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This thesis presents a series of studies on the evolution and out-of-

equilibrium dynamics of strongly coupled quantum field theories by means

of the AdS/CFT correspondence. We use a handful of analytic and semi-

analytic techniques to investigate the response of the system due to different

types of perturbations, some of them leading to thermalization, cooling down

or coherent oscillations of the quantum fields. We characterize the processes

by studying the evolution of non-local observables such as two-point functions,

Wilson loops and entanglement entropy. Our results may be relevant to heavy-

ion collision and condensed matter physics experiments.
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Chapter 1

Introduction

1.1 Preface

The AdS/CFT correspondence [25, 26, 27] describes an equivalence

between a classical gravitational dynamics and a large N gauge theory. This

remarkable correspondence has proved to be very useful in addressing aspects

of strongly coupled dynamics in various models, ranging from understanding

aspects of strongly coupled Quantum chromodynamics (QCD) to condensed

matter-inspired systems. See [28, 29] for recent reviews on some of these

attempts.

Most of such endeavours usually discuss equilibrium properties of a

class of strongly coupled SU(N) gauge theories at large N . However, since

this is a correspondence between the path integrals of the corresponding Quan-

tum Field Theory (QFT) and the classical Gravity description, it is natural

to assume that it extends to time-dependent dynamical situations as well. In

fact, dynamical processes in a prototypical field theory model are extremely

interesting to explore and learn about, since we do not have a good understand-

ing of the governing rules and laws for systems completely out-of-equilibrium,

specially at strong coupling. In this regime, AdS/CFT correspondence is po-
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tentially a very useful tool.

Such time-dependent issues fall under two broad categories: the study

of quantum quenches, where a system is prepared in an energy eigenstate of a

given Hamiltonian. The Hamiltonian is then perturbed by a time-dependent

external parameter. Recent developments in cold atoms experiments have

initiated a very active research where this perturbation occurs abruptly, see

e.g. [30] for a condensed-mater approach and [31, 32, 33] for a review of the

holographic attempts. The other broad issue is to understand the physics

of thermalization of strongly coupled system. See e.g. [34, 35, 36] for earlier

works on this. More recently, there has been a renewed interest to understand

the physics of thermalization at strong coupling to shed light on the physics of

the quark-gluon plasma (QGP) at the Relativistic Heavy Ion Collider (RHIC)

and the Large Hadron Collider (LHC). Most of these works rely heavily on

numerical efforts that study gravitational collisions and black hole formation in

an asymptotically anti de-Sitter (AdS) space, see e.g. [37, 38, 39, 40, 41, 42, 43].

The main motivation of this thesis is to develop new computational

tools to study such time-dependent scenarios without restoring to the heavy

numerical machinery. In the process, we use a handful of analytic and semi-

analytic techniques to investigate the response of system due to different types

of perturbations, some of them leading to thermalization, cooling down or

coherent oscillations of the quantum fields. The main goal is to gain new

insights into the broad subject of out-of-equilibrium quantum field theory and

to learn, at least qualitatively, useful lessons which are presumably not heavily
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dependent on the details of the model.

The remaining part of this Chapter is merely introductory and can be

safely skipped by the cognoscenti. In section 1.2 we introduce the reader to

the main concepts of the AdS/CFT correspondence: its original derivation

and the main entries of the holographic dictionary. In section 1.3, we close

with the general outline and a brief discussion of the results.

1.2 The AdS/CFT correspondence

1.2.1 Maldacena’s derivation

Let us consider a stack of N coincident D3-branes in type IIB string

theory, living on a flat 10-dimensional spacetime. The system have open strings

ending on the D-branes as well as closed strings propagating in the bulk.

Maldacena’s idea was to consider the low-energy limit of this system, where

the branes decouple from gravity. If we take E � ls we can neglect the massive

degrees of freedom of the theory and we can write down an effective action.

Schematically,

S = Ssugra + Sbranes + Sinteractions . (1.1)

The first term in (1.1) corresponds to the massless modes of the closed string

sector, which is nothing but type IIB supergravity. The second term represents

the excitations of the D3-branes (i.e. the open string sector), and the last

term accounts for the interactions between open and closed strings. Let us

focus on the second term in (1.1). Open strings can in principle be attached

to any of the D3-branes so the worldvolume theory exhibits a U(N) gauge
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symmetry. However, the factor U(1) describing the position of the center of

mass of the branes decouples from the internal degrees of freedom. This factor

can be neglected when studying the dynamics of the system, leaving only a

SU(N) = U(N)/U(1) symmetry. Also, the system of D3-branes preserves

half of the 32 supersymmetries of the type IIB theory. Since the worldvolume

theory lives in 3+1 dimensions, then, it must be maximally supersymmetric.

This theory is known as N = 4 super-Yang-Mills (SYM). Its field content

consists of one vector Aµ, six scalars φI (I = 1...6), and four Weyl fermions

χiα, χīα̇ (i, ī = 1, 2, 3, 4). The Lagrangian density of the SYM theory contains

two free parameters gYM and θYM , and is given by

LSYM = Tr

[
− 1

2g2
YM

FµνF
µν +

θYM
8π2

FµνF̃
µν − iλ̄aσ̄µDµλa −DµΦiDµΦi

+ gYMC
ab
i λa[Φ

i, λb] + gYM C̄iabλ̄
a[Φi, λ̄b] +

g2
YM

2
[Φi,Φj]2

]
.

(1.2)

It can be shown that in the strict low energy limit E → 0 (or equivalently

ls → 0 keeping E fixed) the interaction term in (1.1) is negligible and, thus,

the system naturally decouples in two sectors [25]: free supergravity in 9+1

dimensions and N = 4 SYM in 3+1 dimensions.

On the other hand, if N is sufficiently large, the branes can deform

substantially the spacetime and we can have an alternative description of the

system: in this limit, the D3-branes act as a source of an extremal black brane

geometry [44]. The backreacted metric takes the following form:

ds2 =

(
1 +

L4

r4

)−1/2

ηµνdx
µdxν +

(
1 +

L4

r4

)1/2 [
dr2 + r2dΩ2

5

]
. (1.3)
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In addition, the solution is supplemented by a constant dilaton φ, which is

related to the coupling constant of the type IIB theory through gs = eφ, a

constant axion χ and N units of Ramond-Ramond F5 flux. In (1.3), L is the

only length scale and is given by

L4 = 4πgsNl
2
s . (1.4)

We can consider taking the following limits: if r � L the geometry reduces

to the Minkowski metric in 9+1 dimensions. Hence, we say that solution is

asymptotically flat. In the near horizon limit, r � L, the geometry looks

singular at first glance since L4/r4 → ∞. Finally, in the intermediate region,

r ∼ L, the geometry takes the form of a “throat” with radius of curvature L.

Notice that the gtt component of the metric is not constant. This implies that

the energy Er of an object measured by an observer located at certain r differs

from the energy E of the same object measured by an observer at infinity,

E =

(
1 +

L4

r4

)− 1
4

Er . (1.5)

Thus, objects located close to the horizon experience a gravitational redshift.

Let us now study the low energy limit of this system. We can do so by

taking ls → 0 while keeping both gs and N fixed. In the asymptotic region we

get rid of the massive modes and we obtain free supergravity in flat space. On

the other hand, in the near horizon region we can have modes with arbitrarily

large energies as a consequence of the gravitational redshift. The intermediate

region acts as a gravitational barrier, so modes in the asymptotic region cannot

5



interact with modes in the near horizon region. Again, we obtain that the

system decouples in two sectors: free supergravity in 9+1 dimensional flat

space and type IIB string theory in the near horizon geometry. If we redefine

the radial coordinate according to

z =
L2

r
, (1.6)

and then take the limit of large z we obtain the geometry of the near horizon

region,

ds2 =
L2

z2

(
ηµνdx

µdxν + dz2
)

+ L2 , dΩ2
5, (1.7)

which is the direct product of a 5-dimensional AdS space (L2/z2)(ηµνdx
µdxν +

dz2) and a 5-sphere L2dΩ2
5. In other words, the geometry near the stack of

D3-branes (r → 0 or z →∞) can be written as the product AdS5× S5, where

both factors have the same radius of curvature L.

We have presented two ways of describing the same physical systems: a

stack of N D3-branes. In both cases we obtained as the low energy description

type IIB supergravity on Minkowski space and a second theory: SYM and type

IIB string theory on AdS5× S5, respectively, the latter one in theN →∞ limit.

Since the SYM theory exists for any N it is natural to conjecture that [25]:

N = 4 SYM theory with gauge group SU(N) = Type IIB string theory
on AdS5× S5 with N units of Ramond-Ramond five-form flux.

Here, the = sign indicates a full duality: the two sides are just dif-

ferent languages to describe the same physical system. The above statement
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is known as the AdS/CFT correspondence, because AdS describes the non-

compact part of the spacetime in the string theory side, and gauge theory is a

conformal field theory (CFT). As such, there are many other examples of this

duality that arise from string– (or M–) theory constructions, giving rise to dif-

ferent CFTs. For example, besides the usual D3-brane system, other dualities

that are studied involve the near-horizon geometries and low-energy world-

volume theories of multiple D1/D5, M2 and M5 branes, respectively [45]. Its

worth pointing out that the AdS boundary conditions can also be relaxed, in

which case the dual gauge theory is not necessarily conformal. For this reason,

the term “AdS/CFT” is often replaced by “gauge/gravity” or “gauge/string”

correspondence, which have wider connotation.

In the following sections we will explain the meaning of this duality in

more detail and we will introduce different computational tools that we need

for the remaining part of this thesis.

1.2.2 Main entries of the dictionary

1.2.2.1 Symmetries

To start convincing ourselves of the equivalence between the two de-

scriptions we can compare the symmetries of the two sides of the correspon-

dence. The isometry group of the AdS metric is O(2, 4), which coincides with

the conformal group in 3 + 1 dimensions. More precisely, the bulk diffeomor-

phisms induce conformal transformations on the boundary theory. We can

identify various subgroups as follows: the subgroup O(1, 3) ⊂ O(2, 4) acts as

7



the Lorentz symmetry on the boundary. The transformation z → λz, xi → λxi

induces the scale transformation on the boundary. Now, besides the conformal

group on the super Yang-Mills side we have the R-symmetry group SU(4)R.

On the gravity side it acts as SU(4) → SO(6) inducing rotations on the S5

factor. We also have the electric-magnetic duality or strong-weak duality. To

see this, we define complex parameter

τ =
θYM
2π

+
4πi

g2
YM

, (1.8)

which combines the coupling constant gYM and the theta angle θYM . Taking

into account the translations τ → τ + 1 and the inversions τ → −1/τ we

obtain the SL(2,Z) group, which acts according to

τ → aτ + b

cτ + d
ad− bc = 1 , a, b, c, d ∈ Z . (1.9)

In the gravity side of the correspondence, this duality corresponds to the

SL(2,Z) ⊂ SL(2,R), which acts on the dilaton-axion system. This dual-

ity becomes manifest after we identify g2
YM = 4πgs ≡ 4πeφ and θYM = 2πχ,

where φ is the dilaton and χ is the Ramond-Ramond scalar, or axion.

Taking into account (1.4) and the relation between the string coupling

constant and the coupling constant of the SYM theory, we can write

L4 = g2
YMNl

4
s = λl4s , (1.10)

where λ ≡ g2
YMN is the so-called ’t Hooft coupling, which effectively measures

the strength of the interactions of the SYM theory in the large N limit. In
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order to neglect the stringy modes we can work in the limit L � ls, which

in the language of the gauge theory translates into the condition λ � 1.

We observe that in the limit where type IIB string theory reduces type IIB

supergravity, the gauge theory is strongly coupled. This is one of the most

powerful observations of the AdS/CFT correspondence. It implies that we can

study the nonperturbative aspects of a quantum field theory in terms classical

supergravity.

1.2.2.2 Fields and correlators

In order to translate between one side of the duality to the other, we

should keep in mind that gauge theory is conformal: it does not have asymp-

totic states or an S matrix, so the natural objects to consider are correlation

functions of gauge invariant operators. Indeed, in the AdS/CFT dictionary we

find a one-to-one map between bulk fields φ(x, z) and operators in the gauge

theory side O. For instance, if we deform the N = 4 SYM theory by means of

a marginal operator (essentially the Lagrangian of the theory O ∼ TrF 2) the

net effect is to change the value of the coupling constant. But changing the

value of the coupling constant in the gauge theory is equivalent to changing

the value of the coupling constant in the gravity side, g2
YM = 4πgs, which is

equivalent to expectation value of the dilaton field. This expectation value is

fixed by the boundary conditions of the dilaton at z = 0 and, hence, chang-

ing the coupling constant of the gauge theory is equivalent to changing the

boundary value of the dilaton. Schematically, we learn that φ(x, z)|z=0 acts as

9



a source that couples to the corresponding operator O.

In order to make this map more precise, let us review the field content

on the gravity side. Type IIB supergravity in d = 10 dimensions has the

following bosonic fields:

Field Sector
φ (dilaton) NSNS
gµν (metric) NSNS

Bµν (Kalb-Ramond field) NSNS
χ (axion) RR

Aµν (2-form) RR
Aµνσρ (self-dual 4-form) RR

Small fluctuations of these fields follow an equation of motion of the

form ∆φ = 0, where ∆ is the covariant Laplacian in the bulk. If we decompose

the Laplacian as ∆ = ∆AdS5 + ∆S5 , the fields viewed as living on AdS5 acquire

the mass equal to the eigenvalue of ∆S5 . For example, scalar fields decompose

as φ(z, y) =
∑∞

k=2 φk(z)Yk(y), where z represent the coordinates along AdS5

and y are the coordinates along S5, and the mode φk acquires the mass m2 =

k(k − 4)/L2, where L is the radius of S5.

The bosonic field content in the compactified theory is the following

(only the lowest modes are listed):

Field SO(6) representation
hµν graviton 1
Aµν 2-forms 6
Aµ 1-forms 15
φ scalars 20⊕ 10⊕ 10∗ ⊕ 1 = 42

10



Solutions to the Klein-Gordon equation (∆AdS5 + m2)φ = 0 have the

following asymptotics at the boundary: φ(z, xµ) ∼ z4−∆ and φ(z, xµ) ∼ z∆,

where ∆ = 2 +
√
m2 + 4. In particular, the partition function of supergravity

(or string theory) depends on the behavior at the boundary. According to

[26, 27], we can identify

Zstring[φ0] =
〈
e−

∫
d4xφ0(x)O(x)

〉
CFT

, (1.11)

where the term in the left hand side is the string partition function with

boundary condition1 φ → z4−∆φ0 as z → 0 and the term in the right is the

generating functional of correlation functions of the gauge theory. Notice that

φ0 has weight 4−∆ under the scaling transformations:

φ0(λx) = lim
z→0

z∆−4φ(z, λx)

= λ∆−4 lim
z→0

(λ−1z)∆−4φ(z, λx)

= λ∆−4 lim
v→0

v∆−4φ(λv, λx)

= λ∆−4 lim
v→0

v∆−4φ(v, x)

= λ∆−4φ0(x).

Therefore, for the right-hand side of (1.11) to be well-defined, O has to have

conformal weight ∆, O(λx) = λ−∆O(x).

From the formula (1.11) we can match right away several operators.

First, consider the variation of the metric, on the right-hand side it couples

1Here we assume that m ≥ 0 so the term z4−∆ dominates near the boundary. Otherwise
the leading asymptotic behavior is given by z∆.
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to the stress-energy tensor Tµν . Second, variations of the dilaton and axion

fields correspond to varying the coupling constants, i.e. adding the operators

TrFµνF
µν + · · · and TrFµνF̃

µν + · · · , respectively, and so on (the dots here

represent contributions from scalars and fermions).

AdS field CFT operator
hµν Tµν
φ TrFµνF

µν + · · ·
χ TrFµνF̃

µν + · · ·

We will work exclusively in the large N , large λ limit of the duality,

in which case type IIB string theory reduces to type IIB supergravity and the

left hand side of (1.11) can be treated in the saddle point approximation. In

this regime, the above relation becomes

Son-shell[φ0] = −ΓCFT[φ0], (1.12)

where Son-shell[φ0] is the supergravity action evaluated on-shell and ΓCFT[φ0]

is the generating functional of connected correlation functions in the SYM

theory. The correlation functions of O can be computed by differentiating

with respect to the source,

〈O(x)〉 =
δSon-shell

δφ0(x)

∣∣∣
φ0=0

,

〈O(x1)O(x2)〉 = − δ2Son-shell

δφ0(x1)δφ0(x2)

∣∣∣
φ0=0

, (1.13)

〈O(x1) · · ·O(xn)〉 = (−1)n+1 δ3Son-shell

δφ0(x1) · · · δφ0(xn)

∣∣∣
φ0=0

,

etc.
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Finally, in order to make use of the formulas (1.13) one has to consis-

tently regularize and renormalize the two sides of the equalities. The relevant

divergences on the SYM side come from UV, so one introduces a momentum

cutoff p ≤ Λ. Similarly, on the gravity side divergences come from the infinite

volume of AdS, so one introduces an IR cutoff z0 ≥ ε. From purely dimensional

analysis one expects ε ∼ 1/Λ. In the minimal subtractions scheme, one pro-

ceeds by adding covariant counterterms to the action in order to subtract the

positive powers of Λ (ε−1) and logarithms. Such approach is called holographic

renormalization [46, 47].

1.2.3 States and geometries

1.2.3.1 Black holes

Introducing a finite temperature into the system means adding energy

without modifying other quantum numbers such as the brane charges. The

string theory setup we have discussed above can be easily modified in order to

introduce these effects. First, recall that we obtained the original correspon-

dence by taking a decoupling limit of extremal D3-branes, which saturate the

BPS bound M = N/(2π)3gsl
4
s . Then, adding temperature means adding en-

ergy but no charge to the system, so it is natural to take a decoupling limit for

non-extremal D3-branes with M > N/(2π)3gsl
4
s . The net effect of this is solely

to replace the bulk metric to (AdS-Schwarzschild)5×S5. The line element for

this background is given by

ds2 =
L2

z2

(
−hdt2 + d~x2 +

dz2

h

)
+ L2 dΩ2

5 , (1.14)
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where

h = 1− z4

z4
H

. (1.15)

The asymptotic behavior reveals that the UV physics is not affected by the

presence of temperature, as we would expect. However, the IR physics is

dramatically modified. As we can see, the metric above has a regular event

horizon at z = zH with Hawking temperature T . The simplest way to calculate

it is to demand that the Euclidean continuation of the metric (1.14),

ds2 =
L2

z2

(
hdt2E + d~x2 +

dz2

h

)
+ L2 dΩ2

5 , (1.16)

obtained as usual by the replacement t→ itE, be regular. Since the Euclidean

time direction shrinks to zero size at z = zH, we must require tE to be pe-

riodically identified with appropriate period β, i.e. tE ∼ tE + β. A simple

calculation shows that

β = πzH . (1.17)

The period β of the Euclidean time circle is then interpreted as the inverse

temperature, β = 1/T . The reason for this is that, at finite temperature T ,

one is interested in calculating the partition function Tr e−βH , where H is the

Hamiltonian of the theory. In a path integral formulation, the trace may be

implemented by periodically identifying the Euclidean time with period 1/T .

Surprisingly, not only the temperature but also all the thermodynam-

ical properties of the black hole turn out to be the same as those of the dual

gauge theory. The first quantity of interest we can compute is the entropy

density of N = 4 SYM theory [48]. We do not know how to compute this in
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the gauge theory, but in the large N , large λ limit we can use the supergravity

description. In this description the entropy is just the Bekenstein-Hawking en-

tropy [49, 50], SBH = A/4G, proportional to the area of the horizon. According

to (1.14) the horizon lies at z = zh and t = const., and has ‘area’

A =

∫
d3xd5Ω

√
g . (1.18)

The determinant of the metric factorises into the determinant of the metric on

S5 times L3/z3
H, where the latter factor is just the determinant of the three-

metric on a z = zH, t = const. slice in (1.14). Integrating we obtain A = aV3,

where

a =
L3

z3
H

× π3L5 , (1.19)

V3 =
∫
d3x is the (infinite) volume in the 123-directions and π3 is the volume

of a unit five-sphere. Taking into account all the above terms, we can now

express the entropy density per unit volume in the 123-directions in terms of

gauge theory parameters as

sBH =
SBH

V3

=
a

4G
=
π2

2
N2T 3 . (1.20)

The N and the T dependence of this result could have been anticipated. The

former follows from the fact that the number of degrees of freedom in an SU(N)

gauge theory grows asN2, whereas the latter follows from dimensional analysis,

since the temperature is the only scale in the N = 4 theory. What is truly

remarkable about the result above is that it shows that the entropy density

attains a finite value in the limit of infinite coupling, λ → ∞. Moreover,
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this result is 3/4 of the Stefan-Boltzmann value for a free gas of quarks and

gluons. This factor is not a mistake of the AdS/CFT calculation, rather it is

a prediction for a finite temperature strongly coupled SYM theory. It appears

that

sSYM = F(λ)sfree , (1.21)

where F(λ) is a function which smoothly interpolates between a weak cou-

pling limit of 1 and a strong coupling limit of 3/4. Indeed, Feynman graph

calculations valid for small λ give [51, 52]

F(λ) = 1− 3

2π2
λ+ . . . . (1.22)

The constant term is from a one loop computation and the leading correction

is from two loops. On the other hand, a string theoretic calculation gives that

for strong coupling [53]

F(λ) =
3

4
+

45

32

ζ(3)

λ3/2
+ . . . , (1.23)

consistent with a monotonic function F(λ). This last expression follows from

considering the leading α′ corrections to the supergravity action. Thus, the

1/4 deficit compared to the free field value is a strong coupling effect predicted

by the AdS/CFT correspondence.

We can also study many other thermodynamical properties of the SYM

theory, but in order to do so we need to compute the expectation value of the

stress-energy tensor 〈Tµν(x)〉 at finite temperature. The operator Tµν is dual to

the bulk metric, so we need to analyze the asymptotic behavior of gµν and then
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follow the recipe for computing correlation functions studied in the previous

section. This process can be performed with quite generality, assuming a

specific for of the bulk metric. In particular, if we assume that the metric is

written in the Fefferman-Graham form [54]

ds2 =
L2

z2

(
gµν(z, x)dxµdxν + dz2

)
, (1.24)

the dual CFT metric ds2
CFT = gµν(x)dxµdxν can be directly read off as gµν(x) =

gµν(0, x). The full function gµν(z, x) is uniquely determined (via the Einstein

equations in the bulk) from this boundary value together with data dual to the

expectation value of the CFT stress-energy tensor 〈Tµν(x)〉. More specifically,

in terms of the near-boundary expansion

gµν(z, x) = gµν(x) + z2g(2)
µν (x) + z4g(4)

µν (x) + z4 log(z2)h(4)
µν (x) + . . . , (1.25)

the standard GKPW recipe for correlation functions [26, 27] leads after ap-

propriate holographic renormalization to [46, 47]

〈Tµν(x)〉 =
N2

2π2

(
g(4)
µν (x) +X(4)

µν (x)
)
, (1.26)

where the quantity

X(4)
µν = −1

8
gµν

[(
g(2)α
α

)2 − g(2)β
α g

(2)α
β

]
− 1

2
g(2)α
µ g(2)

αν +
1

4
g(2)
µν g

(2)α
α (1.27)

is related to the conformal anomaly and turns out to cancel the logarithmic

divergence. In (1.27) it is understood that the indices of the tensors g
(n)
µν (x)

are raised with the inverse boundary metric gµν(x).
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A few comments are in order. Note that the pure AdS spacetime can be

seen as the “ground state” of the gauge theory. Any other field that we turn

on (including the metric) will result in an excited state and/or a deformation

of the theory. Indeed, given the form of the AdS metric, it is easy to see

that g
(2)
µν = g

(4)
µν = h

(4)
µν = 0 and so it follows that 〈Tµν(x)〉 = 0, which is the

correct value for the Poincaré invariant ground state of SYM. For the AdS-

Schwarzschild metric (1.14) we first have to rewrite it in the Fefferman-Graham

form through the trivial bulk diffeomorphism

z =
z′√

1 + z′4

4z4
H

. (1.28)

The resulting metric can be written as

ds2 =
L2

z′2

−
(

1− z′4

4z4
H

)2(
1 + z′4

4z4
H

) dt2 +

(
1 +

z′4

4z4
H

)
d~x2 + dz′2

 , (1.29)

from which we can read off the metric of the gauge theory, gµν = ηµν , and the

first terms in the near-boundary expansion g
(2)
µν = 0, g

(4)
µν = z−4

H /4 diag(3, 1, 1, 1)

and h
(4)
µν = 0. In this case, the stress-energy tensor reads

〈Tµν(x)〉 =
π2N2T 4

8


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.30)

This is precisely the expected value for a conformal fluid at equilibrium with

energy density ε = (3π2/8)N2T 4. Here the factor T 4 reflects the usual Stefan-

Boltzmann law while N2 reflects the number of degrees of freedom in the

plasma. Note also that the energy density and the pressure are related as
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ε = 3p making the stress tensor traceless, as expected for a conformal field

theory. Furthermore, the thermodynamic relations

dε = Tds, dp = sdT and ε+ p = Ts (1.31)

hold for both, the thermodynamics of the black hole and the thermodynamics

of the gauge theory.

1.2.3.2 Time-dependent backgrounds

We have argued that the effect of turning on non-trivial values of fields

in the bulk, including the metric, corresponds to having an excited state and/or

a deformation of the dual gauge theory. Then, it is natural to assume that

general time-dependent backgrounds are dual to out-of-equilibrium states in

the boundary CFT. We can imagine, for instance, a process that interpolates

between the vacuum of the theory (i.e. empty AdS) and a thermal ensemble (a

Schwarzschild-AdS black hole), in a complete dynamical setting. This means

that the time-dependent configurations we are looking for should capture the

physics of gravitational collapse in the bulk, or equivalently, black hole forma-

tion. In the following we will review the simplest of such models and comment

on its properties and physical limitations.

