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Debugging faulty code is a tedious process that is often quite expensive

and can require much manual effort. Developers typically perform debugging in

two key steps: (1) fault localization, i.e., identifying the location of faulty line(s)

of code; and (2) program repair, i.e., modifying the code to remove the fault(s).

Automating debugging to reduce its cost has been the focus of a number of re-

search projects during the last decade, which have introduced a variety of tech-

niques. However, existing techniques suffer from two basic limitations. One, they

lack accuracy to handle real programs. Two, they focus on automating only one of

the two key steps, thereby leaving the other key step to the developer.

Our thesis is that an approach that integrates systematic search based on

state-of-the-art constraint solvers with techniques to analyze artifacts that describe

application specific properties and behaviors, provides the basis for developing

more effective debugging techniques. We focus on faults in programs that operate
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on structurally complex inputs, such as heap-allocated data or relational databases.

Our approach lays the foundation for a unified framework for localization and re-

pair of faults in programs. We embody our thesis in a suite of integrated techniques

based on propositional satisfiability solving, correctness specifications analysis, test

spectra analysis, and rule-learning algorithms from machine learning, implement

them as a prototype tool-set, and evaluate them using several subject programs.
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Chapter 1

Introduction

Software systems continue to be plagued by failures due to defects intro-

duced during software development. According to a NIST study from 2002 [84],

software errors cost the U.S economy an estimated 59.5 billion dollars annually.

Around 50% to 80% of software development and maintenance effort is spent in

detecting and fixing bugs in programs [28]. The main reason for this process be-

ing so expensive and time consuming is that it is largely manual, specifically the

exercise of locating faulty portions of code and correcting them. More effective

techniques to automate these activities are badly needed.

Figure 1.1 presents an overview of the process of detecting and correcting

faults in programs. The basic inputs that need to be provided by the user are the

program to be tested and a correctness criteria that describes the expected behavior

of the program. The correctness criteria could be in the form of test cases, consist-

ing of a pre-defined set of concrete inputs and the corresponding expected outputs,

or specifications that describe the correctness properties that need to be satisfied by

the program.

The process of testing aims to find failures of expected properties. Consid-

erable amount of work has been done to automate testing [12, 23, 24, 39, 41, 42, 49,

1
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Figure 1.1: Testing and Debugging framework

55, 56, 71, 72, 94, 105, 112], The process of debugging aims to remove the fault(s)

in the program that cause erroneous executions. There are two main steps involved

in debugging: i) identifying the location of faults in code, which is termed as fault

localization, and ii) modifying the code to remove the fault(s), which is termed as

program repair. Both these activities are traditionally manual and expensive. Our

focus is on providing accurate and efficient solutions to automate them.

1.1 Problem Description

Fault localization is the problem of determining a subset of the statements

of the program such that the program can be corrected by modifying some or all

of the selected statements [27, 64, 90, 110]. Such a subset is called a suspect list,

which is usually ranked based on the likelihood of each statement in the set being

2
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Figure 1.2: Failing Test.

faulty. Program repair is the problem of modifying the given program p, into

another program p’ such that p’ is correct with respect to the given correctness

criteria. A suspect list can be used to focus repair on specific parts of the program.

Our focus is on faults that lead to the violation of behavioral correctness

properties. Debugging such faults requires careful analysis of the code, state and the

correctness specifications. This necessitates considerable user-involvement which

makes automating the process of debugging more challenging. We specifically con-

sider programs dealing with data structures and relational tables, which form the

core of many parsers, compilers, model-finders, and data-processing applications

today. Data structures such as linked lists, binary search trees etc., have complex

state configurations allocated on the heap and exhibit rich properties of structural

integrity such as acyclicity. Debugging violations of complex behaviors and prop-

erties becomes very time-consuming when done manually. It is equally challenging

to debug programs which deal with large amount of tabular data and display erro-

neous behavior only on specific records in the tables. Most previous techniques to

automate fault localization and repair have not been applied on such programs.

1.1.1 Example

3



pred repOk(This: SLL){ //class invariant of SLL
all n: This.header.*next | n !in n.ˆnext //acyclicity
# This.header.*next = int This.size //size-invariant
all n, m: This.header.*next |

int m.key = int n.key => n = m } //unique-elements

pred deletepostcond(This: SLL, k: Int){
//remove-ok
This.header.*next.key - k = This.header‘.*next‘.key‘
&& ((k in (This.header.*next.key))

=> (This.size - 1 = This.size‘)) } //size-ok

Figure 1.3: Correctness constraints in Alloy.

c l a s s L i n k e d L i s t {
Node h e a d e r ;
i n t s i z e ; / / number o f nodes i n t h i s l i s t
s t a t i c c l a s s Node{

Node n e x t ;
i n t key ;}

b o o l e a n d e l e t e ( i n t k ) {
/ / removes t h e node wi th key v a l u e k

0 : Node p rev = n u l l ;
1 : Node l s t = t h i s . h e a d e r ;
2 : w h i l e ( l s t != n u l l ) {
3 : i f ( l s t . key == k ) {
4 : i f ( p r ev != n u l l ) {
5 : p rev . n e x t = l s t . n e x t ; / / c o r r e c t

p r ev . n e x t = l s t ; / / removeErr
} e l s e {

6 : t h i s . h e a d e r = t h i s . h e a d e r . n e x t ;
}

7 : t h i s . s i z e −−;
8 : r e t u r n t r u e ;}
9 : p rev = l s t ;

1 0 : l s t = l s t . n e x t ;}
1 1 : r e t u r n f a l s e ;}}

Listing 1.1: Buggy delete method of Singly Linked List.

Listing 1.1 is a representative example of the type of faults we deal with.

A singly linked list data structure (SLL) comprises of nodes with integer elements,

linked to each other by next pointers. The data structure is characterized by its

structural properties: there should not be any cycles or loops when traversing the

list using the next pointers, each node should have a unique integer value, and the

size field should contain the correct count of nodes in the list. The deletemethod

4



attempts to remove from the list, the node whose value matches the input. The fault

in statement 5 leads to an output where the node with the matching element is not

removed from the list.

