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Adaptive control techniques are often avoided in aerospace systems

due to stringent plant structural requirements and validation difficulties. This

dissertation seeks to broaden the range of aerospace engineering applications

that can utilize an adaptive controller through the development of an extended

model reference adaptive control (MRAC) design. First, a partitioned control

framework is presented that permits the combined use of an adaptive control

law and a nonadaptive control law. The partitioned framework is used to

shift full control authority away from the adaptive portion of the system.

Next, two MRAC variations that can accommodate the nonminimum phase

zeros often seen in aerospace applications are discussed for use as the adaptive

system. The parallel feedforward compensator approach proposes inclusion

of a user–defied fictitious model in parallel with the plant that is designed

to make the plant appear nonminimum phase. The surrogate tracking error

approach modifies the typical MRAC structure to handle nonminimum phase
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plants by requiring knowledge of its nonminimum phase zeros. A tracking

error convergence proof is provided for this continuous-time MRAC variant.

The partitioned design using the surrogate tracking error approach is applied

to the control tasks of an experimental, flexible wing aircraft. A simulation

is used to demonstrate much improved flight path angle command tracking

when compared to use of the aircraft’s existing nonadaptive control law, even

in the presence of large–scale modeling error. A second simulation is used to

show the design applied to flexible motion control of the same aircraft model

and exhibits similarly improved performance.
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Chapter 1

Introduction

The use of adaptive control on flight vehicles is a hotly debated topic in

the aerospace community. Adaptive controllers involve the use of parameters

whose values change, or adapt, in response to measured performance. The

changing nature of adaptive control laws means that they have the potential

to offer benefits such as unified control design across changing flight conditions

or the ability to compensate for aircraft uncertainty or degradation. However,

the parameter update also means that adaptive control designs can offer few

guarantees with respect to transient behavior and stability margins [1]. These

qualities are problematic for flight vehicles that must maintain strict safety

assurances [2, 3]. This dissertation attempts to mitigate the potential short-

comings of an adaptive flight controller by combining it with a nonadaptive

one.

A new control design is proposed that permits concurrent use of an

adaptive and nonadaptive control law. Two types of model reference adaptive

controllers investigated for use as the adaptive system including a recent sur-

rogate tracking error formulation whose error convergence proof is provided.

Both formulations can accommodate plants with nonminimum phase zeros.
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Simulations of the designs are performed using models of an experimental,

flexible wing aircraft and are used to demonstrate improved flight control and

flexible motion control.

1.1 Overview of the Dissertation’s Major Contributions

The dissertation specifically considers the popular model reference adap-

tive control (MRAC) technique as a solution to flexible aircraft control. A

two-part, or partitioned, control structure is proposed such that MRAC can

be implemented in conjunction with a nonadaptive control law so as to allevi-

ate some implementation concerns. The partitioned structure utilizes separate

control surfaces for the adaptive and nonadaptive portions (i.e. control distri-

bution) and can accommodate most multi–input single–output or multi–input

multi–output (MIMO) plants. The partitioned structure also allows control

authority to be shifted between the two control laws in response to risk tol-

erance. The nonadaptive, or nominal, control law should provide acceptable

performance for the system when implemented on its own. The adaptive, or

delta, control law is based on output feedback MRAC. It is intended to improve

upon the performance and robustness of the nominal control law when the two

are operated simultaneously. The delta law is not intended to be operated on

its own.

The structure of the proposed control design allows the some of the

risk associated with implementing an adaptive law to be mitigated by having

a portion of the control task managed by a verified and validated nonadaptive

2



law. Careful selection of design parameters can be used to shift more or less

of the reference tracking task to the nominal control system depending on

user confidence in the delta control system. Further, since the delta control

system is not required for adequate performance, it can be designed such that

the expected delta control signal is expected to remain within safe operation

limits.

Since the partitioned design is built around an MRAC structure, the

typical MRAC implementation requirements become requirements for the pro-

posed design as well. One long–standing MRAC requirement particularly trou-

blesome for many aerospace applications is the need for a minimum phase

plant. When considering a linear system, a minimum phase plant is one that

has a stable inverse–implying that all zeros are in the open left half of the

complex plane. A nonminimum phase plant is therefore one whose zeros are

in the closed right half–plane. Such zeros are problematic because they can

cause issues such as wrong–way tracking behavior and often eliminate the

possibly of using the plant’s inverse anywhere in control design. These right

half–plane zeros, also denoted as nonminimum phase zeros or unstable zeros,

unfortunately arise in aerospace systems frequently. Modification of the stan-

dard MRAC scheme will be necessary to implement the partitioned design on

a nonminimum phase system.

The dissertation discusses use of two MRAC variants that can han-

dle nonminimum phase systems for the delta control law to accommodate a

wider range of applications. The first variant is an existing design that ac-
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commodates nonminimum phase systems by introducing a feedforward block

in parallel with the plant. This parallel feedforward compensator (PFC) is de-

signed such that the plant and PFC together, known as the augmented plant,

are a minimum phase system. The MRAC design is then implemented on the

augmented plant. It is desirable to design the PFC such that it has a small

output magnitude thus making the output of the augmented plant and the

actual plant similar.

To determine the utility of this variant, the partitioned design using

the PFC approach for the delta law is applied to flexible motion control of

an experimental flexible wing aircraft. Stable but nonminimum phase linear

models of the aircraft are generated that satisfy the necessary implementation

requirements. An existing, design–reviewed, nonadaptive control law is used

for the nominal portion of the proposed control system. The partitioned con-

trol design is then implemented in simulation using the models to assess the

design’s utility. While the PFC approach performs adequately, designing such

a PFC block proves to be difficult and several restrictive requirements arise.

Further, the feasibility of designing the PFC block when the plant is poorly

known is questionable.

A second MRAC variant is proposed as a less restrictive way to handle

nonminimum phase systems. This variant is a modification of the previously

presented MIMO, continuous–time, output feedback MRAC design based on

a quantity known as the surrogate tracking error. The surrogate tracking

error is essentially used in place of the tracking error to formulate an adaptive

4



control law and parameter update law that accomplishes the MRAC task even

in the presence of nonminimum phase zeros. However, the user is only able

to apply the control design to plants with nonminimum phase zeros if those

nonminimum phase zeros are known. The first complete stability proof for

the surrogate tracking error MRAC variant is provided using a combination

of Lyapunov and signal growth analysis.

The partitioned design using the surrogate tracking error approach is

next tested in a flight path angle command tracking simulation for the same

experimental aircraft. Here, linear models of the aircraft are generated at flight

conditions beyond the body freedom flutter boundary which are both unstable

and nonminimum phase. The aircraft’s existing nonadaptive control law is

used for the nominal law. The performance of the partitioned design using the

surrogate tracking error approach is shown to be a significant improvement over

a similar implementation using only the nominal control law. The simulation

is repeated using estimates of plant information required for implementation,

including the nonminimum phase zeros, and performance of the partitioned

design is shown to still be preferable to the nominal only implementation. The

proposed command tracking control system is the first implementable adaptive

design for this aircraft.

The partitioned design using the surrogate tracking error approach is

then further tested in a flexible motion control simulation. A simple aeroser-

voelasic model of the aircraft’s wing is created to explore several design choices

associated with the partitioned framework before attempting control of the

5



experimental aircraft. The design choices are then carried over to implemen-

tation of the partitioned design on models of the full aircraft where again the

aircraft’s existing nonadaptive control law is used for the nominal system. The

response to a gust-like disturbance at flight conditions past the body freedom

flutter boundary is investigated. The partitioned design again demonstrates

improved vibration suppression over the nominal-only implementation in both

the perfect–knowledge and estimated–knowledge cases. The proposed flexi-

ble motion control system is the first adaptive design for this aircraft imple-

mentable across the full flight envelope.

1.2 Literature Review

Next a survey of other studies related to the cross–section of adaptive

control, nonminimum phase systems, and flight control design is presented.

1.2.1 Adaptive Control for Nonminimum Phase Systems

MRAC is a well established control technique that relies on online pa-

rameter update laws to drive a plant’s output to match that of a user–selected

reference model. The direct formulation has been extensively addressed in pre-

vious literature, beginning with works such as [4] and [5], and the solution to

the single–input single–output (SISO) MRAC problem is well established [6].

The results can now be found in many textbooks [7–9]. Solutions to the

MIMO MRAC problem also exist. The various solution procedures differ how-

ever in their treatment of the high frequency gain matrix Kp and the resulting

6



requirements placed on the plant. Early approaches involved definiteness re-

quirements on Kp which lead to restrictive assumptions on prior knowledge

of the unknown system [10]. More recent results propose the use of various

matrix factorizations to relax the constraints imposed on Kp [11, 12]. Most

versions of the MRAC problem assume that the plant to be controlled satis-

fies a number of structural requirements including an equal number of inputs

and outputs and being minimum phase. Additionally, they require that cer-

tain knowledge of the otherwise unknown plant be available—such as relative

degree and high frequency gain information [8] (see Chapters 6.4 and 9.7.3).

Although textbook versions of MRAC are restricted to minimum phase

systems, other adaptive control techniques have developed to accommodate

nonminimum phase plants. Zero annihilation periodic control laws have been

proposed to address the minimum phase problem in discrete systems [13] but

produce intermittent control. Large uncertainties in the plant can be assumed

to compensate for a nonminimum phase structure when attempting MRAC,

but perfect tracking is no longer within reach [14]. Certain indirect adap-

tive control techniques such as adaptive pole placement [15] can also handle

nonminimum phase systems. Although, they require some level of parameter

knowledge to avoid singularities. An adaptive version of the linear quadratic

Gaussian loop transfer recovery (LQG/LTR) procedure is applicable to non-

minimum phase plants when it is possible to incorporate fictitious control

signals to “square up” the system [16–18].

Extension of MRAC to nonminimum phase systems has been slow to

7



develop. One possibility is to use the PFC approach and add a feedforward

block in parallel with the plant. The block must make the system appear

minimum phase to the adaptation mechanism [19]. The output magnitude of

the PFC block must be small so as to not significantly disturb the tracking

performance of the actual plant. However design of such a structure can

be difficult when the plant is poorly known. Retrospective Cost Adaptive

Control can also be used in the MRAC framework for discrete-time systems

[20]. Here a cost function that relates past error to a computed version of

the past error is used to select the parameter update law. Initial attempts

to create a similar control law for continuous-time systems using a surrogate

tracking error quantity and knowledge of the nonminimum phase zeros have

been proposed as well [21, 22]. Although the control design is successfully

demonstrated in simulation of simple examples, the assumed plant structure

is restrictive. Additionally, the tracking error convergence proof is left open.

1.2.2 Aircraft Control Design

As the topic of aircraft control design is vast, the survey is restricted

to topics that are most directly relevant to the dissertation. Foremost, con-

sider the subject of adaptive control law design in the context of flight vehicles.

Adaptive control laws are not often implemented on aircraft due in large part to

difficulty in providing transient performance assurances and a lack of verifica-

tion methods [1–3]. Additionally, several common adaptive control techniques,

including MRAC, assume linear plant dynamics while aircraft dynamics are
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inherently nonlinear. Regardless, significant effort has been made to construct

adaptive designs that can serve as viable options for aircraft control. For ex-

ample, a variant of Retrospective Cost Adaptive Control has been applied to

uncertain, nonminimum phase aircraft models [23]. The PFC approach has

been recently used in the context of aerospace systems to facilitate autopilot

design [24]. A hybrid adaptive controller has been proposed for control of

damaged aircraft [25]. Recently, an L1 adaptive controller was implemented

on a Learjet and used for manned flight [26]. Several LQG/LTR designs, both

adaptive and nonadaptive, have been applied to aircraft [27]. Additionally,

closed–loop reference model adaptive control has been used on its own and in

conjunction with LQG/LTR designs to offer improved transient performance

of aircraft adaptive control systems [28–30]. Adaptive dynamic inversion has

also been used in an MRAC-like framework to control an aircraft model [31].

A survey of other adaptive control designs and implementations for aircraft is

provided in [32]. Additionally, alternate verifications frameworks for adaptive

control of flight vehicle have been proposed [33].

Next, consider the topic of aircraft flexible motion control design. Con-

trol of an aircraft’s flexible behavior has received significant attention since the

first active flutter suppression demonstration in [34]. Many types of control

have now been investigated using models or hardware apparatuses of widely

varying complexity. NASA’s Benchmark Active Control Technology program

in particular spurred many flexible motion control designs including ones based

on classical techniques [35], linear parameter varying models [36], and robust
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multivariable methods [37].

Adaptive control has also been applied to the task of flexible motion

control and flutter suppression in particular. Several designs have been demon-

strated on the dynamic model of an aircraft wing’s aeroelasitc pitch and plunge

motion [38]. The non-trivial dynamics, based on an unsteady aerodynamic the-

ory developed by Theodorsen [39] and approximated by Wagner and Jones [40],

have been widely used to investigate control techniques for aeroelastic phenom-

ena. Others have looked at adaptively controlling this model with techniques

such as non-certainty equivalence [41] and L1 [42] adaptive control. A variety

of adaptive control techniques were applied to an aircraft model in [43] whose

rigid body dynamics were known and flexible body dynamics were treated as

unmodeled. A summary of additional adaptive flutter suppression implemen-

tations can be found in [44].

Models of an experimental, flexible wing aircraft are used to demon-

strate control design performance throughout the dissertation . While further

details concerning the aircraft will not be provided, a survey of other control

designs for flexible wing aircraft is included. A wide array of control techniques

has now been applied to various control tasks for flexible aircraft. In [45], a

gain–scheduled controller based on linear parameter–varying models was pro-

posed as a way to provide control design over the flight envelope of a flexible

aircraft. An inner and outer loop control system structure was prescribed for a

flexible aircraft in [46]. A robust approach to flexible motion control based on

modal filtering was also considered in [47]. The recent closed–loop reference
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model approach to improved transient adaptive control was even applied to a

very flexible aircraft model in [48].

1.3 Dissertation Outline

The dissertation is organized as follows. Chapter 1 provides an intro-

duction to the problem of adaptive control for nonminimum phase aerospace

systems and summarizes the steps taken to establish a feasible solution. A

review of other related or relevant studies available in the literature is also

provided. Chapter 2 contains a collection of established mathematical results

and control techniques that provide a foundation for the discussions in later

chapters. A discussion of why standard MRAC designs fail for nonminimum

phase systems is also provided, with further details on how two of the estab-

lished error convergence proof procedures break down given in the appendices.

An overview of the aeroservoelastic state space modeling approach used in the

dissertation included as well. The partitioned control design is presented in

Chapter 3. The general structure of the nominal controller and delta con-

troller required by the design is stated. Chapter 4 presents the PFC version

of the partitioned design. Simulation results of the design applied to the flex-

ible motion control task of an experimental flexible wing aircraft are shown.

Chapter 5 presents the surrogate tracking error version of MRAC which can

accommodate nonminimum phase plants. A tracking error convergence proof

requiring knowledge of the plant’s nonminimum phase zero information is pro-

vided. The surrogate tracking error version of the partitioned design is applied
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to the flexible aircraft in Chapter 6. Here the design is used to demonstrate

improved flight path angle command tracking. Similarly, Chapter 7 applies the

surrogate tracking error partitioned design to flexible motion control of the air-

craft. Simulation results are used to shown improved rejection of a gust–like

disturbance. Finally, some concluding remarks, a summary of the disserta-

tion’s contributions, and future research directions are provided in Chapter

8.
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Chapter 2

Background

A summary of notation and established results relevant to dissertation

is provided in this chapter. After defining some of the notable mathematical

operations that will be used, several important properties related to signals

and systems and methods to bound them are presented. A framework for re-

lating growth rates of signals is presented next. A brief review of the main of

Lyapunov stability analysis results is then provided. Finally, an overview of

the theory behind aeroservoelastic modeling is presented. Proofs are omitted

unless needed for later discussion. Note that throughout the subsequent chap-

ters of the dissertation arguments of functions are often omitted for notational

simplicity whenever no confusion arises.

2.1 Mathematical Preliminaries

For a positive integer n, the n-dimensional identity matrix is denoted

by In. The ith column of In is indicated by the vector ei.

A matrix P ∈ Rn×n has n eigenvalues where the smallest is called

λmin(P ) and the largest is λmax(P ). If P is positive definite, equivalently
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written as P > 0, then all of its eigenvalues are positive and the inequality

λmin(P )‖x‖2
2 ≤ xTPx ≤ λmax(P )‖x‖2

2 (2.1)

holds for any x ∈ Rn where ‖ · ‖2 is used to indicate the Euclidean norm.

For matrices A = (aij) ∈ Rm×n and B ∈ Rp×q, the Kronecker product

of A and B is defined as

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 . (2.2)

2.2 Signal and System Properties

Consider a linear, time–invariant system which can be represented in

the time domain by the state space equations

ẋ(t) = Ax(t) +B(t)u(t)

y(t) = Cx(t) +Du(t) (2.3)

with state x(t) ∈ Rn. The relationship between input u(t) ∈ Rp and output

y(t) ∈ Rq can also be represented in the Laplace domain (with some abuse of

notation) as

y = G(s)u (2.4)

where s is the Laplace variable and G(s) = C(sI − A)−1B + D is an l × m

transfer function matrix. The same relationship may be expressed as

y = G(s) [u] (2.5)
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to be clear what signal constitutes the system’s input. The system is called

single-input single-output (SISO) if p = q = 1 and multiple-input multiple-

output (MIMO) if p, q > 1. The system is considered stable if all poles of

G(s) or all eigenvalues of the A matrix are in the open left half of the complex

plane.

The following set of results, each summarized from [8], describes impor-

tant ways in which signals like u(t) and y(t) and transfer functions like G(s)

can be classified and bounded.

Definition 2.2.1 (Signal norms). The Lp norm of a scalar or vector function

of time x(t) is given by

‖x‖p ,
(∫ ∞

0

|x(τ)|pdτ
) 1

p

(2.6)

for p ∈ [1,∞). Note that x ∈ Lp when ‖x‖p is finite. Further, the L∞ norm is

given by

‖x‖∞ , sup
t≥0
|x(t)| (2.7)

and x ∈ L∞ when ‖x‖∞ is finite.

Theorem 2.2.1 (Barbalat’s Lemma). If limt→∞
∫ t

0
f(τ)dτ exists and is finite,

and f(t) is uniformly continuous, then limt→∞ f(t) = 0.

Corollary 2.2.2 (Corollary to Barbalat’s Lemma). If f , ḟ ∈ L∞ and f ∈ Lp

for some p ∈ [1,∞) then f(t)→ 0 as t→∞.

Theorem 2.2.3 (L2 gain). The L2 gain of a stable, linear, time-invariant

system described by y = H(s)u is given by ‖H(s)‖∞ , supω∈R |H(jw)| such
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that

‖y‖2 ≤ ‖H(s)‖∞‖u‖2 (2.8)

when u ∈ L2.

Definition 2.2.2 (PR functions). A rational function G(s) of the complex

variable s = σ + jω is called positive real (PR) if:

i G(s) is real for real s.

ii Re[G(s)] ≥ 0 for all Re[s] > 0.

Definition 2.2.3 (SPR functions). Assuming that G(s) is not identically zero

for all s, then G(s) is strictly positive real (SPR) is G(s − ε) is PR for some

ε > 0.

Theorem 2.2.4. Assume that the rational function G(s) is real for real s and

not identically zero for all s. Further, let G(s) = Z(s)
R(s)

with relative degree n∗.

If |n∗| ≤ 1 then G(s) is SPR if and only if:

i G(s) is analytic in Re[G(s)] ≥ 0.

ii Re[G(jω)] > 0 ∀ω ∈ (−∞,∞).

iii (When n∗ = 1) lim
|ω|→∞

ω2Re[G(jω)] > 0.

iv (When n∗ = −1) lim
|ω|→∞

G(jω)
jω

> 0.

Corollary 2.2.5. Resulting useful properties of SPR functions include
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i G(s) is PR (SPR) if and only if 1/G(s) is PR (SPR)

ii If G(s) is SPR then |n∗| ≤ 1 and the zeros and poles of G(s) lie in

Re[s] < 0

iii If |n∗| > 1 then G(s) is not PR.

Theorem 2.2.6 (MKY Lemma). If a stable SISO system given by G(s) =

C(sI − A)−1B is SPR, then for any L = LT > 0 there exists a scalar ν > 0,

a vector q, and a matrix P = P T > 0 such that

ATP + PA = −qqT − νL

PB = C. (2.9)

Theorem 2.2.7 (Swapping Lemma). Let Ψ : R+ → Rm×l and Θ̃ : R+ → Rm

with Θ̃ differentiable. Let W (s) be any strictly proper, stable l × l transfer

function matrix with a minimal realization (A,B,C). Then

W (s)
[
ΨT Θ̃

]
= W (s)

[
ΨT
]

Θ̃−WC(s)

[
WB(s)

[
ΨT
]

˙̃Θ

]
(2.10)

where

WC(s) , C(sI − A)−1 (2.11)

WB(s) , (sI − A)−1B. (2.12)

Note that this result is the MIMO version of Appendix A.1 in [8]. A related

proof can be found in [49].

17



Proof. Define the output of W (s) from input ΨT Θ̃ to be y1 ∈ Rl such that

ẋ = Ax+B
(

ΨT Θ̃
)

y1 = Cx. (2.13)

Define the output of W (s) from input ΨT
i (i.e. the ith column of ΨT ) to be

y2,i ∈ Rl such that

ẇi = Awi +B
(

ΨT
i

)
y2,i = Cwi (2.14)

for i = 1...m. Assembling the state vector and output of each instance of this

system as

y2 = [y2,1 y2,2 · · · y2,m] (2.15)

w = [w1 w2 · · · wm] (2.16)

permits a composite system to be stated as

ẇ = Aw +B
(

ΨT
)

y2 = Cw. (2.17)

Additionally, define

ȳ2 , CwΘ̃. (2.18)

Create a new system by selecting x̄ , x− wΘ̃. Its dynamics are given
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by

˙̄x = ẋ− ẇΘ̃− wΘ̇

= Ax+BΨT Θ̃− AwΘ̃−BΨT Θ̃− wΘ̇

= A(x− wΘ̃)− wΘ̇

= Ax̄− wΘ̇. (2.19)

Its output equation is given by

y1 − ȳ2 = C
(
x− wΘ̃

)
= Cx̄. (2.20)

Finally, using the new system note that

W (s)
[
ΨT Θ̃

]
−W (s)

[
ΨT
]

Θ̃ = y1 − ȳ2

= −WC(s)
[
wΘ̇
]

= −WC(s)

[
WB(s)

[
ΨT
]

Θ̇

]
(2.21)

as desired.

2.3 Signal Growth Relationships

A collection of relevant results relating the growth of signals in a system

is provided. Each is taken from Chapter 2 or Appendix B of [9] unless otherwise

indicated. Extensions to the MIMO case have been made where needed with

a reference provided to existing proofs or without comment if straightforward.
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Definition 2.3.1. The class PC[0,∞) is defined as the set of all real piece-

wise continuous functions defined on the interval [0,∞) that have bounded

discontinuities.

Definition 2.3.2 (O and o notation). For x, y ∈ PC[0,∞), the notation y(t) =

O[x(t)] is used to indicate that there exist positive constants M1, M2, and

t0 ∈ R+ such that

|y(t)| ≤M1|x(t)|+M2 (2.22)

for all t ≥ t0. The notation y(t) = o[x(t)] is used to indicate that there exists

a function β(t) ∈ PC[0,∞) and t0 ∈ R+ such that

|y(t)| = β(t)x(t) (2.23)

for all t ≥ t0 and lim
t→∞

β(t) = 0.

Definition 2.3.3 (Same rate of growth). For x, y ∈ PC[0,∞), if y(t) = O[x(t)]

and x(t) = O[y(t)] then x and y are equivalent which is denoted as

x(t) ∼ y(t). (2.24)

They are said to grow at the same rate if

sup
τ≤t
|y(τ)| ∼ sup

τ≤t
|x(τ)|. (2.25)

Definition 2.3.4 (Class M functions). The M class of positive monotonic

functions is defined by

M = {f | f(t) ≥ 0, f(t1) ≥ f(t2) if t1 > t2, ∀t, t1, t2 ∈ R+}. (2.26)
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Note that for any function f(·) ∈ PC[0,∞) it is true that supτ≤t |f(τ)| ∈M for

τ, t ∈ R+.

Definition 2.3.5 (Class ε signals). The ε class of signals is defined for x :

R+ → Rn by

ε = {x| ‖ẋ(t)‖ ≤M1 sup
τ≤t
‖x(τ)‖+M2, M1,M2 ∈ R+}. (2.27)

Theorem 2.3.1. For x(·) ∈ PC[0,∞) and y(·) ∈M it holds that

x(t) = O[y(t)]⇔ sup
τ≤t
|x(τ)| = O[y(t)]. (2.28)

Theorem 2.3.2. Consider a vector x : R+ → Rn

xT =
[
xT1 xT2

]
(2.29)

with x1 : R+ → Rn1, x2 : R+ → Rn2, and n1 + n2 = n. If x grows unbounded

then

sup
τ≤t
‖x1(τ)‖ = O

[
sup
τ≤t
‖x2(τ)‖

]
⇔ sup

τ≤t
‖x2(τ)‖ ∼ sup

τ≤t
‖x(τ)‖. (2.30)

Theorem 2.3.3. Define a linear system as

ẋ(t) = A(t)x(t) +B(t)u(t) x(t0) = x0

y(t) = C(t)x(t) (2.31)

with u : R+ → Rp, y : R+ → Rq, x : R+ → Rn, and u ∈ PC[0,∞). If the entries

of A(t), B(t), C(t) are uniformly bounded and A(t) is exponentially stable, then

sup
τ≤t
‖x(τ)‖ = O

[
sup
τ≤t
‖u(τ)‖

]
(2.32)
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and

‖y(t)‖ = O

[
sup
τ≤t
‖u(τ)‖

]
. (2.33)

Corollary 2.3.4. Consider the square transfer function matrix

W (s) =
p(s)

q(s)
Im (2.34)

with both p(s) and q(s) nth-order stable polynomials. If the input/output rela-

tionship is defined as y = W (s)u then ‖y‖ and ‖u‖ grow at the same rate.

Theorem 2.3.5. Consider the linear system

ẋ = Ax+Bu (2.35)

where x : R+ → Rn and u : R+ → Rp. If (A,B) is controllable and u ∈ ε then

sup
τ≤t
‖u(τ)‖ = O

[
sup
τ≤t
‖x(τ)‖

]
. (2.36)

Note that this property is a multi-input extension of the standard single-input

result. It is most easily obtained from straightforward adjustments to the proof

of Lemma 3 in [50].

Theorem 2.3.6. If β ∈ L2, u ∈ PC[0,∞), and βu is the input to a time–

invariant, asymptotically stable, linear system then the output y adheres to

‖y(t)‖ = o

[
sup
τ≤t
‖u(τ)‖

]
. (2.37)

Theorem 2.3.7. For two unbounded signals x and y ∈M, it holds that

x(t) = O[y(t)]⇒ y(t) 6= o[x(t)]. (2.38)
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2.4 Lyapunov Stability Analysis

Consider the system described by

ẋ = f(t, x), x(t0) = x0 (2.39)

where x ∈ Rn, f : J × B(r) → R, J = [t0,∞), and B(r) = {x ∈ Rn, |x| < r}.

