp rate mod-

els from Section 7.2 to derive the rate-based PFR limit that guarantees the frequency does

not fall below the critical frequency threshold and is proportional to the ramp rate of the

corresponding generator. Section 7.4 derives the proportional PFR limit by assuming that

a generator’s ramp rate is proportional to its nominal PFR reserve. Section 7.4 continues

by presenting the equivalency ratio PFR limit which is derived from the reserve requirement

from [59]. A connection is then drawn between the proportional PFR limit and the equiva-

lency ratio PFR limit that gives first principles insight into equivalency ratios. Finally, the

reserve requirements are summarized in Section 7.5, which explains that any combination of

the derived limits on available PFR reserve can be enforced in a co-optimization problem.

7.1 Three Contributors to Arresting Frequency

The three main contributors to arresting frequency decline in response to a large

generator outage are inertia, PFR reserve, and FFR reserve. Each of these three contributors

to arresting frequency decline will now be modeled in detail.

7.1.1 Inertia and Frequency Dynamics

Voltages in the system are modeled as quasi-steady state sinusoids whose frequency

may be slowly varying. Moreover, this voltage frequency at time t is modeled as being the

same at each generator in the system and is denoted ω(t). The total post-outage inertia isM

(in units of Watt-seconds or Ws) and represents the sum of inertia values for all generators

that are still in service after the outage. The simplified system dynamics are represented by
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the swing equation [3], which is expressed as follows:

dω(t)
dt

= ω0

2M
(1†m(t)− e(t)), (7.2)

where m(t) ∈ Rn represents the vector of mechanical power input from the turbine governor

of each generator in the system and e(t) ∈ R represents the total net electrical demand in the

system. Notice that m(t) is in bold font to distinguish it from the number of transmission

lines in the system, which is denotedm. The number of generators in the system is denoted n,

the vector of ones is denoted 1, and a superscript dagger † represents the transpose operator.
This model makes the common assumption that there is no system damping, which is a

conservative assumption since damping will tend to reduce the frequency excursions. The

nominal frequency is denoted ω0 and will be assumed to be the frequency just prior to the

time of the generator outage.

7.1.2 Fast Frequency Responsive Reserve

We assume that Fast Frequency Responsive (FFR) reserve can be fully deployed

instantaneously and can be provided by any device that does not exhibit ramping constraints.

FFR capable devices include fast-acting battery storage and load-shedding. For brevity, we

will henceforth refer to devices providing FFR reserve as batteries and we will refer to each

battery by its corresponding index in the set B = [1, . . . , β] where β is the total number of

FFR resources. Despite referring to these resources as batteries, the analysis covers both

batteries and load-shedding as FFR resources. The amount of FFR reserve provided by each

battery is denoted bj and each battery provides an offered FFR capacity in the amount of

b̄j. The private battery constraints exhibited by each battery are then written as follows:

Bj := {bj ∈ R : 0 ≤ bj ≤ b̄j}. (7.3)

The FFR reserve is triggered when the frequency drops below a frequency threshold

of ω2 < ω1, where ω1 is the frequency corresponding to the dead-band of droop control. Note

that ω2 is typically significantly lower than the frequency ω1 corresponding to the dead-band

of droop control. In fact, FFR reserve is considered a reserve type that is deployed only

during emergencies involving the largest generator outages as opposed to PFR reserve which
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is used for essentially all contingencies. When deployed, the FFR reserve instantaneously

decreases the net electrical demand in the system e(t) by an amount 1†b. We additionally

introduce the non-negative constant ∆2 := ω1 − ω2.

7.1.3 Primary Frequency Responsive Reserve and Droop Control

Primary Frequency Responsive (PFR) reserve is intended to be compatible with con-

ventional generator droop control, which increases the mechanical power output of the tur-

bine governor mi(t) in response to a large generator outage. PFR reserve is provided by

generators that may also be selling power into the electricity market. The nominal PFR re-

serve Ri must satisfy Gi +Ri ≤ Ḡi, where Gi is the dispatched electric power generation of

generator i and Ḡi is its capacity. Furthermore, each generator has an offered PFR capacity

denoted R̄i. With this in mind, the private constraints of generator i can be generalized from

the previous definition in Section 2.2.2. Specifically, the private constraints for generator i

are now written as follows:

Xi := {(Gi, Ri) ∈ R× R : Gi ≤ Gi ≤ Ḡi −Ri and 0 ≤ Ri ≤ R̄i}, (7.4)

The ISO typically has qualification requirements that implicitly or explicitly deter-

mine a limit on the offered PFR capacity R̄i that a generator can offer into the market. To

derive this limit on the offered PFR capacity R̄i we first must describe standard droop con-

trol in detail. Subsequently, the concept of available PFR reserve will be introduced, which

further limits the amount of PFR that can be deployed in particular system conditions, to

account for turbine governor ramping limitations.

7.1.3.1 Standard Droop Control

Generators providing PFR reserve respond to local frequency via droop control by

adjusting the reference mechanical power output of their turbine governor mref
i (t) on the

time scale of 1
ω0 ≈ 0.016 seconds. In the context of droop control, the generation value

Gi represents the nominal value of mref
i (t) around which the adjustments are made and is

updated when the real-time market clears on the time scale of minutes. Furthermore, during

droop control the reference mechanical power output of each generator’s turbine governor is
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limited implicitly by the need to preserve capacity for reserves, is adjusted depending on the

generator’s local frequency deviation, and has a dead-band of ∆1 := ω0 − ω1 where ω1 < ω0

represents the low end of the dead-band. This reference signal is written as follows and is

illustrated in Figure 7.1.

mref
i (t) =


Gi if −∆1 ≤ ω(t)− ω0 ≤ ∆1

Gi +Ri if − γi(ω(t)− ω0)− γi∆1 ≥ Ri

Gi −Rdown
i if − γi(ω(t)− ω0) + γi∆1 ≤ Rdown

i

Gi − γi(ω(t)− ω0)− γi∆1 if 0 < −γi(ω(t)− ω0)− γi∆1 < Ri

Gi − γi(ω(t)− ω0) + γi∆1 else

(7.5)

where ω0 is the nominal frequency, ω(t) is the system frequency at time t, γi is the droop

constant for generator i, and Rdown
i is the nominal down PFR reserve. Notice that the droop

reference signal is limited by the nominal PFR reserve Ri. This is because the nominal PFR

reserve Ri intuitively represents either the PFR reserve capacity R̄i or the headroom of the

generator Ḡi − Gi. If this limit is not imposed by the droop reference signal, then droop

control could cause the generator to violate its capacity, denoted Ḡi.

γiγi

γiγi

11

11

R
down

i
R

down

i

RiRi

∆1∆1

−∆1−∆1

m
ref
i
(t)−Gim

ref
i
(t)−Gi

ω(t)−ω0ω(t)−ω0

Figure 7.1: Droop signal with dead-band.

The reference mechanical power output then traverses the turbine governor dynamics

of the generator to produce the realized mechanical power output, denoted mi(t). These

turbine governor dynamics can be very complicated and are not detailed in our work. See [50]

for a description of turbine governor dynamics.

7.1.3.2 Offered PFR Capacity Limits

Notice that the reference mechanical power output mref
i (t) cannot attain a value

larger than Gi + γi(ω0 − ωmin) − γi∆1 without the critical frequency threshold ωmin being

violated. For this reason, ISOs should impose the following offered PFR capacity limit for
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each generator i:

R̄i ≤ γi(ω0 − ωmin)− γi∆1 (7.6)

The droop constant γi is chosen based on a required droop percentage imposed by the

ISO. The droop percentage represents the percent change in frequency required to achieve

a governor change of 100 percent capacity. Let νi represent the droop percentage for each

generator expressed as a fraction. For example, in ERCOT the droop percentage is typically

set to 5% and so νi = 0.05. The proportionality droop constant γi used during droop control

satisfies γiνiω0 − γi∆1 = Ḡi and can be determined as follows:

γi =
Ḡi

νiω0 −∆1

(7.7)

This definition of the droop constant is consistent with BAL-001-TRE-1, the reliabil-

ity standard that details primary frequency response requirements in ERCOT [23]. Following

from (7.6) and (7.7) the offered PFR capacity limit is written as follows:

R̄i ≤
Ḡi(ω0 − ωmin −∆1)

νiω0 −∆1

≈ Ḡi(ω0 − ωmin)

νiω0

. (7.8)

The approximation assumes that the dead-band for droop control ∆1 is very small. Although

the approximation over estimates the offered PFR capacity limit, the approximation error

is typically very small and is easily accommodated by the conservatively chosen critical

frequency threshold ωmin (See Remark 7.2). In fact, the typical dead-band in ERCOT

is ∆1 = 0.017Hz, which is significantly smaller than the value ω0 − ωmin = 0.6Hz and

the typical value of νiω0 = 3Hz for the typical droop percentage of 5%. Furthermore, the

critical frequency threshold is ωmin = 59.4Hz in ERCOT and ERCOT uses the approximation

outlined in (7.8). In this case the offered PFR capacity limit is 0.2Ḡi for a generator i with

5% droop. This is consistent with ERCOT protocols.

7.1.3.3 Available PFR Reserve and Ramping Limitations

The reference mechanical power output must traverse the turbine governor dynamics

of the generator to produce realized mechanical power output, denoted mi(t). As mentioned

above, these turbine governor dynamics can be very complicated and are not detailed in our
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work. However, a salient feature of these turbine governor dynamics is that the mechanical

power output mi(t) tends to lag the reference mechanical power input mref
i (t), particularly

if the reference signal changes quickly. For this reason, it is possible that a generator’s

PFR reserve is not fully available before the critical frequency threshold is met, effectively

exhibiting ramp limitations that restrict its power output. Current practices do not account

for these ramping limitations. This chapter addresses this shortfall of current practices by

differentiating between the nominal PFR reserve, denoted Ri, and the available PFR reserve,

denoted ri, which represents the amount of PFR reserve that is actually available as increased

generation before the critical frequency threshold is reached.

In general, the available PFR reserve ri may depend on the generator’s nominal

PFR reserve Ri, turbine governor ramping capabilities, and the time taken for the system

frequency to reach the critical frequency threshold, which in turn will depend on various

system-wide parameters. This chapter will provide various limits that restrict the amount of

available PFR reserve based on the generators’ ramping restrictions. The first limit on the

available PFR reserve is very simple and follows from the fact that a generator’s mechanical

power output will never rise above its reference input. With this in mind the available PFR

reserve should be less than the generator’s nominal PFR reserve and thus the following holds:

ri ≤ Ri (7.9)

Note that the available reserve quantity ri will be eliminated as a decision variable in

the co-optimization problems in Chapter 8. On the other hand, this chapter will explicitly

represent the available reserve quantity as ri to clearly distinguish it from the nominal PFR

reserve quantity Ri.

7.2 Approximating Ramp Limitations of PFR Reserve

This section will approximate turbine governor dynamics using a simple ramp rate

approximation. We will first describe the model of the turbine governors and then describe

a model of the system as a whole. The subsequent section will then use these models to

derive a limit on the available PFR reserve.
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7.2.1 Simple Turbine Governor Model

We need only characterize each generator’s turbine governor response to the very

specific situation where a large loss of generation occurs since all smaller contingencies will

result in smaller frequency excursions. Such a response is similar to that of a step response

in the reference mechanical power output because of the fast frequency drop. This type of

response is illustrated in Figure 7.2, where the amount of available PFR reserve for generator

i is denoted by ri and the mechanical power output of the turbine governor for generator i

at time t is denoted mi(t). The approximate piecewise linear model shown in this figure is

adopted from [15].

timetime
t1t1 ǫǫ

ActualActual

ApproximateApproximate

Droop Response (MW)
mi(t)−mi(0)mi(t)−mi(0)

κiκi

11

riri

Figure 7.2: Turbine governor response to generator outage.

The mechanical power output of generator i is assumed to match its dispatched

generation Gd
i at the time of the generator outage t = 0, e.g. mi(0) = Gd

i . Following the

outage at t = 0 the frequency begins to drop. At the time t = t1 the frequency reaches

the lower end of the frequency dead-band ω(t1) = ω0 − ∆1. Subsequently, the turbine

governor is modeled as experiencing a small time delay ϵ. Although this time delay will

be assumed the same for all generators, this is only a simplifying assumption that can be

easily extended. After exhibiting this time delay, the mechanical power output will be

modeled as having a constant governor ramp rate κi that will continue until all available

PFR reserve ri is deployed. This constant ramp rate should be chosen conservatively in a

way that underestimates the mechanical power output of the turbine governor. Since this

model underestimates the mechanical power output of the turbine governor, the modeled

frequency trajectory will have a larger excursion than the realized frequency trajectory and

so the analysis will be conservative.
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7.2.2 System-Wide Frequency Response Model

This subsection provides a simple model of the frequency response exhibited by the

system in response to a large generator outage. The response in system frequency ω(t) and

power imbalance 1†m(t)−e(t) is shown by the solid black trajectories in Figure 7.3. These

trajectories satisfy the swing equation (7.2) and so the frequency ω(t) is proportional to the

integral of the energy imbalance curve.

1
†
m(t)−e(t)1

†
m(t)−e(t)

t1t1 ǫǫ t2t2 tNADtNAD

timetime

KK

11

KK

11
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EE

−L−L

−L+Kt1−L+Kt1

−L+Kt1+1
†
b−L+Kt1+1

†
b

δ1δ1

δ2δ2

ω2ω2

ω1ω1

ω0ω0

∆2∆2

∆1∆1

ωNADωNAD

timetime

ω(t)ω(t)

Figure 7.3: This plot is not drawn to scale. The top plot shows the energy imbalance over
time. The main power trajectory is shown as a solid black line with aggregate ramp rate K. The
dashed gray line represents a trajectory with a slightly increased aggregate ramp rate K ′. Six non-
overlapping regions are colored and labeled A through F . The bottom plot shows the frequency
trajectory corresponding to the main power trajectory.

As shown in Figure 7.3, the PFR reserve is deployed at time t1 when the frequency

falls below the dead-band threshold of ω1 = ω0 −∆1; however, the ramp of mechanical power
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1†m(t) begins after a further time delay of ϵ. The frequency is ω0 −∆1 − δ1 at the time

t1 + ϵ of the beginning of the ramp. The PFR reserve is modeled as ramping with constant

aggregate ramp rate K. While the PFR reserve is ramping up the FFR reserve is deployed.