In order to find a background that captures the relevant physics, we

have to couple the action that gives rise to AdS with an external source

S = S0 + αSext , (1.32)
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where α is a constant and

S0 =
1

16πG5
N

∫
d5x
√
−g (R− 2Λ) , Λ ≡ − 6

L2
. (1.33)

We have taken the point of view of a 5-dimensional effective description, so

we do not have to worry about the compact part of the geometry. Moreover,

for the physics we want to study in the present context we do not need to

specify the form of Sext. On general grounds, however, it might correspond to

deforming the theory by a relevant, irrelevant or marginal operator O. The

equations of motion that follow from the above action take the following form

Rµν −
1

2
(R− 2Λ) gµν = 8παG5

N T
ext
µν , (1.34)

and lead to the well-known AdS-Vaidya solution:

ds2 =
L2

z2

(
−f(v, z)dv2 − 2dvdz + d~x2

)
, f(z, v) = 1−m(v)z4 , (1.35)

with

8παG5
N T

ext
µν =

3z3

2L6

dm

dv
δµvδνv . (1.36)

The metric (1.35) is written in terms of Eddington-Finkelstein coordi-

nates (so that v labels ingoing null trajectories) and represents a 5-dimensional

infalling shell of null dust.2 The function m(v) can be in principle arbitrary

and captures the information of the black hole formation. Quite generally,

m(v) is chosen to interpolate between zero as v → −∞ (corresponding to pure

2For m(v) = const., the metric (1.35) reduces to the usual AdS-Schwarzschild black hole.
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AdS) and a constant value as v → ∞ (corresponding to AdS-Schwarzschild).

A particular example of such a function is

m(v) =
M

2

(
1 + tanh

v

v0

)
, (1.37)

where v0 is a parameter that fixes the thickness of the shell. At this point one

might think of considering solutions where m(v) is not necessarily a monoton-

ically increasing function of v. However, this would lead to several issues, as

we will discuss below.

One constraint that any reasonable energy-momentum tensor should

obey is the Null Energy Condition (NEC), which is given by the following

inequality: T ext
µν n

µnν ≥ 0, where nµ is a lightlike vector, i.e. nµnµ = 0. For the

metric (1.35) there are two solutions to the null normal equation nµnµ = 0.

Without any loss of generality we can write them as

nµ(1) = (0, 1, 0, 0, 0) , nµ(2) =

(
1,−1

2
f, 0, 0, 0

)
, (1.38)

The null vector nµ(1) imposes a trivial constraint, but the null vector nµ(2) im-

poses that

z3dm

dv
≥ 0 . (1.39)

Since z ≥ 0, the inequality in (1.39) imposes that mass function is always

increasing, m′(v) ≥ 0. This condition seems to be correlated with other simple

observations which we will discuss momentarily.

Before proceeding further, let us introduce the apparent horizon for the

background (1.35), following the notations in [55]. The apparent horizon is
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given by the null hypersurface which has vanishing expansion of the outgoing

null geodesics. For (1.35) the tangent vectors to the ingoing and the outgoing

null geodesics are

`− = −∂z , `+ = − z
2

L2
∂v +

z2

2L2
f∂z (1.40)

such that we satisfy

`− · `− = 0 = `+ · `+ , `− · `+ = −1 . (1.41)

The codimension 2 spacelike hypersurface, which is orthogonal to the above

null geodesics, has an area: Σ = (L/z)3. The expansion parameters associated

with this hypersurface are

θ± = L± log Σ = `µ±∂µ (log Σ) , (1.42)

where L± denotes the Lie derivatives along the null directions `±. The location

of the apparent horizon is then obtained by solving Θ = 0, where Θ = θ−θ+.

In this particular case, the equation Θ = 0 implies f(z, v) = 0. The equation

for determining the apparent horizon then yields

1−m(v)z4 = 0 =⇒ zaH = m(v)−1/4 . (1.43)

Here zaH denotes the apparent horizon. Note that in the future infinity,

i.e. v →∞, the apparent horizon coincides with the actual event-horizon.

Note that, during the time-evolution, a global event-horizon exists in

the background. This is generated by null geodesics in the background and is
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the boundary of a causal set. Since the background (1.35) has three Killing

vectors (∂/∂xi), the location of the event-horizon is given by a curve z(v). The

null geodesic equation in the background (1.35) is given by

dzH(v)

dv
= −1

2
f (zH(v), v) , (1.44)

where zH denotes the location of the event-horizon. In the limit v → +∞,

we have zaH = zH; however, this is not true in the v → −∞ limit, i.e. the

event-horizon lies above the apparent horizon.

It was argued in [55] that, during a time-evolution, it is the apparent

horizon rather than the event-horizon that can define a “thermodynamics”.

Based on an analogy, we can define a “temperature function” and an “entropy

function” in terms of the apparent horizon

T (v) = − 1

4π

d

dz
f(z, v)

∣∣∣∣
zah

=
d

4π
m(v)1/4 , (1.45)

S(v) = V3m(v)−3/4 . (1.46)

Here V3 denotes the volume of the ~x-directions. The temperature function is

obtained by computing the surface gravity at the apparent horizon and the

entropy function is obtained as the area of the apparent horizon. Clearly, T (v)

and S(v) have well-defined thermodynamic meaning in the limit v → +∞.

Now, taking derivative of these functions with respect to v, we get

dT (v)

dv
∼ dS(v)

dv
∼ dm

dv
≥ 0 , (1.47)

where we have used the constraint coming from the null energy condition in

(1.39). From the perspective of the boundary theory, if it makes sense to talk
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about a “temperature function” or an “entropy function” as defined above,

the null energy condition implies that these must be monotonically increasing.

Thus, we can say that all the above observations are physically equivalent.

1.2.4 Computational tools

1.2.4.1 Two-point functions: the WKB approximation

According to the GKPW prescription (1.11), in order to compute cor-

relation functions we need to solve the classical equation of motion for a bulk

field φ(t, ~x, z) that couples in the boundary to a given gauge invariant operator

O(t, ~x), subject to the appropriate boundary conditions [56, 57]. In practice,

however, the equations of motion for general time-dependent backgrounds are

highly non-linear and only exceptional cases with high amount of symmetry

are actually analytically solvable. Here we will provide an alternative recipe

which is valid for operators of large conformal dimension ∆.

Recall that for massive scalar fields, in order to have an acceptable near-

boundary behavior of (1.11) we must require that ∆ = 2 +
√
m2 + 4, so large

conformal dimension means large mass. In particular, in this limit ∆ ∼ m

which means that we can make use of the WKB approximation [58, 59]. The

Green’s function for φ is a Green’s function of the Klein-Gordon operator H =

−i∂2 +m2 = p2 +m2; we can represent this Green’s function as

G ≡ −i
H

=

∫ ∞
0

e−iNHdN , (1.48)
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so that using the standard path integral construction, we get

〈x|G|x′〉 =

∫ ∞
0

dN

∫
DxDp exp

{
i

∫ 1

0

[
ẋp−N(p2 +m2)

]
dλ

}
. (1.49)

We can interpret N as a field in some appropriate gauge-fixing. This can be

made explicit by introducing a gauge-fixing condition and determinant:

〈x|G|x′〉 =

∫
DN DxDp∆(x) exp

{
i

∫ 1

0

[
ẋp−N(p2 +m2)

]
dλ

}
, (1.50)

where now N is a field to be integrated over. Now, in the WKB approximation,

we can integrate out the fields N and p by replacing them in the action with

their on-shell values. Their equations of motion are:

p2 +m2 = 0 and ẋ− 2Np = 0 , (1.51)

respectively, so their on-shell values are:

p =
mẋ√
−ẋ2

and N =

√
−ẋ2

2m
. (1.52)

The correlator then becomes

〈x|G|x′〉 =

∫
Dx (· · · ) exp

{
−
∫ 1

0

(
m
√
ẋ2
)
dλ

}
, (1.53)

where the dots represent functional determinants that can be neglected at

leading order in the WKB approximation. Approximating the path integral

over x using the saddle point method, we get

〈x|G|x′〉 = exp {−m S[x0]} , (1.54)
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where x0 is a solution to the equations of motion that come from the action

S[x] =

∫
dλ
√
ẋ2 . (1.55)

This last expression is precisely the action for a geodesic. Since we are inter-

ested in a boundary-boundary propagator, the two points x and x′ are located

at the z = 0 hypersurface, and thus the geodesic length is divergent. In or-

der to renormalize one assumes that the two points are located at some finite

z = ε, and then one subtracts the divergent piece S − Sdiv, i.e. the terms

containing positive powers of ε−1 and logarithms.

Putting all together, we get that

〈x|G|x′〉 ≡ 〈O(x)O(x′)〉 = e−∆Sren , (1.56)

where O(x) is a gauge invariant operator with conformal dimension ∆ and Sren

is the renormalized geodesic length connecting the points x and x′.

1.2.4.2 Wilson loops

Wilson loops are another relevant set of non-local observables that we

will study in some detail. The Wilson loop operator is defined as

W (C) =
1

N
tr
(
P e

∮
C
A
)
, (1.57)

where C is a closed loop in spacetime. It involves the path-ordered integral of

the gauge connection along the given contour. The trace is taken over some

representation of the gauge group but for our purposes we will only need the
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case of the fundamental representation. In this case, we can view the Wilson

loop as the phase factor associated to the propagation of a very massive quark

in the fundamental representation of the gauge group.

We would like to compute Wilson loops holographically, but in order

to do so we first have to add matter in the fundamental representation to

the SYM theory. This can be easily achieved by adding a stack of Nf “flavor

branes” on top of the original stack of N D3-branes [60]. More specifically, we

will consider the following system of D3’s and D7’s:

0 1 2 3 4 5 6 7 8 9
D3: × × × ×
D7: × × × × × × × ×

where the numbers denote the spacetime directions and the “×” tell us the

directions in which the D-branes lie. Let us assume that the distance of closest

approach between the D7’s and the D3’s is rm. It can be shown that eight

supersymmetries are preserved by such a configuration provided we leave all

the branes at zero temperature. Indeed, the dynamics of low-energy excitations

is completely determined by the supersymmetry. The difference in this case is

that, apart from the D3-D3 string excitations, we also have to take into account

the D7-D7 and D3-D7 sectors. The D3-D7 strings, in particular, are described

in terms of massive scalars and fermions, fundamentally charged under the

SU(N) gauge group of the D3-branes. Their mass is just m = rm/2πl
2
s , simply

because this is the tension of a string with length rm.

In order to simplify the description of the system we can work in the

Nf � N limit, so that the backreaction of the D7-branes on the bulk geometry
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can be neglected. In this case we can simply replace the D3-branes by the AdS

background and then put the stack of D7-branes on top of this geometry. The

D7-branes cover the four gauge theory directions xµ and extend along the radial

AdS direction up from the boundary at z = 0 to a position z = zm where they

“end” (meaning that the S3 ⊂ S5 that they are wrapped on shrinks down to

zero size). In particular, in the limit m→∞ we obtain zm → 0, so the branes

remain arbitrarily close to the boundary.

From the gauge theory perspective, the introduction of the D7-branes

in the AdS background is equivalent to the addition of Nf hypermultiplets in

the fundamental representation of the SU(N) gauge group and these are the

degrees of freedom that we refer to as quarks even though they include both

spin 1/2 and spin 0 fields. In particular, a single heavy quark corresponds to an

open string that hangs from the boundary of AdS at z = zm → 0. According

to the AdS/CFT dictionary, the expectation value of the Wilson loop operator

(1.57) can be identified with the open string partition function [61],

〈W (C)〉 =

∫
DΣ e−SNG(Σ) , (1.58)

where the integral runs over all worldsheets Σ with boundary condition ∂Σ =

C. Here, SNG is the usual Nambu-Goto action,

SNG ≡
∫
dτdσLNG =

1

2πl2s

∫
dτdσ

√
− dethab , (1.59)

and hab = ∂ax
µ(τ, σ)∂bx

ν(τ, σ)gµν the induced metric on the worldsheet. Note

that the determinant picks up a factor of L4 from the bulk metric. Therefore,
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in the limit of large ’t Hooft coupling,

L2

l2s
=
√
λ � 1 , (1.60)

we can make use of the saddle point approximation and (1.58) reduces to

〈W (C)〉 = e−SNG(Σ0) . (1.61)

Here Σ0 is the classical solution to the equations of motion that follow from

the Nambu-Goto action, subject to the boundary condition ∂Σ = C.

Finally, it is worth pointing out that equation (1.61) generally leads

to a divergent result when is evaluated on-shell. This is due to the fact that

the worldsheet Σ0 reaches the boundary of AdS, which has infinite volume.

We can easily remove the divergences by means of the minimal subtraction

scheme (explained in the previous section). The renormalization method is

then equivalent to that of the two point functions in the WKB approximation.

1.2.4.3 Entanglement entropy

Entanglement entropy is our final example of a non-local observable

that can be used to probe the evolution of a system. Here we will briefly

review its definition and the prescription for computing it holographically.

When we consider an arbitrary quantum field theory with many degrees

of freedom, we can ask about the entanglement of the system. To describe the

system, we define a density matrix, ρ, which is a self-adjoint, positive semi-

definite, trace class operator. Now, on a constant time Cauchy surface we can
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imagine dividing the system into two subsystems A and Ac, where Ac is the

complement ofA. The total Hilbert space then factorizes as Htotal = HA⊗HAc .

For an observer who has access only to the subsystem A, the relevant quantity

is the reduced density matrix, which is defined as

ρA = trAc ρ . (1.62)

The entanglement between A and Ac is measured by the entanglement entropy,

which is defined as the von Neuman entropy using this reduced density matrix

SA = −trA ρA log ρA . (1.63)

In AdS/CFT, Ryu and Takayanagi [62] conjectured a formula to com-

pute the entanglement entropy of quantum systems with a static gravity dual.

According to [62], the entanglement entropy of a region A of the quantum field

theory is given by

SA =
1

4GN

min [Area (γA)] , (1.64)

where GN is the bulk Newton’s constant, and γA is the codimension-two area

surface such that ∂γA = ∂A. For background with time dependence, this pro-

posal has been successfully generalized by Hubeny, Rangamani and Takayanagi

in [63]. In this case

SA =
1

4G
(d+1)
N

ext [Area (γA)] , (1.65)

where now minimal area surface is replaced by extremal surface. Notice the

similitude between (1.65), the prescription for computing Wilson loops (1.61)

and the prescription for computing two-point functions (1.56). In particular,
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notice that all of them involve the computation of geometric quantities in the

bulk geometry. In the case of N = 4 SYM, the (non-compact part of the) bulk

is 5-dimensional so entanglement entropy is computed extremizing a volume.

More generally, in other examples of the AdSd+1/CFTd correspondence in

different number of dimensions, entanglement entropy is computed from a

(d− 1)-hypersurface.

Finally, it is well known that entanglement entropy of a spatial region

in a quantum field theory is UV-divergent

SA = Sdiv + Sfinite . (1.66)

Only local physics contributes to the UV-divergent piece Sdiv. On the other

hand Sfinite contains information about the long range entanglement, and is

the main quantity we are interested in. In the gravity side, the divergent

terms arise from the near-boundary contribution to the area of γA. In order

to extract the finite piece we can use the minimal subtraction scheme. The

renormalization proceeds in a similar way as for Wilson loops or two-point

functions, discussed in the previous two sections.

1.3 Outline of the thesis

As mention earlier in Section 1.1, the main goal of this thesis is to

develop new computational tools in the framework of the AdS/CFT corre-

spondence in order to gain insight into the subject of out-of-equilibrium quan-

tum field theory. We study a variety of settings, some of them leading to
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thermalization, cooling down or coherent oscillations of the quantum fields.

Dynamical processes as the ones we study are extremely interesting to explore

and learn about, since we do not have a good understanding of the physics

governing systems completely out-of-equilibrium, specially at strong coupling.

Some of them might even have practical applications, ranging from the physics

of heavy-ion collisions to condensed matter physics experiments.

This thesis is organized as follows. In Chapter 2 we study in more dept

the physics of gravitational collapse as a model of holographic thermalization.

Specifically, we study the effect of a non-vanishing chemical potential on the

thermalization time of a strongly coupled gauge theory in (2 + 1)-dimensions,

using a specific bottom-up gravity model in asymptotically AdS space [22]. As

mentioned in Section 1.2.3, such a process might be phenomenologically de-

scribed by means of a Vaidya-like geometry; the only difference is that we have

to include the effects of the non-vanishing chemical potential, but this can be

easily achieved by adding a charge to the collapsing shell. These geometries

have been studied in the past by a number of authors, see e.g. [64, 65]. The

idea here is to go a step forward and study a real collapse of a bulk scalar

field. In Section 2.2 we start with a brief motivation of the problem, from the

field theory perspective. In Section 2.3 we construct a perturbative solution to

the gravity-equations, which dynamically interpolates between two AdS black

hole backgrounds with different temperatures and chemical potentials, in a

perturbative expansion of a bulk scalar field. In the dual field theory, this

corresponds to a quench dynamics by a marginal operator, where the corre-
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sponding coupling serves as the small parameter in which the perturbation is

carried out. We find that, at the leading order in the perturbation, the solu-

tion takes the form of a Vaidya background, thus, validating the Vaidya-based

phenomenology [64, 65] from a first principle gravity computation. In Section

2.4 we discuss the thermodynamics of the initial and final states of the field

theory. Finally, in section 2.4 we study the evolution of non-local observables.

We focus only on entanglement entropy since, as shown in [64, 65], this is the

observable that reaches equilibrium at a slower rate, thus setting the relevant

time-scale for thermalization. Our results also supports the main observation

in [64, 65], namely that for short distances the thermalization time decreases

with increasing chemical potential.

In Chapter 3 we study a specific model that leads to hydrodynamic

expansion and cooling, in the spirit of the fluid/gravity duality [20]. The

motivation here is to model the last stage of the evolution of the quark-gluon

plasma, which has been produced experimentally at RHIC and LHC. We recall

that, in the framework of gravitational collapse, states that evolve towards the

vacuum of the theory are prohibited because they violate the null energy con-

dition. This implies that the physical mechanisms studied here are completely

different to the ones leading to thermalization, which makes the analysis more

interesting. We start in Section 3.2 with a brief review of hydrodynamics in

the AdS/CFT correspondence. We discuss both, the linear response theory

and the full non-linear theory, and we show how to construct the dual to an

expanding, boost-invariant plasma. At this level we already see various in-
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dications that suggest a universal behavior of the relaxation rates in gauge

theory plasmas with a gravity dual formulation. In Section 3.3 we turn to the

computation of the late-time evolution of various non-local observables. Two-

point functions are found to decay exponentially at late times. Moreover, if

the points are separated along the collision axis we find that the exponential is

modulated by a non-monotonic function of the rapidities and a dimensionless

combination of the shear viscosity and proper time. This peculiar behavior

constrains the regime of validity of the hydrodynamic approximation. Similar

results are also found for certain Wilson loops and entanglement entropies but

in all these cases the bound on the hydrodynamic expansion is weaker than in

the case of the two-point functions.

Finally, in Chapter 4 we construct and study a family of perturba-

tive solutions in global AdS that are periodic in time [66]. According to the

AdS/CFT dictionary, these bulk solutions are dual to states of a strongly in-

teracting boundary CFT that fail to thermalize at late times and hence are

candidates to describe “quantum revivals”, studied in the condensed matter

literature. From the gravity perspective, the backgrounds we find are inter-

esting because they add to the discussion of the nonlinear stability of AdS, a

subject that has been debated in recent years. In Section 4.2 we begin with

a brief motivation of the problem and we argue that such undamped peri-

odic states must exist, both from the field theory and the gravity perspective.

In Section 4.3 we introduce the perturbative formalism and we show how to

solve the equations of motion order by order in the perturbation. The general
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conclusion here is that we can reabsorb the resonances that would potentially

lead to black hole collapse into frequency shifts of the various Fourier modes.

In Section 4.4 we study the evolution of entanglement entropy for different

regions of the dual CFT. We show that these quantities can be thought of

as an infinite set of conserved charges in the state of the theory. Hence, the

system is integrable.
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Chapter 2

Black hole formation: holographic

thermalization

2.1 Introduction

In this Chapter we will study in detail the physics of gravitational

collapse as a model of holographic thermalization, using a specific bottom-up

gravity model in asymptotically AdS space [22].

A generic thermalization process typically describes the dynamical evo-

lution from a “low temperature” phase to a “high temperature” thermal state,

where the evolution is highly non-trivial and, in the case of a black hole for-

mation process, highly non-linear as well. Holographically, such a process in

asymptotically AdS space can be set up by turning on a non-normalizable (or

a normalizable) mode of a bulk scalar field; as a result a shell of the corre-

sponding field collapses in AdS space. It was shown in [67], using a weak-field

perturbation method, that if the boundary non-normalizable mode is chosen

to be coordinate independent and only have support over a brief time interval,

the collapse of the corresponding homogeneous wave will always lead to black

hole formation.

On the other hand, an alternate approach is to phenomenologically
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model the black hole formation process with as much simplicity as possible,

such that the corresponding geometry can be probed to learn further physics.

The hope is to learn at least qualitatively useful lessons which are presumably

not heavily dependent on the details of the model. In the present context this

can be achieved by exploring the AdS-Vaidya background, which describes

a smooth evolving geometry from an empty AdS to an AdS-Schwarzschild

background. Gravitationally, this geometry describes the collapse of a null

dust in an asymptotically AdS-space. Probing this geometry has already led

to numerous interesting results, see e.g. [68, 69, 70, 71, 64, 65], where the

behavior of various non-local observables in such a dynamical geometry has

been explored.

In [67], an interesting bridge between these two approaches has been

established. The authors studied a collapse process for a massless scalar field

in a so called “weak field approximation” limit, where the amplitude of the

perturbation was chosen small and a perturbative solution of the Einstein’s

equations was obtained. At the leading order, this solution takes the form

of an AdS-Vaidya background which is characterized by one mass function

that interpolates between an AdS vacuum to an AdS-Schwarzschild geometry.

In the dual field theory side, this corresponds to a dynamical evolution from

zero temperature ground state to a thermal state of a certain large N gauge

theory (such as the N = 4 super Yang-Mills or the ABJM theory). Thus, at

least at the leading order, the analysis of [67] validates the AdS-Vaidya-based

phenomenology from a first principle gravity computation.
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Motivated by this observation, we will explore the possibility of intro-

ducing a conserved charge in the boundary theory — the simplest case of an

U(1)-charge — in an analogue of the “weak field approximation” limit starting

from an effective gravity action. Our motivation is to address how thermaliza-

tion time is affected in the presence of global conserved charges in a strongly

coupled system, with as much analytical control as possible. This may be

relevant for understanding the effect of a non-vanishing chemical potential (or

a finite-density) on the strong coupling dynamics of out-of-equilibrium QCD

at RHIC or at LHC. We will thus generalize the construction of [67] introduc-

ing a chemical potential, which — albeit in a suitable approximation — will

provide an analytical control on the background. This also provides us with a

model in which non-local observables can subsequently be studied to explore

the behaviour of thermalization time, in the spirit of [64, 65].

Our results may be of general interest, beyond the QGP physics. For

example, a qualitative behaviour, if it is universal, may shed light in condensed

matter systems which are typically accompanied by a non-vanishing chemical

potential. Moreover, to the best of our knowledge, there is no known field

theoretic result about how thermalization time scales in a strongly coupled

finite density system. Thus it is useful to explore models where this possibility

can be realized.

This chapter is divided in the following parts: we begin with a brief

overview and the setup of the problem in section 2.2. In section 2.3 we present

the effective gravity model and provide the details of the perturbative solution.
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We then discuss the initial and the final states in details in section 2.4, and

subsequently discuss the behaviour of the thermalization time in section 2.5.

Finally we conclude in section 2.6.

2.2 Setup of the problem

Let us begin with a more specific description of the problem. We will

discuss a thermal quench, and for simplicity we will restrict ourselves to a

(2 + 1)-dimensional large N gauge theory in the strong coupling regime. Now,

consider the Hamiltonian (or the Lagrangian) of the system, denoted by H0

(or L0), which is perturbed by a time-dependent perturbation of the form

Hλ = H0 + λ(t)δH∆ =⇒ L∆ = L0 + λ(t)O∆ , (2.1)

where H0 (or L0) describes the Hamiltonian (or the Lagrangian) of the orig-

inal quantum field theory, λ(t) is an external parameter and δH∆ (or O∆)

corresponds to the deformation of the QFT by an operator of dimension ∆.

Here we will restrict ourselves completely on asymptotically locally

AdS-spaces, which implies that there is an underlying conformal field the-

ory (CFT) that governs the physics. As a first attempt, we restrict ourselves

to the case of ∆ = d, which here becomes ∆ = 3, i.e. an exactly marginal

deformation. In principle, it is possible to study the quench dynamics by a

relevant operator as well. However, we know that relevant operators can trig-

ger an RG-flow and there may be a new CFT — or perhaps a non-relativistic

cousin of it — that emerges in the infrared. In such a situation, unless we
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consider a temperature scale much larger than the scale set by the relevant

operator, the black hole formation process may be governed by this infrared

geometry instead.1

To avoid this possible subtlety for relevant operators, we will consider

an exactly marginal operator, which does not require a hierarchy between the

RG-scale and the temperature-scale. Thus the underlying CFT will remain

the same and in the gravitational dual it will suffice for us to specify the

asymptotically locally AdS condition with a given radius of curvature as the

boundary condition.

Now we need to specify the initial conditions. Typically this is speci-

fied at t → −∞ (in which limit λ → 0) as a particular energy eigenstate of

the QFT Hamiltonian H0. As the new coupling is turned on, depending on

whether the process is adiabatic or abrupt, the system is expected to evolve

differently with the Hamiltonian Hλ. In a quantum mechanical system, under

an adiabatic process the system remains in an energy eigenstate whose energy

evolves with time following the response of the time-evolution of λ(t). On

the other hand, for an abrupt quench, the system evolves in a linear super-

position of eigenstates of the new Hamiltonian Hλ. Here we will focus on the

fast quench only, in which the initial state is macroscopically characterized by

{E, 〈Oφ〉, µ, T}initial — with E, 〈Oφ〉, µ and T respectively representing the

energy, VEV for the marginal operator, chemical potential and the temper-

1Note that, quench dynamics of relevant operators have been considered in details in
e.g. [75, 76, 77].
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ature of the state in consideration — and the final state is macroscopically

characterized by {E, 〈Oφ〉, µ, T}final.