Recent advances in specification languages [19, 54] and program annota-

tions aid users in writing rich specifications of correctness. Figure 1.3 presents the

correctness specifications for the SLL delete method written in the Alloy lan-

guage [58] (Chapter 2). The correctness oracle for the method expressed as the

post-condition of the procedure, ensures that the rich structural invariants of the

data structure (repOk in Figure 1.3) are satisfied in addition to checking the behav-

ior of the delete in removing the correct node from the list (deletepostcond

in Figure 1.3). Figure 1.2 shows a test input that would expose the fault in the code

and the corresponding incorrect output. The remove-ok constraint, which checks

that the input value k should not be present in the output list, is an example of the

correctness property that this output structure violates. Our goal is to debug this

program by identifying the faulty statement 5 (prev.next = lst) and replacing

it with the correct statement (prev.next = lst.next).

1.1.2 Challenges in localizing faults

Traditionally developers would manually place print statements or use de-

bugging aids to place breakpoints to determine faulty statements by observing val-

ues of state variables. Such analysis is very time consuming. Program Slicing [110]

is one of the oldest approaches that attempts to statically determine portions of code

that could impact the erroneous state variables. However, the technique tends to

conservatively produce long suspect lists. .

5



Fault localization approaches that are fast, practical and hence more popu-

larly used are those which take advantage of multiple test runs of a program [60, 73].

Spectra-based localization [64] is a popular approach that uses dynamic test case

execution information such as statement coverage of passing and failing runs to

rank code entities in order of suspiciousness or likelihood of being faulty. How-

ever, the number and coverage of the tests can adversely impact the localization.

For instance, many failing tests with similar code coverage or passing tests having

coverage very different from the failing tests can result in too many statements being

marked suspicious of being faulty. Analyzing manually even 5% of a 100K LOC

(which is the effectiveness of the most popular fault localization approach [64]) can

be a daunting task.

The type and number of faults also affects the accuracy of localization based

on test coverage. Certain faulty statements may get covered by both failing and

passing tests resulting in them being ranked less suspicious than an actually correct

statement being covered by failing tests alone. For instance, on statement 7 in our

example, erroneously setting size to 0 instead of decrementing it, would result

in a wrong output only for lists having more than one nodes. Failing tests covering

different faults in the same code, may interfere with each other leading to a decrease

in the suspiciousness values assigned to the faulty statements.

Another issue with existing localization approaches is that parsing through

arbitrary statements with high suspiciousness value does not provide developers

with the context that would help them investigate the cause for the failure. In prac-

tise, developers mostly revert back to the traditional method of manual debugging

6



after parsing through the top few statements in the suspect list [95]. Hence there is

a pressing need to improve the effectiveness of localization approaches.

1.1.3 Challenges in correcting faults

Even if the exact location of the fault is known, correcting it is still challeng-

ing. A naive method is to apply simple modifications to the statement. However, in

the presence of complicated operations and correctness properties, the user needs a

lot of expertise to explore the options for altering the statement locally and analyze

its global impact. Another approach to the problem is exhaustive generation of all

combinatorial possibilities of syntactically valid variants of the original statement.

Each variant would then need to be validated against the correctness oracle. Ge-

netic programming [108] is a recently proposed approach that uses a population

based search heuristic to guide the search for a variant that passes all the tests of

the program. However, such techniques tend to become intractable and inaccurate

as the number of possible variants increases.

Automated program synthesis techniques address a similar problem [69,

100]. However, the tradition of synthesis is to generate a program from scratch or

complete an implementation sketch but not to alter an existing faulty implementa-

tion. As part of repair, we do not intend to replace the existing implementation with

a completely different one, but to make modifications to the faulty statements that

would correct the behavior.

An effective method to repair programs, specifically those that manipulate

structurally complex data that pervade modern software, remains a challenge.

7



1.1.4 Characteristics of an Effective Solution

There are two main parameters that determine the effectiveness of an ap-

proach for debugging,

• Accuracy:

A fault localization approach is accurate if:

1. It produces a suspect list that does not miss any faulty statement.

2. It produces a precise suspect list that contains only the faulty statements.

3. It ranks the faulty statements highest in the list.

A program repair approach is accurate if:

1. It yields the correct output for the failing executions and does not intro-

duce new faults.

2. It is able to reason about complex correctness properties correctly.

3. It produces alterations that are generalizable and work correctly on fu-

ture inputs as well.

• Efficiency:

An automated debugging approach is efficient if it can locate and repair faults

in programs with complex behaviors, properties and large state-spaces within

a reasonable amount of time.

8
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Figure 1.4: Our solution framework

1.2 Our Solution

Our solution focuses on two research thrusts;

• Methods to search through the space of program statements and their possible

variants.

• Methods to analyze application-specific artifacts such as correctness specifi-

cations and test case executions to infer properties that would help guide the

search and improve the effectiveness of debugging.

We provide a novel combination of ideas in both these thrusts to develop more

effective approaches for fault localization and program repair.

9



Figure 1.4 presents a diagrammatic representation of our solution. The core

functionality of both fault localization and program repair is search — search over

the statements of the program to determine the faulty ones, and search over pos-

sible program variants to determine a correct version. We leverage off-the-shelf

boolean satisfiability solvers to perform systematic search over the space of pos-

sibilities. Complex programs with multiple paths and a large state-space can lead

to a huge search space but recent advances in SAT technology (Section 4.3.1) can

often handle the resulting combinatorics. The problem of localizing faulty portions

of the code and looking for a variant that satisfies the correctness oracle is cast as a

formula in boolean logic. The control-flow, data-flow and the state of a procedure

are encoded as constraints in relational logic and then translated down to boolean

satisfiability [34, 104]. Representing imperative code in stateless declarative logic

enables goal-directed reasoning of multiple program paths.