Assume that for each x0 ∈ B(r) and t0 ∈ R+ the function f has only one

solution. Several definitions of stability relevant to this system are presented

and are then used to summarize Lyapunov’s direct method of assessing solution

stability.

2.4.1 Stability Definitions

The following definitions of stability provide a basis for the stability

discussions in this dissertation and are taken from [9] and [51].

Definition 2.4.1 (Equilibrium point). The quantity xe is called an equilib-

rium point of Eq. (2.39) if

f(t, xe) = 0 ∀t ≥ t0. (2.40)

Definition 2.4.2 (Bounded, Uniformly bounded). A solution of Eq. (2.39) is

said to be bounded if there exists a β > 0 such that |x(t)| < β for all t ≥ t0

where β may be dependent on the solution.

The solution is said to be uniformly bounded if for any α > 0 and

t0 ∈ R+ there exists a β = β(α) independent of t0 such that if |x0| < α then

|x(t)| < β for all t ≥ t0.
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Definition 2.4.3 (Stable, Uniformly stable). The equilibrium point of Eq.

(2.39) is said to be stable in the sense of Lyapunov if for any t0 and ε there

exists a δ(ε, t0) such that |x0 − xε| < δ implies |x(t)− xe| < ε for all t ≥ t0.

The equilibrium point is said to be uniformly stable if δ does not depend

on t0.

Definition 2.4.4 (Asymptotically stable, Asymptotically stable in the large).

The equilibrium point of Eq. (2.39) is said to be asymptotically stable if it is

stable and there exists a δ(t0) such that |x0 − xe| < δ(t0) implies lim
t→∞
|x(t) −

xe| = 0.

The equilibrium point is said to be asymptotically stable in the large

if it is stable and every solution tends to xe as t→∞.

Definition 2.4.5 (Uniformly asymptotically stable, Uniformly asymptotically

stable in the large). The equilibrium point of Eq. (2.39) is said to be uniformly

asymptotically stable if:

i It is stable.

ii For every ε > 0 and t0 ∈ R+, there exists a δ0 > 0 that does not

depend on t0 or ε and a T (ε) > 0 that does not depend on t0 such that

|x(t)− xe| < ε for all t ≥ t0 + T (ε) whenever |x0 − xe| < δ0.

The equilibrium point is said to the uniformly asymptotically stable in

the large if:
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i It is uniformly stable.

ii The solutions are uniformly bounded.

iii For any α > 0, any ε > 0, and t0 ∈ R+ there exists T (ε, α) > 0 in-

dependent of t0 such that if |x0 − xe| < α then |x(t) − xe| < ε for all

t ≥ t0 + T (ε, α).

Definition 2.4.6 (Exponentially stable, Exponentially stable in the large).

The equilibrium point is said to be exponentially stable if there exists α > 0

and for every ε > 0 there exists a δ(ε) > 0 such that

|x(t)− xe| ≤ εe−α(t−t0) ∀t ≥ t0 (2.41)

whenever |x0 − xe| ≤ δ(ε).

The equilibrium point is said to the exponentially stable in the large if

there exits α > 0 and for any β > 0 there exists a k(β) > 0 such that

|x(t)| ≤ k(β)e−α(t−t0) ∀t ≥ t0 (2.42)

whenever |x0| < β.

Definition 2.4.7 (Unstable). The equilibrium state is said to be unstable if

it is not stable.

Definition 2.4.8 (Solution stability). If the trajectory x(t) is a solution of

Eq. (2.39) then it is said to be stable (or US, AS, UAS, ES, unstable) if the

equilibrium point ze = 0 of the system

ż = f(t, z + x(t))− f(t, x(t)) (2.43)

is stable (respectively US, AS, UAS, ES, unstable).
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2.4.2 Lyapunov Direct Method

The previous definitions of stability can be used to discuss the stability

properties of solutions to systems of the form given in Eq. (2.39) rather than

analyzing stability of the explicit solutions themselves. The collection of results

is known as Lyapunov’s direct method. Here several necessary definition are

presented along with two theorems summarizing a portion of the direct method

results.

Definition 2.4.9 (Class K function). A continuous function φ : [0, r] → R+

(or with r =∞) is said to belong to class K if

i φ(0) = 0

ii φ is strictly increasing on [0, r] (or [0,∞)).

Definition 2.4.10 (Class KR function). A continuous function φ : [0,∞)→

R+ is said to belong to class KR if

i φ(0) = 0

ii φ is strictly increasing on [0,∞)

iii lim
r→∞

φ(r) =∞.

Definition 2.4.11 (Same order of magnitude). Two function φ1, φ2 ∈ K de-

fined on [0, r] (or [0,∞)) are said to be the same order of magnitude if there

exist positive constants k1, k2 such that

k1φ1(r1) ≤ φ2(r1) ≤ k2φ1(r1) ∀r1 ∈ [0, r] (or ∀r1 ∈ [0,∞)) (2.44)
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Definition 2.4.12 (Positive definite). A function V (t, x) : R+ × B(r) → R

with V (t, 0) = 0 for all t ∈ R+ is positive definite if there exists a continuous

function φ ∈ K such that V (t, x) ≥ φ(|x|) for all t ∈ R+, x ∈ B(r), and r > 0.

V (t, x) is negative definite if −V (t, x) is positive definite.

Definition 2.4.13 (Positive semidefinite). A function V (t, x) : R+×B(r)→ R

with V (t, 0) = 0 for all t ∈ R+ is positive semidefinite if V (t, x) ≥ 0 for all

t ∈ R+, x ∈ B(r), and r > 0. V (t, x) is negative semidefinite if V (t, x) ≤ 0

under the same conditions.

Definition 2.4.14 (Decrescent). A function V (t, x) : R+ × B(r) → R with

V (t, 0) = 0 for all t ∈ R+ is decrescent if there exists φ ∈ K such that

|V (t, x)| ≤ φ(|x|) for all t ∈ R+ and all x ∈ B(r) for some r > 0.

Definition 2.4.15 (Radially unbounded). A function V (t, x) : R+×B(r)→ R

with V (t, 0) = 0 for all t ∈ R+ is radially unbounded if there exists φ ∈ KR

such that V (t, x) ≥ φ(|x|) for all t ∈ R+ and x ∈ Rn.

The following two theorems constitute the portion of Laypunov’s di-

rect method that will be used here. They concern a function V (x, t) and its

derivative along the solution of a system of the form of Eq. (2.39) given by

V̇ =
∂V

∂t
+ (∇V )Tf(t, x) (2.45)

where ∇V = [ ∂V
∂x1
, ∂V
∂x2
, ..., ∂V

∂xn
]T . Should a given V (x, t) be shown to satisfy any

of the results of the direct method theorems it is then known as a Lyapunov

function.
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Theorem 2.4.1 (Lyapunov local results). For a positive definite function

V (t, x) : R+ × B(r) → R for r > 0 with V (t, 0) = 0 for all t ∈ R+ and

continuous first-order partial derivatives with respect to x and t, the following

hold:

i If V̇ ≤ 0 then xe = 0 is stable.

ii If V is decrescent and V̇ ≤ 0 then xe = 0 is uniformly stable.

iii If V is decrescent and V̇ < 0 then xe = 0 is uniformly asymptotically

stable.

iv If V is decrescent and there exist φ1, φ2, φ3 ∈ K of the same order of

magnitude such that

φ1(|x|) ≤ V (t, x) ≤ φ2(|x|), V̇ (t, x) ≤ −φ3(|x|) (2.46)

for all x ∈ B(r) and t ∈ R+, then xe = 0 is exponentially stable.

Theorem 2.4.2 (Lyapunov global results). Assume that the system in Eq.

(2.39) has a unique solution for all x0 ∈ Rn. For a positive definite, decrescent,

and radially unbounded function V (t, x) : R+ × Rn → R+ with V (t, 0) = 0 for

all t ∈ R+ and continuous first-order partial derivatives with respect to x and

t, the following hold:

i If V̇ < 0 the xe = 0 is uniformly asymptotically stable in the large.
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ii If there exist φ1, φ2, φ3 ∈ KR of the same order of magnitude such that

φ1(|x|) ≤ V (t, x) ≤ φ2(|x|), V̇ (t, x) ≤ −φ3(|x|) (2.47)

then xe = 0 is exponentially stable in the large.

Note that if the system in Eq. (2.39) is instead autonomous, i.e.

ẋ = f(x), (2.48)

then V (t, x) = V (x) will always be decrescent and uniformity is automatically

implied. Therefore, stability and asymptotic stability of xe = 0 imply uniform

stability and uniform asymptotic stability in this case.

Should choice of a function that satisfies the necessary requirements of

either Theorem 2.4.1 or 2.4.2 be difficult or impossible, it is often permissible

to use a deficient function that resembles a Lyapunov function. The deficient

function is called a Lyapunov-like function and it can be used along with its

derivative to establish stability. For example, it may be convenient to select

a positive semidefinite function for V (x) instead of a positive definite one.

This function would not satisfy either theorem and would be considered a

Lyapunov-like function.
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2.5 Classical MRAC

Consider the a SISO plant with partial state feedback described by the

strictly proper transfer function

y = G(s)u

= kp
Zp(s)

Rp(s)
(2.49)

where y, u ∈ R, Zp and Rp are monic polynomials, and kp is a constant.

The plant can be equivalently represented using the state space description

(Ap, Bp, Cp) with state xp ∈ Rnp and initial condition xp(0) = xp0. The user-

selected reference model is given by the strictly proper transfer function

ym = Wm(s)r

= km
Zm(s)

Rm(s)
(2.50)

where Zm and Rm are monic polynomials, and km is a constant. The reference

input r ∈ R must be uniformly bounded and piecewise continuous. The refer-

ence model can be equivalently represented using the state space description

(Am, Bm, Cm) with state xm ∈ Rnm and initial condition xm(0) = xm0.

The goal is to design u such that y is brought to match ym. Under a

variety of assumptions, this is feasible when the parameters of the plant are

either known or unknown. In the known plant parameter case, the control

law can be specified by selecting its terms based on a matching condition that

arises between the controlled plant and reference model. In the unknown plant

parameter case, an adaptive control law with terms that are updated online
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can be shown to accomplish the goal in the limit. However, an appropriate

update law for the control law terms must also be specified. A block diagram

of the standard MRAC design is shown in Fig. 2.1.

In this section the plant and reference model requirements are summa-

rized. Next, the control law that accomplishes the tracking goal in the known

plant parameter case is developed. Finally, the adaptive control design for the

unknown plant parameter case is described. The methods summarized here

follow the notation presented in Chapter 6 of [8], but the same procedures can

be found in many adaptive control texts.

2.5.1 MRAC Assumptions

Plant assumptions

i Zp(s) is a monic, asymptotically stable polynomial of degree mp

ii Upper bound n ≥ np is known

iii Plant relative degree n∗ = np −mp is known
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iv sign(kp) is known

Reference model assumptions

i Zm(s) and Rm(s) are monic, asymptotically stable polynomials of degree

qm and pm ≤ n, respectively

ii Reference model relative degree n∗m = pm − qm is equal to n∗

2.5.2 Known Parameter Case

Along with the requirements outlined in the previous section, assume

that all coefficients appearing in the plant transfer function are known. The

control law can then be chosen to force the the closed-loop plant description

to match the reference model. An appropriate choice for u is given by

u = θ∗T1

α(s)

Λ(s)
u+ θ∗T2

α(s)

Λ(s)
y + θ∗T3 y + c∗0r (2.51)

where θ∗T1 , θ∗T2 ∈ Rn−1 and c∗0, θ
∗T
3 ∈ R are parameters that will be specified.

Note that Λ(s) is an asymptotically stable, monic polynomial of degree n− 1

of the form

Λ(s) = Λ0(s)Zm(s) (2.52)

and

α(s) =

{
[sn−2, sn−3, ..., s, 1]T for n ≥ 2

0 for n = 1
(2.53)

For the control law given in Eq. (2.51), the closed loop plant expression

is given by y = Gcl(s)r where

Gcl(s) =
c∗0kpZpΛ

2

Λ[(Λ− θ∗T1 α)Rp − kpZp(θ∗T2 α + θ∗T3 Λ)]
. (2.54)
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The choice of the control law parameters can be used to ensure that the

“matching condition” Gcl(s) = Wm(s), also expressed as

c∗0kpZpΛ
2

Λ[(Λ− θ∗T1 α)Rp − kpZp(θ∗T2 α + θ∗T3 Λ)]
= km

Zm
Rm

, (2.55)

is satisfied. Note that there must be a number of pole/zero cancellations in

Gcl to achieve matching. Each of these cancellation will occur in the open

left half-plane due to the required stable structure of Zp and Λ. After some

manipulation, the matching condition can be written as(
Λ− θ∗T1 α

)
Rp − kpZp

(
θ∗T2 α + θ∗3Λ

)
= ZpΛ0Rm (2.56)

or equivalently

θ∗T1 αRp + kp

(
θ∗T2 α + θ∗T3 Λ

)
Zp = ΛRp − ZpΛ0Rm (2.57)

after the choice

c∗0 =
km
kp

(2.58)

has already been included. Equating coefficients based on the power of s on

each side, the matrix equation

Sθ̄∗ = p (2.59)

arises where θ∗ = [θ∗T1 , θ∗T2 , θ∗T3 ], S is a matrix containing the coefficients from

the left side of Eq. (2.57), and p is a vector containing the coefficients from

the right side of Eq. (2.57). It can be shown, though the result is not included

here, that a solution θ∗ exists [8].
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Moving forward, a state space formulation of the problem will facilitate

error convergence analysis. The same known parameter control system is now

presented in a state space framework to provide a clear approach in more

complex versions of the problem. First, the control law in Eq. 2.51 can be

stated as

u = θ∗Tω (2.60)

where

θ∗ = [θ∗T1 , θ∗T2 , θ∗T3 , c∗0]T

ω = [ωT1 , ω
T
2 , y, r]

T (2.61)

and

ω̇1 = Fω1 + gu, ω1(0) = 0

ω̇2 = Fω1 + gy, ω2(0) = 0. (2.62)

The matrix F and vector g are prescribed by the state space realization

(sI − F )−1g =
α(s)

Λ(s)
. (2.63)

A composite state space system of the entire closed loop plant is ob-

tained by augmenting the state of the plant xp with the filter states ω1 and ω2

according to

Ẏc = AcYc +Bcc
∗
0r, Yc(0) = Y0

y = CT
c Yc (2.64)
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where Yc = [xTp , ω
T
1 , ω

T
2 ]T and

Ac =

Ap +Bpθ
∗
3C

T
p Bpθ

∗T
1 Bpθ

∗T
2

gθ∗3C
T
p F + gθ∗T1 gθ∗T2

gCT
p 0 F

 (2.65)

BT
c =

[
BT
p gT 0

]
(2.66)

CT
c =

[
CT
p 0 0

]
. (2.67)

Thus, the s-domain representation developed previously is captured in state

space by

y(s)

r(s)
= CT

c (sI − Ac)−1Bcc
∗
0. (2.68)

Also, because of the matching condition previously established,

y(s)

r(s)
= Wm(s)

=
c∗0kpZpΛ

2

Λ[(Λ− θ∗T1 α)Rp − kpZp(θ∗T2 α + θ∗T3 Λ)]
(2.69)

and therefore

det(sI − Ac) = Λ[(Λ− θ∗T1 α)Rp − kpZp(θ∗T2 α + θ∗T3 Λ)]

= ΛZpΛ0Rm (2.70)

where Eq. (2.56) has been used. Since the roots of Zp are restricted to be

stable, Ac is a stable matrix.

A similar, nonminimal state space formulation of the reference model

is given by

Ẏm = AcYm +Bcc
∗
0r, Ym(0) = Ym0

ym = CT
c Ym (2.71)
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and can be used to define the composite error dynamics. Selecting e = Yc−Ym

and defining the tracking error z = y − ym results in the system

ė = Ace

z = CT
c e. (2.72)

The tracking error z will therefore converge to zero exponentially due to the

stability of Ac.

2.5.3 Unknown Parameter Case

Next consider the same problem formulation and same assumptions,

but permit the plant parameters to remain unknown. Additionally, restrict

the discussion to plants of relative degree n∗ = 1 and reference models that are

SPR. Similar versions of the design exist for plant of higher relative degree and

and MIMO systems but are not included here. The presentation of this and

all further adaptive designs will be made directly in the state space framework

laid out in the previous section.

An appropriate control law to obtain tracking error convergence in the

unknown parameter case is given by

u = θTω (2.73)

where

θT = [θT1 , θ
T
2 , θ

T
3 , c0]T

ω = [ωT1 , ω
T
2 , y, r]

T (2.74)
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and

ω̇1 = Fω1 + gu, ω1(0) = 0

ω̇2 = Fω1 + gy, ω2(0) = 0. (2.75)

The vector θ(t) contains the current estimate of the true but unknown param-

eters θ∗. It will be necessary to update the estimate during operation based on

measured signals, and an update law θ̇(t) will be prescribed during the course

of the design. F and g are prescribed by any stable filter design.

A composite state space representation for the plant is given by

Ẏc = A0Yc +Bcu, Yc(0) = Y0

y = CT
c Yc (2.76)

where Yc = [xTp , ω
T
1 , ω

T
2 ]T and

A0 =

 Ap 0 0
0 F 0

gCT
p 0 F

 (2.77)

BT
c =

[
Bp g 0

]
(2.78)

CT
c =

[
CT
p 0 0

]
. (2.79)

Adding and subtracting Bcθ
∗Tω and then absorbing all but the r-dependent

portion of the positive term into A0Yc gives

Ẏc = AcYc +Bcc
∗
0r +Bc

(
up − θ∗Tω

)
, Yc(0) = Y0

yp = CT
c Yc (2.80)
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where Ac is given by Eq. (2.65). The same nonminimal description for the

reference model stated in Eq. (2.71) holds here as well. Again defining e =

Yc − Ym and the tracking error z = y − ym produces the error dynamics

ė = Ace+Bc

(
up − θ∗Tω

)
e(0) = e0

z = CT
c e. (2.81)

Including the control law gives

ė = Ace+Bc

(
θ̃Tω

)
e(0) = e0

z = CT
c e. (2.82)

where θ̃ = θ(t)−θ∗ is the parameter error. From the reference model composite

system it is evident that

CT
c (sI − Ac)−1B̄c = Wm(s) (2.83)

where B̄c = Bcc
∗
0. Thus Eq. (2.82) assures that

z = Wm(s)ρ∗θ̃Tω (2.84)

where ρ∗ = 1
c∗0

. Note that Ac is unchanged from the known parameter case

and is still stable, and Wm(s) is SPR by requirement.

The parameter update law is next specified through Lyapunov analysis.

Select the Lyapunov-like function

V (θ̃, e) =
eTPce

2
+
θ̃TΓ−1θ̃

2
|ρ∗| (2.85)

38



with Γ = ΓT > 0 and Pc = P T
c > 0 which satisfies

PcAc + ATc Pc = −qqT − νcLc

PcB̄c = Cc. (2.86)

Here q is a vector, Lc = LTc > 0, and vc > 0 as indicated by the MKY lemma.

Taking the derivative,

V̇ = −e
T qqT e

2
− νc

2
eTLce+ eTPcB̄cρ

∗θ̃Tω + θ̃TΓ−1θ̇|ρ∗|. (2.87)

Selecting the update law

θ̇ = −Γzωsign(ρ∗) (2.88)

gives

V̇ = −e
T qqT e

2
− νc

2
eTLce ≤ 0 (2.89)

since z = CT
c e = eTPcB̄c. Signal chasing analysis and Barbalat’s Lemma

assures that lim
t→∞

z(t) = 0.

2.6 Nonminimum Phase Systems

In the context of continuous-time linear plants, which are the structure

of concern in this dissertation, a nonminimum phase system can be defined

as one which has one or more zeros in the closed right half of the complex

plane (i.e. Re[z] ≥ 0). Such zeros are called nonminimum phase zeros or un-

stable zeros. Equivalently, a nonminimum phase system is one whose inverse

in unstable. A nonminimum phase system will also have a larger phase contri-

bution than a minimum phase system with the same magnitude response and
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Figure 2.2: Example of larger phase contribution of nonminimum phase system
vs. its minimum phase counterpart

can potentially cause the transient response to move in the opposite direction

of the ultimate characterization.

Consider a the following two systems as a motivating example of non-

minimum phase characteristics:

G1(s) =
−0.5(s+ 0.1)

(s+ 1)3
(2.90)

and

G2(s) =
−0.5(s− 0.1)

(s+ 1)3
. (2.91)

Here clearly only G2(s) is nonminimum phase though both G1(s) and G2(s)

have the same magnitude. The Bode plot of both system, shown in Fig. 2.2,

confirms the claims. The so-called “wrong way” transient behavior of some
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nonminimum phase systems is also present in the example system. Consider

the step response of G2(s) shown in Fig. 2.3. The system initially displays

significant undershoot before heading in the correct direction. Undershoot

such as that seen here can be problematic in many practical applications,

especially when humans are part of the feedback loop.

From an engineering standpoint nonminimum phase system often arise

when sensor and actuators are non-collocated. More generally, they occur

when forces act on the system at locations other than those being monitored.

Tail-actuated missiles and aircraft pitch dynamics are common examples of this

situation. A more in-depth discussion of aircraft nonminimum phase behavior

is provided in the following sections.
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2.6.1 Aircraft Nonminimum Phase Zero Interpretations

Although nonminimum phase zeros present mathematical difficulties

for control design, their presence in an aircraft model has physical implica-

tions that impact handling qualities. Generally speaking, an input to output

relationship that has nonminimum phase zeros can exhibit an initial response

whose direction is different from the direction of the final behavior [52]. Note

that this reversal may not alway be present depending on the number and

arrangement of nonminimum phase zeros [53]. Several of the commonly an-

alyzed aircraft input to output relationships that contain both nonminimum

phase zeros and display the characteristic direction reversal are summarized

subsequently.

To simplify the discussion consider the latitude and longitude decou-

pled, linearized equations for rigid body motion of a standard aircraft with

elevator, aileron, and rudder control surfaces. A summary of these equations

and a discussion of the assumptions used to obtain them can be found in many

textbooks (for example, see Ch. 2 of [52]). Further details are omitted here as

the discussion will be qualitative. Transfer functions relating control inputs to

relevant outputs can be obtained from the equations facilitating comparison

between pole/zero representation and observed physical behaviors.

First consider the simplified longitudinal dynamics and the resulting

elevator to pitch rate transfer function. More accurately for control sys-

tem discussion, consider the elevator to normal acceleration transfer function.

Here the normal acceleration is a measurement provided by a vertical axis ac-
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celerometer placed somewhere forward of the center of gravity along the line of

symmetry. This transfer function will contain nonminimum phase zeros. The

presence of the nonminimum phase zeros has obvious physical interpretation

when considering the impact of elevator use [52]. For example, a trailing edge

up deflection of the elevator generates an intuitive upward normal accelera-

tion. This action also generates a less obvious downward force on the tail. The

aircraft’s center of gravity and thus the normal acceleration can drop briefly

due to the downward force before increasing in a clear display of nonminimum

phase behavior. Note that the nonminimum phase zero location in the transfer

function and the perceived nonminimum phase effect varies based on where

the normal acceleration is monitored. Correspondingly, a pilot may or may

not feel the nonminimum phase effect depending on cockpit location.

Next consider the simplified lateral dynamics and the aileron to roll

rate transfer function. Here, a nonminimum phase zero appears near the

origin. The physical manifestation of this zero is apparent as the aircraft

rolls [52]: The aircraft sideslips due to gravity and, if it has positive roll

stiffness, it initially rolls in the opposite direction than intended. The rudder

to roll rate transfer function also posses a nonminimum phase zero associated

with the same rolling behavior, but contains a second nonminimum phase zero

associated with rudder deflection. A positive rudder deflection produces both

a positive rolling moment and negative yawing moment. The negative yawing

moment leads to positive sideslip and, again if the aircraft has positive roll

stiffness, results in a negative rolling moment that competes with the rudder’s
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positive rolling moment.

Several structural modification to the aircraft can alter the presence

of the nonminimum phase zeros previously mentioned. For example, canards

can be mounted forward of the aircraft’s center of mass to mitigate the non-

minimum phase behavior associated with elevator use since their deflection

produces a pitch up moment that also generates positive lift [54]. A tailless

aircraft may also avoid the pitch nonminimum phase behavior for appropri-

ately designed and placed wing control surfaces (see [55] for a specific example).

However, note that such structural changes impart other significant changes

to aircraft handling which are not discussed here.

2.6.2 Nonminimum Phase Zeros from Non-collocation

While the previous discussion focused on the nonminimum phase zeros

associated with the aircraft’s rigid body dynamics, it is important to note that

additional nonminimum phase behavior arises when considering the aeroelas-

ticity of a flexible aircraft structure. The primary source of nonminimum

phase zeros in this context is non-collocation of sensors and actuators. In gen-

eral, a lightly damped flexible structure with collocated sensors and actuators

will result in alternating left half plane poles and zeros in the vicinity of the

imaginary axis [56]. However non-collocated sensors and actuators can cause

the zeros to migrate from their collocated position, potentially resulting in a

nonminimum phase system. Also note that the zero migration can result in

pole/zero pairs that flip their ordering. Flipped pole/zero pairs result in a
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root locus plot that indicates a significant portion of gain selections leads to

an unstable system.

To facilitate a straightforward discussion, consider a beam with force

actuator and displacement sensor. Each of the flexible modes considered intro-

duces a left half plane pole/zero pair near the imaginary axis. As the sensor is

moved along the beam away from the actuator location the zeros migrate out

from their collocated location to a position of increased magnitude [56]. For

more complex beam-like systems the migrating zeros can move into the right

half plane in response to increasing sensor and actuator separation distance.

At a certain separation distance the migrating zeros can reach infinity and

return from ±∞ on the real axis and move in towards the origin [57,58]. Thus

non-collocated sensors and actuators have the potential to result in nonmini-

mum phase system descriptions, especially when the sensors and actuators are

significantly displaced.

As an example of the zero migration due to non-collocation, consider

a pole/zero map of a reduced linear model for the experimental flexible wing

aircraft that is the subject of Chapters 4, 6, and 7. An input/output diagram

of the aircraft is shown in Fig. 2.4 including the eight wing flaps and two body

flaps that are used for control input and a variety of accelerometer locations

used for feedback. The map is shown in Fig. 2.5 and contains the pole and

zero locations from multiple input/output pairs at flight conditions just beyond

the body freedom flutter boundary. Specifically, the poles and zeros from the

SISO transfer function relating the nearly collocated sensor ACC RR and
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Figure 2.4: Input and output diagram for the experimental flexible wing air-
craft

actuator WF 4R are compared to those from increasingly removed actuators

WF 3R, WF 2R, and WF 1R. The map clearly shows one pair of zeros near

the imaginary axis that migrates out and into the right half plane as sensor

and actuator distance increases. Another pair of zeros moves in towards the

origin with increasing distance, though the behavior is most clearly seen in

the motion of the right half plane zero. From the map it is clear that all of

the sensor and actuator arrangements considered in this example result in a

nonminimum phase model.