To properly account for the scale of measuring dimensionful quantities,

we define the following dimensionless parameters:

κE =
E

T 3
, κ〈Oφ〉 =

〈Oφ〉
T 3

, κµ =
µ

T
, (2.2)

which means that we measure all dimensionful quantities in units of temper-

ature of the corresponding state. Evidently, there can be several hierarchy of

scales depending on how κE, κ〈Oφ〉 and κµ are parametrically separated. Fur-

thermore, there are a couple of dimensionful parameters associated with the

quench process itself: the energy injected (denoted by ∆E), and the duration

(denoted by δt) or the rapidity of the quench. Thus we can further define

κquench = (∆E) (δt)3 with ∆E = Efinal − Einitial . (2.3)

Now, our initial state is characterized by the following parametric

regime

κinitial
E ∼ O(1) , κinitial

〈Oφ〉 = 0 , κinitial
µ � 1 . (2.4)

The quench process, to be amenable to a perturbative analysis, is characterized

by

κquench � 1 with O (κquench) = O
(
κinitial
µ

)
. (2.5)

Finally, the final state is characterized by

κfinal
E ∼ O(1) , κfinal

〈Oφ〉 ∼ κinitial
µ � 1 , κfinal

µ ∼ κinitial
µ � 1 . (2.6)
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We remind the reader that the conditions in (2.4)-(2.6) are specific to our

perturbative analysis. We further note that, the perturbative solution that

we construct is not similar to the AdS-RN-Vaidya geometry described and

analyzed in [65] and thus provides a more generic case-study. It is amusing to

further note that the regime of parameters outlined in (2.6) physically implies

that we are considering a small chemical potential limit, which is qualitatively

similar to the QGP-phase at the LHC.

The geometric data describing the corresponding evolution is given by

a metric, a gauge field, and a scalar field: {G,A, φ} of the following form

ds2 = Gµν (UEF) dXµdXν ,

= − 2

z2
dvdz − g(z, v)dv2 + f(z, v)2

2∑
i=1

dx2
i , (2.7)

A = Av(z, v)dv , φ = φ(z, v) , (2.8)

where UEF denotes the ingoing Eddington-Finkelstein (EF) patch, g(z, v) and

f(z, v) are two functions that are determined by solving the equations, z is

the radial coordinate (in which the boundary is located at z → 0) and v is

the EF-ingoing null direction. We obtain a dynamical evolution that can be

summarized as:

{G,A, φ}|v→−∞ = AdS− RNinitial (µi, Ti, φ = 0) , (2.9)

{G,A, φ}|v�δt = AdS− BHfinal (µf , Tf , φ 6= 0) . (2.10)

Let us now comment on the evolution of the event-horizon and the apparent

horizon. We begin with the notion of the apparent horizon. Following [65], let
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us define the tangent vectors to the ingoing and outgoing null geodesics

`− = −∂z , `+ = −z2∂v +
g(z, v)

2
z4∂z , (2.11)

which satisfy

`− · `− = 0 , `+ · `+ = 0 , `− · `+ = −1 . (2.12)

The co-dimension two spacelike surface, which is orthogonal to the tangent

vectors above, has the following volume element

Σ = f (z, v)2 . (2.13)

The expansion of this volume element along the ingoing and outgoing null

directions are given by

θ± = L± log Σ = `µ±∂µ (log Σ) . (2.14)

Here L± denotes the Lie derivatives along the null direction corresponding to

`µ±. Now, we can define the invariant expansion by Θ = θ+θ− which is given

by

Θ =
(∂zf(z, v))

f(z, v)

[
2z2 (∂vf(z, v))

f(z, v)
− z4 (∂zf(z, v))

f(z, v)
g(z, v)

]
, with

Θ (z = zaH) = 0 . (2.15)

Here zaH denotes the location of the apparent horizon.

On the other hand, the event horizon is a null surface in the background

(2.7):

N = z − zH(v) obeying Gµν (∂µN) (∂νN) = 0 , (2.16)
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which gives

∂vzH(v) = −1

2
z2

Hg (zH, v) . (2.17)

Thus, solving (2.15) and (2.17) gives the time-evolution of the apparent and

the event horizon, respectively. Evidently, at the initial and the final states

they coincide: zH = zaH. During the evolution, since the collapse is sourced

by a physically reasonable matter field, the apparent horizon lies behind the

event horizon, i.e. zaH > zH in our choice of the radial coordinate. One way to

summarize our perturbative solution is to state that the evolution of e.g. the

event-horizon can be obtained in a series expansion as follows:

Given that g(z, v) =
∑
n=0

ε2ng(2n)

(
zH,

v

δt

)
,

construct zH = z
(0)
H

[
1 +

∑
n=1

ε2nΥ(2n)

( v
δt

)]
, (2.18)

where Υ2n can be determined from a first order differential equation of the

form

∂vΥ(2n) = Ξ
[{

Υ(2n)

}
,
{
∂nzHg(2m)

}]
, (2.19)

where Ξ is a functional of{
Υ(2n)

}
=
{

Υ(2p) | 1 ≤ p ≤ n
}
,
{
∂nzHg(2m)

}
=
{
∂pzHg(2q) | 0 ≤ (p, q) ≤ n

}
,(2.20)

and, finally, ε ∼ κ
1/2
quench � 1. In section 2.5, we will present a pictorial

representation of how the apparent and the event-horizons evole.

It is clear from (2.18) that the asymptotic series captures the physics

as long as ||ε2nΥ(2n)|| � 1. It will be shown In section 2.3.3, that this
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imposes a constraint and our perturbative analysis is valid up to a time-scale

tpert ∼ 1/ (∆E)1/3. For t� tpert, we will need to solve the system of equations

numerically, which we will not pursue here. Written in terms of the duration

of the pulse, the perturbative treatment is valid up to a time-scale tpert which

is given by

tpert = O

(
δt

ε2/3

)
. (2.21)

Thus, by tuning ε � 1, we parametrically separate tpert and δt at will, and

in this sense our approach is equivalent to considering an “fast quench”. In

the strict fast quench limit, i.e. tpert/(δt) → ∞, the t > tpert dynamics is

completely frozen and we are left with the perturbative solution for all times.

To measure thermalization time, we need to identify suitable observ-

ables, which primarily fall in two classes: local and non-local. Note that, unlike

the Vaidya-construction, for gauge-invariant local observables thermalization

is not instantaneous in this case. This is buried in the details of the solution

in (2.7), since as time varies, the scalar field dynamically acquires a non-zero

expectation value. However, such local operators thermalize over a time-scale

of O(δt), and does not contain the information about long-range correlations.

On the other hand, non-local operators provide a more global information and

we will explore the evolution of entanglement entropy in this chapter.

Now, let us comment on a nàıve expectation about the scaling of the

thermalization time. It is known that for integrable systems, which contains an

infinite number of conserved charges, thermalization does not happen. This is
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intuitively clear, since it becomes unlikely to populate the entire phase space.

Furthermore, for a single U(1)-charge, if we consider a bosonic system, increas-

ing the chemical potential will enhance Bose-Einstein condensation and thus

will inhibit thermalization. For fermionic degrees of freedom, a higher value of

chemical potential is associated with a higher Fermi surface which will subse-

quently need to be populated to achieve a thermal state. Thus, introducing a

conserved charge is likely to have a slowing down of the thermalization time.

However, contrary to the expectation outlined in the above paragraph,

we gather evidence that thermalization speeds up for increasing chemical po-

tential in the regime µ/T � 1. Thus, modulo the caveats of an effective

gravity description and the approximate measures of the thermalization time,

we are lead to think that the strong coupling dynamics perhaps gives rise to

qualitatively new physics. Furthermore, since the thermalization time is un-

likely to vanish for arbitrarily high chemical potential, we expect it to either

saturate or turn back. In both cases, the scaling of the thermalization time

seems to group the dynamics in two qualitatively different regimes: µ/T � 1

and µ/T � 1, much like what was observed in [65]. Now we will turn to

discussing the details of our model.

2.3 Einstein-Maxwell-Dilaton system

We begin with the following action

S =
1

8πG
(4)
N

∫
d4x
√
−G

[
1

2

(
R + 6− 1

2
(∂φ)2

)
− h(φ)

4
FµνF

µν

]
, (2.1)

46



which leads to the following equations of motion

Rµν −
1

2
Gµν (R + 6) = Tµν , (2.2)

∇2φ− 1

2
FµνF

µν ∂h(φ)

∂φ
= 0 , (2.3)

∇ν (h(φ)F µν) = 0 , (2.4)

where

Tµν = T (scalar)
µν + T (Maxwell)

µν , (2.5)

T (scalar)
µν =

1

2
(∂µφ∂νφ)− 1

4
Gµν(∂φ)2 , (2.6)

T (Maxwell)
µν = h(φ)FµσF

σ
ν −

1

4
Gµνh(φ)FρσF

ρσ . (2.7)

Let us now specify our ansatz which consists of the metric field, the Maxwell

field and the scalar field: {G,A, φ}. We will assume translational invariance

and we choose the ingoing Eddington-Finkelstein patch to represent our ansatz

data:

ds2 = − 2

z2
dvdz − g(z, v)dv2 + f(z, v)2dx2

i , (2.8)

φ = φ(z, v) , (2.9)

A = Av(z, v)dv . (2.10)

We need two more sets of data: the boundary conditions and the initial con-

ditions. The boundary conditions simply impose that the geometry is asymp-
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totically locally AdS, which is represented by

g(z, v) =
1

z2

(
1 + O

(
z2
))

as z → 0 , (2.11)

f(z, v) =
1

z
(1 + O (z)) as z → 0 , (2.12)

φ(z, v) = φ(v) + O(z) as z → 0 , and (2.13)

Av(z, v) = const + O(z) as z → 0 . (2.14)

This choice fixes the gauge completely.2

Let us specify the initial condition now. Our initial state in the dual

field theory corresponds to a thermal state with a non-vanishing chemical

potential. This is represented by

lim
v→−∞

g(z, v) =
1

z2

(
1−Mz3 +

Q2

2
z4

)
, (2.15)

lim
v→−∞

f(z, v) =
1

z
, (2.16)

lim
v→−∞

φ(z, v) = 0 , (2.17)

lim
v→−∞

Av(z, v) = µi +Qz . (2.18)

Our goal now is to find a solution of the system of equations in (2.2)-(2.4)

subject to the initial conditions in (2.11)-(2.13) and with the asymptotically

locally AdS boundary condition in (2.15)-(2.18). We want to introduce dy-

namics in the system by exciting a time-dependent non-normalizable mode for

2Demanding that f(z, v) ∼ 1
z + O(1) fixes the gauge redundancy which remains after

choosing Eddington-Finkelstein gauge gzz = 0, gvx = 0, gzv = 1. See e.g. [67].
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the scalar field near the boundary, which can be represented by

φb(v) =


0 v < 0

ε φ1(v) 0 < v < δt

0 v > δt ,

(2.19)

where φ1(v) is now a function3 of O(1) and the dimensionless parameter ε� 1

will eventually serve as the expansion parameter. To connect with the discus-

sion in section 2.2, we note that: ε = κ
1/2
quench. Note that, the energy-momentum

tensor in (2.6), (2.7) evaluated on (2.19) is not of a null-dust-type, as consid-

ered in i.e. [65], and thus we will not encounter potential subtleties associated

with violating null energy condition[11].

Before proceeding further, let us comment on the particular coordinate

patch. To incorporate the dynamics, we have chosen the Eddington-Finkelstein

coordinates, collectively denoted by UEF, which is well-defined everywhere. On

the other hand, in order to read off the stress-energy tensor of the dual field

theory, it is very useful to express all data in terms of the Fefferman-Graham

patch, which we denote by UFG. We can define a map ϕ : UEF → UFG, such

that

ds2
EF = − 2

z2
dzdv − g(z, v)dv2 + f(z, v)2dx2

i

=
dr2

r2
+
γab(x, r)

r2
dxadxb = ds2

FG , a, b = 0, . . . 2 (2.20)

3Note that the symmetry and boundary behavior requirements allow the scalar φ to be
an arbitrary function of time at the boundary.
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with ϕ ≡ {z(t, r), v(t, r)} satisfying

v̇z′ + v′ż + z2v̇v′ = 0 , (2.21)

2

z2
v′z′ + g(z, v)v′2 = − 1

r2
, (2.22)

−r2

(
2

z2
v̇ż + g(z, v)v̇2

)
= γ00 , (2.23)

where ′ ≡ ∂r and ˙≡ ∂t. Near the boundary we have

γab(x, r) = γab(x) + r3γ
(3)
ab (x) + . . . . (2.24)

After appropriate holographic renormalization, and using the GKPW recipe,

the stress-energy tensor of the dual field theory is obtained to be [46, 47]

〈Tab〉 =
3

16πG
(4)
N

γ
(3)
ab . (2.25)

Evidently, once we obtain a solution in the UEF-patch, we can use the map

ϕ : UEF → UFG by solving equations in (2.21)-(2.23) and finally using (2.24),

(2.25) we can read off the field theory stress-tensor of the corresponding state.

In practice though, for the initial and the final states, the boundary energy-

momentum tensor can be obtained by analyzing the thermodynamics of the

corresponding state.

2.3.1 Asymptotic, z → 0, expansion

Let us first investigate the near boundary behavior of the solution to

(2.2)-(2.4) to ensure the asymptotically locally AdS criterion. As z → 0, we
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introduce the formal expansion

f(z, v) =
1

z
+
∑
n=0

znfn(v) ,

g(z, v) =
1

z2
+
∑
n=0

zngn(v) ,

φ(z, v) = φb(v) +
∑
n=1

znpn(v) , (2.26)

Av(z, v) =
∑
n=0

znan(v) ,

where φb(v), as introduced in (2.19) before, denotes the source which we are

turning on at the boundary and the set of functions {fn, gn, pn, an} can be

systematically determined from the equations of motion at each order in z-

expansion.

For illustrative purpose, we provide below explicit formulae up to O(z5)-

term

g(z, v) =
1

z2

[
1− 3φ′b(v)2z2

4
+M(v)z3 +

c2z4

2h(φb)

+
L(v)φ′b(v)z4

2
− φ′b(v)4z4

24
+ O(z5)

]
, (2.27)

f(z, v) =
1

z

[
1− φ′b(v)2z2

8
− L(v)φ′b(v)z4

8
− φ′b(v)4z4

384
+ O(z5)

]
,(2.28)

φ(z, v) = φb(v) + φ′b(v)z + L(v)z3 − c2 ḣ(φb)

4h(φb)2
z4 + φ′b(v)L′(v)z4

+
φ′b(v)

4
(M(v) + φ′b(v)φ′′b(v)) z4 + O(z5) , (2.29)

Av(z, v) = µ(v) +
cz

h(φb)
− c ḣ(φb)φ′b(v)2

2h(φb)2
+
c φ′b(v)2z3

12h(φb)

+
c φ′b(v)2

6h(φb)3

(
2ḣ(φb)2 − h(φb)ḧ(φb)

)
z3 + O(z4) , (2.30)
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where c is a free parameter, ′ ≡ ∂v and ˙≡ ∂φ. Furthermore, L(v) and M(v)

are undetermined functions which satisfy

M ′(v) = −1

8
φ′b(v)

(
3φ′3b (v)− 4φ

′′′

b (v)− 12L(v)
)
. (2.31)

The two time-dependent functions M(v) and L(v), which are not determined

by the asymptotic expansion above, physically correspond to the mass of the

black hole and the VEV of the marginal operator, respectively. Note that, the

solutions in (2.27)-(2.30) represent an asymptotic solution of the full geometry.

So far, we have imposed the asymptotically locally AdS condition in

details. In order to carry out a perturbative treatment, we need to identify the

“correct” initial state around which it is meaningful to carry out a perturbation

order by order. We will answer this question a priori: it turns out that one

choice for which such a perturbative treatment works is to start from an AdS-

RN geometry with a “small” mass and a “small” charge. Thus, instead of

arbitrary M and Q in (2.15), we rewrite them as

{M,Q} = ε21 {m, q} , with {m, q} ∼ O(1) , (2.32)

where ε1 � 1 is another small parameter. We can identify ε1 = κ3
µ to connect

to the discussion in section 2.2. Clearly, ε and ε1 are hitherto independent

parameters.
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Thus, the initial state can be written as

g(z, v) =
1

z2

(
1−mε21z3 +

q2ε41
2
z4

)
(v < 0) , (2.33)

f(z, v) =
1

z
(v < 0) , (2.34)

Av(z, v) = µi + qε21z (v < 0) . (2.35)

Here µi can be fixed by demanding regularity of the gauge field at the event

horizon.

2.3.2 Expansion in amplitude of φb(v)

To solve the equations of motion, we now work with the following formal

expansion

f(z, v) =
∑
n=0

εnfn(z, v) , (2.36)

g(z, v) =
∑
n=0

εngn(z, v) , (2.37)

φ(z, v) =
∑
n=0

εnΦn(z, v) , (2.38)

Av(z, v) =
∑
n=0

εnAvn(z, v) , (2.39)

where the data {fn, gn,Φn, Avn} are to be systematically determined from the

equations of motion.

In order to perturbatively solve the equations of motion and motivated

by convenience, we will treat ε1 as a parameter of O(ε). Thus,

ε1 = k ε , with k ∼ O(1) . (2.40)
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Note that the above relation is akin to the condition O(κµ) = O(κquench). It

is clear that in this regime we regroup the dynamical contributions at various

unrelated orders involving ε and ε1. Physically this corresponds to linearly

combining processes which occur at e.g. O(ε2) and O(ε21), and hence there is

only one expansion parameter at the end.

We will be able to check two independent limits of setting ε → 0 and

ε1 → 0 using (2.40). Solving the dilaton equation of motion requires ḣ(0) = 0.

Similarly, from Einstein field equation we obtain h(0) = 1. To present the

explicit solution up to, e.g. O(ε4), we first define the following functions

C2(v) = −1

2

∫ v

−∞
φ′1(x)φ′′′1 (x)dx , (2.41)

C4(v) =
3

8

∫ v

−∞
φ′1(x)

(
−φ′1(x)3 +

∫ x

−∞
(B(y)−mk2φ′1(y))dy

)
dx , (2.42)

B(x) = φ′1(x) (C2(x) + φ′1(x)φ′′1(x)) , (2.43)

P (v) =
1

4

∫ v

−∞

(
−mk2φ′1(x) +B(x)

)
dx , (2.44)

a4(v) = −qk2

∫ v

−∞
φ1(x)φ′1(x)ḧ(0)dx . (2.45)

In order to properly account for the powers of ε, let us write the ε-dependence

of C4(v), P (v) and a4(v) explicitly. From (2.42), (2.44) and (2.45) we have,

C4(v) = c4(v) +mk2c4(v) , (2.46)

P (v) = p(v) +mk2p(v) , (2.47)

a4(v) = qk2a4(v) , (2.48)

where now neither c4, p nor c4, p, a4 depend on ε. With these definitions the
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solution can now be written as:4

g(z, v) =
1

z2
−mzε21 +

q2ε41
2
z2 −

(
zC2(v) +

3

4
φ′1(v)2

)
ε2

+

[
zc4(v) +

z2

24

(
12p(v)φ′1(v)− φ′1(v)4

)
+
z3

12

(
3p(v)φ′′1(v)− p′(v)φ′1(v)− C2(v)φ′1(v)2

)]
ε4

+m

[
zc4(v) +

z2

2
p(v)φ′1(v)

+
z3

12

(
3p(v)φ′′1(v)− p′(v)φ′1(v)− φ′1(v)2

)]
ε21ε

2 + O
(
ε6
)
, (2.49)

f(z, v) =
1

z
− 1

8
zφ′1(v)2ε2 +

z3

384

(
φ′1(v)4 − 48p(v)φ′1(v)

)
ε4

− z3

8
p(v)φ′1(v)ε21ε

2 + O
(
ε6
)
, (2.50)

Φ(z, v) = (φ1(v) + zφ′1(v))ε+ z3p(v)ε3 + z3mp(v)ε21ε
2 + O

(
ε5
)
, (2.51)

A(z, v) = µ(v) + qzε21 +
q

12

[
12za4(v)− 6z2φ1(v)φ′1(v)ḧ(0)

+ z3φ′1(v)2(1− 2ḧ(0))
]
ε21ε

2 + O
(
ε4
)
. (2.52)

We can now relate the boundary quantities {M(v), L(v), c} appearing in

(2.27), (2.29) to the amplitude expansion:

M(v) = −
(
mk2 + C2(v)

)
ε2 +

(
c4(v) +mk2c4(v)

)
ε4 + O(ε6) , (2.53)

L(v) =
(
p(v) +mk2p(v)

)
ε3 + O(ε5) , (2.54)

c

h(φb(v))
= qk2ε2 + qk2a4(v)ε4 + O(ε5) . (2.55)

Before going further, let us check a couple of trivial limits: (i) First,

note that setting ε = 0 keeping ε1 6= 0, we kill off the entire dynamics and get

4We are retaining the factors of ε and ε1 separately as a bookkeeping device.
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back the initial AdS-RN state in (2.33)-(2.35). In other words, this limit is

equivalent to taking v → −∞. (ii) Secondly, if we set ε1 = 0 keeping ε 6= 0,

our initial state reduces to empty AdS. It is straightforward to check that this

case reduces to the one with a vanishing chemical potential[67]. However, the

non-trivial dynamics remain. (iii) Third, if we set both ε1 = 0 = ε, then we are

left in the empty AdS-background with no dynamics. This is the most trivial

limit of the solution described above. As alluded in (2.40), we will consider

ε1 6= 0 and ε 6= 0, with the constraint that k = ε1/ε ∼ O(1).

At late times, i.e. v � δt, the final state is given by

g(z, v) =
1

z2
− z

[
ε2
(
mk2 + C̃2

)
− ε4 c̃4

]
+ z2 ε

4k4q2

2
+ O

(
ε6
)
, (2.56)

f(z, v) =
1

z
+ O

(
ε6
)
, (2.57)

Φ(z, v) = z3 p̃ ε3 + O
(
ε5
)
, (2.58)

A(z, v) = µf + q z k2ε2 . (2.59)

Here the tilde denotes the function evaluated at any v � δt. Since φ1 is of

compact support, this is equal to the value of the function at infinity, C̃2 =

C2(∞) = −1
2

∫∞
−∞ φ

′
1(x)φ′′′1 (x)dx, etc. Note that to fourth order, the mass of

the black hole has increased by an amount C̃2 ε
2 + c̃4 ε

4 as compared to the

initial state, similarly to [67]. Exploring the solution at higher order we find

that at sixth order g(z, v) has a dependence on ḧ(0) that survives at late time

and gives a subleading contribution to the mass of the final black hole. Note

also that the gauge field at late times differs from the original gauge field only

by a shift in the chemical potential. This is consistent with our expectations
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since the charge of the black hole remains the same. However, the position of

the horizon changes and thus — as we will see in section 2.4 — the chemical

potential also changes due to the boundary condition on the gauge field. We

will analyze the resulting thermodynamics in Section 2.4.

2.3.3 Analytic structure and regime of validity

Let us briefly investigate the analytic structure and regime of validity

of the perturbative solution for v > δt. We can systematically find the solution

to arbitrary order in ε. Then, following a similar approach as in [67], we can

inductively show that, among the functions that appear in (2.36)-(2.39),

g2n+1 = 0 , f2n+1 = 0 , φ2n = 0 , Av2n+1 = 0 , ∀n ∈ Z+ . (2.60)

Thus the non-trivial information about the dynamics is contained in the set

of functions: G ≡ {Gn} = {g2n, f2n, φ2n+1, Avn} and they take the following

general form

φ2n+1(z, v) =
2n−2∑
k=0

z2n+1−kφk2n+1(v) , n ≥ 2

f2n(z, v) =
1

z

2n−4∑
k=0

z2n−kfk2n(v) , n ≥ 3 (2.61)

g2n(z, v) = zC2n(v) +
1

z

2n−3∑
k=0

z2n−kgk2n(v) , n ≥ 3

Av2n(z, v) = µ2n(v) +
2n−2∑
k=0

z2n−1−kAkv2n
(v) . n ≥ 3

In general G is a function of v and a functional of φ1(v) and its derivatives:

G = G (v, φ1, φ
′
1 , . . .). Note that even powers of ε are absent in φ(z, v) and
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odd powers are absent in g(z, v), f(z, v) and Av(z, v). Likewise, the odd

derivatives of the coupling function, h(φ), evaluated at φ = 0 should vanish,

0 = ḣ(0) =
...
h (0) = h(5)(0)... = 0.5

For v > δt the functions G̃ = {g2n, f2n, φ2n+1} consists of polynomials

in v of a degree that grows with n 6. In particular φ2n+1 is at most of degree

(n+ k− 1), f2n is at most of degree (n+ k− 3) and gk2n of degree (n+ k− 4).

Thus we have

max
{

deg
[
G̃n

]}
= (n+ k − 1) . (2.62)

The fact that the functions G̃n are polynomials in v whose degree grows with

n implies that the series expansion will break down at late times. In order to

characterize the regime of validity lets focus on φ(z, v), which has the maxi-

mum degree in v:

φ(z, v) =
∑
n,k

ε2n+1φk2n+1 z
2n+1−k . (2.63)

It can further be checked that for late times

φk2n+1 ∼
vn+k−1

δt3n
. (2.64)

It would suffice for our purposes, if the perturbative solution is valid up to the

event-horizon of the geometry. Recall that the event-horizon is given by, up

5As stated previously, the equations of motion demand that h(0) = ḣ(0) = 0. The
requirement that the odd higher derivatives vanish (

...
h (0) = h(5)(0) = h(2j+1)... = 0) comes

from assuming a series of the form 2.61 for the dilaton and the gauge field.
6The late time behavior of Av is different; all terms of order ε4 or higher go to zero at

late times. Thus, at v > δt we recover the original gauge field and Av does not enter in the
analysis of the late time validity of the solution.
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to the leading order in ε,

zH ∼
1

ε2/3(k2m+ C̃2)1/3
. (2.65)

Also recall that k and m are O(1) numbers while C̃2 ∼ 1
δt3

. Thus we get:

zH ∼ δt
ε2/3

. Therefore, close to the horizon and for late times, the term with

labels n, k in (2.63) will scale approximately as (ε2/3 v
δt

)n−1+kε. This implies

that if ε2/3 v
δt
� 1 the small values of {n, k} dominate the series and larger

values are subleading. However if ε2/3 v
δt
� 1 it is the larger values of {n, k}

that dominate and the perturbation series breaks down. Thus, our series

solution is good only up to times v ∼ O
(
δt
ε2/3

)
which to leading order in ε

corresponds to 1/ (∆E)1/3 (see eq. (2.33)).

