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Slow and fast gamma rhythms represent distinct memory processing 

states in the hippocampus 

 

Kevin Wood Bieri, Ph.D. 
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Supervisor: Laura Colgin 

 

The hippocampus is central to learning and memory and participates in both the 

encoding of new memories and their retrieval. It is not known, however, how these dual 

functions are processed within the same structure without causing interference between 

what is actively experienced and what is remembered. Different frequencies of gamma 

oscillations selectively route inputs to area CA1 of the hippocampus, suggesting that 

gamma subtypes play a role in differentiating between streams of incoming information. 

Slow gamma oscillations (~25–55 Hz) couple CA1 to area CA3, a region that is thought 

to store neuronal representations of past events and is thus important for memory 

retrieval. Fast gamma oscillations (~60–100 Hz) couple CA1 to MEC, a region that 

supplies the hippocampus with information about ongoing experiences. In this 

dissertation, I use hippocampal recordings in freely behaving rats to provide evidence 

that such slow and fast gamma coupling supports distinct memory retrieval and encoding 

modes in the hippocampus. This is first examined in the principal neurons of the 

hippocampus, called ‘place cells’, which are thought to provide the ‘where’ component of 

episodic memory. It was found that place cells alternated between distinct spatial coding 

modes, representing upcoming locations during slow gamma and recent locations during 

fast gamma. This concept was explored further in ‘place cell sequences’, which represent 



 vi 

trajectories through space, and are thought to store sequential events of an experience. 

Sequences coded paths sweeping ahead of the animal during slow gamma, and coded 

ongoing, real-time locations during fast gamma. Also, it was found that different phases 

of the slow gamma cycle coded specific locations, suggesting a mechanism for how slow 

gamma promotes retrieval of multi-item memories. Lastly, slow and fast gamma were 

examined during novel and familiar experiences. Fast gamma was enhanced during 

encoding of novel object-place associations, while slow gamma coupling between CA3 

and CA1 was associated with retrieval of familiar object-place associations. Taken 

together, these results support the hypothesis that distinct gamma subtypes provide a 

novel mechanism for separating the dual “reading” and “writing” functions of the 

hippocampus. 
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Chapter 1: Introduction 

In day-to-day life our experiences are continually recorded and retrieved, 

providing continuity with the past and the ability to modify the future. For the most part, 

this process is seamless and happens with little conscious effort – new memories are 

encoded as we go about our day, and old memories are triggered when needed. The 

ability of the brain to integrate new and stored information at rapid time scales into a 

cohesive and meaningful experience is something we take for granted. Attempts have 

been made to localize these two mnemonic processes - the ‘reading’ and ‘writing’ of 

memory - and have shown that a single structure in the brain, called the hippocampus, is 

involved with both. A perplexing question is how a single network of neurons might 

convey stored memories to the rest of the brain, while taking in and recording new 

information, without creating interference between what is current and what is being 

remembered. The disassociation between these two types of information likely involves 

the complex coordination of neurons in the hippocampus and its specialized subregions, 

granting the ability to rapidly encode new information on one hand, and seamlessly 

retrieve relevant stored information on the other. The purpose of this dissertation is to 

explore experimental evidence that different frequencies of gamma oscillations play a 

key role in this coordination. I begin in this chapter with a brief discussion of the relevant 

hippocampal and oscillation physiology, as well as the methods used in their study.  

 

1.1 THE HIPPOCAMPUS 

Background 

The hippocampus is a small structure buried deep in the medial portion of the 

human temporal lobe with a distinct curved shape that early anatomists compared to a sea 
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horse, the Latin word of which gives the structure its name (Figure 1.1A). In rodents, the 

hippocampus is proportionately larger, and its long axis curves rostrodorsally in a C 

shape, with the dorsal portion resting close beneath the neocortex (Figure 1.1B). 

Classically considered part of the limbic system, early physiologists assigned a variety of 

functions to the hippocampus including smell, emotion, attention, and others (Andersen 

et al., 2007, for a review). Early studies of its role in memory were made by observing 

deficits in patients with damage to the temporal lobe, or in patients who had portions of 

the medial temporal lobe removed to treat various neurological conditions. Most famous 

was a patient named H.M., who underwent bilateral resection of the anterior 

hippocampus and its associated regions to treat pharmacologic-resistant epilepsy (Milner 

et al., 1968; Scoville and Milner, 1957). H.M. was relieved of seizures, but unfortunately 

developed profound anterograde amnesia and some degree of retrograde amnesia. 

Interestingly, H.M. did not suffer deficits in all types of memory, but completely lacked 

the ability to remember events, facts, or things that involve conscious recollection. He 

existed as if he was perpetually “waking from a dream”. The type of memory he lacked, 

recall of events and facts, is called ‘declarative’, or ‘explicit’ memory, and is considered 

a core function of the hippocampus. 

Studies in the rat hippocampus have suggested that the hippocampus is also 

critical for spatial navigation (O’Keefe and Nadel, 1978; Moser et al., 2008). The 

principal neurons of the hippocampus, ‘place cells’, code location (O’Keefe and 

Dostrovsky, 1971; O’Keefe, 1976), and are thought to provide the ‘where’ component of 

memory. Much work on hippocampal memory function has been performed by studying 

these cells. 
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Anatomy 

The hippocampus is intimately involved with a number of surrounding structures 

which are collectively called the ‘hippocampal formation’ (Figure 1.1C). This includes 

the hippocampus proper, dentate gyrus (DG), entorhinal cortex (EC), subiculum, 

presubiculum, and parasubiculum. The hippocampus proper is further divided into areas 

CA1, CA2, and CA3. Early anatomists described the connections between these regions 

as a unidirectional, tri-synaptic circuit, in the following order: EC  DG  CA3  

CA1. While this ‘trisynaptic loop’ is an important feature of hippocampal anatomy, 

recent work has provided a more complete and complex picture of the hippocampal 

formation, described below. 

The EC is often considered the gateway to the hippocampus. Part of the 

neocortex, it is situated caudally and ventrally relative to the hippocampus proper. It 

receives projections from a large number of cortical areas, which it relays to the rest of 

the hippocampal formation via a collection of fibers called the perforant path. 

Contributing to this pathway are layer II EC neurons, which project to the DG and CA3, 

and layer III neurons which project to area CA1 and the subiculum. The DG and area 

CA3 do not send feedback projections to the EC; however, CA1 and the subiculum send 

feedback projections to the deep layers of EC, layers V and VI. Within the EC, layer V 

sends projections to layers II and III (Gloveli et al., 2001; Van Haeften et al., 2003), 

thereby completing a loop between the cortex and the hippocampus. The EC provides the 

strongest output from the hippocampal formation, sending projections to many of the 

same neocortical regions from which it receives input. 

The DG has three layers (the granule cell layer, the molecular layer, and the 

polymorphic cell layer) and sits between the EC and area CA3 in a distinct V shape. Of 

the hippocampal formation, the DG might be the most exclusive in terms of connectivity. 
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Figure 1.1: Hippocampal anatomy.  

The hippocampus (shown in blue) in the brain of a human (A), and rat (B). C. The 

projections of the rat hippocampus.  

The granule cells, the principal cells of DG, project to area CA3 via “mossy fibers” and 

receive disynaptic feedback from mossy cells, a second type of DG cell that receives 

input from DG granule cells. As described above, the primary input to the DG is from 

layer II of EC. It receives no direct input from other cortical regions but does receive 

input from multiple sub-cortical structures.  

The hippocampus proper is a continuous infolding of the medial edge of the 

neocortex, but is structurally more primitive, often referred to as ‘archicortex’. It has a 
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characteristic laminar organization, with cell bodies residing in stratum pyramidale. CA3 

resides closest to the DG and receives input from mossy fibers of the granule cells, which 

terminate in stratum lucidum. This layer is unique to area CA3 and demarcates the 

boundary between CA3 and CA2, which does not receive input from DG. CA3 also 

receives input from EC layer II, which synapses in stratum lacunosum-moleculare. The 

most striking feature of CA3 is that its largest source of input is from its own axons. The 

functional significance of these connections is discussed in the following section. Area 

CA2 is a small region between CA3 and CA1, which primarily receives inputs from EC 

layer II and CA3. Both CA3 and CA2 have no known direct projections to the neocortex.  

Adjacent to CA2 is area CA1, which is recognizable as an increase in the density 

of cells in stratum pyramidale. CA1 receives input from layer III EC, terminating in 

stratum lacunosum moleculare, as is the case for the EC inputs terminating in CA3. CA1 

receives its strongest input however from CA3, whose fibers, called ‘Schaffer 

collaterals’, terminate in stratum radiatum. The axons of CA1 cells travel basally through 

stratum oriens, and unlike CA2 and CA3, project to EC, to roughly the same regions from 

which the CA1 cells received inputs. CA1 also sends projections to other regions of the 

neocortex and to the subiculum. 

The final region of the hippocampal formation, the subiculum, is continuous with 

CA1 and is recognizable as a decrease in density of cells in the cell body layer, and the 

discontinuation of stratum radiatum and its associated CA3 input. The subiculum is a 

major output region, which sends projections to layer V of EC and to multiple subcortical 

and cortical regions. 

Place cells 

The principal neurons of the hippocampus are called ‘place cells’. Place cells 

activate when an animal is in a specific region of an environment, called a ‘place field’ 
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(Figure 1.2). Place fields represent an approximately normally distributed firing rate as a 

function of location and are thought to represent memory for locations. Place cells were 

first characterized in rats (O’Keefe and Dostrovsky, 1971) but were later shown to exist 

in a variety of mammals, including humans interacting with a virtual reality environment 

(Ekstrom et al., 2003). The spatial selectivity of place cells is thought to play a central 

role in spatial navigation by providing a cognitive map of the environment.  

In addition to navigation, a growing number of studies suggest that place cells are 

directly involved with memory. The location of each place cell’s place field develops 

with time (O’Keefe and Nadel, 1978; Wilson and McNaughton, 1993; Leutgeb et al., 

2004), as opposed to purely sensory receptive fields, and place fields change in an 

experience-dependent manner (Mehta et al., 1997; Lee et al., 2004). Place cells also 

activate in spatially ordered sequences. The ability of the hippocampus to coordinate 

multi-item spatial sequences might represent a broader substrate for handling episodic 

memories, which are sequences of events. In line with this, sequences of place cells 

representing spatial paths activate at choice points on mazes, suggesting memory recall 

(Johnson and Redish, 2007), and track trajectories to remembered goal locations (Pfeiffer 

and Foster, 2013). Also, place cell activity appears to predict the future trajectory of 

animals (Wikenheiser and Redish, 2015). Moreover, during periods of rest, place cell 

sequences that were active during experience are reactivated in the same order, a 

phenomenon called ‘replay’. This is thought to play a role in long term memory 

consolidation by strengthening the synaptic connections between the active neurons 

(Skaggs and McNaughton, 1996). The role of place cells in broader memory function, as 

opposed to purely spatial, is also supported by their ability to represent stimuli such as 

odors (Wood et al., 1999), and time (MacDonald et al., 2011). The latter might be 

particularly important for maintaining the temporal structure of events within an episodic 
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memory. Although the specific role of place cells in memory operations remains an 

active area of study, there is clear evidence that they are involved with spatial aspects of 

memory. Their spatial coding properties thus offer a valuable window into how the 

hippocampus stores and retrieves information about the external world during memory 

encoding and retrieval. 

Hippocampal function 

Attempting to understand how memory encoding and retrieval takes place in the 

hippocampus is a difficult task considering the complexity of the connectivity. Based on 

the feedforward projections in the network and the extensive recurrent collateral system 

in CA3, David Marr established a basic outline of hippocampal function that remains at 

the center of many current models (Marr, 1971). In this framework, the role of the 

hippocampus is to store simplified versions of neocortical representations, serving as an 

‘index’ of remembered experiences. Retrieval of these experiences is thought to occur by 

Figure 1.2: Example place cell. 

A. Spiking locations of a CA1 place cell (red stars) in a rat exploring a 60 x 60 cm box 

(trajectory in grey line). B. Locations with high spiking probability (red) and low spiking 

probability (blue) are depicted for the same place cell shown in A. 
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activating the index through partial or incomplete cues, which then restores the full 

representation of the initial experience in the output to the neocortex. The hippocampus is 

thought to strengthen these neocortical representations through memory consolidation, 

which happens over a highly variable amount of time, from hours to years. Retrieval may 

then occur entirely independently of the hippocampus. A complete description of these 

processes is outside the scope of this dissertation; however, encoding and retrieval within 

the hippocampal structure is described below. 

The encoding of the hippocampal representation is thought to rely on input from 

EC. The EC receives multimodal, highly processed representations from the neocortex, 

which it then transfers to DG and CA3. DG is thought to act as pattern separator, 

generating distinct patterns of activity from the inputs it receives from EC, even when 

they are very similar (McNaughton and Morris, 1987; Amaral et al., 1990; Treves and 

Rolls, 1994; O’Reilly and McClelland, 1994; Hasselmo and Wyble, 1997). This is 

thought to keep experiences distinct from each other during memory encoding. The 

signal from DG activates unique patterns of activity in the dense auto-associative 

connections within area CA3 (Willshaw et al., 1969; Gardner-Medwin, 1976; Hopfield, 

1982; Kohonen et al., 1984). The powerful mossy fiber synapse from DG is thought to 

strongly excite CA3 cells and thereby stimulate plasticity within the CA3 network, 

allowing storage of the representation, and association with the initial input from EC.  

Evidence that the EC codes ongoing sensory experience important for memory 

encoding is demonstrated by the spatial firing properties of ‘grid cells’ (Brun et al., 2002; 

Fyhn et al., 2004; Hafting et al., 2005), which track an animal’s current location. These 

cells make direct connections to hippocampal place cells (Zhang et al., 2013) and affect 

the spatial information they code (Brun et al., 2008).  
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The retrieval of stored activity patterns is thought to occur when the CA3 network 

is cued by inputs from EC. The CA3 network is thought to be an optimal structure for 

retrieving stored information, since its auto-associative properties allow incomplete or 

corrupted cues to trigger the full activity pattern. This process is called pattern 

completion (McNaughton and Morris, 1987). The role of CA3 in memory retrieval has 

been demonstrated in rats with removal of the input from CA3 to CA1. Without this 

connection, memory acquisition of a spatial recognition task appears intact, but spatial 

recall is impaired (Brun et al., 2002). Moreover, rats lose the ability to remember the 

spatial location of a hidden platform in a pool of water (Morris water maze task) 

(Sutherland et al., 1983; Steffenach et al., 2002). Also, fMRI studies in humans show 

increases in CA3 activity during successful retrieval of associative memories (Chen et al., 

2011).  

CA1 is thought to receive input from CA3 during memory retrieval, as well as EC 

input during memory encoding. This has led to the idea that CA1 acts as comparator 

between stored information from CA3 and novel information from EC (Gray, 1982; 

Hasselmo and Schnell, 1994; Hasselmo and Wyble, 1997). Evidence of mismatch 

detection by CA1 has been observed in high resolution human fMRI studies, in which 

CA1 activity increases when subjects view mismatched associations or expectations 

(Chen et al., 2011; Duncan et al., 2012). Mismatch recognition between two streams of 

information might signal novelty and encourage memory encoding (Hasselmo and 

Wyble, 1997; Lisman and Grace, 2005).  

As can be seen, a great deal of information is passed between the different 

subregions of the hippocampus. Novel information originates from EC and is stored in 

CA3, while activity in CA3 may represent a response to EC input, or the retrieval of 

stored information within its own network. Both of these streams of information are sent 
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to CA1, which may result in memory retrieval, encoding, or consolidation. A key 

question is how the flow of all this information is balanced and coordinated. As will be 

described in the next section, oscillatory dynamics might shed some light on this 

question. 

 

1.2 OSCILLATIONS 

Background 

Neural oscillations are periodic fluctuations in the voltage of the extracellular 

local field potential (LFP) in brain tissue, and generally speaking, resemble a sinusoidal 

wave. Different types of oscillations are classified by their frequency, and have well-

defined correlations with different behavioral and cognitive states, such as sleep (~2–4 

Hz; delta), active exploration (~4-9 Hz; theta), awake relaxation (~10 Hz; alpha), and 

high order cognitive functions such as attention (~30–100 Hz; gamma). This suggested to 

early physiologists that they may play distinct functional roles. 

What do oscillations represent? 

As mentioned above, oscillations are recorded as changes in the voltage of the 

extracellular space of brain tissue, which is referred to as the local field potential (LFP). 

Broadly speaking, the LFP represents the collective activity of a large group of neurons, 

whose electrical activity is summed in space. For this reason, oscillations are generally 

most prominent in brain regions where neurons are physically aligned in an organized 

fashion, allowing summation of current sinks and sources that might otherwise cancel 

out. Hippocampal neurons are tightly packed with vertically aligned dendrites and exhibit 

some of the most prominent oscillations in the brain. In addition to physical orientation, 
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neuronal activity must also be temporally aligned. That is, neurons’ electrical activity 

must co-occur in time, such that its summation results in a cohesive, collective pattern. 

The type of electrical activity that each neuron contributes to the LFP has been a 

long area of study. Each neuron receives excitatory and inhibitory synapses, which 

generate excitatory and inhibitory post-synaptic potentials (PSPs) in its dendrites. If the 

membrane potential threshold is exceeded, the neuron sends output in the form of an 

action potential (AP). Most research suggests that temporally aligned PSPs make up the 

majority of the electrical activity recorded in the LFP, with less contribution from APs 

(Einevoll et al., 2013). This idea dates back to early studies of the LFP (Bremer, 1938; 

Bremer, 1949; Eccles, 1951) and can be explained by the different temporal dynamics of 

PSPs and APs. APs only last ~1–2 ms and their amplitude falls off rapidly as a function 

of distance due to the low pass filtering properties of brain tissue. PSPs, on the other 

hand, last much longer and may propagate further distances before being substantially 

attenuated. This makes it much more likely that any at given location a greater number of 

PSPs are present in the LFP from neighboring and perhaps more distant neurons than 

APs, which are only detectable at locations immediately adjacent to the neuron. 

It should be noted however, that electrical events other than PSPs contribute some 

degree of activity to the LFP, including afterhyperpolarizations, calcium spikes, and 

activity originating from glial cells (Einevoll et al., 2013). Also, APs might directly 

influence measurement of oscillatory components with frequencies >~100 Hz (Petterson 

and Einevoll, 2008; Schomburg et al., 2012). However, the influence of these factors is 

likely small relative to the contribution of PSPs, and primarily limited to frequency 

ranges outside of those examined in this work. 
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Functions of oscillations 

The contribution of PSPs to the LFP suggests that oscillations predominantly 

represent fluctuations in the input received by a network, rather than direct changes to its 

output. Thus, oscillations reflect alternating periods of inhibition and excitation in the 

network, during which neurons are less likely, or more likely, to be active. The periodic 

nature of this process provides a temporal metric that might be important in systems that 

involve precise timing, such as fine motor coordination and perception, or functions that 

rely on pace-making activity such as walking, running, breathing, and control of heart 

rate. Generally, it is thought that oscillations provide temporal coordination to the activity 

of neurons, the specifics of which depend on a variety of factors, such as the frequency, 

region, and mechanism of generation. 

 

1.3 HIPPOCAMPAL OSCILLATIONS 

 During waking behavior, the hippocampus exhibits 4 types of rhythmic LFP 

patterns – theta (~6–12 Hz), beta (~12–30 Hz), gamma (~25–100 Hz), and sharp wave-

ripples (~100–200 Hz). The fastest of these, ripples, occurs when the animal is at rest (as 

well as during slow-wave sleep) and is thought to play a role in memory consolidation. 

Beta appears to be involved with olfactory processing (Vanderwolf and Zibrowski, 

2001), but may also play a role in memory (Igarashi et al., 2014). The most prominent 

LFP patterns during active waking behaviors, and those most often linked to memory 

function, are theta and gamma. 

Theta 

The hippocampal theta rhythm is striking in its regularity and large amplitude, 

resembling a nearly uniform sinusoidal wave (Figure 1.3). Theta was first observed in the 

rabbit in 1938 by Jung and Kornmuller, and later in other species, including rats, cats, 



 13 

monkeys and humans (Green and Arduini, 1954; Grastyan et al., 1959; Vanderwolf, 

1969; Ekstrom et al., 2005). A number of studies have shown that the inhibitory 

projections from the medial septum (MS) are responsible for generating theta (Stewart 

and Fox, 1990; Toth et al., 1997; Hangya et al., 2009); however, other studies suggest 

that theta pace-making might involve other sources, including the EC (Buzsaki et al., 

1983; Kamondi et al., 1998) and interneurons within the hippocampus itself (Goutagny et 

al., 2009). Early attempts to link theta with memory showed that simple learning tasks, 

such as reward conditioning and discrimination learning, correlated with changes in theta 

activity (Grastyan et al., 1959; Adey et al., 1960). However, the role of theta in memory 

remained controversial as these learning tasks overlapped with behaviors that were also 

shown to be strongly tied to theta. Much of the early work on theta attempted to elucidate 

these behavioral correlates and showed that theta was tightly linked to physical mobility, 

as well as states of arousal and attention (regardless of physical movement) (Vanderwolf, 

1969; Kramis et al., 1975). However, an accumulating body of studies, decades old and 

recent, have returned to the initial idea that theta is involved with learning and memory 

(Landfield et al., 1972; Berry and Thompson, 1978; Winson, 1978; Macrides et al., 1982; 

Mitchell et al., 1982; Mizumori et al., 1990; M’Harzi and Jarrard, 1992; Klimesch et al., 

1996; Osipova et al., 2006; Robbe and Buzsaki, 2009; Rutishauser et al., 2010; Liebe et 

Figure 1.3: Hippocampal theta. 