Artifacts such as the program source code, test cases, and correctness spec-

ifications are rich sources of application-specific knowledge that can aid in improv-

ing the effectiveness of generic search algorithms for the particular problem under

consideration. For instance, if the suite used for testing has a large number of failing

and passing tests with sufficient diversity in their code and state coverage, statistical

analysis of their profiles could point to the actually faulty statements with high con-

fidence. This information could greatly aid in speeding up the search process for

localization. Similarly, rich user-defined specifications of correctness on the state

of a program can guide the search for the program variant that would produce the

correct output. Hence, we employ effective analysis methods to deduce application-
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specific behaviors and properties from available resources and use it to customize

the search for the specific problem at hand. We have explored the application of

typical algorithms from machine learning [81, 88] for effective analysis.

1.2.1 Our thesis

Our thesis is that an approach that integrates systematic search based on

state-of-the-art constraint solvers [36, 102] with techniques to analyze artifacts (such

as correctness specifications and test cases) that describe application specific prop-

erties and behaviors provides the basis for developing more effective debugging

techniques. We focus on faults in programs that operate on structurally complex

inputs, such as heap-allocated data or relational databases. Our approach lays the

foundation for a unified framework for localization and repair of faults in programs.

1.3 This dissertation

We embodied our thesis in a suite of integrated techniques based on proposi-

tional satisfiability solving, correctness specifications analysis, test spectra analysis,

and rule-learning algorithms from machine learning, implemented them as a pro-

totype tool-set, and evaluated them using several subject programs. We describe

below some of the key ideas in these techniques for fault-localization and program

repair.
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1.3.1 Combining SAT-based specification analysis and test-spectra for effec-
tive fault localization

We developed a technique that combines spectra-based localization with

propositional satisfiability constraint solving in a novel feedback driven approach

to localize faults effectively. This technique was published in ASE 2012 [47].

We leverage SAT technology to perform unsatisfiability analysis [101] of

the failure trace and the correctness specifications to short-list possibly faulty state-

ments. This information is used to improve the quality of spectra-based localization

by i) generation of suitable test cases, and ii) augmenting the ratings of Tarantula, a

popular localization tool [64]. Figure 1.5 highlights how this work integrates with

our overall solution framework. The specifications of correctness aid in identifying

all possible statements responsible for their violation, while analysis of the code
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coverage of the available passing and failing tests aids in further improving the

precision of localization.

Our framework (SAT-TAR) can handle some programs with multiple faults,

which is a key challenge for existing techniques. Evaluation of the approach on

standard data structure programs and the JTopas parser application shows the tech-

nique to be more effective than other state-of-the-art approaches.

1.3.2 Repairing programs with rich correctness specifications

We developed an automated approach for generating likely bug fixes using

behavioral specifications. This technique was published in TACAS 2011 [45].

The key idea is to replace a faulty statement that has deterministic behavior

with one that has nondeterministic behavior, and to use the specification constraints

13



to prune the ensuing non-determinism and repair the faulty statement. The state,

code and correctness specifications of the procedure are encoded in relational logic,

Alloy [59], and then translated down to the boolean satisfiability domain to lever-

age SAT solvers to systematically search for a solution. Modeling the state of pro-

grams as relations enables faster reasoning about properties and operations involv-

ing complex state configurations typical of programs dealing with data structures.

Initial experiments show the effectiveness of the approach in repairing programs

that manipulate structurally complex data with strong specifications of correctness.

Figure 1.6 highlights the interaction of the application-specific information in cor-

rectness specifications with SAT-based search.

1.3.3 Unified framework for Fault localization and Program Repair

Researchers have traditionally addressed fault localization and program re-

pair as separate problems. We present a technique that performs both these activities

in tandem, each providing relevant feedback to the other.

1.3.4 Integration of Machine Learning with Constraint Solving

One of the main challenges in the software debugging domain is the in-

sufficiency of the test oracle problem. The localization of faults and repair of the

program are only as accurate as the test oracle. In most practical situations, com-

plete specifications of correctness are not available and the test-suites created by

developers mostly do not comprehensively describe the behavior of the program.

Machine learning techniques, such as classifier learning algorithms [13, 82, 103],
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Figure 1.7: Classifier Learning + SAT-based search for Effective Program Repair.

are geared towards towards learning a model of intended behavior based on a set

of training data and use the model to predict behavior on unseen future inputs with

high accuracy. This is analogous to the problem of synthesizing a repair that works

for a given test-suite but is able to generalize to future inputs as well. Our work

[43] presents the first use of machine learning techniques in the field of program

repair which highlights the potential of machine learning techniques to alleviate the

test-oracle insufficiency problem.

Database-centric programs form the backbone of many enterprise systems.

Fixing defects in such programs takes much human effort due to the interplay be-

tween imperative code and database-centric logic. We presented a novel data-driven

approach for automated fixing of bugs in the selection condition of database state-

ments (e.g., WHERE clause of SELECT statements) a common form of bugs in
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such programs [43]. Figure 1.7 shows how this work fits within the overall frame-

work of our thesis. This project was done in collaboration with Satish Chandra and

DiptiKalyan Saha from IBM Research India, and we published our results at ICSE

2014.

Our key observation is that in real-world data, there is information latent in

the distribution of data that can be useful to repair selection conditions efficiently.

Given a faulty database program and input data, only a part of which induces the

defect, our novelty is in determining the correct behavior for the defect-inducing

data by taking advantage of the information revealed by the rest of the data. We

accomplish this by employing semi-supervised learning to predict the correct be-

havior for defect-inducing data and by patching up any inaccuracies in the predic-

tion by a SAT-based combinatorial search. Next, we learn a compact decision tree

for the correct behavior, including the correct behavior on the defect-inducing data.

This tree suggests a plausible fix to the selection condition. We demonstrate the

feasibility of our approach on seven real world examples.