The FFR is instantaneously deployed at time t1 + ϵ + t2 when the frequency falls below

the dead-band threshold of ω2 = ω0 −∆1 −∆2. Subsequently, the ramp continues until the

mechanical power input of the turbine governors meet the electric power demand of the

system at time tNAD, at which point the frequency nadir is realized, denoted ωNAD. We

assume that the PFR reserve ramps at the rate K throughout the time from t1 + ϵ to tNAD.

Remark 7.3. Based on the model from the previous subsection the summed mechanical power

output of PFR generators 1†m(t) will not exhibit a constant aggregate ramp rate, K. In

fact, some generators may deploy all PFR reserve before the frequency nadir is reached,

in which case the aggregate ramp rate will effectively decrease over time. Section 7.3.2 will

explain why using a constant aggregate ramp rate K is a conservative model of the aggregate

behavior of the PFR reserve.

Notice that ϵ, ∆1, ∆2, ω0, ω1, and ω2 are all non-negative constant parameters. The

swing equation (7.2) allows us to derive expressions for the other parameters by computing

the integral of the power imbalance curve in Figure 7.3. In this way it can be shown that:

δ1 =
ω0

2M
ϵL and δ2 = ∆2 − ω0

2M
ϵL, (7.10)

t1 =
2M∆1

Lω0
and t2 =

1
K
(L−

√
L2 − 4M

ω0
Kδ2). (7.11)

We will additionally impose a few assumptions regarding the response of the sys-

tem. Specifically, we assume the deployment of FFR reserve occurs in the middle of the

PFR reserve ramp. We claim that this is a reasonable assumption because PFR reserve is

typically deployed at a dead-band threshold ∆1 that is much tighter than the FFR reserve

dead-band threshold ∆1+∆2 consistent with the intention that PFR reserve is deployed for

all contingencies, but FFR reserve is deployed only for the largest of contingencies. Further-

more, we assume there is enough reserve to restore power balance and we assume that the

power imbalance 1†m(t)−e(t) remains non-positive after the FFR reserve is deployed. These

assumptions are stated as follows:
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Assumption 7.1. We assume the constant parameters are such that the FFR reserve is de-

ployed during the PFR reserve ramp:

δ1 =
ϵLω0

2M
≤ ∆2 and ∆1 +∆2 ≤ ω0 − ωNAD (7.12)

We assume there is sufficient reserve to restore power balance and the power imbalance

remains non-positive immediately after the FFR reserve is deployed:

1†b+ 1†r ≥ L and Kt2 + 1†b ≤ L (7.13)

The frequency thresholds are set according to the ERCOT NPRR 863 [25], resulting in

ω0 = 60Hz, ω1 = 59.9833Hz, and ω2 = 59.8Hz. These parameters will be used in all numerical

results in Part II of this dissertation along with a PFR time delay of ϵ = 0.5 seconds.

Furthermore, L is set to 2750MW to represent the loss of the two largest generators in

ERCOT. With these parameters, the assumption from (7.12) holds.

Remark 7.4. Future work should focus on situations where Assumption 7.1 does not hold.

For example, we could accommodate FFR reserve being triggered before or after the PFR

reserve ramp. We could also accommodate the situation where FFR reserve deployment

immediately results in a positive energy imbalance.

7.3 Rate-Based PFR Reserve Limit

This section derives an additional condition that the available PFR reserve should

satisfy in order to ensure adequate reserve procurement. This condition is called the rate-

based PFR limit and is sufficient in guaranteeing adequate reserve procurement under the

assumption that the approximate ramping models from Section 7.2.1 underestimate the

mechanical power output of each individual generator.

7.3.1 Minimum Aggregate Ramp Rate

The frequency nadir increases (that is, improves) with increasing aggregate ramp rate

K. Equivalently, the frequency deviation ∆ω :=ω0−ωNAD decreases with the aggregate ramp
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rate. To see this first notice that the frequency deviation corresponding to the main power

trajectory illustrated in Figure 7.3 can be expressed as ∆ω := ω0

2M
(A+B+D+E+F ), where

capital letters represent their corresponding shaded area indicated in the figure. Now consider

a slight increase in aggregate ramp rate from K to K ′, resulting in the energy imbalance

curve illustrated by the dashed gray line. Notice that the FFR reserve is now triggered

later in time because the frequency does not decline as fast. The frequency deviation can

now be expressed as ∆ω′ := ω0

2M
(A+C+D+F ). Since the FFR reserve is always deployed

instantaneously and fully at the same frequency ω2, the area under the curve prior to the

FFR deployment will remain constant for all aggregate ramp rates. As a result we must

have B = C +D and thus the following holds:

∆ω = ω0

2M
(A+ C + 2D + E + F ) > ω0

2M
(A+ C +D + F ) = ∆ω′ (7.14)

This analysis implies that the frequency deviation ∆ω is strictly monotonically decreasing in

the aggregate ramp rate K. Equivalently, the frequency nadir ωNAD is strictly monotonically

increasing with the aggregate ramp rate K. As a result there exists a unique ramp rate Kmin

such that the frequency nadir is ωNAD = ωmin. Furthermore, all aggregate ramp rates greater

than this minimum aggregate ramp rate Kmin will satisfy the minimum frequency threshold,

e.g. ωNAD ≥ ωmin. The following result provides an expression for Kmin where the total FFR

reserve is denoted b̃ := 1†b and a constant is introduced as ∆3 := ω0 −∆1 −∆2 − ωmin.

Theorem 7.1. Under Assumption 7.1, the frequency nadir satisfies the minimum frequency

threshold ωNAD ≥ ωmin if the aggregate ramp rate satisfies K ≥ Kmin where:

Kmin=

(
b̃
√
∆3−

√
(∆2+∆3− ω0

2M
ϵL)L2−(∆2− ω0

2M
ϵL)b̃2

)2

4M
ω0

(∆2+∆3− ω0
2M

ϵL)2
(7.15)

Proof: The nadir frequency can be related to the aggregate ramp rate using the

swing equation (7.2). From the integral of the energy imbalance curve in Figure 7.3, this

relationship is as follows. Notice that Assumption 7.1 preserves the geometry of Figure 7.3,

allowing for the integral of the energy imbalance curve to be explicitly represented using the
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area covered by a combination of triangles and rectangles.

2M
ω0

(ω0 − ωNAD)=A+B +D + F + E (7.16)

=L(t1+ϵ)+(L−Kt2)t2+ 1
2
t22K+ 1

2K
(L−Kt2−b̃)2 (7.17)

=2M
ω0

∆1+Lϵ+
1
2K

(L−b̃)2+b̃t2 (7.18)

=2M
ω0

∆1+Lϵ+
1
2K

(L−b̃)2+b̃ 1
K

(
L−
√
L2− 2M

ω0
2Kδ2

)
(7.19)

The initial expression (7.16) represents the integral of the power imbalance curve, where

capital letters represent their corresponding shaded area indicated in the figure. Step (7.16)-

(7.17) expresses this integral as the area covered by a combination of triangles and rectangles.

Step (7.17)-(7.18) uses t1 = 2M∆1

Lω0
and performs additional algebra. Step (7.18)-(7.19) ex-

presses t2 as

t2=
1

K
L− 1

K

√
L2 − 4M

ω0
Kδ2.

We will now set ωNAD = ωmin and solve (7.19) for Kmin. Note that there is only one such

Kmin and any K>Kmin will result in a nadir frequency ωNAD>ωmin because ωNAD is strictly

monotonically increasing in K.

First, let’s introduce the constant ω = ω0 − ωmin −∆1 − ω0

2M
ϵL to simplify notation.

From (7.19) we have the following:

b̃
√
L2 − 4M

ω0
Kδ2 =

1
2
L2 + 1

2
b̃2 − 2M

ω0
Kω (7.20)

Note that both sides of this equation are real and non-negative, else t2 from (7.11) would be

complex. Squaring both sides and rearranging gives the following quadratic equation in K:

4M2

ω2
0
ω2K2 + (4M

ω0
b̃2δ2 − (L2 + b̃2)2M

ω0
ω)K + 1

4
(L2 + b̃2)2 − b̃2L2 = 0 (7.21)

This quadratic equation has two solutions, denoted K⋆
+ and K⋆

−, written as follows:

2M
ω0
ω(L2+ b̃2)− 4M

ω0
b̃2δ2±

√
(4M
ω0
b̃2δ2− 2M

ω0
ω(L2+ b̃2))2− 4M2

ω2
0
ω2((L2+ b̃2)2−4b̃2L2)

8M2

ω2
0
ω2

Algebraically rearranging the descriminant results in the following equivalent expression for

K⋆
+ and K⋆

−:

K⋆
± =

ω(L2+b̃2)−2b̃2δ2±2b̃
√
ω − δ2

√
ωL2 − δ2b̃2

4M
ω0
ω2

(7.22)
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Under the assumption that Kmin = K⋆
− where ± takes the sign −, the result follows by

factoring the numerator of the previous expression and replacing ω = ∆2 +∆3 − ω0

2M
ϵL and

δ2 = ∆2 − ω0

2M
ϵL.

We now show that ± cannot take the sign +. Suppose it can take the sign +. Then

K⋆
+ solves (7.20) and thus results in a real non-negative LHS and RHS of (7.20). Furthermore,

K⋆
− ≤ K⋆

+ and so the LHS and RHS of (7.20) remain real and non-negative when evaluated

at K⋆
−. Since K

⋆
− solves (7.21) and results in a real non-negative LHS and RHS of (7.20), K⋆

−

must also solve (7.20). Thus K⋆
− and K⋆

+ result in the same nadir frequency. This contradicts

the fact that the nadir frequency is strictly monotonically increasing in the aggregate ramp

rate K.

7.3.2 Sufficient Condition for Satisfying Frequency Threshold

As stated in Remark 7.3, the system model of a constant aggregate ramp rate does not

fully capture the response of each individual generator. In fact, each individual generator

will exhibit a ramp rate of κi until their reserve has been fully deployed as explained in

Section 7.1.3. Some generators may deploy all PFR reserve before the frequency nadir is

reached, in which case the aggregate ramp rate will effectively decrease over time. That being

said, the frequency threshold is guaranteed to be satisfied if we assume the generators are

capable of fully deploying all of their PFR reserve before the time tmin, which represents the

time of the frequency nadir at the minimum aggregate ramp rate Kmin. This is implied by

the intuitive fact that the frequency nadir rises when a generator ramps faster than expected.

This intuitive fact was illustrated in Section 7.3.1 but is not formally proven. This logic leads

to the following result:
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Theorem 7.2. Under Assumption 7.1, the frequency nadir satisfies the minimum frequency

threshold ωNAD ≥ ωmin if the following holds for each generator i ∈ [1, . . . , n]:

ri ≤ κih(M,1†b) (7.23)

where the limit function h(M, b̃) is as follows:

h(M, b̃) :=
4M
ω0

(∆2 +∆3 − ω0

2M
ϵL)2(L− b̃)(̃

b
√
∆3−

√
(∆2+∆3− ω0

2M
ϵL)L2−(∆2− ω0

2M
ϵL)b̃2

)2 (7.24)

Proof: Following from the discussion, the frequency threshold will be met if each

generator is capable of deploying all of its PFR reserve before the time tmin. This requirement

is mathematically written as follows:

ri ≤ κi(tmin − t1 − ϵ) = κi
L−1†b
Kmin

(7.25)

Substituting Kmin with its expression from (7.15) gives the result.

The rate-based PFR limit from (7.23) can be interpreted as a condition that the

available PFR reserve must satisfy. With this in mind, any additional nominal PFR reserve

in excess of this limit cannot be utilized before the critical frequency threshold is met.

Intuitively, any nominal PFR reserve Ri that exceeds the amount κih(M,1†b) is not classified

as being available, meaning that it cannot be provided before the critical frequency threshold

is met.

The function h(M, b̃) is convex in its second argument. Figure 7.4 provides example

plots of h(M, b̃) versus its second argument b̃ for several different values of inertiaM . Notice

that this function is increasing in M and b̃. As a result constraint (7.23) allows the nominal

PFR reserve for a generator to increase if the system inertia increases, if the total FFR

reserve increases, or if its ramp rate κi increases.

As we will see in Chapter 8, the rate based-PFR limit (7.23) can be enforced as a

constraint in a co-optimization problem. Unfortunately, enforcing this constraint would make

the co-optimization problem non-convex because the limit function h(M, b̃) is strictly convex

in its second argument and appears on the Right Hand Side (RHS) of the inequality. For this
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Figure 7.4: Function h(M, b̃) with parameters consistent with Sections 7.2.2 and 8.4.

reason, it may be beneficial to approximate this function as being linear, which would result in

a convex co-optimization problem. In fact, as shown in Figure 7.4, the limit function h(M, b̃)

is approximately linear for low values of total FFR reserve, e.g. 1†b = 100MW. Furthermore,

a conservatively low linear approximation can be easily constructed as a tangent line of the

convex limit function h(M, b̃). Future work will further investigate linear approximations of

the limit function h(M, b̃).

7.4 Proportional PFR Reserve Limits

This subsection provides a connection between the rate-based PFR limit (7.23) and

equivalency ratios from [59]. To make this connection Section 7.4.1 first introduces a turbine

governor model that assumes the ramp rate κi is proportional to the nominal PFR reserve

Ri. This model results in a proportional PFR reserve limit that depends on the nominal

PFR reserve. Section 7.4.2 then provides the equivalency ratio requirement from [59] and

explains how this requirement can also be represented as a limit on the PFR reserve that is

proportional to the nominal PFR reserve Ri. Section 7.4.3 then explains how the equivalency

ratio can be approximated using the simple ramp rate model of a turbine governor and

provides first principles insight into the behavior of equivalency ratios.
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7.4.1 Proportional Ramp Rate Model

Empirically, in the case of large contingencies, the governor ramp rate of a generator,

κi, tends to increase with its nominal PFR reserve, Ri. This is because the frequency drop

in response to a large generator outage is so fast that the droop signal as described in

Section 7.1.3.1 will nearly represent a step change, where the size of the step is equal to the

nominal PFR reserve Ri. Assuming a low-pass filter type response from the droop signal to

the generator mechanical output power, the ramp rate of the turbine governor’s mechanical

power output will increase with the size of the step reference input to the turbine governor.