Theta from area CA1 in the hippocampus of a freely behaving rat. Shown is the raw 

unfiltered trace (top) and the same trace after bandpass filtering (6–12 Hz) (bottom).  
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al., 2012), as well as synaptic plasticity (Larson et al., 1986; Staubli and Lynch, 1987; 

Greenstein et al., 1988; Pavlides et al., 1988; Orr et al., 2001; Hyman et al., 2003).  

The mechanisms by which theta promotes memory function remain an active area 

of study. One idea is that theta oscillations coordinate sequences of information that 

might be important for the encoding or retrieval of episodic memories. The existence of 

sequences during theta oscillations (i.e. “theta sequences”) was first theorized as a logical 

corollary to a phenomenon called “theta phase precession”, in which spikes fire on 

progressively earlier phases of theta as an animal passes through a place cell’s place field 

(O’Keefe and Recce, 1993; Skaggs et al., 1996). When place cells are viewed as an 

ensemble, this appears as a compressed representation of space within each individual 

cycle of theta in the form of a spatial path (Skaggs et al., 1996; Foster and Wilson, 2007). 

In a study by Gupta et al. (2012), it was shown that the spatial characteristics of these 

paths correlate with multiple factors, including landmark location, the duration of the 

theta cycle, running speed, and the number of gamma cycles. It was proposed that spatial 

paths sweeping in front of the animal represent a retrieval dependent ‘look ahead’ of the 

upcoming environment. The importance of place cell theta sequences in memory 

encoding and retrieval, and their unique relationship to gamma, are explored in Chapter 

3.  

The findings from Gupta et al. (2012) also illustrate the concept of information 

packaging by individual theta cycles. Because theta represents large fluctuations in the 

excitability of the hippocampal network, information might be naturally segregated by 

each inhibitory phase of the cycle. This was demonstrated in a study by Jezek et al. 

(2011), which familiarized rats to two environments that could be instantaneously 

interchanged, thereby ‘teleporting’ the rat from one environment to the other. When one 

environment changed to the other, separate representations of the environments flickered 
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between separate theta cycles before settling on the representation matching the current 

environment. This supports the idea that information belonging to one set of stimuli is 

selectively activated on each theta cycle, and kept separate from other stimuli. This likely 

represents a broader mechanism in cognitive processing, but might be important for 

memory function where collections of related stimuli must remain distinct from others. 

Gamma 

Unlike theta, gamma oscillations are highly variable. Gamma occurs over a wide 

range of frequencies, ~25–100Hz, and its amplitude fluctuates greatly, making it non-

stationary. Gamma also appears during virtually all behavioral states (Buzsaki et al., 

1983), making formulation of theories about its function difficult. Anatomically, gamma 

is ubiquitous across the hippocampal network, but it appears in small, local patches 

(Sirota et al., 2008). This is in contrast to theta oscillations, which sweep across the 

hippocampus as a traveling wave (Lubenov and Siapas, 2009; Patel et al., 2012). 

Interestingly, gamma has a close relationship to theta, appearing as short bursts of 

activity nested within the comparatively larger theta cycle, with gamma amplitude 

fluctuating as a function of theta phase (Bragin et al., 1995).  

Although theta and gamma co-occur, they are generated by separate mechanisms. 

A substantial amount of evidence points to rhythmic IPSPs on pyramidal cells from fast 

spiking interneurons as the primary source of gamma activity. Spike times of 

interneurons are highly correlated with specific phases of gamma oscillations, as opposed 

to pyramidal cells which do not fire repetitively in phase with gamma (Buzsaki et al., 

1983; Penttonen et al., 1998). Also, reversing the polarity of IPSPs by injecting chloride 

into pyramidal neurons results in an intracellular gamma oscillation that is coherent with 

the gamma measured in the LFP (Soltensz and Duschenes, 1993), and intracellular 

gamma oscillations reverse near the equilibrium potential for chloride (Penttonen et al., 
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1998). Moreover, when gamma is induced pharmacologically, it can be blocked by 

GABA receptor antagonists (Whittington et al., 1995). The exact mechanism by which 

the rhythmic firing of interneurons is generated is an active area of research, but it may 

rely on feedback connections within interneuron networks (I-I networks), feedback from 

pyramidal cells (E-I network), or some combination of both (Buzsaki and Wang, 2012).    

The role of inhibition in gamma oscillations has interesting functional 

implications. Because the majority of the network might be suppressed at any given time, 

rhythmic and synchronous release from inhibition might serve to group the activity of a 

small subset of neurons coding related information. Such selective grouping of neurons 

forms the foundation of the temporal correlation hypothesis, initially proposed by von der 

Malsburg (1981) as a solution to the well-known ‘binding problem’ (Rosenblatt, 1962). 

This concept is perhaps best understood in the hierarchal structure of the visual system. 

When viewing the world, different features (i.e. color, shape, movement) are processed in 

parallel by separate regions in the brain, yet we perceive a single cohesive image. 

Somehow neurons that code the color of an object as red must associate with neurons that 

code its shape as a square (for example), in order to get the perception of a ‘red square’. 

Representing color and shape by separate regions is thought be more efficient than 

having a dedicated set of neurons for each color-shape combination, but leaves open the 

question of how these two sensory features are ultimately linked. The temporal 

correlation hypothesis posits that synchrony across different neurons serves to bind the 

associated features. Seminal work from Wolf Singer and colleagues provided evidence 

that synchrony in the gamma range might underlie this process. In the primary visual 

cortex, it was shown that two neurons synchronized their firing to gamma when coding a 

single bar of light passing through their receptive fields, but not when two smaller, 

separate bars passed through the same path (Gray et al., 1989). The synchrony of the two 
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neurons was thought to represent binding of the two sides of the bar into a single 

perceptual item. This process has been described as a dynamical grouping process, in 

which constellations of neurons that code different features of a stimulus are selectively 

activated, forming functional assemblies. In the hippocampus, this process might occur as 

a ‘winner take all’ mechanism, in which the most excited cells selectively activate during 

the release from inhibition on each gamma cycle (de Almeida et al., 2009). Selective 

gamma activation in this way might associate the most salient components of a memory, 

or mediate the activation of specific groups of place cells during spatial processing.  

The grouping of place cell assemblies by gamma might also explain how place 

cell sequences are organized within individual theta cycles (Lisman and Idiart, 1995; 

Lisman and Jensen, 2013). In this model, individual items of a sequence are coded by 

distinct place cell assemblies, which are activated on successive gamma cycles nested 

within the slower theta cycle. In this way, pieces of information are kept separate from 

one another, and their order is maintained. Interestingly the number of items held in short 

term memory by an average person corresponds roughly to the number of gamma cycles 

in each theta cycle (~7) (Lisman and Idiart, 1995), suggesting that theta-nested gamma 

might play a role in maintaining representations of recent events. This neural code might 

also be important for retrieving stored sequences from long-term memory, or timing 

spikes in a way that is optimal for plasticity during memory encoding (Lisman and 

Jensen, 2013). The idea of a theta/gamma neural code agrees with results from Gupta et 

al. (2012) that showed that the length of spatial paths represented by theta sequences 

correlates with the number of gamma cycles in the theta cycle (Gupta et al., 2012). This 

model is explored further in Chapter 3 with regard to different frequencies of gamma 

oscillations. 



 18 

Gamma has also been proposed to facilitate interregional communication through 

cross-regional coherence. In this idea, the sender and receiver regions of the brain are 

placed in mutual states of alternating excitation and inhibition through synchronous 

oscillations, increasing the impact of their communication. This was proposed by Pascal 

Fries in 2005, as the “communication through coherence” hypothesis. Experimental 

support for this hypothesis was provided in studies of the cat and monkey visual cortex 

that showed that gamma power correlations across regions were higher during periods 

when the gamma phase relationship was optimal and consistent (Womelsdorf et al., 

2007). Thus, gamma coherence might provide an important mechanism for selectively 

routing information between different brain regions, including different subregions of the 

hippocampal network. 

In general, the rapid timescale of gamma has made it an interesting candidate for 

a variety of functions that require precise temporal coordination and occur beyond the 

time scale of conscious perception, such as sensory binding, attentional selection of 

salient stimuli, and episodic memory encoding. A number of human studies have shown 

an association between gamma activity and episodic memory processing (reviewed in 

Nyhus and Curran, 2010). However, the exact mechanisms, and the specific roles in 

different stages of memory function, remain controversial. Recently, a growing body of 

research has shown that different frequencies of gamma oscillations might be selectively 

involved with different hippocampal subregions, suggesting they might play distinct 

functional roles. The following section reviews these findings. 

 

1.4 SLOW AND FAST GAMMA 

For decades of research, the frequency ranges used to define gamma have varied 

from lab to lab, including narrow ranges centered around 40 Hz, and larger ranges 
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spanning ~25–140 Hz. Some evidence has supported the idea that gamma frequency 

varies as a continuous process depending on behavior (Ahmed and Mehta, 2012). A 

growing body of research, however, has supported the hypothesis that gamma occurs as 

two distinct variants – a slow form and a fast form (Figure 1.4).  

The first suggestion that the hippocampal network may exhibit different 

frequencies of gamma oscillations was provided in a study by Bragin et al. (1995), which 

used current source density (CSD) analysis. This method uses the second spatial 

derivative of the LFP to estimate spatiotemporal patterns of current flow. CSD analyses 

suggested that gamma activity was strongest in the terminal zone of perforant path fibers, 

implying that input from EC is responsible for gamma generation. Accordingly, when EC 

lesions were performed, gamma activity disappeared in these areas. However, a second 

source of gamma activity appeared in the terminal zone of the Schaffer collaterals. 

Interestingly, the average frequency of this gamma activity was significantly lower than 

the gamma in the terminal zone of EC in control animals. This suggested that a distinct 

form of gamma may be generated by CA3. 

A later study by Colgin et al. (2009) performed paired recordings in areas CA1 

and CA3, and in CA1 and the medial entorhinal cortex (MEC). In CA1, the instantaneous 

frequencies of gamma formed a bimodal distribution, with peaks around ~25–50 Hz and 

~60–100 Hz. Moreover, episodes of ~25–50 Hz ‘slow’ gamma and ~60-100 Hz ‘fast’ 

gamma were unlikely to co-occur within the same theta cycle and preferentially occurred 

at significantly different phases of theta. Also, during periods of slow gamma activity in 

CA1, there were prominent slow gamma oscillations in CA3 but not in MEC. Instead, 

when fast gamma oscillations were prominent in CA1, MEC exhibited synchronous fast 

gamma activity, but much less co-occurring fast gamma activity was observed in CA3. 

CA3 neurons preferentially spiked at a particular phase (i.e., exhibited ‘phase-locking’) 
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of slow gamma oscillations in CA1, but exhibited significantly less phase-locking to fast 

gamma in CA1. Conversely, the neurons of layer III MEC were phase-locked to CA1 fast 

gamma, but not to CA1 slow gamma. Taken together, these results suggested that slow 

gamma in CA1 was entrained by inputs from CA3, while fast gamma in CA1 was 

entrained by inputs from layer III MEC.  

  Subsequent studies have supported this conclusion. Using 2-dimensional 

electrode arrays, Schomburg and colleagues (2014) showed that fast gamma activity 

(~60–110 Hz) was strongest in stratum lacunosum-moleculare, the terminal zone of EC 

input, while slow gamma activity (~30–60 Hz) was strongest in stratum radiatum, the 

terminal zone of CA3 input (Schomburg et al, 2014). The inputs were found to be 

segregated by theta phase, and the timing of neuronal activity depended on the strength of 

each input. Layer specificity of different subtypes of gamma activity was also reported in 

Belluscio et al. (2012), which showed strong slow gamma (30–50 Hz) activity in stratum 

radiatum and strong fast gamma (50–90 Hz) activity in stratum lacunosum-moleculare. In 

a study by Yamamoto and colleagues (2014), fast gamma (~65–120 Hz) activity in CA1 

was significantly lower when layer III EC projections were silenced optogenetically and 

Figure 1.4: Slow and fast gamma rhythms. 

Slow gamma (A) and fast gamma (B) from area CA1 in the hippocampus of a freely 

behaving rat. 
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in transgenic mice in which layer III EC inputs were selectively inhibited. Taken 

together, the evidence points to the conclusion that gamma occurs as two distinct 

subvariants – CA3-driven slow gamma (~25–55 Hz) and EC-driven fast gamma (~60–

100 Hz). 

Separate functions 

The distinct anatomical pathways and physiological properties associated with 

slow and fast gamma suggest that they perform different functions in the hippocampal 

network. The coordination of activity between CA1 and CA3 by slow gamma might be 

important for retrieving representations of stored memories from the auto-associative 

network in CA3. Several lines of evidence support this hypothesis. Tort and colleagues 

showed that coupling between CA3 slow gamma amplitude and theta phase strongly 

increased as rats learned to associate an item to a spatial context (Tort et al., 2009). The 

coupling was positively correlated to memory performance and was strongest during the 

pre-stimulus period when retrieval of the context-item association was most likely to 

occur. Similarly, Shirvalkar et al. (2010) reported that stronger coupling between slow 

gamma and theta predicted successful memory retrieval on a trial-by-trial basis using a 

match-to-place task in rats. Moreover, pharmacological disruption of theta-slow gamma 

coupling correlated with impaired memory performance, while stimulation of theta-slow 

gamma coupling enhanced memory performance. Another recent study found that slow 

gamma activity increased during the sampling of an odor cue in a delayed spatial 

alternation task, a time when odor-cued memory retrieval was likely to occur (Takahashi 

et al., 2014).  

In contrast to the above, other studies have reported increases in slow gamma 

activity during periods of memory encoding. In a novel object recognition task, Trimper 

et al. (2014) found an increase in CA1–CA3 slow gamma coupling during exploration of 
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novel objects. Coupling was particularly strong during exploration of objects that were 

subsequently remembered, implying that memory encoding had taken place. An 

alternative explanation to encoding, is that memory retrieval of a more general object-

place association was taking place, since the animal was previously exposed to multiple 

trials of novel objects placed in the same location. In another study, slow gamma power 

increased during exploration of a novel W-maze (Kemere et al., 2013). However, this 

coincided with a comparable increase in fast gamma power. Also, the animal had 

previous experience with a different W-maze, making it unclear if memory retrieval was 

taking place for the previous W-maze environment. In humans, it was found that rhinal-

hippocampal coupling in the slow gamma (~40 Hz) range was maximal during encoding 

of words from a single-trial word list protocol (Fell et al., 2001). In a similar study, 

gamma activity was highest near the slow gamma range (~54 Hz) during successful 

encoding of words displayed on a screen (Gruber et al, 2004). However, successful 

retrieval was also associated with increased gamma activity in the slow gamma range 

(~49 Hz). Taken together, these results do not indicate a clear relationship between slow 

gamma and memory encoding or retrieval. It is possible that ambiguities in the behavioral 

tasks are partly responsible for its association with memory encoding; however, more 

work is needed to determine if this is the case. 

Fast gamma couples CA1 to MEC, which transmits ongoing sensory and spatial 

experience to the hippocampus (see above). This information might be critical during the 

encoding of novel experiences and associations. In line with this, Jutras et al. (2009) 

found an increase in the rhythmic firing of hippocampal cells to fast gamma during 

successful encoding of novel images in monkeys. In humans, fast gamma activity, but not 

slow gamma activity, increased during successful encoding of words in a free-recall task 

(Sederberg et al., 2007). In rats, administration of scopolamine decreased memory 
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encoding and fast gamma activity, while slow gamma and memory retrieval remained 

unchanged (Newman et al., 2013). In rats using a place-based navigation strategy, which 

is thought to rely on current cues from the environment as opposed to stored sequences of 

locations, fast gamma power was increased relative to slow gamma power in CA1 

(Cabral et al., 2014). Also, as previously mentioned, fast gamma activity (along with 

slow gamma activity) increased during exploration of a novel W-maze in rats (Kemere et 

al, 2013). Fast gamma might encourage the encoding of novel memory representations by 

influencing plasticity. The coupling of fast gamma and theta resembles “theta burst 

stimulation” protocols that exhibit optimal synaptic changes in the hippocampus thought 

to underlie memory formation (Larson et al., 1986; Larson and Lynch, 1986). Moreover, 

spike trains firing at gamma frequencies would be spaced ~10 ms apart, a timing which is 

optimal for spike-timing dependent plasticity (Bi and Poo, 1988). 

In contrast to the studies described above, Yamamoto et al. found an association 

between fast gamma and memory retrieval (Yamamoto et al., 2014). They observed an 

increase in fast gamma power on the choice point of a delayed spatial alternation task, a 

location where memory retrieval is thought to take place (Montgomery and Buzsaki, 

2007). An alternate explanation proposed by the authors is that fast gamma is important 

for maintaining previously retrieved memories in working memory, which would be 

important for decision-making. In agreement with this idea, Schomburg et al. reported an 

increase in both gamma types during the choice arm of a delayed spatial alternation task, 

which might represent memory retrieval by slow gamma, rapidly followed by working 

memory support from fast gamma (Schomburg et al., 2014).   

As can be seen, the exact functional roles of slow and fast gamma during memory 

processing remain controversial. Both gamma types have been observed during memory 

encoding as well as retrieval, and in a variety of animal models and experimental 
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paradigms. In addition to the confusion surrounding the association between gamma type 

and mnemonic function, it also remains unclear how these specific processes are 

coordinated, and mechanistically, why slow and fast gamma might be optimal for specific 

mnemonic processes. The research in this dissertation attempts to shed light on some of 

these questions. 

 

1.5 OVERVIEW OF DISSERTATION 

In this dissertation, I pursue the hypothesis that the hippocampus engages in 

distinct memory processing modes that are supported by different gamma types. 

Specifically, it is proposed that memory retrieval is supported by slow gamma, promoting 

communication of stored information from CA3 to CA1, and that memory encoding is 

supported by fast gamma, which couples the hippocampus to EC inputs that transmit 

information about novel experiences.  

In Chapter 2, this idea is demonstrated in the coding properties of individual place 

cells. It is shown that place cells rapidly alternate between distinct spatial coding modes, 

retrieving upcoming locations during slow gamma and encoding recently visited 

locations during fast gamma. Using a Bayesian decoding approach, this idea is extended 

to simultaneously recorded ensembles of place cells, suggesting that these processing 

states are coordinated across the whole network.  

In Chapter 3, spatial paths coded by sequences of place cells are examined during 

slow and fast gamma. It is shown that sequences represent spatial paths in a temporally 

compressed fashion during slow gamma, reflecting retrieval of the upcoming trajectory, 

and that sequences code locations in real-time during fast gamma. Also, place cells code 

specific locations on different gamma phases within individual slow gamma cycles, 

offering a potential mechanism for the time-compressed nature of memory retrieval.  
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In Chapter 4, a novel object recognition task is used to examine whether slow and 

fast gamma are associated with memory encoding and retrieval at the behavioral level.  It 

is shown that fast gamma is required for encoding of novel object-place associations, 

while slow gamma CA3-CA1 coupling might be involved with retrieval of familiar 

object-place associations.  

In Chapter 5, the results are summarized and discussed, and key questions are 

proposed for future study. 

Experimental methods 

To record electrical activity from the hippocampus, rats were surgically implanted 

with ‘hyperdrives’ consisting of 14 independently moveable tetrodes (Gothard et al., 

1996), 2 of which were used as references, and 12 of which were used for data collection. 

After recovery from surgery, tetrodes were slowly lowered into the hippocampus over a 

period of several days, using anatomical coordinates and characteristic electrical activity 

as a guide.  

Tetrodes are advantageous because they allow the collection of single unit activity 

in addition to the raw LFP recordings, and their small size minimizes tissue damage. 

Tetrodes are made of 4 electrically isolated electrodes bundled together, providing 4 

simultaneously recorded signals from each tetrode. Because the amplitude of action 

potentials falls off rapidly with distance, individual cells can be triangulated by 

comparing the waveform properties of the signals collected from each electrode. In 

addition to single unit activity and the LFP, the position of the animal is tracked using 

LED lights on the headstage/pre-amplifier of the hyperdrive. The headstage/pre-amplifier 

is connected to a lightweight cable that feeds into a data acquisition system, allowing the 

animal to move freely during behavioral tasks while neural activity is monitored in real 
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time. The complete methods are described in Appendix A, and the Methods section in 

each chapter. 

Analyses 

A periodic signal can be described by three parameters - amplitude, phase, and 

frequency. When analyzing a neural oscillation, the first parameter usually examined is 

amplitude, which is typically measured in terms of oscillatory power (Figure 1.5). Power 

is proportional to the square of the amplitude and roughly indicates how many neurons in 

the network are participating in the signal. Most LFP signals consist of multiple, 

superimposed oscillatory components of different frequencies. Commonly, the 

contribution of each frequency component to the signal is determined by computing the 

power spectral density (PSD), which provides the power as a function of frequency. In 

this work, power was computed using a convolving Morlet wavelet (Tallon-Baudry et al., 

1997), which provides the power as function of time in addition to frequency. This is 

important for analyzing gamma oscillations, which are non-stationary, and would likely 

be averaged out if the time dimension were not considered. Moreover, it facilitates 

Figure 1.5: Power. 

Example CA1 traces with high gamma power (A), and low gamma 

power (B). 
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comparison of power across different time points. 

The phase represents the proportion of each cycle that has elapsed and is 

measured in degrees or radians. The instantaneous phase can be used to determine 

coupling between two oscillations, measured in terms of phase synchrony (Lachaux et al., 

1999) (Figure 1.6). This method computes the difference between the phases of each 

signal of a particular frequency at each time point, which is called the relative phase. If 

the relative phases over a given span of time are consistent, then the phase synchrony 

measure is high, indicating a strong degree of oscillatory coupling. Coupling between 

different regions might indicate that communication between those regions is enhanced 

(see discussion of “communication through coherence” hypothesis, above), or selection 

of specific neuronal assemblies in distributed neurons (see “temporal correlation 

hypothesis”, above).  