2.6.3 Technical Issues with MRAC

In Section 2.5 it was demonstrated that the in the SISO ideal case the

MRAC objective is achieved through satisfaction of the matching condition

c∗0kpZp(s)Λ
2(s)

Λ(s)
[(

Λ(s)− θ∗T1 α(s)
)
Rp(s)− kpZp(s)

(
θ∗T2 α(s) + θ∗T3 Λ(s)

)] = km
Zm(s)

Rm(s)
.

(2.92)
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The condition implies that the closed-loop poles of the system are placed at

the roots of the polynomial

Zp(s)Λ0(s)Rm(s). (2.93)

If the plant to be controlled is nonminimum phase then Zp(s) will have unstable

roots and the closed-loop poles would be placed unstable locations. As this is

unacceptable, one apparent solution would be to copy the unstable zeros from

the plant and include them as zeros in the reference model. Say that the plant

transfer function is given by

y = kp
Zp,s(s)Zp,u(s)

Rp(s)
u (2.94)

where Zp,s(s) contains the stable zeros and Zp,u(s) the unstable zeros. Assume

that Zp,u(s) is known (even though the rest of the plant is unknown) and
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included in the reference model so that its transfer function is given by

ym = km
Zm(s)Zp,u(s)

Rm(s)
r. (2.95)

After some manipulation the matching condition arising from use of these

transfer functions, the previously established design choice Λ(s) = Λ0(s)Zm(s),

and c∗0 = km
kp

is

(
Λ(s)− θ∗T1 α(s)

)
Rp(s)− kpZp,s(s)Zp,u(s)

(
θ∗T2 α(s) + θ∗T3 Λ(s)

)
= Zp,s(s)Λ0(s)Rm(s) (2.96)

The closed-loop poles would then be placed at the roots of the stable polyno-

mial

Zp,s(s)Λ0(s)Rm(s). (2.97)

Although inclusion of the unstable zeros improves the matching con-

dition, additional problems arise when moving to the case of unknown plant

parameters and attempting to prescribe a parameter update law. Previously

the update law was determined through the use of a Lyapunov function and

the need to cancel undesirable terms in its derivative. The procedure required

that the reference model be SPR so that the MKY Lemma could be used.

Here, the reference model is no longer SPR because of its unstable zeros, and

the parameter update law must be obtained in another way. However, suit-

able options do exist such as gradient or least square-based update laws (see

Chapter 6 of [8]).
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The larger problem with inclusion of the unstable zeros is that the

now unstable reference model breaks existing error convergence proof proce-

dures. As the presence of these zeros in the reference model forms the basis

of the MRAC procedure for nonminimum phase systems discussed in the dis-

sertation, demonstrations of how two established proofs are disrupted are pro-

vided in the appendices. Specifically, Appendix A features the dual swapping

lemma approach in [8]. Appendix B considers a continuous-time version of the

discrete-time proof used in [20]. Both versions are presented in the context of

the problem formulation laid out in Chapter 5, and the reader will be better

equipped to follow the discussion after surveying the design contained therein.

2.7 Aeroservoelastic Modeling

The ZAERO software package is used throughout the dissertation to

produce aeroservoelastic state space models [59]. While many of the general

model creation techniques are familiar to controls engineers, the aeroelastic

modeling portion of the process should be summarized for clarity.

2.7.1 Aeroelastic Background

The aeroelastic state equations of motion are given by

M̄ẍ(t) + K̄x(t) = F (t) (2.98)

where x(t) represents structural deformation, M̄ and K̄ are mass and stiffness

matrices obtained using the structural finite element model, and F (t) contains
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aerodynamic forces. The force term can be decomposed as

F (t) = Fa(x(t)) + Fe(t) (2.99)

where Fa(x(t)) represents aerodynamic forces caused by structural deformation

and Fe(t) represents external forces. Determination of Fa(x(t)) is typically

based on numerical calculations related to the unsteady aerodynamic forces

and will be discussed in further detail later. Ignoring external forces the system

can be written as

M̄ẍ(t) + K̄x(t)− Fa(x(t)) = 0 (2.100)

making it clear that self-excitation is possible. For an aircraft this unsta-

ble behavior is known as flutter and the flight conditions that produce such

excitation must be identified and avoided.

Practical flutter analysis is carried out by linearizing Eq. (2.100) and

turning the stability question into an eigenvalue problem. The linear system

permits formulation of a transfer function from Fa(x(t)) to x(t) given by

Fa(x(s)) = q∞H̄

(
sL

V

)
x(s). (2.101)

Here q∞ is the dynamic pressure, L = c
2

is the reference length using the

reference chord c, and V is the far field flow velocity. The Laplace domain

version of (2.100) is thus given by[
s2M̄ + K̄ − q∞H̄

(
sL

V

)]
x(s) = 0. (2.102)

Solving the eigenvalue problem using Eq. (2.102) would be computationally

taxing as the structural model typically contains many degrees of freedom.
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Instead, the modal approached is used to reduce the order of the system before

proceeding. The displacement is expressed as

x = Φq. (2.103)

Φ is a matrix with columns that each describe one of the first few natural

modes and q contains the modal coordinates. The modal form of Eq. (2.102)

is given by [
s2M +K − q∞Q

(
sL

V

)]
q = 0 (2.104)

where the modal mass matrix, modal stiffness matrix, and generalized aero-

dynamic forces (GAF) matrix are defined as

M = ΦTM̄Φ

K = ΦT K̄Φ

Q

(
sL

V

)
= ΦT H̄

(
sL

V

)
Φ. (2.105)

Eq. (2.104) results in a much smaller eigenvalue problem and is regarded as

the classical flutter matrix equation.

The ability to conduct flutter analysis using Eq. (2.104) is tied to the

ability to determine the aerodynamic transfer function. This difficult task re-

quires expression of the unsteady aerodynamics in the frequency domain and is

ultimately achieved by assuming simple harmonic motion of the elastic struc-

ture. The aerodynamic transfer function is then expressed as a matrix equation

using information from the approximated unsteady aerodynamic forces. The
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matrix used in this expression is called the Aerodynamic Influence Coefficient

(AIC) matrix, and its calculation is a primary function of ZAERO.

In the subsonic regime relevant to the experimental aircraft considered

in the dissertation, the AIC matrices are ultimately generated by solving inte-

gral equations that arise from the unsteady linearized small-disturbance equa-

tions. The aircraft is discretized into small panels, termed aerodynamic boxes,

each of which requires solution of an elementary integral equation. Each aero-

dynamic box contains a control point where boundary conditions are applied

and, once solutions of the elementary integrals are tabulated, the AIC matrix

relating the aerodynamic influence of the aerodynamic boxes to control points

can be formed. Ultimately, the relationship between structural deformation

and aerodynamic forces utilizes the AIC matrix and can be stated as

Fh = q∞[AIC(ik)]h (2.106)

where h is the structural deformation defined at the aerodynamic boxes and

Fh is the aerodynamic force at the aerodynamic boxes as a result of h.

However, an AIC matrix formed using the panel method is not yet ready

for use in place of the GAF matrix of Eq. (2.104). First, the integral equations

and resulting AIC matrix are formulated in terms of reduced frequency k. The

reduced frequency is given by

k =
ωL

V
(2.107)

where ω is the frequency associated with the simple harmonic motion assump-

tion. Expression as a function of the Laplace variable will require a rational
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function approximation (RFA) that will be discussed in the next section. Sec-

ond, the AIC matrix is formulated based on the panel representation of the

aircraft which is likely very different from the structural finite element model.

A spline matrix G must be used to relate displacement and forces in terms of

the structural grid points (G–set) to those in terms of the aerodynamic con-

trol points (K–set). Specifically, deformations are translated from the panel

to structural model according to

h = Gx (2.108)

and forces according to

Fa = GTFh. (2.109)

Combining Eqs. (2.106), (2.108), and (2.109) leads to

Fa = q∞G
T [AIC(ik)]Gx (2.110)

Then, comparing Eqs. (2.101) and (2.110) leads to the realization that

Q(ik) = ΦTGT [AIC(ik)]GΦ (2.111)

where the modal approach of Eq. (2.105) has been used. This final equation

expresses the GAFs (in the k domain) in terms of the AIC matrix and will be

converted to the Laplace domain for use in the aeroservoelastic equations of

motion.

2.7.2 Aeroservoelastic Equations of Motion

It is convenient to couple the aeroelastic dynamics described in the pre-

vious section with the control system for controller design. Changing notation
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slightly and adding a damping term, consider the coupled equations of motion

given by

Mhhξ̈ + Chhξ̇ +Khhξ +Mhcδ̈ = q∞Qhh(ik)ξ + q∞Qhc(ik)δ (2.112)

where ξ now refers to the modal coordinates and δ refers to the control surface

deflections. The subscript h indicates relationship to the structural modes

while subscript c indicates the relationship to the control surfaces. Addition-

ally, note that Mhh, Chh, and Khh are the modal mass, damping, and stiffness

matrices. The matrix Mhc is given by

Mhc = φThMggφc (2.113)

where Mgg is the G–set mass matrix. The structural modes are contained in

φh and the control surface modes in φc. The GAFs are split into those due to

the structural modes

Qhh(ik) = φThG
T [AIC(ik)]Gφh (2.114)

and those due to the control surfaces

Qhc(ik) = φThG
T [AIC(ik)]Gφc (2.115)

where the AIC matrix relationship from Eq. (2.111) has been used.

Next, an RFA is used to convert the GAFs from the reduced frequency

domain to the Laplace domain. The RFA expresses each of the GAFs as a

ratio of polynomials according to the general form

Q̃(s) = A0 +
L

V
A1s+

L2

V 2
A2s

2 +D

(
sI − V

L
R

)−1

Es. (2.116)
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An analytic continuation argument using L
V
s = g+ ik permits swapping of L

V
s

and ik such that

Q̃(ik) = A0 + A1(ik) + A2(ik)2 +D
(
(ik)I − L)R

)−1
E(ik). (2.117)

The coefficients in this equation are determined through a least squares fitting

process that attempts to match the GAF calculated from the AIC matrix at

a given reduced frequency k. Here, Roger’s method is used for the RFA which

has the specific form

Q̃(ik) = A0 + A1(ik) + A2(ik)2 +

Nlag∑
j=1

ik

ik + γj
Cj. (2.118)

Nlag indicates the number of aerodynamic lag states. The approximation the-

oretically improves as more aerodynamic lag states are included, although the

size of the overall state space model for the system also grows. Eq. (2.118)

implies that each of the user–selectable roots γ in the summation are repeated

for each of the Nh modes. This leads to the following coefficient expressions

for the general form in Eq. (2.117):

D =
[
INh INh ... INh

]
(2.119)

R̄ = diag
(
γj
)
, R = −


R̄1 0 0 0
0 R̄2 0 0

. . .

0 0 0 R̄Nh

 (2.120)

E =


C1

C2
...

CNlag

 . (2.121)
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After the coefficients have been determined, Q̃(s) can be recovered from

Q̃(ik). Introducing the partitions

Q̃(s) =

[
Qhh(s)
Qhc(s)

]
Ai =

[
Ahh,i
Ahc,i

]
E =

[
Eh
Ec

]
(2.122)

for i = 0, 1, 2 allows the equations of motion from Eq. (2.112) to be expressed

as

Mhhξ̈ + Chhξ̇ +Khhξ +Mhcδ̈ = q∞Qhh(s)ξ + q∞Qhc(s)δ. (2.123)

2.7.3 State Space Model

An LTI state space model can be constructed by combining the aeroser-

voelastic equations of motion from with a dynamic model of the actuators.

Rigid body dynamics can also be incorporated into the state space description

but are omitted here for simplicity.

First convert the aeroservoelastic equations of motion given in Eq.

(2.123) to a state space representation. Using the partitions defined in Eq.

(2.122) and the RFA expression in Eq. (2.116) gives equations of motion of

the form

Mhhξ̈ + Chhξ̇ +Khhξ +Mhcδ̈ =q∞

(
Ahh0ξ +

L

V
Ahh1 ξ̇ +

L2

V 2
Ahh2 ξ̈

)

+q∞

(
Ahc0δ +

L

V
Ahc1 δ̇ +

L2

V 2
Ahc2 δ̈

)
+ q∞Dxa.

(2.124)

Here, the quantity xa is defined as

xa =

(
sI − V

L
R

)−1

(Ehξ + Ecδ) s (2.125)
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for convenience. The state space form of the aeroservoelastic dynamics is given

by

ẋae = Aaexae +Baeuae (2.126)

where

xae = [ξT ξ̇T xTa ]T (2.127)

and

uae = [δT δ̇T δ̈T ]T . (2.128)

The matrices are detailed in the following equations.

Aae =

 0 I 0
−M̄−1 (Khh − q∞Ahh0) −M̄−1

(
Chh − q∞ L

V
Ahh1

)
q∞M̄

−1D
0 Eh

V
L
R


(2.129)

Bae =


0 0 0

q∞M̄
−1Ahc0 q∞

L
V
M̄−1Ahc1 −M̄−1

(
Mhc − q∞L2

V 2 Ahc2

)
0 Ec 0

 (2.130)

M̄ = Mhh −
q∞L

2

V 2
Ahh2 (2.131)

The output equation is of the form

yae = Caexae +Daeuae, (2.132)

but the matrix structure varies based on the type of sensor desired. How-

ever, accelerometers are primarily selected for use here meaning that for each

of the i = 1...p sensors the reading can be extracted from the state space
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representation as

yae,i = −φh,i
[
M̄−1Khh − q∞Ahh,0 M̄−1

(
Chh − q∞ L

V
Ahh,1

)
−q∞M̄−1D

]
xae

− φc,i
[
q∞M̄

−1Ahc,0 q∞
L
V
M̄−1 M̄−1

(
Mhc − q∞L2

V 2 Ahc,2

)]
uae. (2.133)

Note that φh,i is the natural mode displacement at the ith sensor location and

φc,i the corresponding control surface mode displacement. The matrices Cae

and Dae are formed by stacking the coefficient matrices in Eq. (2.133) for each

of the desired sensors according to the vectors xae and uae.

Next consider the actuator dynamics. Each of the i = 1...m control

surfaces has 3rd order dynamics given by the transfer function from command

uacti to deflection δi as

δi =
g0i

s3 + g2is
2 + g1is+ g0i

uacti . (2.134)

Collecting all the actuators permits the state space expression

ẋact = Aactxact +Bactuact (2.135)

where

uact = [uact1 ...uactm ]T (2.136)

and

xact = [δ1...δm δ̇1...δ̇m δ̈1...δ̈m]T

= [δT δ̇T δ̈T ]. (2.137)
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The matrices are given by

Aact =

 0 I 0
0 0 I
G0 G1 G2

 (2.138)

Bact =

 0
0
Ḡ0

 (2.139)

where

G0 = diag(−g0i)

G1 = diag(−g1i)

G2 = diag(−g2i) (2.140)

and

Ḡ0 = [g01 ...g0m ]T . (2.141)

To assemble the full state space system, note from Eqs. (2.128) and

(2.137) that uae = xact. A composite state vector can thus be defined as

xp = [xTae x
T
act]

T

= [ξ ξ̇ xa δ δ̇ δ̈]
T . (2.142)

The corresponding system is given by

ẋp = Apxp +Bpuact

y = Cpxp (2.143)

where the matrices are defined in block form as

Ap =

[
Aae Bae

0 Aact

]
Bp =

[
0
Bact

]
Cp =

[
Cae Dae

]
. (2.144)
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Chapter 3

Partitioned Model Reference Adaptive

Control

The development of the two-part, or partitioned, MRAC scheme is

presented in this chapter. The partitioned design assumes a linear, multi-input

plant description and combines the use of two control laws: a nonadaptive

nominal control law and an adaptive delta control law. The nominal control

law should provide acceptable performance when used on its own. The delta

control law is intended to be used in addition to the nominal law and seeks to

improve upon the performance of the nominal law alone. Simultaneous use of

the two control laws is facilitated by partitioning the control surfaces available

to each law while permitting the measurements fed back to be used by both

laws. A general block diagram of the proposed design is provided in Fig. 3.1.

As an example of the partitioned structure consider a linear plant with

four inputs and two outputs described by the transfer function relationship

[
y1

y2

]
=

[
G11(s) G12(s) G13(s) G14(s)
G21(s) G22(s) G23(s) G24(s)

]
u1

u2

u3

u4

 . (3.1)

Inputs u1 and u2 are assigned to the nominal control law and u3 and u4 to the

delta control law. Both outputs are assigned to both control laws. Output y1
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Figure 3.1: Block diagram for partitioned MRAC design, nominal system in
green (bottom), delta system in red (top)

thus consists of two independent portions, one resulting from each control law:

y1 = G11(s)u1 +G12(s)u2 +G13(s)u3 +G14(s)u4

= G1,n(s)un +G1,∆(s)u∆

= y1,n + y1,∆ (3.2)

where G1,n = [G11 G12], G1,∆ = [G13 G14], un = [u1 u2]T , and u∆ = [u3 u4]T .

A similar result holds for y2. Note that without further specification concerning

the control laws this type of partitioned structure can facilitate any number

of outputs and two or more inputs. However the delta law to be used here

will require selections that have the same number of inputs and outputs (as is

necessary for traditional MRAC designs).

Within this framework the inputs and outputs associated with the nom-
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inal portion of the system and the delta portion of the system are user-choice.

The assignments greatly impact the performance of the proposed design and

must be thoughtfully selected when applied to a physical system. As an ex-

ample, consider a different input and output division for the same generic 4×2

system in Eq. (3.1). Allow u1, u2, and u3 to be assigned to the nominal con-

trol law and only u4 assigned to the delta law. Due to the anticipated MRAC

design for the delta system, assignment of only one delta output is permissible

because of the square structure required. Arbitrarily selecting the delta out-

put to be y1 means that this signal can be partitioned into nominal and delta

components as in Eq. (3.2). However for y2 there is a portion of the signal

that is “unmanaged”:

y2 = G21(s)u1 +G22(s)u2 +G23(s)u3 +G24(s)u4

= G2,n(s)un +Gx(s)u∆

= y2,n + yx. (3.3)

Here Gx = G24 and refers to the unmanaged dynamics while yx is the corre-

sponding unmanaged portion of the output signal. Without the delta law, yx

would not be present and y2 could be fully controlled by the nominal control

law. Use of the delta law however has the potential to disrupt y2’s behavior

in this scenario. If a similar type of input and output arrangement is selected

for implementation then any output signal contains an unmanaged compo-

nent must be monitored to ensure that the delta control law does not cause

unacceptable behavior.
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The input splitting feature permits the general statement that y =

yn + y∆. In order to implement MRAC on only the delta portion of the

system there must be a way to recover y∆ from the measured output y. This

is accomplished by applying the nominal control to a known model of the

nominal portion of the system Ḡn(s). The nominal output yn is replaced by

the quantity ȳn that is determined by applying the nominal controller to the

nominal model, i.e. ȳn = Ḡn(s)un. The delta output used for feedback in the

adaptive system is thus recovered as y∆ = y − ȳn. Figure 3.1 illustrates this

feature in the lower feedback loop.

Note that this structure corresponds to a shifted version of MRAC

in some ways. Instead of using a full reference model, the reference model is

shifted by subtraction of the nominal model to create the delta reference model.

The adaptive control law then attempts to match the delta reference signal.

Correspondingly, many of the typical MRAC implementation requirements fall

on the delta portion of the system.

3.1 Nominal Control Law

The transfer function representation of the open-loop nominal system

is given as yn = Gn(s)un. An estimated model of nominal system is given by

ȳn = Ḡn(s)un. (3.4)
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Any type of control that permits the closed-loop nominal model to be expressed

as

ȳn = W̄n(s)r (3.5)

can be used. Although, the nominal control law should ideally provide ac-

ceptable performance when used by itself to control the plant. This structure

is intentionally non-specific so that a variety of control methodologies can be

used for the nominal law. Further, this structure accommodates the existing

experimental aircraft controller which will used in later simulations.

3.2 Delta Control Law

A model-based control formulation for the delta law is appropriate due

to the need to operate the delta law in conjunction with a nominal law. The

use of a user-selected reference model yr = Wr(s)r in the design permits the

closed-loop nominal model W̄n(s) to subtracted away leaving a remainder that

serves as the delta reference model W∆(s). To demonstrate, note that the goal

for a model-based design is to use the control system to bring the output of the

plant y to match the output of a reference model yr. It was noted previously

that use of a nominal model permits the expression y = y∆ + ȳn. Ideally

this expression should become yr = y∆r + ȳn, where y∆r is the output of the

delta reference model, through the use of the control system. Substituting the

reference model and nominal model expressions then solving for y∆r gives

y∆,r =
[
Wr(s)− W̄n(s)

]
r. (3.6)
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Therefore the delta reference model is

W∆(s) = Wr(s)− W̄n(s). (3.7)

It is clear that there are input/output size considerations that must be satisfied

in order to form the delta reference model. It may be necessary to leave some

outputs unmanaged by the delta system as previously discussed. Also, note

that in practice it may more useful to instead design the delta reference model

directly and recover the corresponding full reference model.

Additionally, note that for any delta output the goal is no longer to

track the original command. The partitioned MRAC design means that it

is the full reference model Wr(s) whose output yr should be tracked instead.

Further, yr has both a nominal and delta contribution

yr = y∆r + ȳn

=
[
W∆(s) + W̄n(s)

]
r (3.8)

and the delta system is only to track the y∆r portion. This is especially

important to keep in mind when designing the nominal controller as ȳn is

only part of the total value that will be tracked. Since the full reference

model is constructed from W̄n(s) and W∆(s), two items that the user has

some freedom to select, there is an inherent ability to distribute the how much

of the yr tracking task is distributed between the nominal and delta systems.

For example, the user can easily alter the design of the delta reference model

and modulate the size of y∆ to be a larger or smaller percentage of the tracked

value.
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Chapter 4

Parallel Feedforward Compensator

The partitioned design is first used in conjunction with the parallel

feedforward compensator approach to MRAC. The PFC method can be used to

accommodate nonminimum phase plants in the MRAC scheme by introducing

a user–designed system in parallel with the plant to create the appearance

of a minimum phase system. This straightforward solution to the problem

of MRAC for nonminimum phase systems has been called “simple adaptive

control” and has been applied to a diverse range of applications [19]. While

undoubtedly useful, the PFC approach does has several potential shortcomings

that will be highlighted in the subsequent discussion.

The functionality of the PFC–based partitioned design is explored in

this chapter through application to aeroservoelastic control of an experimental,

flexible wing aircraft. Nonminimum phase, linear models of the aircraft are

produced to simulate performance of the design and can be stable or unstable

depending on flight condition. Discussion of appropriate actuator and sensor

assignments for the nominal and delta control laws is provided, as well and

details regarding aeroservoelastic model generation useful for the purpose of

control design.
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The design is specified beginning with system level requirements. The

general structure of the nominal law and extensive detail of the delta law

are the provided. PFC nonminimum phase adaptations are discussed. An

overview of the flexible aircraft is provided and state space modeling proce-

dures are outlined. Finally, simulation results of the flexible motion behavior

are provided.

4.1 PFC MRAC Design Details

Since the partitioned system is split into the nominal and delta portions

and only the delta portion is controlled adaptively, several implementation

requirements fall on the delta system. Some comments on assumptions related

to the nominal partition are warranted however. Most importantly, a model

of the nominal partition is assumed to be known. A control law that permits a

transfer function expression of the nominal partition from the reference signal

to the output is assumed to have already been designed. Ideally, this nominal

control law provides a reasonable level of performance when controlling the

entire system on its own. The system-level requirements for the proposed

control design are as follows:

R1. The delta partition must be controllable, observable, and strictly proper.

Its observability index ν (or at least its upper bound [8]) must be known.

R2. Both the nominal and delta partitions must have m inputs and m out-

puts.
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R3. The delta partition must have relative degree 1.

R4. The signs of the leading principal minors of the high frequency gain

matrix Kp of the delta partition must be known.

R5. The delta partition should be minimum phase. If this is not expected to

be the case, then an approximate model of the delta partition must be

available.

Additionally, there are some restrictions on the delta reference model. Specif-

ically, the product of the delta reference model and a component of high fre-

quency gain matrix decomposition W∆S must satisfy an SPR requirement.

Further details will be provided later in the text.

4.1.1 Nominal Control Law

One of the motivating factors behind the model partitioning explored

in this paper is the desire to make use of existing nonadaptive control laws

that have already been developed for the flexible aircraft. These nominal

control laws already meet necessary safety and performance requirements. It is

important to note that the design of the the nominal control law is not the focus

of this investigation. Any nominal control law that permits the closed-loop

nominal model to be expressed in the form yn = Wn(s)r is permissible. Thus,

to simplify subsequent discussion, a straightforward pole placement controller

with constant reference tracking is selected as the nominal control law [60]. Of

course more sophisticated control techniques could be used here instead, but
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it is not necessary for successful implementation of the proposed design. If the

frequency representation of the open-loop nominal model is given as

ȳn = Ḡn(s)un (4.1)

then the model can be equivalently expressed in state space form as

˙̄xn = Ānx̄n + B̄nun

ȳn = C̄nx̄n. (4.2)

The appropriate pole placement control signal is

un = −Knx̄n + N̄r (4.3)

where

N̄ =
(
C̄n[−Ān + B̄nKn]−1B̄n

)−1
. (4.4)

The closed-loop system becomes

˙̄xn = (Ān − B̄nKn)x̄n + B̄nN̄r

ȳn = C̄nx̄n (4.5)

and so a transfer function matrix from r to ȳn can be obtained such that

ȳn = W̄n(s)r as is necessary.

4.1.2 Delta Control Law Derivation

Next proceed to development of an adaptive control law for the un-

known delta system. As stated previously, the delta control law is based on
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the direct MRAC scheme for a MIMO system. It is intended to work with

the nominal law to ensure that the system’s output tracks the output of a

reference model. The m x m delta system will be denoted as either G∆(s)

or (A∆, B∆,C∆,D∆), and its high frequency gain matrix can be defined as

Kp = C∆B∆. Several other works addressed in the literature review contain

derivations that could be used to carry out design here, but the procedure

outlined in [12] has been selected for adaptation to the partitioned structure.