To emulate this, a model is proposed that is new to the literature and assumes the

generator’s ramp rate is proportional to the nominal PFR reserve Ri. Let’s denote the

proportionality constant by τi, which may vary among generators. Then the governor ramp

rate of the generator is κi = τiRi. Notice that the nominal PFR reserve amount Ri is changed

on 5-15 minute time scales corresponding to the real-time market clearing. On the other

hand, primary frequency control occurs on time scales of 1
ω0 ≈ 0.016 seconds. As a result,

the nominal PFR reserve amount and the ramp rate κi can be considered constant on the

time scales that primary control is being performed. With this in mind, the same rate-based

PFR limit (7.23) can be enforced as follows:

ri ≤ τiRih(M,1†b) (7.26)

Intuitively, any nominal PFR reserve Ri that exceeds the amount τiRih(M,1†b) is not clas-

sified as being available, meaning that it cannot be provided before the critical frequency

threshold is met. This model attempts to capture the way in which a turbine governor

response ramps faster when it has larger head-room.

7.4.2 Equivalency Ratio Requirement

Reference [59] uses an equivalency ratio reserve requirement of the following form:

1†R + α(M)1†b ≥ υ(M) (7.27)

where α(M) is termed the equivalency ratio and υ(M) is the frequency responsive reserve

requirement (Rfrr), both of which are functions of the total system inertia. Reference [59]
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determines these two functions empirically based on simulation studies so that satisfaction

of constraint (7.27) will ensure sufficient reserve to prevent the frequency from violating the

minimum frequency threshold of ωmin = 59.4Hz in response to an outage of size L, where

L = 2750MW in their work.

The simulation studies in [59] fix the inertia to some particular values of M and

identify pairs of total FFR reserve 1†b and total nominal PFR reserve 1†R that result in a

frequency nadir that exactly meets the frequency threshold ωmin. The corresponding total

FFR reserve and PFR reserve pairs are found to have a linear relationship for each fixed

value of inertia. When plotting these values against each other, the slope of the line is α(M)

and the intercept along the PFR reserve axis is υ(M). The first three columns of Table 7.1

replicate the data from [59, table I] and shows the values of α(M) and υ(M) for different

values of inertia M .

Table 7.1: Parameters required to enforce the equivalency ratio requirement from [59]. The
equivalency ratio α(M) and reserve requirement υ(M) are provided for various values of total
system inertia M .

Total Inertia M Rfrr υ(M) Equivalency Ratio α(M) Ratio υ(M)
α(M)

(GWs) (MW) (MW)

120 5200 2.2 2363.6
136 4700 2.0 2350.0
152 3750 1.5 2500.0
177 3370 1.4 2407.1
202 3100 1.3 2384.6
230 3040 1.25 2432.0
256 2640 1.13 2336.3
278 2640 1.08 2444.4
297 2240 1 2240.0
316 2280 1 2280.0
332 2140 1 2140.0
350 2140 1 2140.0

In its fourth column, Table 7.1 additionally presents the ratio α(M)
υ(M)

, which is approx-

imately constant across all inertia values for α(M) > 1. In fact, this ratio is approximately

equal to but slightly less than the magnitude of the outage being accommodated L = 2750.

We will suggest that this observation merits the approximation of υ(M) ≈ α(M)L. For this
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reason, the constraint (7.27) can be approximated as follows:

1
α(M)

1†R + 1†b ≥ L (7.28)

Notice that this equivalency ratio requirement is similar to the general reserve re-

quirement (7.1) but with ri replaced with 1
α(M)

Ri. This suggests that an equivalency ratio

PFR limit should be placed on the available PFR reserve in the following form:

ri ≤ 1
α(M)

Ri (7.29)

In fact, the equivalency ratio reserve requirement (7.28) holds if and only if there exists a

vector r ∈ Rn such that constraints (7.29) and (7.1) hold.

7.4.3 Relationship Between Proportional Ramp Rate and Equivalency Ratios

Although [59] initially justified the use of equivalency ratios empirically, our analysis

provides insight into equivalency ratios established from first principles. Specifically, the

PFR limits from (7.29) and (7.26) are both proportional to the nominal PFR reserve Ri,

suggesting that the proportionality constants should be similar. With this in mind, un-

der the assumption that all proportionality constants τi are approximately the same across

generators, the equivalency ratios can be approximated as follows:

α(M) ≈ 1

τih(M,1†b)
(7.30)

To better understand this approximation, Figure 7.5 plots the function 1
h(M,1†b)

versus

the total FFR reserve 1†b for different values of inertia M . Notice that this function varies

only somewhat in the total FFR reserve argument at high inertia levels. In other words, the

function 1
h(M,1†b)

can be reasonably approximated as being constant in the total FFR reserve

1†b when the inertia level is high, further justifying the approximation (7.30).

Notice that the approximation (7.30) provides important insight into equivalency ra-

tios from first principles. Specifically, equivalency ratios may be appropriately approximated

as being constant in the total FFR reserve, 1†b, at the high inertia levels that are similar in

magnitude to the inertia levels seen today in ERCOT. However, as the inertia levels drop, the
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Figure 7.5: Function h(M, b̃) with parameters consistent with Sections 7.2.2 and 8.4.

equivalency ratio may vary significantly with the total FFR reserve. As is seen in Figure 7.5,

the slope of the equivalency ratio with respect to the total FFR reserve is approximately an

order of magnitude larger when the inertia is M = 120GWs as opposed to M = 300GWs.

Future work will extend the empirical results from reference [59] to verify that equivalency

ratios significantly vary with the total FFR reserve for low inertia levels.

The approximation (7.30) can alternatively be used to approximate the proportion-

ality constants τi. Specifically, under the assumption that all generators have the same pro-

portionality constant we can approximate τi ≈ 1
α(M)h(M,1†b)

. In this context it is particularly

useful to approximate τi using high levels of inertia, because 1
h(M,1†b)

will be approximately

constant. For example, using M = 297GWs we have α(M) = 1 and 1
h(M,1†b)

≈ 0.25s−1

leading to a proportionality constant of τi ≈ 0.25s−1.

7.5 Summary

This chapter derived various reserve requirements that couple FFR and PFR reserve

and ensure sufficient reserve for arresting frequency decline in response to a large generator

outage. The main reserve requirement constraint is stated in (7.1) and requires the total

available PFR reserve and FFR reserve to be larger than some reserve requirement L. The
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FFR reserve does not exhibit ramping limitations and thus all of the FFR reserve is consid-

ered to be available immediately to arrest frequency decline once it is triggered. On the other

hand, PFR reserve exhibits ramping limitations that restrict its availability. For this reason,

this chapter introduces the concept of available PFR reserve, denoted ri, which is upper

bounded by the nominal PFR reserve Ri, resulting in the limit constraint (7.9). Various

other limits on the available PFR reserve are provided throughout this chapter that utilize

different models of a generator’s ramping ability. The rate-based PFR limit (7.23) assumes a

constant ramp rate of the turbine governor. The proportional PFR limit (7.26) assumes the

ramp rate of the turbine governor is proportional to the nominal PFR reserve. Finally, the

equivalency ratio limit (7.29) restricts the available PFR reserve to be less than a fraction

of its nominal PFR reserve. A co-optimization problem can be formulated to enforce any of

the aforementioned limits on the available PFR reserve.

The next chapter will enforce reserve requirements that were derived in this chapter,

particularly focusing on a comparison between the rate-based PFR limit (7.23) and the

equivalency ratio PFR limit (7.29), which is consistent with the equivalency ratio requirement

(7.27) from [59] as shown in Section 7.4.2. Although the equivalency ratio PFR limit is only

justified empirically, it is convenient because it will result in a linearly constrained convex co-

optimization problem. In contrast, the rate-based PFR limit is justified from first principles,

but will result in a non-convex co-optimization problem.

Reference [59] suggested the use of equivalency ratios to formulate the reserve re-

quirement. These equivalency ratios were previously considered to be a function of only the

system inertia level and were determined empirically based on simulation studies. Section 7.4

provided an analytical expression for equivalency ratios that provides first principles insight

into equivalency ratios and suggests that they may vary significantly with the total FFR

reserve at low inertia levels. In other words, the analytical results in this chapter suggest

that the equivalency ratio should be represented as a function of the total FFR reserve as

well as the total system inertia. The empirical results provided in [59] are insufficient to em-

pirically establish this dependence of the equivalency ratio on the FFR reserve. Future work

will extend the results from [59] by empirically justifying the dependence of the equivalency

ratio on the FFR reserve at low inertia levels.
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Chapter 8

Real-Time Co-Optimization

ERCOT will soon implement real-time co-optimization by incorporating Primary

Frequency Responsive (PFR) reserve and Fast Frequency Responsive (FFR) reserve into the

economic dispatch problem [26]. Chapter 7 described both of these reserve types in detail

and derived from first principles reserve requirements that couple these two reserve types.

Among these reserve requirements includes a novel rate-based PFR limit and a previously

proposed equivalency ratio requirement from [59]. This chapter places these two reserve

requirements into two different co-optimization problems and compares their impact on the

electricity market.

The recently approved Nodal Protocol Revision Request (NPRR) 863 defines a Re-

sponsive Reserve (RR) product that contains both PFR and FFR reserve types [25]. This

implies that PFR reserve and FFR reserve will see the same price in the electricity market,

effectively treating them as the same product. This chapter deviates from this convention

by suggesting that PFR reserve and FFR reserve should be assigned different prices that

accurately account for their individual effectiveness in arresting frequency decline. Specifi-

cally, KKT prices will be defined for both co-optimization problems presented in this chapter

based on the Lagrange multipliers of the reserve requirement constraints. These KKT prices

will be different for the PFR reserve product and FFR reserve product. See Remark 8.3 for

further discussion.

We will begin by redefining the market participants to include PFR and FFR re-

serve in Section 8.1.1. This section introduces a market participant in the form of a battery

providing FFR reserve and redefines the generator as a market participant that provides

PFR reserve in addition to electric power generation. Section 8.2 then focuses on the co-

optimization problem with equivalency ratio requirement that is convex and enforces a re-
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serve requirement that is consistent with the empirically derived requirement from [59] as

discussed in Section 7.4.2. Section 8.3 formulates the co-optimization problem with rate-

based PFR limit that is non-convex and instead enforces the rate-based PFR limit derived

in Section 7.3.2. Both Sections 8.2 and 8.3 additionally define KKT prices based on the

Lagrange multipliers of their corresponding co-optimization problems. These KKT prices

are analogous to the KKT prices derived in Chapter 2 but additionally include KKT prices

for FFR reserve and KKT prices for nominal PFR reserve.

As explained in Chapter 1, a non-convex social welfare maximization problem could

in principle result in non-zero lost opportunity costs experienced by the market participants

and congestion revenue shortfalls. However, since the private constraints of all market par-

ticipants are convex and the feasible set of net power injections is assumed convex in this

chapter, the co-optimization problem with rate-based PFR limit does not exhibit either of

these problems when using KKT prices. To make this explicit, both co-optimization prob-

lems studied in this chapter are shown to result in zero lost opportunity cost for all market

participants when following the dispatch instructions and that congestion revenue adequacy

is guaranteed when using KKT prices.

As is the case with all co-optimization problems, revenue adequacy is not necessarily

guaranteed for the co-optimization problems studied in this chapter because reserve payments

may be considered out-of-market payments not directly covered by another revenue stream

of the ISO. Section 8.4 numerically illustrates that the rate-based PFR limit results in higher

prices for FFR reserve, resulting in more reserve payments as compared to the equivalency

ratio requirement. Section 8.4 also highlights another fundamental difference between the

two co-optimization problems. Specifically, the rate-based PFR limit encourages PFR reserve

to be evenly distributed over many generators. On the other hand, the equivalency ratio

reserve requirement encourages fewer generators to provide PFR reserve. Further empirical

analysis would be required to determine whether the dispersion of PFR over more generators

is appropriate and necessary.
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8.1 Market Participants

The co-optimization problem that will be presented in Section 8.3 is non-convex. In

principle, this non-convexity could cause congestion revenue shortfalls and/or non-zero lost

opportunity cost experienced by market participants. However, Section 8.3 explicitly shows

that all market participants will experience zero lost opportunity cost and that congestion

revenue adequacy is guaranteed when using KKT prices. To show this, we must first define

the lost opportunity cost associated with each market participant. The definition of Potential

Congestion Revenue Shortfall (PCRS) is unchanged from Section 2.2.3.

This section provides updated models of the market participants in a co-optimization

setting. In this setting generators provide PFR reserve as well as electric power generation

and a new participant is introduced in the form of a battery providing FFR reserve. The

system demand and FTR holders have the same definitions as in Section 2.2.

8.1.1 Modeling Generators Providing PFR Reserve

In this part of the dissertation each generator is capable of providing two products in

the electricity market, namely electric real power generation Gi and the nominal PFR reserve

Ri. These two products are coupled as described by the private constraint set, denoted Xi,

from (7.4) in Section 7.1.3. In this context the generator receives a second payment in

addition to the standard payment of λiGi. This second payment is in the amount ξiRi

where ξi is the price of PFR reserve. Furthermore, the cost function from Section 2.2.2

can be generalized to accommodate PFR reserve-related costs as Ci(Gi, Ri), where this cost

function is assumed jointly convex in both of its arguments. As in Chapter 2, each generator

is modeled as a profit maximizer whose maximum profit is a function of its corresponding

prices and is expressed as follows:

Υi(λi, ξi) := max
(Gi,Ri)∈Xi

(λiGi + ξiRi − Ci(Gi, Ri)) . (8.1)

As explained in Section 2.2.2 each generator is expected to provide its ISO-determined

dispatched generation, denoted Gd
i . An analogous quantity determined by the ISO related to

nominal PFR reserve is denoted Rd
i and is termed the procured nominal PFR reserve but will
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also be referred to as the procured PFR reserve. That is, each generator is expected to provide

its procured PFR reserve, denoted Rd
i , which is assigned to it by the ISO when the market

is cleared. Similar to Section 2.2.2, some generators may have dispatched generation levels,

denoted Gd
i , and/or procured PFR levels, denoted Rd

i , that do not maximize their profit in

the absence of a market equilibrium. If the dispatched generation and procured PFR reserve

values for generator i ∈ N, denoted Gd
i and R

d
i , do not maximize the generator’s profit, then

the generator has an incentive to deviate from its dispatched generation and procured PFR

reserve levels. If the generator follows its dispatched generation and procured PFR reserve

levels, then the generator will experience lost opportunity cost in the amount that follows:

Co
i (λi, ξi, G

d
i , R

d
i ) =Σ

i∈N

(
Υi(λi, ξi)−

(
λiG

d
i + ξiR

d
i − Ci(G

d
i , R

d
i )
))
. (8.2)

The co-optimization problem that will be presented in Section 8.3 is non-convex. As

a result, generators may in principle experience non-zero lost opportunity cost. However,

Section 8.3 explicitly shows that generators will experience zero lost opportunity cost when

using KKT prices. This result follows from the fact that the generator private constraints

are convex.