Figure 1.6: Phase synchrony.  

High phase synchrony (A) and low phase synchrony (B) between 

simultaneous CA1 (black) and CA3 (red) traces. Note the coupling for 

theta and gamma in (A), which is largely absent in (B).  
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The phase is also used to determine the degree of phase-locking of single unit 

activity to a given frequency component (Figure 1.7). This is done by determining the 

phase of the signal of a particular frequency at each spike time. The consistency of the 

resulting collection of phases can be measured in terms of mean vector length (MVL) of 

the phase distribution. A high MVL indicates that the cell was phase-locked to the 

oscillation, suggesting that the activity of the cell is entrained by the oscillation, and that 

the cell might be participating in a specific assembly that is coordinated by the 

oscillation.  

The spatial firing properties of each cell are characterized by determining the 

location of the animal at each spike time. The distribution of spiking activity as a function 

of location can be used to define the place field (Figure 1.2). The peak or center of mass 

(COM) of this distribution can be used to signify the preferred spiking location of a cell 

as a single value, which is useful when relating the spatial properties of place cells to 

other parameters. 

  

Figure 1.7: Phase locking. 

High phase-locking (A) and low phase-locking (B) for spikes (red lines) 

to CA1 trace (black lines). Note the spikes in (A) all occur close to 

gamma peaks, and occur on peaks and troughs in (B).  
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Chapter 2: Slow and fast gamma coordinate different spatial coding 

modes in hippocampal place cells 

The following chapter is adapted with permission from: Bieri, K.W., Bobbitt, K.N., and 

Colgin, L.L. Slow and fast gamma rhythms coordinate different spatial coding modes in 

hippocampal place cells. Neuron. 82:670-681 (2014). PMCID: PMC4109650. Colgin, 

L.L. supervised this work. Bobbitt, K.N. helped identify single unit activity in a portion 

of the data. 

 

2.1 SUMMARY 

Previous work has hinted that prospective and retrospective coding modes exist in 

hippocampus. Prospective coding is believed to reflect memory retrieval processes, 

whereas retrospective coding is thought to be important for memory encoding. Here, we 

show in rats that separate prospective and retrospective modes exist in hippocampal 

subfield CA1 and that slow and fast gamma rhythms differentially coordinate place cells 

during the two modes. Slow gamma power and phase-locking of spikes increased during 

prospective coding; fast gamma power and phase-locking increased during retrospective 

coding. Additionally, slow gamma spikes occurred earlier in place fields than fast gamma 

spikes, and cell ensembles retrieved upcoming positions during slow gamma and encoded 

past positions during fast gamma. These results imply that alternating slow and fast 

gamma states allow the hippocampus to switch between prospective and retrospective 

modes, possibly to prevent interference between memory retrieval and encoding. 

 

2.2 INTRODUCTION  

Place cells are neurons in the hippocampus that fire selectively in specific 

locations in space that are called ‘place fields’ (O’Keefe and Dostrovsky, 1971; O’Keefe, 
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1976). Place cells do not code spatial location uniformly on all traversals through their 

place fields. Spikes from individual place cells are often ‘misaligned’ with respect to their 

average place field (Muller and Kubie, 1989; Battaglia et al., 2004). Place field shifts in 

the direction opposite to the animal’s direction of motion have been termed ‘prospective’ 

firing events, and forward shifts in the same direction as the rat’s motion have been 

termed ‘retrospective’ firing events (Battaglia et al., 2004). Analogous prospective and 

retrospective firing properties have been observed in grid cells in the medial entorhinal 

cortex (MEC) (De Almeida et al., 2012). In grid cells, prospective and retrospective 

coding events have been shown to be coordinated across simultaneously active cells, 

suggesting that these events reflect different information processing modes in the 

entorhinal network. The prospective mode may reflect retrieval of stored information, 

whereas the retrospective mode may serve as a short-term memory buffer that facilitates 

memory encoding (De Almeida et al., 2012). Considering that prospective and 

retrospective firing occurs in individual place cells (Muller and Kubie, 1989; Battaglia et 

al., 2004), it is possible that prospective and retrospective network modes also exist in the 

hippocampus. In support of this idea, ensembles of place cells represent upcoming 

positions at some times (Gupta et al., 2012) and represent recent positions at other times 

(Barbieri et al., 2005; Gupta et al., 2012). If such modes exist in the hippocampal 

network, a mechanism must exist to ensure that simultaneously active cells carry out the 

same type of coding at the same time. 

One possibility is that gamma rhythms provide a mechanism for coordinating 

simultaneously active cells during prospective and retrospective coding. Gamma rhythms 

are thought to coordinate neuronal ensembles by synchronizing the activity of cells that 

code related information (Bragin et al., 1995; Harris et al., 2003; Fries, 2009; Colgin and 

Moser, 2010). Additionally, gamma rhythms split into distinct fast and slow subtypes that 
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differentially route separate streams of information (Colgin et al., 2009). Fast gamma 

couples the hippocampus with inputs from medial entorhinal cortex (MEC), which 

convey information about current spatial location (Brun et al., 2002; Fyhn et al., 2004; 

Hafting et al., 2005) that is necessary for new memory encoding (Brun et al., 2008). Slow 

gamma rhythms link hippocampal subfield CA1 to inputs from CA3 that appear to play a 

role in memory retrieval (Brun et al., 2002; Sutherland et al., 1983; Steffenach et al., 

2002). Additionally, slow and fast gamma emerge on different phases of the theta 

rhythms with which they co-occur (Colgin et al., 2009), and encoding and retrieval 

processes operate most effectively when separated on different phases of theta (Hasselmo 

et al., 2002). 

If fast gamma rhythms regulate the hippocampal network during spatial memory 

encoding, then fast gamma would be expected to coordinate cell ensembles during 

retrospective coding. If slow gamma rhythms reflect a memory retrieval mode, then slow 

gamma would be expected to coordinate cell ensembles during prospective coding. We 

tested these hypotheses by recording the activity of ensembles of place cells in the 

hippocampus of rats running on a linear track. We found that CA1 place cells 

preferentially represent recent locations during fast gamma rhythms and upcoming 

locations during slow gamma rhythms. These findings provide the first evidence that fast 

and slow gamma rhythms reflect different spatial memory processing modes in the 

hippocampal network. 
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2.3 RESULTS 

Spatial coding modes in single units 

To investigate whether spatial coding differs during slow and fast gamma 

rhythms, we recorded neuronal ensembles from the dorsal hippocampus in a group of 5 

rats that ran stereotyped paths on a linear track. We first characterized spatial coding in 

692 CA1 place cells. We followed a theoretical framework that has been proposed 

previously (Battaglia et al., 2004; De Almeida et al., 2012). In this framework, 

prospective coding is defined to occur when a place cell’s firing peak is in the first half of 

the place field, and retrospective coding is defined to occur when the cell mainly fires in 

the second half of the field (Figure 2.1A). We observed prospective and retrospective 

coding modes significantly more often in the experimental data than in surrogate data in 

which spikes were randomly shuffled across runs (χ2(1) = 56.826, p < 0.0001; Figure 

2.1B), indicating that coding modes were not merely a random process. Classification of 

prospective and retrospective coding modes was not affected by inhomogeneous spatial 

sampling across place fields that overlap with the ends of the track because such fields 

were excluded from analyses (see Methods). Retrospective and prospective coding events 

did not reflect position tracking errors because no differences in tracked areas from raw 

video recordings were observed between prospective, retrospective, and ambiguous 

events (data not shown, see Bieri et al., 2014). Previous findings have shown that place 

cells code locations ahead of an animal’s actual location when the animal is leaving a 

reward site and represent locations behind the actual location when the animal is 

approaching a reward site (Gupta et al., 2012). Consistent with these previous results, we 

found that prospective coding events tended to occur when rats were leaving a reward 

location (i.e., the ends of the track), whereas retrospective coding events tended to occur  
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Figure 2.1: Characterization of spatial coding modes. 

A. Individual spike positions for an example CA1 place cell recorded in a rat running on 

a linear track. Successive laps in the rightward direction are shown for a 10 min session. 

The mean field position across all laps is indicated with a vertical dashed line. Passes 

through a place field were classified as ‘‘prospective’’ (black circles) if greater than or 

equal to two-thirds of spikes were in the first half of the field and ‘‘retrospective’’ (gray 

circles) if greater than or equal to two-thirds of spikes were in the second half of the field. 

Passes that did not fall under either of these definitions were classified as ambiguous 

(white circles). B. Prospective and retrospective coding occur more often than expected 

by chance. A greater proportion of runs exhibit some type of coding mode, either 

prospective or retrospective, in the actual data compared to shuffled data, in which a 

larger number of ambiguous runs occur. C. Prospective and retrospective coding events 

correlate with different locations on the linear track. Prospective coding events tended to 

occur as rats were leaving the end of the track. Retrospective coding events tended to 

occur as rats approached the end of the track. Ambiguous events were observed more 

often than prospective and retrospective events and occurred on both the ends and the 

middle of the track. D. Prospective and retrospective coding events were detected for all 

recorded CA1 place cells. Successive coding events from place cell pairs were likely to 

be of the same type if they occurred closely in time (i.e., <0.8 s).   
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as rats approached a reward location (Figure 2.1C). 

We next investigated whether the occurrence of prospective and retrospective 

coding modes was correlated across different cells, as has been shown for grid cells in 

MEC (De Almeida et al., 2012). We found that pairs of cells were likely to exhibit the 

same type of coding when the time interval between traversals through the cells’ place 

field centers was relatively short. When two cells fired within time windows of less than 

800 ms, cell pairs exhibited the same type of coding significantly more often than they 

exhibited different types of coding (Figure 2.1D; c2(1) = 15.5, p = 0.0001 for t = 0–200 

ms; c2(1) = 10.3, p = 0.001 for t = 200– 400 ms; c2(1) = 22.8, p = 0.0001 for t = 400–600 

ms; c2(1) = 6.3, p = 0.01 for t = 600–800 ms). This indicates that the majority of cells 

that are active at the same time engage in the same type of coding, either prospective or 

retrospective, and that prospective and retrospective coding modes are coordinated across 

the CA1 network. The timescale of this coordination is similar to the timescale of 

switching between slow and fast gamma states in the hippocampus (Colgin et al., 2009). 

Moreover, local field potentials (LFPs) should reflect activity in the majority of neurons 

that show coordinated coding more than activity in the minority of neurons that do not 

show coordinated coding. Therefore, we set out to examine the hypothesis that slow and 

fast gamma rhythms coordinate place cells during prospective and retrospective coding at 

the level of single units and cell ensembles. 

Spatial coding modes during slow and fast gamma 

To investigate whether slow and fast gamma rhythms coordinate single-unit firing 

during prospective and retrospective coding, we first quantified the power of slow and 

fast gamma rhythms in CA1 stratum pyramidale during prospective and retrospective   
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Figure 2.2: Slow and fast gamma during spatial coding modes.  

A. Example LFP recordings from CA1 stratum pyramidale are shown with corresponding 

spikes from an example place cell (orange vertical lines, same place cell as shown in 

Figure 2.1A). Slow gamma during a prospective coding event is shown above, and fast 

gamma during a retrospective coding event is shown below (calibration: 100 ms, 0.2 

mV). The top recording corresponds to one of the prospective coding events shown in 

Figure 2.1A (fifth row from the bottom), and the bottom recording corresponds to a 

retrospective coding event in Figure 2.1A (fifth row from the top). B. Slow (blue) and 

fast (red) gamma power in CA1 during prospective and retrospective coding events. 

Power is plotted as the percent change (mean ± SEM) relative to power during 

ambiguous runs. Slow gamma power was higher during prospective coding than during 

retrospective coding. Fast gamma power was greater for retrospective coding compared 

to prospective coding. C. Phase locking of interneuron spike times (mean ± SEM) to 

slow and fast gamma during prospective and retrospective coding events. Slow gamma 

phase locking was greater during prospective coding than during retrospective coding. 

Fast gamma phase locking was greater during retrospective coding than during 

prospective coding.  
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events in individual cells (Figures 2.2A and 2.2B). We found that slow and fast gamma 

power were differentially enhanced depending on the type of coding that was occurring 

(interaction between gamma type and coding type: two-way repeated-measures ANOVA, 

F(1, 3,642) = 20.0, p = 0.0001). Slow gamma power was significantly higher during 

prospective coding modes than retrospective coding modes (t(3,642) = 2.1, p = 0.04). In 

contrast, fast gamma power was significantly higher during retrospective coding events 

(prospective versus retrospective: t(3,642) = 3.5, p = 0.0004). These differential effects of 

prospective and retrospective coding on slow and fast gamma power are consistent with 

the hypothesis that slow and fast gamma coordinate cells during prospective and 

retrospective coding, respectively. Interestingly, a significant main effect of gamma type 

was also found (F(1, 3,642) = 1,477.1, p = 0.0001), indicating that fast gamma power 

increases during retrospective coding were significantly greater than slow gamma power 

increases during prospective coding. This may suggest that many place cells become 

synchronized by fast gamma during retrospective coding, while perhaps a more limited 

number of place cells get recruited by slow gamma during prospective coding. 

‘‘Ambiguous’’ runs are runs in which approximately equal numbers of spikes 

occurred in the first and second halves of the place field. Such runs could reflect a switch 

from prospective to retrospective coding as the rat passed through the field. We thus 

analyzed whether slow and fast gamma power changed between the first and second 

halves of place fields during ambiguous runs. We found that slow gamma power was 

significantly greater in the first half of place fields than in the second half (two-tailed 

paired t test: t(4,417) = 2.65, p = 0.01; Figure 2.3A). However, no difference in fast 

gamma power was observed between the first and second halves of place fields (t(4,417) 

= 0.34, p = 0.7). These findings imply that slow gamma in ambiguous runs may be 

slightly stronger during the early component of a cell’s place field compared to the later 
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component. However, fast gamma occurs evenly in both the initial and late parts of a 

place field when spikes occur across the entire field. 

CA1 gamma rhythms reflect rhythmic inhibitory potentials in pyramidal neurons 

produced by rhythmic firing of GABAergic interneurons (Soltesz and Deschenes, 1993; 

Penttonen et al., 1998). We investigated whether putative interneurons exhibited slow 

gamma rhythmic firing during prospective coding and fast gamma rhythmic firing during 

retrospective coding. We analyzed slow and fast gamma phase locking in 201 putative 

interneurons in CA1 that were recorded simultaneously with CA1 place cells. We found 

that the degree of gamma phase locking seen in interneurons during prospective and 

retrospective coding events was different for slow and fast gamma rhythms (Figure 2.2C; 

interaction between gamma type and coding type: two-way repeated-measures ANOVA, 

F(1, 502) = 12.2, p = 0.001). Interneurons were significantly more phase locked to slow 

gamma rhythms during prospective coding (prospective versus retrospective: t(502) = 

2.0, p = 0.05) and fast gamma rhythms during retrospective coding (prospective versus 

retrospective: t(502) = 1.9, p = 0.05; Figure 2.3B). Analogous results were not obtained 

for individual place cells. Because of the low firing rate of place cells compared to 

interneurons, the low number of spikes remaining after selection of spikes during periods 

of prospective or retrospective coding probably prevented effective detection of phase 

locking. Moreover, previous work indicated that spikes occurring during slow and fast 

gamma periods must first be selected in order to reliably detect slow and fast gamma 

phase locking in place cells (Colgin et al., 2009). This is because slow and fast gamma 

rhythms are not stationary across time (i.e., not continuously present), and thus many 

phase estimates are meaningless if slow and fast gamma are not preselected (Colgin et al., 

2009). Preselection of slow and fast gamma spikes was not possible in this analysis 

because spikes were selected for each place field traversal (i.e., for prospective and   
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Figure 2.3: Slow and fast gamma during place cell and interneuron activity. 

A. Slow and fast gamma power during the first and second halves of place fields during 

ambiguous runs. Slow and fast gamma power were measured during the first and second 

halves of place fields during runs that were classified as ambiguous. Slow gamma power 

was larger during the first half of place fields compared to the second half. No difference 

in fast gamma power was observed between the early and late portions of place fields. B.  

Spike-triggered averages (STAs) of LFP recordings for example place cells and 

interneurons during periods of prospective and retrospective coding. For each example, 

raw traces are shown above, and bandpass filtered versions are shown below (blue: 25-55 

Hz, red: 60-100 Hz). Note how robust slow gamma rhythms can be seen in the STAs 

during prospective coding, and fast gamma rhythms can be seen in the STAs during 

retrospective coding. 
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retrospective coding events), not according to the presence of slow or fast gamma.   

The above results raise the possibility that spatial representations in place cells 

differ during slow and fast gamma states. We investigated this possibility by comparing 

place fields during slow and fast gamma. We found that the center of mass for place 

fields during slow gamma was shifted 1.2 ± 9.4 cm before the overall place field center 

(i.e., the center of mass of the place field constructed from all spikes). The center of mass 

for fast gamma-associated place fields was shifted 0.3 ± 5.5 cm after the overall place 

field center (fast gamma center of mass after slow gamma center of mass: t(368) = 1.9, p 

= 0.05; Figure 2.4). The backward shift observed during slow gamma is reminiscent of 

the backward shift that CA1 place fields develop within the first few track laps each day 

Figure 2.4: Place fields during slow and fast gamma. 

A. Rate maps constructed for spikes occurring during slow and fast gamma for an 

example CA1 place cell from a rat running in the rightward direction. B. Spike counts 

across position combined for all spikes from all cells, subsampled for non-overlapping 

slow and fast gamma periods. Spike counts were normalized according to each cell’s 

maximum, and the x axis shows normalized position within each cell’s place field 

(ranging from 0 to 1). Leftward runs were reversed so that place fields from runs in both 

directions could be combined, such that animals were running from position = 0 to 

position = 1 in all cases. C. Center of mass (COM) deviations (mean ± SEM) for place 

fields subsampled for non-overlapping slow and fast gamma periods. Zero represents the 

place field COM for all spikes. Place field COMs were shifted significantly forward 

during fast gamma compared to place field COMs during slow gamma.  
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(Mehta et al., 1997, 2000; Lee et al., 2004). Consistent with this earlier research, few 

prospective coding events were observed during the first minute on the track each day 

(Figure 2.5A). However, the probability of observing slow gamma was high during this 

same time period (Figure 2.5B), which was surprising considering that increases in slow 

gamma power were associated with prospective coding when all laps across all recording 

sessions were analyzed (Figure 2.2B; see Discussion). 

Theta phase precession during slow and fast gamma 

The above results indicate that place cells tend to code upcoming places during 

slow gamma and recent places during fast gamma. Place cell spikes occur on earlier and 

earlier phases of theta as a rat progresses through a cell’s place field in a phenomenon 

termed ‘‘theta phase precession’’ (O’Keefe and Recce, 1993; Skaggs et al., 1996). Theta 

phase precession has been proposed to represent a prospective network mode involving 

the cued retrieval of upcoming places (Tsodyks et al., 1996; Jensen and Lisman, 1996, 

2005; Lisman and Redish, 2009), as well as a mechanism for compressing spatial 

Figure 2.5: Time course of coding events and gamma. 

A. The mean (±SEM) distribution of ambiguous, retrospective, and prospective coding 

events during the first 10 min session of each day is shown. B. The mean (±SEM) 

probability of detecting slow and fast gamma episodes across the first 10 min recording 

session for each day is shown. 
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Figure 2.6: Theta phase precession 

during slow and fast gamma. 

For each panel, normalized position 

within the place field is plotted on the x 

axis, and the theta phase at which each 

spike occurred is plotted on the y axis. A. 

Theta phase precession is depicted for all 

spikes. B. The relationship between theta 

phase and position is shown during 

periods of slow gamma. Note how spikes 

primarily occur in the first half of the 

place field. C. The relationship between 

theta phase and position is shown during 

periods of fast gamma. Spikes occur 

across the full range of positions and 

theta phases. Note that spike counts in 

(B) and (C) do not sum to spike counts in 

(A) because (A) also includes periods 

when neither fast nor slow gamma was 

detected. 



 45 

sequences into a temporal structure that is ideal for memory encoding (Skaggs et al., 

1996). We examined the relationship between theta phase and position for spikes emitted 

during periods of slow and fast gamma and combined the data across all place cells and 

all animals (Figure 2.6). As expected, normal theta phase precession was observed when 

all spikes were included (Figure 2.6A). Remarkably, we found that slow gamma spikes 

did not tend to occur across the full range of theta phases and positions within the place 

field but instead tended to be restricted to late theta phases and early portions of the place 

field (Figure 2.6B). On the other hand, spikes emitted during fast gamma periods 

occurred across all positions and displayed theta phase precession (Figure 2.6C). Theta 

phase distributions during slow gamma periods and fast gamma periods were 

significantly different when all phases were considered (Watson-Williams test, F(1, 

80,725) = 123.7, p = 0.0001) and when data were randomly downsampled such that each 

cell had an equal number of phase estimates during slow and fast gamma periods 

(Watson-Williams test, F(1, 35,563) = 59.9, p = 0.0001). Moreover, the correlation 

between phase and position differed depending on whether slow or fast gamma was 

present (F(2,2,004) = 15.6, p = 0.0001) and was significantly higher for periods of fast 

gamma compared to periods of slow gamma (t(1,192) = 3.2, p = 0.002). These 

differences again remained significant when data were randomly downsampled such that 

each cell had an equal number of theta phase estimates for slow and fast gamma (F(2, 

948) = 13.0, p = 0.0001; correlation between phase and position greater for fast gamma 

compared to slow gamma: t(474) = 3.4, p = 0.001). These effects did not appear to be due 

to discrepancies in theta phase estimation resulting from theta power and frequency 

differences between track positions associated with slow and fast gamma (data not 

shown, see Bieri et al., 2014). 