2.4 Thermodynamics of the states

We will now briefly discuss the initial and the final states which are

interpolated by the evolution described in (2.49)-(2.52). Both our initial and

the final states are characterized by a non-vanishing temperature and a chem-

ical potential, both of which have dimension length−1. It is also accompanied

by the VEV of the marginal operator, denoted by 〈Oφ〉 ∼ length−3, which is

being quenched via the dynamics. Thus the state is specified by the following

data:

QFT 3 {µ, T, 〈Oφ〉} ⇐⇒ {G,A, φ} ∈ Gravity . (2.1)

Furthermore, note that from the full solution in (2.52) it is clear that the

normalizable mode of the gauge field does not have any dynamics associated
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and thus

lim
z→0

∂vFzv = ∂v
(
qk2ε2

)
= 0 , (2.2)

which implies that the charge density in the dual field theory is kept fixed.

Thus, we are considering the dynamical evolution in a “canonical ensemble”.

We will now discuss the initial and the final states in more detail.

The regularized on-shell Euclidean action corresponds to the Gibbs

free energy, which characterizes the grand-canonical ensemble. If we denote

the Gibbs free energy by W , then the Helmholtz free energy, which we denote

by F , characterizes the canonical ensemble and is obtained by a Legendre

transformation of the Gibbs potential

F = W − µQ , (2.3)

where µ and Q are respectively the chemical potential and the charge density.

2.4.1 Initial state

Here we will reinstate ε1 where they originally appear. According to

(2.33)-(2.35), in the limit v → −∞, we get:

f(z) =
1

z
, (2.4)

g(z) =
1

z2

(
1− ε21mz3 +

ε41q
2z4

2

)
, (2.5)

Av(z) = µi + ε21qz , (2.6)

φ(z) = 0 . (2.7)
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With the scalar field turned off, the geometry reduces to the usual AdS-RN

black hole. For the above solution, the corresponding mass M and charge Q

are given by

M = ε21m and Q2 = ε41q
2 . (2.8)

Alternatively, the mass can also be given as

M =
1

z3
H

+
Q2

2
zH , (2.9)

where zH is the location of the event horizon, given by the smallest real positive

positive root of the algebraic equation g(z) = 0. For small ε1 we obtain,7

zH =
1

ε
2/3
1 m1/3

(
1 +

ε
4/3
1 q2

6m4/3
+ O(ε

8/3
1 )

)
. (2.10)

On the other hand, the one-form Av must be regular at the horizon such that

||A|| remains finite at the bifurcation point of the Kruskal-extended patch.

This imposes a constraint, relating the chemical potential to the charge and

the mass:

lim
z→zH

A = 0 =⇒ µi = −ε21qzH = −ε
4/3
1 q

m1/3

(
1 +

ε
4/3
1 q2

6m4/3
+ O(ε

8/3
1 )

)
.

(2.11)

The subscript i in all subsequent physical quantities will stand for the initial

state. To calculate the Hawking temperature of the initial state Ti, we first

perform a Wick rotation obtained as usual by the replacement t → iτ . Since

the Euclidean time direction shrinks to zero size at z = zH, we must require

7For concreteness, we will evaluate all physical quantities in two leading order terms in
ε1.
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that τ be periodically identified with appropriate period βi, i.e. τ ∼ τ +βi. A

simple calculation shows that

Ti = − 1

4π

d

dz
g(z)

∣∣∣∣
zH

=
3

4πzH

(
1− 1

6
Q2z4

H

)
=

3ε
2/3
1 m1/3

4π

(
1− ε

4/3
1 q2

3m4/3
+ O(ε

8/3
1 )

)
, (2.12)

or equivalently,

βi ≡
1

Ti
=

4π

3ε
2/3
1 m1/3

(
1 +

ε
4/3
1 q2

3m4/3
+ O(ε

8/3
1 )

)
. (2.13)

It is convenient to invert the relations µi(m, q) and βi(m, q) given in (2.11)-

(2.13) to obtain m(µi, βi) and q(µi, βi). However, we have to proceed with

some care given that µi ∼ O(ε
4/3
1 ) whereas βi ∼ O(ε

−2/3
1 ). First we define

rescaled quantities µ̃i = ε
−4/3
1 µi and β̃i = ε

2/3
1 βi such that they both are of

order O (ε01). Then, an expansion in ε1 is reliable and the inversions can be

found perturbatively. To our order of approximation we find,

m =
64π3

27β̃3
i

(
1 +

9ε
4/3
1 β̃2

i µ̃
2
i

16π2
+ O(ε

8/3
1 )

)
≈ 64π3

27ε21β
3
i

(
1 +

9β2
i µ

2
i

16π2

)
, (2.14)

and

q = −4πµ̃i

3β̃i

(
1 +

3ε
4/3
1 β̃2

i µ̃
2
i

32π2
+ O(ε

8/3
1 )

)
≈ − 4πµi

3ε21βi

(
1 +

3β2
i µ

2
i

32π2

)
. (2.15)

To study the thermodynamics of these solutions, we first evaluate the Eu-

clidean action I on-shell which defines the grand canonical (Gibbs) potential

W = I/βi (see for instance [92]). With our conventions, the full Euclidean

action is given by analytically continuing (2.1). Moreover, when the space is
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asymptotically AdS the Gibbons-Hawking boundary term gives a vanishing

contribution.

As usual, the action diverges upon integration, given that the volume

of any asymptotically AdS geometry goes to infinity near the boundary. These

divergences can be eliminated by subtracting the pure AdS contribution, ob-

taining

I = −Vol(R2)βi
κ2

[∫ zH

0

ε41q
2

2
dz −

∫ ∞
zH

3

z4
dz

]
, (2.16)

= −Vol(R2)βimε
2
1

κ2

(
1 +

ε
8/3
1 q4

4m8/3
+ O

(
ε41
))

. (2.17)

This may be rewritten entirely in terms of βi and µi as

I = −64π3Vol(R2)ε
4/3
1

27κ2β̃2
i

(
1 +

9ε
4/3
1 β̃2

i µ̃
2
i

16π2
+ O(ε

8/3
1 )

)
, (2.18)

≈ −64π3Vol(R2)

27κ2β2
i

(
1 +

9β2
i µ

2
i

16π2

)
. (2.19)

The grand canonical potential is given by W = Ei−TiSi−µiQi. Using

the expression given in (2.19), we may compute the state variables of the

system. At leading order we get:8

Ei =

(
∂I

∂βi

)
µi

− µi
βi

(
∂I

∂µi

)
βi

≈ 2Vol(R2)ε21m

κ2
, (2.20)

Si = βi

(
∂I

∂βi

)
µi

− I ≈ 4πVol(R2)ε
4/3
1 m2/3

κ2
, (2.21)

Qi = − 1

βi

(
∂I

∂µi

)
βi

≈ −2Vol(R2)ε21q

κ2
. (2.22)

8In RN black holes S → constant as T → 0, indicating the degeneracy of the ground
state. This can be seen at our order of approximation from (2.21) and (2.14). A brief
computation leads to Si ∼ µ2

i as Ti → 0.
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Together, they indeed satisfy the first law of thermodynamics, dEi = TidSi +

µidQi. Moreover, the free energy W = I/βi is always negative, indicating

stability of the solutions. Notice that we could have alternatively worked in the

canonical ensemble, which is characterized by the Helmholtz free energy F =

E−ST . A brief computation shows that, at the same order of approximation,

F ≈ −64π3Vol(R2)

27κ2β3
i

(
1− 9β2

i µ
2
i

16π2

)
. (2.23)

Let us now comment on the identification of the field theory quantity

corresponding to the putative small parameter ε1. From (2.12), (2.11) and

(2.20), it is clear that parametrically Ti/Ei ∼ O(1). However,

µi
Ti

= −
(

4π

3

)
q

m2/3
ε

2/3
1 =⇒ ε1 =

(
µi
Ti

)3/2

O(1) . (2.24)

Thus, we are considering an initial state in which the chemical potential is

small compared to the temperature. It also becomes clear that, in obtaining

the perturbative solution outlined in (2.49)-(2.52), we have set the expansion

parameter ε ∼
(
µi
Ti

)3/2

. By analyzing the final state, we will now observe that

ε corresponds to an otherwise independent parameter in the dual field theory.
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2.4.2 Final state

Let us now consider the final state. For v →∞ (in practice for v � δt)

the bulk solution in (2.56)-(2.59) can be written as:

f(z) =
1

z
+ O(ε6) , (2.25)

g(z) =
1

z2

[
1− ε2

(
k2m+ C̃2

)
z3 + ε4

(
c̃4z

3 +
k4q2

2
z4

)]
+ O

(
ε6
)
,(2.26)

Av(z) = µf + ε2k2qz , (2.27)

φ(z) = z3p̃ε3 + O
(
ε5
)
, (2.28)

where k = (ε1/ε) and all the tildes denote the corresponding functions evalu-

ated at v →∞, which are of order O (ε0).

The mass and charge of the final background are now

Mf = ε2(k2m+ C̃2)− ε4c̃4 and Q2
f = ε4k4q2 = Q2

i , (2.29)

which gives

∆M = Mf −Mi = ε2C̃2 − ε4c̃4 . (2.30)

The new horizon lies at

z
(f)
H =

1

ε2/3m
1/3
2

(
1 +

ε4/3k4q2

6m
4/3
2

+ O
(
ε2
))

. (2.31)

For convenience, we have defined m2 = k2m + C̃2. Regularity of the gauge

field at the horizon now yields

lim
z→z(f)

H

A = 0 =⇒ µf = −ε
4/3k2q

m
1/3
2

(
1 +

ε4/3k4q2

6m
4/3
2

+ O
(
ε2
))

. (2.32)
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On the other hand, the inverse temperature is given by

βf ≡
1

Tf
=

4π

3ε2/3m
1/3
2

(
1 +

ε4/3k4q2

3m
4/3
2

+ O
(
ε8/3
))

. (2.33)

Defining µ̃f = ε−4/3µf and β̃f = ε2/3βf , we can invert (2.32)-(2.33) as follows

m2 =
64π3

27β̃3
f

(
1 +

9ε4/3β̃2
f µ̃

2
f

16π2
+ O

(
ε8/3
))
≈ 64π3

27ε2β3
f

(
1 +

9β2
fµ

2
f

16π2

)
,(2.34)

and

q = − 4πµ̃f

3k2β̃f

(
1 +

3ε4/3β̃2
f µ̃

2
f

32π2
+ O

(
ε8/3
))
≈ − 4πµf

3ε2k2βf

(
1 +

3β2
fµ

2
f

32π2

)
. (2.35)

After subtracting the AdS contribution, the Euclidean on-shell action

evaluates to:

I = −Vol(R2)βm2ε
2

κ2

(
1− 3ε2(k2mp̃ + p̃)2

4m2
2

+ O
(
ε8/3
))

,

≈ −64π3Vol(R2)

27κ2β2
f

(
1 +

9β2
fµ

2
f

16π2

)
. (2.36)

Finally, we can compute the state variables for the final state. At

leading order we get:

Ef =

(
∂I

∂βf

)
µf

− µf
βf

(
∂I

∂µf

)
βf

≈ 2Vol(R2)ε2m2

κ2
,

Sf = βf

(
∂I

∂βf

)
µf

− I ≈ 4πVol(R2)ε4/3m
2/3
2

κ2
,

Qf = − 1

βf

(
∂I

∂µf

)
βf

≈ −2Vol(R2)ε2k2q

κ2
. (2.37)

Again, these quantities satisfy the first law of thermodynamics, dEf = TfdSf+

µfdQf . Note that, upon integration by parts, we get that C̃2 = 1
2

∫∞
−∞ φ

′′
1(x)2dx >
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0 so we always have m2 > m. Both the energy and entropy increase but the

charge remains the same, as expected. Moreover, for this final state, the

Helmholtz free energy is given by

F ≈ −64π3Vol(R2)

27κ2β3
f

(
1−

9β2
fµ

2
f

16π2

)
. (2.38)

Before concluding this section, let us comment on the parameter ε. It

is straightforward to check that

C̃2 ∼
1

(δt)3 , and

∆E = (Ef − Ei) ∼
ε2

(δt)3 =⇒ ε ∼ (δt)3/2 (∆E)1/2 . (2.39)

Note that, this scaling is in keeping with the scaling behaviour obtained in

[78, 79, 80], which follows from dimensional analysis in our case. Evidently,

(2.39) provides us with a natural meaning for the expansion parameter in

gravity purely in terms of the field theory data. What is more, we observe

that the perturbative solution is consistent as long as we impose

ε1 ∼ ε =⇒
(
µi
Ti

)3

∼ (δt)3 (∆E) . (2.40)

2.5 Thermalization time

Given the background that we obtained in the previous section, we will

now explore how the thermalization time behaves with relevant parameters for

the system. We will measure thermalization time by measuring non-local ob-

servables, specially entanglement entropy and define our thermalization time
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according to the behavior of this non-local probe. Via the AdS/CFT corre-

spondence, this exercise amounts to computing an extremal area surface in

the bulk geometry. For this purpose, we will only require the solution for the

metric (2.8), which is given explicitly in (2.56)-(2.59). The specific form of

f(z, v) and g(z, v) will not be important for now.

The metric (2.8) is asymptotically AdS. To make this manifest, let us

rescale the metric functions such that

ds2 =
1

z2

[
−2dvdz − g̃(z, v)dv2 + f̃ 2(z, v)

(
dx2 + dy2

)]
, (2.1)

where we have defined f̃(z, v) ≡ zf(z, v) and g̃(z, v) ≡ z2g(z, v). These new

functions satisfy that f̃ → 1 and g̃ → 1 as z → 0. Also, the boundary time

coordinate is related to the Eddington-Finkelstein coordinates in (2.1) through

9

dv = dt− dz

g̃(z, v)
. (2.2)

This relation will be important below, for the computation of the thermaliza-

tion time.

2.5.1 Entanglement entropy

We will compute entanglement entropy in this background for a par-

ticular shape: namely a “rectangular strip” which can be parametrized by

{x ∈ (−`/2, `/2)}∪{y ∈ (−`⊥/2, `⊥/2)}. In a quantum system, entanglement

9Here we neglect the redshift effect indicated in [72]. In the thin-shell limit for v0 → 0,
the redshift factor will reduce to one for the regime outside the shell. Note that the tcrit

introduced in (2.29) will be slightly longer when incorporating the redshift effect.
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(or geometric) entropy of a region A with its complement B is defined using

the reduced density matrix a la von Neuman: SA = −trA ρA log ρA, where

ρA is obtained by tracing over the degrees of freedom in B, ρA = trB ρ. As

reviewed in section 1.2.4, entanglement entropy can be holographically com-

puted by means of the Ryu-Takayanagi prescription [62] or, more generally,

its covariant generalization [63]. Before delving into the computation, let us

flesh out the approximation in which we will be working for the rest of this

chapter.

The perturbative solution that we have obtained in (2.49)-(2.52) can

be numerically subtle to handle, specially since we have a small parameter ε.

Instead, we make use of the small parameter in the following manner: The

metric data can be summarized as follows:

Gµν = G(0)
µν + ε2G(1)

µν + ε4G(2)
µν + . . . , (2.3)

Subsequently the geodesics and the entanglement entropy can also be deter-

mined by a similar expansion

γA = γ
(0)
A + ε2γ

(1)
A + ε4γ

(2)
A + . . . , (2.4)

SA = S
(0)
A + ε2S

(1)
A + ε4S

(2)
A + . . . . (2.5)

It can be checked that upon using the equations of motion at the first non-

trivial order in ε, which in this case happens to be at O(ε2), γ
(0)
A determines S

(1)
A

completely [81]. Thus, if we limit ourselves to results at the first non-trivial

order in ε, the task of determining geodesics simplifies significantly. On the
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other hand, it is clear from the metric in e.g. (2.49), the effect of the charge

enters at O(ε4), at which order there is no such simplification. For simplicity,

we will keep our discussions limited to O(ε2). We therefore emphasize that,

our numerical results should be taken as indications of a certain physics rather

than an observation. On the other hand, it is possible to go beyond O(ε2)

systematically, which we leave for future work.

Also note that, as we are measuring the response of the system at the

first non-trivial order in ε, so we will measure the external dial. In our case, the

external dial is a combination of e.g. (µ/T ) ∼ O(ε2/3). Thus, effectively we are

using a different precision for measuring the response-observables as compared

to the parameters of the system. In a very precise sense, the subsequent

dynamics that we analyze is primarily determined by the temperature-scale of

the system.

Now let us discuss the details. We will now compute SA in the limit

`⊥ → ∞, so that the construction becomes invariant under translations in y.

We can parameterize the extremal surfaces with functions z(x), v(x) subject

to the boundary conditions

z(±`/2) = z0 and v(±`/2) = t , (2.6)

where z0 is the usual UV cut-off needed to regularize the on-shell acion. These

boundary conditions impose that the boundary of γA coincides with the bound-

ary of A along the temporal evolution. The area functional is given by

A = Area(γA) = `⊥

∫ `/2

−`/2
dx
f̃(z, v)

z2

√
f̃(z, v)2 − g̃(z, v)v′2 − 2v′z′ , (2.7)
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where ′ ≡ d/dx. Since there is no explicit x-dependence, there is a correspond-

ing conservation equation given by

f̃ 2(z, v)− g̃(z, v)v′2 − 2v′z′ = f̃ 6(z, v)
(z∗
z

)4

. (2.8)

In this expression, z∗ is defined through z(0) = z∗. Now, the right hand side of

(2.2) in empty AdS is identically zero. In our case it is of order O(ε4), which

we can safely neglect since we are working to order O(ε2). Thus, we have

v′ +
z′

g̃(z, v)
∼ 0 . (2.9)

Combining (2.8) and (2.9) we get

z′ =

√(
f̃ 4(z, v)

(z∗
z

)4

− 1

)
f̃(z, v)2g̃(z, v) . (2.10)

In practice we solve the above system as follows. First, we rewrite (2.9) as

v̇ +
1

g̃(z, v)
= 0 , (2.11)

where ˙ ≡ d/dz and we solve for v(z) subject to the boundary condition:

v(z0) = tboundary. With this function at hand and given a value of z∗, we can

then obtain a solution for z(x) by direct integration of (2.10). However, note

that this last step is not necessary if we only want to extract the values of `

and A for a given z∗. More specifically, these values can be obtained from

` = 2

∫ z∗

z0

dz

z′
and A = 2`⊥

∫ z∗

z0

dz
f̃(z, v)4z2

∗
z4z′

, (2.12)

respectively. In particular, the last equation in (2.12) arises upon substituting

(2.9)-(2.10) in (2.7) and then changing the integration variable dx→ dz/z′.
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On the other hand, the area in (2.12) is divergent as the UV cut-off

z0 → 0 and must be regularized. The divergence comes from the fact that

the volume of any asymptotically AdS background is infinite and the spatial

surface γA reaches the boundary. In particular, near the boundary it is clear

that f̃(z → 0)→ 1, z′(z → 0) = z2
∗/z

2 and therefore

Adiv = 2`⊥

∫
z∼z0

dz

z2
=

2

z0

. (2.13)

Subtracting this divergence, we obtain the finite term of the area which is the

quantity we are interested in:

S ≡ A−Adiv = 2`⊥

(∫ z∗

z0

dz
f̃(z, v)4z2

∗
z4z′

− 1

z0

)
. (2.14)

2.5.2 Toy model and choice of parameters

Before proceeding to the numerical results, we must specify the system

we want to study. First, notice that at O(ε4) the computation of entanglement

entropy does not rely on the specific form of the coupling h(φ). Then, for the

purposes of this section it is enough to set h(0) = 1 and ḣ(0) = 0, as required

by the perturbative solution. For the scalar profile, we choose for simplicity a

Gaussian function of the form

φ1(v) = λe−v
2/v2

0 , (2.15)

where λ and v0 are numerical parameters that control the amplitude and the

width. With this choice, the leading-order amplitude of the dilaton scales as

φ ∼ ελ. Note that the perturbative expansion requires each order in to be
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at most of order O(1) in ε. Here we have introduced the extra parameter λ

for convenience, which could yield ( C̃2

m
) ∼ O(1) with a proper choice of its

numerical value. We will come back to this point below. One advantage of

the above profile is that it can be integrated analytically to obtain the explicit

form of C2(v), C4(v) and P (v). A brief computation leads to:

C2(v) =
λ2

8v6
0

[
4ve−2v2/v2

0
(
4v2 − 3v2

0

)
+ 3
√

2πv3
0

(
2− erf(

√
2v/v0)

)]
, (2.16)

C4(v) = −3λ2

16
e−2v2/v2

0k2m+
λ4

1536v6
0

[
12ve−4v2/v2

0
(
72v2 + 25v2

0

)
+108

√
2πv3

0e
−2v2/v2

0

(
1 + erf(

√
2v/v0)

)
+ 9
√
πv3

0

(
1 + erf(2v/v0)

)
−128

√
3πv3

0e
−v2/v2

0

(
1 + erf(

√
3v/v0)

)]
, (2.17)

and

P (v) = −λ
4
e−v

2/v2
0k2m+

λ3

288v6
0

[
27
√

2πv3
0e
−v2/v2

0

(
1 + erf(

√
2v/v0)

)
−12ve−3v2/v2

0
(
12v2 + v2

0

)
− 16
√

3πv3
0

(
1 + erf(

√
3v/v0)

)]
.(2.18)

Here erf(x) denotes the error function. Furthermore, we only need derivatives

of φ1(v) and P (v) to compute the analytic forms of f̃(z, v) and g̃(z, v) according

to (2.56)-(2.59).

Next, we have to select values for the various parameters in order to be

consistent with the perturbative expansion. First, we set m = 1 and v0 = 0.01.

The first choice fixes a reference scale for the initial energy whereas the second
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guarantees that we are dealing with the thin shell limit. Then, we must fix λ

in order to have m2 ∼ O(1) for the final state. Note that C̃2 evaluates to

C̃2 =
3
√

2πλ2

4v3
0

. (2.19)

Then, a good choice for λ is

λ =
23/4v

3/2
0√

3π1/4
≈ 7.3× 10−4 , (2.20)

so that C̃2 = 1. We further set k = 1 so ε = ε1 and m2 = k2m + C̃2 = 2. In

Figure 2.1 we plot both the gaussian profile for the scalar field and the mass

function m2(v) ≡ k2m + C̃2(v) for the parameters given above. The remain-

ing functions C4(v) and P (v) are of order O (10−7) and O (10−4), respectively.

Note that the mass function does not increase monotonically in time, in stark
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Figure 2.1: (a) Gaussian profile for the scalar field φ1(v) and (b) mass function
m2(v) according to (2.15) and (2.16), respectively. For the plots we chose m = 1,
v0 = 0.01, k = 1 and λ given by (2.20).

contrast with the usual behavior of collapsing Vaidya geometries. Neverthe-

less, our field content is physically sensible and all the energy conditions are
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satisfied. Following the arguments of [11], then, we expect reasonable results

for the thermalization process in the boundary theory.10 Another reason to

argue that this must be true is that, although the apparent horizon (2.15) also

shows this non-monotonic behavior, the event horizon (2.17), on the other

hand, always increases along the temporal evolution.11 Figure 2.2 shows rep-

resentative behaviors of these two quantities. At any rate, it is worth pointing

out that such non-monotonic behavior disappears as we take the thin shell

limit, which is the case we are focusing on. In this limit both m2(v) and

zaH(v) take the form of a step function.

The expansion parameter ε should be a small number. We observe that

the first and second corrections to the functions f̃(z, v) and g̃(z, v) over AdS

are of order O(ε2) and O(ε4), respectively. A reasonable choice for ε is then

ε = 0.1. Finally, the value of q can be tuned in order to vary the temperature

and the chemical potential of the solutions. There are two requirements for

this quantity: (i) we must impose that q ∼ O(1) to be consistent with the

perturbative expansion and (ii) we cannot exceed the maximum value allowed

in order to avoid a naked singularity at early times. Regarding this last point,

recall that to our order of approximation, the initial state is characterized by

Ti =
3ε2/3m1/3

4π

(
1− ε4/3q2

3m4/3

)
, µi = −ε

4/3q

m1/3

(
1 +

ε4/3q2

6m4/3

)
. (2.21)

10We thank Esperanza Lopez for a discussion on this point.
11If we truncate the metric at order O(ε4), we find that for v0 ∼ 10 or larger the event

horizon also presents signs of non-monotonic behavior. This issue is corrected as we consider
higher order corrections in ε.
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Figure 2.2: Evolution of the the apparent horizon zaH(v) (blue) vs. the event
horizon zH(v) (red) according to (2.15) and (2.17), respectively. For the plots we
chose m = 1, q = 0.7, v0 = 2, k = 1 and λ given by (2.20). Notice that for this
example we have chosen v0 away from the thin shell limit in order to observe the
non-monotonicity of the apparent horizon. If we let v0 → 0, this non-monotonic
behavior is smoothed out and zaH(v) approaches to a step function.

Therefore, from (2.21) it follows that the condition (ii) for not having a naked

singularity sets a maximum value

|q|max =

√
3m2/3

ε2/3
' 8.04 , (2.22)

above which Ti < 0 and with no real roots of g(zH) = 0. Fortunately, notice

that (2.22) is also within the acceptable range for satisfying item (i).

The final state, on the other hand, is characterized by

Tf =
3ε2/3m

1/3
2

4π

(
1− ε4/3q2

3m
4/3
2

)
, µf = −ε

4/3q

m
1/3
2

(
1 +

ε4/3q2

6m
4/3
2

)
, (2.23)

where

m2 = m+
3
√

2πλ2

4v3
0

. (2.24)
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It is easy to check that for values of q in the range allowed by (2.22), the final

states are also free of naked singularities. Of course, this is directly related to

the fact that the mass of the black hole is increased while the charge is kept

fixed.