8.1.2 Modeling Batteries Providing FFR Reserve

This part of the dissertation introduces a new type of market participant in the form

of a battery providing a product termed FFR reserve in the amount of bj. The FFR reserve

will be paid a price ζj so that its total payment is ζjbj. The provided FFR reserve will be

constrained by the private constraints imposed by the individual battery, denoted Bj and

defined in (7.3). Furthermore, the cost of providing an amount of FFR reserve bj will be

represented by the function Bj(bj) and is assumed to be convex. Each battery is modeled

as a profit maximizer whose maximum profit is a function of its corresponding price and is

expressed as follows:

Γj(ζj) := max
bj∈Bj

(ζjbj −Bj(bj)) . (8.3)
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Similar to the case with generators, each battery is expected to provide its ISO-

determined procured FFR reserve, denoted bd, which is assigned to it by the ISO when the

market is cleared. If the procured FFR reserve does not maximize the battery’s profit, then

the battery has an incentive to deviate. If the battery provides its procured FFR reserve

value, then the battery will experience lost opportunity cost in the amount that follows:

Cb
j (ζj, b

d
j ) = Γj(ζj)−

(
ζjb

d
j −Bj(b

d
j )
)
. (8.4)

The co-optimization problem that will be presented in Section 8.3 is non-convex. As

a result, batteries may in principle experience non-zero lost opportunity cost. However,

Section 8.3 explicitly shows that batteries will experience zero lost opportunity cost when

using KKT prices. This result follows from the fact that the battery private constraints are

convex.

8.2 Co-Optimization with Equivalency Ratio Requirement

A co-optimization problem determines the dispatched generation and procured reserve

values that meet reserve requirements described in detail in Chapter 7. This section studies

a co-optimization problem that enforces a reserve requirement defined by constraints (7.1),

(7.9), and (7.29), which are, respectively, as follows:

1†r + 1†b ≥ L, r ≤ R, and r ≤ 1
α(M)

R.

As explained in Section 7.4.3, this reserve requirement is consistent with the equivalency ratio

reserve requirement from [59]. Since α(M) ≥ 1, as illustrated in Table 7.1, the constraint

(7.9) can be removed because it cannot be violated without violating constraint (7.29). The

intermediate variable r can then be eliminated from the reserve requirement constraints,

resulting in a reserve requirement shown as constraint (8.5b) of the following co-optimization

problem with equivalency ratio requirement :

min
(G,R)∈X, T∈T,b∈B

Σ
i∈N
Ci(Gi, Ri) + Σ

j∈B
Bj(bj) (8.5)

st : Di −Gi + Ti = 0 ∀i ∈ N (8.5a)

L ≤ 1
α(M)

1†R + 1†b (8.5b)
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The real power balance constraints are represented by (8.5a). The reserve requirement

is represented by (8.5b) and is written in terms of the constant system inertia M . Note that

numerical results in Section 8.4 will study the effect of varying the inertia. The private bat-

tery constraints are represented by the set B = {b ∈ Rβ : bj ∈ Bj ∀j ∈ B}. The private gen-

erator constraints are represented by the set X={(G,R) ∈ Rn×Rn : (Gi, Ri) ∈ Xi ∀i ∈ N}.

Although this co-optimization problem (8.5) does not place any restrictions on the feasible

set of net real power injections, denoted T, we will henceforth assume that this set is a

polytope and is thus convex. We additionally assume that this set matches the SFCs as

defined in Section 2.2.3. As stated in Chapter 1, the assumption that T is a convex polytope

is motivated by the fact that the ERCOT ISO is considering implementing market changes

regarding co-optimization separately from market changes regarding transmission losses.

The co-optimization problem with equivalency ratio requirement (8.5) is simple be-

cause it results in a linearly constrained convex problem. As a result, Slater’s condition

necessarily holds if there exists a feasible point of the co-optimization problem. Under this

mild condition strong duality must hold for the co-optimization problem and the global op-

timum must also solve the KKT conditions along with some optimal Lagrange multipliers.

These KKT conditions can be efficiently solved to identify globally optimal dispatched gener-

ation and procured reserve, denoted (Gd, Rd, bd), along with corresponding optimal Lagrange

multipliers of constraints (8.5a) and (8.5b), denoted λ⋆ ∈ Rn and µ⋆ ∈ R+ respectively. By

the definition of strong duality, the optimal objective value of the co-optimization problem

is equal to the partial Lagrangian dual function evaluated at optimal Lagrange multipliers.

This partial Lagrangian dual function is written as follows:

L(λ, µ) :=Σ
i∈N

min
(Gi,Ri)∈Xi

(
Ci(Gi, Ri)−λiGi− µ

α(M)
Ri

)
+ Σ
j∈B

min
bj∈Bj

(Bj(bj)−µbj)+min
T∈T

λ†T+λ†D+µL (8.6)

Similar to Chapter 2, λ⋆ represents the price for real electric power at each location

in the network. Furthermore, the price for PFR reserve is the same for each generator i and

is in the amount of ξi :=
1

α(M)
µ⋆. The price for FFR reserve is the same for each battery j

and is in the amount of ζj := µ⋆. This definition of the prices will be referred to as KKT

152



prices because they are derived from Lagrange multipliers that solve the KKT conditions

of the co-optimization problem. Using this definition of KKT prices, the partial Lagrangian

dual function (8.6) decouples into profit maximization problems associated with each of the

market participants, similar to Section 6.3. With this in mind, the partial Lagrangian dual

function (8.6) can be rewritten as follows:

L(λ, µ) :=− Σ
i∈N

Υi(λi,
1

α(M)
µ)− Σ

j∈B
Γj(µ)−Ψ(λ) + Σ

i∈N
λiDi + µL. (8.7)

As mentioned previously, strong duality will hold for this co-optimization problem

under the assumption that its feasible set is non-empty. For this reason, L(λ⋆, µ⋆) is equal to

the optimal value of the co-optimization problem with equivalency ratio requirement (8.5).

With this in mind, two steps are taken to derive the following expression. First, we subtract

the optimal value of the co-optimization problem from L(λ⋆, µ⋆). Second, we subtract the

terms λ⋆†(D − Gd + T d) = 0 and µ⋆(L − 1
α(M)

1†Rd − 1†bd) = 0, which evaluate to zero by

the complementary slackness condition contained within the KKT conditions.

Σ
i∈N
Co
i (λ

⋆
i , ξi, G

d
i , R

d
i ) + Σ

j∈B
Cb
j (ζj, b

d
j ) + Cs(λ⋆, Gd) = 0 (8.8)

Since the opportunity cost for generators and batteries are non-negative and the PCRS is

non-negative, each term in (8.8) must evaluate to zero. This means that congestion revenue

adequacy holds and no generators or batteries experience lost opportunity cost.

Unfortunately, revenue adequacy of the ISO cannot necessarily be claimed for any co-

optimization problem. In fact, ISOs in the US typically consider all reserve payments, even

those not discussed in this dissertation, as out-of-market payments and redistribute this cost

among the consumers in the electricity market. On the other hand, some ISOs outside of the

US suggest that some or all reserve payments be recovered from the entities that cause the

reserve costs. In the context of the co-optimization problem with equivalency ratio require-

ment (8.5), this would mean that all reserve payments be recovered by charging the costs of

procuring the reserves to the two largest generators that directly contribute to the reserve

requirement L. In that case the two largest generators would be charged a total amount

of µ⋆L, which would be exactly equal the total reserve payments µ⋆
(

1
α(M)

1†Rd + 1†bd
)
. In

summary, all reserve payments must be recovered by the ISO and the method used to recover

these payments may vary between ISOs.
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8.3 Co-Optimization with Rate-Based PFR Limit

This section formulates a co-optimization problem that enforces a reserve requirement

defined by constraints (7.1), (7.9), and (7.23), which are, respectively, as follows:

1†r + 1†b ≥ L, r ≤ R, and r ≤ κh(M,1†b).

This reserve requirement can be represented in a co-optimization problem by introducing

the intermediate variable ri representing the available PFR reserve for each generator i.

Under the assumption that the cost function of each generator i, denoted Ci(Gi, Ri), is non-

decreasing in its second argument, there is no benefit to allowing the nominal PFR reserve

Ri to be larger than the available PFR reserve ri. For this reason, we will restrict these two

values to be the same, e.g. R = r, eliminating the need for constraint (7.9). The available

PFR reserve variables r can then be eliminated by replacing them with the nominal PFR

reserve variables R, resulting in the reserve requirement shown as constraints (8.9b) and

(8.9c) of the following co-optimization problem with rate-based PFR limit :

min
(G,R)∈X, T∈T,b∈B

Σ
i∈N
Ci(Gi, Ri) + Σ

j∈B
Bj(bj) (8.9)

st : Di −Gi + Ti = 0 ∀i ∈ N (8.9a)

L ≤ 1†R + 1†b (8.9b)

R ≤ κh(M,1†b) (8.9c)

The real power balance constraints are represented by (8.9a). The reserve requirement is rep-

resented by (8.9b) and (8.9c) and is written in terms of the constant system inertiaM . Again

note that numerical results in Section 8.4 will study the effect of varying inertia. The private

battery constraints are represented by the set B = {b ∈ Rβ : bj ∈ Bj ∀j ∈ B}. The private

generator constraints are represented by the set X={(G,R) ∈ Rn×Rn : (Gi, Ri) ∈ Xi ∀i ∈ N}.
As in the previous section, the co-optimization problem uses a general form of the feasible

set of net real power injections, denoted T. However, we will henceforth assume that this set

is a polytope and is thus convex. We additionally assume that this set matches the SFCs as

defined in Section 2.2.3.

The function h(M,1†b) is strictly convex in the total FFR reserve 1†b as defined in

(7.24). Since this function is strictly convex in 1†b and appears on the RHS of constraint
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(8.9c), the co-optimization problem with rate-based PFR limit is non-convex. As a result,

we cannot assume that strong duality holds as was done in the previous section. Instead,

this section will use the generalized KKT conditions to prove that market participants do

not experience lost opportunity cost and that there is no PCRS when using KKT prices.

Below is a general definition of a KKT point for the co-optimization problem with

rate-based PFR limit (8.9) where the Lagrange multipliers of constraints (8.9a), (8.9b), and

(8.9c) are denoted λ, µ and γ respectively. This definition of a KKT point is similar to

Definition 2.2 of a KKT price/dispatch pair from Chapter 2. This definition follows from

the normal cone definition of the First Order Necessary Conditions (FONCs) as described

in Appendix A (See [71] as well as Remarks 8.1 and 8.2).

Definition 8.1. A KKT point (λ⋆, γ⋆, µ⋆, G⋆, R⋆, b⋆, T ⋆) ∈ Rn×Rn
+ ×R+ ×X×B×T is such

that constraints (8.9a), (8.9b), and (8.9c) hold along with the following conditions:

−λ⋆ ∈ NT(T
⋆) (8.10a)

0 ∈∂
(
Bj(bj)− µ⋆bj − γ⋆†κ∇h(M,1†b⋆)bj

)
|b⋆j+NBj(b

⋆
j) ∀j ∈ B (8.10b)

0 ∈∂ (Ci(Gi, Ri)−λ⋆iGi − µ⋆Ri + γ⋆iRi) |(G⋆i ,R⋆i )+NXi(G
⋆
i , R

⋆
i ) ∀i ∈ N (8.10c)

µ⋆(L− 1†R⋆ − 1†b⋆) = 0 (8.10d)

γ⋆i (R
⋆
i − κih(M,1†b⋆)) = 0 ∀i ∈ N (8.10e)

where (8.10a)-(8.10c) represent the generalized stationarity condtitions for problem (8.9)

and (8.10d)-(8.10e) represent the complementary slackness conditions for problem (8.9).

The gradient of the function h(M, · ) evaluated at 1†b⋆ is denoted ∇h(M,1†b⋆). The normal

cone of the set T at the point T ⋆ is denoted NT(T
⋆), the normal cone of the set Xi at the point

G⋆
i is denoted NXi(G

⋆
i ), and the normal cone of the set Bj at the point b⋆j is denoted NBj(b

⋆
j).

The subdifferential of a general function g(x) evaluated at a point x⋆ is denoted ∂(g(x))|x⋆ .
A formal definition of the normal cone is provided in [71] and is explained intuitively in

Appendix A.

As discussed in Appendix A, standard off-the-shelf optimization software is designed

to identify a KKT point as in Definition 8.1 using iterative algorithms, such as interior point

algorithms. KKT prices can now be defined with respect to a KKT point. Let the KKT

price for FFR reserve be defined as ζj := µ⋆ + γ⋆†κ∇h(M,1†b⋆) for each battery j ∈ B,
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let the KKT price for PFR reserve be defined as ξi := µ⋆ − γ⋆i for each generator i ∈ N,

and let the KKT price for electricity be defined as λ⋆i for each generator i ∈ N. With this

definition of the prices, the condition (8.10c) represents the FONCs of the generator profit

maximization problem (8.1), the condition (8.10b) represents the FONCs of the battery profit

maximization problem (8.3), and the condition (8.10a) represents the FONCs of the FTR

payoff maximization problem (2.4). (Note that the normal cone definition of the FONCs are

generally represented by (A.6) in Appendix A). Notice that each of these problems are convex

because the feasible set of net power injections is assumed convex and the private constraint

sets are convex. Since each of these problems are convex, the FONCs are sufficient for global

optimality. As a result, the price, dispatched generation, and procured reserve values defined

by a KKT point result in zero lost opportunity cost for generators and batteries as well as

zero PCRS as defined in (8.2), (8.4), and (2.5) respectively. This is explicitly written as

follows:

Co
i (λ

⋆
i , ξi, G

d
i , R

d
i ) = 0 ∀i ∈ N, and Cb

j (ζj, b
d
j ) = 0 ∀j ∈ B, and Cs(λ⋆, Gd) = 0. (8.11)

Intuitively, KKT prices result in zero PCRS and zero lost opportunity cost of the market

participants because the only non-convex constraint (8.9c) is being priced. That is, the

prices are defined based on the Lagrange multipliers of (8.9c) and all other constraints in

the co-optimization problem with rate-based PFR limit (8.9) are convex.