Controlling for other factors 



 46 

Were differences in spatial coding during slow and fast gamma simply a side 

effect of the relationship between running speed and gamma frequency (Ahmed and 

Mehta, 2012)? This is unlikely for several reasons. Running speeds on the linear track 

follow a stereotypical pattern in well-trained rats: rats begin each lap slowly, reach 

maximal speed in the middle of the track, and then slow down again before reaching the 

other end (Figure 2.7). If slow and fast gamma effects merely reflected changes in 

running speed, we would expect to observe slow gamma at the ends of the track and fast 

gamma in the center of the track. In contrast, we found that both slow and fast gamma 

tended to occur near the ends and in the middle of the track (Figure 2.7). Additionally, we 

accounted for running speed using a general linear model with gamma power as a 

repeated factor and running speed as a covariate. Accounting for the interaction between 

gamma type and running speed, and accounting for running speed, we found that the 

Figure 2.7: Gamma and running speed at different track locations. 

(Left) The probability of slow and fast gamma occurrence is plotted against position on 

the linear track. Probabilities were dwell time normalized. Leftward runs were reversed, 

so that the direction of rat movement is from 0 cm to 200 cm. (Right) Mean running 

speed (± 95% confidence intervals) is plotted against position on the linear track. Note 

how locations where slow and fast gamma tended to occur on the linear track cannot be 

explained by correlations between gamma frequency and running speed (Ahmed and 

Mehta, 2012). 
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interaction between gamma type and coding type remained significant (F(1, 3,641) = 

24.891, p < 0.0001). Lastly, we matched prospective and retrospective coding events 

according to running speed and found that the slow and fast gamma effects persisted. 

Specifically, a significant interaction between coding type and gamma type was again 

observed (F(1, 3,446) = 25.508, p < 0.0001). Post hoc testing showed that slow gamma 

during prospective coding exhibited greater power than during retrospective coding 

(t(1,723) = 2.00, p = 0.05), and fast gamma exhibited higher power for retrospective 

coding compared to prospective coding (t(1,723) = 4.34, p < 0.0001). Our results were 

also not explained by differences due to track location because effects remained 

significant when the location of each coding event was included as a covariate (gamma 

type by coding type interaction: F(1, 3,641) = 22.88, p < 0.0001) and when data were 

randomly downsampled such that each location exhibited equivalent amounts of each 

coding type (F(1, 2,536) = 11.88, p < 0.001). 

Spatial coding at the ensemble level during slow and fast gamma 

The above results imply that slow and fast gamma rhythms coordinate prospective 

and retrospective coding, respectively, in place cells. Yet, the above results were obtained 

Figure 2.8: Reconstruction errors 

during slow and fast gamma. 

Reconstruction, or prediction, errors are 

defined as the difference between the 

position estimated by Bayesian decoding 

and the animal’s actual position. Prediction 

errors (mean ± SEM) were negative on 

average during fast gamma and positive on 

average during slow gamma. Negative 

prediction errors indicate that the decoded 

position is behind the actual position, 

whereas positive prediction errors indicate 

that the decoded position is ahead of the 

actual position.  
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from isolated single units and did not directly address the question of whether slow and 

fast gamma rhythms coordinate spatial coding at the network level. To address this 

question, we detected theta cycles containing sequences of active place cells (‘‘theta 

sequences’’) and employed Bayesian decoding (Brown et al., 1998; Zhang et al., 1998; 

Jensen and Lisman, 2000) to estimate the spatial trajectory represented by the spikes in 

each theta sequence (as in Gupta et al., 2012). We then measured the prediction error 

(i.e., predicted position – actual position) for theta sequences associated with slow and 

fast gamma. We found that prediction errors during slow and fast gamma were 

significantly different (t(511) = 2.1, p = 0.04; Figure 2.8), with slow gamma associated 

with positive prediction errors (3.1 ± 50.2 cm) and fast gamma associated with negative 

prediction errors (4.5 ± 28.8 cm). We then compared slow and fast gamma during theta 

sequences having cumulative prediction errors less than or greater than zero and found 

significantly greater fast gamma power for negative prediction errors (t(51,648) = 10.6, p 

< 0.0001). We found a trend toward higher slow gamma power for positive prediction    

errors compared to negative prediction errors (t(51,648) = 1.7, p = 0.09). However, when 

we omitted theta cycles with prediction errors close to 0 cm and examined those theta 

cycles with prediction errors greater than 1 cm or less than 1 cm, slow gamma power was 

significantly higher for positive errors compared to negative errors (t(49,216) = 2.1, p = 

0.04) and, again, fast gamma power was significantly greater for negative errors than for 

positive errors (t(49,216) = 10.5, p < 0.0001). The slow gamma effect became more 

pronounced when only those theta cycles with prediction errors greater than or less than 2 

cm were considered (slow gamma power significantly higher for positive errors than 

negative errors: t(46,127) = 2.5, p = 0.01; fast gamma power significantly higher for 

negative errors than positive errors: t(46,127) =10.1, p < 0.0001). Examples of theta 

sequences showing positive and negative prediction errors associated with slow and fast   
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Figure 2.9: Examples of reconstructed positions from theta cycles.  

Top: Bayesian decoded spatial probability distributions for example theta cycles (raw 

traces shown in middle panels); the gray line indicates the rat’s actual position. Rats 

were running from 0 to 200 cm. Bottom: color-coded power across time (x axis) for the 

range of gamma frequencies (y axis). A. Examples showing positive prediction errors  

associated with slow gamma. B. Examples showing negative prediction errors associated 

with fast gamma.           
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gamma, respectively, are shown in Figure 2.9. Note how theta sequences associated with 

positive prediction errors (i.e., predicted position ahead of the actual position; Figure 

2.9A) resemble ‘‘ahead sequences’’ that have been reported previously by Gupta and 

colleagues (2012) to occur predominantly as animals leave reward sites. Such sequences 

may be related to sequences that reactivate during sharp waves (Carr et al., 2012). On the 

other hand, theta sequences that are associated with negative prediction errors (i.e., 

predicted position behind the actual position, Figure 2.9B) match ‘‘behind sequences,’’ 

which have been reported to occur as animals approach reward sites (Gupta et al., 2012). 

In the current study, reward sites were located at the ends of the track. The present data 

are consistent with the findings of Gupta and colleagues because positive prediction 

errors tended to occur (Figure 2.10A), and slow gamma occurred more often than fast 

gamma (Figure 2.10B), as rats left the end of the track. On the other hand, as rats 

approached the end of the track, negative prediction errors were more prevalent, and fast 

gamma occurred more often than slow gamma.  

Theta modulation of slow and fast gamma 

Earlier findings indicated that both slow and fast gamma are modulated by theta 

phase but tend to occur on different theta phases and cycles (Colgin et al., 2009). 

Consistent with these earlier findings, plotting gamma power within individual theta 

cycles revealed theta phase locked slow gamma as rats began a track run and theta phase 

locked fast gamma as rats ended a track run (Figure 2.11). Moreover, slow gamma was 

most strongly phase locked to theta during prospective coding events (mean vector length 

[MVL] = 0.035) compared to retrospective coding events (MVL = 0.002) and ambiguous 

events (MVL = 0.022). On the other hand, fast gamma exhibited strongest phase locking 

to theta during retrospective events (MVL = 0.025) compared to prospective (MVL = 

0.011) and ambiguous (MVL = 0.012) events. These results suggest that the phenomena 
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reported above involve theta-modulated slow and fast gamma rather than slow and fast 

gamma in isolation. 

 

2.4 DISCUSSION 

The present results suggest that distributed place cells participate in distinct 

network processing modes that alternate according to whether slow and fast gamma 

rhythms are present. The results indicate that the slow and fast gamma modes coordinate 

place cell assemblies during prediction of upcoming locations and encoding of recent 

locations, respectively. Similarly, alternating prospective and retrospective modes have 

been reported in entorhinal cortex grid cells (De Almeida et al., 2012), but they were not   

Figure 2.10: Prediction errors and gamma at different track locations.  

Leftward runs were reversed. A. Mean prediction errors ± 95% confidence intervals are 

plotted against position on the track. Note that positive prediction errors were associated 

with positions where rats were leaving the end of the track, and negative prediction errors 

were associated with positions where rats were approaching the end of the track. B. The 

ratio of the probability of slow gamma occurrence to the probability of fast gamma 

occurrence (blue) and the ratio of the probability of fast gamma occurrence to the 

probability of slow gamma occurrence (red) are plotted against position on the track. 

Note that these results are a transformed version of what is shown in the left panel of 

Figure 2.7. 
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Figure 2.11: Theta-locked spectral averages at different track locations. 

For the beginning (top panels), middle (middle panels), and end (bottom panels) of the 

linear track, color-coded power across time (x-axis) and frequencies (y-axis) is shown 

above corresponding averaged theta cycles (averaged across all recordings in all 

animals). Power is shown as a difference score (i.e., average power across the whole 

track was subtracted from power for each third of the track). Slow and fast gamma both 

phase-lock to theta but tend to occur at different theta phases, as reported previously 

(Colgin et al., 2009). Note how slow and fast gamma are stronger at the start and end of 

the track, respectively, consistent with results shown in Figure 2.10B. Power observed in 

the middle third of the track peaks at frequencies >100 Hz, extends above 140 Hz, and 

likely reflects neuronal spiking (Belluscio et al., 2012). 
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linked to any type of oscillation. These prospective and retrospective coding modes are 

believed to reflect distinct memory processing states in the entorhinal-hippocampal 

network. Prospective coding is reminiscent of the backward expansion of CA1 place 

fields that develops with experience (Mehta et al., 1997, 2000; Lee et al., 2004). 

Development of such expansion is blocked by NMDA receptor antagonists (Ekstrom et 

al., 2001), which also block spatial learning (Morris et al., 1986). For these reasons, this 

expansion is believed to reflect the retrieval of spatial representations that formed during 

earlier experiences. Retrospective coding may be driven by persistent firing in entorhinal 

cortex neurons (Klink and Alonso, 1997; Yoshida et al., 2008; Hahn et al., 2012), which 

may be involved in short-term memory encoding (Suzuki et al., 1997).  

It should be noted that the present work uses the terms ‘‘prospective coding’’ and 

‘‘retrospective coding’’ to describe representations of locations at the spatial scale of 

individual place fields, following the terminology used in earlier studies of similar 

phenomena (Muller and Kubie, 1989; Battaglia et al., 2004; De Almeida et al., 2012). 

However, the same ‘‘prospective’’ and ‘‘retrospective’’ terminology has been used to 

refer to place cell coding at a larger spatial scale (Ferbinteanu and Shapiro, 2003). The 

Ferbinteanu and Shapiro study defined prospective coding as place cell firing rate 

changes that signal which way a rat is headed and retrospective coding as firing rate 

changes that indicate from which direction the rat has come. The present findings do not 

address the question of whether gamma rhythms are involved in these phenomena.  

In the present study, prospective and retrospective coding events tended to occur 

at the beginning and end, respectively, of the linear track, consistent with findings 

reported by Gupta and colleagues (2012). However, the present findings additionally 

show that prospective and retrospective coding events were associated with the 

occurrence of slow and fast gamma, respectively. Prospective firing in CA1 has been 
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proposed to be triggered in part by temporal context information from CA3 (Hasselmo 

and Eichenbaum, 2005). Prospective ‘‘sweep ahead’’ events have been observed in CA3 

place cells at choice points on a T-maze, locations where 40 Hz gamma (i.e., slow 

gamma) also prominently occurred (Johnson and Redish, 2007). These findings suggest 

that slow gamma coordination of place cells during prospective coding facilitates 

retrieval of representations of future locations in the hippocampal network. A previous 

study linked gamma coherence between CA3 and CA1 to memory retrieval but did not 

discriminate between slow and fast variants of gamma (Montgomery and Buzsaki, 2007). 

The CA3-CA1 coupling they observed, however, most likely involved slow gamma 

considering that CA3-CA1 coherence has been reported to be maximal in the slow 

gamma range (Colgin et al., 2009). Moreover, slow gamma has been proposed to mediate 

memory retrieval during sharp wave-associated replay in quiescent behavioral states 

(Carr et al., 2012).  

If slow gamma-mediated prospective coding is related to retrieval of learned 

locations, as we propose, then it should be related to the backward shifts of place fields 

that develop with experience (Mehta et al., 1997, 2000; Lee et al., 2004). Consistent with 

this, we observed few prospective events in CA1 during the first 30 s on the linear track 

each day (Figure 2.5A). However, we also observed that the probability of slow gamma 

occurrence was high during this time (Figure 2.5B), which seems to contradict our results 

linking slow gamma with prospective coding. Differences between CA3 and CA1 may 

provide a possible explanation for this paradox. In a well-learned environment, CA1 

place fields shift backward over the course of the first few laps of each day, but stable 

spatial representations emerge immediately in CA3 (Lee et al., 2004; Roth et al., 2012). 

This suggests that CA3 maintains long-term memories of spatial locations and that these 

memories are transmitted to CA1 during the first few laps of each day. Slow gamma may 
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occur during the first few laps of each day as stored spatial memories are reactivated in 

CA3, but emergence of these memories in CA1 may follow a slower time course. CA1 

cells may not respond to slow gamma-mediated inputs from CA3 until after CA3-CA1 

synapses have undergone NMDA receptor-dependent synaptic strengthening that occurs 

during this time (Ekstrom et al., 2001). This could explain why few prospective coding 

events were seen in CA1 during the first few laps of each day.  

Here, we posit that prospective coding relies on slow gamma coupling of CA1 

and CA3 during retrieval of stored memory representations. Yet, this does not explain 

prospective coding in grid cells (De Almeida et al., 2012). It is possible that grid cell 

representations of upcoming locations are inherited from CA1, considering that CA1 

projects to MEC layer V (Swanson and Cowan, 1977), which projects to layers II and III 

(van Haeften et al., 2003). However, this remains an interesting question for later study. 

Our findings also provide insights regarding the functional significance of theta 

phase precession (O’Keefe and Recce, 1993; Skaggs et al., 1996). It is unlikely that theta 

phase precession simply reflects retrieval of upcoming locations because prospective 

coding was associated with slow gamma, and phase precession was less pronounced 

during periods of slow gamma. Specifically, spikes were largely restricted to the late 

theta phase component of theta phase precession. In other words, upcoming locations 

were preferentially represented and spiking was suppressed at early theta phases when 

slow gamma rhythms were present (Figure 2.6B). Theta phase precession did occur, 

however, during fast gamma periods (Figure 2.6C) when cells preferentially represented 

locations in the recent past. These findings support the interpretation that spikes 

occurring on early theta phases code recently visited locations (Dragoi and Buzsaki, 

2006), not current location as otherwise suggested (Lisman and Redish, 2009). Recent 

events are thought to be maintained in short term memory by persistent firing in 
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entorhinal cortex (Jensen and Lisman, 2005; Suzuki et al., 1997; Hasselmo and Stern, 

2006), and fast gamma promotes inputs from entorhinal cortex (Colgin et al., 2009). Fast 

gamma inputs from MEC may also activate representations of current location slightly 

later in the theta cycle. Representations of upcoming locations could then be triggered as 

a result of associations that were formed across sequentially activated place cells during 

prior learning. We predict that cells coding current location would not trigger firing of 

cells coding upcoming locations in a novel environment, and thus spikes on late theta 

phases would be absent during fast gamma in a novel environment. The theta phases at 

which spikes occurred were only weakly correlated with position during the first lap on a 

linear track on a given day (Mehta et al., 2002). Thus, it is possible that the relationship 

between theta phase and position would be greatly diminished during periods of fast 

gamma in a novel environment. In any case, this remains an interesting question for later 

study. Another interesting question is how slow and fast gamma modes relate to different 

classes of gamma-modulated cells in CA1 reported by Senior and colleagues (Senior et 

al., 2008). In that study, ‘‘TroPyr’’ cells fired at the trough of gamma and fired across the 

full range of theta phases during theta phase precession, whereas ‘‘RisPyr’’ cells fired at 

the rising phase of gamma as the animal was leaving a cell’s place field. The study did 

not differentiate between different frequencies of gamma. However, TroPyr cells may 

correspond to fast gamma-modulated cells. Place cells fired across the full range of theta 

phase precession during fast gamma in the present study (Figure 2.6C), and earlier work 

showed that cells that were significantly phase locked to fast gamma tended to fire on the 

fast gamma trough (Colgin et al., 2009). The relationship between RisPyr cells and slow 

and fast gamma remains unclear, however. Place cells that were significantly phase-

locked to slow gamma did tend to fire on the rising phase of slow gamma (Colgin et al., 

2009). However, place cells fired in the initial part of their place fields during periods of 
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slow gamma (Figure 2.6B), whereas RisPyr cells tended to fire in the later portions of 

their place fields (Senior et al., 2008). Although it is possible that our results were 

influenced by factors unrelated to memory (e.g., consumption of reward), the relationship 

of slow and fast gamma rhythms to prospective and retrospective coding modes suggests 

that different frequencies of gamma coordinate different types of spatial memory 

processing. Fast gamma may correspond to an encoding mode, similar to that proposed 

previously for theta-modulated gamma during learning (Jensen and Lisman, 1996; 

Lisman and Otmakhova, 2001). In this mode, representations for recently visited 

locations may be held in a short-term memory buffer that provides the repetitive firing 

necessary to encode new memories. On the other hand, slow gamma may correspond to a 

retrieval mode, in which firing is facilitated before the center of the place field and 

suppressed in the later part of the place field. This may prevent ongoing encoding from 

interfering with retrieval of previously stored spatial memories, as can occur if these 

processes are engaged at the same time (Hasselmo et al., 2002). Considering that slow 

and fast gamma rhythms occur in other brain regions (Kay, 2003; van der Meer and 

Redish, 2009; Igarashi et al., 2013; Manabe and Mori, 2013), separate slow and fast 

gamma modes may mediate different types of information processing throughout the 

brain. 

 

2.5 METHODS  

Subjects. Five male Long Evans rats weighing approximately 350-500 grams were used 

in the study. During the data collection period, rats were placed on a food deprivation 

regimen that maintained them at ~90% of their free-feeding body weight. 
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Testing procedures. After recovering from surgery, rats were trained to run three 10-

minute sessions per day on a linear track. The linear track was 2 m long, 10 cm wide, and 

placed 64 cm above the floor. Rats were trained to run back and forth on the track, 

receiving small pieces of sweetened cereal or vanilla cookies on the ends. Every rat was 

trained on the linear track for at least 3 days prior to the start of recording. Between 

recording sessions, rats rested for ~10 minutes in a towel-lined, elevated flower pot.  

 

Place fields. Position was tracked using red and green LEDs on the rat’s headstage. 

Spatial firing rate distributions (“place fields”) for each well-isolated putative pyramidal 

cell were constructed in the standard manner by summing the total number of spikes that 

occurred in a given location bin (5 cm), dividing by the amount of time that the animal 

spent in that bin, and smoothing with a 25 cm (5 bins) SD Gaussian centered on each bin.  

 

Place field acceptance criteria for single unit analyses. Individual place fields were 

required to have at least 3 contiguous bins with a firing rate above the lower of either 1 

Hz or 10% of the peak firing rate of the cell. Additionally, the average firing rate across 

the rate map had to exceed 2.5 Hz. In order to exclude incomplete place fields, the start 

and stop bins were required to fall at least 15 cm away from the ends of the track for the 

field to be included in subsequent place field analyses. To account for trailing place field 

tails, the boundaries of the defined place fields were expanded in both directions until the 

minimum firing rate criterion (i.e., 1 Hz or 10% of the peak firing rate, whichever was 

lower) was exceeded or the position was less than 15 cm from an end of the track. Within 

these expanded boundaries, place fields were defined according to the collection of bins 

that contained spikes, unless the firing rate rose above the minimum again before the 15 

cm limits from the track end were reached. In this case, the last bin before the rise in rate 
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occurred was counted as the place field boundary. Place fields for left and right running 

directions on the track were analyzed separately.  

 

Classification of individual place cell coding modes. 692 CA1 cells from 5 rats were 

used for classification of coding modes. If multiple days of the same cell were recorded, 

only data from the first acceptable day was used for that cell. Animals’ movements along 

the linear track were collapsed into one dimension for ease of analysis. Place field passes 

in which the animal’s running speed dropped below 5 cm/s were discarded. The average 

place field center was then defined as the center of mass of the positions of the remaining 

spikes. Prospective passes were defined as those in which >= 2/3 of spikes occurred 

before the place field center. Retrospective passes were defined as those in which >= 2/3 

of spikes occurred after the place field center. All remaining passes through the place 

field were categorized as ambiguous. To determine the time difference between cell pairs 

exhibiting the same or different type of coding, ambiguous passes were excluded. The 

time point for each coding event was defined as the time when the rat passed through the 

center of the spiking activity for that particular traversal through the field. To determine 

whether the place cell population exhibited coding modes more often than expected by 

chance, we determined the proportion of passes through the place field that would 

randomly exhibit coding modes for each cell. To do this, we preserved the number of 

spikes for each place cell, and preserved the number of spikes that occurred on each pass 

through a place field, but randomly shuffled the spikes’ assignments to particular passes.  