Now, we have both temperature and chemical potential in our system

and we need to construct a dimensionless ratio which would be our tunable

parameter. Notice that both temperature and chemical potential has inverse

length dimensions. Then, we can consider [65]

χ ≡ 1

4π

(
µf − µi
Tf − Ti

)
(2.25)

to be the relevant parameter that we will vary. In practice, we can vary χ

by tuning the parameter q ∈ [−8.04, 8.04]. In particular, it is found that for

this range of values, χ(q) ∈ [−0.42, 0.42] and increases almost linearly with q.

Thus, within the perturbative approximation and for the choices of the various

parameters, we are restricted to small values of χ as compared to [65].

2.5.3 Regimes of thermalization

Now we will discuss the numerical results. In Figure 2.3 (a) we plot

sample solutions for the embedding functions z(x) for a fixed ` as the boundary

times t is varied. Some of them cross the shell, located at v = 0, and refract.

This refraction is suppressed by a factor of ε2 given that the energy-momentum

of the shell is itself of order O(ε2). Nevertheless, the aforementioned effect is

noticeable to the naked eye for large enough distances, (4π∆T ) ` & 1. We also
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show in (b) the behavior of entanglement entropy as a function of time, for a

fixed distance `. In order to compare the results for various values of χ we

subtract the entropy of the initial state ∆S(t) = S(t) − S(−∞), and focus

on the entanglement growth over time.12 We note some general properties of

the behavior of ∆S(t) as we change the value of χ. Qualitatively, our results

agree with those of [82, 83] (see also [84, 85, 86]) obtained in the context of

Vaidya geometries. At early times, i.e. the “pre-local-equilibration” regime,

the evolution is almost quadratic in time and is weakly dependent on the

size `. This stage is followed by a linear growth phase at intermediate times

and, finally, a saturation is reached at late times, t ≥ tsat, where the entropy

abruptly flattens out.

Let us explain these regimes in more details. First, in Figure 2.4,

we have shown the functional dependence of entanglement entropy growth in

various regimes. Following [82] we can introduce a “local equilibrium scale”,

denoted by `eq, which means that a local thermodynamic description applies at

length scales∼ O(`eq) even though the global description is out-of-equilibirum.

For early times, which can be represented by the regime t � `eq, the rate

of entanglement entropy growth is expected to be proportional to the area

of the entangling surface. Furthermore, we can assume that the growth is

proportional to a characteristic energy scale of the system. Note that, at the

12The divergent piece of the entanglement entropy is independent of the legth. Here we
are subtracting also a finite piece that depends on ` but does not display temporal evolution.
With this subtraction, the entanglement entropy ∆S(t) starts at zero in the infinite past for
all values of `.
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Figure 2.3: (a) Sample embedding functions z(x) for χ = 0.2 (q ' 3.651), 4π∆T` =
2 (` ' 8.524) and t = {5.6, 6.8, 8, 9.2} from top to bottom. (b) Entanglement growth
S(t) for χ = 0.002 (blue) and χ = 2 (red) with fixed 4π∆T` = 1. In both plots we
have set the AdS radius to unity L = 1.

initial stage, we have the energy of the initial state, denoted by Einitial, and

the energy which is being injected to induce the dynamics, denoted by ∆E.

Thus the typical energy-scale should be identified as

Etypical = max {Einitial,∆E} . (2.26)

A priori, Einitial and ∆E are independent. However, in our case, we already

demanded Einitial ∼ ∆E and thus, using dimensional analysis, we can arrive

at

∆S(t) = (α1EinitialA) t2 = (α2∆EA) t2 , (2.27)

where α1,2 are two constants and A denotes the area of the entangling surface.

On the other hand, in the regime t� `eq, we have a notion of a thermal

entropy density which is denoted by Sthermal. If we further assume that the
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Figure 2.4: Functional dependence of entanglement entropy as a function of time
in the various regimes of thermalization. For this example we fixed χ = 0.002
and 4π∆T` = 1, and the best fits yielded the following constants: a = 0.00496,
b = 0.02338, c = −0.02813 and d = 0.08059. The time here is measured in units of
the AdS radius which has been set to unity L = 1.

entanglement entropy is proportional to the area of the entangling surface and

the local thermal entropy density, then by dimensional analysis we get

∆S(t) = (vEASthermal) t , (2.28)

where vE is the entanglement production rate which has been analyzed in

[82, 83]. Evidently, our numerical data agrees very well with the intuition

outlined in (2.27) and (2.28). It is intriguing to further note that, although

we are not starting from a vacuum state, the analysis of [82, 83] continues to

hold.13 Finally, since we are considering the “rectangular” shaped entangling

13The issue of state dependence was further studied in [15] for the case of hyperbolic
AdS-Vaidya black holes, finding qualitative agreement with the results of [82, 83].
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surface, we expect that the saturation will be accompanied by an abrupt jump

in the corresponding extremal area geodesic.

Now we will discuss the scaling of thermalization time. From the time-

evolution of entanglement entropy, we can extract tsat for a given length `.

Alternatively, we can define another time-scale tcrit as a measure of the ther-

malization time. Recall that the shell is densely peaked around v = 0 for

v0 � 1. Thus, we can define tcrit to be the time at which the corresponding

extremal surface grazes the shell at v = 0. By definition from (2.2), we get

tcrit =

∫ z∗

z0

dz

g̃(z, v = 0)
. (2.29)

In practice, it is easier to extract tcrit rather than tsat.
14 Furthermore, in the

limit v0 → 0 these two quantities are found to agree. For the case of finite

thickness, they only differ by a factor of order O(v0) so we expect similar results

for the thermalization time as long as v0 is not too large. We thus focus on

the critical time tcrit.

Let us, however, clarify a further caveat regarding tcrit. Precisely speak-

ing, tcrit measure the time a null ray takes to reach the AdS-boundary starting

from the bulk point z∗. Thus, for a given boundary length `, the correspond-

ing extremal area geodesic will indeed graze the shell at tcrit provided the

shell propagates at the speed of light. However, as can be checked from (2.6)

14Note, however, the approach to equilibrium is expected to be abrupt in the case of a
rectangular entangling region[82]. Thus, strictly speaking, tcrit may not be the correct mea-
sure of thermalization time. However, in our case, we have checked that tsat and tcrit exhibit
qualitatively similar behaviour. Since we are only concerned with qualitative features, we
do not attempt to make this more precise here.
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Figure 2.5: (a) Critical time as a function of length for fixed χ = 0.04 (red) and
χ = 0.4 (blue). (b) Critical time as a function of χ for a fixed length 4π∆T` = 0.1
(red) and 4π∆T` = 1 (blue). The AdS radius has been set to unity L = 1.

and (2.7), the matter field is non-null and thus propagates slower than the

speed of light. Thus, in reality tcrit will serve as a lower bound for the actual

thermalization time.

The dependence of tcrit with ` is shown in Figure 2.5 (a), which approx-

imates a linear growth similar to the one observed in [69, 70]. Generally, we

can represent the dependence as

∆Ttcrit = A (χ) (∆T`) +B (χ) (∆T`)α(χ) , (2.30)

where A(χ) represents the slope of the linear regime, i.e. the velocity at which

thermalization propagates in the system. Numerically we find

A(χ) = 0.83 for blue (2.31)

= 0.79 for red , (2.32)

which implies that thermalization is super-critical (faster than speed of light).
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At larger length-scales, the deviation from linearity is characterized by the

second term above, where α(χ) is an index which can, in principle, depend on

χ.

On the other hand tcrit monotonically decreases with χ for fixed ` (in

the allowed range for χ), which means that thermalization is faster in the

presence of a chemical potential. We have shown a representative behaviors

in Figure 2.5 (b). Our findings agree qualitatively with the results of [65], in

the regime of validity of our solutions.

Let us now comment on what may happen beyond the validity of our

perturbative solutions. It is unlikely that the thermalization time keep de-

creasing with increasing chemical potential. Hence there are two possibilities:

(i) thermalization time plateaus or (ii) thermalization time eventually turns

around and starts increasing with increasing chemical potential. Either way,

it implies a qualitatively different scaling behaviour of thermalization time in

two regimes: when χ � 1 and when χ � 1, i.e. which has an obvious in-

terpretation as a “classical” and a “quantum” regime respectively. The latter

observation is similar to the one made in [65].

2.5.4 A remark on the scrambling time

Before closing this section, we wish to make a few comments.15 Our

initial state is thermal, and thus is represented in the gravity description by an

15We thank Diego Trancanelli for bringing this point to our attention.
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AdS black hole. It is generally believed that black holes are endowed with the

special property of “fast scrambling” [87, 88]. In particular, this implies that

the time scale associated to the process of thermalization grows logarithmically

with the number of degrees of freedom of the system

t∗ ∼ β logN , (2.33)

where β is independent of N . In our case, we can count N by evaluating the

thermal entropy of the initial state SiThermal, or of the final state SfThermal, or of

their difference ∆SThermal.

0.01 0.02 0.03 0.04 0.05 0.06
DTtcrit

-7

-6
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-1

0
logHDSL

Figure 2.6: Behavior of entanglement entropy vs. saturation time for a fixed χ =
0.04. The plot is generated by joining the points {∆S(`),∆Ttcrit(`)} corresponding
to different values of `. The blue line represent the best fit in the farthermost region,
for which the values of length are of order ∆T` ∼ 1.

Now, in order to make contact with the scrambling property of the black

hole, we have to focus on the regime ∆T` � 1 where entanglement entropy

approaches the thermal entropy, S(∆T` � 1) ∼ SThermal. In this same limit,
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we can identify tcrit ∼ t∗ since tcrit(∆T`� 1) serves as a measure of “global”

equilibration. In Figure 2.6 we show the behaviour of log ∆S as a function

of the ∆Ttcrit for a fixed value of chemical potential χ. To generate the plot,

we vary the length ` to generate pair of points {∆S(`),∆Ttcrit(`)} and then

we join them. Larger values of ` correspond to larger tcrit(`) for a fixed ∆T

(see Figure 2.5), so we are interested in the rightmost part of Figure 2.6. It is

worth pointing out that, due to limitations of the numerical accuracy and the

validity of our perturbative solution, we can only go as far as ∆T` ∼ 1. This is

because in order to increase the length of the boundary strip we have to reduce

zH − z∗ accordingly, which needs to be fine-tuned to high precision in order

to increase ∆T`. However, it is intriguing that in the region around ∆T` ∼ 1

the curve smoothly approaches a straight line, in concordance with (2.33). It

would be remarkable if this statement holds true as ∆T` is increased. If it

does, this may lead to important clues on how the effective degrees of freedom

interact towards the process of thermalization[89, 7]. It will be interesting to

investigate this issue further and make contact with other approaches within

the framework of AdS/CFT (see, e.g. [90]).

2.6 Conclusions

We have considered here the thermal quench of a marginal operator in

a prototypical large N -gauge theory. In order to establish the scaling of the

thermalization time on a more robust ground, there are many directions which

we intend to explore in near future.
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First, we can generalize our perturbative analysis when the quench is

being carried out for a relevant operator. This will correspond to introducing

a non-trivial scalar potential and it will be interesting to check to what extent

our observations are universal. In turn, it is easier to embed such effective

gravity descriptions within 11-dimensional supergravity. Subsequently it will

also be interesting to understand the specific embedding of our effective gravity

description, in which the scalar potential is vanishing, in string theory. Note

that, our model is unlikely to be realized within ABJM, since the latter does

not have any marginal scalar-deformation.16

To test the robustness of our qualitative observation, it will be inter-

esting to model a similar dynamical background in the presence of more than

one global U(1)-charge, by e.g. coupling the STU-model with a neutral mass-

less scalar.17 The quench of this scalar field will correspond to the quench

of a marginal or relevant operator in the dual field theory. It will be very

interesting to check how thermalization behaves in this case.

We have considered only (3 + 1)-dimensional bulk theory which cor-

responds to a (2 + 1)-dimensional boundary theory. It is well-known that

the dynamics in asymptotically locally AdSd+1 differs qualitatively for even

vs. odd d, see e.g. [67]. Thus generalizing our results for the asymptotically

AdS5-background will be an interesting avenue to pursue.

16All scalars have a non-vanishing mass around the corresponding AdS-fixed point.
17Note that charged black hole solutions for STU-models possess a very rich phase

diagram[92].
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Intuitively a generic charged-system is much richer than the neutral

case and one can consider various possibilities. In our study, we considered

the quench by a neutral scalar. One can also consider a charged-scalar field.

In the latter, depending on the temperature of the system, the ground state

of the system can be described by a Reissner-Nordstorm black hole or a hairy

black hole, corresponding to a “normal” phase and a superconducting phase

of the field theory. Clearly, this corresponds to a more complicated dynamical

process and it will be worthwhile to check how much physics can be accessed

via a perturbative approach analogous to what we have adopted here.

Generalizing on this theme, it will be interesting to catalogue the

possibilities in which Einstein equations admit such perturbative analyses.

A bottom-up approach can be followed with various matter content in an

Einstein-gravity theory with a negative cosmological constant. We can further

relax the asymptotically AdS-condition, by using an asymptotically Lifshitz

or Hyperscaling-Violating geometries.

The importance of a complete numerical evolution can hardly be over-

estimated. It is very crucial that eventually we have access to the entire

evolution process in the full parameter space. As outlined above, there are

numerous physically inequivalent real-time phenomena that can be captured

within Einstein gravity with Maxwell and (charged or uncharged) scalar fields

in various dimensions, which needs extensive numerical explorations. This is

a long-term goal which we leave for future.
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Chapter 3

Fluid/gravity duality: hydrodynamic

expansion and cooling

3.1 Introduction

As studied in Chapter 2, black hole collapse is a useful tool to explore

the physics of holographic thermalization, where the system evolves from a

“low temperature” phase to a “high temperature” thermal state. However,

in many circumstances the relevant physics is described by the opposite pro-

cess: the system might start in a thermalized state and then evolve towards

a lower temperature, or vacuum state of the theory. One of such examples

is the quark-gluon plasma, a new phase of quantum chromo-dynamics (QCD)

recently discovered in heavy-ion collision experiments at RHIC and LHC. Ac-

cording to the current paradigm, the colliding matter creates a soup of decon-

fined quarks and gluons that thermalizes fast, expands, cools down and finally

hadronizes. At the relevant energies achieved in these experiments, QCD is

still strongly-coupled and standard perturbative techniques are inadequate,

creating a demand for new theoretical tools. In recent years, the discovery of

the AdS/CFT correspondence [25, 26, 27] has granted us access to the study

of a large class of strongly-coupled gauge theories, providing us with a variety

of tools to tackle this problem.
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In this Chapter we will study a model that describes the physics of the

quark-gluon plasma in the stage of hydrodynamic expansion and cooling, using

using the tools of the AdS/CFT correspondence [20]. We will then compute

various observables in order to characterize the process. The goal is to gain

insight into the physics of expanding fluids and, if possible, to uncover possible

universal signatures of strongly-coupled systems.

Experimentally, it is well-known that, in the last stage of the evolution,

various observables of the quark-gluon plasma are well described in terms of

hydrodynamics [93] and, to a good extent, it seems that it behaves approx-

imately as a perfect fluid [94]. In the context of AdS/CFT, the first steps

towards understanding the late-time evolution of the plasma were given in

[95], assuming boost-invariance along the collision axis (which is believed to

hold in the mid-rapidity region [94]) and homogeneity/isotropy in the trans-

verse plane. Of course, these simplifying assumptions were vital for having

an analytical handle on the problem but one ultimately wants to relax these

conditions in order to model a more realistic plasma, e.g. including anisotropic

effects generated by off-center collisions [96] and radial flow due to finite size

nuclei [97]. Going beyond the hydrodynamical description requires one to over-

come several challenges, as it requires a full numerical solution to the initial

value problem in asymptotically AdS spaces [98].

One way to characterize the evolution of the plasma in a time-dependent

setup is by studying the behavior of non-local observables and analyzing the

way in which they reach equilibrium. Indeed, this approach has been used
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with great success in the program of holographic thermalization [99], where

the system is excited by the injection of a spatially uniform density of energy

and eventually equilibrates. On the gravity side, such quenches are described

in terms of the gravitational collapse of a shell of matter that leads to the

formation of a black hole. These are toy models that describe the early-time

evolution of the quark-gluon plasma, before entering the regime of expansion

and cooling. The idea here is to extend these results to another regime of

interest that is analytically tractable, namely the stage in which the plasma is

described by hydrodynamics.

In the framework of non-linear hydrodynamics, the fluid/gravity duality

[111, 112] provides us with full control of the bulk geometry in a wide variety

of scenarios. For concreteness, we will assume boost-invariance along the axis

of expansion and translational/rotational symmetry in the transverse plane as

in [95]. We will phrase our discussion in terms of the simplest theory with a

known gravity dual, i.e. N = 4 supersymmetric Yang-Mills at large N and ’t

Hooft coupling λ but, appealing to universality, we expect our results to hold

under more general circumstances.

This Chapter is organized as follows. In Section 3.2 we start with a

brief review of hydrodynamics in the AdS/CFT correspondence. First, we

show how compute the transport coefficients of the strongly-coupled plasma

in the linear response theory. This is achieved by weakly perturbing a state in

thermal equilibrium and then computing the relevant correlators of the stress-

energy tensor. We then discuss how to study out-of-equilibrium configurations,
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focusing specifically on Bjorken or boost-invariant hydrodynamics, which di-

rectly applies to our problem. Next, in Section 3.3 we study the relaxation

of non-local probes in the expanding medium, including two-point functions

of operators with large conformal dimension, Wilson loops and entanglement

entropy. We close in Section 3.4 with conclusions and future directions.

3.2 Hydrodynamics in AdS/CFT

3.2.1 Linear response theory

While thermodynamics describes static properties of a system in per-

fect thermal equilibrium, hydrodynamics is the effective theory that describes

long-wavelength, small-amplitude perturbations around thermal equilibrium.

Unlike the familiar effective field theories (for example, the chiral perturbation

theory), it is normally formulated in the language of equations of motion in-

stead of an action principle. The reason for this is the presence of dissipation

in thermal media.

In the simplest case, the hydrodynamic equations are just the laws of

conservation of energy and momentum,

∂µT
µν = 0 . (3.1)

To close the system of equations, we must reduce the number of independent

elements of T µν . This is done through the assumption of local thermal equi-

librium: if perturbations have long wavelengths, the state of the system, at

a given time, is determined by the temperature as a function of coordinates
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T (x) and the local fluid velocity uµ, which is also a function of coordinates

uµ(x). Because uµu
µ = −1, only three components of uµ are independent. The

number of hydrodynamic variables is four, equal to the number of equations.

In hydrodynamics we express T µν through T (x) and uµ(x) through the

so-called constitutive equations. Following the standard procedure of effective

field theories, we can expand in powers of spatial derivatives. To zeroth order,

T µν is given by the familiar formula for perfect fluids,

T µνperfect = (ε+ p)uµuν + pgµν , (3.2)

where ε is the energy density, and p is the pressure. Normally one would stop

at this leading order, but qualitatively new effects appear in the next order.

Indeed, from equation (3.2) and the thermodynamic relations (1.31), one finds

that entropy is conserved

∂µ(suµ) = 0 . (3.3)

Thus, to have entropy production, one needs to go to the next order in the

derivative expansion.

At the next order, we can write

T µν = T µνperfect + σµν , (3.4)

where σµν is proportional to derivatives of T (x) and uµ(x). The more general

form of σµν is

σµν = −η(4µσ∂σu
ν +4νσ∂σu

µ − 2
3
4µν∂σu

σ)− ζ4µν∂σu
σ , (3.5)
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where η and ζ are the first order hydrodynamical coefficients best known as

the shear viscosity and the bulk viscosity, respectively, and 4µν = gµν + uµuν

is the projection operator onto the directions perpendicular to uµ. To simplify

things, let us work in the proper frame (or comoving frame) that is attached

to a fixed point x. In this frame we have that ui(x) = 0 and in principle

one may expect dissipative corrections to the energy-momentum density T 0µ.

However, one recalls that the choice of T and uµ is arbitrary, and thus one can

always redefine them so that these corrections vanish, σ00 = σ0i = 0, and so

at a point x,

T 00 = ε , T 0i = 0 . (3.6)

The only nonzero elements of the dissipative energy-momentum tensor are σij.

Furthermore, if we restrict our attention to conformal invariant field theories,

there appear two constrains. At zeroth order we get the usual equation of

state ε = 3p, while at first order we get the condition ζ = 0. This means

that, at the level of approximation we are considering, the only non-vanishing

hydrodynamical coefficient for a CFT is just the shear viscosity η.

We can compute the value of η in various ways. The easiest one is to

assume that the system is very close thermal equilibrium, in which case the

linear response theory does the work. This can be done as follows: we start

with a thermal state and we couple some sources Ja(x) to a set of operators

Oa(x), so that the new action is

S = S0 +

∫
x

Ja(x)Oa(x) , (3.7)
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then the source will introduce a perturbation in the system. In particular, the

expectation values of Oa will differ from the equilibrium values, which we can

assume to be constant. If the sources Ja are small, the perturbations are given

by the linear response theory as

〈Oa(x)〉 = −
∫
y

GR
ab(x− y)Jb(y) , (3.8)

where GR
ab is the retarded Green’s function

iGR
ab(x− y) = θ(x0 − y0)〈[Oa(x),Ob(y)]〉 . (3.9)

The fact that the linear response is determined by the retarded (and not by

any other) Green’s function is obvious from causality: the source can influence

the system only after it has been turned on.

Now, in order to determine the correlation functions of T µν , we need to

couple a weak source to T µν , i.e. we have to perturb the background metric

gµν , and determine the response of T µν after this source is turned on. One

must generalize the hydrodynamic equations to curved space-time and from

it determine the response of the thermal medium to a weak perturbation of

the metric. If we focus on the particular case when the metric perturbation is

homogeneous in space but time dependent,

gij(t, x) = δij + hij(t) , hij � 1 ,

g00(t, x) = − 1 , g0i(t, x) = 0 ,
(3.10)

and we assume the perturbation to be traceless, hii = 0, we can find that the

spatial component of σµν is

σxy = η∂thxy . (3.11)
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By comparison with the expectation from the linear response theory, this equa-

tion means that we have found the zero spatial momentum, low-frequency limit

of the retarded Green’s function of Txy:

GR
xy,xy(ω, 0) =

∫
d4xeiωtθ(t)〈[Txy(x), Txy(0)]〉 = −iηω +O(ω2) (3.12)

(modulo contact terms). Then, we can relate the value of η to the retarded

Green’s function as

η = − lim
ω→0

1

ω
ImGR

xy,xy(ω, 0) , (3.13)

which is known as the Kubo’s formula for the shear viscosity.

The fact that the viscosity is given by a formula like (3.13) is not

surprising. The correlator GR measures the response at a point x to a pertur-

bation at a point x = 0. Evaluating the zero-momentum, low-frequency limit

of this correlator corresponds to the long-wavelength limit of hydrodynamics.

The imaginary part is associated to a diffusion-like process, in this case of

momentum density.

With the formula (3.13) at hand it is a simple problem to calculate

the viscosity of the N = 4 SYM plasma at large N and large λ using the

supergravity description. However, this is a slightly technical calculation and

here we will only sketch the basic steps.

In order to extract the viscosity using the formula (3.13) we must com-

pute the two point function of the stress tensor. This can be obtained by

taking two functional derivatives of the gauge theory generating functional

with respect to the source that couples to the energy-momentum tensor, i.e.
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the boundary metric. As mentioned in section 1.2.2, the AdS/CFT dictionary

identifies the generating functional of the gauge theory with that of string the-

ory — see equation (1.11) — which in the supergravity approximation reduces

to (1.12). Moreover, the energy-momentum tensor Tµν of the gauge theory is

dual to the metric gµν on the gravity side. Therefore the desired correlator is

schematically given by

〈TT 〉 ∼ δ2

δh2
Ssugra [g + h]

∣∣∣∣
h=0

, (3.14)

where Ssugra is the on-shell supergravity action, g is the metric (1.14) and h is

an infinitessimal metric perturbation. Since one is only interested in a second

derivative, it suffices to consider the supergravity action expanded to quadratic

order in this perturbation, which leads to a linear equation of motion. Once

this is solved, the result can be substituted back into the action and then the

derivative in (3.14) evaluated. The final result for the viscosity is given by

η =
π

8
N2T 3 . (3.15)

Now, the hydrodynamic behavior of a system is better characterized by the

ratio of the shear viscosity to the entropy density, η/s, rather than by η itself,

since this ratio is a measure of the viscosity per degree of freedom. From the

result above it follows that for N = 4 SYM [114]:

η

s
=

1

4π
. (3.16)

This formula became known as one the most important results of the

AdS/CFT correspondence, since explicit computations as the one sketched
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above as well as general arguments have shown that it is a universal property

of large N , strongly-coupled, finite temperature gauge theories with a gravity

dual [115, 116]. These include theories in different numbers of dimensions,

with or without a chemical potential, with or without fundamental matter,

etc. Presumably, the reason for the universality of η/s is that both the entropy

density and the shear viscosity are related to universal properties of black hole

horizons. Using the AdS/CFT prescription, for instance, one can show that

under very general conditions the shear viscosity is given by [117]

η =
σabs(ω → 0)

16πG
, (3.17)

where σabs(ω → 0) is the zero-fequency limit of the absorption cross-section

of the black hole for a minimally coupled scalar. Similarly, under very general

conditions one can show that this quantity is precisely equal to the area of the

black hole horizon, σabs(ω → 0) = a [118, 119]. Since the entropy density is

s = a/4G we obtain (3.16), as expected.

3.2.2 Bjorken hydrodynamics

We can go a step forward and take the fluid/gravity duality more seri-

ously. The idea here is to describe holographically states of the dual CFT that

are described by hydrodynamics but are, nevertheless, far-from-equilibrium.

We will focus exclusively on describing the dual of an expanding, boost-

invariant plasma, which is sometimes referred to as a Bjorken expansion [94].

First we will start with some field theory considerations of boost-invariant

kinematics and then we will discuss the dual holographic description [95].
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3.2.2.1 Boost-invariant kinematics

After thermalization, the QGP undergoes a regime of expansion and

cooling which is approximately boost-invariant along the collision axis. In

spite of the strong interactions, in this regime the plasma behaves like a liquid

of very low viscosity (almost a perfect fluid!), which makes a hydrodynamic

description reliable.