We also extend the idea of applying learning techniques to leverage infor-

mation from the data-spectra (i.e. distribution of data in the state-space of passing

and failing test executions), to correct imperative programs with faulty branch con-

ditions.

1.4 Contributions

This dissertation makes the following contributions:
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• Application of satisfiability solving in the field of debugging. Consider-

able amount of work has been done in applying SAT-based analysis for the

verification of programs. However, applying it to fault localization and pro-

gram repair has received lesser attention. We present a novel application of

the SAT-based Alloy tool-set to effectively short-list faulty statements using

unsatisfiable cores and search for the correct program variant.

• Leveraging rich specifications of correctness. Correctness contracts can

provide useful insights into the reasons for failure. Existing techniques fail

to effectively exploit them. Our support for rich behaviorial specifications

(enabled by the Alloy tool-set), aids in improving the precision of fault local-

ization as well as program repair.

• Handling complex programs and faults. Most existing debugging tech-

niques are not very effective on data structure programs, owing to their com-

plex structural and behavioral properties. Our approach for repair is novel in

its ability to correct data structure programs with complex correctness spec-

ifications precisely. Our fault localization approach combines specification-

based analysis and the spectra of tests to produce effective localization for

different types of faults and user-provided contracts.

• Dealing with Multiple faults. We employ specification-analysis based par-

titioning of failing tests to localize programs with multiple faults. Our repair

algorithm is also adept at handling more than one faults in the code.
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• Minimal test-suite generation. Our framework for fault localization gen-

erates the minimum number of test cases required to localize the faults in

code.

• A unified framework for debugging. We provide a debugging framework

which unifies fault localization and program repair while requiring minimal

input from the user and automatically makes suggestions for how to fix bugs

in a program. Our debugging framework also enables a seamless integration

of debugging with existing automated testing and verification tools.

• Classifier learning to generate repair suggestions. We describe a new ap-

proach for repairing the where condition of select statement in a database

program. The approach is based on the observation that standard decision-

tree learning can be used to arrive at a repair suggestion once the correct

behavior of the where is known for the failing keys as well.

• Combination of machine learning and combinatorics for more effective

repair. We give a new way of combining machine learning and combinatorial

search in determining the correct labels for the failing keys. The learning

part takes advantage of the known behavior of the passing keys, whereas, the

combinatorial part makes up for cases in which the knowledge for passing

keys does not extend perfectly to the failing keys.

• Comparative study with state-of-the-art approaches. Our evaluation for

fault localization highlights some specific issues with localizing faults using

purely spectrum-based techniques in the implementations of recursive data
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structures. We demonstrate that SAT-TAR localizes faults more accurately

than existing state-of-the-art spectra-based and SAT-based localization tech-

niques.

• Evaluation on real applications. In addition to performing case-studies on

standard data structure programs, we evaluate our approaches for localization

and repair on code snippets from the ANTLR [86] and JTopas [1] parser ap-

plications. We evaluate the proposed machine learning based repair approach

on a excerpts of real ABAP programs and real data drawn from an industrial

setting.

• Machine learning for repairing branch conditions. We introduce the idea

of repairing branch conditions in imperative programs using fundamental

tools from machine learning.

• Prediction of correct behavior. We define an integrated approach to effi-

ciently generate the correct behavior of a branch in an imperative program

based on (1) semi-supervised learning to predict expected behavior of fail-

ing tests based on similar passing tests, (2) state-space exploration to rectify

incorrect predications,

• Repair suggestions close to oracular fix. We employ decision tree learning

to generate a classifier that represents the repaired condition that is general-

izable beyond the existing tests in most cases.

• Demonstration. We present experiments to demonstrate the usefulness of
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our approach in generating intricate repairs accurately (including synthesis

of omitted conditions and correcting loop constructs).

1.5 Organization of Thesis

Chapter 2 discusses background material. Chapter 3 discusses related work.

Chapters 4 – 7 provide details of the projects that form the heart of this dissertation.

Chapter 8 presents the conclusion.
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Chapter 2

Background

This chapter presents a short description of the enabling technology used in

our techniques for fault localization and repair. Appendix A provides more details.

2.1 Terminology

The IEEE standard glossary of software engineering terminology [3] defines

a fault as the manifestation of a human mistake such as using a wrong formula for

calculation or de-referencing a null pointer, and a failure as the result of the fault

such as a wrong value appearing in the output or the program throwing an exception.

An error is defined as the resulting incorrectness in the program state, for instance,

the difference between the expected output value and the actual output of program.

2.2 Use of SAT in software verification

The basic problem that satisfiability solving (SAT) technology seeks to ad-

dress is as follows, given a formula in boolean propositional logic, find variable

assignments such that the formula evaluates to true, or prove that no such assign-

ments exist. Recent improvements in rapid search algorithms for SAT [37, 83] have

led to its application in a variety of domains such as EDA (Verification, Logic syn-
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thesis, FPGA routing), AI (auto theorem proving, KB reduction) and more recently

in program verification. Bounded Model Checking [22, 24] leverages SAT technol-

ogy to verify concurrent, finite state transition systems against properties written

in temporal logic. SAT-based predicate abstraction [26] is another area that has re-

ceived much attention. SATURN is a technique that checks whole programs against

properties expressible as finite state machines by encoding the behavior of program

modules or procedures in SAT [112].

Jackson and Vaziri introduced the idea of leveraging SAT solvers to perform

bounded verification of object-oriented programs against rich properties of correct-

ness. Their approach, embodied in the JAlloy tool [104], comprises of a two-phase

reduction process. In the first phase, the code in imperative logic is translated to a

formula in relational logic, and in the second-phase the relational logic formula is

translated to a problem in boolean satisfiability to leverage off-the-shelf SAT solv-

ing technology to look for solutions.