 

Gamma power during prospective and retrospective coding. Prospective, 

retrospective, and ambiguous passes through a place field were defined as described 

above for the population of CA1 cells. For each categorized place field traversal, the 
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period of time during which the place cell emitted spikes in the field defined the time 

windows that were used to estimate slow and fast gamma power. Time-varying slow and 

fast gamma power estimates were obtained for these time windows as described in 

Appendix A. A single estimate of slow gamma power and a single estimate of fast 

gamma power were then obtained for each categorized place field traversal by averaging 

power for each gamma type across the time window and across the frequency band of 

interest (i.e., 60-100 Hz for fast gamma and 25-55 Hz for slow gamma). 

 

Phase-locking of interneuron spikes to slow and fast gamma. 201 interneurons 

recorded in or near the CA1 cell body layer were used for this analysis. For each 

interneuron, spikes that occurred during a traversal through a place field were selected 

and categorized as prospective if they occurred during a prospective traversal, 

retrospective if they occurred during a retrospective traversal, or ambiguous if they 

occurred during an ambiguous traversal. Slow and fast gamma phases in CA1 at the time 

of spike occurrence were estimated using the LFP recorded from the same tetrode as the 

corresponding interneuron. Slow and fast gamma phases were estimated by first bandpass 

filtering the LFP in the slow and fast gamma frequency ranges, respectively. Then, a 

Morlet wavelet transform was performed on each filtered signal in order to extract the 

slow and fast gamma phase components corresponding to each spike time. The mean 

circular vector lengths of the slow and fast gamma phase distributions for each 

interneuron were then determined.  

 

Matching prospective and retrospective coding events according to running speed. 

Counts of retrospective and prospective events were binned by average running speed 

using intervals of 5 cm/s. The number of events was randomly downsampled so that the 
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numbers of retrospective and prospective events within each speed bin were equal. 

Measurements of slow and fast gamma were then obtained for the remaining events, as 

described above. 

 

Detection of gamma episodes. To extract periods of slow and fast gamma activity in the 

LFP recordings, time-varying slow and fast gamma power were calculated, using the 

method described in Appendix A. Power at each time point was averaged across the slow 

and fast gamma frequency ranges to obtain an estimate of slow and fast gamma power for 

each time point. Time points were collected during which slow and fast gamma power 

exceeded 2 SD above the mean power of slow and fast gamma, respectively, across all 

time points. This method of slow and fast gamma detection has been used previously 

(Colgin et al., 2009). Time windows, 125 ms in length, were cut around the selected time 

points. In each 125 ms segment, the slow and fast gamma amplitude maxima were 

determined from the slow and fast gamma bandpass filtered versions of the recordings. 

Duplicated gamma windows, a consequence of detecting overlapping time windows, 

were avoided by discarding identical maxima values within a given gamma subtype and 

further requiring that maxima of a given gamma subtype be separated by at least 100 ms. 

The maxima were then used to define the centers of slow and fast gamma episodes. Slow 

and fast gamma episodes/periods were defined as 125 ms-long windows centered around 

the slow and fast gamma maxima. 

 

Place fields during periods of slow and fast gamma. Spikes that occurred during slow 

and fast gamma episodes were selected and binned across position within their respective 

place fields. The center of mass for the overall place field, and the slow and fast gamma 

downsampled place fields, was calculated in the following manner. For each bin in the 
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place field, the product of the spike count and the position was calculated. These products 

were added together and divided by the sum of all of the spike counts to obtain the center 

of mass measure.  

 

Theta phase precession. Theta phase was determined by band-pass filtering the LFP 

signal in the theta range (6–10Hz) and performing a Hilbert transform. Each spike was 

assigned a theta phase using the signal from the tetrode from which it was recorded. 

Spike locations were normalized using the boundaries of the place field (ranging from 0 

to 1). Leftward runs were reversed such that movement always occurred from 0 to 1. 

Gamma episodes were detected as described above, and spikes occurring within slow and 

fast gamma episodes were used to construct the position phase plots. 

 

Detecting individual theta cycles for Bayesian decoding. The LFP signal was chosen 

from the tetrode with the most recorded CA1 cells for that particular recording. The 

signal was separately band-pass filtered for theta (6–12 Hz) and delta (2–4 Hz), and the 

power for each was determined using a convolving Morlet wavelet (as described in 

Appendix A). The presence of theta activity was defined when theta power was greater 

than delta by 3 times or more. The maxima of the bandpass filtered signal were then 

identified as theta peaks for each recording. Individual theta cycles were cut from peak to 

peak, as in Gupta et al. (2012), and spikes occurring within those theta cycles were used 

to reconstruct position estimates for each theta cycle using a Bayesian decoding 

approach, described below.  

 

Bayesian decoding analyses. The most likely position represented by spiking activity 

from a population of 456 CA1 cells and 87 CA3 cells was estimated using a Bayesian 
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decoding approach (Zhang et al., 1998; Brown et al., 1998; Jensen and Lisman, 2000). 

Recording sessions with fewer than 20 cells were not used, and cells were not excluded 

from Bayesian analyses on the basis of the place field acceptance criteria (see above). 

These factors explain why the number of CA1 cells listed here differs from the number 

used for the single unit analyses. Only theta cycles containing at least 2 active place cells 

were included in the analysis. Additionally, theta epochs were selected using the same 

theta/delta threshold method described above; spikes that occurred during non-theta 

epochs were not included. Place fields for each of the cells were constructed from each 

recording session on the linear track, as described in the “Place fields” section above. 

Decoding was performed for each theta cycle using a 40-ms sliding time window shifted 

by 10 ms at each step, as in Gupta et al. (2012). The probability of the animal to be at 

position x, given the number of spikes n from each cell collected in the time window t 

was estimated using Bayes rule: 

 

𝑃(𝑥|𝑛) =  
𝑃(𝑛|𝑥)𝑃(𝑥)

𝑃(𝑛)
 

 

P(x) was calculated from the experimental tracking data. P(n|x) was estimated using the 

firing rates from the experimentally obtained place fields in the same 10-minute linear 

track session, assuming that the firing rates of different place cells are statistically 

independent and that the number of spikes from each cell has a Poisson distribution 

(Zhang et al., 1998; Jensen and Lisman, 2000). P(n), the normalizing constant, was set so 

that P(x|n) summed to 1. Reconstructed positions were identified for each time bin as the 

center of mass of the probability distribution, P(x|n). The reconstructed location at each 

time bin was then compared with the actual location identified from position tracking 

data. A prediction error was calculated for each time bin by subtracting the actual 
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position from the reconstructed position. Errors were then averaged across all time bins 

within a theta cycle to obtain a single prediction error estimate for each theta cycle. Slow 

and fast gamma power estimates were calculated for each theta cycle in the following 

manner. For every tetrode with cells that were used for Bayesian decoding, slow and fast 

gamma power were estimated within the theta cycle using the method described above. 

Slow and fast gamma power estimates were then averaged across tetrodes, and averaged 

across time within the theta cycle, to obtain a single slow gamma power estimate and a 

single fast gamma power estimate for each theta cycle. Theta cycles associated with slow 

or fast gamma were then detected by identifying theta cycles with slow and fast gamma 

power estimates that were 2 SD greater than the mean slow and fast gamma power, 

respectively, across all theta cycles.  
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Chapter 3: Sequences of place cells code spatial trajectories at different 

time scales during slow and fast gamma rhythms 

 

3.1 SUMMARY 

The hippocampus is central to episodic memory and spatial navigation (O’Keefe 

and Nadel, 1978), both of which rely on sequences of spatio-temporal information. 

‘Theta sequences’ are temporally compressed representations of spatial paths by place 

cells (Dragoi and Buzsaki, 2006; Foster and Wilson, 2007; Gupta et al., 2012), 

hippocampal neurons that represent specific locations (O’Keefe and Dostrovsky, 1971). 

These sequences activate within individual cycles of the extracellular theta oscillation 

(~6–10 Hz) and may be important for the encoding or retrieval of spatial memories 

(Dragoi and Buzsaki, 2006; Johnson and Redish, 2007; Wikenheiser and Redish, 2015). 

A second type of oscillation in the hippocampus, gamma (~25–100 Hz), is thought to 

interact with theta to temporally organize theta sequences (Gupta et al., 2012; Lisman, 

2005; Lisman and Jensen, 2013). However, it remains unclear how theta sequences are 

affected by different slow (~25–55 Hz) and fast (~60–100 Hz) subtypes of gamma 

(Colgin et al., 2009), which reflect different spatial coding modes in the hippocampus 

(Chapter 2; Bieri et al., 2014). In rats running on a linear track, we found that sequences 

during slow gamma showed a greater degree of temporal compression and extended 

further ahead of the animal compared to sequences during fast gamma, which were more 

likely to represent current locations in real time. Moreover, the slow gamma phases at 

which spikes occurred shifted as the sequence progressed, such that earlier locations were 

coded by spikes at early slow gamma phases and later locations were coded by spikes at 

late slow gamma phases. In contrast, place cells tended to fire at the same fast gamma 

phase, regardless of where their place field was located. These findings suggest that place 
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cell sequences that code future paths activate within a slow gamma cycle on a 

compressed time scale, whereas sequences that represent the ongoing trajectory activate 

across successive fast gamma cycles at the behavioral time scale. 

 

3.2 RESULTS 

The local field potential (LFP) and spiking activity from 650 place cells were 

recorded in hippocampal area CA1 of 5 rats traversing a linear track. The location of the 

rat was estimated from place cell ensemble activity during 21576 individual theta cycles 

using Bayesian decoding (Zhang et al., 1998; Brown et al., 1998; Gupta et al., 2012; Bieri 

et al., 2014). A regression line was fit to each decoded trajectory (Figure 3.1A) and was 

used to measure the slope (cm s-1), total distance (‘x-span’, cm) and total duration (‘t-

span’, seconds) of each sequence. Each of these measures provided information about 

how spatial trajectories were represented by theta sequences. The slope measures the 

amount of distance represented by a sequence in a given amount of time and thus 

provides information about the degree of temporal compression of sequences.  The x-

span measure estimates the length of the represented trajectory, and the t-span measure 

quantifies the time period of sequence activation. Sequences of ordered locations that 

were unlikely to arise by chance were classified as “significant sequences”. To consider a 

decoded sequence of place cell activity as a significant sequence, the R
2
 value of the 

linear fit was required to be greater than 95% of the R
2
 values obtained from time-bin 

shuffled versions of the sequence (see Methods). We found 58% of all sequences to be 

significant (Figure 3.1B).  

We first examined the relationship between slow and fast gamma power and the 

temporal compression of sequences, assessed using the slope of the regression line. More 

temporally compressed sequences represented greater distances per unit time and thus 



 69 

were associated with larger slopes. Sequences with gamma power above the median for 

the gamma type not being considered were excluded from the analysis. In sequences that 

were significant, we found a significant interaction effect between gamma power and 

gamma type on slope (Figure 3.2A; multiple regression model interaction term; 

t(3,12651) = 2.82, p = 0.005). Slow gamma power and slope were positively correlated 

(Figure 3.2A; t(1,6383) = 3.17, p = 0.002), while fast gamma power was not significantly 

predicted by slope (Figure 3.2A; t(1,6268) = 0.40, p = 0.7). In sequences that were non-

significant, there was no significant interaction effect between gamma type and gamma 

power on slope (Figure 3.2B; multiple regression interaction term; t(3,8917) = 1.36, p = 

0.2), nor was there a significant main effect of gamma power (t(2,8918) = 0.02, p = 1.0) 

or gamma type (t(2,8918) = 0.92, p = 0.4). 

The above results suggest that sequences represent more space per unit time 

during slow gamma compared to fast gamma. This may be due to an increase in the 

Figure 3.1: Characterization of theta sequences.  

A. Example theta sequences showing the animal’s true location (white dotted line), the 

predicted location based on Bayesian decoding of ensemble place cell activity (color-

coded according to probability), and the associated best fit regression line (red line). B. 

The distribution of slopes and R
2
 values of the regression lines for all decoded sequences. 
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represented spatial path length, or representation of similar path lengths across shorter 

periods of time. To distinguish these possibilities, we separately analyzed the x-span and 

Figure 3.2: Properties of theta sequences during slow and fast gamma.  

A. Sequence slope increased with slow gamma power but did not change significantly 

according to fast gamma power. B. There was no significant relationship between slow or 

fast gamma power and slope for non-significant sequences. C. Spatial length (x-span) 

increased with slow gamma power but did not depend on fast gamma power. D. 

Temporal duration (t-span) of sequences did not change differently depending on which 

type of gamma was present. Data represent mean ± SEM (shaded area). Sequences with 

gamma power above the median for the type (i.e. slow or fast) not being considered were 

excluded in all plots. 
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t-span of each sequence. We found that x-span was differentially affected by slow and 

fast gamma power (Figure 3.2C; multiple regression model interaction term; t(3,12651) = 

2.18, p = 0.03), similar to our slope findings. Slow gamma power and x-span were 

positively correlated (Figure 3.2C; t(1,6383) = 2.90, p = 0.004), while fast gamma power 

and x-span were not correlated (Figure 3.2C; t(1,6268) = 0.31, p = 0.8). No significant 

gamma power by gamma type interaction was found for t-span (Figure 3.2D; multiple 

regression model interaction term; t(3,12651) = 0.24, p = 0.8). There was a significant 

main effect of gamma power on t-span (t(2,12652) = 2.70, p = 0.007), but t-span did not 

differ significantly across gamma types (t(2,12652) = 0.10, p = 0.9). These findings 

suggest that slow gamma-associated sequences represent longer trajectories than fast 

gamma-associated sequences but that both kinds of sequences are active across similar 

time spans. 

In addition to reflecting temporal compression properties of sequences, slope 

measures also provided spatial information. Specifically, sequences with flatter slopes 

more closely represented the rat’s present location, whereas sequences with steeper 

slopes represented paths sweeping ahead of the animal. We sorted significant sequences 

into two groups, those with slopes below the median and those with slopes above the 

median, and assessed whether gamma power changed between these two groups. Slow 

and fast gamma power were differentially affected by slope magnitude (repeated 

measures ANOVA; gamma type x slope magnitude interaction; F(1,12466) = 17.25, p < 

0.001). For fast gamma, sequences with flatter slopes exhibited significantly higher 

power than sequences with steeper slopes (Figure 3.3A; t(12466) = 3.18, p = 0.001).  In 

contrast, slow gamma power was heightened during sequences with steeper slopes 

(Figure 3.3A; t(12466) = 2.16, p = 0.03). These findings suggest that place cell sequences 
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tend to accurately represent current location during fast gamma and tend to predict the 

animal’s future trajectory during slow gamma. 

To further test the hypothesis that fast gamma-associated sequences accurately 

represent current location, we assessed the relationship between gamma power and the 

accuracy of decoded sequences. A sequence was considered accurate if it had a low 

decoding error and a flat slope. All sequences (regardless of significance) were 

considered, except those with errors above the median error. This allowed inclusion of 

sequences that were non-significant due to a low slope while avoiding sequences that 

were inaccurate due to noise. We found a significant interaction effect between gamma 

type and accuracy on gamma power (Figure 3.3B; multiple regression model interaction 

term; t(3,21572) = 5.48, p < 0.001). Additionally, there was a significant positive 

correlation between fast gamma power and accuracy (t(1,10786) = 6.47, p < 0.001) but 

no correlation between slow gamma power and accuracy (t(1,10786) = 1.28, p = 0.2).    

Figure 3.3: Accuracy of spatial sequences during slow and fast gamma. 

A. Fast gamma power was significantly higher for sequences with relatively low slopes, 

and slow gamma power was significantly higher for sequences with relatively high 

slopes. B. Sequence accuracy relative to the animal’s actual location was estimated based 

on slope and decoding error (see Methods). Only sequences with an average decoding 

error below the median were considered. Sequence accuracy increased with fast, but not 

slow, gamma power. Data represent mean ± SEM. 
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Figure 3.4 
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Figure 3.4: Phase-phase (p-p) coupling of theta and gamma. 

A, E. p-p plots of continuous LFP recordings during slow gamma sequences (a), and fast 

gamma sequences (e). Theta-gamma p-p coupling was apparent, consistent with 

previously published reports (Belluscio et al., 2012). B, F.  p-p plots for spike times. 

Slow gamma spike phases were coupled to theta phases (b), while fast gamma spike 

phases did not change according to theta phase (f). C, G. p-p plots of spikes after global 

shuffling (which disrupts theta-gamma p-p coupling; see Methods). Global shuffling 

disrupted slow gamma spike phase coupling to theta phase (c) but did not substantially 

change phase-phase plots for spikes from fast gamma sequences (g). D, H. p-p plots of 

spikes after within-sequence shuffling (which preserves theta-gamma p-p coupling; see 

Methods). Slow gamma spike phases remained coupled to theta phase (d), similar to the 

unshuffled data, while the relationship of fast gamma spikes to fast gamma phase was 

disrupted (h). Sequences with gamma power above the median for the gamma type (i.e. 

slow or fast) not being considered were excluded in all plots. 
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These findings support the hypothesis that place cell sequences more accurately represent 

the animal’s actual location during fast gamma than during slow gamma.  

Theta oscillations are phase-phase coupled (‘p-p coupling’) to slow and fast 

gamma oscillations (Belluscio et al., 2012) (Figure 3.4A and 3.4E), which may influence 

the temporal activity patterns of different neuronal ensembles. To test if spiking activity 

follows p-p coupling, we measured the theta and gamma firing phases during sequences 

with strong slow gamma (‘slow gamma sequences’) and strong fast gamma (‘fast gamma 

sequences’) (see Methods). We found that firing phases during slow gamma sequences 

reflected p-p coupling of theta and slow gamma (Figure 3.4B). In contrast, spikes during 

fast gamma remained phase-locked to fast gamma, regardless of theta phase (Figure 

3.4F). When theta phase and gamma phase were randomly reassigned for each spike 

(‘global shuffling’; Figure 3.4C and 3.4G), thereby disrupting p-p coupling between 

gamma and theta, slow gamma-theta p-p coupling was no longer apparent in the phase-

phase plots for spikes during slow gamma sequences. In contrast, the distribution of fast 

gamma and theta phases for spikes during fast gamma sequences was not affected by the 

shuffling. When spike times were instead shuffled within each sequence (‘within 

shuffling’; Figure 3.4D and 3.4H), which preserved theta-gamma p-p coupling, an 

opposite effect occurred; the relationship between spike times and fast gamma phase was 

disrupted, but theta-gamma phase-phase coupling was still apparent for slow gamma 

spikes. These results suggest that spiking activity during slow gamma sequences reflects 

theta-gamma oscillatory p-p coupling, whereas spikes phase-lock to fast gamma 

regardless of theta phase. 

Place cell spikes occur at progressively earlier theta phases as an animal moves 

through a cell’s place field, and thus spikes’ theta phases provide spatial information 

(O’Keefe and Recce, 1993; Skaggs et al., 1996).  To address the question of whether  
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Figure 3.5 
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Figure 3.5: Slow and fast gamma phases associated with place cell spike times. 

A, B. Gamma cycles were temporally ordered for each sequence, centered at cycle 0 

(corresponding to the gamma cycle with maximal amplitude). Black lines represent the 

mean phase angle, and grey lines represent the mean phase angle – 360° (to address the 

circular nature of phase estimates). Slow gamma spike phases shifted progressively 

across slow gamma cycles (A). Fast gamma spike phases remained consistent across 

different fast gamma cycles (B). C. Place cells were categorized by the location of their 

place field along the track (‘Early’, ‘Middle’, and ‘Late’ correspond to place fields near 

the beginning, middle, and end of the track, respectively). Place cells fired on different 

phases of slow gamma according to the location of their place field but fired consistently 

on the same phase of fast gamma regardless of their place field location. Data represent 

mean ± SD. Sequences with gamma power above the median for the type of gamma (i.e. 

slow or fast) not being considered were excluded in all plots.  
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slow and fast gamma phases code spatial information, we first assessed whether slow and 

fast gamma spike phases change systematically as theta sequences progress. We 

classified individual gamma cycles during slow gamma sequences and fast gamma 

sequences according to their temporal order, centered at the gamma cycle with highest 

amplitude (cycle ‘0’). Cycles occurring before cycle 0 were labeled with descending 

integer values, and cycles occurring after cycle 0 were labeled with increasing integer 

values. Average spike phases were then estimated for each cycle. Slow gamma spike 

phases had a significant dependence on slow gamma cycle number (Figure 3.5A; Multi-

sample Mardia-Watson-Wheeler test; W(2,19870) = 11.41, p = 0.02), shifting backward 

as the sequence progressed. Fast gamma spike phases, however, did not differ across 

successive fast gamma cycles (Figure 3.5B; Multi-sample Mardia-Watson-Wheeler test; 

W(4,18216) = 12.88, p = 0.1).  These findings raised the possibility that spatial 

information was conveyed by variations in slow gamma phases of spikes.  

To explore this possibility, we next asked if place cells fired on different gamma 

phases depending on the location of their place fields. We grouped place cells during 

each sequence into three categories based on the location of their peak firing rate along 

the track. “Early” place cells fired near the beginning of the track, “middle” place cells 

fired in the middle of the track, and “late” place cells fired near the end of the track. We 

then estimated the mean gamma phase of spikes for each spatial category (i.e. early, 

middle, and late). Spike phases during slow gamma sequences were significantly 

different depending on spatial category (Figure 3.5C; Multi-sample Mardia-Watson-

Wheeler test; W(2,9250) = 22.92, p < 0.001), with early and late slow gamma phases 

coding early and late place field locations, respectively. On the other hand, spike phases 

during fast gamma sequences did not change significantly across place field locations 

(Figure 3.5C; Multi-sample Mardia-Watson-Wheeler test; W(2,9350) = 5.00, p = 0.3). 
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These findings suggest that different slow gamma phases code different spatial locations, 

whereas fast gamma phases do not provide spatial information. 