First, define the output signals y∆ = y − ȳn and y∆,r = yr − ȳn as

illustrated in Figure 3.1. Using these definitions note that the full system

tracking error z = y − yr is equivalent to the so-called delta system tracking

error

e∆ = y∆ − y∆,r

= (y − ȳn)− (yr − ȳn)

= y − yr. (4.6)

Thus, the goal is to use the delta control law u∆ to bring the full system

tracking error to zero

lim
t→∞

z = lim
t→∞

(y − yr) = 0. (4.7)

Next, as discussed in Chapter 3, note that the delta reference model can

be recovered as W∆ = Wr−W̄n. If the true values of the unknown parameters
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in the delta control law were known the closed loop delta system would become

y∆ = G∆u∆

= W∆r. (4.8)

The control law u∗∆ that would make Eq. (4.8) true is known to be [7]

u∗∆ = θ∗T1 ω1 + θ∗T2 ω2 + θ∗3y∆ + θ∗4r = θ∗Tω (4.9)

where

ω1 =
A(s)

Λ(s)
u∆ (4.10)

and

ω2 =
A(s)

Λ(s)
y∆. (4.11)

Here define

A(s) = [I Is...Isν−2]T with I ∈ Rmxm (4.12)

where ν is the delta system’s observability index. Also define

L(s) = λ0 + λ1s+ ...+ sν−2 (4.13)

where the λ’s are user choice, but the resulting L(s) must be Hurwitz. Note

that ω1, ω2 ∈ Rm(ν−1). Also note that θ∗1, θ∗2 ∈ Rm(ν−1)xm, θ∗3 ∈ Rmxm, and

θ∗4 = K−1
p . The θ’s refer to unknown parameters and the superscript ∗ denotes

their (unknown) true value.

A more useful form of the full system error can now be obtained through

manipulation of Eq. (4.9). First set u∆ = u∗∆ in the expressions for ω1, ω2, and
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r in Eqs. (4.10),(4.11), and (4.8). Substitute these into Eq. (4.9) to obtain

u∗∆ = θ∗T1

A(s)

Λ(s)
u∗∆ + θ∗T2

A(s)

Λ(s)
G∆u

∗
∆ + θ∗3G∆u

∗
∆ + θ∗4W

−1
∆ G∆u

∗
∆. (4.14)

From here obtain the matching equation

I = θ∗T1

A(s)

Λ(s)
+ θ∗T2

A(s)

Λ(s)
G∆ + θ∗3G∆ + θ∗4W

−1
∆ G∆. (4.15)

Right multiplying by u∆ and adding and subtracting equivalent forms of K−1
p r

gives

u∆ = θ∗Tω −K−1
p r +K−1

p W−1
∆ G∆u∆ (4.16)

where Kp is the high frequency gain matrix of the delta system. Next, left

multiply by W∆Kp, make use of the y∆, y∆,r, and e∆ expressions to obtain

W∆Kpu∆ = W∆Kpθ
∗Tω + e∆. (4.17)

Finally, remembering that z = e∆ and rearranging, arrive at the desired alter-

native error expression

z = W∆Kp(u∆ − θ∗Tω). (4.18)

In the SISO case, the certainty equivalence-type control law choice for

u∆ would be straightforward. The update law for θ would be selected from

term cancellation in the Lyapunov function, and knowledge of at least the sign

of the scalar Kp would be required to complete the implementation. In the

MIMO case proceeds similarly but again some type of knowledge of the matrix

Kp is required. The design used here requires only that the signs of the leading

principal minors of Kp are known [12].

72



To determine the appropriate control law proceed by restating Eq.

(4.18) with a decomposition of Kp. Specifically, the high frequency gain matrix

is factored as Kp = SDU where S is a symmetric positive definite matrix, D is

diagonal, and U is unity upper triangular [61]. Such a factorization is assured

to exist as long as Kp is real, square, and has nonzero leading principal minors–

again facilitated by the relative degree one requirement [12]. Substituting the

factorization into Eq. (4.18) gives

z = W∆SD(Uu∆ − Uθ∗T1 ω1 − Uθ∗T2 ω2 − Uθ∗3y∆ − Uθ∗4r). (4.19)

Next include the relationship Uu∆ = u∆ − (I − U)u∆ to be explicit that no

infeasible dependencies exist among the control terms (i.e. a given control

term, u∆i
, can only depend on higher index control terms, u∆i+1

...u∆m). Also

define the place holders K1 = Uθ∗T1 , K2 = Uθ∗T2 , K3 = Uθ∗3, and K4 = Uθ∗4 so

that the error equation can be stated as

z = W∆SD[u∆ −K1ω1 −K2ω2 −K3y∆ −K4r − (I − U)u∆]. (4.20)

Finally, new regressors Ω and unknown parameters Θ are defined via the re-

lationship

[Θ∗T1 Ω1 Θ∗T2 Ω2...Θ
∗T
m Ωm]T , K1ω1 +K2ω2 +K3y∆ +K4r+ (I−U)u∆. (4.21)

Note that this means that the row vector Θ∗Ti contains the ith rows of each K

and I − U . The regressors are defined as ΩT
i = [ωT u∆i+1

...u∆m ]. The final

form of the error equation is

z = W∆SD(u∆ − [Θ∗T1 Ω1 Θ∗T2 Ω2...Θ
∗T
m Ωm]T ). (4.22)
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As the true values of the Θ parameters are unknown, an update law

for each of the Θ’s is selected to provide an estimate of its value based on

measured signals. The current estimated value, denoted by Θ̂, is then used in

the control law. Thus, the adaptive delta control law is given by

u∆ = [Θ̂T
1 Ω1 Θ̂T

2 Ω2...Θ̂
T
mΩm]T (4.23)

and the full system error is reduced to

z = W∆SD[Θ̃T
1 Ω1 Θ̃T

2 Ω2...Θ̃
T
mΩm]T (4.24)

where Θ̃ = Θ̂−Θ∗.

4.1.3 Parameter Update Law Selection

The parameter update laws are now determined via Lyapunov analysis.

Consider a Lyapunov function of the form

V (z,Θ) =
1

2
eTPe+

1

2

m∑
i=1

1

γi
|di|Θ̃T

i Θ̃i > 0. (4.25)

Further clarification of the terms is provided subsequently.

• Composite system state error: e

By combining the state of the delta system x∆ with the filter states de-

fined in Eqs. (4.10) and (4.11), construct the vector X∆ = [xT∆ ωT1 ω
T
2 ]T .

If a nonminimal realization of W∆S denoted by C∆(sI − A∆)−1B∆ is

considered that also satisfies C∆B∆ = S, then the nonminimal realiza-

tion’s state can be similarly defined as X∆r . The “state error” is then
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e = X∆ −X∆r , and the dynamics can be stated as

ė = A∆e+B∆D(u∆ − [Θ∗T1 Ω1 Θ∗T2 Ω2...Θ
∗T
m Ωm]T )

z = C∆e. (4.26)

• Lyapunov matrix: P

By requiring that W∆S is SPR there exist matrices P = P T > 0 and

Q = QT > 0 satisfying [8]

AT∆P + PA∆ = −2Q

PB∆ = CT
∆. (4.27)

Satisfaction of the SPR requirement can be difficult in general, but by

restricting W∆ to a diagonal, single pole structure it is assured that the

W∆S requirement is met [12]. W∆ is a result of other user-selected items,

and as such this simple structure is not infeasible.

• Diagonal entries of D: di

These terms refer to the diagonal entries of the decomposition matrix

D. A valid expression for this matrix can be stated as

D =


∆1 0 0 0
0 ∆2

∆1
0 0

. . .

0 0 0 ∆m

∆m−1

 . (4.28)

Here ∆i refers to the ith leading principal minor of Kp. Note that none

of the leading principal minors can be zero.
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• Learning rate: γi

Each of the m γi terms is a user-selected adaptation gain. It is necessary

that γi > 0.

Using the fact that ˙̃Θi =
˙̂
Θi since Θ∗i is a constant, as well as occa-

sionally taking the transpose of scalar products, the time derivative of the

Lyapunov function can be stated as

V̇ =
1

2
ėTPe+

1

2
eTP ė+

m∑
i=1

1

γi
|di|Θ̃T

i
˙̂
Θi. (4.29)

Consideration of Eq. (4.26) and Eq. (4.27) as well as inclusion of the selected

control law bring the derivative to

V̇ = −eTQe+ eTPB∆D[Θ̃T
1 Ω1 Θ̃T

2 Ω2...Θ̃
T
mΩm]T +

m∑
i=1

1

γi
|di|Θ̃T

i
˙̂
Θi. (4.30)

Recall that PB∆ = CT
∆ and thus eTPB∆ = eTCT

∆ = zT . This relation along

with expansion of zTD leaves

V̇ = −eTQe+
m∑
i=1

1

γi
|di|Θ̃T

i (γisign(di)ziΩi +
˙̂
Θi). (4.31)

The choice of update law is now obvious. For each i = 1...m select

˙̂
Θi = −γisign(di)ziΩi. (4.32)

The derivative is left as

V̇ = −eTQe ≤ 0. (4.33)

A signal chasing argument permits the conclusion that e(t) and thus z(t)→ 0

as t → ∞ as desired for the control law given in Eq. (4.23) and the update

laws given in Eq. (4.32).
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4.1.4 Nonminimum Phase Adaptation

In the case that the delta partition is nonminimum phase, the deriva-

tion shown in the previous section demonstrates that error convergence is not

expected. As reviewed in the introduction, however, a handful of techniques

do exist for nonminimum phase systems. Here a method is selected that han-

dles the problem by augmenting the system with additional dynamics. The

goal is to use the additional dynamics to make the augmented system mini-

mum phase. The addition is made in parallel with the original system, and

thus the technique is known as parallel feedforward compensation [19]. The

output of the augmented system is the data fed back to the adaptive control

law, and the adaptation mechanism only sees minimum phase behavior. How-

ever, the output of the true system does not actually include a contribution

from the fictitious parallel feedforward compensator (PFC). For best results

the PFC should have a small output magnitude so that the augmented sys-

tem, for which the control is designed, has an output signal similar to that

of the true system. Figure 4.1 illustrates the PFC structure used to augment

the nonminimum phase delta system. The augmented delta system G∆,aug

shown in the diagram replaces the original delta portion of the plant depicted

in Figure 3.1.

Traditional PFC designs require that the nonminimum phase system

be known in order to select an appropriate compensator. This is not a feasible

requirement here since the nonminimum phase delta system is precisely what

is unknown. Instead, [62] proposes a PFC procedure that requires only a rough
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Figure 4.1: Block diagram of augmented delta system, replaces delta portion
of the plant in Figure 3.1

estimate of the nonminimum phase system be available. The technique relies

on the establishing the almost strictly positive real (ASPR) property for the

augmented system. While further discussion on the ASPR property can be

found in [63], it is sufficient for the discussion to summarize that a system (A,

B, C) is said to be ASPR if there exists a feedback matrix KASPR such that

(A−BKASPR, B, C) is SPR.

The authors propose calculating a PFC transfer function matrix from

the difference between a user-selected ASPR transfer function matrix and the

available estimate of the nonminimum phase system. For the structure devel-

oped here, this becomes

GPFC = GASPR − Ĝ∆ (4.34)

where Ĝ∆ is a delta system estimate. The augmented system will then be

G∆,aug = GPFC +G∗∆ (4.35)
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where G∗∆ is the true delta system. Define

∆ = G−1
ASPR(G∗∆ − Ĝ∆) (4.36)

and restate the augmented system as

G∆,aug = GASPR(I + ∆). (4.37)

G∆,aug will then also be ASPR if the following conditions are satisfied:

1. GASPR(s) is ASPR

2. ∆(s) ∈ RH∞

3. ||∆||∞ < 1

A proof for this result can be found in [64]. The augmented delta system

then meets all of the necessary requirements, including the minimum phase

requirement, for use with the adaptive system described in Sections 4.1.2 and

4.1.3.

4.2 Flexible Aircraft Modeling

The experimental, flexible wing aircraft used in this investigation is

a lightweight, high aspect ratio, remotely piloted vehicle. It was built to

experience and demonstrate suppress of multiple types of flutter modes within

its flight envelope. The aircraft has variety of sensors and a large number of

control surfaces available to the controls designer as summarized previously
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in Fig. 2.4. Notably, each wing has four flaps along its trailing edge that can

be individually actuated. Two flaps at the rear of the body are also available.

Accelerometers are distributed over the vehicle with four arranged on the wings

and two on the body for measurement feedback.

4.2.1 State Space Model

Linear state space models for the flexible aircraft in steady level flight

were provided by NASA Armstrong at an assortment of flight conditions.

These state space models were produced using a finite element model along

with an aerodynamic model and experimentally identified actuator models.

The ZAERO software package [59], employing a rational function approxima-

tion, was used to produce the corresponding time domain, state space repre-

sentation as reviewed in Chapter 2.

The state space models are of the form

ẋ = Apx+Bpu

y = Cpx+Dpu. (4.38)

The matrices are defined using block notation as

Ap =

Arr Are Brr

Aer Aee Bre

0 0 Aact

 Bp =

 0
0
Bact

 Cp =
[
Cae Dae

]
Dp =

[
0
]

(4.39)

and differ slightly from the form introduced in the background review due to

the inclusion of rigid body dynamics. The various subscripts reference the rigid

body (r), elastic(e), aeroelastic (ae), and actuator (act) contributions. The
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state vector is given as x = [xTAS xTξ xTact]
T . The rigid body states are contained

in xAS = [x h θ u α q y β p r φ ψ]T . The elastic and aerodynamic states

are contained in xξ = [xe ẋe xlag]
T where xe and ẋe corresponds to the flexible

body modes and xlag references the unsteady aerodynamic lags. The actuator

states in xact correspond to a third order model for each actuator. The result

is a 130 state model where xAS is 12 states, xe and ẋe are each 14 states, xlag

is 60 states, and xact fills the remaining 30 states.

4.2.2 Model Partitioning

Based on the partitioned design shown in Figure 3.1 separate inputs

signals are required to be assigned to the nominal and delta models. Both

models can share the same outputs. The derivation of the delta control law

also makes it clear that both the nominal and delta models must be square.

Thus, select m flaps for the nominal partition, m different flaps for the delta

partition, and m accelerometers for use as outputs with both partitions.

Referencing the abbreviations shown in Fig. 2.4, wing flaps WF 2L,

WF 2R, WF 3L, and WF 3R are selected as inputs for the nominal system.

This choice was made to coincide with actuator selections of existing nominal

control laws and establishes that m = 4. Wing flaps WF 4L and WF 4R

as well as body flaps BF R and BF L are selected as inputs for the delta

system. Finally, select accelerometers ACC LF, ACC RR, ACC CF, and ACC

CR as outputs for moth models. The choice of these particular four sensors

will permit detection of the largest number of mode shapes included in the
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Table 4.1: Summary of PFC MRAC input and output selections

Nominal Control System Delta Control System

Inputs
WF 2R & L,
WF 3R & L

WF 4R & L,
BF R & L

Outputs
ACC CF, ACC CR,
ACC LF, ACC RR

ACC CF, ACC CR,
ACC LF, ACC RR

state space model generation procedure. Table 4.1 summarizes the input and

output selections.

4.2.3 Model Reduction

The state space models produced by ZAERO are typically high order

and numerically ill-conditioned. Some type of model conditioning and order

reduction is necessary before they can be used for control design. The model

treatments used in this paper follow a modified version of the steps presented

in [45] where similar flexible aircraft state space models were used.

The reduction procedure is summarized in the following list. Note that

two types of model reduction are used here. Model reduction by truncation

ensures the reduced model Gr is equivalent to the original model G at infinite

frequency, i.e. G(∞) = Gr(∞). Model reduction by residualization ensures

that the DC gain of the reduced model is equivalent to the DC gain of the

original model, i.e. G(0) = Gr(0).

1. Nominal/Delta partitioning
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The nominal and delta partitions are constructed from the original model

based on the associated input and output selections described in Section

4.2.2.

2. Actuator state residualization

Most of the acutator states are residualized from both partitions. Two

states are retained that significantly improve model accuracy as identified

by manually checking for large changes in the frequency response of the

reduced model.

3. Unsteady aerodynamic state residualization

There are three aerodynamic lag states associated with each rigid body

and flexible mode. Again, most of these states are residualized from both

partitions. Nine states are retained correspond to significant changes in

the reduced model’s frequency response.

4. Rigid body state truncation

All rigid body states except pitch rate, roll rate, yaw rate, and angle of

attack are truncated as the others do not factor significantly into the

aeroelastic dynamics concerned in this investigation.

5. Flexible body state truncation

The original model contains 14 flexible body modes, ordered by increas-

ing modal frequency. Each mode contributes two states: displacement

and velocity. The first 11 flexible body modes are retained in accordance

with the results of flutter modal participation analysis omitted here. The
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states associated with the remaining three modes are truncated from the

model.

6. Balanced realization truncation

A balancing transformation can be performed on the remaining model

[65]. Note that after this point the states no long retain their original

physical meaning. All states below a selected threshold for the corre-

sponding Hankel singular values are truncated. For the nominal parti-

tion, the threshold is set to 0.5 so as to cut the model off at a existing

gap in singular values. The threshold for the delta partition is set to 0.1

for similar reasons.

7. Feedthrough elimination

Each of the reduction by residualization steps has the potential to re-

sult in a reduced state space model with a non-zero D∆ matrix even

when the original model was strictly proper. The adaptive control de-

sign will require a strictly proper system, and thus D∆ = 0mxm is forced

in the final reduced delta model. This step is not strictly necessary

for the reduced nominal model. Frequency analysis shows however that

feedthrough elimination has little effect on the response of the models

used here.

The reduction steps result in two smaller models: a 23-state nominal

model and a 26-state delta model. Both of these models have the same ac-

celerometer outputs but different flap inputs. To visualize the accuracy of
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the reduced model, look at Bode plots of each of the input/output pairs as

compared to their original Bode diagram. Figure 4.2 shows the frequency

response comparison for two of the input/output pairs as an example. Fig-

ure 4.2(a) illustrates the frequency response of a pair from the nominal model

while Figure 4.2(b) illustrates one from the delta model. In all cases, including

the ones shown, the reduced model adequately matches the full model up to

approximately 11 Hz.
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(b) Delta partition: Body flap left to right rear accelerometer

Figure 4.2: Bode plots of truncated system
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4.3 Simulation Results

The simulation results presented in this paper were all created using

the same reduced state space model. The original model was generated using

simulation data of the flexible aircraft at flight conditions just below the flutter

boundary via the process outlined in Section 4.2. The model was then reduced

via the process outlined in Section 4.2.3. Both the nominal and delta portions

of the resulting reduced model are stable but nonminimum phase. For the

sake of brevity only two out of the four available output signals is included.

Specifically, plots are included for the vertical axis accelerometer located on the

trailing edge of the right wing (ACC RR) and the vertical axis accelerometer

centered on the front of the body (ACC CF). Both axes on all plots have been

normalized by consistent reference values for security purposes.

Figure 4.3 shows the open loop behavior of the reduced system in re-

sponse to non-zero initial conditions. Although the system is stable at the se-

lected flight conditions, the transient response displays significant oscillation.

Figure 4.4 illustrates system performance with only the nominal control law in

use. For simplicity, a pole placement controller with tracking is designed using

knowledge of the nominal model and serves as the nominal control law. A step

function serves as the reference signal for each output. Although tracking is

achieved, the transient again leaves much to be desired.
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Figure 4.3: Scaled vertical axis accelerometer output, no control
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(b) ACC CF

Figure 4.4: Scaled vertical axis accelerometer output, nominal control

In order to implement the delta control law several more design parame-
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ters must be selected. First, a reference model must be designed. As described

in Chapter 3 the reference model for the full system can be expressed as the

controlled nominal model plus the reference model for the delta partition. The

delta reference model is yet to be defined. Recall that the delta reference model

also has SPR requirements that must be met. Additionally, since the nominal

control law already provides acceptable steady-state tracking performance of

the reference signal, the output magnitude of the delta reference model should

be small. Here W∆ = 0.01
(s+3)

I4x4 has been selected as the delta reference model

and added to the controlled nominal model to obtain the full reference model.

Next, a PFC must be designed to augment the nonminimum phase

delta partition. Although the delta partition G∗∆ is an unknown quantity

with respect to the adaptive controller, the PFC procedure outlined in Section

4.1.4 requires knowledge of an approximation Ĝ∆. For illustrative purposes

take the delta model produced by the model reduction process and reduce

it even further by truncating the states below the 0.5 Hankel singular value

threshold. This leaves a 21-state model that will serve as the approximation

Ĝ∆. GASPR can now be selected and Ĝ∆ used to generate GPFC in accordance

with Eq. (4.34). For this simulation

GASPR =


70

(s+8)
0 0 0

0 25
(s+8)

1
(s+8)

0
10

(s+8)
0.1

(s+8)
85

(s+8)
0

0 0 0 50
(s+8)

 (4.40)

has been used. The selection was made with the goal of minimizing the output

magnitude ofGPFC = GASPR−Ĝ∆. Note that the full delta system has not been
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used in this choice and will remain unknown to the adaptation mechanism.

The actual output of the system does have to be recovered from the output of

the augmented system by subtracting off the output component of the PFC

before analyzing system performance.

Finally, the adaptive delta control law design is completed by specifying

the learning rates (each set to γ = 20), the required observability index (ν = 8),

and the signs of the leading principal minors associated with the delta high

frequency gain matrix decomposition (all positive). The deflection of each flap

is also set to saturate at ±45◦ to ensure feasibility.

Figure 4.5 provides the results of the nominal and delta control laws

working together to make the full augmented system track the output of the

full reference model. As expected, the performance of the augmented system

exhibits much improved transient properties. However, the augmented system

is not the system to be concerned with. The output of the PFC (a known

quantity for a given control input) must be subtracted from the output of the

augmented system to obtain the output of actual system. Figure 4.6 shows

the results after this subtraction and thus contains the true system output in

response to nominal and delta control. The plots indicate that the transient

behavior is still much more desirable than the nominal-only control case, and

tracking of the reference model is quite good.

Ultimately, the preceding results show that good performance can be

obtained from the proposed control design when all requirements are met.

However it is unlikely that sufficient information about the delta portion of

91



the plant will be known to facilitate implementation of the delta control law.

The need to have a decent estimate of the delta plant portion when the delta

system is nonminimum phase is particularly restrictive and negates much of

the benefit offered by implementation of an adaptive system. A less restrictive

version of the partitioned control design will be pursued moving forward.
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(b) ACC CF

Figure 4.5: Scaled vertical axis accelerometer output, nominal + delta control
for augmented system
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Figure 4.6: Scaled vertical axis accelerometer output, nominal + delta control

94



Chapter 5

MRAC for Nonminimum Phase Systems

After recognizing the limitations of the PFC approach to accommodat-

ing nonminimum phase systems, a more flexible approach was desired. The

recent Retrospective Cost Adaptive Control technique seems to be a likely

candidate as it can provided adaptive control for nonminimum phase systems

by only requiring some additional knowledge about the system [20]. Unfor-

tunately, the technique has only been proven for SISO discrete–time systems.

A related continuous–time design, known as surrogate tracking error MRAC,

was proposed by Hoagg for both SISO [21] and MIMO [22] nonminimum phase

plants. Although the control design is successfully demonstrated in simulation

of simple examples, the assumed plant structure is restrictive. Additionally,

the tracking error convergence proof is left open.

This chapter modifies the structure of surrogate tracking error MRAC

and completes the stability proof left open in [22]. The proof relies on a

composite state space description of plant and control scheme, Lyapunov sta-

bility techniques, and signal growth analysis. A notable feature of the proof is

establishment of the regressor’s boundedness despite the presence of nonmini-

mum phase zeros throughout the design. The results do however require that
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nonminimum phase zero information from the pant be known.

The surrogate tracking error MRAC design is simulated using the linear

version of an aircraft wing’s aeroelastic pitch and plunge dynamics. In partic-

ular this paper utilizes the physical 2–input model built by Texas A&M Uni-

versity to determine realistic values for simulation [38]. The model is MIMO,

unstable, and nonminimum phase at certain freestream velocities and thus

fully stresses the control design. A version of this work appeared as [66].

5.1 Problem Description

The plant transfer function from control input u(t) ∈ Rl to output

y(t) ∈ Rl is given by

G(s) = βp(s)α
−1
p (s) (5.1)

where βp(s) = βdu(s)βs(s). Note that αp(s) is a monic l× l polynomial matrix

of degree n > 0, βdu(s) is an l× l polynomial matrix with degree nu, and βs(s)

is an l × l monic polynomial matrix with degree n− nu − d.

Plant Assumptions

P1. Relative degree d ≥ 1 is known.

P2. Upper bound on the degree of αp(s) is known (i.e. n̄ ≥ n).

P3. αp(s) and βp(s) are right coprime.

P4. βdu(s) has the known decomposition

βdu(s) =
l∑

i=1

βdiβu(s)e
i (5.2)
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where βu(s) is an l × l monic polynomial matrix and each βdi ∈ Rl×l.

Here ei indicates the ith column of the l× l identity matrix. Additionally,

if ζ ∈ C and Re[ζ] ≥ 0 then detβu(ζ) = 0 and detβs(ζ) 6= 0. Note that

this assumption implies that knowledge of the nonminimum phase zeros

(and and some structural information in the MIMO case) is necessary.

Also note that βdu(s) = βp(s) and βs(s) = I is one valid choice that will

accommodate any plant.

The reference model transfer function from a bounded and piecewise

continuous reference input r(t) ∈ Rl to reference output ym(t) ∈ Rl is given

by

Wm(s) = α−1
m (s)βm(s). (5.3)

Here αm(s) is a monic, asymptotically stable polynomial of degree nm > 0. The

model’s relative degree is denoted as dm, and thus βm(s) is an l× l polynomial

matrix of degree nm − dm.

Reference Model Assumptions

M1. Relative degree dm > d.

M2. αm(s) and βm(s) are left coprime.

M3. βm(s) can be decomposed as

βm(s) = βdmβdu(s)βr(s) (5.4)

so that the reference model contains at least the same nonminimum

phase zero information as the plant. Any additional zeros to be included
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in the reference model appear in the monic l× l polynomial matrix βr(s)

of degree nm − dm − nu. Note that βdm ∈ Rl×l.

M4. There exists anN∗ ∈ Rl×l such that the gain matching condition βdu(s)N
∗ =

βdmβdu(s) can be satisfied.

The goal is to use the control signal to ensure that the output tracking

error, z(t), goes to zero:

lim
t→+∞

z(t) = lim
t→+∞

(
y(t)− ym(t)

)
= 0. (5.5)

The main user choices are the reference model itself, the polynomials af (s)

and bf (s), the polynomial matrix Cf (s), and the degree of af (s)—denoted as

nc. Further details of the problem description can be found in [22].

5.2 Surrogate Tracking Error MRAC Design

In the reference paper [22] the control law was designed as

u(t) =
nc∑
i=1

Li(t)ȳi(t) +
nc∑
i=1

Mi(t)ūi(t) +N(t)rf (t). (5.6)

Here the updated parameters are Li,Mi, N : [0,∞) → Rl×l for i = 1 . . . nc.

The signals ȳi and ūi are filtered quantities generated from yp and u using

Gaf,i =
snc−i

af (s)
Il. (5.7)

The filtered quantity rf is generated from r using

Gaf (s) =
bf (s)βr(s)

af (s)
. (5.8)

98



The parameter nc is user choice. However it is subject to the requirement

nc ≥ max(n̄l, nm − nu − d). (5.9)

The asymptotically stable, monic polynomial af (s) of degree nc is also user

choice—as is the asymptotically stable, monic polynomial bf (s) of degree nc +

nu + d− nm. The control law can be equivalently written as

u(t) = θT (t)φ(t) (5.10)

where

θ(t) =
[
L1(t) . . . Lnc(t) M1(t) . . .Mnc(t) N(t)

]T
(5.11)

φ(t) =
[
ȳT1 (t) . . . ȳTnc(t) ū

T
1 (t) . . . ūTnc(t) r

T
f (t)

]T
. (5.12)

Finally, the control law can be restated in a more useful form as

u(t) = ΨT (t)Θ(t) (5.13)

where Θ(t) = vec θT (t) ∈ R(2nc+1)l2 , and Ψ is defined using the Kronecker

product as Ψ(t) = φ(t)⊗ Il ∈ R(2nc+1)l2×l.