Let us parameterize the spacetime by coordinates (t, ~x) and lets imagine

that the collision takes places along the x3-axis. Assuming boost-invariance,

then, it is convenient to define new coordinates (τ, y, ~x⊥) where the symmetry

becomes manifest,

t = τ cosh y , x3 = τ sinh y . (3.18)

These are known as proper time and rapidity coordinates, respectively. The

Minkowski metric becomes

ds2 = −dτ 2 + τ 2dy2 + d~x2
⊥ . (3.19)

In order to simplify the problem, we assume isotropy and homogeneity

in the plane spanned by ~x⊥ = (x1, x2), which is valid in the case of central colli-

sions and under the assumption that the colliding nuclei are large. Thus, given

these symmetries, the number of independent components of the stress-energy

tensor Tµν reduce to three. In addition, we have two constraints imposed by

the conservation of energy and momentum, ∇µT
µν = 0, and the traceless con-

dition for conformal fluids, T µµ = 0, reducing the number of components to
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one. Specifically, in the local rest frame we can write

Tµν =


ε 0 0 0
0 1

τ2 (−ε− τ ε̇) 0 0
0 0 ε+ 1

2
τ ε̇ 0

0 0 0 ε+ 1
2
τ ε̇

 , (3.20)

where ε̇ = dε/dτ . Note that we chose the energy density ε = ε(τ) as the only

dynamical variable and we wrote the remaining components as functions of

the above. The explicit form of ε(τ) can be obtained order by order in an

hydrodynamical expansion. In the perfect fluid approximation, for instance,

we can write the stress-energy tensor in the standard form (3.2). Tracelessness

of the stress-energy tensor implies the equation of state for conformal fluids,

ε = 3p. Finally, conservation of energy and momentum implies

ε̇ = −4

3

ε

τ
, (3.21)

which can be solved to obtain [94]

ε(τ) =
ε0

τ 4/3
ε0 ≡ constant . (3.22)

In first order hydrodynamics we consider an additional contribution

that is of first order in gradients (3.4). At this order we get further constraints.

First, from the tracelessness condition we obtain ζ = 0, which is valid for any

conformal fluid. And second, from the conservation equation we get

ε =
ε0

τ 4/3

(
1− 2η̂

τ 2/3

)
, η̂ ≡ constant . (3.23)

The relation between η̂ and the shear viscosity η is found to be

η ≡ η̂

τ
. (3.24)
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The time dependence in equation (3.24) follows from thermodynamical con-

siderations. Recall that in conformal fluids, the Stefan-Boltzmann law implies

that ε ∼ T 4. Therefore, by dimensional analysis it follows that η ∼ T 3 and

hence η ∼ ε3/4 ∼ 1/τ .

Finally, higher order hydrodynamics can be considered in a similar way

by generalizing T µν to contain terms of higher order in gradients. At each

order we obtain a correction to the energy density that is suppressed by a

factor of order O(τ−2/3) with respect to the previous order. Therefore, the

hydrodynamic expansion can be thought of as a late proper time expansion.

3.2.2.2 Holographic description

We will now discuss the bulk dual to an expanding N = 4 SYM plasma

from the point of view of 10-dimensional supergravity [101]. The starting

point is the bosonic part of the type-IIB low-energy action in 10-dimensions.

In Einstein frame this is given by

I10 =
1

2κ2
10

∫
d10ξ

√
−g̃
[
R− 1

2
(∂φ)2 − 1

4 · 5!
F 2

5

]
. (3.25)

We take the ansatz:

ds̃2 = g̃MNdξ
MdξN = σ−2(x)gµν(x)dxµdxν + σ6/5(x)

(
dS5
)2
, (3.26)

φ = φ(x) ,

where M,N = 0, ..., 9 and µ, ν = 0, ..., 4, and (dS5)2 is the line element for a

5-dimensional unit sphere. For the 5-form F5 we assume

F5 = F5 + ?F5 , F5 = −4QωS5 , (3.27)
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where ωS5 is the 5-sphere volume form and Q is a constant.

Alternatively, from the point of view of a 5-dimensional effective de-

scription, the same system can be described by the following action [101]

I5 =
1

2κ2
5

∫
d5x
√
−g
[
R− 1

2
(∂φ)2 − 24

5
(∂α)2 − P(α)

]
, (3.28)

with

κ2
5 =

κ2
10

vol {S5}
. (3.29)

In the above we have defined the scalar field α(x) through σ(x) ≡ eα(x), P(α)

is the potential1

P(α) = −20 e−16α/5 + 8Q2 e−8α , (3.30)

and R is the Ricci scalar for the 5-dimensional metric gµν .

Either, from (3.25) or (3.28) we obtain the following field equations:

Rµν =
24

5
(∂µα) (∂να) +

1

2
(∂µφ) (∂νφ) +

1

3
gµνP(α) ,

2α =
5

48

∂P

∂α
, (3.31)

2φ = 0 .

In Fefferman-Graham coordinates, the most general bulk metric for the sym-

metries of a boost-invariant plasma takes the following form:

ds2 = gµνdx
µdxν =

1

z2

[
−ea(τ,z)dτ 2 + eb(τ,z)τ 2dy2 + ec(τ,z)dx2

⊥ + dz2
]
, (3.32)

1We choose Q = 1 so that the minimum of the potential is Pmin = −12. This sets the
AdS radius to unity.
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where dx2
⊥ ≡ dx2

1 + dx2
2. We further assume α = α(τ, z) and φ = φ(τ, z). The

equations of motion (3.31) are solved asymptotically as a late-time expansion

in powers of τ−2/3. For this purposes, we define the scaling variable

v ≡ ε1/4z

τ 1/3
, (3.33)

where ε is a dimensionful constant, and take the limit τ → ∞ with v fixed.2

Such a scaling is motivated by the fact that, after holographic renormalization

[104], the energy density of the boundary theory 〈T00(τ)〉 ≡ ε(τ) evaluates to

ε(τ) = − lim
z→0

N2
c

2π2

a(z, τ)

z4
= −ε lim

v→0

N2
c

2π2

a(v, τ)

v4τ 4/3
, (3.34)

leading to a late-τ expansion that matches the expected behavior from confor-

mal Bjorken hydrodynamics. We then expand the coefficients a(z, τ), b(z, τ),

c(z, τ), α(z, τ) and φ(z, τ) as series of the form3

a(τ, v) = a0(v) +
1

τ 2/3
a1(v) +

1

τ 4/3
a2(v) + O(τ−2) , (3.35)

b(τ, v) = b0(v) +
1

τ 2/3
b1(v) +

1

τ 4/3
b2(v) + O(τ−2) , (3.36)

c(τ, v) = c0(v) +
1

τ 2/3
c1(v) +

1

τ 4/3
c2(v) + O(τ−2) , (3.37)

α(τ, v) = α0(v) +
1

τ 2/3
α1(v) +

1

τ 4/3
α2(v) + O(τ−2) , (3.38)

φ(τ, v) = φ0(v) +
1

τ 2/3
φ1(v) +

1

τ 4/3
φ2(v) + O(τ−2) . (3.39)

2Since ε is the only dimensionful constant, we can set it to one and measure all quantities
in units of ε. We can then restore it using dimensional analysis, if desired.

3While it is possible to go to arbitrary high orders in powers of τ−2/3, for concreteness
we will truncate the series at the given order. This will suffice to study second order
hydrodynamics.
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The equations of motion (3.31) are then solved, imposing the standard AdS

boundary conditions{
ai(v), bi(v), ci(v), αi(v), φi(v)

}∣∣∣∣
v→0

= 0 , (3.40)

and requiring the absence of curvature singularities order by order. In order

to present the solutions it is convenient to define

b̃i(v) ≡ bi(v) + 2ci(v) . (3.41)

The coefficients for i = 0, 1, 2 encode the perfect fluid approximation, first and

second order dissipative hydrodynamics, respectively. These are given by

a0 = ln
(1− v4/3)

2

1 + v4/3
, b̃0 = 3c0 = ln

(
1 + v4/3

)3
. (3.42)

a1 =
2η̂ (9 + v4) v4

9− v8
, b̃1 = − 6η̂v4

3 + v4
, c1 = − 2η̂v4

3 + v4
− η̂ ln

3− v4

3 + v4
, (3.43)

and

a2 =
(9 + 5v4)v2

6(9− v8)
− C(9 + v4)v4

36(9− v8)
+
η̂2(−1053− 171v4 + 9v8 + 7v12)v4

3(9− v8)2

+
1

4
√

3
ln

√
3− v2

√
3 + v2

− 3η̂2

2
ln

3− v4

3 + v4
,

b̃2 =
v2

2(3 + v4)
+

Cv4

12(3 + v4)
+
η̂2(39 + 7v4)v4

(3 + v4)2
+

1

4
√

3
ln

√
3− v2

√
3 + v2

+
3η̂2

2
ln

3− v4

3 + v4
, (3.44)

c2 = − π2

144
√

3
+
v2(9 + v4)

6(9− v8)
+

Cv4

36(3 + v4)
− η̂2(−9 + 54v4 + 7v8)v4

3(3 + v4)(9− v8)

+
1

4
√

3
ln

√
3− v2

√
3 + v2

+
1

36
(C + 66η̂2) ln

3− v4

3 + v4

+
1

12
√

3

(
ln

√
3− v2

√
3 + v2

ln
(
√

3− v2)(
√

3 + v2)3

4(3 + v4)2
− li2

(
−(
√

3− v2)2

(
√

3 + v2)2

))
,
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with

η̂ =
1

21/233/4
, C =

6 ln 2− 17√
3

. (3.45)

Furthermore, the coefficients αi and φi are found to vanish for i = 0, 1, 2 which

suggest a universality of the relaxation times from second order hydrodynam-

ics in gauge theory plasmas at (infinitely) strong ’t Hooft coupling. This is

further supported by the equivalence of relaxation rates in other superconfor-

mal theories [101], in which metric warp factors {ai, bi, ci} agree with those for

the N = 4 plasma (3.42)-(3.44) but, in addition, have other fields turned on

at order O(τ−4/3).

3.3 Relaxation of non-local probes

The metric (3.32) is dual to a plasma that is expanding along the x3-

direction, with the transverse plane spanned by ~x⊥ = {x1, x2}. Given this

geometry, with the coefficients (3.42)-(3.44), we would like to study the evo-

lution of non-local observables such as two-point functions, Wilson loops and

entanglement entropy. As studied in section 1.2.4, this problem amounts to

the computation of certain extremal surfaces with fixed boundary conditions.

Before proceeding further, let us make some general remarks. For v → 0

the metric (3.32) reduces to pure AdS and, therefore, in this limit we expect to

recover the known results for the various observables in the vacuum of the CFT

[107]. According to the UV/IR connection [108], the bulk coordinate z maps

into a length scale L ∼ z in the boundary theory. Therefore, in the late-time

regime Lτ−
1
3 ε

1
4 → 0, we expect all the probes to relax to their corresponding
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AdS solution. Our goal is then to extract the leading order correction in the

small parameter χ ≡ Lτ−
1
3 ε

1
4 , which is valid in the final stage of the evolution.

Within this regime, we can explore the behavior as the other dimensionless

parameter, ξ ≡ τ−
2
3 η̂, is varied bearing in mind that ξ must be small enough

so that the hydrodynamical description still applies. Finally, note that for

an expanding plasma there is no notion of thermodynamics given that we are

dealing with an out-of-equilibrium configuration. However, at late times, the

system can be consider near-equilibrium and the energy density provides a

definition of an effective temperature

T ≡
(
8ε/(3π2N2)

) 1
4 ∼ τ−

1
3 ε

1
4 . (3.46)

Thus, as expected, we have the gravity dual of a plasma undergoing cooling

during expansion.4 The regime we are interested in corresponds to the low

temperature regime LT � 1. Hence, we are looking at approximate solutions

in the same spirit as in [109] for the case of a static plasma.

3.3.1 Equilibrium results at late-times

From the holographic point of view, the non-local observables we want

to study involve the computation of extremal surfaces anchored to the bound-

ary. In this section we will review the standard results in AdS5 [107], which

are expected to hold in the τ → ∞ limit. In the Poincare patch the AdS

4Indeed, with the definition (3.46), and taking onto account the thermodynamic relations
(1.31), one finds that s = η̂τ−1/4π, leading to the well-know result of 1/4π for the ratio of
the shear viscosity over the entropy density
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metric is given by

ds2 =
1

z2

(
−dt2 + d~x2 + dz2

)
. (3.47)

We define a boundary region A to be an n-dimensional strip with x1 ∈

[−∆x
2
, ∆x

2
] and xi ∈ [− `

2
, `

2
] for i = 2, ..., n. We assume ` → ∞, so there is

translation invariance along the transverse directions. We want to find the

extremal surface ΓA in the bulk that is anchored on ∂A. For the cases in

consideration, n = 1, 2 and 3, ΓA corresponds to a geodesic, a minimal area

and a minimal volume, respectively. Choosing the coordinates on ΓA to be

σ1 = x1 ≡ x and σi = xi for i = 2, ..., n and parameterizing the surface by a

single function z(x) we get that the area functional is given by

A ≡ Area(ΓA) = `n−1

∫ ∆x
2

−∆x
2

√
1 + z′2

zn
dx . (3.48)

Since there is no explicit dependence on x, the Hamiltonian is conserved,

H =
∂L

∂z′
z′ − L =

−1

zn
√

1 + z′2
≡ −1

zn∗
, (3.49)

where z∗ is defined through x(z∗) = 0. This allows us to obtain an explicit

expression for x(z):

± x(z) =
∆x

2
− zn+1

(n+ 1)zn∗
2F1

[
1
2
, n+1

2n
, 3n+1

2n
, z

2n

z2n
∗

]
, (3.50)

from which we can obtain

z∗ =
nΓ(2n+1

2n
)

√
πΓ(n+1

2n
)
∆x . (3.51)

Finally, the area of the extremal surface can be computed evaluating (3.48)

on-shell,

A = 2`n−1

∫ z∗

z0

dz

zn
√

1− (z/z∗)2n
. (3.52)
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This quantity is UV divergent given that in the limit z0 → 0 the surface

reaches the boundary of AdS. The divergent piece can be isolated by studying

the near-boundary behavior of (3.52):

Adiv = 2`n−1

∫
z0

dz

zn
=


−2 log z0 , n = 1 ,

2`n−1

(n− 1)zn−1
0

, n > 1 .
(3.53)

Subtracting this divergence, we obtain the finite term which is the main quan-

tity we are interested in:

Aren =



2 log ∆x , n = 1 ,

− 8π3

Γ(1
4
)4

`

∆x
, n = 2 ,

−
4π3/2Γ(4

6
)3

Γ(1
6
)3

`2

(∆x)2
, n = 3 .

(3.54)

With the above results at hand, we can now proceed to compute the

late-time τ →∞ expectation value of the various non-local observables. Using

(1.56), (1.61) and (1.64) we find that

〈G(0)〉 =
1

|x− x′|2∆
, (3.55)

〈W (0)〉 = exp

(
4π2
√
λ`

Γ(1/4)4|x− x′|

)
, (3.56)

and

〈S(0)
A 〉 = −

2
√
πΓ(4

6
)3`2N2

Γ(1
6
)3|x− x′|2

, (3.57)

respectively. In these formulas, the subindex “(0)” is just a reminder that

these are the expectation values in the vacuum of the SYM theory.
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3.3.2 Results for first and second order hydrodynamics

In order to extract the first correction at late-times of the various non-

local observables we proceed in the following way. Consider the Lagrangian

density L[x(z);λ] for the extremal surfaces, where x(z) is the embedding func-

tion and λ is a dimensionless parameter such that λ � 1. Of course, here L

is proportional to Area(ΓA) in the full geometry (3.32). We can expand both

L and x(z) as follows:

L[x(z);λ] = L(0)[x(z)] + λL(1)[x(z)] + O(λ2) ,

x(z) = x(0)(z) + λx(1)(z) + O(λ2) .
(3.58)

In principle, the functions x(n)(z) could be obtained by solving the equations

of motion order by order in λ. However, these equations are in general highly

non-linear so in practice it is very difficult (and in most cases impossible) to

obtain analytic results. The key observation is that at first order in λ,

Son-shell[x(z)] =

∫
dzL(0)[x(0)(z)] + λ

∫
dzL(1)[x(0)(z)]

+ λ

∫
dz x(1)(z)

[
����������d

dz

∂L(0)

∂x′(z)
− ∂L(0)

∂x(z)

]
x(0)

+ O(λ2).

(3.59)

Therefore, we only need x(0)(z) to obtain the first correction to the on-shell

action. Fortunately, this is the solution to the embedding in pure AdS, which

is know anallitically. The parameter λ is related to the expansion parameter

in the gauge theory side χ ≡ Lτ−
1
3 ε

1
4 . More specifically, we will see that

λ ∼ χ4 ∼ v4 so in order to extract the first order corrections we need the

action up to the order O(v4). Let us now specialize to the various non-local

observables and make the above derivation more explicit.
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3.3.2.1 Two-point functions

As a first step let us consider a space-like geodesic connecting two

boundary points separated in the transverse plane: (τ, x) = (τ0,−∆x
2

) and

(τ ′, x′) = (τ0,
∆x
2

), where x ≡ x1 and all other spatial directions are identi-

cal. Such a geodesic can be parameterized by two functions τ(z) and x(z),

satisfying the following boundary conditions:

τ(0) = τ0 , x(0) = ±∆x

2
. (3.60)

For such a geodesic, the action is given by

S = 2

∫ z∗

0

dz

z

√
1 + ecx′2 − eaτ ′2 . (3.61)

Of course, in the strict limit v → 0 we expect to recover the action for a

geodesic in AdS. Expanding around v = 0, we get S = S(0) + S(4) + O(v6)

where5

S(0) = 2

∫ z∗

0

dz

z

√
1 + x′2 − τ ′2 , (3.62)

S(4) =
1

3

∫ z∗

0

dz

z

[x′2 + 3τ ′2 − 6 τ ′2 ξ − (x′2 − 3τ ′2)ξ̃2]v4

√
1 + x′2 − τ ′2

, (3.63)

where

ξ ≡ η̂

τ 2/3
, ξ̃2 ≡ 1

2
(1 + log(4))ξ2 . (3.64)

Clearly, the terms in S(4) proportional to ξ and ξ̃2 encode the first and sec-

ond order dissipative hydrodynamics, respectively. At zeroth order, it can be

5Because v = v(z) is a dynamical variable, we introduce a (dimensionless) scaling pa-
rameter through v → ζv and perform a Taylor expansion around ζ = 0. Then, we simply
restore ζ = 1.
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checked that the AdS solution τ(z) = τ0 and x(z) given in (3.50) (for n = 1)

is indeed a solution to the equations of motion derived from S(0). In this limit

the renormalized geodesic length evaluates to:

S(0)
ren = 2 logL , L ≡ ∆x . (3.65)

Taking into account the next-to-leading order term in the action changes the

equations of motion for τ(z) and x(z). However, it is easy to see that the

corrections in these functions will only contribute at higher order in v when

the action is evaluated on-shell. Therefore, at our order of approximation it is

still valid to evaluate S(4) in the AdS solutions. A brief calculation leads to

S(4) =
1

90
χ(1− ξ̃2) , χ ≡ L4τ

− 4
3

0 ε . (3.66)

Putting all together, we find that the late time behavior of the two-point

correlator decays exponentially as

〈G(x1, x
′
1)〉 = 〈G(0)〉 exp

{
−ε∆|x1 − x′1|4

90τ 4/3

(
1− 1

2
(1 + log(4))ξ2

)}
, (3.67)

where 〈G(0)〉 is vacuum result given in (3.55). Note that ξ must be bounded

from above in order for the hydrodynamic description to be valid. Indeed,

from (3.67) we can already see that the approximation breaks down unless

ξ <

√
2

1 + log(4)
' 0.915 . (3.68)

If ξ is bigger than this value, the exponential flips sign and the vacuum value

is reached from below. We will see, however, that the behavior of other ob-

servables constrain even further the maximum value of ξ.
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For longitudinal separation we can proceed in a similar way. In this case

we are interested in a space-like geodesic connecting the two boundary points

(τ0, x3) and (τ0, x
′
3). We can make use of the invariance under translations in

y and parameterize the geodesic by functions τ(z) and y(z) with boundary

conditions

τ(0) = τ0 , y(0) = ±∆y

2
. (3.69)

At the end, we can simply shift our rapidity coordinate y → y+y0 and express

our results in terms of

x3 = τ0 sinh(y0 + ∆y
2

) , x′3 = τ0 sinh(y0 − ∆y
2

) . (3.70)

The action for this geodesic reads

S = 2

∫ z∗

0

dz

z

√
1 + ebτ 2y′2 − eaτ ′2 . (3.71)

Again, expanding in v we get S = S(0) + S(4) + O(v6), where

S(0) = 2

∫ z∗

0

dz

z

√
1 + τ 2y′2 − τ ′2 , (3.72)

S(4) =
1

3

∫ z∗

0

dz

z

[τ 2y′2 + 3τ ′2 − 6(τ 2y′2 + τ ′2)ξ + (5τ 2y′2 + 3τ ′2)ξ̃2]v4√
1 + τ 2y′2 − τ ′2

.(3.73)

The term S(0) is the action of a geodesic in AdS written in proper time and ra-

pidity coordinates. It is straightforward to check that the following embedding

is a solution at zeroth order:

τ(z) =
√
t20 − x(z)2 , y(z) = arccosh

(
t0
τ(z)

)
, (3.74)
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where t0 is a constant and z(x) is the function given in (3.50) (for n = 1). The

relation between (t0,∆x3) and (τ0,∆y) is6

t0 = τ0 cosh(∆y
2

) , ∆x3 = 2τ0 sinh(∆y
2

) . (3.75)

Of course, at zeroth order we have translation invariance in x3 and the on-shell

action reduces to

S(0)
ren = 2 logL , L ≡ ∆x3 . (3.76)

In this case, the first correction to the action is given by

S(4) = f(∆y, ξ)× L4τ
− 4

3
0 ε , (3.77)

where f(∆y, ξ) is given by the dimensionless integrals

f(∆y, ξ) =

∫ 1

0

x5[3x2 + (4− 3x2) cosh(∆y)− 2]

96(1− x2)1/2[x2 sinh2(∆y
2

) + 1]5/3
dx

−ξ
∫ 1

0

x5[x2 + (2− x2) cosh(∆y)]

16(1− x2)1/2[x2 sinh2(∆y
2

) + 1]2
dx (3.78)

+ξ̃2

∫ 1

0

x5[3x2 + (8− 3x2) cosh(∆y) + 2]

96(1− x2)1/2[x2 sinh2(∆y
2

) + 1]7/3
dx .

The two-point correlator for longitudinal separation evaluates to

〈G(x3, x
′
3)〉 = 〈G(0)〉 exp

{
− ε∆|x3 − x′3|4

cosh4(y0)τ 4/3
f(∆y, ξ)

}
, (3.79)

which is manifestly not invariant under translations.

The function f(∆y, ξ) can be evaluated in terms of hypergeometric

functions but we refrain from writing out the explicit result here since it is

6More in general ∆x3 = 2τ0 cosh(y0) sinh(∆y
2 ) for y0 6= 0.
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Figure 3.1: Contours of f(∆y, ξ) for fixed ξ = {0, ..., 0.16} with increments
of 0.02, from top to bottom, respectively. The solid lines correspond to the
results for second order hydrodynamics, while the dashed lines correspond to
the results for first order hydrodynamics. In the latter case, we are neglecting
terms of order O(ξ2).

not particularly illuminating. In figure 3.1 we plot f as a function of ∆y for

some fixed values of ξ. A few comments are in order. First, notice that for

a fixed value of ∆y, f decreases as ξ is increased. This is consistent with

the fact that the viscosity damps the dynamics of the plasma and, therefore,

we expect faster decorrelation when ξ is decreased. For ξ = 0, the function

is monotonically decreasing in ∆y, and interpolates from the 1/90 coefficient

found for the transverse case (3.66) to f(∆y, ξ) ∼ O(e−
2∆y

3 )→ 0 at large ∆y.

For finite ξ, the function is non-monotonous and the small ∆y behavior is

modified to

f(∆y, ξ) =
1

90

(
1− 6ξ +

5

2
(1 + log(4))ξ2

)
+ O((∆y)2) . (3.80)

In order to have a correct physical behavior of the correlator we must impose
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that f(∆y, ξ) > 0 for all values of ∆y and ξ, so we see here that the behavior

for small ∆y in (3.80) constrain further the maximum value of ξ. If we take

into account first order hydrodynamics we can neglect the ξ2 term. In this

case, we obtain the bound

ξ(1) <
1

6
' 0.167 . (3.81)

On the other hand, for second order hydrodynamics we obtain

ξ(2) <
6−

√
26− 10 log(4)

5(1 + log(4))
' 0.211 , (3.82)

which, as expected, increases the range of validity of the hydrodynamic ap-

proximation. Finally, notice that the bound (3.82) is much stronger than the

bound found from the transverse correlator (3.68). Therefore, if ξ < ξ(2) then

(3.68) is automatically satisfied.

3.3.2.2 Wilson loops and entanglement entropy

From the point of view of the bulk, Wilson loops and entanglement en-

tropy are natural generalizations of the two-point functions considered above.

In particular, they involve the computation of extremal surfaces of higher di-

mensions and therefore, the results of Section 3.3.1 (for n = 2, 3) will now

become handy. We will only deal with some loop contours C and regions A

that can be treated analytically in the same way as the two-point correlators.

For such cases, the computations proceed identically as before so we will just

state the final results.