A previous study described two classes of place cells that fire at different phases 

of gamma (gamma trough-spiking pyramidal cells, termed “TroPyr”, and gamma rising 

phase-spiking pyramidal cells, termed “RisPyr”; Senior et al., 2008). This study did not 

distinguish between slow and fast gamma, leaving open the possibility that each class is 

selectively driven by a gamma subtype. However, firing rates of individual cells were 

positively correlated during fast gamma sequences and slow gamma sequences (Figure 

3.6), suggesting that place cells are equally active during either gamma type. This finding 

is inconsistent with the hypothesis that distinct classes of place cells, corresponding to 

‘TroPyr’ and ‘RisPyr’ cells (Senior et al., 2008), fire selectively during slow and fast 

gamma. Moreover, both TroPyr and RisPyr cells exhibit some characteristics that are 

consistent with fast gamma and others that are consistent with slow gamma.  TroPyr cells 

fire at the trough of gamma and exhibit theta phase precession, features associated with 

Figure 3.6: Individual place cells participate in both gamma types. 

A. There was a strong positive correlation between the number of spikes each cell 

contributed to fast gamma sequences and to slow gamma sequences. B. Place cells were 

divided into low firing and high firing categories for each gamma type (see Methods). 

Place cells exhibited similar levels of activity during both gamma types. 
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fast gamma (Colgin et al., 2009; Bieri et al., 2014). Yet, RisPyr cells also exhibit 

properties that are associated with fast gamma, including retrospective coding (Bieri et 

al., 2012). Additionally, RisPyr cells fire at consistent gamma phases across the theta 

cycle, consistent with our present fast gamma results (Figure 3.5B).  On the other hand, 

gamma phases of TroPyr spike times change progressively across the theta cycle, 

reminiscent of our present slow gamma results (Figure 3.5A). Yet, RisPyr cells also 

exhibit characteristics that are consistent with slow gamma. RisPyr cells fire on the rising 

phase of gamma and across a limited range of theta phases, consistent with spikes 

occurring during slow gamma (Colgin et al., 2009; Bieri et al., 2014). Together, these 

results support the conclusion that RisPyr and TroPyr cells are unlikely to correspond to 

subclasses of place cells that are selectively modulated by slow or fast gamma.   

 

3.3 DISCUSSION 

Here we show that place cell sequences that code trajectories extending ahead of 

the animal are compressed within slow gamma cycles, whereas fast gamma-associated 

sequences accurately represent current location on a slower time scale (Figure 3.7). 

Moreover, slow gamma phases of place cell spikes shifted across sequences, with earlier 

and later slow gamma phases representing earlier and later locations, respectively. In 

contrast, spikes occurred around the same fast gamma phase regardless of sequence 

progression or spatial information carried by the spike.  

Our results agree with the hypothesis that slow and fast gamma reflect distinct 

spatial coding modes in the hippocampus, with ‘prospective’ coding of upcoming 

locations and ‘retrospective’ coding of recent locations occurring during slow and fast 

gamma, respectively (Chapter 2; Bieri et al., 2014). The predictive function of the slow 

gamma mode might rely on the temporal compression of stored spatial sequences, 
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providing a rapid “look ahead” toward 

upcoming locations. Such predictive 

firing has been observed at decision 

points and linked to subsequent goal 

destinations (Johnson and Redish, 2007; 

Wikenheiser and Redish, 2015). Also, 

slow gamma is enhanced when 

previously experienced sequences guide 

an animal’s path (Cabral et al., 2014). 

Compressed sequences during awake 

sharp wave ripples (SWRs) also predict 

animals’ future trajectories (Pfeiffer et 

al., 2013). Interestingly, sequence 

activation during awake SWRs coincides 

with transient increases in slow gamma 

(Carr et al., 2012). Together, these 

findings support the hypothesis that slow 

gamma promotes the retrieval of stored place cell sequences in a compressed, 

behaviorally useful form. 

On the other hand, theta sequences during fast gamma more accurately 

represented current position. These results are consistent with previous fast gamma 

findings.  Fast gamma links CA1 to inputs from the medial entorhinal cortex (Colgin et 

al., 2009; Schomburg et al., 2014), which convey information about current location 

(Brun et al., 2002; Hafting et al., 2005; Zhang et al., 2013). Accordingly, place-based 

navigation is thought to rely on fast gamma (Cabral et al., 2014). Also, fast gamma 

Figure 3.7: Schematic of sequence 

activation during slow and fast gamma. 

A. Individual locations are represented on 

separate fast gamma cycles. B. Multiple 

locations are represented in a time-

compressed manner on each slow gamma 

cycle, triggering activation of place cells 

with fields located ahead of the animal’s 

current position. Bold fonts indicate 

maximal firing. 
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frequencies increase with increasing running speed, which likely enables faster 

transitions across ensembles within a sequence at higher running speeds (Zheng et al., 

2015; Ahmed and Mehta, 2012). These findings support the conclusion that fast gamma 

promotes coding of ongoing spatial-temporal information.  

In Chapter 2, we found that theta phase precession was disrupted during slow 

gamma, with spikes largely occurring at restricted theta phases corresponding to early 

locations within place fields. If single locations are represented on individual gamma 

cycles (Lisman, 2005), then relatively short distances would be coded during slow 

gamma, due to the low number of slow gamma cycles occurring within a theta cycle. 

However, we instead found an increase in spatial distance covered per unit time by theta 

sequences during slow gamma. This increase in represented distance occurred because 

multiple, not single, locations were represented within each slow gamma cycle. 

Moreover, place cells fired at different phases of slow gamma depending on the location 

they represented. This slow gamma phase coding is reminiscent of earlier findings in 

which different phases of ~30 Hz gamma in prefrontal cortex coded different items 

maintained in short-term memory (Siegel et al., 2009).  

In contrast, spikes were locked to the same fast gamma phase across successive 

fast gamma cycles, in agreement with existing theories of hippocampal gamma (Lisman, 

2005). Fast gamma-associated sequences represented relatively short distances that were 

closely tied to current location.  Also, theta phase precession has been reported to persist 

during fast gamma (Bieri et al., 2014).  Theta phase precession is thought to reflect 

coding of recently visited locations on earlier theta phases and upcoming locations on 

later theta phases (Dragoi and Buzsaki, 2006). A possible explanation for this collection 

of results is that spatial representations during fast gamma are limited to place fields that 

the animal is currently within (rather than non-local activity) and are centered on the 
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animal’s current location. In this way, the total length of the behind and forward portions 

of the path may cover a shorter distance, and the decoded position may thus be more 

consistent with actual location. The relatively high frequency of fast gamma may also be 

optimal for representing single locations within a gamma cycle through a “winner take 

all” mechanism. In this framework, cells receiving the most excitatory input are 

selectively activated as the network is briefly released from inhibition during each 

gamma cycle (de Almeida et al., 2009). This brief window of opportunity may limit 

activity from spreading to cells that are not extrinsically driven.  

The ability of the hippocampus to handle sequences of spatiotemporal information 

is a dynamic process, involving both sequence encoding and retrieval. The current study 

suggests a possible mechanism for achieving these dual functions through different 

gamma subtypes. During sequence retrieval, an initial cue may trigger the first ensemble 

in a linked sequence of place cell ensembles. The relatively long slow gamma period may 

then allow successive items within the sequence to be retrieved in a temporally 

compressed fashion. Fast gamma may instead provide a temporal coding scheme optimal 

for organizing ongoing sequences in real time. Fast gamma-mediated inputs from MEC 

(Colgin et al., 2009; Schomburg et al., 2014) may be compartmentalized within the 

relatively short fast gamma cycles, ensuring that place cells are selectively driven by 

inputs carrying information about the current environment. 

 

3.3 METHODS  

Subjects. Five male Long-Evans rats weighing approximately 350–500 g were used in 

the study. During the data collection period, rats were placed on a food deprivation 

regimen that maintained them at ~90% of their free-feeding body weight. 
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Testing procedures. Following the post-surgery recovery period, rats were trained to run 

three 10-minute sessions per day on a linear track. The linear track was 2 m long, 10 cm 

wide, and placed 64 cm above the floor. Rats were trained to run back and forth on the 

track, receiving small pieces of sweetened cereal or vanilla cookies at the ends. Every rat 

was trained on the linear track for at least 3 days prior to the start of recording to ensure 

familiarity with the environment. Between recording sessions, rats rested for ~10 minutes 

in a towel-lined, elevated ceramic container. 

 

Place fields. Rats’ trajectories were tracked using red and green LEDs on the headstage. 

Spatial firing rate distributions (“place fields”) for each well-isolated putative pyramidal 

cell were constructed by summing the total number of spikes that occurred in a given 

location bin (3 cm), dividing by the amount of time that the animal spent in that bin, and 

smoothing with a 15 cm (5 bins) SD Gaussian centered on each bin. Place fields were 

spatially ordered by the location of their peak firing rate. A total of 650 CA1 place cells 

were used. 

 

Detecting individual theta cycles for Bayesian decoding. LFP signals were band-pass 

filtered for theta (6–10 Hz) and delta (2–4 Hz), and the time-varying power for each was 

determined as described in Appendix A. For theta cycle selection, a single LFP signal 

was chosen for each session by identifying the channel with the highest time-averaged 

theta power and at least one recorded CA1 cell. Periods of theta activity were defined 

using the theta-delta power ratio (Csicsvari et al., 1999). Specifically, theta power was 

required to be at least three times greater than delta power. Data with insufficient theta 

activity were not included in analyses. Individual theta cycles were cut at the theta phase 

with the lowest number of spikes from all recorded CA1 cells during that session. 
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Bayesian decoding analyses. The most likely position represented by spiking activity 

from CA1 place cells was estimated using a Bayesian decoding approach (Zhang et al., 

1998; Brown et al., 1998; Jensen and Lisman, 2000; Gutpa et al., 2012; Bieri et al., 

2014). Recording sessions with fewer than 20 cells were not analyzed, and only theta 

cycles containing at least three active place cells and a running speed greater than 5 cm/s 

were decoded. Place fields were constructed for each recording session on the linear 

track, as described in the ‘‘Place fields’’ section above. Decoding was performed for each 

theta cycle using a 40 ms sliding time window shifted by 10 ms at each step. The 

probability of the animal to be at position x, given the number of spikes n from each cell 

collected in the time window t was estimated using Bayes rule: 

 

𝑃(𝑥|𝑛) =  
𝑃(𝑛|𝑥)𝑃(𝑥)

𝑃(𝑛)
 

 

P(n│x) was estimated using the firing rates from the experimentally obtained place fields 

in the same 10 minute linear track session. It was assumed that the firing rates of different 

place cells were statistically independent and that the number of spikes from each cell 

followed a Poisson distribution (Zhang et al., 1998; Jensen and Lisman, 2000). P(n), the 

normalizing constant, was set so that P(x│n) summed to 1. P(x) was set to 1. 

 

Theta sequence analysis. Theta sequences were characterized by first determining the 

longest contiguous set of time bins that contained spikes. Contiguity was broken when 

there were 2 or more adjacent time bins without spikes. For each time bin within the 

contiguous set of bins, 1000 data points were randomly drawn from the decoded 

probability distribution (P(x│t)) belonging to each time bin. The collected data points 
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within each theta sequence were fit with a regression line. To determine if the theta 

sequence was significant, a shuffling approach was used that was based on an approach 

previously described for sharp wave-related sequences (Karlsson and Frank, 2009). For 

each sequence, the order of the time bins was randomly shuffled 1000 times, and a new 

regression line was calculated. The R
2
 value of the original regression line had to be 

larger than 95% of the shuffled R
2
 values to be considered significant. The regression 

coefficient provided the slope of the theta sequence. Sequences with negative slopes were 

excluded from this study. The difference between the last and first time bin, and the 

difference between the positions associated with these time bins, provided the temporal 

duration of the sequence (“t-span”) and spatial path length (“x-span”), respectively. 

 

Gamma power during individual theta cycles. For every tetrode with cells used for 

Bayesian decoding, slow and fast gamma power were estimated using the method 

described in Appendix A. Slow and fast gamma power estimates were then z-scored 

across the entire recording session and averaged across tetrodes with cell recordings and 

across respective frequency ranges. The maximum value of the resulting time-varying 

power was used to obtain a single slow gamma value and a single fast gamma value for 

each theta cycle. 

 

Gamma power rank. Sequences were ranked within each day according to slow gamma 

power and fast gamma power. A rank of 0 corresponded to lowest power, and a rank of 1 

corresponded to highest power.  

 

Sequence accuracy. The entire set of sequences was ranked separately by the average 

residual value of the regression fit and the slope. Lower rank values corresponded to 
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lower numerical values. The residual rank and the slope rank for each sequence were 

averaged and normalized between 0 (high accuracy) and 1 (low accuracy) such that high 

accuracy corresponded to lower slopes and smaller residual values. Sequences with 

residuals above the median were excluded from this analysis to avoid inclusion of non-

accurate sequences due to noise. 

 

Phase analyses. The time varying phases of slow gamma, fast gamma, and theta were 

determined by Hilbert transformation of respective bandpass filtered signals (25–55 Hz 

for slow gamma, 60–100 Hz for fast gamma, and 6–10 Hz for theta). Oscillatory peaks 

were defined as 0° for all bandwidths. The phase of each spike was determined by finding 

the LFP time stamp closest to each spike time. To determine the significance between 

different groups of phases (Figure 3.5), a multi-sample Mardia-Watson-Wheeler test was 

performed using Oriana 4.02 (Kovach Computing Services). 

 

Categorization of slow gamma sequences and fast gamma sequences. Slow gamma 

sequences and fast gamma sequences were defined as sequences exhibiting peak power 

for the gamma type of interest that was higher than the median peak power for the 

gamma type of interest and peak power for the other gamma type that was lower than the 

median peak power for the other gamma type.  

 

Phase-phase coupling shuffling procedures. The theta phase-gamma phase values 

associated with spike times were shuffled in two ways. The first method shuffled the 

pairings between theta and gamma phases for all spike times, thereby disrupting theta 

phase-gamma phase coupling (Belluscio et al., 2012) but maintaining theta and gamma 

phase distributions. The second method preserved the phase-phase coupling relationship 
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but reassigned a new time point to each spike based on each cell’s theta phase 

distribution. This was achieved by randomly drawing a theta phase from the total 

collection that occurred for that cell on that day. The time point at which that theta phase 

occurred was identified and used to find the corresponding gamma phase. 

 

Determination of gamma cycle number. For each theta sequence, gamma phases were 

determined across time, as described above. Individual gamma cycles were defined from 

peak to peak, using the time point closest to when the phase was 0°. The gamma cycle 

with the highest power was defined as cycle 0. Cycles occurring before cycle 0 were 

numbered with decreasing integer values, and cycles occurring after cycle 0 were 

numbered with increasing integer values. Incomplete cycles at the beginning or end of the 

sequence were excluded from analyses. The number of cycles analyzed within each theta 

sequence was limited to 3 (-1 to 1) for slow gamma and to 5 (-2 to 2) for fast gamma. 

These selection criteria correspond to the estimated average number of cycles 

encompassed within a gamma episode. Histograms of spike phases for each cycle number 

were plotted using 30° bins, and were smoothed across 5 bins. 

 

Categorization of place cell locations. Within each theta cycle, active place cells were 

ordered according to the spatial location of their peak firing rate using all spikes recorded 

within a given session. Cells that were active during each sequence were grouped into 

three categories. The cell representing the earliest location (i.e. closest to the beginning of 

the track) and the second earliest location were placed in the “Early” and “Middle” 

categories, respectively. All subsequent cells were placed in the “Late” category. This 

method was chosen because 50% of sequences had only three active place cells. 



 89 

Histograms of spike phases for each spatial category were plotted using 20° bins and 

smoothed across 7 bins. 

 

Place cell activity during slow and fast gamma sequences. The number of spikes that 

each cell contributed to slow gamma sequences and fast gamma sequences was quantified 

for each recoding day. Cells were considered ‘high firing’ or ‘low firing’ for each gamma 

type if they contributed greater or fewer spikes, respectively, than the median spike count 

from all cells for that particular gamma type. 
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Chapter 4: Representation of novel and familiar object-place 

associations during slow and fast gamma rhythms 

 

4.1 SUMMARY 

Hippocampal gamma oscillations transiently increase during memory-dependent 

tasks (Johnson and Redish, 2007; Montgomery and Buzsaki, 2007; Sederberg et al., 

2007; Jutras et al., 2009; Trimper et al., 2014) and are thought to play a role in memory 

encoding by coordinating the activity of neurons that code related information (Jensen 

and Lisman, 2005). Here we use a hippocampal-dependent novel object recognition 

(NOR) task (Clark et al., 2000; Broadbent et al., 2004; Eacott and Norman, 2004; Lee et 

al., 2005; Winters et al., 2008; Barker and Warburton, 2011) in rats to investigate the 

roles of slow and fast gamma rhythms during memory encoding of novel object-place 

associations, compared to memory retrieval for previously learned object-place 

associations. Because the level of hippocampal dependence varies depending on the type 

of novelty involved (Eichenbaum et al., 2007; Winters et al., 2008), we examined gamma 

activity during three conditions: a novel object placed in a familiar location, a familiar 

object placed in a novel location, and a novel object placed in a novel location. 

Considering both behavioral and physiological results together, the strongest and most 

consistent effects were observed for fast gamma during the novel object-novel place 

condition.  We found that fast gamma power, CA3-CA1 phase synchrony, and phase-

locking of place cell spike times significantly increased during exploration of novel 

objects in novel locations compared to familiar object-place associations. On the other 

hand, slow gamma CA3-CA1 phase synchrony was significantly higher during 

exploration of a familiar object-place association compared to  exploration of a novel 

object in a novel location. These results support the hypothesis that fast gamma conveys 
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novel sensory information from MEC during encoding of new object-place associations, 

while slow gamma phase synchrony may allow previously learned object-place 

associations to be retrieved from CA3. 

 

4.2 INTRODUCTION  

Gamma oscillations (~25–100 Hz) are prominent in the entorhinal-hippocampal 

network and have been shown to appear during a variety of memory tasks in rats, 

monkeys, and humans (Fell et al., 2001; Johnson and Redish, 2007; Montgomery and 

Buzsaki, 2007; Sederberg et al., 2007; Jutras et al., 2009; Trimper et al., 2014). Gamma 

oscillations occur as two distinct variants that are thought to route different streams of 

information entering hippocampal subfield CA1 (Colgin et al, 2009; Schomburg et al., 

2014). Slow gamma (~25–55 Hz) couples CA1 to inputs from CA3, a hippocampal 

subfield thought to be important for memory retrieval (Brun et al., 2002; Sutherland et 

al., 1983; Steffenach et al., 2002), while fast gamma (~60–100 Hz) supplies the 

hippocampal network with ongoing spatial information from the medial entorhinal cortex 

(MEC) (Brun et al., 2002; Fyhn et al., 2004; Hafting et al., 2005). Functional 

consequences of this selective coupling have been observed in single CA1 place cells, as 

well as ensembles of place cells, in the form of rapidly alternating spatial coding modes 

(Chapter 2; Bieri et al., 2014) and the coordination of spatial sequences (Chapter 3). The 

firing properties exhibited in each case were hypothesized to reflect cellular mechanisms 

of memory retrieval during slow gamma and memory encoding during fast gamma. 

However, if such coupling is critical for memory function, then slow and fast gamma 

should also be evident during behaviors in which these mnemonic processes are explicitly 

demonstrated. In this study, we identify periods of memory encoding and retrieval using 
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a novel object recognition (NOR) task and examine slow and fast gamma activity during 

each. 

 In the NOR task, rats are presented with a novel object and a familiar object in the 

same environment and are allowed to freely explore each item. Rats have been shown to 

spend more time exploring novel objects compared to familiar objects (Ennaceur and 

Delacour, 1988), providing behavioral evidence that memory formation of the familiar 

object has occurred, and presumably, that memory encoding takes place during 

exploration of the novel object. Importantly, the ability to discriminate between novel and 

familiar objects is impaired in rats with hippocampal lesions. Interestingly, however, this 

deficit is variable and appears to depend on the specific type of novelty involved 

(Eichenbaum et al., 2007; Winters et al., 2008).  When novelty only involves the identity 

of the object, some studies report no deficits in rats with hippocampal lesions (Mumby et 

al., 2002; Winters et al., 2004), while others report variable deficits depending on the size 

of the lesion (Broadbent et al., 2004) or the length of delay between familiarization and 

novel exposure (Clark et al., 2000). In contrast, when novelty involves the location of an 

object, deficits are more reliably observed following hippocampal lesions (Eacott and 

Norman, 2004; Lee et al., 2005; Winters et al., 2008; Barker and Warburton, 2011). Due 

to the variable involvement of the hippocampus in the NOR task, we examined gamma 

activity during three types of object novelty: novel object identity, novel object location, 

and novel object identity in a novel location. Our results suggest involvement of fast 

gamma during novelty involving object and location changes, but not novelty that only 
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Figure 4.1: The NOR task and example traces. 

A. The novel object recognition task showing the obj (day 2, object B), loc (day 4, object 

A’), and obj+loc (day 6, object C) conditions. Each day consisted of 3 ten-minute 

exploration sessions separated by ten-minute rest periods, and the order of the conditions 

was randomly assigned for each animal to avoid ordering effects. Two of the rats in this 

study did not undergo ‘re-familiarization’ days (i.e., ‘Day 3’ and ‘Day 5’ in Figure 1A; 

see Methods).  Data analysis was limited to the first three minutes of each session and to 

periods when the animal’s head was within 10 cm of the center of the object (dotted line 

in top left session). B. The discrimination index (novel time /(novel time + familiar 

time)) (± SEM) for the obj, loc, and obj+loc novelty conditions. Animals explored the 

novel object significantly more than the familiar object for all novelty conditions.  Also, 

animals explored the novel object significantly more during the obj+loc condition 

compared to the obj condition. C. Example recordings from CA1 stratum pyramidale 

during novel (obj+loc) exploration (top panel) and familiar exploration (bottom panel) 

(calibration; 250 ms, 0.5 mV). * p < .05; ** p < .01; *** p < .001. 
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involves object changes, in line with hippocampal lesion studies.  