2.3 Relational View of the Heap

The idea that enables expressing imperative code in relational logic is based

on the relational view of the heap of a procedure. A problem in relational logic

consists of a universe which is a finite set of atoms from which solutions to the

problem will be drawn, a set of relations on the atoms in the universe, and a set

of formulas in which the relations appear as free variables. Hence, the entire state

of an object-oriented program is modeled as relations. Java types and classes are

represented as sets (relations with arity 1) containing all possible elements of that
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sig SLL{
header: lone Node,
header‘: lone Node,
size: Int,
size‘: Int}

sig Node{
next: lone Node,
elt: lone Int,
next‘: lone Node,
elt‘: lone Int}

pred repOk(This: SLL){ //class invariant of SLL
all n: This.header.*next | n !in n.ˆnext //acyclicity
# This.header.*next = int This.size //size-invariant
all n, m: This.header.*next |

int m.key = int n.key => n = m //unique-elements}

pred deletepostcond(This: SLL, k: Int){
//remove-ok
This.header.*next.key - k = This.header‘.*next‘.key‘
&& ((k in (This.header.*next.key))

=> (This.size - 1 = This.size‘)) //size-ok}

Figure 2.1: LinkedList class invariant, post-condition for delete in Alloy.

type. Fields are modeled as binary relations mapping elements of the class that they

are a member of, to elements of their type. Local variables and method parameters

are represented as singleton sets or scalars. The operations in the object-oriented

world are mapped to operations on relations. For instance, consider a field de-

reference such as x.f , where x is an object of classA and f is a member ofA and is

of typeB. The corresponding relational logic translation would model f as a binary

relation f : A → B, x as a singleton set of type A, and x.f as the dot product or

scalar join of x and relation f . The join would access the element of typeB mapped

to x by f . Similarly, a field update is encoded as a relational override.
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2.3.1 Alloy

Alloy [59] is a specification language that enables modeling and reasoning

about object-oriented systems in first-order relational logic. Alloy supports all basic

operations on relations and provides constructs such as transitive closure on rela-

tions which aid in representing and reasoning about complex properties easily. For

instance, Figure 2.1 shows the model of the singly linked list (SLL) class (Chap-

ter 1). The sig keyword is used to define signatures of classes such as SLL and

Node. The relation size maps elements of SLL to the Integer set, header maps

every element of SLL to its header Node. The multiplicity of a relation is expressed

using keywords such as lone, some, and no. For instance, fields such as header,

and next could have their target elements as exactly one node or null, indicated

using lone.

Given a finite scope, or bound on the number of elements in each of the

sigs in the model, a constraint-solver such as the Alloy Analyzer [59] can be used

to systematically check the model against properties expressed as constraints on

the model. The constraints are expressed using facts (fact), predicates (pred),

and functions (func). Facts are constraints that mandatorily need to be satisfied

by the model, while the model can be checked against predicates and functions on

a need basis. In the example model, pred repOk defines the invariants that the

linked list (This) needs to satisfy. It consists of three constraints; acyclicity,

size-invariant and unique-elements. The acyclicity constraint ensures

that there is no cycle in the list by checking that no node should be reachable from

itself when traversing through the subsequent nodes via the next pointer. Operators
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* and represent reflexive and transitive closures on relations. The universal quanti-

fier all applies the constraint to all elements in the set This.header.*next.

The constraints in Alloy are declarative and stateless. In order to distinguish

between the pre-state and post-state of a method in imperative logic, additional

relations with a back tick (′) suffixed to their names are added to represent the

respective post-states. The predicate deletepostcond (Figure 2.1) specifically

checks the functionality of the delete procedure and distinguishes between the

pre and post states using the back-tick(′) symbol.

2.3.2 Kodkod

Kodkod [102] is the backend of the Alloy Analyzer. It translates formulas

in first-order relational logic to boolean formulas in CNF form, and leverages off-

the-shelf SAT technology to find satisfying solutions within given bounds. One

of the key features of Kodkod is its support for partial-instances. Every relation

is declared with a lower and upper bound. The lower bound comprises of tuples

that should mandatorily be part of the relation in the generated solution, and the

upper bound comprises of tuples that may be part of the relation. The lower bound

represents fixed parts of the solution (partial instances), which reduces the size of

the generated boolean formulas and the search time for solutions.

2.3.3 Forge

The Forge [32] tool-set employs Kodkod to verify Java programs against

properties of correctness. The basic idea is to obtain a relational logic formula,
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P (s, s′) corresponding to the Java procedure, that holds true whenever there exists

a valid execution starting from the pre-state s and terminates in the post-state s′.

Given specifications of correctness S(s, s′) in first-order relational logic, a formula

of the form P (s, s′)
∧
¬S(s, s′) is constructed, a satisfying solution to which rep-

resents a counter-example to the specification. It represents a valid pre-state or a

valid input to the method, that traces a valid path through the code, but yields an

output state that does not satisfy the specification.

2.3.3.1 Code to Logic

There are two pre-processing steps that are performed before the translation

of code to P (s, s′). Firstly, a computation graph of the procedure is constructed.

A computation graph is a directed acyclic graph with single entry and exit points.

Every loop in the control-flow graph of the procedure is unrolled a pre-defined

number of times and is represented as a nested-if statement. Secondly, the code

in imperative logic is translated to Forge Intermediate Language (FIR), a simple

relational programming language that is amenable to analysis.

Symbolic execution is employed to convert the FIR procedure into relational

logic formulas. The state of the symbolic execution engine at each program point

has three components; i) Relational declaration of the set of relations at that pro-

gram point (D), ii) Path Constraints, set of constraints on the relations that need to

be satisfied for execution to reach that program point (P ), iii) Environment , map-

ping the variables and fields in the program to the respective relations in logic (E).

If there exists a binding of the relations in D to constants such that the constraints
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in P get satisfied, then it indicates that there exists an execution that can feasibly

reach that program point. E holds the respective program state. The components of

the symbolic state is updated after the execution of each statement. The symbolic

execution ultimately generates a final symbolic state; Dfinal, including all the de-

clared relations, Pfinal, the path constraints corresponding to all the execution paths

in the procedure within the scope of the unrolls, and Efinal, the final environment.