Before prescribing the update law, define the filters

GCf,1(s) = αm(s)bf (s)C
−1
f (s) (5.14)

GCf,2(s) = af (s)C
−1
f (s)βdu(s), (5.15)

and note that both depend on the user–selected, asymptotically stable, monic

l × l polynomial matrix Cf (s) of degree nc + nu + d. The filtered control,

uf (t) ∈ Rl, is obtained by

uf = GCf,2(s)u (5.16)
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The transpose of the filtered regressor, ΦT (t) ∈ Rl×(2nc+1)l2 , is obtained by

passing each column of the rearranged regressor, ΨT (t), through GCf,2(s) also

and is denoted as

ΦT = GCf,2(s)ΨT . (5.17)

The filtered tracking error, zf (t) ∈ Rl, is obtained by

zf = GCf,1(s)z. (5.18)

The update law is given by

Θ̇(t) = −P (t)Φ(t)Ω−2(t)zs(t) (5.19)

where P (t) ∈ R(2nc+1)l2×(2nc+1)l2 is updated as

Ṗ (t) = −P (t)Φ(t)Ω−2(t)ΦT (t)P (t). (5.20)

A resetting procedure is utilized to prevent P from becoming too small and

slowing adaptation. This work uses the method suggested in [7]: For some

cP > 0, P (t+r ) = P (0) where tr = {t|λmin(P (t)) ≤ cP} . The quantity zs in the

update law for Θ is known as the surrogate tracking error and is given by

zs(t) = zf (t) + ΦT (t)Θ(t)− uf (t)

= GCf,1(s) [z] +GCf,2(s)
[
ΨT
]

Θ−GCf,2(s)
[
ΨTΘ

]
. (5.21)

The normalizing matrix Ω2 ∈ Rl×l is given by

Ω2(t) = Il + ηΦT (t)Φ(t) (5.22)
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Figure 5.1: Block diagram of existing control design

where η ∈ (0,∞).

In [22], Lemma 1 demonstrated that an equivalent expression for zf is

zf (t) = GCf,2(s)
(

ΨT Θ̃
)
. (5.23)

while Lemma 2 establishes that and equivalent expression for zs is

zs(t) = ΦT (t)Θ̃(t). (5.24)

Note that these expressions will be used for analysis only as they are dependent

on the true, unknown parameter values. Additionally, define the normalized

surrogate tracking error to be ε through the relationship

zs(t) = Ω2(t)ε(t) (5.25)

A block diagram of the control design is given in Fig. 5.1.
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5.3 Ideal Fixed-gain Controller

This section shows that there exists an ideal fixed-gain controller u∗(t) =

ΨT (t)Θ∗ that causes the plant to match the reference model. To begin, con-

sider the control law proposed in [22] composed of the ideal parameters:

u∗(t) =
nc∑
i=1

L∗i ȳi(t) +
nc∑
i=1

M∗
i ūi(t) +N∗rf (t) + ε(t). (5.26)

This is equivalently expressed as u∗(t) = ΨT (t)Θ∗ + ε(t). ε(t) is an arbitrary

signal used in the development of the surrogate tracking error and is not used

explicitly in this paper. A block diagram of the system utilizing the ideal

control law is given in Fig. 5.2.

N*Gaf(s)

Mi
*Gaf,i(s)

G(s)

Li
*Gaf,i(s)

r(t) y(t)u*(t)

Figure 5.2: Block diagram for controlled plant using ideal parameter values

Manipulation of the block diagram gives the closed–loop transfer func-

tion from r to y as

Gcl(s) = βdu(s)βs(s)[af (s)αp(s)−M∗(s)αp(s)−L∗(s)βdu(s)βs(s)]−1N∗bf (s)βr(s).

(5.27)

where the definitions L∗(s) =
∑nc

i=1 L
∗
i s
nc−i and M∗(s) =

∑nc
i=1M

∗
i s

nc−i have

been used for simplicity. The goal is to have Eq. (5.27) match the reference
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model transfer function Wm(s) = α−1
m (s)βdmβdu(s)βr(s). Using this expression

the Gcl(s) = Wm(s) matching condition is

βs(s)[af (s)αp(s)−M∗(s)αp(s)− L∗(s)βdu(s)βs(s)]−1bf (s) = α−1
m (s)Il. (5.28)

This statement assumes βdm = N∗ = kIl (with k ∈ R) so that assumption M4

is satisfied. Rearranging, the matching condition is stated concisely as[
af (s)Il −M∗(s)

]
αp(s)− L∗(s)βdu(s)βs(s) = bf (s)αm(s)βs(s). (5.29)

From the previous two expressions it is clear that, due to the inclusion of

βdu(s) in the reference model, any pole/zero cancellations that must occur in

Gcl(s) will be in the left half plane.

All that remains is to show that there exists an L∗(s) and M∗(s) such

that the matching condition is satisfied. Note that a similar requirement arises

in the establishment of an ideal fixed-gain controller in Theorem 2 of [22], and

is omitted here.

5.4 Composite System Construction

Now write the dynamics of the plant in state space as

ẋp = Apxp +Bpu

y = Cpxp, (5.30)

also denoted as the triple (Ap, Bp, Cp) with state xp ∈ Rnl. Create a composite

system by selecting the new composite state vector Yc ∈ Rnl+(2nc+1)ncl as

Yc =
(
xTp xTȳ1

. . . xTȳnc xTū1
. . . xTūnc xTrf

)T
(5.31)
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where xȳi , xūi , xrf ∈ Rncl are state vectors arising from the filtering of the y,

u, and r signals respectively. Specifically,

ȳi(t) = Gaf,i(s)y(t) =
snc−i

af (s)
Il y(t) (5.32)

which can also be represented by an appropriately selected state space system

(A,B,Ci) with state xȳi . Similarly, ūi(t) is generated using Gaf,i(s) and can

be represented by (A,B,Ci) with state xūi . Finally,

rf (t) = Gaf (s)r(t) =
bf (s)βr(s)

af (s)
r(t) (5.33)

which can be represented as (A,B,Crf ) with state xrf .

Note that for each of these state space representations both A and

B remain the same. This is permissible when selecting each representation

to be in controller canonical form and noting that each filter has the same

denominator structure. Also note that Ci is the same between the input and

output filters due to their identical structures. While these consistencies are

not necessary (i.e. other representations could be selected), the choice will

simplify subsequent notation.

The corresponding composite state equations can be written as

Ẏc = A0Yc +Bcu+Bcrr

y = CcYc (5.34)
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where the matrices are given by

A0 =



Ap 0 T . . . 0 T 0 T . . . 0 T 0 T

BCp A . . . 0 0 . . . 0 0
. . .

BCp 0 . . . A 0 . . . 0 0
0 0 . . . 0 A . . . 0 0

. . .

0 0 . . . 0 0 . . . A 0
0 0 . . . 0 0 . . . 0 A


Bc =

(
BT
p 0T . . . 0T BT . . . BT 0T

)T
Bcr =

(
0T 0T . . . 0T 0T . . . 0T BT

)T
Cc =

(
Cp 0T . . . 0T 0T . . . 0T 0T

)
. (5.35)

Here, zero matrices in A0 are denoted as either 0 ∈ Rncl×ncl or 0 ∈ Rncl×nl.

Zero matrices in the other terms are denoted as either 0 ∈ Rnl×l or 0 ∈ Rncl×l.

5.4.1 Ideal Parameter Case

Using the control signal u∗ = ΨTΘ∗ composed of the ideal parameter

values, state the composite system dynamics as

Ẏc = AcYc +Bcrr

y = CcYc. (5.36)

Here the Bcu
∗ term has been absorbed into A0 to create Ac. However, an r

to y transfer function expression already exists in Eq. (5.27). The supporting
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discussion established that the matching condition causes the plant transfer

function to equal that of the reference model when using the ideal control:

Cc(sI − Ac)−1Bcr = βdu(s)βs(s)[af (s)αp(s)−M∗(s)αp(s)

− L∗(s)βdu(s)βs(s)]−1N∗bf (s)βr(s)

= Wm(s). (5.37)

From this statement it is clear that (Ac, Bcr, Cc) can be used to express the

dynamics of the reference model. Thus, the system

Ẏm = AcYm +Bcrr

ym = CcYm (5.38)

is a permissible nonminimal representation for the reference model dynamics.

Before moving on note that the set of eigenvalues of Ac will be a sub-

set of
{
S ∈ C : det

[
bf (s)αm(s)βs(s)

]
= 0
}

because of the matching condition.

This expression establishes that all eigenvalues of Ac will be stable due to the

structure of bf (s), αm(s), and βs(s). Since Ac is stable and r is bounded it is

permissible to conclude that Ym is also bounded.

5.4.2 Unknown Parameter Case

Next return to the composite system dynamics of Eq. (5.34) where the

control is yet to be specified. Add and subtract BcΨ
TΘ∗ from the Ẏc equation

to arrive at

Ẏc = AcYc +Bc(u−ΨTΘ∗) +Bcrr

y = CcYc (5.39)
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where Ac is the same as in the ideal parameter case. Defining e = Yc − Ym

and z = y − ym then selecting the control containing the updated parameter

estimates u = ΨTΘ gives

ė = Ace+Bc(Ψ
T Θ̃)

z = Cce. (5.40)

This composite error dynamics relationship will be used to facilitate stability

analysis in the subsequent section.

5.5 Stability Analysis

To show that z goes to zero, define the Lyapunov-like function

V = γΘ̃T (t)P−1(t)Θ̃(t) +
1

2
e(t)TPce(t) +

γ

ε
S(t) (5.41)

where Pc = P T
c > 0 and γ and ε are positive constants. Define the scalar

quantity S(t) and prescribe its evolution as

Ṡ(t) = −S(t)
(

Θ̃T (t)Ψ(t)ΨT (t)Θ̃(t) + cs

)
+ εw2(t) (5.42)

with S(0) > 0 and some constant cs > 0. S(t) will be shown to remain

positive subsequently. Note that w is any bounded and persistently exciting

scalar signal. Also note that since

d

dt

[
P (t)P−1(t)

]
= Ṗ (t)P−1(t) + P (t)

d

dt

[
P−1(t)

]
= 0 (5.43)

the derivative of P−1 becomes

d

dt

[
P−1(t)

]
= −P−1(t)Ṗ (t)P−1(t) = Φ(t)Ω−2(t)ΦT (t) (5.44)
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after recalling Eq. (5.20). Since P (0) > 0 and the resetting procedure keeps

P−1 bounded, both P and P−1 remain positive definite and bounded for all

t ≥ 0.

Taking the derivative of V and omitting function arguments where

possible,

V̇ = 2γΘ̃TP−1
[
−PΦΩ−2zs

]
+ γΘ̃T

[
ΦΩ−2ΦT

]
Θ̃

+
d

dt

[
1

2
eTPce

]
+
γ

ε

[
−S

(
Θ̃TΨΨT Θ̃ + cs

)
+ εw2

]
. (5.45)

The alternate definition for zs in Eq. (5.24) which permits the simplification

V̇ = −γ‖Ω−1ΦT Θ̃‖2 +
d

dt

[
1

2
eTPce

]
− γ

ε
‖ΨT Θ̃‖2S − γcs

ε
S + γw2. (5.46)

Next establish the fact that S(t) is positive. Using the same approach

as in Eq. (5.43) and Eq. (5.44) it follows that

d

dt

[
S−1

]
=
(

Θ̃TΨΨT Θ̃ + cs

)
S−1 − S−1

(
εw2
)
S−1. (5.47)

Note that ΨT Θ̃ is assured to remain bounded through separate signal growth

analysis summarized presented in Section 5.6. This result along with the

persistently exciting signal w and S(0) > 0 makes leads to a familiar structure

that ensures S−1(t) remains bounded and positive for t ≥ 0 (see, for example,

Chapter 4.3 in [8]). Equivalently, S ≥ ε. Utilizing this result, bounding the

persistently exciting signal as wmax = maxt≥0w
2(t), and selecting cs = wmax

gives

V̇ ≤ −γ‖Ω−1ΦT Θ̃‖2 +
d

dt

[
1

2
eT (t)Pce(t)

]
− γ‖ΨT Θ̃‖2. (5.48)
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Now substitute the error dynamics for the composite system with u(t) =

ΨT (t)Θ(t):

V̇ ≤ −γ‖Ω−1ΦT Θ̃‖2+
1

2
eT (t)

[
PcAc + ATc Pc

]
e(t)+eT (t)PcBcΨ

T (t)Θ̃(t)−γ‖ΨT Θ̃‖2.

(5.49)

Select Pc = P T
c > 0 to be the matrix satisfying the Lyapunov equation

PcAc + ATc Pc = −Qc (5.50)

where Qc = QT
c > 0. Note that it will be possible to find such a Pc and Qc

since Ac is stable. V̇ becomes

V̇ ≤ −γ‖Ω−1ΦT Θ̃‖2− 1

2
eT (t)Qce(t)+eT (t)PcBcΨ

T (t)Θ̃(t)−γ‖ΨT Θ̃‖2. (5.51)

Recall the eigenvalue relationship for quadratic forms

λmin(Qc)‖e‖2 ≤ eT (t)Qce(t) ≤ λmax(Qc)‖e‖2 (5.52)

and also note that

eT (t)PcBcΨ
T (t)Θ̃(t) ≤ c‖e‖‖ΨT Θ̃‖ (5.53)

so long as ‖PcBc‖ ≤ c. The derivative can then be bounded by

V̇ ≤ −γ‖Ω−1ΦT Θ̃‖2 − 1

2
λmin(Qc)‖e‖2 + c‖e‖‖ΨT Θ̃‖ − γ‖ΨT Θ̃‖2. (5.54)

Next complete the square to arrive at

V̇ ≤ −γ‖Ω−1ΦT Θ̃‖2 − γ

2
‖ΨT Θ̃‖2

− γ

2

(
‖ΨT Θ̃‖ − c

γ
‖e‖
)2

−

(
λmin(Qc)

2
− c2

2γ

)
‖e‖2. (5.55)
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So long as γ > c2

λmin(Qc)
the coefficient of the last term will remain negative. V̇

can then be bounded as

V̇ ≤ −γ‖Ω−1ΦT Θ̃‖2 − γ

2
‖ΨT Θ̃‖2 −

(
λmin(Qc)

2
− c2

2γ

)
‖e‖2. (5.56)

The expression now permits the desirable conclusion V̇ ≤ 0.

Since V > 0 and V̇ ≤ 0, note that Θ̃ ∈ L∞, e ∈ L∞, and S ∈ L∞.

Additionally, observe that V∞ exists such that −
∫∞

0
V̇ (t)dt = V0 − V∞ ≤ V0.

From here conclude that Ω−1ΦT Θ̃ ∈ L2, ΨT Θ̃ ∈ L2, and e ∈ L2.

Next return to the error dynamics Eq. (5.40) to establish boundedness

of ė. For this result note that since e = Yc−Ym and Ym is bounded due to the

stability of Ac, Yc is also bounded. The boundedness of Yc’s entries ensures

that ȳi, ūi, rf , and thus Ψ are bounded. Therefore, ė ∈ L∞ by Eq. (5.40).

Finally, the constant relationship between e and z permits the claims

ż ∈ L∞ and z ∈ L∞ ∩ L2. The corollary to Barbalat’s Lemma permits the

conclusion that

lim
t→+∞

z(t) = lim
t→+∞

(
y(t)− ym(t)

)
= 0 (5.57)

as desired.

5.6 ΨT Θ̃ Boundedness

The mathematical results provided here establish boundedness of the

regressor Ψ and related quantity ΨT Θ̃ in surrogate tracking error MRAC error

convergence proof. The procedure given is a modified version of that presented
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in [9]. First several signal properties are established. Next, the growth rate of

some signals when assuming unbounded behavior is shown to contradict the

actual growth rates, establishing boundedness of all signals.

Theorem 5.6.1. Let Θ(t) ∈ Rm and Φ(t) ∈ Rm×l. For the update laws in

Eqs. (5.19) and (5.20) with covariance resetting, the surrogate tracking error

definition in Eq. (5.24), and the normalized version in Eq. (5.25), the following

results can be obtained:

i Θ, Θ̃ ∈ L∞

ii Θ̇ ∈ L2

iii Ω−1zs ∈ L2

iv ε, Φε ∈ L2.

Proof. Begin with the Lyapunov function

V1(Θ̃(t), P (t)) = Θ̃T (t)P−1(t)Θ̃(t). (5.58)

Taking the derivative of V1 and omitting function arguments where possible

V̇1 = 2 ˙̃ΘTP−1Θ̃ + Θ̃T d

dt

[
P−1

]
Θ̃

= −2Θ̃TΦΩ−2zs + Θ̃TΦΩ−2ΦT Θ̃

= −Θ̃TΦΩ−2zs

= −zsΩ−2zs. (5.59)
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Since V1 > 0 and V̇1 < 0, V1(∞) exists and is bounded. Thus Θ̃ and there-

fore Θ are bounded demonstrating (i). Additionally, integrating both sides

demonstrates

V1(0)− V1(∞) =

∫ ∞
0

zsΩ
−2zs dt <∞ (5.60)

and thus Ω−1zs ∈ L2 establishing (iii).

Since

zs = Ω2ε

=
(
Il + ηΦTΦ

)
ε (5.61)

the derivative of the Lyapunov function can also be stated as

V̇1 = −zsΩ−2zs

= −ε2Ω2ε

= −εT
(
Il + ηΦTΦ

)
ε

= −εT ε− ηεTΦTΦε. (5.62)

Integrating both sides,

V1(0)− V1(∞) =

∫ ∞
0

εT ε dt+ η

∫ ∞
0

εTΦTΦε dt <∞ (5.63)

and ε, Φε ∈ L2 verifying (iv).
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Now turning to Θ̇, note that the norm of vector can be written as

‖Θ̇‖2
2 = zTs Ω−2ΦTP 2ΦΩ−2zs

≤ ‖Ω−1ΦTP 2ΦΩ−1‖2‖Ω−1zs‖2
2

≤ λ2
max(P )‖Ω−1ΦTΦΩ−1‖2‖Ω−1zs‖2

2

= λ2
max(P )‖ΦΩ−2ΦT‖2‖Ω−1zs‖2

2

= λ2
max(P )‖Φ

[
Il + ΦTΦ

]−1

ΦT‖2‖Ω−1zs‖2
2 (5.64)

where the middle portion must be shown to be finite. Recall the matrix inver-

sion result

(I + AB)−1 = I − A(I +BA)−1B (5.65)

and apply the equality to the inverted quantity

(Il + ΦTΦ)−1 = Il − ΦT (Im + ΦΦT )−1Φ. (5.66)

Note that this can be rewritten as

ΦT (Il + ΦTΦ)−1Φ = Il − (Il + ΦΦT )−1. (5.67)

Also note that a similar application of Eq. (5.65) permits the statement

(Im + ΦΦT )−1 = Im − Φ(Il + ΦTΦ)−1ΦT (5.68)

or equivalently

Φ(Il + ΦTΦ)−1ΦT = Im − (Im + ΦΦT )−1. (5.69)
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Using these results

‖Φ(Il + ΦTΦ)−1ΦT‖2 = ‖Im − (Im + ΦΦT )−1‖2

≤ 1 + ‖(Im + ΦΦT )−1‖2 (5.70)

Since Im + ΦΦT > 0 and therefore (Im + ΦΦT )−1 > 0 also, the statement can

be made that

‖(Im + ΦΦT )−1‖2 ≤
1

λmin(Im + ΦΦT )

≤ 1 (5.71)

where the fact that λ(I + A) = 1 + λ(A) ≥ 1 if A ≥ 0 was used for the last

line.

Now going back to Eq. (5.70),

‖Φ(Il + ΦTΦ)−1ΦT‖2 ≤ 1 + ‖(Im + ΦΦT )−1‖2

≤ 2. (5.72)

Finally, this result along with Ω−1zs ∈ L2 and the fact that P remains bounded

by the resetting procedure gives

‖Θ̇‖2
2 ≤ λ2

max(P )‖Φ
[
Il + ΦTΦ

]−1

ΦT‖2‖Ω−1zs‖2
2

≤ ∞ (5.73)

and Θ̇ ∈ L2 verifying (ii).

Theorem 5.6.2. For the problem description in Section 5.1 and adaptive

system in Section 5.2, the results of Theorem 5.6.1 can be used to show that

‖z(t)‖ = o

[
sup
τ≤t
‖Ψ(τ)‖

]
. (5.74)
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Proof. Define z̄ = zs − zf and then manipulate the filtered tracking error

expression to obtain

zf = zs − z̄

GCf,1(s) [z] = zs − z̄

z = G−1
Cf,1

(s) [zs − z̄]

z = G−1
Cf,1

(s)
[
Ω2ε− z̄

]
. (5.75)

Recall the definition for Ω to arrive at

z = G−1
Cf,1

(s)
[
ε+ ηΦTΦε− z̄

]
. (5.76)

Given that G−1
Cf,1

(s) is an asymptotically stable, proper transfer function

matrix of the form in Theorem 2.3.6, a more useful expression for the right

side of Eq. (5.76) can be obtained. First, use the theorem and the fact that

Ω−1zs ∈ L2 to state

G−1
Cf,1

(s) [ε] = G−1
Cf,1

(s)
[
Ω−2zs

]
= o

[
sup
τ≤t
‖Ω−1(τ)‖

]
. (5.77)

Use Theorem 2.3.6 again, Φε ∈ L2, and the stable filter relationship between

Φ and Ψ to reach

G−1
Cf,1

(s)
[
ΦTΦε

]
= o

[
sup
τ≤t
‖Φ(τ)‖

]

= o

[
sup
τ≤t
‖Ψ(τ)‖

]
. (5.78)
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Treatment of the z̄ term requires use of the swapping lemma Theorem 2.2.7

to state that

z̄ = GCf,2(s)
[
ΨT
]

Θ−GCf,2(s)
[
ΨTΘ

]
= GCf,2C (s)

[
GCf,2B(s)

[
ΨT
]

Θ̇

]
= GCf,2C (s)

[
QT
BΘ̇
]

(5.79)

where QT
B , GCf,2B(s)[ΨT ]. Recalling that Θ̇ ∈ L2 permits the use of Theorem

2.3.6 to obtain

G−1
Cf,1

(s) [z̄] = G−1
Cf,1

(s)GCf,2C (s)
[
QT
BΘ̇
]

= o

[
sup
τ≤t
‖QB(τ)‖

]
. (5.80)

The further claim

G−1
Cf,1

(s) [z̄] = o

[
sup
τ≤t
‖Ψ(τ)‖

]
. (5.81)

can be made by noting that Gcf,2B(s) is an asymptotically stable transfer

function.

Using the previous statements, Eq. (5.76) can be rewritten as

‖z(t)‖ = o

[
sup
τ≤t
‖Ω−1(τ)‖

]
+ o

[
sup
τ≤t
‖Ψ(τ)‖

]
. (5.82)

The first term of the right side is uniformly bounded and can be dropped to

obtain

‖z(t)‖ = o

[
sup
τ≤t
‖Ψ(τ)‖

]
. (5.83)
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Theorem 5.6.3. For the problem description in Section 5.1 and adaptive

system in Section 5.2, if the signals of the system grow in an unbounded fashion

(i.e. limt→∞ supτ≤t ‖x(τ)‖ =∞) then it follows that

‖Ψ(t)‖ = O

[
sup
τ≤t
‖z(τ)‖

]
. (5.84)

Proof. Consider two transfer functions, GCf,2(s) and F (s), arranged in series.

GCf,2(s) is defined by Eq. (5.15) and F (s) is user-choice subject to requirements

specified subsequently. The composite system is given the input ΨT Θ̃ and is

depicted in Fig. 5.3. Note that the output of GCf,2(s) is zf according to Eq.

(5.23).

GCf,2(s) F(s)
zfT xF

∼

Figure 5.3: Composite system used in Theorem 5.6.3

A minimal state space representation of the GCf,2(s) portion of the

system is given by

ẋG = AGxG +BGΨT Θ̃

zf = CGxG. (5.85)

A state space representation for the F (s) portion of the system is given by

ẋF = AFxF +BF zf . (5.86)
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The composite system can be represented by

˙̄x = Āx̄+ B̄ΨT Θ̃ (5.87)

where

x̄ =

[
xF
xG

]
, Ā =

[
AF BFCG
0 AG

]
, B̄ =

[
0
BG

]
. (5.88)

F (s) and its state space representation must be chosen so that it is exponen-

tially stable, (AF , BFCG) is controllable, and (Ā, B̄) is controllable.1

According to the process outlined in Appendix C of [9], note that Ψ is

the effective state of the adaptive system and satisfies

‖Ψ̇(t)‖ ≤ c‖Ψ(t)‖+ c (5.89)

where c is a finite positive constant. Accordingly, ΨT Θ̃ ∈ ε since Θ̃ is bounded.

Thus, it is permissible to apply Theorem 2.3.5 to the system in Eq. (5.88) to

obtain

sup
τ≤t
‖ΨT (τ)Θ̃(τ)‖ = O

[
sup
τ≤t
‖x̄(τ)‖

]
. (5.90)

Next, since (AG, BG) is controllable and ΨT Θ̃ ∈ ε, application of The-

orem 2.3.5 to the system in Eq. (5.85) yields

sup
τ≤t
‖ΨT (τ)Θ̃(τ)‖ = O

[
sup
τ≤t
‖xG(τ)‖

]
(5.91)

or correspondingly

‖ΨT (t)Θ̃(t)‖ = O

[
sup
τ≤t
‖xG(τ)‖

]
. (5.92)

1This is always possible. For example, consider F (s) = 1
s+αIl and use the rank test

in [67]. Also, (AF , BFCG) controllability is assured by (Ā, B̄) controllability [68].
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However since the same system also leads to

‖ẋG‖ ≤ c‖xG‖+ c‖ΨT Θ̃‖, (5.93)

it follows that

‖ẋG‖ ≤ c sup
τ≤t
‖xG(τ)‖+ c (5.94)

and thus xG ∈ ε.

Use zf = CGxG to rewrite the F (s) system in Eq. (5.86) as

ẋF = AFxF +BFCGxG. (5.95)

A final application of Theorem 2.3.5 to this system is now possible since

(AF , BFCG) is controllable and xG ∈ ε and results in

sup
τ≤t
‖xG(τ)‖ = O

[
sup
τ≤t
‖xF (τ)‖

]
. (5.96)

Also note that Theorem 2.3.3 can be used with the original F (s) dynamics in

Eq. (5.86) to claim that

sup
τ≤t
‖xF (τ)‖ = O

[
sup
τ≤t
‖zf (τ)‖

]
. (5.97)

since AF is exponentially stable.