 

4.3 RESULTS 

LFPs, and spiking activity from 84 place cells, were recorded in the cell body 

layers of hippocampal areas CA1 and CA3 of 6 rats performing a novel object 

recognition task (NOR) (Figure 4.1A). We examined three types of novelty: a change in 

object identity (“obj”), a change in object location (“loc”) and a change in object identity 

and location (“obj+loc”). Evidence of memory formation for the familiar object (or 

familiar object-place association) was measured by an increase in exploration time of the 

novel condition compared to the familiar condition. The order of novelty condition was 

randomly assigned to avoid ordering affects. The behavioral effect was determined using 

the discrimination index (DI) between novel and familiar objects (novel time / (novel 

time + familiar time)), and the control DI was determined from the corresponding 

locations during sessions with no objects. The behavioral effect of novelty differed across 

conditions, as evidenced by a significant interaction between novelty condition and data 

type (i.e., experimental or control) on the DI (Figure 4.1B; Linear mixed model; F(2,112) 

= 4.33, p = 0.02). Also, post hoc univariate analysis of the experimental data revealed a 

significant effect of novelty condition on DI (F(2,112) = 3.60, p = 0.03). Pairwise 

comparisons revealed that the DI for obj+loc was significantly higher than the DI for obj 

(Bonferroni corrected p = 0.03) but not for loc (Bonferroni corrected p = 0.9), and the obj 

DI was not significantly different from the loc DI (Bonferroni corrected p = 0.5). The DI 

measures for all experimental conditions were significantly higher than controls (obj: 

F(1,112) = 6.01, p = 0.02; loc: F(1,112) = 7.88, p = 0.01; obj+loc: F(1,112) = 42.04, p < 

0.001), and did not depend on the order of presentation (F(1,14) = .14, p = 0.72). These 

results indicate that the animals explored the novel objects significantly more than the 
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familiar objects for all novelty conditions and that the behavioral effect was larger for the 

obj+loc condition compared to the obj condition. 

We next examined slow and fast gamma oscillations in CA1 during exploration of 

novel conditions compared to familiar conditions (Figure 4.1C).  We first plotted slow 

and fast gamma power, averaged across all rats, across the different locations in the 

training enclosure for the three novelty conditions. The gamma power maps appeared to 

show a consistent increase in fast gamma power, but not slow gamma power, selectively 

at the location where the novel object was placed (Figure 4.2A). Thus, we hypothesized 

that slow and fast gamma power were differentially affected by novelty, with fast gamma 

power more likely to increase during novel conditions. In line with this hypothesis, we 

found a significant interaction between gamma type and novelty condition on the percent 

change in gamma power during novel exploration compared to familiar exploration 

(Figure 4.2B; linear mixed model; F(2,64) = 4.39, p = 0.02). Fast gamma power tended to 

increase with novelty, although only the novel obj+loc condition was significantly 

increased compared to the familiar condition (t(12) = 6.70, p < 0.001 for obj+loc; t(13) = 

1.94, p = 0.07 for obj; t(4) = 0.85, p = 0.4 for loc). There was no significant effect of the 

type of novelty on the percent change in fast gamma power relative to the familiar 

condition (F(2,64) = 1.60, p = 0.2). On the other hand, there was a significant effect of 

novelty condition on percent change in slow gamma power (F(2,64) = 8.18, p = 0.001), 

reflecting the lack of consistent effects on slow gamma power in response to generalized 

novelty. Compared to the familiar condition, slow gamma power increased slightly but 

not significantly in the obj+loc condition (t(12) = 1.60, p = 0.1) and decreased slightly 

but not significantly in the loc condition (t(4) = 1.90, p = 0.1). During obj novelty, slow 

gamma power increased significantly relative to the familiar condition (t(13) = 6.48, p < 

0.001). Pairwise comparisons revealed that the percent change in slow gamma power 
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Figure 4.2: Slow and fast gamma power in response to novelty. 

A. Color-coded fast (top row) and slow (bottom row) gamma power in CA1 across 

different positions in the recording enclosure during obj+loc (left column), obj (middle 

column), and loc (right column) novelty conditions. For all conditions, the configurations 

of the color maps were re-arranged such that the novel object is shown in the top left 

quadrant and the familiar object in the top right quadrant.  Power estimates at each 

location were averaged across all animals. Note the strong fast gamma power that is 

apparent near the novel object across all novelty conditions. B. Percent change (± SEM) 

in gamma power during novel exploration compared to familiar exploration is shown. ** 

p < .01; *** p < .001. 
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relative to the familiar condition was significantly lower for the loc condition compared 

to the obj condition (Bonferroni corrected p < 0.001) and the obj+loc condition 

(Bonferroni corrected p = 0.009).   

We next tested whether changes in fast gamma power differed from changes in 

slow gamma power within each novelty condition (Figure 4.2B). For the obj+loc and loc 

conditions, the percent change in gamma power relative to the familiar condition was 

significantly greater for fast gamma than for slow gamma (F(1,9) = 345.38, p < 0.001 for 

obj + loc and F(1,3) = 335.18, p < 0.001 for loc).  However, for the obj condition, the 

percent change in gamma power did not significantly differ for slow and fast gamma 

(F(1,10) = 0.06, p = 0.8). There was, however, a significant main effect of novelty on 

gamma power (t(27) = 4.46, p < 0.001), reflecting the increases in both slow and fast 

gamma power that occurred in response to novelty in the obj condition.  Together, these 

results indicate that the effects of novelty on slow and fast gamma power depend on 

whether the novelty involves object identity, location, or both. Fast gamma power was 

selectively enhanced compared to slow gamma for the two novelty conditions involving 

location changes. Slow gamma power changes were not significantly greater than fast 

gamma power changes in any novelty condition, but slow gamma power was 

significantly increased relative to familiar exploration for the novelty condition involving 

an object change.  

Running speed has been shown to be positively correlated with fast gamma power 

and negatively correlated with slow gamma power (Kemere et al., 2013; Zheng et al., 

2015). Thus, if animals exhibited different running speeds during novel and familiar 

conditions, it could potentially explain our effects. To assess whether running speed 

contributed to the above-reported differences in slow and fast gamma power, we 

averaged running speed during novel exploration and familiar exploration for each 
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novelty condition (Figure 4.3). We found no significant interaction between novelty 

condition and exploration type (i.e., novel vs familiar) on running speed (linear mixed 

model; F(2,32) = 2.50, p = 0.1), and pairwise comparisons of running speed during novel 

and familiar exploration revealed no significant differences for the obj (Bonferroni 

corrected p = 0.2), loc (Bonferroni corrected p = 0.2), or obj+loc (Bonferroni corrected p 

= 0.08) conditions. There was also no main effect of novel vs familiar exploration on 

running speed (F(1,32) = 0.74, p = 0.40). These results suggest that it is unlikely that 

changes in fast gamma power and slow gamma power during the NOR task were due to 

systematic changes in running speed.      

CA3 is thought to be critical for forming associations between different aspects of 

a spatial memory, such as associations between objects and locations (Treves and Rolls, 

1994).  Thus, we hypothesized that oscillatory coupling between CA3 and CA1 would be 

enhanced during encoding of novel object-place associations. To test this hypothesis, we 

examined slow and fast gamma coupling 

between CA1 and CA3 by estimating phase 

synchrony, which measures the consistency 

of phase differences between two signals 

(Figure 4.4). We found a significant 

interaction between gamma type and 

novelty condition on the percent change in 

gamma phase synchrony during novel 

exploration compared to familiar 

exploration (linear mixed model; F(2,194) = 

5.50, p = 0.005), indicating that novelty 

conditions differentially affected slow and 

Figure 4.3: Running speed.  

Average running speed (± SEM) during 

novel and familiar exploration for all 

novelty conditions. There were no 

significant differences in running speed 

between novel and familiar exploration 

periods for any of the novelty conditions. 
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fast gamma synchrony. Post hoc analysis revealed a significant effect of novelty 

condition on the percent change in fast gamma synchrony (F(2,194) = 3.34, p = 0.04), 

indicating that different novelty conditions produced different effects on fast gamma 

synchrony between CA3 and CA1. Pairwise comparisons between novelty conditions 

showed that the percent change in fast gamma synchrony was increased for obj+loc 

compared to obj (Bonferroni corrected p = 0.03), but did not significantly differ between 

loc and obj conditions (Bonferroni corrected p = 0.4) or between loc and obj+loc 

conditions (Bonferroni corrected p = 1.0). The percent change in slow gamma synchrony 

relative to familiar exploration was also differentially affected by different novelty 

conditions (significant effect of novelty condition: F(2,194) = 3.13, p = 0.05), although 

none of the pairwise comparisons were statistically significant (obj+loc compared to obj:  

Bonferroni corrected p = 0.1; loc compared to obj:  Bonferroni corrected p = 1.0; and loc 

compared to obj+loc:  Bonferroni corrected p = 0.08).  Moreover, planned comparisons 

of the percent change in fast vs slow gamma synchrony during novel exploration relative 

to familiar exploration for the obj+loc condition revealed an increase in fast gamma 

Figure 4.4: CA3-CA1 phase synchrony in response to novelty.  

Percent change (± SEM) in CA3-CA1 phase synchrony during novel exploration 

compared to familiar exploration for slow and fast gamma. * p < .05; ** p < .01. 
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synchrony compared to slow gamma synchrony (F(1,30) = 8.99, p = 0.005).  Also, fast 

gamma synchrony in the obj+loc condition was significantly greater during novel 

exploration than during familiar exploration (t(35) = 3.37, p = 0.002), whereas slow 

gamma synchrony was significantly greater during familiar exploration (t(36) = 2.74, p = 

0.01). Changes in CA3-CA1 gamma synchrony did not differ significantly for slow and 

fast gamma during the obj (F(1,31) = 2.36, p = 0.1), or loc conditions (F(1,20) = 0.033, p 

= 0.9). And, CA3-CA1 slow and fast gamma synchrony during novel exploration did not 

change significantly compared to synchrony during familiar exploration for obj (fast: 

t(36) = 0.65, p = 0.5; slow: t(36) = 0.73, p = 0.5) and loc (fast: t(23) = 1.05, p = 0.3; slow: 

t(23) = .72, p = 0.5) conditions. These results raise the possibility that selectively 

enhanced fast gamma coupling between CA3 and CA1 during the obj+loc condition 

serves to facilitate encoding of novel object-place associations.      

One possibility is that enhanced fast gamma coupling in the hippocampal network 

during novel object-place encoding coordinates ensembles of place cells that code 

information about the location and the objects. If so, then place cell activity should be 

more strongly modulated by fast gamma oscillations during encoding of novel object-

place associations. To investigate this possibility, we quantified phase-locking to CA1 

slow and fast gamma in place cells that coded locations that overlapped with novel and 

familiar objects. We then tested whether place cells were differentially phase-locked to 

slow and fast gamma during the three novelty conditions compared to exploration of 

familiar object-place associations (Figure 4.5). We found a significant interaction 

between exploration type (i.e., novel or familiar), gamma type, and novelty condition on 

place cell phase-locking (F(2,168) = 3.00, p = 0.05). Phase-locking to fast gamma was 

greater during novel obj+loc exploration compared to familiar exploration (Bonferroni 

corrected p = 0.001), and compared to novel exploration in the obj (Bonferroni corrected 
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p = 0.04) and loc (Bonferroni corrected p = 0.008) conditions. Analogous effects were 

not observed for slow gamma phase-locking. These findings suggest that place cells are 

selectively coordinated by fast gamma during encoding of novel object-place 

associations, when novelty involves changes in both object identity and object location. 

 

4.4 DISCUSSION  

Our results suggest that fast gamma may coordinate neuronal activity in the 

hippocampal network during encoding of novel object-place associations. When novelty 

was defined by a new object in a location where an object had not been presented 

previously (obj+loc), there was a significant increase in fast gamma power and CA3-CA1 

phase synchrony relative to familiar object exploration, and place cells that fired near the 

location of the new object became strongly modulated by fast gamma. In contrast, slow 

Figure 4.5: Place cell phase locking to CA1 gamma in response to novelty. 

Mean vector length (± SEM) of CA1 slow and fast gamma phases for place cell spike 

times. Place cells were significantly more phase-locked to fast gamma during novel 

exploration than during familiar exploration for the obj+loc condition.  Fast gamma 

phase-locking during novel exploration was significantly higher for the obj+loc condition 

than for the obj and loc conditions. * p < .05; ** p < .01. 
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gamma power did not increase, and CA3-CA1 slow gamma phase synchrony decreased 

relative to familiar object exploration during encoding of entirely novel object-place 

associations.  

However, analogous results were not observed when novelty only involved a 

change in object identity (obj condition). Instead, an overall increase in power for both 

gamma types was observed during novel exploration compared to familiar exploration. 

When novelty only involved location (loc), there was a larger increase in fast gamma 

power compared to slow gamma power during novel exploration, but neither slow nor 

fast gamma power was significantly different during novel exploration compared to 

familiar exploration.        

The fast gamma findings during the obj+loc and loc conditions are consistent with 

previous studies suggesting that fast gamma is important for transmitting information 

about spatial location from the MEC to the hippocampus. Place cells in area CA1 code 

‘place-based’ representations of space during fast gamma (Cabral et al., 2014), and 

ensembles of CA1 place cells are coordinated by fast gamma when representing an 

animal’s location in real-time (Chapter 3; Bieri et al., 2014). Such communication about 

current spatial experience may reflect a broader role of fast gamma in encoding memories 

of novel experiences. Increases in fast gamma power have been observed in area CA1 in 

rats during exploration of a novel maze, compared to a familiar maze (Kemere et al., 

2013). A previous study in monkeys demonstrated an increase in spike-field coherence 

between cells and fast gamma oscillations in the hippocampal formation during 

successful encoding of novel images (Jutras et al., 2009). In humans, an increase in fast 

gamma power, but not slow gamma power, was observed in the hippocampus during 

successful encoding of words in a free recall task (Sederberg et al., 2007). Our results 

may therefore indicate formation of an associative memory for a novel object in a novel 
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location during enhanced fast gamma activity, when transmission of novel sensory 

information to the hippocampus is likely to be strongest.  

Slow gamma, on the other hand, is thought to be generated by CA3 inputs to CA1 

(Colgin et al., 2009; Schomburg et al., 2014), and CA3 is thought to play a key role in 

memory retrieval (Brun et al., 2002; Sutherland et al., 1983; Steffenach et al., 2002). The 

increase in slow gamma CA3-CA1 phase synchrony during the familiar condition 

compared to the novel object-novel location condition may therefore reflect memory 

retrieval of the previously learned object-place association.  

Our results also indicate selective involvement of slow and fast gamma during 

novel exploration depending on whether the identity of the object, the location of the 

object, or both, were changed. Fast gamma measures consistently increased during novel 

exploration when novelty involved changes in object and location. One possible 

explanation is that fast gamma in the hippocampus is involved in integrating distinct 

‘what’ and ‘where’ streams of information from the MEC and LEC, respectively 

(Hargreaves et al., 2005; Knierim et al., 2006; Eichenbaum et al., 2007; Knierim et al., 

2014), as novel object-place associations are encoded.  

 Slow gamma activity only increased during object novelty (obj) but not when 

novelty involved location changes (obj+loc and loc). Interestingly, a recent study by 

Igarashi and colleagues (Igarashi et al., 2014) demonstrated strong oscillatory coupling 

between LEC and CA1 in the beta frequency range (~25 Hz) during sampling of a 

familiar odor cue. Because beta oscillations overlap in frequency with slow gamma, it is 

possible that beta oscillatory input from LEC might be misinterpreted as slow gamma. 

Alternatively, the findings may support the hypothesis that slow gamma carries ‘what’ 

information from LEC in contrast to fast gamma transmission of ‘where’ information 

from MEC. Interestingly, however, neither slow gamma power nor place cell phase-
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locking to slow gamma was significantly increased during novel exploration compared to 

familiar exploration in the obj+loc condition. Moreover, there was a decrease in CA3-

CA1 slow gamma phase synchrony during novel exploration relative to familiar 

exploration for the obj+loc condition.  If slow gamma carried object-related information 

and fast gamma carried location information, one would expect both slow and fast 

gamma to be increased during novelty exploration in the obj+loc condition.  

In contrast to the present study, other studies have reported increased slow gamma 

power and/or coherence during novel stimulus encoding (Kemere et al., 2013; Trimper et 

al., 2014). However, there are multiple differences between the current experimental 

paradigm and the experimental paradigms used in these earlier studies that may explain 

the seemingly contradictory findings. The study by Trimper and colleagues used a 

different novel object paradigm, which did not examine changes in location but instead 

only changed the objects that were presented in an unchanging set of locations.  And, rats 

were tested across multiple novelty trials in the Trimper et al. study (2014), as opposed to 

the single novelty trials in the current study. It is thus possible that trial-to-trial learning 

produced an ‘over-training’ effect that reduced the saliency of each ‘novel’ experience. 

The animals may have then retrieved a memory of the general experience of encountering 

objects in these locations as they gained familiarity with the task, instead of primarily 

responding to the novel aspects of the experience. The latter point may also explain the 

results of another study that reported increased slow gamma in response to novelty 

(Kemere et al., 2013).  In this study, increased slow gamma was observed as animals 

explored a novel W-maze containing no objects (Kemere et al., 2013). However, the 

animals had been trained on a similar W-maze previously and thus may have been 

retrieving their memory of the general task, rather than simply responding to novel 

stimuli in the novel maze. 
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Another potential explanation for the contrasting results in our study and the 

earlier study by Trimper and colleagues (2014) relates to running speed.  In rats, gamma 

is modulated by running speed. At higher running speeds, fast gamma power increases, 

while slow gamma power decreases (Ahmed and Mehta, 2012; Kemere et al., 2013; 

Zheng et al., 2015). The study by Trimper and colleagues required animals to be 

stationary during novel object exploration but not during the control period.  Thus, lower 

running speed may explain why they observed increases in slow gamma during novel 

object exploration. Another possibility is involvement of sharp wave ripples (SWRs), 

which occur during stationary periods and increase in frequency during novel object 

exploration (Larkin et al., 2014). Importantly, SWRs coincide with large, transient 

increases in slow gamma power and coherence between CA3 and CA1 (Carr et al., 2012). 

Although only a small number of SWRs were observed during novel exploration in 

Trimper et al., explicit removal of these events was not performed, making undetected 

SWRs a possible source of slow gamma activity. In the current study, however, no 

differences in running speed were observed between novel and familiar exploration 

(Figure 4.3), and animals were not required to remain stationary during novel object 

exploration. Thus, running speed and SWRs were less likely to be confounding factors. 

In any event, the question of whether slow gamma plays a role during memory 

encoding and/or retrieval remains unresolved. In the present study, slow gamma coupling 

between CA3 and CA1 increased during familiar exploration in the obj+loc condition, 

supporting the hypothesis that slow gamma plays a role in memory retrieval. However, 

slow gamma power increased during novel exploration in the obj condition, which does 

not support this hypothesis. Determining the exact role of slow gamma power, and slow 

gamma coupling between CA3-CA1 during the NOR task may be explained by 

considering the differences across novelty conditions. Specifically, rather than a purely 
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spatial memory encoding condition, the obj condition may instead represent a ‘mismatch’ 

condition, during which the animal recognizes that the object is different than the one that 

was previously placed in that location.  If so, then novel exploration in this condition 

would be expected to involve a combination of memory retrieval, as animals remember 

the previously presented object in this location, and memory encoding, as animals form a 

new memory for the novel object in the same location. Similar arguments could be made 

for the loc condition. In any case, the role of slow gamma in spatial memory processes 

remains an interesting question for future study and one that may be addressed more 

directly using different behavioral paradigms. 

 

4.5 METHODS 

Subjects. Six male Long-Evans rats weighing approximately 350–500 g were used in the 

study.  

 

Novel object recognition task. Simultaneous local field potential (LFP) and single unit 

recordings were recorded in areas CA1 and CA3 using surgically implanted 14-tetrode 

‘hyperdrives’ (Gothard et al., 1996). On each day of the experiment, animals were 

allowed to freely explore an open field environment (60 cm x 60 cm box) for 3 ten-

minute sessions, alternated with ten-minute rest sessions in a towel-lined pot. The open 

field environment contained a single index card on the upper edge of one wall to provide 

a visual orientation cue. Prior to testing, the animal was habituated to the open field for at 

least 3 days with no objects present. On day 1 of the experiment, two identical objects 

were placed into the environment during all three exploration sessions. On day 2, the 

same two objects were placed in the environment during sessions 1 and 3, but during 

session 2, one of the objects was replaced with a novel object. Days 1 and 2 were 
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repeated two additional times to include all three novelty conditions (i.e., obj, loc, and 

obj+loc). The order of novelty type, specific location of the objects, and identity of 

objects were randomly assigned to avoid ordering effects. Objects were built with plastic 

toy blocks and were cleaned after each ten minute exploration session to remove scent 

cues. Two rats were only tested with the obj and obj+loc conditions, and did not have a 

‘re-familiarization’ day (i.e., a day with only familiar object-place associations in all 

three sessions) between the two experimental days with novel object-place associations.   