In the specification, S(s, s′), s corresponds to the relations in the initial state Dinit,

while s′ corresponds to the post-state relations in Dfinal.

Forge looks for a counter-example to the correctness specification S(s, s′)

using the formulation, Pre − condition(s)
∧
P (s, s′)

∧
¬S(s, s′). Kodkod looks

for a binding to all the relations inDfinal such that; i) the pre-condition specification

Pre − condition(s) is satisfied (valid input state), ii) the constraints in Pfinal are

satisfied (valid program path) and iii) the negation of the correctness specification

S(s, s′) is satisfied (invalid output state).

2.4 Machine Learning

In this section, we provide the essential background on the machine learning

concepts that we use in this work.

2.4.1 Classifier Learning

Classification is the machine-learning task of assigning distinct classes to

data instances, implemented as a classifier. Classification typically involves two

steps. The first step to build a model or a hypothesis that describes a set of instances,
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whose labels or categorization is pre-determined. Such a set is called a training

set and the instances in it are called training examples. The second step is to use

the learnt model to predict the labels for unseen data instances or classify future

data. The setting wherein the labels of all the instances in the training data set are

provided up-front is termed as Supervised Learning. In Semi-supervised Learning

some of the training data is unlabeled. When the instances to be labeled are known

up-front, instead of adopting an inductive learning approach that infers a generic

prediction function, it may suffice to perform accurate labeling for the data at hand.

This is called Transductive Learning.

Two popular techniques for classifier learning are decision tree learning

(Section 2.4.2) and Non-symbolic algorithms such as support vector machines (Sec-

tion 2.4.2).

2.4.2 Decision Tree Learning

Decision-trees [81] classify instances by sorting them down a tree. Each

node of the tree is a test on a feature of the input and each branch represents an

outcome of the test which typically is a value that the feature can assume. The leaf

nodes represent the different classes. The feature that best divides the instances

would be selected as the root node. Once the instances have been categorized based

on the root feature, the instances in every category are evaluated again to determine

the best splitting criteria. A commonly used evaluation measure to select the feature

for splitting is to choose the one that would provide maximum information-gain.

Information-gain is defined in terms of a measure called Entropy, which represents
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the impurity in a collection of instances and the amount of information needed to

resolve it or classify the instances. These measures are computed as shown be-

low, [82]:

Gain(S,A) = Entropy(S)−
∑

v∈Val(A)

|Sv|
S

Entropy(Sv)

where

Entropy(S) = −p⊕ log2 p⊕ − p	 log2 p	

where, S is the collection of tuples, A is an attribute, Val(A) is the set of values

in attribute A, Sv is the subset of S with tuples in which attribute A is v. p⊕ is the

fraction of positive samples in the set S, and p	 is the fraction of negative samples

in the set S.

The classification for an instance is done by tracing a path from the root to

the leaf based on its feature values. The entire tree can be expressed as a set of rules

that represent the conditions for classification into different classes. Each rule is in

the form of disjunction of conjunctions.

In practise, most datasets have continuous real-valued attributes rather than

categorical ones. Most algorithms divide the range values into two thresholds and

the test has binary outcomes i) value is less than or equal to threshold, and ii) value

is greater than threshold. Decision-tree based rule learning algorithms suffer from

low accuracy as the dimensionality of the data increases. They also tend to overfit

the classifier to the training data, which reduces the generalizability of the rule.
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Figure 2.2: Sample distribution of labeled and unlabeled data.

2.4.3 Support Vector Machines

Support Vector Machine (SVM) [13, 103] is a technique based on mathe-

matical optimization. It is based on the principle of finding the maximum-margin

separating hyperplane that separates positively labeled data from the negatively la-

beled data. We explain this intuitively using Figure 2.2. Lines labeled A and B

both are ”hyperplanes” that separate positively labeled points from the negatively

labeled points. Once such as separator is found, an unlabeled point can be assigned

the same label as the label of the points on its side of the line.

Neither of the two lines A and B are particularly satisfactory for the purpose

of classifying unlabeled points. For example, a point immediately left of line B

would be classified negative, which is incorrect. The line C is the one that creates

as much margin as possible between lines A and B, and SVMs find such a line.

It is expected that such a line would have the best classification behavior, based

on what can be inferred from the training data. Lines A and B are called support
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vectors, which lend their name to the technique. Mathematically, let w be a vector

that is normal to the separating hyperplane and let b be its offset. For each positively

labeled point xi, we require w.xi ≥ b + 1 and for each negatively labeled point xi,

we require w.xi ≤ b− 1. The optimization problem is to minimize ‖w‖.

SVMs create a classifier based on a geometric interpretation of proximity of

points in the space. This may not always coincide with the domain-specific measure

of proximity (separating line D in Figure 2.2), which is outside the purview of SVM.

Fortunately, SVMs provide a numerical measure of prediction confidence. Labels

assigned to points close to the separating hyperplane that an SVM discovers (i.e.

line C in this example) would be assigned a lower confidence, and labels assigned

to points far from the separating hyperplane would be assigned a higher confidence.

SVMs tend to produce classifiers with high accuracy for linearly separable data.

However, there are well known tricks called kernel methods, that map data into a

higher dimensional space where the data could become separable.
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Chapter 3

Related Work

This chapter presents a short description of the existing approaches in fault

localization and program repair. More detailed comparison with our work is pre-

sented after we describe our techniques in detail.

3.1 Fault Localization

The techniques focusing on fault localization can be broadly categorized as

shown below.