As explained in the previous section, revenue adequacy of the ISO cannot necessarily

be claimed for any co-optimization problem including the co-optimization problem with rate-

based PFR limit (8.9). This is because reserve payments must be recovered by the ISO and

the method used to recover these payments may vary between ISOs.

Remark 8.1. We emphasize that a KKT point may not exist in our general framework because

constraint qualifications may not be satisfied for a general non-linear function h(M, · ). It

is also possible that an identified solution satisfying the KKT conditions could represent

a saddle point, local maximum, or local minimum. However, a local minimum to the co-

optimization problem with rate-based PFR limit (8.9) satisfying the KKT conditions has

been obtained using standard off-the-shelf software for each test case in this dissertation.
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Furthermore, our results regarding KKT points hold if the solution represents a saddle

point, local maximum, or local minimum.

Remark 8.2. Appendix A provides an elaborate description of how the conditions from Def-

inition 8.1 are related to the common KKT conditions. For the special case where the cost

function is smooth, Appendix A.2 proves any solution (G⋆, R⋆, b⋆, T ⋆) that satisfies the tra-

ditional KKT conditions for the co-optimization problem with rate-based PFR limit (8.9)

will also satisfy the conditions from Definition 8.1 for some Lagrange multipliers (λ⋆, γ⋆, µ⋆).

In fact, there may be multiple such Lagrange multipliers (λ⋆, γ⋆, µ⋆) that satisfy the KKT

conditions. Our results do not require such Lagrange multipliers to be unique.

Remark 8.3. NPRR 863 implies that PFR reserve and FFR reserve will see the same price in

the electricity market in Texas [25]. In contrast, this chapter suggests that PFR reserve and

FFR reserve should be assigned different prices that accurately account for their individual

effectiveness in arresting frequency decline. Furthermore, this chapter suggests that the PFR

reserve prices should vary between generators based on their ramping capabilities in order to

accurately account for the individual generator’s effectiveness in arresting frequency decline.

It is also important to recognize that the FFR reserve price ζj := µ⋆ + γ⋆†κ∇h(M,1†b⋆)

cannot be lower than the PFR reserve price ξi := µ⋆ − γ⋆i . This is because the Lagrange

multipliers γ⋆i , the ramp rates κ, and the gradient ∇h(M,1†b⋆) are all non-negative. This

effectively places more value in the fast acting abilities of FFR reserve.

8.4 Numerical Results

This section intends to illustrate the effect of introducing FFR reserve into the market

by increasing the total offered FFR capacity 1†b̄ in a high inertia setting, representing the

inertia levels experienced today. After introducing FFR reserve into the market, we will

illustrate the effect of decreasing inertia to low levels that represent a future scenario where

there may be significant wind and solar penetration. Section 8.4.1 will analyze the co-

optimization problem with rate-based PFR limit (8.9) and Section 8.4.2 will analyze the

co-optimization problem with equivalency ratio requirement (8.5).

A realistically large 2000 bus test case is used that intends to roughly approximate
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the electric power system in Texas described in [7] and [93] and is based on publicly available

data. We will assume the cost of FFR reserve is zero; that is Bi(bi) = 0, and as a result the

total procured FFR reserve 1†bd matches the total offered FFR capacity 1†b̄. The 50 natural

gas generators with the largest capacity are selected to provide PFR reserve and their offered

PFR capacity is set to 20 percent of their generation capacity, e.g. R̄i = 0.2Ḡi, consistent

with the analysis in Section 7.1.3.2. The frequency thresholds are set to values that match

the ERCOT NPRR 863 [25]. Specifically, the PFR threshold is ω1 = 59.9833Hz, the FFR

threshold is ω2 = 59.8Hz, and the minimum frequency threshold is ωmin = 59.4Hz. We

additionally analyze a loss of generation in the amount of L = 2750MW, which represents

the two largest nuclear plants in Texas.

8.4.1 Co-optimization with Rate-Based PFR Limit

Let’s first analyze the co-optimization problem with rate-based PFR limit (8.9). The

co-optimization problem (8.9) is solved using the interior point algorithm from the MATLAB

package TOMLAB [44]. This algorithm is not guaranteed to find a globally optimal solution;

however, it seems to perform well and always identifies a KKT point as in Definition 8.1.

Furthermore, the ramp rate κi = 20MW/s and the delay ϵ = 0.5s are approximated as being

the same for each generator i providing PFR reserve and were determined using a dynamic

simulation of a loss of the two largest generators, which amounts to approximately 2750MW.

The dynamic simulations were performed using PowerWorld.

We will first consider the effect of introducing FFR reserve into the market and then

consider the effect of reducing the inertia after FFR reserve has been introduced into the

market.

8.4.1.1 Introducing FFR Reserve to Market

Consider a high inertia scenario M = 300GWs, which represents an inertia value

typical today in Texas. The limit function at this inertia level is plotted in Figure 7.4. Fig-

ures 8.1 and 8.2 analyze the effect of introducing FFR reserve into the market by increasing

the total offered FFR capacity 1†b̄ from 0 to 1000MW. Figure 8.1 plots the procured PFR
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reserve for each generator as the total offered FFR capacity 1†b̄ increases. When the total of-

fered FFR capacity increases past 1000MW the price of both PFR and FFR reserve becomes

zero and the co-optimization problem has multiple solutions, making it difficult to analyze.

Notice that Assumption 7.1 from Section 7.2.2 is satisfied with the selected parameters and

for the selected range of total offered FFR capacity. As the total offered FFR capacity

increases the procured FFR reserve replaces the most expensive PFR reserve in turn from

highest procurement cost to lowest procurement cost. As a result the procured PFR reserve

does not decrease uniformly among all generators, but instead decreases to zero for only one

or two generators at a time.

Figure 8.1: Procured PFR reserve for increasing total offered FFR capacity using the co-
optimization problem with rate-based PFR limit (8.5). Each trajectory represents the procured
PFR reserve to a specific generator.

The upper bound on the procured PFR reserve from the rate-based PFR limit con-

straint (8.9c) increases as the total offered FFR capacity 1†b̄ increases. Generators that

exhibit high generation costs, low PFR reserve costs and high capacity Ḡi are operating at

this upper bound and see increasing procured PFR reserve as the total offered FFR capacity

increases. As a result we see the procured PFR reserve increasing for many generators from

approximately 65MW to approximately 100MW. On the other hand, generators that exhibit

high generation costs, low PFR reserve costs, and low capacity Ḡi are limited by their offered

PFR capacity R̄i = 0.2Ḡi and do not experience this increase in procured PFR reserve.

Figure 8.2 shows the trajectory of reserve payments as the offered FFR capacity 1†b̄

increases. Notice that the total FFR reserve payments initially increase because the procured
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FFR reserve is increasing. However, when the total offered FFR capacity 1†b̄ reaches 500 MW

the total FFR reserve payments begin to decrease because the reserve price is dropping. On

the other hand, the total PFR reserve payments experiences a steady decline. The total

reserve payments (including both FFR and PFR reserve payments) also decreases as more

FFR reserve is introduced.

Figure 8.2: Reserve payments and cost savings for increasing total offered FFR capacity using
the co-optimization problem with rate-based PFR limit (8.5).

Increasing FFR reserve also has the benefit of reducing total system costs, or equiv-

alently increasing social welfare. The total system costs at the total offered FFR capacity

of 1†b̄ = 0 is approximately $1.2× 106. Figure 8.2 additionally plots the total cost savings,

which are increasing. Notice that increasing offered FFR capacity increases cost savings in

two ways. First, it allows for lower amounts of procured PFR reserve, in turn, allowing for

low cost generation to be dispatched upward. Second, it increases the PFR reserve limit

from constraint (8.9c), allowing the procured PFR reserve to increase from generators with

low procurement costs.

8.4.1.2 Reducing the Total System Inertia

Figures 8.3 and 8.4 fix the total offered FFR capacity to 1†b̄ = 1000MW and analyze

the effect of decreasing inertia values from 300GWs to 150GWs. This intends to represent

the future scenario of decreasing inertia caused by an increase of wind and solar energy

penetration. Figure 8.3 plots the procured PFR reserve for each generator as the total
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system inertia M decreases. As the inertia drops, the limit function h(·,1†b) decreases

and the rate-based PFR limit becomes tighter. This limit constraint causes the procured

PFR reserve to decrease for many generators with low procurement costs and increase for

many generators with high procurement costs. When the inertia reaches its lowest value

of 150GWs, the procured PFR reserve for many generators matches their rate-based PFR

limit. It is apparent that the co-optimization problem (8.9) accommodates low inertia values

by diversifying the procured PFR reserve, effectively distributing PFR reserve more evenly

among the generators.

Figure 8.3: Procured PFR reserve for decreasing inertia values using the co-optimization problem
with rate-based PFR limit (8.5). Each trajectory represents the procured PFR reserve for a specific
generator.

Figure 8.4 shows the trajectory of PFR and FFR reserve payments as the inertia

drops. As the inertia drops from M = 300GWs the reserve prices and payments remain

zero until approximately M = 275GWs at which point the PFR and FFR reserve payments

begin to increase. For all values of inertia the total FFR reserve payments approximately

double the total PFR reserve payments despite the fact that the total procured FFR reserve

is lower than the total procured PFR reserve. Specifically, the total procured FFR reserve

is 1000MW and the total procured PFR reserve is 1750MW at all inertia levels. This means

that the FFR reserve price is significantly larger than the PFR reserve price as discussed in

Section 8.3. This higher FFR reserve price places more value in the FFR reserve because of

its ramping capabilities.
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Figure 8.4: Reserve payments and cost savings for decreasing inertia values using the co-
optimization problem with rate-based PFR limit (8.5).

8.4.2 Co-optimization with Equivalency Ratio Requirement

Let’s now analyze the co-optimization problem with equivalency ratio requirement

(8.5). The co-optimization problem (8.5b) is convex and quadratic due to quadratic cost

functions in the 2000 bus test case. This problem is solved using the quadratic programming

software in MATLAB’s optimization toolbox, which is guaranteed to converge to a globally

optimal solution. The equivalency ratio will take the values from Table 7.1, which were

identified empirically by [59].

Similar to the previous section, we will first consider the effect of introducing FFR

reserve into the market and then consider the effect of reducing the inertia after FFR reserve

has been introduced into the market.

8.4.2.1 Introducing FFR Reserve to Market

Consider a high inertia scenario M = 300GWs, which represents an inertia value

typical today in Texas. According to Table 7.1 the equivalency ratio at this inertia level

should be α(M) = 1. Figures 8.5 and 8.6 analyze the effect of introducing FFR reserve into

the market by increasing the total offered FFR capacity 1†b̄ from 0 to 1000MW. Figure 8.5

plots the procured PFR reserve for each generator as the total offered FFR capacity 1†b̄

increases. When the total offered FFR capacity increases past 600MW the price of both

PFR and FFR reserve becomes zero and the co-optimization problem has multiple solutions,
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making it difficult to analyze. We will focus our analysis on total offered FFR capacity levels

below 600MW, in which case the prices are positive and the total procured FFR reserve 1†bd

equals the total offered FFR capacity 1†b̄. As the total procured FFR reserve increases it

replaces the most expensive PFR reserve in turn from highest procurement cost to lowest

procurement cost. As a result the procured PFR reserve does not decrease uniformly among

all generators, but instead decreases to zero for only one or two generators at a time.

Figure 8.5: Procured PFR reserve for increasing total offered FFR capacity using the co-
optimization problem with equivalency ratio requirement (8.5). Each trajectory represents the
procured PFR reserve for a specific generator.

As compared to the co-optimization problem with rate-based PFR limit (8.9) the

co-optimization problem with equivalency ratio requirement (8.5) results in large amounts

of procured PFR reserve for some generators because they do not exhibit a tight PFR limit.

This can be seen by comparing the two Figures 8.5 and 8.1. Furthermore, when using the

equivalency ratio requirement, fewer generators are effected by the introduction of FFR

reserve into the market. First, the equivalency ratio does not change with the total offered

FFR capacity and so most generators maintain constant procured PFR reserve. Second, less

generators are replaced by the newly introduced low cost FFR reserve in the sense that their

procured PFR reserve falls to zero. Notice that only four generators are replaced by FFR

reserve in Figure 8.5 and twelve generators are replaced by FFR reserve in Figure 8.1.

Figure 8.6 shows the trajectory of reserve payments as the total offered FFR capacity

1†b̄ increases. Although this figure sees similar trends as in Figure 8.2, we see slightly less

PFR reserve payments and significantly less payment to FFR reserve. Notice that the total
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FFR reserve payments initially increase because the total procured FFR reserve is increasing.

However, when the total offered FFR capacity 1†b̄ reaches 350 MW the total FFR reserve

payments begin to decrease because the reserve price is dropping. On the other hand, total

PFR reserve payments steadily decline. The total reserve payments (including both FFR

and PFR reserve payments) also decreases as more FFR reserve is introduced.

As compared to the co-optimization problem with rate-based PFR limit (8.9) the

co-optimization problem with equivalency ratio requirement (8.5) lowers the operating cost

by approximately $1200 at the total offered FFR capacity level of 1†b̄ = 0. Figure 8.6

additionally plots the total cost savings with respect to the case with zero total offered

FFR capacity for the co-optimization problem with equivalency ratio requirement (8.5). As

expected the total cost savings are increasing in the total offered FFR capacity.

Figure 8.6: Reserve payments and cost savings for increasing total offered FFR capacity using
the co-optimization problem with equivalency ratio requirement (8.5).

8.4.2.2 Reducing the Total System Inertia

Figures 8.7 and 8.8 fix the total offered FFR capacity to 1†b̄ = 1000MW and analyze

the effect of decreasing inertia values from 300GWs to 150GWs. This intends to represent

the future scenario of decreasing inertia caused by an increase of wind and solar energy

penetration. The reserve prices and payments are zero for inertia at or above M = 230GWs

and thus the co-optimization problem has multiple solutions, making it difficult to analyze.