 

Behavioral analysis. The total time during which the animal’s head was within 10 cm of 

the center of the object during the first 3 minutes of the 10 minute novelty session was 

determined and used to calculate the discrimination index (DI) between the novel and 

familiar object (i.e., (novel time) / (novel time + familiar time). DI values of ~0.5 would 

indicate no preference for the novel object. DI values from the novelty conditions were 

compared to DI values from corresponding locations during sessions when no objects 

were present, in order to control for innate location preferences. 

 

Slow and fast gamma power. The time varying oscillatory power was calculated using a 

Morlet wavelet convolution technique (see Appendix A for full description) for slow 

gamma (25–55 Hz), fast gamma (60–100 Hz), theta (6–10 Hz), and delta (2–4 Hz). The 

average power measures in the slow and fast gamma ranges were determined for each 

recording tetrode at each position using 1.5 x 1.5 cm sized bins. For plotting the heat 

maps (Figure 4.2A), the resulting powers were smoothed with a Gaussian distribution (σ 

= 6 cm), and averaged across all tetrodes and all animals. To avoid periods when the 

animal was not actively exploring, recordings were excluded if they did not have a theta 

to delta power ratio above 3 in every session (Csicsvari et al., 1999). To quantify the 
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results, the power for each tetrode was averaged across all bins within 10 cm of the center 

of the novel or familiar object, yielding a single slow gamma and fast gamma measure 

during novel exploration and familiar exploration for each tetrode. Statistical analyses 

considered each tetrode as a repeated measure within each animal subject. 

 

Running speed. The running speed associated with each novelty condition was found by 

averaging the velocity across all time points when the animal’s head was within 10 cm of 

the center of the object during the first 3 minutes of the 10 minute session.     

 

Phase synchrony. Time varying phase synchrony between areas CA1 and CA3 was 

calculated using a previously described method (Lachaux et al., 1999). This method 

assesses covariance between the instantaneous phases of each oscillation frequency for a 

pair of recordings across a given span of time. Phase synchrony for slow gamma (25–55 

Hz) and fast gamma (60–100 Hz) were determined during periods of exploration when 

the animal’s head was within 10 cm of the center of the object. For each CA1 and CA3 

tetrode pair, a single slow gamma and fast gamma phase synchrony measure was found 

by averaging across time for each frequency, and then averaging across frequencies 

within each respective frequency range. Statistical analyses considered each tetrode pair 

as a repeated measure within each animal subject.   

 

Place cell phase-locking. CA1 and CA3 place cells that had spikes within 15 cm of the 

center of either object were included in the analysis. The larger radius compared to 

previous analyses was required to include a large enough number of spikes for reliable 

analysis. A total of 21 CA1 and 9 CA3 cells were included for the obj condition, 7 CA1 

cells and 11 CA3 cells for the loc condition, and 19 CA1 and 17 CA3 cells for the 
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obj+loc condition. Cells that fired near the familiar object were included in analyses 

across all novelty conditions. The time-varying phases for slow gamma (25–55 Hz) and 

fast gamma (60–100 Hz) in area CA1 were determined using the Hilbert transform of the 

bandpass filtered signal for each respective frequency range. The slow and fast gamma 

spike phase distributions for each cell were then determined by identifying the slow and 

fast gamma phase, respectively, at the EEG time point closest to each spike time. Phase-

locking was quantified using the mean vector length of the resulting collection of phases. 

For CA1, spike phases were determined using the LFP recorded from the same tetrode on 

which the cell was recorded. For CA3 place cells, phases for each spike time were 

estimated from all CA1 LFP recordings. 
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Chapter 5: Conclusion 

 

5.1 SUMMARY 

The experiments in this dissertation provide evidence that slow and fast gamma 

support distinct functional processing states in the hippocampus. In Chapter 2, it was 

shown that the hippocampal network alternates rapidly between a prospective and 

retrospective firing mode. During the prospective mode, place cells fired in advance of an 

animal’s location, representing retrieval of maps of upcoming locations, and this mode 

was associated with slow gamma activity. During the retrospective mode, place cells 

coded recently passed locations, and this mode was associated with fast gamma, which 

may be important for maintaining active representations of recent experiences during 

memory encoding.  

In Chapter 3, this concept was expanded to the coordination of place cell 

sequences. During slow gamma, spatial sequences were represented in a temporally 

compressed manner, providing a predictive ‘sweep ahead’ of the upcoming trajectory. 

Place cells for specific locations within the sequence were associated with different 

phases of the slow gamma cycle. This might be a mechanism for retrieving sequences of 

information, in which the relatively longer slow gamma cycle allows activity to spread 

from extrinsically driven cells to other cells that were linked sequentially during earlier 

learning. In contrast, place cell sequences were more likely to depict an animal’s real-

time physical location during fast gamma. Moreover, different phases of the fast gamma 

cycle did not code specific locations. Instead, place cells were phase-locked to the same 

gamma phase, regardless of the location they represented. In this way, the fast gamma 

cycle might segregate chunks of spatial information, such that each cycle is associated 

with a single location coded by a separate place cell assembly.  
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 In Chapter 4, slow and fast gamma were examined during the encoding and 

retrieval of object-place associations. During exploration of novel object-place 

associations, there was a strong increase in fast gamma power and coupling between 

CA3-CA1. Moreover, place cells that coded the location of the novel object fired phase-

locked to fast gamma. This suggests that fast gamma is involved with transmission of 

novel information from the EC to the hippocampus during the encoding of object-place 

associations. Slow gamma CA3-CA1 coupling was strong during retrieval of familiar 

object-place associations, although other slow gamma measures were inconsistent. This 

slow gamma coupling might reflect a retrieval process from CA3 to CA1, but more work 

is needed to determine if this is the case. 

 

5.2 DISCUSSION 

Chapters 2 and 3 demonstrated spatial coding modes during slow and fast gamma 

in area CA1, which receives dual input from EC and CA3. The spatial firing properties in 

CA1 were hypothesized to result from selective input of these regions during each 

respective coding mode. An important question is how this is reflected in the activity of 

neurons in each of these input regions. One possibility is that CA3 and EC selectively 

increase their activity during prospective and retrospective coding. Alternatively, CA3 

and EC neurons might also exhibit coding modes, and their input might be enhanced 

through oscillatory coupling between regions. In support of the latter, De Almeida et al. 

showed that the spatial coding cells of the MEC (‘grid cells’) exhibit spatial coding 

modes similar to those observed in place cells (De Almeida et al., 2012). However, it is 

not known if CA3 place cells exhibit spatial coding modes. Future experiments involving 

dual recordings from CA1 and its inputs would help to reveal how neuronal activity in 

these regions is coordinated during the different coding modes.  
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It also remains to be seen whether spatial coding modes in the hippocampus are 

explicitly linked to memory function. Encoding and retrieval were inferred from the 

spatial coding properties of place cells; however, the behavioral task in Chapters 2 and 3 

did not directly measure memory performance, per se. However, place cell sequences 

were linked to memory retrieval in a recent study by Wikenheiser and Redish, in which 

sequences were predictive of the animal’s future path (Wikenheiser and Redish, 2015). 

An interesting question for future study is how slow gamma activity might relate to the 

memory aspects of this finding. The role of fast gamma in representing incoming sensory 

information has been suggested by recent studies (Cabral et al., 2014; Zheng et al., 2015), 

and its temporal dynamics appear to be optimal for plasticity (as in spike timing 

dependent plasticity, Bi and Poo, 1988; and plasticity induced by theta-burst stimulation, 

Larson et al., 1986; Larson and Lynch, 1986), but this has also not been directly shown. 

Advances in intracellular recording techniques in behaving animals may provide a way to 

observe synaptic changes concurrent with fast gamma activity during a memory-

dependent task.   

Behavioral studies attempting to link slow and fast gamma to specific encoding 

and retrieval processes have produced a variety of conflicting results (Trimper et al., 

2012, Kemere et al., 2012, Jutras et al., 2009). One explanation is the inherent ambiguity 

in using animal behavior to define exclusive periods of memory encoding and retrieval, 

and the differences in the behavioral tasks themselves. Another explanation is provided 

by the results in Chapters 2 and 3. It is likely that encoding new information, as well as 

retrieval of stored information, involves communication about both types of information 

within the hippocampus, which are compared in CA1. For example, encoding a novel 

object-place association might rely on retrieval of stored information in order to 

recognize the situation as new. Similarly, correct memory retrieval requires cues about 
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current experience. It appears that communication about these different types of 

information alternate rapidly in the hippocampus, switching every 2-3 theta cycles 

(Colgin et al., 2009), which translates to a fraction of a second. Thus, measuring gamma 

activity over relatively longer behavioral periods may partially obscure this precise 

coordination. Nonetheless, dominant periods of memory encoding or memory retrieval 

might bias the hippocampus towards one type of gamma over a given span of time, 

explaining results such as those presented in Chapter 4. 

It has been suggested that encoding and retrieval are optimal at specific phases of 

the theta cycle (Hasselmo et al., 2002; Kunec et al., 2005; Manns et al., 2007; Lever et 

al., 2010; Douchamps et al., 2013; Siegle and Wilson, 2014). Similarly, multiple studies 

have shown that slow and fast gamma occur at distinct theta phases (Colgin et al., 2009; 

Belluscio et al., 2012; Lasztoczi and Klausberger, 2014; Yamamoto et al., 2014; 

Schomburg et al., 2014). It is possible that these two correspond to one another; however, 

inconsistent results about the theta phase with which each gamma type is associated 

makes this conclusion difficult. A variety of factors may be responsible for the varying 

phase results, such as different recording techniques, behavioral tasks, or frequency 

ranges used to define gamma. The reasons for these discrepancies, as well as the 

relationship between gamma and the encoding/retrieval phases of theta, remain to be 

determined.   

A related question is what coordinates the switching between each gamma type. It 

might occur spontaneously within the hippocampal formation, or it might be controlled 

by a separate region. Moreover, the alternation between modes might happen 

continuously at some rate, or it might be skewed towards one type depending on the 

different demands made on the network. Also, it is not known if switching between 

gamma modes occurs within a single collection of interneurons that change their firing 
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dynamics, or if it involves the recruitment of distinct sub-populations that separately 

support each gamma type. The latter is supported by recent results from Lastoczi and 

Klausberger (2014), which showed that CA1 interneurons selectively couple to 

oscillations in either the slow or fast gamma range. Furthermore, a study by Leao et al. 

(2012) showed that CA3-driven interneurons in CA1 inhibit input from EC, while 

disinhibiting input from CA3. Such a class of interneurons might be involved in 

generating slow gamma, while inhibiting fast gamma.  

It has also been suggested that place cells tend to be driven by a single gamma 

type. In Colgin et al. (2009), it was found that 38% of CA1 place cells fired rhythmically 

with fast gamma, and 25% fired rhythmically with slow gamma, but only 6% of place 

cells fired rhythmically with both. Senior et al. (2008) reported distinct classes of place 

cells that had unique coding properties and fired at different phases of gamma and theta. 

These distinct classes of place cells may correspond to slow and fast gamma-modulated 

cells, considering that slow and fast gamma-modulated place cells preferentially fire at 

distinct gamma and theta phases (Colgin et al., 2009; Belluscio et al., 2012; Lasztoczi and 

Klausberger, 2014; Yamamoto et al., 2014; Schomburg et al., 2014). If this is the case, 

then functions supported by slow and fast gamma would be performed by different sets of 

hippocampal neurons. However, it was shown in Chapters 2 and 3 that neurons 

participate in both prospective and retrospective coding modes, and that individual place 

cells were equally active during both gamma types (Figure 3.6). Moreover, the properties 

associated with the place cell classes described in Senior et al. (2008) do not correspond 

to the properties associated with the different gamma subtypes without producing 

contradictions (see Chapters 2 and 3 for a more in depth discussion). A different 

conclusion, based on the current results, is that slow and fast gamma equally engage 
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place cells, allowing the same populations of cells to participate in both memory 

encoding and retrieval. 

 

5.3 FINAL THOUGHTS 

 As our understanding of the brain grows, its remarkable complexity as a 

computational system becomes increasingly apparent. Evidence that oscillations support 

distinct processing states adds a fascinating layer to this complexity. The function of a 

neural network might not be solely determined by the physical layout of its connectivity, 

but also by its electrical state. The influence of this state may provide multiple levels of 

functionality to identical groups of neurons without requiring any physical changes to 

take place. In the case of gamma, the hippocampus might possess the ability to perform 

two opposing functions – memory reading and writing – without relying on distinct 

subsets of functionally specialized neurons. This versatility might be crucial for 

maximizing the efficiency of the brain, providing flexibility that is rapid and 

energetically inexpensive. As research on oscillations continues, it will be fascinating to 

see if these properties apply to other brain regions and the multitude of complex functions 

that they perform.   
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Appendix A: Methods 

Subjects. A total of 10 rats were used. 2 of the rats were used in all chapters, 2 of the rats 

were used in Chapters 2 and 3, 1 of the rats was used in Chapters 3 and 4, and the 

remaining 5 were specific to a single chapter. Animals were housed on a reverse light 

dark cycle (lights off from 8 a.m.-8 p.m.) and tested during the dark phase. After surgery, 

animals were housed individually in cages (~40 cm x 40 cm x 40 cm) built from clear 

acrylic and containing enrichment materials (e.g., plastic balls, cardboard tubes, wooden 

blocks). Rats were allowed to recover from surgery for at least one week prior to the start 

of training. All experiments were conducted according to the guidelines of the United 

States National Institutes of Health Guide for the Care and Use of Laboratory Animals 

under a protocol approved by the University of Texas at Austin Institutional Animal Care 

and Use Committee. 

 

Tetrode and recording drive preparation. Recording drives contained 13-14 

independently movable tetrodes (13 in one rat, 14 in all others). Tetrodes were 

constructed from 17 μm polyimide-coated platinum-iridium (90%-10%) wire (California 

Fine Wire). Electrode tips in tetrodes targeted toward cell body layers were plated with 

platinum to reduce single channel impedances to ~150-300 kΩ at 1 kHz. 

 

Surgical implantation and tetrode placement. Recording drives were implanted above 

the right hippocampus (in mm: AP 5.0, ML 5.0, DV 1 in one rat in Chapter 3 and one rat 

in Chapter 4; AP 3.8, ML 3.0, DV 1 all other rats) on the day of surgery. Bone screws 

were placed in the skull, and the screws and the base of the drive were covered with 

dental cement to affix the drive to the skull. Two screws in the skull were connected to 

the recording drive ground.  
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Tetrode placement. Over the course of a few weeks after drive implantation, tetrodes 

were slowly lowered toward their target locations. In Chapter 2, 11-12 of the tetrodes (11 

in one rat, 12 in the other four rats) were targeted toward CA3 and CA1 cell body layers. 

In Chapter 3, 6 of the 14 tetrodes were targeted toward the CA1 cell body layer and 6 

toward the CA3 cell body layer in 4 rats, and 12 of the tetrodes were targeted toward the 

CA1 cell body layer in 1 rat (CA3 data was not used for this study). In Chapter 4, 6 of the 

14 tetrodes were targeted toward the CA1 cell body layer and 6 toward the CA3 cell body 

layer in 5 rats, and all tetrodes were targeted to the ventral portion of the hippocampus in 

1 rat. In the latter case, dorsal CA1 and CA3 recordings were taken as the tetrode passed 

through these regions. In all animals, 1 tetrode was targeted toward the apical dendritic 

layers of CA1 and was used for hippocampal depth estimation as the rest of the tetrodes 

were turned down. Another tetrode was used as a reference for differential recording. 

This reference tetrode was placed at the level of the corpus callosum or higher and was 

recorded against ground to make sure that it was placed in a quiet location. All recording 

locations were verified histologically after experiments were finished. Representative 

examples of final recording locations are shown in Figure A.1. Final hippocampal 

recording sites used in all Chapters were located in or near CA1 and CA3 strata 

pyramidale. In one rat used for Chapter 2 and 3, two tetrodes targeted toward CA1 

appeared in histological sections to be on the border of CA2-CA1. However, place cells 

and LFPs recorded from these tetrodes were indistinguishable from other CA1 recordings 

collected simultaneously. Therefore, place cells, interneurons, and LFPs from these 

tetrodes were included. In Chapter 2, the majority of CA3 tetrodes were located in CA3c 

(i.e., in the hilus). Because gamma oscillations exhibit large amplitudes in the hilus 

(Buzsaki et al., 1983; Bragin et al., 1995), volume-conducted gamma oscillations from 

the hilus contaminated LFP recordings from these tetrodes. Thus, LFP recordings from 
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CA3 tetrodes were not included in Chapter 2. Single unit recordings from CA3 tetrodes 

were included in Bayesian decoding analyses of activity during periods of slow and fast 

gamma in CA1 for Chapter 2. However, Bayesian decoding in Chapter 3 did not used 

CA3 data. In 2 rats in Chapter 2, some of the tetrodes targeted toward CA3 ended up in 

the dentate gyrus (1 tetrode in 1 of the rats and 2 tetrodes in the other). Recordings from 

dentate gyrus tetrodes were not used. 

 

Estimating oscillatory power. Time varying power for slow gamma, fast gamma, theta, 

and delta were computed across the 25–55 Hz, 60–100 Hz, 6–10 Hz and 2–4 Hz 

frequency ranges, respectively, using a wavelet transform method described previously 

(Tallon-Baudry et al., 1997). Although fast gamma has previously been defined as 

extending up to 140 Hz (Colgin et al., 2009), we chose to cut it off at 100 Hz to avoid 

overlap with the recently defined epsilon band (90-150 Hz; Belluscio et al., 2012) and to 

avoid contamination by spike waveforms, which can generate power across a broad range 

of high frequencies, sometimes extending down to ~150 Hz (Colgin et al., 2009). Signals 

were convolved by a family of complex Morlet’s wavelets w(t, f), one for each 

frequency, as a function of time:  

 

𝑤(𝑡, 𝑓) = 𝐴𝑒
−𝑡2

2𝜎𝑡
2⁄
𝑒2𝑖𝜋𝑓𝑡 

 

With 𝜎𝑓 =
1

2
𝜋𝜎𝑡. The coefficient A was set at: 

 

(𝜎𝑡√𝜋)
−1

2⁄
 

in order to normalize the wavelets such that their total energy was equal to 1. The family 

of wavelets was characterized by a constant ratio 
𝑓

𝜎𝑓
⁄ , which was set to 5. 
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Data acquisition. Experiments began when spikes emerged approximately at the proper 

depth for the region of interest (~2 mm for CA1 and ~3 mm for CA3) with amplitudes 

exceeding ~5 times the noise levels. Robust theta rhythms and sharp wave ripple activity 

helped to verify that tetrodes were in the CA1 cell body layer. The recording drive was 

connected to a multichannel, unity gain headstage (HS-54, Neuralynx, Bozeman, MT, 

USA). The output of the headstage was conducted via two lightweight tether cables 

through a multichannel slip-ring commutator to a data acquisition system that processed 

the signals through individual 24 bit AD converters (Digital Lynx, Neuralynx, Bozeman, 

MT, USA). Unit activity was bandpass filtered from 600 to 6000 Hz. Spike waveforms 

above a threshold set by the experimenter (~55-75 μV) were time-stamped and recorded 

at 32 kHz for 1 ms. Light-emitting diodes (LEDs) on the headstage were used to track the 

animal’s movements at a 30 Hz sampling rate. Additionally, video files were collected 

during every recording session. LFPs (1 per tetrode) were recorded continuously in the 

0.1-500 Hz band at a sampling rate of 2000 Hz. Notch filters were not used. Continuously 

sampled LFPs were recorded differentially against a common reference electrode placed 

in an electrically silent region. The common reference signal was duplicated using a 

breakout board (MDR-50 breakout board, Neuralynx, Bozeman,MT, USA) and recorded 

continuously against ground. 

 

Results, statistics, and data analyses. Results are reported as means ± SD and depicted 

in figures as means ± SEM, unless indicated otherwise. Reported t-tests are 2-tailed. Data 

were analyzed using custom software written in MATLAB (MathWorks, Natick, MA), 

unless indicated otherwise. Statistics were computed with MATLAB, SPSS 22 (IBM), 
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and Oriana 4.02 (Kovach Computing Services). Specific analysis methods are described 

in detail in the Methods section of each chapter. 

 

Spike sorting and cell classification. Spike sorting was performed offline using 

graphical cluster-cutting software (MClust v3.5; A.D. Redish, University of Minnesota, 

Minneapolis). Spikes were clustered manually in two-dimensional projections of the 

multidimensional parameter space (consisting of waveform amplitudes, energies, and 

peak-to-valley ratios). Autocorrelation and cross-correlation functions were additionally 

used to identify single units. Putative place cells were distinguished from putative 

interneurons on the basis of spike width, average firing rate, and bursting properties (Fox 

and Ranck, 1981; Henze et al., 2000; Harris et al., 2000; Frank et al., 2001). Firing rate 

maps across behavioral sessions were also used to identify place cells. 

 

Estimation of running speed. The running speed (vt) at time point (t) was estimated by 

calculating the distance between the preceding position (xt-1, yt-1) and the following 

position (xn+1, yn+1), and dividing by the elapsed time (2*1/position sampling frequency). 

For Chapters 2 and 3, only the x dimension was used since the animal was confined to a 

linear path. The sampling frequency of the position data was 30 Hz, yielding a temporal 

resolution of 1/15 second. 

 

Histology. For verification of tetrode locations, brains were cut coronally at 30 μm and 

stained with cresyl violet (Figure A.1). Each section through the relevant part of the 

hippocampus was collected. All tetrode locations were identified, and the tip of each 

tetrode was localized by comparison across adjacent sections.  
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Figure A.1: Representative histology identifying tetrode tracks in CA1 and CA3.  

Coronal sections stained with cresyl violet show typical tetrode tracks terminating in CA3 

and CA1 cell body layers. 
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