114



For the Wilson loop we consider two cases. The first case consists of a

rectangular loop in the transverse plane, where x1 ∈ [−∆x
2
, ∆x

2
], x2 ∈ [− `

2
, `

2
]

and `→∞. We will call this case W⊥. The second case is also a rectangular

loop but in this case one side is along the longitudinal direction, y ∈ [−∆y
2
, ∆y

2
],

x1 ∈ [− `
2
, `

2
] and `→∞. We will refer to this one as W‖. For the first case we

find an exponential decay

〈W⊥〉 = 〈W (0)〉 exp

{
−ε
√
λ`(∆x1)3

15Γ(3
4
)4τ 4/3

(
1− 1

2
(1 + log(4))ξ2

)}
, (3.83)

where 〈W (0)〉 is the vacuum expectation value of the Wilson loop given in

(3.56). As we can see, the constraint imposed on ξ by this observable is similar

to that imposed by the transverse two-point function (3.68). For the second

case, we find that the exponential is modulated by a new function g(∆y, ξ),

〈W‖〉 ∼ 〈W (0)〉 exp

{
− ε
√
λ`(∆x1)3

cosh3(y0)τ 4/3
g(∆y, ξ)

}
. (3.84)

In the regime ∆y � 1, the function g behaves as

g(∆y, ξ) =
1

60Γ(3
4
)4

(
4− 9ξ +

5

2
(1 + log(4))ξ2

)
+ O((∆y)2) , (3.85)

which imposes weaker constraints with respect to the longitudinal two-point

function. For first order hydrodynamics we obtain

ξ(1) <
4

9
' 0.444 . (3.86)

For second order hydrodynamics the bound is shifted to

ξ(2) <
9

5(1 + log(4))
' 0.754 , (3.87)
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Figure 3.2: Contours of g(∆y, ξ) for fixed ξ = {0, ..., 0.16} with increments
of 0.02, from top to bottom, respectively. The solid lines correspond to the
results for second order hydrodynamics, while the dashed lines correspond to
the results for first order hydrodynamics. In the latter case, we are neglecting
terms of order O(ξ2).

At large ∆y, we find g(∆y, ξ) ∼ O(e−
2∆y

3 ). Some contours of g for fixed values

of ξ (in the range allowed by the longitudinal two-point function) are given in

figure 3.2. Notice that, contrary to the two-point function, in this range the

function g always decreases monotonically in ∆y.

For entanglement entropy we only consider the case where the region A

is a 3-dimensional strip with y ∈ [−∆y
2
, ∆y

2
], xi ∈ [− `

2
, `

2
] (i = 1, 2) and `→∞.

A brief computation leads to

〈SA〉 = 〈S(0)
A 〉
(

1− ε(∆x3)4h(∆y, ξ)

cosh2(y0)τ 4/3

)
, (3.88)

where 〈S(0)
A 〉 is the entanglement entropy of region A in the vacuum state given

in (3.57). The function h(∆y, ξ) behaves in a similar way as g(∆y, ξ), with
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Figure 3.3: Contours of h(∆y, ξ) for fixed ξ = {0, ..., 0.16} with increments
of 0.02, from top to bottom, respectively. The solid lines correspond to the
results for second order hydrodynamics. We are also plotting the results for
first order hydrodynamics on top, but the differences are so small that they
are indistinguishable to the naked eye.

slightly less sensitivity with respect to the viscosity. For small ∆y we find

h(∆y, ξ) =
Γ(1

6
)9

1280π13/2
(1− ξ) + O((∆y)2) , (3.89)

whereas for large ∆y, h(∆y, ξ) ∼ O(e−
2∆y

3 ). The constraint on ξ is even

weaker in this case. For first order hydrodynamics we obtain ξ(1) < 1, and

since there is no correction of order O(ξ2) in (3.89), the bound for second

order hydrodynamics is equal to the one imposed by first order hydrodynamics

ξ(2) < 1. The full function h(∆y, ξ) have corrections of order O(ξ2) for finite

∆y, but they are very small and basically indistinguishable to the naked eye.

Some contours of h for fixed ξ are given in figure 3.3.
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3.4 Conclusions

In this Chapter we have studied a hydrodynamical model of heavy-ion

collisions in the framework of the AdS/CFT correspondence. This model dif-

fers from the one studied in the previous Chapter because the system here

evolves towards the vacuum of the theory, instead of a thermalized state. We

paid particular attention to the late-time behavior of various non-local ob-

servables, including effects of first and second order dissipative hydrodynam-

ics. More specifically, we gave analytic expressions for the evolution of certain

two-point functions, Wilson loops and entanglement entropies in the regime

χ = Lτ−
1
3 ε

1
4 � 1 (where L is the typical size of the probe) as a function of

ξ = τ−
2
3η0. Our results lead to universal formulas for the relaxation of such

probes in conformal field theories with a gravity dual formulation in the limit

of infinite coupling.

The two-point correlators and Wilson loops are found to relax exponen-

tially in χ whereas the entanglement entropy equilibrates at a much slower rate

(as a power of χ). Hence, it is the entanglement that sets the relevant timescale

for the approach to equilibrium, which is consistent with the known results of

[99]. Another interesting result is the dependence of the observables on the

longitudinal variables. We find that, in such cases, the leading behaviour of

the observables is modulated by functions of ∆y and ξ. For fixed ∆y, these

functions decrease monotonically in ξ, which is consistent with the dissipative

nature of the viscosity. For fixed ξ we also find a monotonic behavior for the

Wilson loop and entanglement entropy, but not for the two-point function.
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This is interpreted as a non-trivial prediction from AdS/CFT. Indeed, one

would naively expect a higher correlation for points with similar rapidities,

which is does not hold for some range of the parameter space. Finally, it is

worth pointing out that our results point to a break down of the first order

hydrodynamics for ξ > 0.211, which is set by the behavior of the longitudinal

two-point function at small ∆y.

The results presented here could be extended in a number of ways. One

interesting idea would be to push the hydrodynamic expansion to arbitrary

high order and study numerically the evolution of the constraint set by the

two-point functions. In particular, it is known that the hydrodynamic gradient

expansion has a zero radius of convergence(!) [120] so one might wonder about

the evolution of the bound (3.82). We could also generalize our findings to

finite coupling by studying string theory α′ corrections in the dual description

of an expanding SYM plasma. Even though the universal behavior of the

relaxation rates is expected to break down when considering finite λ, it would

be of interest to investigate — at least for the SYM theory — the effects of the

‘t Hooft coupling on the range of validity of the hydrodynamic approximation.
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Chapter 4

Dynamics in global AdS: quantum revivals

4.1 Introduction

Relaxation processes of quantum systems with finite number of degrees

of freedom have been studied for many years, both from a theoretical and a

experimental perspective, but we are still far from reaching a general consensus

on the physical mechanism that governs their evolution and possible outcomes.

On one hand, ergodic theory stipulates that many body systems perturbed

away from equilibrium quickly approach to a final state where equipartition is

expected. However, there are known cases where this conclusion does not hold

— see [121] for a review on this topic. This surprising behavior has been found

in spin chain systems [122, 123], conformal field theories [124, 125], and has

been realized experimentally in cold atom experiments [126, 127]. In all these

systems, the lack of ergodicity has been associated with integrability and/or

additional conservation laws [128].

At the classical level, a similar phenomenon was found for the first time

by Fermi, Pasta and Ulam (FPU) in their seminal work [129, 130]. FPU stud-

ied numerically a collection of nonlinear harmonic oscillators and expected to

see thermalization. However, they observed that for a set of initial conditions
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the presence of nonlinearities was not enough to trigger an ergodic behavior

at late times. What they found in such cases was remarkable: the system

evolved towards a state of coherent oscillations that repeated over time and

never thermalized. They suspected that this apparent paradox was was some-

thing deep. In fact, their study lead to a set of ideas that rapidly evolved into

two new areas of dynamical systems: integrability and chaos.

Very recently, there has been a particular interest in the possibility of

realizing such states in the context of the AdS/CFT correspondence [131, 132].

Since thermalization in the holographic context corresponds to the study of

black hole formation in AdS, the question of whether small perturbations can

evolve towards a completely oscillatory state or must necessarily collapse into

a black hole is equivalent to the question of whether AdS is stable at the non-

linear level. This is a subject of great interest over which there have been an

incessant debate in the past few years [133, 134, 135, 136, 137, 138, 139, 140,

141, 142, 143].

The purpose of this Chapter is to argue that such oscillatory states

can in fact be constructed as a small perturbation over global AdS. Indeed, as

shown in [124], any CFT on a sphere supports states of completely undamped

collective oscillations so it is natural to expect that such states also exist for

theories with a gravity dual. From the field theory perspective, the existence

of such permanently oscillating states is due to the existence of infinitely many

conserved charges in CFT generated by conformal Killing vectors, and is guar-

anteed by SL(2,R) subalgebras of the conformal algebra; these subalgebras

121



are formed from the Hamiltonian and combinations of operators which act as

ladder operators for energy eigenstates. Thus, from this point of view it is

not surprising that any CFT, regardless of its interactions, admits states that

undergo undamped oscillations.

From the gravity perspective, the first detailed study on the dynami-

cal evolution of small perturbations over global AdS was performed by Bizon

and Rostworowski in [133]. They used tools of weakly nonlinear perturbation

theory and showed that for arbitrarily small departures from AdS, the evolu-

tion of a massless, spherically symmetric scalar field always leads into black

hole formation. At the linear level, the system is characterized by a set of

undamped normal modes with frequencies ωj = 2j+3. Due to the presence of

a high number of resonances, they concluded that the nonlinear effects always

lead to a turbulent cascade of energy to high mode numbers, thus, making

gravitational collapse inevitable.

The same problem was studied from a numerical point of view by

Garfinkle and Pando Zayas in [134, 136]. They found that for small val-

ues of the initial amplitude of the scalar field there is no black hole forma-

tion, rather, the scalar field performs undergoes a periodic oscillatory motion.

However, their numerical scheme was questioned in [135]. At the same time

Buchel, Lehner and Liebling showed in [137] that the argument of [133] actu-

ally breaks down if the mode amplitudes fall off sufficiently rapidly for high

mode numbers. This conclusion was later elaborated on in [138], implementing

a modified perturbation theory to properly take into account energy transfer
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between modes.

In this Chapter we will implement the tools developed in [138] to

sharpen their results and to extend them to a wider variety of scenarios. In

Section 4.2 we start with a brief review of [124], showing that CFTs on a

sphere support a set of states undergoing undamped collective oscillations. In

addition, we discuss the holographic perspective and point out some properties

of global AdS that allow such oscillatory solutions. In Section 4.3 we explain

the perturbative formalism introduced in [138] and we obtain several families

of undamped solutions for massive scalar fields. This provides further evi-

dence in support of a recent numerical study on the collapse of massive scalar

fields [144]. In Section 4.4 we compute the entanglement entropy of spherical

caps and characterize its behavior as we change the mass of the scalar field.1

We propose that these entanglement entropies can be thought of as conserved

charges of the system since they split the Hilbert space into sectors that do

not mix under time evolution. We close in Section 4.5 with some final remarks

and conclusions.

4.2 Exact collective oscillations in CFTs on a sphere

To motivate the problem let us review the oscillating states constructed

in [124]. We assume that the CFT lives on (d − 1)-sphere and we measure

energies in units of its inverse radius R−1, which is set to unity. The conformal

1In the dual field theory, different masses of the scalar field correspond to perturbing the
underlying CFT with operators of different conformal dimension.
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algebra acting on the Hilbert space of the CFT contains d non-independent

copies of the SL(2,R) algebra,

[H,Li+] = Li+ , [H,Li−] = −Li− , [Li+, L
i
−] = 2H , (4.1)

where L± are ladder operators and H is the Hamiltonian operator. Here

i = 1...d is an index labeling directions in the Rd in which Sd−1 is embedded

as the unit sphere. Also, notice that there is no implicit sum in the last

equation of (4.1).

The construction of the oscillating states make use of the SL(2,R)

algebras as follows. Let |ε〉 be an eigenstate of H, H|ε〉 = ε|ε〉. Now, consider

a state vector |ψ〉 build up on |ε〉 in analogy with coherent or squeezed states

in a harmonic oscillator,

|ψ(t = 0)〉 = NeαL++βL−|ε〉 , (4.2)

where L+ = Li+ and L− = Lj− for some i, j ∈ {1, ..., d}, N is a normalization

constant, and α and β are complex numbers.2 Using the Baker-Campbell-

Hausdorff formula and the commutation relations (4.1), it can be checked that

the above state evolves in time as follows

|ψ(t)〉 = Ne−iHteαL++βL− |ε〉 = Ne−iεteα(t)L++β(t)L−|ε〉 , (4.3)

where α(t) = αe−it and β(t) = βeit. We should keep in mind that we are

working in units of the radius of the sphere R. Thus, the state |ψ〉 above is

found to oscillate with frequency 1/R.

2The possible values of α and β are constrained from normalizability [124].
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More in general, the time evolution of a state

|ψ(t = 0)〉 = f(L1
+, ..., L

d
+, L

1
−, ..., L

d
−)|ε〉 (4.4)

where f is any regular function of the 2d variables Li+, L
j
−, 1 ≤ i, j ≤ d, is

given by replacing Li± with Li±e
±it ∀ i. Bearing this in mind, then, it is easy

to come up with states with different frequencies. These can be constructed

by choosing the function f with the correct combination of ladder operators.

For instance, one function that produces an oscillating state with frequency

2/R is given by3

f =
∞∑
m=0

1

(m!)2

(
αL2

+ + βL2
−
)m

, (4.5)

where L+ can be any of Li+, 1 ≤ i ≤ d, and similarly for L−. Finally, notice

that not every function f produces an oscillating state. One simple example

is f = L+, which merely produces another energy eigenstate.

The states constructed above are said to be built up on |ε〉. In par-

ticular, we can assume that |ε〉 = |0〉 in which case the oscillatory states are

built up on top of the CFT vacuum. One can imagine more general situations

in which |ε〉 is replaced by a nonstationary state
∑
i

ci|εi〉. However, since the

different components evolve in time with distinct phases, the periodic behavior

is not guaranteed. Another option is to replace |ε〉 with a stationary density

matrix ρ, which evolves in time with a phase A

[H, ρ] = Aρ . (4.6)

3 The coefficient (m!)2 in (4.5) is designed to give the state a finite norm.
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We can consider, for instance, energy eigenstates for which ρ = |ε〉〈ε|, or

thermal density matrices ρ = e−βH . Regardless of the choice, one finds that

for an initial ensemble of the form

ρ̃(t = 0) = NeαL++βL−ρeβ
∗L++α∗L− , (4.7)

its time evolution leads also to periodic oscillations

ρ̃(t) = Ne−iAteα(t)L++β(t)L−ρeβ(t)∗L++α(t)∗L− , (4.8)

where, again, α(t) = αe−it and β(t) = βeit. These states are said to be built

up on ρ, in the same way |ψ〉 was built up on |ε〉.

The authors of [124] gave a specific example for the holographic dual of

an oscillatory state built up on a thermal density matrix. The bulk geometry

that corresponds to such a state was constructed by applying a “conformal

boost” to a regular AdS black hole, producing a “bouncing black hole” back-

ground. The conformal boost they considered is the equivalent to a conformal

transformation in the boundary, eαL++βL− , and corresponds to a bulk diffeo-

morphism that falls off with the appropriate power to change the state of the

dual CFT. Several observables such as the one point function of the stress

energy tensor and the entanglement entropy of spherical regions were shown

to display oscillations around the corresponding mixed state.

We will show that it is also possible to obtain gravitational backgrounds

that are arbitrarily close to AdS and display stable periodic oscillations. Since

pure AdS is dual to the vacuum of the CFT, we argue that such geometries

should be identified as the holographic dual of states that are built up on |0〉.

126



Before proceeding further let us review some basic properties of AdS

space that are crucial for the construction of such oscillatory states. Usually,

the AdS/CFT correspondence is discussed in terms of a CFT living on a R1,d−1

space, in which case the bulk geometry is naturally given by the Poincaré

patch of AdS (1.7). However, using a different foliation of the bulk metric it is

possible to discuss the same duality for CFTs living on a different background.

To illustrate this point let us consider the global AdS metric,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1 , f(r) ≡ 1 +
r2

L2
. (4.9)

The metric of the dual CFT is given by the coefficient of the non-normalizable

mode as r →∞. From (4.9) one finds that

ds2
CFT = −dt2 + L2dΩ2

d−1 , (4.10)

which is just the direct product R × Sd−1. The key observation here is that

there is a conformal embedding of R1,d−1 to R × Sd−1. Under the map a

combination of the original generator of time translations and a generator of

special conformal transformations is mapped to the the new Hamiltonian (i.e.

the generator of time translations along the R factor) in R× Sd−1.

The duality in global AdS is qualitatively different for several reasons.

One crucial difference is the radius of the Sd−1 provides a scale against which

the energy and other physical quantities in the CFT can be measured. For

example, if we study field theory at finite temperature T the system can un-

dergo a phase transition (de-confinement transition) which can be associated
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with the transition between an AdS black hole and a thermal AdS geometry

(Hawking-Page transition). In the Poincaré patch, such phase transition does

not appear and the field theory is always in the high temperature phase. In

this case, the temperature can simply be scaled out since there is no other

scale to compare with.

One might expect that the physics in out-of-equilibrium scenarios to be

different as well. For instance, it has been shown that in the Poincaré patch the

evolution of small perturbations over AdS always leads to black hole collapse

[67]. We can understand this as follows: let us imagine an observer sending a

signal from the boundary of AdS into the bulk. If we let the system to evolve,

the signal will necessarily scape from the Poincaré patch at a later time — see

Figure 4.1. From the observer’s point of view, the signal is absorbed by the

Poincaré horizon, and the system thermalizes. Since there is no energy gap

in the spectrum of planar AdS black holes, then, the only possible outcome

will necessarily be black hole formation. As discussed before, there are several

indications that suggest that this may not be true in global AdS. Indeed, if

we repeat the same experiment without restricting to the Poincaré patch, the

signal could actually reach the opposite side of the boundary, bounce back and

be collected again by the observer. However, if the energy of the signal emitted

is large enough, black hole collapse might occur even before this process is

completed. At any rate, we can already see that there is a clear distinction

between the physics in the Poincaré patch and in global AdS. We will now

proceed to the setup of the problem.
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(a) (b)

Figure 4.1: (a) Pictorial representation of the Poincaré patch of AdS. Any signal
sent from the boundary eventually escapes from the Poincaré patch and never comes
back. When the signal is absorbed by the Poincaré horizon the system thermalizes.
(b) Conformal diagram of global AdS. In this case, signals that are sent from the
boundary can reach the opposite side and bounce back into the bulk. If the energy
of the signals is small enough, this process can be repeated periodically over time
and thermalization might be avoided.

4.3 The AdS story: setup of the problem

We will study the dynamics of a massive scalar coupled to gravity in an

asymptotically AdS space. For concreteness we will focus on AdS4 (so the dual

CFT is (2 + 1)-dimensional), but we expect our results apply more generally,

at least at the qualitative level.

The starting point is the following action:

S =
1

16πGN

∫
M4

d4x
√
−g
(
R− 6− 2(∂φ)2 − 2m2φ2

)
, (4.11)

where φ is a real scalar and

M4 = ∂M3 × I , ∂M3 = R× S2 , I =
{
x ∈

[
0, π

2

]}
. (4.12)
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Notice that in the action (4.11) we have directly set the AdS radius L to unity.

It is important to respect the topology of the bulk since we want to

focus on situations where the boundary theory lives on a two-sphere. In order

to do so, we propose the following ansatz for the metric,

ds2 =
1

cos2 x

(
−Ae−2δdt2 + A−1dx2 + sin2 x dΩ2

2

)
, (4.13)

where x is related to the usual radial coordinate r through r ≡ tanx. There-

fore, in order to respect global AdS boundary conditions we must require that

A→ 1 and δ → 0 as x→ π/2. We will also assume spherical symmetry. This

implies that the metric functions A and δ, and the scalar field φ, depend only

on the radial coordinate x ∈ [0, π
2
] and time x ∈ (∞,∞).

The equation of motion for φ is given by

φ̈ =

(
Ȧ

A
− δ̇

)
φ̇+A2e−2δ

(
2

sinx cosx
+
A′

A
− δ′

)
φ′+A2e−2δφ′′−m2Ae

−2δ

cos2 x
φ ,

(4.14)

while the Einstein equations reduce to the constraints

A′ =
1 + 2 sin2 x

sinx cosx
(1− A)− sinx cosxA

(
Φ2 + Π2

)
−m2 tanxφ2, (4.15)

δ′ = − sinx cosx
(
Φ2 + Π2

)
. (4.16)

Here we have defined Π ≡ eδφ̇/A and Φ ≡ φ′.

At this point it is worth recalling that in (3 + 1)-dimensions the mass

of the scalar field is related to the conformal dimension of the dual operator

through

m2 = ∆(∆− 3) or ∆ =
3

2
±
√

9

4
+m2 . (4.17)
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In particular, the minus sign in (4.17) is allowed for m2 < 0 as long as the

mass is above the Breitenlohner-Freedman bound [145]

m2 ≥ m2
BF = −9

4
. (4.18)

In these cases there is an ambiguity in the identification of the source of the

dual operator and an “alternative quantization” is allowed. For concreteness,

we will focus in the following four cases:

• Marginal operator with (m2,∆) = (0, 3).

• Relevant operator with (m2,∆) = (−2, 1), “alternative quantization”.

• Relevant operator with (m2,∆) = (−2, 2), “standard quantization”.

• Irrelevant operator with (m2,∆) = (4, 4).

We expect all other cases to be qualitatively equivalent to one of the above,

depending on the conformal dimension of the dual operator.

4.3.1 Two time formalism

Following the work of [138], we now define the slow time τ = ε2t, where

ε� 1 is a dimensionless parameter, and expand the fields as follows:

φ = εφ(1)(t, τ, x) + ε3φ(3)(t, τ, x) + O(ε5) , (4.19)

A = 1 + ε2A(2)(t, τ, x) + O(ε4) , (4.20)

δ = ε2δ(2)(t, τ, x) + O(ε4) . (4.21)
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We keep both, the rapid time t and the slow time τ , and treat them as inde-

pendent variables. The reason is that by doing so we can extend the regime

of validity of the naive perturbation theory, which usually breaks down at

t ∝ 1/ε2, to timescales of order t ∝ τ/ε2 ∝ 1/ε4.

To obtain the perturbative equations we substitute the expansions

(4.19)–(4.21) into (4.14)–(4.16) and replace ∂t → ∂t + ε2∂τ . Then, we expand

the equations at different orders in ε.

At order O(ε), we obtain the wave equation for a massive scalar in pure

AdS, namely

φ̈(1) = φ′′(1) +
2

sinx cosx
φ′(1) −

m2

cos2 x
φ(1) ≡ −Lmφ(1) , (4.22)

where ˙≡ ∂t. In order to solve this equation we perform a Fourier decomposi-

tion and obtain the eigenvalues and eigenvectors (“oscillons”) of the operator

Lm. The general solution can be cast in terms of hypergeometric functions,

and is given elsewhere — see e.g. [146]. Here we will focus on the particular

cases mentioned in the previous section. Explicitly, we expand φ(1) as

φ(1)(t, τ, x) =
∞∑
j=0

(
Aj(τ)e−iωjt + Āj(τ)eiωjt

)
ej(x) , (4.23)

where the ωj and the functions ej(x) are given in Table 4.1. The constants dj

are normally chosen such that the oscillons form an orthonormal basis, i.e.

(ei, ej) =

∫ π/2

0

ei(x)ej(x) tan2 x dx = δij , (4.24)

but they can be reabsorbed in the Aj(τ), if desired.
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(m2,∆) ω2
j ej(x)

(0, 3) (2j + 3)2 dj cos3 x 2F1

(
−j, 3 + j;

3

2
; sin2 x

)
(−2, 1) (2j + 1)2 dj

sin((2j + 1)x)

tanx

(−2, 2) (2j + 2)2 dj
sin((2j + 2)x)

tanx

(4, 4) (2j + 4)2 dj cos4 x 2F1

(
−j, 4 + j;

3

2
; sin2 x

)
Table 4.1: Eigenvalues and eigenvectors of the massive wave equation (4.22).

At order O(ε2) the constraints (4.15)-(4.16) can be integrated to obtain

A(2)(x) = −cos3 x

sinx

∫ x

0

dy

(
φ′2(1)(y) + φ̇2

(1)(y) +
m2

cos2 y
φ2

(1)(y)

)
tan2 y , (4.25)

δ(2)(x) = −
∫ x

0

dy
(
φ′2(1)(y) + φ̇2

(1)(y)2
)

sin y cos y . (4.26)

Finally, at order O(ε3), we obtain the following equation for φ(3):

φ̈(3) + Lmφ(3) + 2∂τ φ̇(1) = Sm(t, τ, x) , (4.27)

where the source term is given by

Sm = (Ȧ(2)− δ̇(2))φ̇(1)−2(A(2)− δ(2))Lmφ(1) + (A′(2)− δ′(2))φ
′
(1) +

m2

cos2 x
A(2)φ(1) .

(4.28)

The source Sm contains resonant terms that might lead to secular growths in

φ(3). We can deal with these resonances as follows [138]. First, we project onto

an individual oscillon mode:(
ej, φ̈(3) + Lmφ(3)

)
− 2iωj

(
∂τAje

−iωjt − ∂τ Ājeiωjt
)

= (ej, Sm) . (4.29)
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For all triads (j1, j2, j3) resonances in the right-hand side occur at ωj =

ωj1 + ωj2 − ωj3 . These resonances may be avoided by taking advantage of

the second term in the left-hand side of (4.29). Denoting by f [ωj] the part of

f proportional to eiωjt, we set

− 2iωj∂τAj = (ej, Sm)[−ωj] ≡
∑
kln

S
(j)
klnĀkAlAn , (4.30)

where S
(j)
kln are real constants representing different resonance contributions.

The right hand side of (4.30) is a cubic polynomial in Aj and Āj. Thus, we

have obtained a set of coupled first order differential equations in τ for Aj,

which we shall refer to as the TTF equations.

4.3.2 Solutions to the TTF equations

4.3.2.1 Single-mode solutions

In practice, it is necessary to truncate the TTF equations at some finite

j = jmax. Here we will illustrate the method by obtaining the explicit solutions

for a single-mode truncation, jmax = 0.