We will focus our analysis on inertia values falling below M = 230GWs, in which case the
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prices are positive and the total procured FFR reserve 1†b̄ is equal to the total offered FFR

capacity 1†b̄.

Figure 8.7 plots the procured PFR reserve for each generator as the total system

inertia M decreases. The fundamental difference between the reserve requirements in prob-

lems (8.5) and (8.9) is well illustrated by Figures 8.7 and 8.3. Specifically, Figure 8.7 shows

that problem (8.5) accommodates low inertia values by simply increasing the procured PFR

reserve. Notice that all procured PFR reserve trajectories increase as the inertia decreases

in Figure 8.7, which contrasts with Figure 8.3. On the other hand, Figure 8.3 shows that

problem (8.9) accommodates low inertia values by distributing the procured PFR reserve

among more generators. Notice that the total procured reserve (including FFR and PFR) is

equal to L = 2750MW at all inertia values in Figure 8.3, whereas the total procured reserve

is more than L = 2750MW at low inertia values in Figure 8.7.

Figure 8.7: Procured PFR reserve for decreasing inertia values using the co-optimization problem
with equivalency ratio requirement (8.5). Each trajectory represents the procured PFR reserve to
a specific generator.

Figure 8.8 shows the trajectory of reserve payments as the total system inertia

drops. As the inertia drops the reserve prices and payments remain zero until approxi-

mately M = 230GWs at which point the PFR and FFR reserve payments begin to increase.

For all inertia levels the total PFR reserve payments approximately double the total FFR

reserve payments, which is the opposite of what was witnessed in Figure 8.4. Notice that the

trajectory of total PFR reserve payments is very similar for both figures; however, Figure 8.8

experiences a drastic reduction in total FFR reserve payments. In fact, the co-optimization
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problem with equivalency ratio requirement (8.5) results in considerably lower prices for FFR

reserve as compared to the co-optimization problem with rate-based PFR limit (8.9).

Figure 8.8: Reserve payments and cost savings for decreasing inertia values using the co-
optimization problem with equivalency ratio requirement (8.5).

8.5 Summary

This chapter analyzed two different co-optimization problems. The first co-optimization

problem uses an equivalency ratio reserve requirement and is consistent with the empirically

derived requirement from [59]. The second co-optimization problem uses the rate-based PFR

limit derived in Chapter 7. Using KKT prices, all market participants are proven to have

zero lost opportunity cost and congestion revenue adequacy is guaranteed.

Numerical results are provided that illustrate the main differences between the two

co-optimization problems. The equivalency ratio reserve requirement is shown to concentrate

large amounts of PFR reserve to generators with low procurement costs at low inertia levels.

In contrast, the rate-based PFR limit disperses the procured PFR reserve more evenly among

many generators. The equivalency ratio reserve requirement is also shown to result in less

reserve payments, which is desirable from a revenue adequacy standpoint. In contrast the

rate-based PFR limit results in significantly higher prices for FFR reserve effectively placing

value in the ramping ability of FFR reserve and resulting in large FFR reserve payments.
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Chapter 9

Conclusions and Future Work

Parts I and II of this dissertation were motivated by two recently proposed market rule

changes in the Electric Reliability Council of Texas (ERCOT). Part I aimed to incorporate

non-linear transmission models into the electricity market that account for transmission

losses. This part of the dissertation was primarily based on [31–33]. Part II aimed to

incorporate interdependent reserve types for primary frequency response into a real-time

co-optimization problem. This part of the dissertation extended the work from [30]. Part III

will now conclude the dissertation by summarizing the main findings and suggesting future

research directions.

9.1 Economic Dispatch: Non-Linear Transmission Models

Part I of this dissertation focused on incorporating accurate non-linear transmission

models into the myopic economic dispatch problem. Chapter 3 formulated the most accurate

myopic economic dispatch problem, which is termed the Alternating Current Optimal Power

Flow (AC OPF) problem. Due to the inherent non-convexity of the AC OPF problem it

is generally difficult to solve and it would also result in an electricity market that cannot

guarantee congestion revenue adequacy. This is one reason why ISOs today solve economic

dispatch problems that serve as convex approximations of the AC OPF problem. These

convex approximations were derived in Chapters 4 and 5. On the other hand, Chapter 6

attempted to accommodate non-convexity of the AC OPF problem by using algorithms

that identify a potentially sub-optimal solution and by mitigating the congestion revenue

adequacy problem using convex hull prices.
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9.1.1 Convex Approximations of the AC OPF Problem

A non-linear transmission line model was derived in Chapter 4 that approximates

the fully detailed AC transmission line model used in the AC OPF problem. The proposed

non-linear transmission line model is a generalization of the commonly used quadratic loss

model, incorporates a Fictitious Nodal Demand (FND) representation of losses, and was

used to formulate the Transmission Constrained Economic Dispatch (TCED) problem, which

approximates the AC OPF problem. Chapter 4 additionally contributed to the literature by

deriving various line limit constraints and by providing rigorous justification that the FND

representation of transmission losses should allocate half of the losses of each transmission

line to the busses on either side of the line.

The TCED problem derived in Chapter 4 is convenient because it can easily be

made convex by use of the load over-satisfaction relaxation, which is capable of recovering

the exact solution of the TCED problem under the condition that Locational Marginal

Prices (LMPs) are positive. The Independent System Operator (ISO) in New Zealand rarely

sees non-positive prices because they restrict market participants to provide non-negative

marginal cost offers in the electricity market. For this reason, New Zealand uses the load

over-satisfaction relaxation in their market clearing process. Unfortunately, ISOs in the

United States (US) frequently see negative prices and so they could not directly use the load

over-satisfaction relaxation without modification or post-processing. To make this approach

applicable to ISOs in the US, future work will focus on post-processing methods that can

recover a nearly optimal feasible solution to the TCED problem from the minimizer of the

convex relaxed TCED problem.

ISOs in the US use linearization techniques to approximate the solution to the TCED

problem and these techniques do not require the prices to be positive. Chapter 5 studied

a linearized version of the TCED problem termed the common LCED problem because it

represents an economic dispatch problem used by ISOs in the US. This chapter contributed

to the literature by characterizing the approximation errors associated with each of the three

assumptions required to accurately recover the optimal dispatch of the non-convex TCED

problem from the solution of the common LCED problem. This chapter observed that the
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common LCED problem may have multiple minimizers, in which case small perturbations

of the base-case state may result in large dispatch approximation error. Future work will

identify the economic impacts of this seemingly unavoidable dispatch approximation error.

Another identified source of dispatch approximation error lies in the inaccurate choice

of Loss Distribution Factors (LDFs). Even if the base-case state matches a minimizer of the

non-convex TCED problem, Chapter 5 proved that there does not always exist a choice of

LDFs such that the optimal dispatch of the TCED problem is also optimal for the common

LCED problem. For the situations where such LDFs do not exist, future work will focus on

identifying LDFs that minimize dispatch approximation error. On the other hand, Chapter 5

showed that such LDFs do exist and identified such LDFs for the special case where no line

limits are binding.

9.1.2 Accommodating the AC OPF Problem by use of Convex Hull Pricing

As illustrated in Chapter 4, iterative methods, such as interior point algorithms,

can be used to effectively approximate a minimizer of the AC OPF problem. Although

these algorithms are only, at best, guaranteed to converge to a local minimum, they often

converge to a point that is nearly globally optimal. Chapter 6 suggested dispatching the

resulting identified solution of the AC OPF problem that is not guaranteed to be globally

optimal. As a result congestion revenue adequacy cannot be guaranteed, or equivalently

Financial Transmission Right (FTR) uplift may be positive, as illustrated in Chapter 3.

For this reason Chapter 6 proposed using Convex Hull Prices (CHPs) that solve a novel

multi-objective minimum uplift problem that balances a tradeoff between generator uplift

and FTR uplift. The proposed multi-objective minimum uplift problem includes a weight

parameter representing the relative value of FTR uplift to generator uplift. Although this

chapter illustrates the effect of varying this weight parameter, it does not identify a proper

method of choosing this parameter. Future work will focus on methods of properly choosing

this weight parameter.

Chapter 6 continued by providing the first proposed method of approximating CHPs

in polynomial-time using a transmission network model that is general enough to accom-
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modate the AC OPF problem. The approximate CHPs were computed using convex re-

laxations of the AC OPF problem that have been developed in previous work. Numerical

results showed that the Semi-Definite Programming (SDP) relaxation effectively approxi-

mates CHPs but exhibits computational limitations on large systems. Furthermore, the

Quadratic Convex (QC) and Second-Order Cone (SOC) relaxations are computationally ef-

ficient but are not as effective in approximating CHPs. Future work will aim to improve

upon the convex relaxations studied in this dissertation by developing tight relaxations that

are computationally efficient.

The results in this dissertation focus on an economic dispatch problem that is my-

opic the sense that (in its basic formulation) it only optimizes over a single time interval.

However, convex hull pricing is typically studied in the context of the Unit Commitment

(UC) problem, which optimizes over a time horizon and considers non-convex private gener-

ator constraints. The results provided in Chapter 6 will be extended to accommodate a UC

problem. Remark 6.1 illustrates how this extension can be made. In this context it would

also be useful to approximate convex hull prices using a quadratic loss model as derived in

Chapter 4 along with the load over-satisfaction relaxation. Future work will also identify

special cases where the proposed approximation of CHPs are guaranteed to exactly match

the actual CHPs.

Electricity markets today require each FTR allocation vector to be balanced in the

sense that the elements sum to zero. With the goal of introducing loss modeling into the

electricity market, the convex hull pricing work in Chapter 6 assumed a more general defi-

nition of FTRs that allow FTR allocation vectors to be unbalanced in the sense that their

elements may not sum to zero, e.g. 1†f (ξ) ̸= 0. Unbalanced FTRs have been studied well in

the literature [37, 40] and allow FTRs to hedge locational price differences caused by losses

as well as congestion. That being said, no electricity markets today allow for unbalanced

FTRs and so future work will investigate implementation challenges regarding unbalanced

FTRs.
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9.2 Co-Optimization: Interdependent Reserve Types

Part II of this dissertation introduced interdependent reserve types for primary fre-

quency response into the economic dispatch problem, resulting in a co-optimization problem.

Two types of reserve were considered. The first type was Primary Frequency Responsive

(PFR) reserve, which intends to accommodate standard droop control. The second type was

Fast Frequency Responsive (FFR) reserve, which was recently introduced to the ERCOT

market and intends to accommodate fast acting battery resources. Chapter 7 derived re-

serve requirements from first principles that couple FFR and PFR reserve. Chapter 8 then

placed these reserve requirements into a co-optimization problem that would be solved by the

ERCOT ISO to determine dispatch of generation and procurement of reserves. This chapter

compared a non-convex co-optimization problem that enforces the newly proposed rate-based

PFR limit to a previously formulated convex co-optimization problem that enforces a reserve

requirement based on equivalency ratios.

9.2.1 Reserve Requirements

Chapter 7 distinguished between nominal PFR reserve, as determined by a genera-

tor’s head-room, and available PFR reserve, as determined by the ramping limitations of a

generator’s turbine governor. This chapter provided a simple model of available PFR reserve

that intended to capture the ramping limitations of droop control by use of a fixed time delay

followed by a fixed ramp rate. Using this model, Chapter 7 derived a novel rate-based PFR

limit that ensures PFR reserve has sufficient ramping ability to effectively arrest frequency

decline in response to a generator outage under certain assumptions. Specifically, the FFR

reserve deployment was assumed to occur during the PFR reserve ramping period and was

assumed not to overshoot; that is, the power imbalance is assumed to not become instantly

positive. Finally, Chapter 7 used the rate-based PFR limit to derive the equivalency ratio re-

serve requirement by modeling the fixed ramp rate exhibited by each PFR reserve generator

as being proportional to the nominal PFR reserve of that generator. The resulting equiva-

lency ratio depends on the system inertia as well as the total FFR reserve. It was shown that

the proposed equivalency ratio is approximately constant in the total FFR reserve for high

inertia levels, yielding a reserve requirement very similar in form to the equivalency ratio
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reserve requirement from [59]. This first principles derivation of the equivalency ratio reserve

requirement is novel because previous work has only studied equivalency ratios empirically

through simulation [59].

The assumptions used to derive the rate-based PFR limit will be removed in future

work. Specifically, each possible combination of scenarios will be considered where the FFR

reserve deployment occurs before or after the PFR reserve ramp and where the FFR reserve

does overshoot. Furthermore, future work will determine which turbine governor models are

best represented as having a constant ramp rate versus a ramp rate that is proportional to

the generator’s nominal PFR reserve. In this context, proper ramp rates and proportional

constants will be empirically verified using extensive simulation results of large generator

outages. Finally, future work will use the rate-based PFR limit to provide insight into

offered PFR capacity limits that are enforced in practice through ISO protocols.

9.2.2 Real-Time Co-Optimization

Chapter 8 formulated two co-optimization problems. The first was non-convex and

enforced the newly proposed rate-based PFR limit, which varied non-linearly with the pro-

cured FFR reserve. The second was convex and enforced the equivalency ratio requirement

from [59]. It was proven that both problems result in zero lost opportunity cost for genera-

tors/batteries and zero FTR uplift when using the proposed KKT prices. As compared to

the co-optimization problem with equivalency ratio requirement, numerical results illustrated

that the co-optimization problem with rate-based PFR limit encouraged the procured PFR

reserve to be more evenly dispersed among generators. Furthermore, the co-optimization

problem with rate-based PFR limit resulted in higher prices for FFR reserve, which would

encourage additional investment in FFR reserve but also result in larger reserve payments,

which may be considered out-of-market payments.