Slicing-based approaches: Amongst the oldest approaches in the field of local-

ization are based on the program slicing idea introduced by Weiser [110]. Given a

variable with an incorrect value at a program point, static slicing uses dependency

analysis to determines all statements in the program that might affect the value of

the variable at that point. This results in a subset of the program that may contain

the fault. However, this subset can be quite large leading to a lot of developer effort

in inspection. Dynamic slicing [14] uses a test case execution of the program to de-

termine the statements affecting the value of the variable. However, if the precision

of the variable deemed suspicious is low, the calculated subset may sometimes miss

the actually faulty statement.
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Test-spectrum based approaches: A popular method for localizing faults is to

analyze the coverage information of the passing and failing tests of the program,

also known as the test spectrum. Set-Union and Set-Intersection techniques fall

under this category. Set-Union approach marks as suspicious the set of statements

exclusively executed by failing tests and not by any passing tests. The intersection

approach on the other hand, determines the set of statements that are executed by

every passing test and not by the failing test. The intuition being that the exclusion

of these statements might be the reason for the failure. However, these approaches

fail when there are passing tests also covering the faulty statement. The Nearest-

Neighbor Queries technique [90] addresses the issue of the faulty statement being

executed by an occasional passing test. Given a failing trace, a passing test is chosen

whose coverage is most similar to the failing test and the set of statements executed

solely by the failing test are determined. If this initial subset does not contain the

fault, the program dependence graph is used to determine the next set of nodes to

be examined based on their proximity to the initial set in the graph.

Tarantula [64] is a popular tool that marks a statement as possibly faulty

if it is primarily executed by failing runs than by passing runs. It associates with

each statement a suspiciousness metric that indicates the likelihood of the state-

ment being faulty based on the proportion of failing runs executing it versus passing

runs. The localization results are presented in a prototype visualization which en-

ables easy interpretation and inspection. Recent extension to this work [93] applies

Tarantula on different program entities such as branches, def-use pairs. Abreu et.

al introduced another measure of suspiciousness known as the Ochiai metric [4],
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with its roots in biological study. Elaborate empirical evaluations performed on

the Siemens suite [66] indicate Ochiai metric to yield the best fault localization

effectiveness.

Approaches based on analysis of state and contracts: Zhang et al. [114] and

Huang et al. [57], perform analysis of program states rather than locations to iden-

tify infected states, leading to more precise localization. BugAssist is a recently de-

veloped tool [67], which employs SAT-based analysis of user-provided correctness

contracts to determine the portion of code responsible for their violations. Model

checking techniques [25] which produce a counter-example or a sequence of state-

transitions corresponding to the failure have also been employed to locate faulty

state transitions. Ball et al. [10] introduced an approach that compares the counter-

examples returned by the model checker with successful traces to identify faulty

state transitions.

Divide-Conquer based approaches: Another popular methodology for localiza-

tion is to apply a Divide and Conquer technique to narrow down on the set of

computations or state variables that may be causing the failure. The approach pro-

posed by Shapiro and Renner works on this idea by recursively dividing the com-

putation tree of a program into sub-trees [96]. Each sub-tree corresponds to a sub-

computation, the output of which needs to be validated. The sub-trees whose output

is incorrect are locations of faults. Cause-Transitions technique [27], belonging to

the Zeller’s suite of Delta-debugging techniques, uses the divide and conquer idea

to map failures to subsets of state variables. A binary search on the memory states

between a passing and failing test is performed to determine a minimal set caus-
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ing the failure. A symbolic debugger is used to compare and swap memory states

between the two runs at desired program points to observe the effect on the output.

3.2 Program Repair

The problem of program repair has been the focus of a number of tech-

niques, including those based on evolutionary algorithms [109], program code trans-

formations [29], as well as program state mutations [18].

Mutation-based approach: Debroy et al. [29] introduced the idea of using muta-

tions, i.e., syntactic transformations to the faulty program as a basis of repair. They

developed their technique in the context of the Tarantula tool and spectrum-based

fault localization using a given set of passing and failing tests to focus mutations.

While such code transformations can assist in debugging, the space of variants to

explore grows very quickly. The feasibility of using such a technique for real appli-

cations requires developing novel pruning strategies.

Search over syntactic transformations of the program: Weimer et al. [109] intro-

duced the idea of program repair using genetic programming, where existing parts

of code are used to patch faults in other parts of code and patching is restricted

to those parts that are relevant to the fault. Ackling et al. [5] repair a program by

evolving patches to fix it rather than evolving the faulty program itself, and argue

that doing so simplifies the repair problem. Wilkerson et al. [111] present a co-

evolutionary approach where code and its tests are co-evolved to improve the bug

finding ability of tests as well as to improve the overall quality of the code in order

to provide an automated software correction system.
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Search in the program state space: Chandra et al. [18] use changes to program

states in a faulty program to approximate the behavior of a correct program with

respect to a given set of passing and failing tests. Sem-Fix [85] is a recent approach

that builds on the same idea. Given suite of failing and passing tests, it uses con-

colic execution to determine a correctness constraint at the location of the fault .

It then employs component based synthesis to synthesize an expression that satis-

fies this correctness constraint. The oracle at the point of fault, reduces the search

space to relevant expressions that would make the tests pass. NOPOL [30] and

DirectFix [80] are successors Sem-Fix that extend the approach to different fault

classes.

Malik et al. [77] use a search-based technique for data structure repair [68]

as a basis of program repair. Specifically, they use mutations done on program

state to fix corrupt data structures as a basis of synthesizing program statements

that abstract those fixes using program variables. Jobstmann et al. [63] introduced

a technique to replace faulty program expressions with unknowns and formed a

model checking problem in order to repair a faulty program with respect to its

linear time logic specification. Griesmayer et al. [50] map the problem of repairing

boolean programs to finding a memoryless, stackless strategy in a game and explore

the game graph to find a repair for the boolean program, and show how it can be

used to repair a class of C programs. Weimer [107] proposed an approach that uses

counter-examples of safety-policy violations generated by model checking tools, to

generate patches to repair the model. The patches are in the form of sequence of

atomic reads and updates that generate a state satisfying the policy.
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Combination of search in program state and mutations space: Staged Program

Repair (SPR) [76] is a recently proposed approach that generates a fixed set of

mutation templates for the suspicious statements. For condition templates , it first

determines the correct truth sequence using an efficient technique based on heuris-

tics instead of symbolic execution. The synthesis effort is reduced to instantiation

of the template parameters instead of synthesis from scratch.