Consider first the massless case (m2,∆) = (0, 3). For jmax = 0 we have:

φ(1) = 4

√
2

π

(
A0e

−3it + Ā0e
3it
)

cos3(x) . (4.31)

We can easily perform the integrals in (4.25)-(4.26) to obtain

A(2) =
6 cos3 x

π sinx

[
2
(
A2

0e
−6it + Ā2

0e
6it
)

sin3(2x) + 3|A0|2 (sin(4x)− 4x)

]
, (4.32)
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and

δ(2) =
3 sin2 x

4π

[ (
A2

0e
−6it + Ā2

0e
6it
)

(90 + 77 cos(2x) + 22 cos(4x) + 3 cos(6x))

−16|A0|2 (15 + 8 cos(2x) + cos(4x))

]
, (4.33)

respectively. Finally, from (4.30) we obtain the differential equation

iπ∂τA0 − 153A0|A0|2 = 0 , (4.34)

which has solution

A0(τ) = A0(0)e−
153
π
i|A0(0)|2τ . (4.35)

We can repeat the exercise for the other three cases following the steps

outlined above. The general observation is that, by solving (4.30), the res-

onances are absorbed into frequency shifts. In Table 4.2 we summarize our

findings for all cases in consideration.

(m2,∆) φ(1)(t, x) ω̃0

(0, 3) 8

√
2

π
cos(ω̃0t) cos3 x 3 + 153ε2

π

(−2, 1)
4√
π

cos(ω̃0t) cosx 1 + 10ε2

π

(−2, 2)
8√
π

cos(ω̃0t) cos2 x 2 + 48ε2

π

(4, 4)
32√
5π

cos(ω̃0t) cos4 x 4 + 9216ε2

25π

Table 4.2: Single-mode solutions for φ(1), normalized such that A0(0) = 1.

Finally, we can also consider single-mode solutions where the relevant mode

is not necessarily the j = 0. In all these cases the conclusion we obtain is

135



the same: the resonances in the the scalar field that would potentially lead to

secular growths at order O(ε3) are reabsorbed into frequency shifts.

4.3.2.2 Two-mode solutions

Going beyond single-mode solutions has some interesting physical im-

plications [138]: (quasi-)periodic solutions, non-linear mixing for metric back-

reaction and energy cascades among modes. Some of these effects are already

visible by studying two-mode solutions which, at the same time, are the sim-

plest generalization. Therefore, we will devote the present section to study

these solutions. In the next section, we will attempt to draw more general

lessons for multiple-mode solutions with arbitrary jmax > 1.

Let us start with the massless case (m2,∆) = (0, 3). For jmax = 1 the

TTF equations lead to the following system of partial differential equations:

iπ∂τA0 − 153A0|A0|2 − 585A0|A1|2 = 0 ,

iπ∂τA1 − 159A1|A0|2 − 1175A1|A1|2 = 0 .
(4.36)

We take the following ansatz:

Aj = αj exp(−iβjτ) , (4.37)

where αj, βj ∈ R are independent of τ . Plugging (4.37) into (4.36) the system

reduces to a set of linear equations in βj and quadratic in αj:

πβ0 − 153α2
0 − 585α2

1 = 0 ,

πβ1 − 159α2
0 − 1175α2

1 = 0 .
(4.38)
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The shifts in frequency, βj, can be easily solved in terms of the amplitudes αj:

β0 =
153α2

0 + 585α2
1

π
,

β1 =
159α2

0 + 1175α2
1

π
.

(4.39)

We will define the quantity β01 as the ratio between the frequency shifts,

β01 =
β0

β1

=
153α2

0 + 585α2
1

159α2
0 + 1175α2

1

. (4.40)

If β01 ∈ Q, i.e. if the ratio between the two shifts is a rational number, then

the full solution will be periodic in τ . If β01 is irrational, then the solution will

be quasi-periodic. We will also normalize the solutions by imposing that4

∑
i

α2
i = α2

0 + α2
1 = 1 . (4.41)

Solving (4.40)-(4.41) we obtain:

α0 = ±

√
5(235β01 − 117)

8(127β01 − 54)
, α1 = ±

√
3(51− 53β01)

8(127β01 − 54)
. (4.42)

In Figure 4.2 we show the behavior of α0 and α1 as a function of β01. Finally,

we can repeat the same exercise for the massive cases. The solutions for such

cases are summarized in Table 4.3.

The general solution for a two-mode truncation (4.23) can be easily

reconstructed from the oscillon functions (see Table 4.1) and the coefficients

(4.37), taking into account the solutions (4.39) and (4.42). Here, it is worth

4Given the scaling symmetry Aj(τ)→ εAj(τ/ε
2), changing this normalization is equiva-

lent to a rescaling of ε.
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Figure 4.2: Solutions for α0 and α1 as a function of β01, for the case (m2,∆) = (0, 3).
Here we have chosen values of β01 in the range 117

235 < β01 <
51
53 so that α2

i > 0 ∀ i.
In the extremal values either α0 = 0 or α1 = 0, which means that we go back to a
single-mode solution.

emphasizing that, although the solution for the scalar field is a linear super-

position of oscillons (for any jmax > 0), it is clear from (4.25) and (4.26) that

the first order backreaction in the metric will generally contain mixed terms

between any pair of modes. The metric solution is then a nonlinear super-

position of eigenmodes. This will play a crucial role in the computation of

entanglement entropy, later in Section 4.4

4.3.2.3 Periodic and quasi-periodic solutions for jmax > 1

In general, both the amplitude and phase of the coefficients Aj can

depend of τ in a nontrivial way. However, since we are interested in finding

periodic solutions to the equations of motion we will focus on the ansatz (4.37)

for which the energy of each mode is constant, Ej = ω2
j |Aj|2.

For more than two modes, however, the resulting TTF equations are

more subtle given that for general αj, βj there are τ -dependent terms which
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(m2,∆) βj α2
j

(0, 3)
β0 =

153α2
0 + 585α2

1

π

β1 =
159α2

0 + 1175α2
1

π

α2
0 =

5(235β01 − 117)

8(127β01 − 54)

α2
1 =

3(51− 53β01)

8(127β01 − 54)

(−2, 1)
β0 =

10α2
0 + 90α2

1

π

β1 =
26α2

0 + 582α2
1

3π

α2
0 =

3(97β01 − 45)

2(139β01 − 60)

α2
1 =

15− 13β01

2(139β01 − 60)

(−2, 2)
β0 =

48α2
0 + 272α2

1

π

β1 =
152α2

0 + 1656α2
1

3π

α2
0 =

3(69β01 − 34)

4(47β01 − 21)

α2
1 =

18− 19β01

4(47β01 − 21)

(4, 4)
β0 =

64512α2
0 + 187216α2

1

175π

β1 =
467488α2

0 + 2627636α2
1

1225π

α2
0 =

656909β01 − 327628

540037β01 − 214732

α2
1 =

56(2016− 2087β01)

540037β01 − 214732

Table 4.3: Coefficients αj , βj for two-mode solutions normalized according to (4.41).

imply that the system might not be self-consistent. To cancel these terms we

impose the constraint

βj = β0 + j(β1 − β0) , ∀ j > 1 , (4.43)

which leave us with jmax + 1 algebraic equations:

− 2ωjαj[β0 + j(β1 − β0)] =
∑
kln

S
(j)
klnαkαlαn , (4.44)

and jmax + 3 unknowns (β0, β1, {αj}). We will normalize the solutions as in

(4.41) and parametrize the solutions with respect to the ratio β01 = β0/β1. A

few comments are in order. First notice that, because of (4.43), other ratios
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are constrained to be

β0j =
β0

βj
=

β01

β01 + j(1− β01)
, ∀ j > 1 . (4.45)

This implies that, if β01 is a rational number, then β0j ∈ Q ∀ j > 1! In

other words, the solution is periodic if and only if β01 ∈ Q, otherwise it is

quasi-periodic. Finally, it is worth pointing out that for general jmax > 1 there

might be multiple solutions for the coefficients αj, leading to many physical

branches.

Point aside, then, the conclusion here that it is indeed possible to con-

struct oscillatory solutions with arbitrary number of modes! Moreover, since

we can take ε arbitrarily close to zero, it is natural to identify the corresponding

geometries as the holographic dual of states in the CFT that display periodic

oscillations over the CFT vacuum.

4.4 Evolution of entanglement entropy

We will now proceed to compute the entanglement entropy and use it

as a tool to characterize the evolution of the system. We will consider circular

caps in the boundary theory,

A = {(tb, θ, ϕ), |θ| ≤ θb} , (4.46)

where θ and ϕ denote the polar and azimuthal angles on the sphere, respec-

tively, and tb stands for the boundary time. As explained in Section 1.2.4,

in order to compute the entanglement entropy of such a region, we have to
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find the bulk surface γA with minimal area and boundary condition given by

(4.46). Exploiting the axial symmetry of the problem, γA can be chosen as a

surface of revolution which only depends on the polar angle of the S2,

Xµ = {t(θ), x(θ), θ, ϕ} , (4.47)

satisfying

t(θb) = tb , x(θb) =
π

2
, t′(0) = x′(0) = 0 . (4.48)

For a bulk metric of the form (4.13), the area of γA is given by

A(tb, θb) ≡ Area (γA) = 2π

∫ θb

0

dθ sin θ

√
tan2 x

A cos2 x
(x′2 − A2e−2δt′2) + tan4 x .

(4.49)

Our goal is to solve the equations of motion that follow from (4.49) subject

to the boundary conditions (4.48) and then evaluate the area “on-shell”. In

general, the equations of motion for t(θ) and x(θ) are highly non-lineal and

the problem has to be solved numerically. However, in the TTF formalism,

the ε-expansion implies that the background remains very close to AdS4 and

therefore a perturbative approach is reliable. In the following I will briefly

explain the general idea.

4.4.1 Perturbative calculation

Let us write the bulk metric in the following form:

gµν = g(0)
µν + g(2)

µν + O(ε4), (4.50)

where g
(0)
µν represents the metric of pure AdS4 and g

(2)
µν is the leading per-

turbation due to the backreaction, which is of order O(ε2). Using the above
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expansion, we compute the minimal area perturbatively (see e.g. [81]):

A(tb, θb) = 2π

∫ θb

0

dθ

√
det γ

(0)
ab

(
1 +

1

2
Tr
[
γ(2)(γ(0))−1

]
+ O(ε4)

)
, (4.51)

where

γ
(0)
ab = ∂aX

µ∂bX
νg(0)
µν , γ

(2)
ab = ∂aX

µ∂bX
νg(2)
µν , (a, b) = (θ, ϕ) . (4.52)

In particular, the embedding functions Xµ at this order are given by the

solutions pure AdS4. Notice the useful fact that we do not need to know the

corrections to γA due to the perturbed metric to calculate (4.51)!

The leading order term in (4.51) is independent of tb, so we will focus

on the difference:

∆A(tb, θb) ≡ A(2)(tb, θb)−A(0)(θb) = π

∫ θb

0

dθ

√
det γ

(0)
ab Tr

[
γ(2)(γ(0))−1

]
.

(4.53)

Notice that this subtraction automatically get rids of the UV divergences, so

we do not need to regularize (4.53). A brief calculation yields

∆A(tb, θb) = −πε2
∫ θb

0

dθ
sin θ tanx

(
A(2)x

′2 +
(
A(2) − 2δ(2)

)
t′2
)

cos(x)
√
x′2 − t′2 + sin2 x

. (4.54)

Finally, we employ the embedding solutions for global AdS4 (see e.g. [147]):

t(θ) = tb , x(θ) = arctan

[ √
2 cos θb√

cos(2θ)− cos(2θb)

]
. (4.55)

Substituting back in (4.54) we obtain

∆A(tb, θb) = −2
√

2πε2 cos2 θb
sin θb

∫ θb

0

dθ
A(2) sin3 θ

(cos(2θ)− cos(2θb))
3/2

, (4.56)

where it is understood that A(2) must be evaluated at tb and x(θ).
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4.4.2 Results for single-mode solutions

We can get relatively simple expressions for the single-mode solutions

presented in section (4.3.2.2). Let us first consider the (m2,∆) = (0, 3) case.

We only need A2(x, t), which is given by

A(2)(t, x) =
6 cos3 x

π sinx

[
4 cos(2ω̃0t) sin3(2x) + 3 (sin(4x)− 4x)

]
, (4.57)

where

ω̃0 ≡ 3 +
153ε2

π
. (4.58)

We can distinguish two terms in the entanglement entropy, one being time-

dependent and the other one time-independent:

∆A(tb, θb) = ∆A(A)(tb, θb) + ∆A(B)(θb) . (4.59)

Evaluating (4.57) at (4.55) and plugging it back into (4.56) we explicitly obtain

∆A(A)(tb, θb) = −384ε2

35
sin6 θb cos(2ω̃0tb) , (4.60)

and

∆A(B)(θb) =
6ε2

5 sin θb

(
45π − 80 sin θb − 15 sin(3θb) + sin(5θb)

− 120 arctan(cot θb) cos θb + 15π cos(2θb)

)
, (4.61)

respectively. A few remarks are in order. First notice that in spite of the sin θb

term in the denominator of (4.61), the limit θb → 0 gives ∆A(tb, θb → 0) = 0,

as expected. Second, both ∆A(A)(tb, θb) and ∆A(B)(θb) increase monotonically

in θb, in the range θb ∈ (0, π/2). Outside of this range and given the symmetry
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of the problem, we have that ∆A(tb,
π
2

+ ϑ) = ∆A(tb,
π
2
− ϑ) for ϑ ∈ (0, π/2).

In particular, this implies that SA = SAc . Therefore, at least at order O(ε2),

we can safely say that these states are indistinguishable from pure states, sup-

porting the interpretation as a state built on an energy eigenstate, rather than

a mixed density matrix. Third, the frequency of the entanglement oscillations

is twice the frequency of the scalar field mode.

We can repeat the same exercise for the massive cases. In general, the

final form for the entanglement entropies have a similar structure as in (4.59)

but with longer expressions that we will not transcribe here. In Figure 4.3 we

plot the behavior of the oscillations in all four cases. We observe some crucial

differences. For the case (m2,∆) = (4, 4) (irrelevant operator), the evolution

of the entropy is qualitatively similar to the marginal case (m2,∆) = (0, 3).

On the other hand, the case of relevant operators have some curious features.

First, we observe that the at some point in the evolution, the entanglement

entropy becomes negative. This applies for any θb in the case (m2,∆) = (−2, 1)

(alternative quantization) of for sufficiently large θb in the case (m2,∆) =

(−2, 2) (alternative quantization). This means that, at some point in the

evolution, these states are less entangled than the pure AdS case (vacuum

state). This is possible, because we are perturbing the theory with a relevant

operator, which in principle can affect the IR degrees of freedom. Another

curious feature is that, for the alternative quantization case, ∆A(B)(θb) actually

decreases in the range θb ∈ (0, π/2). However, the sum A(0)(θb) + ∆A(B)(θb)

is monotonically increasing for “sufficiently small” ε. This guarantees that
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Figure 4.3: Entanglement oscillations for single-mode solutions of (a) (m2,∆) =
(0, 3) marginal operator, (b) (m2,∆) = (4, 4) irrelevant operator, (c) (m2,∆) =
(−2, 1) relevant operator (alternative quantization) and (d) (m2,∆) = (−2, 2) rel-
evant operator (standard quantization). The different colors stand for θb = π/5
(red), θb = π/4 (orange), θb = π/3 (green) and θb = π/2 (blue). We also have set
ε = 1/10 and 4GN = 1.

the strong subadditivity inequality is satisfied [11, 148] but, at the same time,

imposes a non-trivial constraint on the perturbative solution! Finally, the

behavior for other single mode solutions, with j 6= 0, is qualitatively similar

to those presented in Figure 4.3 and hence we will not present them here.
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4.4.3 Results for two-mode solutions

The computation for multiple-mode solutions can be easily done by

following the same steps as for the single-mode solutions. Therefore, we are

only going to present the final results. Consider the massless case, (m2,∆) =

(0, 3). For two modes, we can express the entanglement entropy as the sum of

three contributions:

∆A(tb, θb) = α2
0∆A00(tb, θb) + α2

1∆A11(tb, θb) + α0α1∆A01(tb, θb) . (4.62)

Evidently, if we set α1 = 0, α0 = 1, we should recover the single-mode solution

presented in the previous section. Hence, we can identify

∆A00(tb, θb) = ∆A
(A)
00 (tb, θb) + ∆A

(B)
00 (θb) , (4.63)

where ∆A
(A)
00 and ∆A

(B)
00 are given in (4.60) and (4.61), respectively. Similarly,

the ∆A11(tb, θb) term can be obtained by turning off the zero mode. In this

case, we obtain

∆A11(tb, θb) = ∆A
(A)
11 (tb, θb) + ∆A

(B)
11 (θb) , (4.64)

where

∆A
(A)
11 (tb, θb) = −640ε2

2079
sin6 θb

(
113 + 128 cos(2θb) + 56 cos(4θb)

)
cos(2ω̃1tb) ,

(4.65)

and

∆A
(B)
11 (θb) =

10ε2

189 sin θb

(
2835π − 5040 sin θb − 987 sin(3θb)

+ 117 sin(5θb)− 27 sin(7θb) + 5 sin(9θb)

− 7560 arctan(cot θb) cos θb + 945π cos(2θb)

)
. (4.66)
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In (4.65) we have defined ω̃1 = 5 + β1ε
2. Finally, the cross term that mixes

the two modes is given by

∆A01(tb, θb) =
256ε2

21
√

3
sin6 θb

(
9 cos ((ω̃1 − ω̃0)tb)

+ (4 + 5 cos(2θb)) cos ((ω̃1 + ω̃0)tb)

)
. (4.67)

To study this solution we should plug in the values for αj, βj given in (4.39)

and (4.42). The solution is then specified by one single parameter, the the

ratio β0/β1 = β01, which can be arbitrary. In Figure 4.4 we show the behavior

of the entanglement entropy in two cases, one periodic (for β01 = 3/5) and the

other one quasi-periodic (for β01 = π/6). Since the mixed term (4.67) does not

contain a constant term, we oberve that the entanglement entropy in this case

behaves similarly as for the single mode solutions, but in this case with some

extra fourier modes: ω̃0 + ω̃1 and ω̃0 − ω̃1. The same is true for the massive

cases, so the observations we made in the previous section for operators with

different conformal dimensions seem to hold more generally (at the very least

this is true for arbitrary two-mode solutions). Let us now see what happen for

general jmax > 1.

4.4.4 General expressions for entanglement entropy

Let us now focus on solutions for arbitrary number of modes and at-

tempt to obtain general expressions. First, recall that

∆S(tb, τb, θb) = −
√

2πε2 cos2 θb
2GN sin θb

∫ θb

0

dθ
A(2)(tb, τb, x(θ, θb)) sin3 θ

(cos(2θ)− cos(2θb))
3/2

, (4.68)
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Figure 4.4: Entanglement oscillations for two-mode solutions of the (m2,∆) = (0, 3)
case (marginal operator) for (a) β01 = 3/5 (periodic solution) and (b) β01 = π/6
(quasi-periodic solution). The different colors correspond to θb = π/5 (red), θb =
π/4 (orange), θb = π/3 (green) and θb = π/2 (blue). We have also set ε = 1/10 and
4GN = 1.

where x(θ, θb) is given in (4.55). The metric function A(2)(t, τ, x) can be deter-

mined from (4.25) upon substituting the coefficientsAj(τ) = rj(τ) exp(−iθj(τ))

obtained from the TTF equations. Notice that we are not assuming an ansatz

of the form (4.37), so the solution might not even be (quasi-)periodic. From

(4.25) it is clear that if φ1(t, τ, x) is a linear combination of oscillons, the inte-

grand of A(2)(t, τ, x) is in general a sum of bilinears in ej(x) (or its derivatives).

Therefore, without loss of generality we can write:

A(2)(t, τ, x) =
∑
jk

Ajk(2)(t, τ, x) , (4.69)

where the term Ajk(2)(t, τ, x) is proportional to the product rj(τ)rk(τ). Hence,

the entanglement entropy can also be expressed as a bilinear sum:

∆S(tb, τb, θb) =
∑
jk

∆Sjk(tb, τb, θb) , (4.70)

148



where

∆Sjk(tb, τb, θb) = −
√

2πε2 cos2 θb
2GN sin θb

∫ θb

0

dθ
Ajk(2)(tb, τb, x(θ, θb)) sin3 θ

(cos(2θ)− cos(2θb))
3/2

. (4.71)

To determine the coefficients ∆Sjk more explicitly it is enough to consider a

state of two arbitrary modes j and k:

φ(1)(t, τ, x) =
(
rj(τ)e−i(ωjt+θj(τ)) + rj(τ)ei(ωjt+θj(τ))

)
ej(x)

+
(
rk(τ)e−i(ωkt+θk(τ)) + rk(τ)ei(ωkt+θk(τ))

)
ek(x) ,

(4.72)

A brief computation leads to

Ajk(2)(t, τ, x) = −4rj(τ)rk(τ)
cos3 x

sinx
×∫ x

0

dy

[
sin(ωjt+ θj(τ)) sin(ωkt+ θk(τ))ωjωkej(y)ek(y)

+ cos(ωjt+ θj(τ)) cos(ωkt+ θk(τ))×

+

(
e′j(y)e′k(y) +

m2

cos2 y
ej(y)ek(y)

)]
tan2 y . (4.73)

Notice that by symmetry we have that Ajk(2)(t, τ, x) = Akj(2)(t, τ, x). There are

also terms Ajj(2) and Akk(2), but they are equivalent to (4.73) for j = k. Finally,

the entanglement entropy contributions ∆Sjk(tb, τb, θb) can be easily obtained

by plugging (4.73) into (4.71) and performing the remaining integrals. It is

worth pointing out that for quasi-periodic solutions, entanglement entropy is

also quasi-periodic, even for arbitrary number of modes. This follows easily

from (4.73) and (4.71): if we set rj(τ) = αj and θj(τ) = βjτ , then, it can be

seen that the entanglement entropy is a sum of harmonics with frequencies

|ω̃j + ω̃k| and |ω̃j − ω̃k|, where ω̃j = ωj + ε2βj. The general case, however, is
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more complicated given the explicit dependence on τ of the amplitudes rj(τ)

and the general dependence of the phases θj(τ).

Let us now focus on the slow time evolution. If ε → 0, the rapid

time oscillations are so fast that in practice they cannot be detected. The

physical quantities of interest in this case are the averages over the fast time.

If we analize the entanglement entropy formulas given above, we notice that

it contains frequency modes that correspond to either |ωj + ωk| or |ωj − ωk|.

This means that, if we take the average over t, only the contributions with

frequencies |ωj − ωk|, for j = k, survive. More specifically, we find that〈
Ajk(2)

〉
= 0 , for j 6= k , (4.74)

and〈
Ajj(2)

〉
= −2rj(τ)2 cos3 x

sinx

∫ x

0

dy

(
ω2
j ej(y)2 + e′j(y)2 +

m2

cos2 y
ej(y)2

)
tan2 y .

(4.75)

The slow time dependence is completely given in terms of the amplitudes

rj(τ). This means that, for periodic or quasi-periodic solutions, taking the

average over the rapid time t effectively kills all τ -dependence. Finally, the

time averaged entanglement entropy is given by

〈∆S(τb, θb)〉 =
∑
j

〈
∆Sjj(τb, θb)

〉
, (4.76)

where

〈
∆Sjj(τb, θb)

〉
= −
√

2πε2 cos2 θb
2GN sin θb

∫ θb

0

dθ

〈
Ajj(2)(τb, x(θ, θb))

〉
sin3 θ

(cos(2θ)− cos(2θb))
3/2

. (4.77)
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We have seen here that for (quasi-)periodic solution with arbitrary num-

ber of modes the constant part of entanglement entropy is always given by the

addition of single mode solutions. This proves that the conclusion we reach

in the previous section is true, namely, that the behavior crucially depends on

the nature of the operator and its conformal dimension.

4.5 Conclusions

In this Chapter we have studied a particular family of time-dependent

solutions of the Einstein field equations with a negative cosmological constant

and a massive scalar field. These solutions are characterized by periodic or

quasi-periodic undamped oscillations and are of particular interest in the con-

text of AdS/CFT correspondence due to the potential relevance for condensed

matter applications. In particular, they may be useful to describe systems of

cold atoms, quantum spin chains and quantum critical systems, among others.

The solutions presented here were obtained in the framework of the two

time formalism, introduced in [138] and provide analytical evidence supporting

the numerical results of [144] for the fate of the massive collapse in global AdS.

In the holographic context, massive fields in the bulk are dual to operators of

different conformal dimensions. Therefore, we can interprete these solutions as

excited states over the CFT vacuum in which a relevant, irrelevant or marginal

operator picks up a non-zero expectation value that is (quasi-)periodic in time.

Indeed, such oscillatory states are expected to exist for any CFT on a sphere

[124], which includes CFTs with a gravity dual as the ones cosidered here.
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We studied the evolution of entanglement entropy for spherical caps in

order to characterize the states in the field theory dual to these backgrounds

and we found some crucial differences depending on the conformal dimension ∆

of the dual operator. In general, the entanglement contains a time independent

part and a time dependent part with harmonics of the modes we consider. For

irrelenvant and marginal operators, we found that the time independent part

is always possitive which implies that the system is more entangled than in

the vacuum of the theory. However, for relevant operators this is no longer

true. In this case we found that for large enough regions, at some point in

the evolution these states are less entangled than the pure AdS case. This is

possible because relevant operators can in principle modify the IR bahavior of

the theory and the biggest contribution of the entanglement comes precisely

from regions that are deep inside the bulk (IR region).

Another important lesson that we did not pointed out concerns to the

nature of the periodic and quasi-periodic solutions: since the entanglement

entropies split the Hilbert space into two sectors that do not mix under slow

time evolution, these can be can be thought of as conserved charges of the

system. Moreover, since there are infinitely many ways to split the system

into two geometrical regions, we can conclude that there are infinitely many

conserved charges. Hence, we can say that the system is integrable, in complete

analogy to the FPU problem in dynamical systems.

Finally, it is worth pointing out possible future directions in the context

of this work. One simple extension would be to relax the ansatz (4.37) for

152



the Fourier coefficients in terms of the slow time. It is know that general

solutions to the TTF equations are not necesarily periodic or quasi-periodic

[138]. In these cases the system is characterized by direct and inverse cascades,

where the energy flows from low frequency modes to high frequency modes

and viceversa. It would be interesting to study the behavior of entanglement

entropy in such solutions. Another interesting idea is to come up with a

simpler toy model for quantum revivals. This may be achieved by studying

the dynamics of a shell of matter in global AdS and considering different

equations of state. If the pressure is large enough, it might be possible to

cancel out the gravitational attraction and avoid black hole formation. We

hope to come back to these issues in the future.
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