The co-optimization problem with rate-based PFR limit is non-convex and is gen-

erally difficult to solve. This dissertation suggested solving this co-optimization problem

using interior point methods, which are only, at best, guaranteed to converge to local min-

imum. Future work will identify efficient ways of approximately solving this non-convex
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co-optimization problem. For example, [30] briefly suggests an accurate approximate for-

mulation that uses a piecewise linearization of the PFR reserve limit constraint that only

requires the introduction of a few integer variables.
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Appendix A

Generalized KKT Conditions using the Normal Cone

This appendix outlines the relationship between the common KKT conditions and

the generalized KKT conditions used in Chapters 8 and 2. Section A.1 intuitively explains

the relationship between the normal cone definition of the First Order Necessary Conditions

(FONCs) from [71] and the common KKT conditions. This section additionally shows that

the common KKT conditions imply the normal cone definition of the FONCs. Section A.2

then explicitly states the common KKT conditions for the co-optimization problem with

rate-based PFR limit (8.9) for the special case where the cost function is smooth and proves

that these conditions imply the generalized KKT conditions from Definition 8.1. The KKT

price/dispatch pair from Definition 2.2 follows by recognizing that the KKT conditions for

the general ED problem (2.6) are a special case of the KKT conditions for the co-optimization

problem with rate-based PFR limit (8.9) where the reserve requirement L is zero, the PFR

reserve offer R̄ is zero, and the FFR reserve offer b̄ is zero.

The notation in this section of the appendix is consistent with the introduction and

Part II of this dissertation, where the generalized KKT conditions are defined. However, this

notation is not completely consistent with Part I of this dissertation because some symbols

are redefined.

A.1 The FONCs, the Normal Cone, and the KKT Conditions

Section A.1.1 will quickly derive the normal cone definition of the FONCs. Sec-

tion A.1.2 will provide geometric insight into the normal cone definition of the FONCs.

Finally, Section A.1.3 will quickly derive the KKT conditions from the normal cone defini-

tion of the FONCs, intuitively showing that both are equivalent.
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We adopt the following optimization problem:

min
x∈F

ψ(x) (A.1)

where X represents the feasible set of the optimization problem and ψ : X → R represents

the objective function.

A.1.1 General First Order Necessary Condition using Normal Cones

The optimization problem (A.1) can be equivalently written as the following problem

that implicitly enforces the constraints using an indicator function:

min
x∈R¯

ψ
ψ(x) + IF(x) (A.2)

where the indicator function is defined as follows:

IF(x) :=
{

0 if x ∈ F

∞ else
(A.3)

The FONCs of this unconstrained problem require the zero vector to fall in the sub-gradient

of the objective. Before writing this mathematically, let’s first note that the sub-gradient of

the indicator function evaluated at x is the normal cone of the set F evaluated at x and is

denoted NF(x). The normal cone of the set F evaluated at x⋆ is formally defined in [71] as

follows:

NF(x
⋆) := {y : y(x− x⋆) ≤ 0 ∀x ∈ CF(x

⋆)} , (A.4)

where CF(x
⋆) is called the tangent cone of the set F evaluated at some point x⋆ and represents

all feasible directions in the set F starting at point x⋆. With this in mind, we have the

following equality:

∂ (IF(x)) = NF(x) (A.5)

Recall that the FONCs of this unconstrained problem require the zero vector to fall in the

sub-gradient of the objective. The FONCs can now be written as follows, where the addition

of two sets represents the Minkowski sum:

0 ∈ ∂ (ψ(x) + IF(x)) = ∂ (ψ(x)) + ∂ (IF(x)) = ∂ (ψ(x)) +NF(x) (A.6)
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In the special case where the objective function ψ(x) is smooth, its sub-gradient is a

singleton and the FONCs reduce to the following:

−∇ψ(x⋆) ∈ NF(x
⋆) (A.7)

A.1.2 Geometric Interpretation of the FONCs with Smooth Objective Function

The normal cone definition of the FONCs has an intuitive geometric interpretation.

Consider some point x⋆ ∈ F. Intuitively, if x⋆ is optimal, then the gradient of the objective

evaluated at x⋆, denoted ∇ψ(x⋆), should have a non-negative dot product with all feasible

directions. This can be expressed as follows:

∇ψ(x⋆)†(x− x⋆) ≥ 0 ∀x ∈ CF(x
⋆) (A.8)

With this in mind, the normal cone of the normal cone of the set F evaluated at x, denoted

NF(x
⋆), represents all vectors with negative dot product with all feasible directions as defined

in (A.4).

These concepts are intuitively demonstrated in a simple two dimensional example

with a smooth objective function from Figure A.1. In this example the feasible set is defined

as F = {x ∈ R2 : ϕ(x) ≤ 0} where ϕ : R2 → R2 is the vector valued constraint function and

the point x⋆ satisfies the FONCs. The tangent cone CF(x
⋆) is illustrated by the orange area in

Figure A.1. The normal cone NF(x
⋆) is illustrated by the blue area in Figure A.1. Intuitively,

if x⋆ is optimal, then the gradient of the objective evaluated at x⋆, denoted ∇ψ(x⋆), should
have a non-negative dot product with all feasible directions.

A.1.3 Deriving the KKT Conditions

Let’s now assume the feasible set is defined as follows, where the vector valued con-

straint function ϕ : R¯
ψ → Rϕ̄ is smooth and thus its gradient is well-defined:

F = {x ∈ R¯
ψ : ϕ(x) ≤ 0} (A.9)

In this case the normal cone of F evaluated at the point x⋆ can be written as follows:

NF(x
⋆)=

{
{y ∈ R¯

ψ : ∃λ∈Rϕ̄
+ where y = ∇ϕ(x⋆)λ, and ϕi(x⋆)λi = 0 ∀i ∈ [1, ϕ̄]} if x⋆∈ F

∅ else
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NF (x
⋆)NF (x
⋆)

φ1(x) ≤ 0φ1(x) ≤ 0

φ2(x) ≤ 0φ2(x) ≤ 0

∇φ1(x
⋆)∇φ1(x
⋆)

∇φ2(x
⋆)∇φ2(x
⋆)

CF (x
⋆)CF (x
⋆)

Figure A.1: Normal Cone Illustration

Notice that this definition is interpreted as a cone with basis vectors being the columns

of ∇ϕ(x⋆). Furthermore, the ith column is used in the basis only if the ith constraint is bind-

ing, e.g. ϕi(x
⋆)λi = 0. The general FONCs from (A.6) can now be rewritten. Specifically, a

point x⋆ satisfies the general FONCs from (A.6) if the following KKT conditions hold:

∃λ ∈ Rϕ̄ and ∃y ∈ ∂(ψ(x⋆)) such that: (A.10)

x⋆ ∈ F (A.10a)

y = ∇ϕ(x⋆)λ (A.10b)

λ ≥ 0 (A.10c)

ϕi(x
⋆)λi = 0 (A.10d)

Constraint (A.10a) is called the primal feasibility condition and follows from the fact

that the normal cone evaluates to the null set if x⋆ /∈ F. Constraint (A.10b) is called the

stationarity condition and is interpreted as basis vectors of the normal cone being the columns

of ∇ϕ(x⋆). Constraint (A.10c) is called the dual feasibility condition and is interpreted as the

cone weights being non-negative. Constraint (A.10d) is called the complimentary slackness

condition and allows the ith column of ∇ϕ(x⋆) to be a basis vector only if the jth constraint
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is binding, e.g. ϕj(x
⋆) = 0.

The conditions (A.10) are the KKT conditions for optimization problem (A.1) with

feasible set (A.9), with a general non-smooth objective function ψ(x), and a smooth con-

straint function ϕ(x). Most off-the-shelf optimization software aims to identify a solution x⋆

that satisfies the KKT conditions (A.10) along with corresponding Lagrange multipliers λ⋆.

In the case where the constraint function ϕ(x) is smooth, these KKT conditions imply the

normal cone definition of the FONCs (A.6).

A.2 Generalized KKT Conditions for the Co-Optimization Prob-
lem

This section analyzes the co-optimization problem with rate-based PFR limit (8.9)

for the special case where that the constraint sets Xi, Bj, and T are defined by smooth

vector valued constraint functions and the cost function is smooth. We show that any point

satisfying the common KKT conditions of the co-optimization problem with rate-based PFR

limit (8.9) along with some Lagrange multipliers must also solve the definition of a KKT

point 8.1.

Consider the general co-optimization problem (8.9) with the feasible set of net real

power injections and the private constraint sets defined as follows:

T = {T ∈ Rn : σ(T ) ≤ 0}

Xi = {(Gi, Ri) ∈ R× R : ρi(Gi, Ri) ≤ 0} ∀i ∈ N

Bj = {bj ∈ R : θj(bj) ≤ 0} ∀j ∈ B

where the vector valued constraint functions are defined as σ : Rn → Rσ̄, ρi : R× R → Rρ̄,

and θ : R → Rθ̄ and are assumed smooth so they have a unique gradient. Notice that these

symbols have different meaning in Part I of this dissertation, but are consistent with the

notation in the introduction and Part II of this dissertation. Using these definitions the

co-optimization problem can now be written as follows:
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min
(G,R)∈Rn×Rn, T∈Rn,b∈Rβ

Σ
i∈N
Ci(Gi, Ri) + Σ

j∈B
Bj(bj) (8.9)

st : Di −Gi + Ti = 0 ∀i ∈ N (8.9a)

L ≤ 1†R + 1†b (8.9b)

Ri ≤ κih(M,1†b) ∀i ∈ N (8.9c)

ρi(Gi, Ri) ≤ 0 ∀i ∈ N (8.9d)

θj(bj) ≤ 0 ∀j ∈ B (8.9e)

σ(T ) ≤ 0 (8.9f)

A point (G⋆, R⋆, b⋆, T ⋆) ∈ Rn × Rn × Rβ × Rn is said to satisfy the KKT conditions

for problem (8.9) if there exist Lagrangian dual variables (λ, µ, γ, φ, χ, ς) ∈ Rn × R × Rβ ×

Rρ̄×n × Rθ̄×β × Rσ̄ such that the following conditions hold:
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∇GiCi(G
⋆
i , R

⋆
i )− λi +∇Giρi(G

⋆
i , R

⋆
i )φi = 0 ∀i ∈ N (A.12)

∇RiCi(G
⋆
i , R

⋆
i )− µ+ γi +∇Riρi(G

⋆
i , R

⋆
i )φi = 0 ∀i ∈ N (A.13)

∇Bj(b
⋆
j)− µ− κ†γ∇h

(
M,1†b⋆

)
+∇θj(b⋆j)χj = 0 ∀j ∈ B (A.14)

λ+∇σ(T ⋆)ς = 0 (A.15)

D −G⋆ + T ⋆ = 0 (A.16)

L ≤ 1†R⋆ + 1†b⋆ (A.17)

R⋆
i ≤ κihi(M,1†b⋆) (A.18)

G⋆
i ∈ Xi ∀i ∈ N (A.19)

b⋆j ∈ Bj ∀j ∈ B (A.20)

T ⋆ ∈ T (A.21)

µ ≥ 0 (A.22)

γ ≥ 0 (A.23)

φ ≥ 0 (A.24)

χ ≥ 0 (A.25)

ς ≥ 0 (A.26)

µ(L− 1†R⋆ − 1†b⋆) = 0 (A.27)

γ†i (R
⋆
i − κihi(M,1†b⋆)) = 0 ∀i ∈ N (A.28)

φ†
iρi(G

⋆
i , R

⋆
i ) = 0 ∀i ∈ N (A.29)

χ†
jθj(b

⋆
j) = 0 ∀j ∈ B (A.30)

ς†σ(T ⋆) = 0 (A.31)

Recall from Definition 8.1 that ∇h
(
M,1†b⋆

)
represents the gradient of the function

h (M, ·) evaluated at 1†b⋆ and is smooth. Furthermore, ∇GiCi(G
⋆
i , R

⋆
i ) represents the gra-

dient of the function Ci(·, R⋆
i ) evaluated at G⋆

i and ∇RiCi(G
⋆
i , R

⋆
i ) represents the gradient

of the function Ci(G
⋆
i , ·) evaluated at R⋆

i . All other gradient notation matches the standard

conventions from the body of the dissertation.

The stationarity condition is represented by (A.12)-(A.15). The primal feasibility

condition is represented by (A.16)-(A.21). The dual feasibility condition is represented by

(A.22)-(A.26). The complementary slackness condition is represented by (A.27)-(A.31).
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The conditions (A.15), (A.21), (A.26) and (A.31) represent the KKT conditions for

the FTR payoff maximization problem (2.4) and thus the general FONCs from (A.6) are

satisfied for this problem. As a result, the following must be satisfied:

−λ ∈ NT(T ) (A.32)

The conditions (A.12), (A.13), (A.19), (A.24) and (A.29) represent the KKT condi-

tions for the individual generator profit maximization problems (8.1) and thus the general

FONCs from (A.6) are satisfied for this problem. As a result, the following must be satisfied:

0 ∈∂ (Ci(Gi, Ri)−λ⋆iGi − µ⋆Ri + γ⋆iRi) |(G⋆i ,R⋆i )+NXi(G
⋆
i , R

⋆
i ) ∀i ∈ N (A.33)

The conditions (A.14), (A.20), (A.25) and (A.30) represent the KKT conditions for

the individual battery profit maximization problems (8.3) and thus the general FONCs from

(A.6) are satisfied for this problem. As a result, the following must be satisfied:

0 ∈∂
(
Bj(bj)− µ⋆bj − γ⋆†κ∇h(M,1†b⋆)bj

)∣∣
b⋆j
+NBj(b

⋆
j) ∀j ∈ B (A.34)

Conditions (A.32)-(A.34) represent the generalized stationarity conditions (8.10a)-

(8.10c) from Definition 8.1. The non-negativity constraints on µ and γ in Definition 8.1

are implied by conditions (A.22) and (A.23). The complimentary slackness equations from

Definition 8.1 are implied by (A.27) and (A.28). The primal feasibility conditions from

Definition 8.1 are implied by conditions (A.16)-(A.21).

The conditions from Definition 8.1 represent the generalized KKT conditions for the

co-optimization problem with rate-based PFR limit (8.9), which is a generalization of the

general ED problem (2.6). Specifically, the general ED problem (2.6) is attained from the

co-optimization problem with rate-based PFR limit (8.9) by setting the reserve requirement

to L = −1, by setting the FFR reserve offers to zero for each battery, e.g. b̄ = 0, and by

setting the PFR reserve offers to zero for each generator R̄ = 0. In this case constraints

(8.9b) and (8.9c) are never binding and thus their corresponding Lagrange multipliers must

be zero by the complimentary slackness conditions (A.27) and (A.27). With this in mind, it

is straight forward to see that the generalized KKT conditions for the general ED problem

(2.6) in Definition 2.2 represent a special case of the more general KKT conditions for the

co-optimization with rate-based PFR limit (8.9) in Definition 8.1.
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Appendix B

Proof of Theorem 5.1

This proof will begin by splitting the congestion revenue into two parts denoted Γ

and Ω such that λ†(D−G⋆) = Γ+Ω. Subsequently, the first part of the congestion revenue

will be proven greater than the FTR payoffs, e.g. Γ ≥ −c†f . Finally, the second part of the

congestion revenue will be proven non-negative, e.g. Ω ≥ 0. Let’s begin.