Now consider the state vector of the composite system x̄ = [xTF x
T
G]T .

Since Eq. (5.96) bounds the growth of xG with that of xF , Theorem 2.3.2 can

be used to claim that

sup
τ≤t
‖x̄(τ)‖ ∼ sup

τ≤t
‖xF (τ)‖. (5.98)
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Subsequent use of Eq. (5.97) provides the additional result that

sup
τ≤t
‖x̄(τ)‖ = O

[
sup
τ≤t
‖zf (τ)‖

]
. (5.99)

Finally, combination of Eqs. (5.90) and (5.99) results in

sup
τ≤t
‖ΨT (τ)Θ̃(τ)‖ = O

[
sup
τ≤t
‖zf (τ)‖

]
. (5.100)

Dropping the supremum on the left side and recalling that Θ̃ is bounded gives

‖Ψ(t)‖ = O

[
sup
τ≤t
‖zf (τ)‖

]
. (5.101)

The stable, minimum phase, proper transfer function GCf,1(s) that relates

input z to output zf permits use of Corollary 2.3.4 to state that

sup
τ≤t
‖z(τ)‖ ∼ sup

τ≤t
‖zf (τ)‖. (5.102)

Use of this result in Eq. (5.101) established the theorem’s claim that

‖Ψ(t)‖ = O

[
sup
τ≤t
‖z(τ)‖

]
. (5.103)

The result of Theorem 5.6.2 contradicts the result of Theorem 5.6.3

obtained when it is assumed that signals in the system grow unbounded (see

Theorem 2.3.7). Therefore, all signals in the feedback system are uniformly

bounded including the regressor Ψ. The quantity in question ΨT Θ̃ will be

bounded as well due to previously established boundedness of Θ̃.

120



5.7 Estimated Zero Location Modification

One important disturbance source that must be considered is the pos-

sibility of error in the required knowledge of the plant’s nonminimum phase

zero structure βdu(s). If this structure is not perfectly known then the pre-

vious error convergence proof no longer holds. However, some robustness to

zero error is expected even though it is not mathematically demonstrated [20].

Zero error will be considered in each of the simulations presented in the

dissertation. The error is incorporated by replacing βu(s) in Eq. (5.2) with

an estimate. Assuming that the user-known estimate of the necessary zeros is

given by the l × l polynomial matrix β′u(s) and the error of that estimate is

given by the l× l polynomial matrix ∆(s), the following expression for βdu(s)

can be formed:

βdu(s) =
l∑

i=1

βdi
[
β′u(s) + ∆(s)

]
ei

=
l∑

i=1

βdiβ
′
u(s)e

i +
l∑

i=1

βdi∆(s)ei

= β′du(s) + βdu,∆(s). (5.104)

Here β′du(s) serves as the known estimate of βdu(s), and βdu,∆(s) represents

the error of the estimate. Thus, only β′du(s) can be used for implementation.

The reference model is then given by

Wm(s) = α−1
m (s)βdmβ

′
du(s)βr(s) (5.105)

and the GCf,2(s) filter by

GCf,2(s) = af (s)C
−1
f (s)β′du(s) (5.106)
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in the zero error case. The rest of the implementation remains the same.

5.8 Aeroelastic Pitch and Plunge Model

Consider the MIMO and potentially nonminimum phase, unstable plant

dynamics given by the aeroelastic response of an aircraft wing model described

in [38]. Although relatively simple, this system has many of the features nec-

essary to demonstrate the output tracking capability of the surrogate tracking

error MRAC design and will be used in subsequent simulations. The sys-

tem has two inputs, leading-edge control surface deflection δ and trailing-edge

control surface deflection ζ, and two outputs, pitch angle α and plunge dis-

placement h. A cross-sectional view is given in Fig. 5.4.

Figure 5.4: Pitch and plunge wing model
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The equations of motion for the wing are given by[
Iα mWxαb

mWxαb mt

]{
α̈

ḧ

}
+

[
cα 0
0 ch

]{
α̇

ḣ

}

+

[
kα(α) 0

0 kh

]{
α
h

}
=

{
M(t)
−L(t)

}
. (5.107)

The lift L and moment M are given by

L = ρU2bsClα

α +

(
ḣ

U

)
+

(
1

2
− a
)
b

(
α̇

U

)+ ρU2bsClζζ + ρU2bsClδδ

(5.108)

M = ρU2b2sCmα−eff

α +

(
ḣ

U

)
+

(
1

2
− a
)
b

(
α̇

U

)
+ ρU2b2sCmζ−eff

ζ + ρU2b2sCmδ−eff
δ (5.109)

where Cmα−eff
=
(

1
2

+ a
)
Clα+2Cmα , Cmζ−eff

=
(

1
2

+ a
)
Clζ+2Cmζ , and Cmδ−eff

=(
1
2

+ a
)
Clδ+2Cmδ . The polynomial nonlinearity kα(α) is of the form described

in [41] and is given by kα(α) = kα0 + kα1α + kα2α
2. The equations of motion

can be restated more conveniently using the state vector x = [α h α̇ ḣ]T as

ẋ =

[
02×2 I2×2

A1 A2

]
x +

[
02×1

g

]
knα(α) +

[
02×2

B

]{
ζ
δ

}
y =

[
I2×2 02×2

]
x (5.110)

where knα(α) = α(kα1α+kα2α
2). Ai, g, and B are all constant matrices whose

structures can be derived from the equation of motion. Notice that the system

is nonlinear due to the knα(α) term, and thus for the current investigation only
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the linear portion of the system is considered:

ẋ =

[
02×2 I2×2

A1 A2

]
x +

[
02×2

B

]{
ζ
δ

}
y =

[
I2×2 02×2

]
x. (5.111)

Relevant parameter values are shown in [41], also summarized in Table 5.1,

where the freestream velocity U is variable.
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Table 5.1: Parameter values for wing pitch and plunge simulation

Parameter Value
U variable
ρ 1.225 kg/m3

a -0.6719
b 0.1905 m
rcg −b(0.0998 + a)
xα rcg/b
sp 0.5945 m
ch 27.43 kg/s
cα 0.0360 kg·m2/s

mwing 4.340 kg
mW 5.230 kg
mt 15.57 kg
Icam 0.04697 kg·m2

Icg 0.04342 kg·m2

Iα Icam+Icg+mwingr
2
cg

Clα 6.757
Clβ 3.774
Clγ -0.1566
Cmα 0
Cmβ -0.6719
Cmγ -0.1005
kh 2844
kα0 12.77
kα1 53.47
kα2 1003

5.8.1 Surrogate Tracking Error MRAC Simulation

The surrogate tracking error MRAC design presented earlier in the

chapter is now applied to control of the linear version of the pitch and plunge

dynamics. Selecting the freestream velocity U = 11.5 m/s makes the linear sys-
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tem’s dynamics unstable with poles at 0.3077±12.7954i and -1.8107±12.3545i

and gives transmission zeros at -1.8137±12.3550i and 0.3105±12.7943i. Note

that for this choice αp(s) = (s4+3.006s3+317.5s2+497.3s+25541)I2. Selecting

βs(s) = I2 means that βdu(s) decomposes as

βu(s) =

[
s2 + 3.522s+ 287.2 s2 + 2.2s+ 155.7
s2 − 1.551s+ 49.1 s2 + 2.432s+ 166.9

]
(5.112)

βd,1(s) =

[
−37.4813 0

0 −3.1840

]
(5.113)

βd,2(s) =

[
−6.0386 0

0 0.4101

]
(5.114)

according to Eq. (5.2). For the reference model choose αm(s) = (s + 9)5,

βdm(s) = 10 · I2, and βr(s) = I2. For the filters select nc = 9, af (s) = (s +

3.1)nc , bf (s) = (s+ 3)nc+nu+d−nm , and Cf (s) = bf (s)αm(s)I2. The normalizing

quantity is constructed using η = 1. The reference signal is r = [−1 10]T .

For the simulation select x(0) 6= 0 and P (0) = 1 · 1015I2nc+1. P is reset to its

initial value when λmin(P (t)) ≤ 0.01. All other initial conditions are zero.

The output tracking performance is shown in Fig. 5.5 for the control

law given by Eq. (5.13), the update laws given by Eqs. (5.19) and (5.20), and

the settings described. The commanded control surface deflections are given

in Fig. 5.6. The control is able to bring the both outputs of the plant to match

the outputs of the reference model asymptotically.
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Figure 5.5: (Top) Pitch angle α and (Bottom) plunge displacement h of the
controlled plant and reference model
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Figure 5.6: (Top) Leading edge control surface deflection δ and (Bottom)
trailing edge control surface deflection ζ
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Next consider the same simulation but with error in knowledge of the

zeros contained in βdu(s). As an example, assume that that βu(s) is unknown

and instead a known estimate is given by

β′u(s) =

[
s2 − 6.478s+ 287.2 s2 − 0.7996s+ 140.7
s2 − 6.551s+ 49.1 s2 + 2.432s+ 216.9

]
. (5.115)

This error of the estimate is therefore

∆(s) =

[
10s 3s+ 15
5s −50

]
(5.116)

Leaving βd,1(s) and βd,2(s) the same, β′du(s) is constructed according to Eq.

(5.104) and used in the reference model and GCf,2(s) instead of βdu(s). The

original βdu(s) is still used to simulate the plant. All other parameters remain

the same.

The output tracking performance for this instance of zero error is given

in Fig. 5.7. It is clear that the adaptive system is still able to track the

desired reference trajectory despite the imperfect zero knowledge, although

transient performance is degraded. The commanded control surface deflec-

tions are shown in Fig. 5.8 and display a similarly increased demands in the

transient.
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Figure 5.7: (Top) Pitch angle α and (Bottom) plunge displacement h of the
controlled plant and reference model, acceptable error in zero knowledge
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Figure 5.8: (Top) Leading edge control surface deflection δ and (Bottom)
trailing edge control surface deflection ζ, acceptable error in zero knowledge
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While the previous example demonstrates that the control design is

robust to some error in zero location knowledge, the next example illustrates

that this is not universally true. Consider again the same simulation now with

an estimate for βu(s) that does not have the same number of zeros in each

entry, such as

β′u(s) =

[
−6.478s+ 287.2 s2 − 0.7996s+ 140.7
s2 − 6.551s+ 49.1 s2 + 2.432s+ 216.9

]
. (5.117)

Here the (1,1) entry has only one root instead of the two actually contained

in the plant dynamics. The error of the estimate is given by

∆(s) =

[
s2 + 10s 3s+ 15

5s −50

]
. (5.118)

Note that this type of zero error will be particularly relevant to applications

involving aircraft in changing flight conditions explored in the dissertation’s

later chapters. The output tracking performance and control signals are pro-

vided in Figs. 5.9 and 5.10. However, the adaptive system is unable to stabilize

the plant.
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Figure 5.9: (Top) Pitch angle α and (Bottom) plunge displacement h of the
controlled plant and reference model, unacceptable error in zero knowledge
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Figure 5.10: (Top) Leading edge control surface deflection δ and (Bottom)
trailing edge control surface deflection ζ, unacceptable error in zero knowledge
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The adaptive system fails similarly anytime a β′du(s) is used that con-

tains a different number of zeros in a given entry than βdu(s). However, the

adaptive system may successfully control the system, provide residual set con-

vergence, or fail if the zero location estimates are simply incorrect. Generally

speaking, performance is sensitive to estimating zero locations to be further

left than they actually are and estimating nonminimum phase zeros as min-

imum phase. The safest scenario appears to be using a β′du(s) that contains

the correct number of zeros in each entry and, if not fully known, estimating

their locations to be safely to the right of where they might feasibly reside.

5.8.2 Nonlinear Dynamics Comparison

Later in the dissertation dynamic simulations of a full flexible wing

aircraft based on linear models will be presented. However, in reality the flex-

ible aircraft is influenced by nonlinear effects such as control surface dynamics

and limitations, nonuniform stiffness effects, and aerodynamic nonlinearities

as flight conditions approach transonic [69]. As a nonlinear dynamic model

would be difficult to generate for even a small aspect of the full system and very

little flight data is currently available, the state-of-the-art analysis methods for

highly flexible aircraft rely on creation of many linear models to represent the

aircraft’s behavior over a range of flight conditions. The appropriate model

is selected and swapped out as necessary for the conditions currently being

simulated.

The validity of the linear model approach is a topic that merits at least
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brief discussion. Due to the aforementioned issues, quantifying the inaccuracy

of linear model use for the flexible aircraft configuration is difficult. However,

a nonlinear description does exit for the aeroelastic wing pitch and plunge

model presented in [38] and used for simulation in Chapter 5. The model will

be used to justify linear model use for the aircraft in the absence of any other

suitable options.

First consider the nonlinear equations of motion for the pitch and

plunge model stated in Eq. (5.110) as well as the linear versions given in

Eq. (5.111) and the parameter values stated in Table 5.1. A small initial

pitch displacement and velocity of α = 0.05 rad and α̇ = 0.1 rad/sec are pro-

vided to the model at a freestream velocity U = 10 m/s (comfortably below

a freestream velocity resulting in limit cycle oscillations). The results of the

corresponding linear and nonlinear simulations are compared in Fig. 5.11 and

are largely similar.

However, it is also necessary to explore the validity of linear model use

as the flight condition deviates from the flight condition used to generate the

linear model. This comparison is accomplished by holding the linear model

constant and comparing its performance to the nonlinear dynamics at various

other freestream velocities. Figure 5.12 presents such a comparison where the

linear model used in all panels is that generated at U = 10 m/s. The nonlinear

dynamics used in the top panels are also those associated with U = 10 m/s

while the nonlinear dynamics in the middle panels are from U = 9 m/s and the

bottom panels are from U = 5 m/s. While the performance of the linear model
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is still reasonably close to that nonlinear dynamics in the U = 9 m/s case, the

deviation between the two is notable in the U = 5 m/s case. This helps

establish a general limit on the range of flight conditions that can be covered

by a single linear model before another linear model should be utilized.
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Figure 5.11: Comparison of linear and nonlinear versions of pitch and plunge
aeroelastic wing dynamics at freestream velocity U = 10 m/s
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Figure 5.12: Comparison of linear version of pitch and plunge aeroelastic wing
dynamics at freestream velocity U = 10 m/s and nonlinear version various
freestream velocities
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Chapter 6

Flexible Aircraft Flight Control

The surrogate tracking error MRAC approach is now applied to flight

control of the same flexible aircraft used to demonstrate the PFC version

of MRAC in Chapter 3. After developing the aircraft–specific implementa-

tions of the nominal and delta laws, the partitioned control design is used

to demonstrate flight path angle command tracking much improved over the

performance of the aircraft’s existing nonadaptive control law. Robustness to

nonminimum phase zero error and nominal model inaccuracy is also consid-

ered.

6.1 Control Law Input/Output Assignment

As mentioned previously, the input and output assignments for the

nominal and delta control laws are a critical implementation decision. In this

paper the goal is use the two control laws to track the desired flight path angle

γ. The throttle, all wing flaps, and both body flaps are available as control

inputs. For the nominal law, an existing nonadaptive control law utilizing the

eight wing flap and throttle as inputs is used. Outputs are the total velocity,

bank angle, pitch rate, roll rate, and six accelerometers shown in Fig. 2.4. As
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Table 6.1: Surrogate tracking error MRAC input and output assignments for
flight path angle tracking

Nominal Control System Delta Control System

Inputs all WFs, throttle BF R & BF L

Outputs
γ, all accelerometers, velocity
bank angle, pitch & roll rates

γ

the goal is to provide desirable flight path angle tracking, the delta control

law uses the two body flaps that remain as inputs and only γ as output. A

summary of the input and output assignments is provided in Table 6.1.

The body flaps, however, are treated as a single unit for the purposes

of the delta control implementation by sending the same command to each

flap. This signal copying behavior is accomplished by taking the delta system

to be the sum of transfer functions from BF L to γ and BF R to γ. The delta

system thus becomes a SISO implementation instead of MIMO, and only a

scalar u∆ signal is computed. The signal is then sent to both BF L and BF

R. This structure seeks to prevent roll coupling and is appropriate for the γ

command tracking goal.

Prior to this study the body flaps remained unused in control designs

for the aircraft. Flight data suggests that their impact on flight dynamics is

currently poorly modeled. The desire to design a secondary, adaptive control

law stems largely from this modeling uncertainty. Rather than ignoring the

body flaps as available control surfaces or attempting to design a control law
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for them using unsatisfactory models, they are assigned as control inputs for

an adaptive law. With an adaptive law there is less need for an accurate

model beforehand, making body flap portion of the system a useful candidate

for such an implementation.

Note that the proposed input and output selection leaves some of the

system outputs unmanaged by the delta control law. For example, the ac-

celerometers are only used by the nominal control law. Although the delta

law does not use the accelerometers, its operation still impacts them. Im-

portant but delta–unmanaged quantities such as these must be monitored for

unacceptable performance changes when the two control laws are used to-

gether.

6.2 State Space Modeling

The linear state space aircraft models used for control design and sim-

ulation were generated for a grid of flight conditions that cover speeds ranging

from 50 to 150 KEAS and fuel weight ranging from 0 to 80 lbs. This range

comfortably covers boundaries for various types of flutter. Each of the mod-

els, generated primarily using a finite element model of the aircraft and the

ZAERO aeroservoelastic modeling software package, are linear. The models

include rigid body dynamics, flexible mode dynamics, unsteady aerodynamic

force approximations, and actuator dynamics.

The raw ZAERO models are often not appropriate for control design

purposes. Specifically, they can be high order depending on the number of
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modes included and the accuracy desired in the unsteady aerodynamic forces

rational function approximation. They can also be numerically ill-conditioned

due to the selected speed of the actuator dynamics. Careful consideration

must be given to the choices made when creating these models for the purpose

of control design to keep the order and condition number sufficiently small.

Additional model reduction steps involving the removal of certain states can

also be undertaken as were discussed in Chapter 3.

In this paper the performance of the control law is demonstrated in

simulation using the reduced linear models. The reduced models are split into

the nominal and delta partitions based on the input and output assignments

discussed in Section 6.1. Initially, the reduced nominal model is assumed to

be known exactly for the purposes of determining ȳn. Later, error in this

knowledge of the nominal partition is introduced to assess robustness. The

delta partition is always composed of the reduced delta model which remains

unknown to the control system.

6.3 Aircraft Control Implementation

The nominal law was designed using an modern control methodology

where the objective of the flight control laws was to stabilize multiple un-

stable flutter modes while providing reasonably good tracking performance.

The design is not detailed here for security reasons. However, similar control

methodologies can be found in [37,70–73].

While the nominal law does provide acceptable performance, some is-
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sues are not fully addressed by the nominal controller. Notably, the inaccurate

modeling of the body flaps made it difficult to incorporate them into the nom-

inal control design. Subsequently, the body flaps remained unused in previous

control implementations for the vehicle. Additionally, the aggressively unsta-

ble Phugoid mode requires a balance to be struck between nominal law stability

margins and tracking performance. The γ tracking response in particular has

room for improvement due to its extended settling time.

The delta law utilizes the partitioned adaptive control design described

in Chapter 3 along with the SISO structure discussed in Section 6.1. The

first task is to design the delta reference model and then use it to recover the

full reference model. The delta reference model is formed by choosing βu(s)

to contain the two nonminimum phase zeros seen in the transfer function

resulting from the addition of transfer functions from BF L to γ and BF R

to γ. The gain βd is also recovered from this model. No additional zeros are

to be included and thus βr(s) = 1. The order of the delta reference model

is selected to satisfy assumption M1 and poles are clustered near s = −6.5.

βdm is set to 20 and, considering the nominal design, causes y∆,r to constitute

about 30% of the total γ value to be tracked. The selections are then used to

construct W∆(s).

The portion of the closed loop nominal system from the γ command

to the output γ is acquired by closing the nominal loop and setting all other

reference commands to zero. The resulting expression is taken to beWn(s) and,

in this paper, will first be used directly as the estimated nominal system W̄n(s)
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and then perturbed before being used as W̄n(s). Finally, the full reference

model for the combined body flaps to γ is obtained from Wr(s) = W̄n(s) +

W∆(s). The output of Wr(s) is what the entire control system attempts to

track.

6.4 Simulation Results

To demonstrate the performance of the proposed design, the control

law is simulated in use with a linear model of the aircraft dynamics at a

selected speed and weight case just past the body freedom flutter boundary.

Flight path angle tracking performance is compared as various uncertainties

are introduced. The polynomials used in the filter designs are af (s) = (s+2)nc ,

bf (s) = (s + 3)nc+nu+d−nm , and Cf (s) = (s + 4)nc+nu+d. The filter degree nc

is selected according to Eq. (5.9). Initial conditions for all filters are zero. P0

is set to 1e17I and reset to P0 when λmin(P (t)) ≤ 0.01. The factor η = 1 is

used to construct Ω(t). For all simulations shown, the plant is given a nonzero

initial displacement. Also note that all signals have been scaled by reference

values for security purposes. The same reference value for a given type of

signal is used for all results (i.e. every γ plot uses the same γref scaling factor).

6.4.1 Perfect Knowledge Case

Figure 6.1 demonstrates the command tracking ability of the control

design with perfect knowledge of all information required. For this simulation

the nominal portion of the plant is used directly as the nominal model. The
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nonminimum phase zeros of the delta portion of the plant are known and used

in the delta reference model. The rest of the delta portion is unknown but

linear. No disturbances or uncertainties are considered. Figure 6.1(a) shows

the flight path angle output when controlled by the nominal law alone versus

the nominal and delta laws together. The original doublet command that the

nominal law tracks is also shown along with the implied command generated

by the full reference model that the nominal + delta system tracks. Figure

6.1(b) shows the surface deflection of the body flaps in response to the delta

control signal.

For the quick doublet command considered here, the delta law is able to

offer improved tracking performance over the nominal law alone. The output

is closer to the command during the doublet maneuver and the settling time is

faster. The delta control signal also has neither unreasonably large magnitude

nor rate of change. Figure 6.2 shows some of the outputs unmanaged by

the delta control law. Recall that the in this situation the delta law has the

potential to disrupt their behavior provided by the nominal law. However the

resulting performance of these outputs, while degraded by use of the delta law,

is not undesirable.

Before introducing error, the percentage of the tracking task allocated

to the delta system should be investigated. As mentioned the preceding results

were obtained by setting the delta system to be 30% of the total. In other

words, design parameters were chosen such that y∆,r is 30% of yr and ȳn is

70%. The split can be adjusted by altering the gains of the closed-loop nom-
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inal model and delta reference model while ensuring that the total tracking

value yr does not change. Figure 6.3 shows a comparison of such an allocation

variation. Three cases are presented: 10% allocated to the delta system, 30%,

and 50%. All signals are scaled by the same reference values used in the pre-

viously considered 30% case. Figure 6.3(a) demonstrates that, in the perfect

knowledge case, marginally better performance is obtained with 50% delta al-

location. However, Fig. 6.3(b) shows a significant increase the maximum delta

control surface deflection for the high percentage case while the low percent-

age case experiences a more substantial transient after the doublet command.

The body flaps used by the delta law also have target deflection limits that

must be kept in mind when selecting the control authority distribution. The

insignificant performance gain of the 50% case does not merit the increased

commanded deflection. The 30% delta allocation is therefore retained for the

remainder of the paper.
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Figure 6.1: Flight path angle doublet command tracking performance using
perfect nominal model and nonminimum phase zero knowledge
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Figure 6.2: Response of output signals unmanaged by the delta control law
when both laws in use, perfect knowledge case
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6.4.2 Estimated Nonminimum Phase Zeros

The same simulation is repeated now with error in the knowledge of the

delta portion’s nonminimum phase zeros. All other aspects of the simulation

remain the same. Here, the estimated location of these zeros is set to halfway

between the zeros from the speed and weight case used for aircraft simulation

and the zeros from an adjacent case. However, only adjacent cases with the

same number of nonminimum phase zeros can be used. Attempting to use

a β′du(s) with more or less zeros than the real βdu(s) results in divergence.

Figures 6.4 and 6.5 shows the results of moving the nonminimum phase zeros

halfway to the next mass case (10 lbs more fuel than the perfect case), halfway

to the previous mass case (10 lbs less fuel), and halfway to the next speed case

(10 KEAS faster). The case using nonminimum phase zeros shifted towards

a slower speed are not included as this changes the number of nonminimum

phase zeros and is below the flutter boundary. Results for perfect knowledge

of the nonminimum phase zeros is also included for comparison. Note that

shifting the nonminimum phase zeros towards those at a faster speed case or

lower mass case has the effect of pushing them further into the right half plane

than the true nonminimum phase zeros, i.e. the estimates are “more” unstable

than the truth.

Figure 6.4(a) shows the tracking performance with the nonminimum

phase zero error in response to the same doublet command used in the pre-

vious simulation. Similar tracking of the doublet is observed, but some small

oscillation is noted as the signal settles for the shifted mass case. Much more
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significant oscillation is seen with the shifted speed zeros, though the error

ultimately converges. Figure 6.4(b) contains the body flap command for each

case. Similar behavior is seen with the shifted mass cases having slightly

larger oscillation and the shifted speed case having significantly larger oscilla-

tion. However, all cases remain within reasonable flap deflection limits. Figure

6.5 shows some of the unmanaged outputs which also display corresponding

decaying oscillations.
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Figure 6.4: Flight path angle doublet command tracking performance using
perfect nominal model and estimated nonminimum phase zero locations
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Figure 6.5: Response of output signals unmanaged by the delta control law
when both laws in use, estimated nonminimum phase zero case
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6.4.3 Estimated Nonminimum Phase Zeros and Incorrect Nominal
Model

Finally, the simulation is again repeated with nonminimum phase zero

error in addition to a nominal model that does not match the nominal portion

of the plant. Here, the aircraft simulation is executed using the model from the

same speed and weight condition as the previous two simulations. Estimated

nonminimum phase zeros used in the control implementation are taken to be

those shifted halfway to the next speed case (the worst case shown in Fig. 6.4).

Nominal models from three different adjacent cases are then used including

the next mass case (10 lbs more fuel), previous mass case (10 lbs less fuel), and

next speed case (10 KEAS faster). Figures 6.6 and 6.7 display the results of

each estimated zero, incorrect nominal model case compared to the case with

only the estimated nonminimum phase zeros.

Figure 6.6(a) shows the tracking performance in response to the same

doublet command with the various incorrect nominal models and consistent

nonminimum phase zero error included. Command tracking using lower mass

and higher speed nominal models is comparable to or better than using the

correct nominal model. Use of a nominal model from the higher mass case,

which is closer to the flutter boundary than the case used for aircraft simu-

lation, results in significantly worse tracking performance. Similar trends are

seen for the delta control signal in Fig. 6.6(b) with the control signal from

the higher mass case becoming uncomfortably large. Figure 6.7 shows the

unmanaged outputs which demonstrate the same performance trends.
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Figure 6.6: Flight path angle doublet command tracking performance using
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zero locations
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Chapter 7

Flexible Aircraft Aeroservoelastic Control

The partitioned surrogate tracking error MRAC design is finally in-

vestigated for flexible motion stabilization of the same experimental aircraft.