The stationarity condition with respect to N as shown in (5.2) and (5.4) leads to the

following:

0=κ⋆ + γ⋆σ, (B.1)

0=κ⋆1+
(̊
I† + 1

2
H̊−1Ȧ†∇L(Ȧθ̇⋆)|A|

)
γ⋆ + S†(

¯
µ⋆ − µ̄⋆), (B.2)

Notice that this implies γ⋆ is the negative of the LMP λ by (5.13), (5.14), and (5.15).

This relationship between γ⋆ and λ will be referenced later in the proof.

γ⋆ = −λ (B.3)

Let’s introduce a vector ϱ = N⋆

1†N⋆ that sums to one. Left multiply both sides of (B.1)

and (B.2) by ϱσ and ϱ̊† respectively and sum both sides of the resulting two equations to

achieve the following:

κ⋆ =− ϱσγ
⋆
σ − ϱ̊†

(̊
I† + 1

2
H̊−1Ȧ†∇L(Ȧθ̇⋆)|A|

)
γ⋆ − ϱ̊†S†(

¯
µ⋆ − µ̄⋆) (B.4)

Notice that energy component of the LMP e = −κ⋆1 and the LMP λ = e+ l+ c can

now be written in terms of the Lagrange multipliers γ⋆,
¯
µ⋆, and µ̄⋆. We can now decompose

the revenue into two parts. The first part of the revenue, denoted Γ, will be defined by a

price component that incorporates the Lagrange multipliers of the line limit constraints
¯
µ⋆

and µ̄⋆. The second part of the revenue, denoted Ω, will be defined by a price component
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that incorporates the Lagrange multipliers of the loss constraints γ⋆. From (B.4) it is easy

to see that the congestion revenue λ†(D −G⋆) is equal to Γ + Ω.

Γ := (c− ϱ̊†S†(
¯
µ⋆ − µ̄⋆)1)† (D −G⋆) (B.5)

Ω :=
(
l − ϱσγ

⋆
σ1− ϱ̊†

(̊
I† + 1

2
H̊−1Ȧ†∇L(Ȧθ̇⋆)|A|

)
γ⋆1
)†
(D −G⋆) (B.6)

The remainder of the proof is split into two parts. Section B.1 provides Part A of the

proof and shows that Γ is at always greater than or equal to the FTR payoff−c†f . Section B.2

provides Part B of the proof and shows that Ω is non-negative under the assumption that

the LMPs, λ = −γ⋆, are non-negative. Theorem 5.1 is then implied.

B.1 Part A of Proof

The following steps are taken to prove that Γ ≥ −c†f . The first expression (B.7)

follows directly from (B.5). Step (B.7)-(B.8) uses the definition of c from (5.15). Step (B.8)-

(B.9) follows algebraically. Step (B.9)-(B.10) substitutes the definition of ϱ = N⋆

1†N⋆ and uses

the constraint (j1), which states that 1†(D − G⋆) = −1†N⋆. Step (B.10)-(B.11) follows

algebraically. Step (B.11)-(B.12) uses the complementary slackness condition for constraints

(j4). Step (B.12)-(B.13) uses the upper and lower bounds enforced by the SFC in definition

(5.16). Step (B.13)-(B.14) follows algebraically. Step (B.13)-(B.14) uses the definition of c

from (5.15).

Γ := c† (D −G⋆)− (
¯
µ⋆ − µ̄⋆)†Sϱ̊1† (D −G⋆) (B.7)

= (
¯
µ⋆ − µ̄⋆)†S

(
D̊ − G̊⋆

)
− (

¯
µ⋆ − µ̄⋆)†Sϱ̊1† (D −G⋆) (B.8)

= (
¯
µ⋆ − µ̄⋆)†S

((
D̊ − G̊⋆

)
− ϱ̊1† (D −G⋆)

)
(B.9)

= (
¯
µ⋆ − µ̄⋆)†S

((
D̊ − G̊⋆

)
+ N̊⋆

1†N⋆1
†N⋆

)
(B.10)

= (
¯
µ⋆ − µ̄⋆)†S

(
D̊ − G̊⋆ + N̊⋆

)
(B.11)

= −µ⋆†
¯
F + µ̄⋆†F̄ (B.12)

≥ −µ†Sf̊ + µ̄†Sf̊ (B.13)

= (µ̄− µ)†Sf̊ (B.14)

= −c†f (B.15)
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B.2 Part B of Proof

The following steps are taken to prove that Ω ≥ 0. The first expression (B.16)

follows directly from (B.6). Step (B.16)-(B.17) and step (B.17)-(B.18) follow algebraically.

Step (B.18)-(B.19) substitutes the definition of ϱ = N⋆

1†N⋆ and the constraint (j1), which

states that 1†(D − G⋆) = −1†N⋆. Step (B.19)-(B.20) follows algebraically. Step (B.20)-

(B.21) follows from the definition of θ̇⋆ := H̊−†
(
D̊ − G̊⋆ + N̊⋆

)
. Step (B.21)-(B.22), step

(B.22)-(B.23), and step (B.23)-(B.24) follow algebraically. Step (B.24)-(B.25) uses the first

order definition of convexity for the vector-valued function L (·). In this context the first

order definition of convexity states that 0 = L(0) ≥ L(Ȧθ̇⋆) + ∇L†(Ȧθ̇⋆)(0 − Ȧθ̇⋆). The

final inequality follows from this first order definition of convexity along with (B.3) and the

assumption that the LMPs λ are non-negative.

Ω :=l†(D −G⋆)−
(
ϱσγ

⋆
σ + ϱ̊†

(̊
I† + 1

2
H̊−1Ȧ†∇L(Ȧθ̇⋆)|A|

)
γ⋆
)
1† (D −G⋆) (B.16)

=
(

1
2
H̊−1Ȧ†∇L(Ȧθ̇⋆) |A| γ⋆

)†(
D̊ − G̊⋆

)
− ϱσγ

⋆
σ1

† (D −G⋆)

− ϱ̊†̊I†γ⋆1† (D −G⋆)− 1
2
ϱ̊†H̊−1Ȧ†∇L(Ȧθ̇⋆)|A|γ⋆1† (D −G⋆) (B.17)

=1
2
γ⋆† |A|†∇L†(Ȧθ̇⋆)ȦH̊−†

(
D̊ − G̊⋆

)
− γ⋆σϱσ1

† (D −G⋆)

− γ⋆†̊Iϱ̊1† (D −G⋆)− 1
2
γ⋆† |A|†∇L†(Ȧθ̇⋆)ȦH̊−†ϱ̊1† (D −G⋆) (B.18)

=1
2
γ⋆† |A|†∇L†(Ȧθ̇⋆)ȦH̊−†

(
D̊ − G̊⋆

)
+ γ⋆σ

N⋆
σ

1†N⋆1
†N⋆

+ γ⋆†̊I N̊⋆

1†N⋆1
†N⋆ + 1

2
γ⋆† |A|†∇L†(Ȧθ̇⋆)ȦH̊−† N̊⋆

1†N⋆1
†N⋆ (B.19)

=1
2
γ⋆† |A|†∇L†(Ȧθ̇⋆)ȦH̊−†

(
D̊ − G̊⋆ + N̊⋆

)
+ γ⋆σN

⋆
σ + γ̊⋆†N̊⋆ (B.20)

=− 1
2
γ⋆† |A|†∇L†(Ȧθ̇⋆)Ȧθ̇⋆ + γ⋆†N⋆ (B.21)

=γ⋆†
(
−1

2
|A|†∇L†(Ȧθ̇⋆)Ȧθ̇⋆ +N⋆

)
(B.22)

=γ⋆†
(

1
2
|A|† ∇L†(Ȧθ̇⋆)(0− Ȧθ̇⋆) +N⋆

)
(B.23)

=γ⋆† 1
2
|A|†

(
∇L†(Ȧθ̇⋆)(0− Ȧθ̇⋆) + L(Ȧθ̇⋆)

)
(B.24)

≥0 (B.25)

186



Appendix C

Power Flow and Current Flow Quantities

This appendix derives the power flow quantity F̂ℓ(Θℓ, d) from Section 4.1.1 and the

current flow quantity Îij(Θℓ) from Section 4.1.5. Both quantities are derived based on the

equivalent-Π model of a transmission line provided in Figure 4.1. As stated in Chapter 4

voltage magnitudes are assumed fixed.

C.1 Real and Reactive Power Flow Quantities

This section derives the function F̂ℓ(Θℓ, d) in Section 4.1.1. In accordance with Fig-

ure 4.1, this function represents the real power flowing through node c in the series element

of the equivalent-Π model of a transmission line in the direction of bus j at an arbitrary

fractional distance d. First, let Sdℓ denote the complex power flowing through node c toward

bus j. The voltage at node c relative to ground is vc and the current flowing through node

c toward bus j is Ic.

Sdℓ = vcI
∗
c =

(
vj + d

(
vi
aℓ
− vj

)) v∗i
a∗ℓ

− v∗j

z∗ℓ

 (C.1)

= 1
z∗ℓ

(
Vj∠ (θj) + d

(
Vi
τℓ
∠(θi − ψℓ)− Vj∠ (θj)

))(
Vi
τℓ
∠(ψℓ − θi)− Vj∠ (−θj)

)
(C.2)

= 1
z∗ℓ

(
ViVj
τℓ

∠(ψℓ−θi+θj)+ dV 2
i

τ2ℓ
− dVjVi

τℓ
∠(ψℓ−θi+θj)−V 2

j −VjdViτℓ∠(−θj+θi−ψℓ)+dV
2
j

)
(C.3)

= 1
z∗ℓ

(
dV 2
i

τ2ℓ
−(1−d)V 2

j +
VjVi
τℓ

∠(ψℓ − θi+θj)− dViVj
τℓ

(1∠(ψℓ − θi + θj)+1∠(−θj+θi−ψℓ))
)

(C.4)

= 1
z∗ℓ

(
dV 2
i

τ2ℓ
− (1− d)V 2

j +
VjVi
τℓ

∠(ψℓ −Θℓ)− dViVj
τℓ

(1∠(ψℓ −Θℓ) + 1∠(Θℓ − ψℓ))
)

(C.5)

= 1
z∗ℓ

(
dV 2
i

τ2ℓ
− (1− d)V 2

j +
VjVi
τℓ

(cos(ψℓ −Θℓ) + i sin(ψℓ −Θℓ))− 2dViVj
τℓ

cos(Θℓ − ψℓ)
)
(C.6)

= (gℓ − ibℓ)
(
dV 2
i

τ2ℓ
− (1− d)V 2

j +
VjVi
τℓ

(1− 2d) cos(Θℓ − ψℓ)− i
VjVi
τℓ

sin(Θℓ − ψℓ)
)

(C.7)
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The function F̂ℓ(Θℓ, d) should represent the real part of Sdℓ . This is expressed as follows.

Re(Sdℓ ) = gℓ

(
dV 2
i

τ2ℓ
− (1− d)V 2

j +
VjVi
τℓ

(1− 2d) cos(Θℓ − ψℓ)
)
− bℓ

VjVi
τℓ

sin(Θℓ − ψℓ) (C.8)

C.2 Derivation of Squared Current Magnitude

This section derives the function Îij(Θℓ) in Section 4.1.5. In accordance with Fig-

ure 4.1, this function represents the squared current magnitude flowing into the transmission

line from bus i and is written as follows:

Îij(Θℓ) :=
|yℓ|2
τ2ℓ

(
α2
ℓ

τ2ℓ
V 2
i +V

2
j − 2αℓ

τℓ
ViVj cos(ϕℓ−ψℓ+Θℓ)

)
, (4.12)

Let’s derive this function. First, let the complex current flowing into the line from

bus i be denoted Iij. Recognize that the current on the receiving end of the ideal transformer

is aℓIij and is equivalent to the sum of current flowing through the shunt element located

at bus i, written as vi
aℓ
y
(s)
ℓ , and the current flowing through the series impedance, written

( vi
aℓ

− vj)yℓ. The squared current magnitude flowing into the transmission line from bus i is

written as follows. The squared current magnitude function Îij(Θℓ) represents the squared

magnitude of the sum of these terms divided by the squared magnitude of the off-nominal

tap ratio and can be expressed as follows.

Îij(Θℓ) =
∣∣∣ viaℓy(s)ℓ +( vi

aℓ
−vj)yℓ

∣∣∣2 1
|aℓ|2

(C.9)

=
∣∣∣(zℓ(y(s)ℓ +yℓ

)
vi
aℓ
−vj

)
yℓ

∣∣∣2 1
τ2ℓ

(C.10)

=
∣∣∣(αℓ Viτℓ∠(θi + ϕℓ − ψℓ)− Vj∠θj

)
yℓ

∣∣∣2 1
τ2ℓ

(C.11)

=
(
αℓVi
τℓ

∠(θi + ϕℓ − ψℓ)− Vj∠θj
)(

αℓVi
τℓ

∠(−θi−ϕℓ + ψℓ)−Vj∠−θj
)

|yℓ|2
τ2ℓ

(C.12)

=
(
(αℓVi
τℓ

)2+V 2
j − αℓ

τℓ
ViVj∠(Θℓ+ϕℓ− ψℓ)− αℓ

τℓ
ViVj∠(−Θℓ−ϕℓ+ ψℓ)

)
|yℓ|2
τ2ℓ

(C.13)

=
(
(αℓ
τℓ
Vi)

2+V 2
j − 2αℓ

τℓ
ViVjcos (Θℓ+ϕℓ − ψℓ)

)
|yℓ|2
τ2ℓ

(C.14)

Step (C.10) simply factors out y∗ℓ . Steps (C.10)-(C.11) place complex numbers in polar

form and use the definitions of αℓ and ϕℓ. Steps (C.11)-(C.12) expresses squared magnitude

as the multiplication of complex conjugates. Steps (C.12)-(C.13) use simple multiplication.
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Steps (C.13)-(C.14) uses Eulers formula, recognize that the sum of complex conjugates of

any number is two times the real part of that number.
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