To accomplish this implementation, a simplified model of the aircraft wing is

created to assist in the input assignment decision. The simple wing is then

used to test various input combinations for the nominal and delta laws and

systematically establish an intelligent input arrangement. The selected design

is then ported back to the full aircraft for performance analysis. Simulations

are performed to assess the benefits offered by the partitioned design com-

pared to those offered by the existing nonadaptive control law. Nonminimum

phase zero and nominal model error are progressively included as for the flight

control implementation.

7.1 Simple Wing Model

A simple model of the flexible aircraft’s wing is created to investigate

control surface assignments for the nominal and delta laws. The simple wing

is modeled as a thin rectangular plate with four flaps. No body flap is included

in the simple model nor will the body flap on the aircraft be used for flexible
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Figure 7.1: Finite element model for simple wing with four control surfaces

motion control. The simple wing model is similar to the physical wing model

utilized in the experimental investigation of [74] save for the presence of the

control surfaces. Characteristics of the simple wing will be compared to the

experimental wing to ensure that the simulated results are realistic.

First, a finite element model of the simple wing is constructed to match

the shape and properties of the experimental wing. The simple wing is modeled

to be much smaller than the aircraft wing at 11.5 in x 4.56 in x 0.065 in and

is made of aluminum. The “body” edge of the model is held fixed. Four

rectangular 2 in x 0.912 in portions are separated from the trailing edge of the

wing and are reattached with two torsional springs each to serve as the flaps.

The resulting model is shown in Fig. 7.1.

Next, the finite element model is used to create aeroservoelastic state

space models of the simple wing at various flight conditions. This is accom-

plished using the aeroelastic design software ZAERO and requires the user to

specify further details about the model’s sensing and actuating capabilities.
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Rotation about the hinge line of each flap defines the model’s control inputs.

Third-order actuator dynamics are specified to create realistic command ex-

ecution. The actuator dynamics are chosen to be four times faster than the

flutter frequency of the wing. Accelerometers are included at various locations

by selecting availability of acceleration measurement in the vertical axis at

chosen finite element grid points. The sensor and actuator arrangement used

for the simple wing is summarized in Fig. 7.2.

WF4WF3WF2WF1

ACC LE

ACC C

ACC CLE

Figure 7.2: Input and output diagram for simple wing including flap and
accelerometer abbreviations

Additional choices regarding flexible motion representation of the wing

can be made to adjust the fidelity of the resulting state space models. However,

fidelity must be balanced with system order and numerical conditioning as

the ultimate goal is to use the models for simulation and control design. To

help control the system order, only the first five mode shapes are included.

Figure 7.3 illustrates these modes and provides their frequencies. Additionally,

2% damping is included on each mode. The unsteady aerodynamic forces

are incorporated using a rational function approximation based on Roger’s

formula [75] with a third-order approximation used for each of the modes
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(a) Mode 1: 13.85 Hz (b) Mode 2: 73.67 Hz (c) Mode 3: 82.86 Hz

(d) Mode 4: 214.2 Hz (e) Mode 5: 225.3 Hz

Figure 7.3: First five mode shapes of simple wing

included.

Finally, several state space models are created to emulate the range

of flight conditions explored with the experimental wing. In [74], behavior of

the experimental wing over a wide flow velocity range is analyzed in a wind

tunnel at sea level using freon as the medium. Correspondingly, ZAERO is

used to generate aeroservoelastic state space models of the simple wing for

Mach numbers M=0.1 to M=0.9 also at sea level in the same freon medium.

Each of the resulting models has 10 modal displacement and velocity states, 15

aero lag states, and 12 actuator states. Rigid body dynamics are not included.

The flutter characteristics of the simple wing are summarized in the

speed vs. damping and speed vs. frequency plots shown in Fig. 7.4. The line

of squares indicates that there is one flutter mode at 208.7 KEAS and 39

Hz. The line of circles indicates divergence at 245.1 KEAS. Note that the

experimental wing with no control surfaces exhibits a flutter mode at 217

KEAS and 35.5 Hz as well as divergence at 263.6 KEAS. The flexible motion
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characteristics of the simple wing model seem reasonable in comparison to the

experimental wing given the addition of the flaps.

(a) Speed vs. damping (b) Speed vs. frequency

Figure 7.4: Simple wing flutter analysis plots

With a physically reasonable wing model the next step is to investigate

control surface assignments for the nominal control law. All possible combina-

tions of control surfaces WF 3, WF 2, and WF 1 are considered as inputs for

the nominal law. Use of WF 4 is preemptively reserved for the delta law as it is

likely the most effective surface for flutter suppression and aids in reducing the

number of nominal input options. Accelerometers ACC LE, ACC C, and/or

ACC CLE are used for feedback depending on how many control surfaces are

used such that the nominal system is square.

The goal is to determine sensible input assignments for the nominal

law to suppress vibratory motion. Simulations utilizing each possible input

combination are compared to select an effective nominal input arrangement

before the delta law is considered. The model generated for M=0.714, which

lies on the flutter boundary for the experimental wing and is just past the
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flutter boundary for the simple wing, is used to test each configuration. A

similar pole placement design acts as the nominal controller in each case to

establish a fair comparison. Every input combination tested has two unstable

poles which are moved to s=-1 and s=-1.2. The remaining poles are left at

their original stable locations. The same nonzero initial displacement is given

to the wing in each simulation.

Figure 7.5 shows the results of assigning each possible combination of

WF 1, WF 2, and WF 3 to the nominal law. In Figure 7.5(a) the resulting

error magnitude of the ACC LE accelerometer signal is shown. Figure 7.5(b)

shows the total control effort required. The top panel in each graphic provides

the results of using each of the three flaps on their own. The middle panel

shows the results from each combination of two flaps. The last panel gives the

result for use of all three flaps together. The error plot for single control use

demonstrates an unacceptably large transient making use of any single control

surface infeasible. The plots for dual surface use demonstrate a much improved

result with the WF 3 and WF 2 combination having slightly smaller error and

control effort need than the other combinations. Use of all three surfaces

produces results similar to the dual surface results making it unnecessary to

use three flaps instead of just two for the nominal implementation. Therefore,

WF 3 and WF 2 will serve as inputs for the nominal control law and WF 1

will left available for the delta control law in addition to the already reserved

WF 4.
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Now, the surrogate tracking error MRAC design is used for the delta

law and is added to the pole placement nominal law using WF 3 and WF 2.

The delta law can use WF 4, WF 1, or both as inputs. Each possibility is

simulated at the same M=0.714 condition. Accelerometer ACC LE is used for

delta law feedback when one surface is used. ACC LE and ACC C are used

when both surfaces are involved.

The delta reference model is defined in a similar way regardless of input

choice. The required structure βdu(s) is set to contain all zeros from the wing’s

delta portion. No additional zeros are included so βr(s) = I2. The gain matrix

is chosen to be βdm = 1e−13I2. The order nc is chosen according to Eq. (5.9),

and the roots of αm(s) are distributed evenly between s = −4 and s = −6.

The filters are specified by placing the roots of the user-choice items: af (s) at

s = −2, bf (s) at s = −3, and Cf (s) at s = −4. The full reference model can

be recovered by adding the closed loop nominal system to the delta reference

model if needed, though only the delta reference model is actually used.

The implementation is completed by specifying a few remaining set-

tings. P0 is set to 5e8I and reset to P0 when λmin(P (t)) ≤ 0.01. All filters

use zero initial conditions. The plant initial condition is brought down to near

zero to make the steady state behavior clearly visible.

The results of the three control surface possibilities are given in Fig.

7.6. At this level of inspection it is clear that even though the nominal law

does provide stabilization it does not completely eliminate oscillation. This

behavior is seen unless a nominal law commanding high gains is implemented.
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Addition of the delta law, however, is able offer full oscillation suppression in

this test without resorting to high gains. The first panel shows that addition

of the delta law using only WF 1 eliminates the oscillation around 3 s. The

middle panel demonstrates that the delta law using WF 4 accomplishes the

same around 2 s. The last panel shows the same behavior occurring near 1.5

s when using both WF 1 and WF 4, and it is clear that use of both control

surfaces in delta system is preferable.
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Figure 7.6: Simple wing delta control input comparison

7.2 Aircraft Implementation

The surface assignment information gained from analysis of the simple

wing is now transfered to the flexible aircraft. The partitioned MRAC design,
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using the previously established input and output choices for both control

laws, is implemented on the vehicle and used to stabilize flexible motion of the

wing in response to a gust disturbance. Details of the implementation specific

to the aircraft are discussed subsequently.

7.2.1 Input/Output Assignment

Similar input and output assignments for the two control laws are made

for the aircraft as were made for the simple wing. Some output assignment

modifications are made for the transition to a full vehicle with rigid body

dynamics that the fixed simple wing obviously lacked. Further, matching wing

flaps on either side of the aircraft are actuated symmetrically. For example,

only one command for the WF 1’s is calculated and then issued identically

to WF 1L and WF 1R. The signal copying behavior attempts to prevent roll

coupling and is appropriate the level flight flexible motion stabilization task

under investigation. The aircraft’s existing nominal law is therefore modified

to use the inner wing flaps WF 2L & R and WF 3L & R. Measurement of total

velocity, bank angle, pitch rate, roll rate, and the six accelerometers shown in

Fig. 2.4 are used for feedback. The delta law uses the outer wing flaps WF

1L & R and WF 4L & R, but output assignment for the delta portion is less

straightforward.

In this investigation the partitioned control design is used for stabi-

lization of the wings at flight conditions just past the body freedom flutter

boundary. This type of flutter causes a known vibratory shape of the vehicle,
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Table 7.1: Surrogate tracking error MRAC input and output assignments for
flexible motion control

Nominal Control System Delta Control System

Inputs
WF 2R & WF 2L,

WF 3R & WF 3L, throttle
WF 1R & WF 1L,
WF 4R & WF 4L

Outputs
all accelerometers, velocity,

bank angle, pitch & roll rates,
flight path angle

ACC CF + ACC CR,
ACC RF + ACC LF

and knowledge of that shape can use used to determine which accelerometers

are most useful for delta system feedback. The delta system is still restricted

to be square, and the signal copying means that although the delta system

has control authority over four physical wing flaps only two control signals are

calculated. The two-input delta system can therefore have only two outputs

assigned. The solution proposed is to use two composite accelerometer signals

that emphasize the flutter mode. Specifically, the two body accelerometer

measurements ACC CF and ACC CR are added to created one output while

the two forward wing tip accelerometers ACC RF and ACC LF are added to

create the other. The delta portion is thus a 2×2 MIMO system. A summary

of the input and output assignments is provided in Table 7.1.

It is important to highlight that the output selection described results

in some aspects of the system being unmanaged by the delta law. Notably,

only information from the accelerometers is utilized by the delta controller

even though actuation of the delta control surfaces certainly impacts other

quantities of interest such as fight path angle and pitch rate. Important but
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unmanaged signals like these should be monitored to ensure that their behavior

does not become unacceptable once use of the delta law is added.

7.2.2 Modeling

Linear, time-invariant state space models, each corresponding to a sin-

gle flight condition, are used for control design and simulation in this study.

Models are generated over a grid of conditions using airspeeds ranging from

50 to 150 KEAS and fuel weight from 0 to 80 lbs. so that the body freedom

flutter boundary is amply covered. ZAERO is used create aeroservoelastic

models from a finite element model of the aircraft along with sensor and ac-

tuator definitions. The resulting models describe the rigid body dynamics,

modal dynamics, unsteady aerodynamic forces, and actuator dynamics.

As with the simple wing, reduced order and numerically suitable mod-

els are obtained using ZAERO by making appropriate choices in the model

generation process. The number of included modes is limited to reasonably

small number. The order of the unsteady dynamic force approximation is re-

duced below what is typically used in aeroelastic studies. The actuator speed

is limited to what is strictly necessary to suppress the flutter mode considered.

Additional model reduction steps including state removal and truncation are

also pursued after the models have been generated as discussed in Chapter 3.

Performance of the control design will be simulated using the reduced

order linear models. The aircraft model for the flight condition considered

is split into the nominal and delta portions according the input and output
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assignments established in Section 7.2.1. At first the nominal portion will be

assumed to be known perfectly and used directly as the nominal model to

calculate ȳn. Subsequently, a disturbed version of the nominal portion will

be used to obtain ȳn in an effort to investigate robustness. The same delta

portion of the model will be used throughout. The delta portion remains

unknown aside from the nonminimum phase zero structure. Similar to the

nominal model, perfect knowledge of the nonminimum phase zero structure

will be used initially and then error introduced.

7.2.3 Control Laws

The nominal law was designed using modern control techniques with

the objective of stabilizing multiple unstable flutter modes while providing

reasonable tracking performance. The nominal control design is not detailed

here for security reasons but ultimately adheres to the structure outlined in

Section 3.1. However, similar control methodologies can be found in [37, 70–

73]. The closed-loop nominal system W̄n(s) is obtained by using the existing

nominal control law to close the loop around a model of the nominal system

and extracting a selection that relates WF 2L & R and WF 3L & R to ACC

CF +ACC CR and ACC RF + ACC LF.

The partitioned control design with surrogate tracking error MRAC is

used for the delta law. The aircraft implementation is a 2× 2 MIMO system

according the previous described input and output assignments. To imple-

ment the adaptive design the delta reference model W∆(s) must be designed
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using knowledge of the delta plant matrix βdu(s). For the flexible aircraft

implementation all zeros will be included in βdu(s) and βs(s) = I2 for sim-

plicity. No extra zeros are included in the delta reference model resulting in

βr(s) = I2. The delta reference model order is chosen to make its relative

degree one higher than the relative degree of the plant, and its poles are then

all placed at s = −3. Finally, the gain matrix βdm is chosen to be 1e5I2. Al-

though the gain matrix can be varied to change the control authority division

between the nominal and delta systems, it is left at the stated value for the

duration of the paper. The adaptive design for the delta system is completed

by specifying the various filters. The same filter polynomials used for the sim-

ple wing are again chosen here by placing the poles of af (s) at s=-2, bf (s) at

s=-3, and Cf (s) at s=-4. The parameter nc is chosen as the minimum value

that satisfies Eq. (5.9).

7.3 Simulation Results

The performance of the partitioned control design is next demonstrated

in simulation. The reduced order, linear aircraft model generated at a speed

and weight case slightly beyond the body freedom flutter boundary is used for

the plant dynamics. Stabilization of flexible motion in response to a gust dis-

turbance applied directly to the body is compared when using the partitioned

design and when using the nominal law only. Various errors are systematically

introduced. For each case considered, the plant and reference model are each

given a small, nonzero initial condition. All filter states begin at zero. P0 is
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set to 1e3I and reset to P0 when λmin(P (t)) ≤ 0.01. Ω(t) is constructed using

η = 1. Signals in the following plots are scaled by consistent reference values

for security purposes.

7.3.1 Perfect Knowledge

Figures 7.7 to 7.9 demonstrate the flexible motion control ability of the

partitioned design with perfect knowledge of all information required. For this

simulation the nominal portion of the plant is used directly as the nominal

model. The zero information of the delta portion contained in βdu(s) is known

and used in the delta reference model and filter. The rest of the delta por-

tion is unknown but linear. No disturbances or uncertainties are considered.

Figures 7.7(a) and 7.7(b) show the vertical accelerometer measurement at two

locations in response to the doublet gust-like disturbance that is applied to

the body of the aircraft. The graphs compare the output when the system

is controlled by the nominal law alone versus the nominal and delta laws to-

gether. While no significant improvement is seen (or even needed) at the body

accelerometer location in Fig. 7.7(a), notable improvement is seen in the am-

plitude of oscillation at wing tip accelerometer location shown in Fig. 7.7(b).

Note that the same scaling value has been used in both plots.

The commanded surfaces deflections resulting from both the nominal

and delta laws are shown in Fig. 7.8. Control surfaces associated with the

nominal law are denoted by dashed lines and surfaces associated with the delta

law are solid. The various update law settings selected for the delta law ensure
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that the nominal law provides the primary response for initial conditions. The

delta law is then the primary responder for the disturbance since feedback in

the nominal system is based on signals obtained from an undisturbed model.

Note that the surface deflections associated with the delta law are reasonable

in magnitude, especially when compared to the nominal surface deflections,

despite the adaptive nature of the delta system.

Finally, Fig. 7.9 shows the aircraft’s flight path angle, one of the out-

puts unmanaged by the delta law that is particularly susceptible to the gust

disturbance considered. The dashed line shows the output when only the nom-

inal law is in use. The solid line shows the output when both laws are in use.

In the perfect knowledge case addition of the delta law does not significantly

alter the performance of this output. However this signal will be monitored

as errors are introduced to ensure that use of the delta law is not causing

undesirable effects.
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Figure 7.7: Accelerometer gust disturbance response, perfect knowledge
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Figure 7.9: Flight path angle for gust disturbance response, perfect knowledge
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7.3.2 Estimated Nonminimum Phase Zeros

Figures 7.10 to 7.12 contain the results of the same simulation but now

with error in the zero information used in the adaptive implementation. The

delta portion of the plant contains the actual zero structure βdu(s) for the

speed and weight case simulated. The delta reference model and filter Gcf,2(s)

however use an incorrect estimate of the zero structure β′du(s). Similar to the

command tracking discussion in the previous chapter, various estimates of the

zero structure are used. However since the entire numerator structure of the

plant is being used in βdu(s), the simulation is not restricted to using a β′du(s)

that contains the same number of nonminimum phase zeros and instead must

simply have the same number of zeros. This turns out to be a much less

restrictive requirement as the number of zeros is consistent across the range of

flight conditions investigated while the number of nonminimum phase zeros is

not. Although, the lesser restriction comes at the expense of greater knowledge

of the plant. Four estimated zero cases are compared to the perfect zero

knowledge case in the plots. For each estimated zero simulation the zeros are

shifted halfway to zeros of the next case including the ±10 lbs cases and ±10

KEAS cases. Note that when going from a slower speed case to a faster one or

a heavier mass case to a lighter one the nonminimum phase zeros tend to move

further into the right half plane. The simulations in these cases uses a “more

unstable” zero structure for the adaptive implementation than the actual zero

structure of the plant.

The same assortment of plots is shown for the zero error simulation as
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for the perfect knowledge simulation. Note that the some plots only show a

portion of the time axis to provide make detail visible. Figures 7.10(a) and

7.10(b) give two accelerometer signals used for delta law feedback. Little differ-

ence is seen among the perfect zero case and estimated zero cases. Although,

moving to a faster case appears to produce the most notable deviation out of

the results shown with the shift to a lower mass case close behind. Figure 7.11

compares the commanded control surface deflections again with only small

differences between the perfect and estimated cases. The unmanaged flight

path angle measurement is shown in Fig. 7.12. Here it is again apparent that

the zeros from the higher speed and lower mass cases cause the most notable

deviations, but overall introduction of zero error does not significantly degrade

performance of the partitioned design for the conditions considered.
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Figure 7.10: Accelerometer gust disturbance response, zero error
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Figure 7.11: Delta control surface deflections for gust disturbance response,
zero error
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Figure 7.12: Flight path angle for gust disturbance response, zero error
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7.3.3 Estimated Nonminimum Phase Zeros and Incorrect Nominal
Model

The same simulation is repeated a third time now with an incorrect

nominal model in addition to zero error. The nominal portion of the actual

plant is from the speed and weight case considered in the previous simulations.

The nominal model used to calculate ȳn however is varied among those from

adjacent cases at ±10 KEAS and ±10 lbs. The worst case zero estimate from

the previous section where the zeros are moved halfway to the +10 KEAS case

is used at all times for the reference model and filter.

Figures 7.13 to 7.15 provide the results of the nominal model and zero

error simulation. Partitioned design performance changes are still a consid-

erable improvement compared to the nominal only design. Figure 7.13(b)

demonstrates that mass–related model inaccuracies result in larger degrada-

tion of transient performance than speed–related model inaccuracies. Figure

7.14 shows the nominal model error results in insignificant changes to the delta

control commands calculated. Figure 7.15 however highlights that the sensi-

tivity to mass–related model changes established by the wing tip accelerometer

plot also holds for flight path angle stabilization.

177



0 1 2 3 4 5 6 7 8 9 10

time [s]

-1

-0.5

0

0.5

1

z
ac
c/

ac
c
re
f

zero error only
zero error, nominal mass+1
zero error, nominal mass-1
zero error, nominal speed+1
zero error, nominal speed-1

(a) Forward body accelerometer

0 1 2 3 4 5 6 7 8 9 10

time [s]

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

z
ac
c/

ac
c
re
f

zero error only
zero error, nominal mass+1
zero error, nominal mass-1
zero error, nominal speed+1
zero error, nominal speed-1

(b) Forward wing tip accelerometer

Figure 7.13: Accelerometer gust disturbance response, zero and nominal model
error
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Figure 7.14: Delta control surface deflections for gust disturbance response,
zero and nominal model error
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Chapter 8

Conclusion

8.1 Summary of Contributions

The main research contributions described in the dissertation can be

summarized as follows:

1. Strongly motivated by complex aircraft control applications, a parti-

tioned framework was created to combine use of a nonadaptive control

law with an MRAC–based control law to control a multi–input, linear

system. The design utilizes separate control surfaces for each law to pre-

vent competition. The required structure of the nonadaptive portion is

not restrictive and can accommodate a wide range of control techniques.

The adaptive portion can be any version of MRAC.

2. A tracking error convergence proof for MRAC applied to continuous–

time, nonminimum phase systems was provided. The proof requires

knowledge of the nonminimum phase zeros and includes a new argument

for demonstrating regressor boundedness.

3. The partitioned design was demonstrated in simulation using models

of an experimental flexible wing aircraft for the purpose of flight path
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angle command tracking. The partitioned control design was shown to

offer better tracking performance than that obtained when using the

aircraft’s existing nonadaptive control law alone. Similar results were

shown despite the introduction of various modeling errors.

4. The partitioned design was also used to demonstrate flexible motion con-

trol and gust alleviation of the same aircraft. An aeroservoelastic model

of the aircraft’s wing was created to establish appropriate choices of sev-

eral design parameters and inform the full aircraft implementation. The

partitioned design was shown to provide improved suppression of oscil-

latory motion over the the nonadaptive–only implementation. Favorable

results were still demonstrated after the inclusion of modeling error.

8.2 Future Work

Future research related to the work contained in the dissertation falls

into two categories. First, several extensions and refinements of the parti-

tioned design are still outstanding. Simulated use of the partitioned design

using higher fidelity models and nonlinear effects would be a worthwhile in-

vestigation of its performance capabilities. Analysis of performance across

changing conditions or with a time–varying plant would also provide insight

to the design robustness. An alternate version of the partitioned design could

also be developed for the experimental aircraft that uses the adaptive law for

flexible motion control and the nonadaptive law for command tracking.
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The second category of extensions relates to manipulation of the surro-

gate tracking error MRAC design. Performance characterization of the design

when there is error in the user knowledge of the nonminimum phase zeros re-

mains an open problem. Changes to the design could be attempted to permit

accommodation of nonlinear plants. Another possible modification would be

to permit the reference model to be time varying. Since the reference model

need to contain the the user’s best knowledge of the nonminimum phase zeros,

it would be beneficial to try and update their potentially incorrect assumed lo-

cation using output information from the plant. This would require the design

to permit variation in reference system and would necessitate another update

law. Inclusion of full time–varying reference model could also be pursued as a

way to accommodate a gain–scheduled nominal system in the context of the

partitioned design ultimately facilitating a unified design over a wide range of

operating conditions.
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Appendix A

Dual Swapping Lemmas

Here it is demonstrated how the dual swapping lemma approach used

in Chapter 6 of [8] fails for a restricted version of the nonminimum phase

MRAC variant stated in Chapter 5 of the dissertation. For this approach the

plant must have a diagonal βdu(s) and no zeros at the origin. The general

procedure is to establish a normalizing signal mf and then demonstrate that

the exponentially weighted norms of the adaptive system’s normalized signals

are each bounded. The quantity ΨT Θ̃ is then given an upper bound in terms

of mf through the use of two nested swapping lemmas. The normalizing signal

itself can then be bounded by the ΨT Θ̃ bound, also containing mf , and the

Bellman–Gronwall Lemma used to conclude that mf is bounded. The result

is that all signals of the adaptive system are bounded as their normalized

versions were previously established as bounded. Definitions and theorems

relevant to the procedure and stated here are taken from Chapter 3 of [8].

MIMO extensions of these items are taken from [49].

Theorem A.0.1 (Bellman-Gronwall Lemma). For any nonnegative, piecewise

continuous function λ(t), g(t), and k(t), if the function y(t) satisfies

y(t) ≤ λ(t) + g(t)

∫ t

t0

k(s)y(s)ds ∀t ≥ t0 ≥ 0 (A.1)
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then

y(t) ≤ λ(t) + g(t)

∫ t

t0

λ(s)k(s)

exp(∫ t

s

k(τ)g(τ)dτ

) ds ∀t ≥ t0 ≥ 0.

(A.2)

Additionally, in the case λ(t) = λ and g(t) = 1 the result becomes

y(t) ≤ λexp

(∫ t

t0

k(s)ds

)
∀t ≥ t0 ≥ 0. (A.3)

Definition A.0.1. The exponentially weighted L2 norm is given by

‖xt‖2δ ,

(∫ t

0

e−δ(t−τ)xT (τ)x(τ)dτ

)1/2

(A.4)

for δ ≥ 0.

System properties related to this norm are stated in the following the-

orem.

Theorem A.0.2. If H(s) is proper and analytic in Re[s] ≥ −δ
2

for some δ ≥ 0

and u ∈ L2 then

i

‖yt‖2δ ≤ ‖H(s)‖∞δ‖ut‖2δ (A.5)

where

‖H(s)‖∞δ , sup
ω

∣∣∣∣H(jω − δ

2
)

∣∣∣∣ . (A.6)

ii When H(s) is strictly proper

‖y(t)‖2 ≤ ‖H(s)‖2δ‖ut‖2δ (A.7)
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where

‖H(s)‖2δ ,
1√
2π

∫ ∞
−∞

∣∣∣∣∣H
(
jω − δ

2

)∣∣∣∣∣
2

dω

 1
2

. (A.8)

Next, define a fictitious normalizing signal

m2
f , 1 + ‖ut‖2

2δ + ‖yt‖2
2δ. (A.9)

Normalized versions of signals in the adaptive system are shown to be bounded

in the following theorem.

Theorem A.0.3. Consider the adaptive system defined in Chapter 5 and nor-

malizing signal in Eq. (A.9). When Θ ∈ L∞ and for some δ > 0 the following

hold:

i ȳi
mf

, ūi
mf
∈ L∞ for i = 1...nc and

rf
mf
∈ L∞

ii Ψ
mf

, u
mf

, y
mf
∈ L∞

iii Φ
mf
∈ L∞

iv If ṙ ∈ L∞ then ‖ẏ‖2δ
mf

, ‖Ψ̇‖2δ
mf
∈ L∞.

Proof. (i) ȳi
mf

, ūi
mf
∈ L∞ follow directly from the filter structure used to gen-

erate each ȳi and ūi, the definition of mf , and Theorem A.0.2. Since r is

bounded the rf filter definition gives rf ∈ L∞ and thus
rf
mf
∈ L∞ as well.

(ii) Ψ
mf
∈ L∞ is apparent from ȳi

mf
, ūi
mf
,
rf
mf
∈ L∞. Then, since u = ΨTΘ

and Θ ∈ L∞, u
mf
∈ L∞ as well.
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To establish a similar result for the output, note that the structure of

Ψ and Θ permit the expression

‖ΨTΘ‖2
2 =

m∑
i=1

 m∑
j=1

φjθij

2

≤

 m∑
k=1

φ2
k

 m∑
i=1

m∑
j=1

θ2
ij


=

 m∑
k=1

φ2
k

 ‖Θ‖2
2

≤ c

 m∑
k=1

φ2
k

 (A.10)

since Θ ∈ L∞. Here c is used to represent a finite constant and m = (2nc+1)l2.

Then the exponentially weighted version can be written as

‖ΨTΘt‖2
2δ =

∫ t

0

e−δ(t−τ)‖ΨTΘ‖2
2dτ

≤ c

∫ t

0

e−δ(t−τ)

 m∑
k=1

φ2
k

 dτ. (A.11)

However, the exponentially weighted norm for the matrix ΨT is computed by

summing the norm of each column and gives

‖ΨT
t ‖2

2δ =
m∑
i=1

‖ΨT
i t‖

2
2δ

=

∫ t

0

e−δ(t−τ)

m∑
i=1

‖ΨT
i ‖2

2dτ

= l

∫ t

0

e−δ(t−τ)

m∑
i=1

φ2
i dτ. (A.12)
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where ΨT
i is the ith column of ΨT . Therefore there exists some other finite

constant such that

‖ΨTΘt‖2δ ≤ c‖ΨT
t ‖2δ (A.13)

Also note that the exponentially weighted norm of ΨT can be bounded

as

‖ΨT
t ‖2

2δ = l

∫ t

0

e−δ(t−τ)

m∑
i=1

φ2
i dτ

= l

∫ t

0

e−δ(t−τ)

 nc∑
i=1

(
‖ȳi‖2

2 + ‖ūi‖2
2

)
+ ‖rf‖2

2

 dτ
= l

 nc∑
i=1

(
‖ȳit‖2

2δ + ‖ūit‖2
2δ

)
+ ‖rft‖2

2δ


= l

 nc∑
i=1

(
‖Gaf,i(s)yt‖2

2δ + ‖Gaf,i(s)ut‖2
2δ

)
+ ‖Gaf (s)rt‖2

2δ


≤ l

 nc∑
i=1

(
c‖yt‖2

2δ + c‖ut‖2
2δ

)
+ c‖rt‖2

2δ


≤ l
[
cnc
(
‖yt‖2

2δ + ‖ut‖2
2δ

)
+ c‖rt‖2

2δ

]
≤ c

(
‖yt‖2

2δ + ‖ut‖2
2δ + 1

)
= cm2

f (A.14)

so long as r is bounded.

Next, note that

y − ym = Wm(s)
[
ΨT Θ̃

]
(A.15)
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according to an argument similar to that given in Section 2.5.3 such that

y = Wm(s)
[
ΨT Θ̃ + r

]
. (A.16)

From Theorem A.0.2 the statement

‖y‖2 ≤ c+ c‖ΨT Θ̃t‖2δ

≤ c+ c‖ΨT
t ‖2δ (A.17)

can obtained in a fashion similar to Eq. (A.13) when Θ ∈ L∞. Use of Eq.

(A.14) permits the statement

‖y‖2 ≤ cmf (A.18)

and thus y
mf
∈ L∞.

For (iii), recall that each column of ΦT is the filtered version of the

respective column in ΨT . Theorem A.0.2 can be used to state

‖ΦT
i ‖2 ≤ ‖Gcf2(s)‖2δ‖ΨT

it‖2δ

≤ c‖ΨT
it‖2δ

≤ cmf . (A.19)

The norm for the full matrix can be bounded by the same expression and thus

Φ
mf
∈ L∞.

Finally, (iv) is demonstrated by expressing the derivative operation in

the Laplace domain. From Eq. (A.16), ẏ can be expressed as

ẏ = sWm(s)
[
ΨT Θ̃ + r

]
. (A.20)
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The system indicated by sWm(s) will be proper so long as the previously stated

requirement dm > d is satisfied. Theorem A.0.2 and the required boundedness

of r can thus be used to claim that

‖ẏt‖2δ ≤ c‖ΨT
t ‖2δ + c

≤ cmf (A.21)

and thus ‖ẏ‖2δ
mf
∈ L∞. The exponentially weighted norm of the matrix Ψ̇T can

be computed similarly by summing the operation on each column

‖Ψ̇T
t ‖2

2δ = l

∫ t

0

e−δ(t−τ)

m∑
i=1

φ̇2
i dτ

= l

 nc∑
i=1

(
‖ ˙̄yit‖2

2δ + ‖ ˙̄uit‖2
2δ

)
+ ‖ṙft‖2

2δ


= l

 nc∑
i=1

(
‖sGaf,i(s)yt‖2

2δ + ‖sGaf,i(s)ut‖2
2δ

)
+ ‖sGaf (s)rt‖2

2δ


≤ l

 nc∑
i=1

(
c‖yt‖2

2δ + c‖ut‖2
2δ

)
+ c‖rt‖2

2δ


≤ l
[
cnc
(
‖y‖2

2δ + ‖u‖2
2δ

)
+ c‖r‖2

2δ

]
≤ c

(
‖yt‖2

2δ + ‖ut‖2
2δ + 1

)
= cm2

f (A.22)

and thus ‖Ψ̇‖2δ
mf
∈ L∞.

Next consider the two swapping lemmas that will be used. The first

is the more widely known swapping lemma given in Theorem 2.2.7 which will
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be used with alteration. The second is presented in the following theorem

and has been modified to accommodate nonminimum phase zeros in the filter

definition.

Theorem A.0.4 (Swapping lemma 2). If Ψ : R+ → Rp×l and Θ̃ : R+ → Rp

are differentiable, then

ΨT Θ̃ = F1(s)
[
Ψ̇T Θ̃ + ΨT Θ̇

]
+ F (s)

[
ΨT Θ̃

]
(A.23)

where

F (s) = F̄ βF (s), (A.24)

F̄ (s) =
l∑

i=1

αk0sign(β0,i)

(s+ α0β̄0,i)k
ei, (A.25)

and βF (s) is an l× l diagonal matrix of polynomials where each nonzero entry

has no roots at the origin. The parameter k must be greater than the degree of

βF (s) and α0 > 1 is necessary. Each β0,i refers to the constant term of the ith

diagonal entry of βF (s) and β̄0,i = k
√
|β0,i|. Additionally,

F1(s) =
(
Il − F (s)

) 1

s
. (A.26)

Further, for α > δ where δ ≥ 0,

‖F1(s)‖∞δ ≤
k∑
i=1

(
c

α0

+ cαi0

)
. (A.27)

where c stands for a constant not dependent on α0.

Proof. The quantity ΨT Θ̃ can be written as

ΨT Θ̃ =
s

s
(Il − F (s))

[
ΨT Θ̃

]
+ F (s)

[
ΨT Θ̃

]
. (A.28)
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Incorporating the definition of F1(s) and applying s as the differential operator

results in

ΨT Θ̃ = F1(s)
[
Ψ̇T Θ̃ + ΨT Θ̇

]
+ F (s)

[
ΨT Θ̃

]
. (A.29)

For simplicity, now consider the case where l = 1 such that each of

the transfer function and polynomial matrices become scalar. In this case the

general expression for the polynomial βF (s) is given by

βF (s) = βms
m + ...+ β1s+ β0. (A.30)

The structure required implies that βm, β0 6= 0 while every other coefficient is

unrestricted and that k > m. The polynomial can be manipulated to facilitate

construction of the transfer function F (s) as

βF (s) = β0

(
βm
β0

sm + ...+
β1

β0

s+ 1

)
= β0

(
β̄ms

m + ...+ β̄1s+ 1
)

= sign(β0)|β0|
(
β̄ms

m + ...+ β̄1s+ 1
)

= sign(β0)β̄k0
(
β̄ms

m + ...+ β̄1s+ 1
)

(A.31)

where β̄i ,
βi
β0

for i = 1...m and

β̄k0 = |β0|. (A.32)

Note that

sign(β0) =

{
1 if β0 > 0

−1 if β0 < 0
(A.33)

as β0 cannot be zero.

192



An appropriate choice of F̄ (s) can be made to produce the desired

cancellation of the pole at the origin in F1(s). Specifically, select

F̄ (s) =
sign(β0)αk0
(s+ α0β̄0)k

(A.34)

For this choice of F̄ (s) the transfer function 1− F (s) becomes

1− F (s) = 1− F̄ (s)βF (s)

=
(s+ α0β̄0)k − sign(β0)αk0βF (s)

(s+ α0β̄0)k

=

∑k
i=0C

i
kα

k−i
0 β̄k−i0 si − sign(β0)αk0

∑k
i=0 βis

i

(s+ α0β̄0)k

=
s
∑k

i=1

(
Ci
kα

k−i
0 β̄k−i0 − sign(β0)αk0βi

)
si−1

(s+ α0β̄0)k
(A.35)

where the two constant terms in the numerator have canceled and a factor of

s can be pulled out. Note that

Ci
k =

k!

i!(k − i)!
(A.36)

and that βi = 0 for i > m since they do not exist. The transfer function F1(s)

then becomes

F1(s) =
(
1− F (s)

) 1

s

=

∑k
i=1

(
Ci
kα

k−i
0 β̄k−i0 − sign(β0)αk0βi

)
si−1

(s+ α0β̄0)k
. (A.37)

The norm bound is next established by breaking down the expression
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for F1(s) into components whose bounds are known:∥∥∥∥ 1

s+ α0β̄0

∥∥∥∥
∞δ

=
2

2α0β̄0 − δ

≤ 2

α0β̄0

(A.38)∥∥∥∥∥ si−1

(s+ α0β̄0)i−1

∥∥∥∥∥
∞δ

= 1, i ≥ 1 (A.39)

∥∥∥∥∥ αi0β̄
i
0

(s+ α0β̄0)i

∥∥∥∥∥
∞δ

=

∥∥∥∥∥ α0β̄0

(s+ α0β̄0)

∥∥∥∥∥
∞δ

i

=

(
2α0β̄0

2α0β̄0 − δ

)
≤ 2i, i ≥ 1 (A.40)

Manipulating the expression for F1(s) for convenience gives

F1(s) =

∑k
i=1

(
Ci
kα

k−i
0 β̄k−i0 − sign(β0)αk0βi

)
si−1

(s+ α0β̄0)k

=
1

(s+ α0β̄0)

k∑
i=1

(
Ci
kα

k−i
0 β̄k−i0 − sign(β0)αk0βi

(s+ α0β̄0)k−i
si−1

(s+ α0β̄0)i−1

)
. (A.41)

Note that the norm of first term inside the summation can be bounded as∥∥∥∥∥Ci
kα

k−i
0 β̄k−i0 − sign(β0)αk0βi

(s+ α0β̄0)k−i

∥∥∥∥∥
∞δ

≤

Ci
k

∥∥∥∥∥ αk−i0 β̄k−i0

(s+ α0β̄0)k−i

∥∥∥∥∥
∞δ

+ αk0|βi|

∥∥∥∥∥ 1

(s+ α0β̄0)k−i

∥∥∥∥∥
∞δ

(A.42)

Substituting the component bounds gives∥∥∥∥∥Ci
kα

k−i
0 β̄k−i0 − sign(β0)αk0βi

(s+ α0β̄0)k−i

∥∥∥∥∥
∞δ

≤ Ci
k2
k−i + αk0|βi|

(
2

α0β̄0

)k−i
(A.43)
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such that the norm of the entire transfer function is bounded by

‖F1(s)‖∞δ ≤
2

α0β̄0

k∑
i=1

(
Ci
k2
k−i + αk0|βi|

(
2

α0β̄0

)k−i)

≤
k∑
i=1

(
c

α0

+ cαi0

)
. (A.44)

In the MIMO case where l > 1, the quantities βF (s) and F1(s) become

matrices. By requiring that βF (s) is diagonal, the same design for F (s) and

thus F1(s) can easily be extended to the matrix case with β0 replaced by the

appropriate β0,i. Finally, by defining F1(s) =
∑l

i=1 f1,i(s)e
i and

‖F1(s)‖∞δ =
l∑

i=1

‖f1,i(s)‖∞δ, (A.45)

it is clear that the same bound for ‖F1(s)‖∞,δ given in Eq. (A.44) still holds.

To show that the ΨT Θ̃ remains bounded, begin by using the new swap-

ping lemma given Theorem A.0.4 to say

ΨΘ̃ = F1(s)
[
Ψ̇T Θ̃ + ΨT Θ̇

]
+ F (s)

[
ΨT Θ̃

]
(A.46)

with and select βF (s) = βdu(s). Next use the standard swapping lemma in

Theorem 2.2.7 with W (s) = Gcf,2(s) to say

ΨT Θ̃ = G−1
cf,2(s)

[
ΦT Θ̃−Gcf,2C (s)

[
QB

˙̃Θ
]]
. (A.47)

Substituting Eq. (A.47) into Eq. (A.46) yields

ΨT Θ̃ = F1(s)
[
Ψ̇T Θ̃ + ΨT Θ̇

]
+ F (s)G−1

cf,2(s)

[
ΦT Θ̃−Gcf,2C (s)

[
QB

˙̃Θ
]]
.

(A.48)
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Note that the presence of βdu(s) in F (s) and G−1
cf,2(s) will cancel such

that

‖FG−1
cf,2‖∞δ =

∥∥∥∥∥Cf (s)αk0sign(β0)

(s+ α0β̄0)kaf (s)

∥∥∥∥∥
∞δ

= αk0

∥∥∥∥∥ (s+ c1)nc+nu+d

(s+ α0β̄0)k(s+ c2)nc

∥∥∥∥∥
∞δ

(A.49)

in the SISO case if Cf (s) has all roots at c1 and af (s) has all roots at c2.

Selecting c1 = c2 = α0β̄0 for simplicity and choosing k = nc + nu + d gives

‖FG−1
cf,2‖∞δ ≤ cαnu+d

0 (A.50)

where c is a constant independent of α0 according to the component bounds.

The same bound hold in the MIMO case by an argument similar to that given

at the end of Theorem A.0.4.

Taking the norm of Eq. (A.48) and using the established bounds for

F (s) and F1(s) gives

‖ΨT Θ̃t‖2δ ≤
k∑
i=1

(
c

α0

+ cαi0

)
(‖Ψ̇T Θ̃t‖2δ + ‖ΨT Θ̇t‖2δ)

+ cαnu+d
0 (‖ΦT Θ̃t‖2δ + ‖Gcf,2C (s)

[
QB

˙̃Θ
]
t
‖2δ). (A.51)

Recall that from Theorem 5.6.1 that zs = ΦT Θ̃ = ε+ ηΦTΦε such that

‖ΨT Θ̃t‖2δ ≤
k∑
i=1

(
c

α0

+ cαi0

)
(‖Ψ̇T Θ̃t‖2δ + ‖ΨT Θ̇t‖2δ)

+ cαnu+d
0 (‖εt‖2δ + η‖ΦTΦεt‖2δ + ‖Gcf,2C (s)

[
QB

˙̃Θ
]
t
‖2δ). (A.52)
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Use the normalizing properties from Theorem A.0.3 along with filter defini-

tions, Θ̃ ∈ L∞, and mf ≥ 1 to obtain

‖Gcf,2C (s)
[
QB

˙̃Θ
]
t
‖2δ ≤ c‖mf

˙̃Θt‖2δ (A.53)

‖Ψ̇T Θ̃t‖2δ ≤ c‖Ψ̇t‖2δ ≤ cmf (A.54)

‖ΨT Θ̇t‖2δ ≤ c‖mf Θ̇t‖2δ (A.55)

‖ΦTΦεt‖2δ ≤ c‖mfΦεt‖2δ (A.56)

‖εt‖2δ ≤ ‖mfεt‖2δ (A.57)

such that

‖ΨT Θ̃t‖2δ ≤
k∑
i=1

(
c

α0

+ cαi0

)
(cmf + c‖mf Θ̇t‖2δ)

+ cαnu+d
0 (‖mfεt‖2δ + c‖mfΦεt‖2δ + c‖mf

˙̃Θt‖2δ). (A.58)

Lastly, define g̃2 = εT ε+ εTΦTΦε+ Θ̇T Θ̇ such that

‖ΨT Θ̃t‖2δ ≤
k∑
i=1

(
c

α0

+ cαi0

)
(cmf + c‖mf Θ̇t‖2δ) + cαnu+d

0 ‖mf g̃t‖2δ. (A.59)

Note that g̃ ∈ L2 since ε,Φε, Θ̇ ∈ L2 according to Theorem 5.6.1. Return to

the definition of mf , include established input and output bounds, and then

substitute Eq. (A.59) to obtain

m2
f = 1 + ‖ut‖2

2δ + ‖yt‖2
2δ

≤ c+ c‖ΨT Θ̃t‖2
2δ

≤ c+ c

 k∑
i=1

(
c

α0

+ cαi0

)
(cmf + c‖mf Θ̇t‖2δ) + cαnu+d

0 ‖mf g̃t‖2δ

2

.

(A.60)
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From here the procedure is to assume that α0 >> 1 such that the coefficient

under in the summation goes to zero. However, the presence of the cαi0 term

does not permit such behavior. This term arises due to the inclusion of βF (s)

in F (s) in Theorem A.0.4. If βF (s) were omitted then

F̄ (s) =
αk0

(s+ α0)
Il (A.61)

would be an acceptable choice and so long as α0 > 1

‖F1(s)‖∞δ ≤
c

α0

(A.62)

would result as the coefficient instead of the summation term.

In the event that the first term of Eq. (A.60) could be dropped, all

that remains is to use the Bellman-Gronwall Lemma to conclude that mf is

bounded since g̃ ∈ L2. Then the unnormalized version of all the normalized

signals shown to be bounded in Theorem A.0.3 are also bounded, notably

including Ψ and thus ΨΘ̃.
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Appendix B

Discrete–time Conversion

This appendix looks at an alternate approach to establish boundedness

of the regressor Ψ and related quantity ΨT Θ̃ in the tracking error convergence

proof of Chapter 5. The procedure attempts to use a Lyapunov-like function

similar to that used in the discrete-time version of the problem that appears in

Appendix C of [20]. Here, however, alternate steps must be taken to establish

a necessary state-to-input relationship. This is very nearly done by reusing

a portion of the signal growth analysis of the Chapter 5 proof, but fails to

produce the bound required.

Theorem B.0.1. For the composite system shown in Fig. 5.3 and the associ-

ated xF dynamics in Eq. (5.86) it holds that

‖Ψ(t)‖ ≤ c1 + c2 sup
τ≤t
‖xF (τ)‖ (B.1)

when Θ̃ is bounded.

Proof. From the composite system it was established in Eq. (5.90) that

sup
τ≤t
‖ΨT (τ)Θ̃(τ)‖ = O

[
sup
τ≤t
‖x̄(τ)‖

]
. (B.2)

199



Additionally it was shown in Eq. (5.96) that

sup
τ≤t
‖xG(τ)‖ = O

[
sup
τ≤t
‖xF (τ)‖

]
(B.3)

such that

sup
τ≤t
‖x̄(τ)‖ ∼ sup

τ≤t
‖xF (τ)‖ (B.4)

through use of Theorem 2.3.2. However, use of this theorem as stated relies on

the assumption that the vector x̄ grows unbounded. Fortunately one direction

of Theorem 2.3.2 holds without unbounded growth of the vector. Specifically,

for a vector x = [xT1 x
T
2 ]T it holds that

sup
τ≤t
‖x1(τ)‖ = O

[
sup
τ≤t
‖x2(τ)‖

]
⇒ sup

τ≤t
‖x2(τ)‖ ∼ sup

τ≤t
‖x(τ)‖. (B.5)

Thus, it is permissible here to still use Eq. (B.3) to claim that Eq. (B.4) holds.

Combining Eqs. (B.2) and (B.4) gives

sup
τ≤t
‖ΨT (τ)Θ̃(τ)‖ = O

[
sup
τ≤t
‖xF (τ)‖

]
(B.6)

or equivalently

sup
τ≤t
‖Ψ(τ)‖ = O

[
sup
τ≤t
‖xF (τ)‖

]
(B.7)

since Θ̃ can still be shown to be bounded by Theorem 5.6.1. Use of Theorem

2.3.1 allows the supremum on the left to be dropped

‖Ψ(t)‖ = O

[
sup
τ≤t
‖xF (τ)‖

]
. (B.8)

Substituting the definition of O notation leads to the stated result

‖Ψ(t)‖ ≤ c1 + c2 sup
τ≤t
‖xF (τ)‖. (B.9)
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The Ψ bound obtained in Theorem B.0.1 is not quite what is necessary

to proceed. Instead, the preferred bound would be a similar relationship that

lacks the supremum on the right side. The following theorem assumes that this

preferred bound holds to demonstrate the remainder of the proof procedure.

Theorem B.0.2. For the problem description in Section 5.1 and adaptive

system in Section 5.2, it can be established that Ψ and ΨT Θ̃ are bounded so

long as

‖Ψ(t)‖ ≤ c1 + c2‖xF (t)‖ (B.10)

holds.

Proof. Recall the xF dynamics from the composite system presented in Eq.

(5.86) of Theorem 5.6.3

ẋF = AFxF +BF zf . (B.11)

Construct the related quadratic function

J(xF (t)) = xTFPFxF (B.12)

where PF = P T
F > 0 and QF = QT

F > 0 are define by the Lyapunov equation

for the stable matrix AF

ATFPF + PFAF = −QF . (B.13)

Taking the derivative yields

J̇(xF (t)) = −xTFQFxF + 2zTf B
T
FPFxF (B.14)
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which can be bounded as

J̇(xF (t)) ≤ −k1‖xF‖2 + k2‖zf‖2 (B.15)

where k1 and k2 are positive constants.

A Lyapunov-like function can be constructed using J(xF (t)) as

V (xF (t)) = ln
(
1 + J(xF (t))

)
. (B.16)

Taking the derivative and using the bound in Eq. (B.15) along with a quadratic

form eigenvalue bound results in

V̇ (xF (t)) =
J̇

1 + J

≤ −k1‖xF‖2 + k2‖zf‖2

1 + xTFPFxF

≤ −k1‖xF‖2 + k2‖zf‖2

1 + λmin(PF )‖xF‖2

=
−k1‖xF‖2

1 + λmin(PF )‖xF‖2
+

k2‖zf‖2

1 + λmin(PF )‖xF‖2

= −W (xF (t)) + k2`
2(t) (B.17)

where

W (xF (t)) =
k1‖xF‖2

1 + λmin(PF )‖xF‖2
(B.18)

|`(t)| = ‖zf‖√
1 + λmin(PF )‖xF‖2

. (B.19)

Next proceed by establishing that ` ∈ L2. Recall from the surrogate

tracking error definition in Eq. (5.21) that the filtered tracking error can be
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written as

zf = zs − ΦTΘ + uf

= zs −Gcf,2(s)
[
ΨT
]

Θ +Gcf,2(s)
[
ΨTΘ

]
. (B.20)

Use of the swapping lemma presented in Theorem 2.2.7 on the last two terms

results in

zs = zs +Gcf,2C (s)

[
Gcf,2B(s)

[
ΨT
]

Θ̇

]
. (B.21)

Define QT
B = Gcf,2B(s)

[
ΨT
]

to reach the simpler expression

zf = zs +Gcf,2C (s)
[
QT
BΘ̇
]
. (B.22)

The norm of zf can be bounded as

‖zf‖ ≤ ‖zs‖+ c‖QT
BΘ̇‖

≤ ‖zs‖+ c‖QT
B‖‖Θ̇‖

≤ ‖zs‖+ c‖ΨT‖‖Θ̇‖ (B.23)

where c is used to represent a finite constant since Gcf,2B(s) and Gcf,2C (s) are

stable systems. Including this bound in the expression for ` gives

|`(t)| ≤ ‖zs‖√
1 + λmin(PF )‖xF‖2

+
c‖ΨT‖‖Θ̇‖√

1 + λmin(PF )‖xF‖2
. (B.24)

Using the result ‖ΨT‖ ≤ c1+c2‖xF‖ from Eq. (B.10) allows `(t) to be expressed

as

|`(t)| ≤ ‖zs‖√
1 + λmin(PF )‖xF‖2

+
(c+ c‖xF‖)‖Θ̇‖√
1 + λmin(PF )‖xF‖2

. (B.25)
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Note that the structure of the denominator permits the statements

1√
1 + λmin(PF )‖xF‖2

≤ 1 (B.26)

and

‖xF‖√
1 + λmin(PF )‖xF‖2

≤ max

(
1,

1√
λmin(PF )

)
(B.27)

such that the second term `(t) is reduced to provide the bound

|`(t)| ≤ ‖zs‖√
1 + λmin(PF )‖xF‖2

+ c‖Θ̇‖. (B.28)

Next, recall the normalized surrogate tracking error definition zs = Ω2ε

and the results of Theorem 5.6.1. Using the normalized expression a bound

for zs can be found that explicitly contains terms that were established to be

L2 as

‖zs‖ = ‖ε+ ηΦTΦε‖

≤ ‖ε‖+ η‖Φ‖‖Φε‖. (B.29)

Again using Eq. (B.10) gives

‖zs‖ ≤ ‖ε‖+ (c+ c‖xF‖)‖Φε‖. (B.30)

Substituting this result into the expression for `(t) and again using the the

component bounds in Eqs. (B.26) and (B.27) leads to

|`(t)| ≤ c‖ε‖+ c‖Φε‖+ c‖Θ̇‖. (B.31)

Finally, it is evident that ` ∈ L2 since ε,Φε, Θ̇ ∈ L2 according the Theorem

5.6.1.
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Next it must be shown that W (xF (t)) is bounded. Since W (xF (t)) is

positive Eq. (B.17) can be rearranged to obtain

0 ≤ W (xF (t)) ≤ −V̇ (xF (t)) + k2`
2(t). (B.32)

Integrating both sides of the inequality and noting that V (xF (t)) is positive

leads to

0 ≤ lim
t→∞

∫ t

0

W (xF (τ))dτ

= lim
t→∞

∫ t

0

−V̇ (xF (τ))dτ + lim
t→∞

k2

∫ t

0

`2(τ)dτ

= V (xF (0))− lim
t→∞

V (xF (t)) + lim
t→∞

k2

∫ t

0

`2(τ)dτ

≤ V (xF (0)) + k2

∫ t

0

`2(τ)dτ. (B.33)

Since ` ∈ L2 and V (xF (0)) in finite both the upper and lower limits exist.

Therefore

lim
t→∞

∫ t

0

W (xF (τ))dτ (B.34)

exists and W (xF (τ)) is bounded.

Ultimately xF is bounded since W (xF (t)) is a positive definite function

of xF . From there Eq. (B.10) permits the claim that Ψ is bounded. Finally,

ΨT Θ̃ is also bounded due to previously established boundedness of Θ̃.
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