Combination of specifications and test cases: Wei et al. [106] attempt to combine

specification-based and test-based repair. Boolean queries are used to build an ab-

straction of the state, which forms the basis to represent contracts of the class, fault

profile of failing tests and a behavioral model based on passing tests. A comparison

between failing and passing profiles is performed for fault localization and a sub-

sequent program synthesis effort generates the repaired statements. This technique

however only corrects violations of simple assertions, which can be formulated us-

ing boolean methods already present in the class.

CodeHint [40] dynamically generates a code snippet at a particular location

for a particular input. It offers support to accommodate different synthesis tech-

niques and different levels of specifications.

Program synthesis. A closely related area to program repair is program synthe-

sis [53], where the goal is to generate (parts of) a program independently of a given

incorrect version. A number of program synthesis techniques are based on specifi-

cations. Programming by sketching [98] employs SAT solvers to generate missing

parts of a given skeletal program with respect to another reference program that

serves as a specification. A SAT solver completes the implementation details by
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generating expressions to fill the “holes” of the skeletal program by exploring sev-

eral of its variants. Gulwani et al. [53] use the counterexample guided iterative

synthesis paradigm together with SMT solvers to synthesize loop-free programs

with respect to given specifications of desired functionality. Kuncak et al. [70] gen-

eralize decision procedures into synthesis procedures to synthesize code snippets

from specifications.

To alleviate the burden of writing detailed specifications, some recent tech-

niques support synthesis based on given concrete input/output examples. Gul-

wani [52] presents such a technique for synthesizing string processing code for

spreadsheets using examples of how a user processes sample strings. More re-

cently, Singh et al. [97] integrate scenarios, which illustrate steps of modifying

specific data structure instances, with given code skeletons and inductive defini-

tions to facilitate program synthesis.

3.3 Machine Learning in Debugging

The application of machine learning to debugging is largely confined to fault

localization. Decision tree generation algorithms, have been used in conjunction

with the fault localization tool Tarantula to cluster failing tests in order to help

developers manually fix bugs in their code more effectively [17, 65].

Statistical debugging techniques [60, 73] employ statistical analysis on the

data collected from passing and failing program runs to determine likely faulty

statements. The technique instruments the program with boolean predicates at dif-

ferent points. The boolean vectors yielded by the passing and failing tests are sub-
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jected to Logical Regression based classification. A ranking is performed based on

the co-efficient of the regression and the predicate along with the respective pro-

gram point with the highest co-efficient value is likely to be faulty. SOBER [75] is

another technique which selects the instrumented predicate with the highest corre-

lation with failure. It specifically chooses only those predicates whose evaluation

patterns in the failing runs is significantly different from the passing runs. A num-

ber of recent techniques analyze the statistical correlations between test failures

and control-flow predicates [73, 75], path profiles [21], and changes made by the

programmer [89].

Context-Aware Debugging [61] employ statistical classification using sup-

port vector machines and random forests for determining likely faulty statements.

Most recently, Roychowdhury et al. [91, 92] used latent divergences and the RE-

LIEF algorithm for feature selection in fault localization.

Program Repair using Machine Learning.

In [6], Alijareh et.al. describe an approach that employs logic learning to

diagnose and correct errors in finite state transition systems. Given a set of posi-

tive and negative examples, inductive logic programming (ILP), is used to derive

hypothesized logic program which entails all the positive and none of the negative

examples.

The work presented in [31], employs the Daikon tool to learn specifica-

tions for data-structure programs. The specification learnt is used to perform data-

structure repair for the failing tests.
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Chapter 4

SAT based Fault Localization

This chapter is based on our paper, ”Improving the effectiveness of spectra-

based fault localization using specifications”, published at the 27th IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE 2012) [47]. Dr.

Nokhbeh Zaeem and Dr. Khurshid were the co-authors on this paper. Dr. Zaeem

helped me with the experiments and writing some sections of the paper. Dr. Khur-

shid helped me brainstorm the idea and also contributed on many sections in the

paper.

4.1 Summary

We present a technique, SAT-TAR, that combines specification-based anal-

ysis with dynamic test execution information to produce effective localization con-

sistently across varying fault and specification complexity [47]. Our insight is that

analysis of correctness specifications can guide the search for the faulty statements

by discerning the actual reason for failure. This can potentially yield higher local-

ization accuracy than existing techniques that employ pure test coverage based anal-

ysis [64]. We leverage SAT to perform unsatisfiability analysis of the specifications

along with the failure trace to determine a Minimal Unsatisfiable Core (MUC) that
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consists of the violated specification constraint and the slice of the trace responsible

for the violation. This lends more context to aid in further investigation as against

an arbitrary ranking of unrelated statements as done by existing approaches.

Complete reliance on user-defined contracts is also problematic since the

completeness and complexity of the constraints can adversely impact the time re-

quired to effectively locate the faults [11, 51, 67]. Application of specification and

test spectra-based analysis in tandem would produce more precise results in lesser

amount of time than pure specification based analysis.

c l a s s L i n k e d L i s t {
Node h e a d e r ;
i n t s i z e ; / / number o f nodes i n t h i s l i s t
s t a t i c c l a s s Node{

Node n e x t ;
i n t key ;}

b o o l e a n d e l e t e ( i n t k ) {
/ / removes t h e node wi th key v a l u e k

0 : Node p rev = n u l l ;
1 : Node l s t = h e a d e r ;
2 : w h i l e ( l s t != n u l l ) {
3 : i f ( l s t . key == k ) {
4 : i f ( p r ev != n u l l ) {
5 : p rev . n e x t = l s t . n e x t ; / / c o r r e c t

p r ev . n e x t = l s t ; / / removeErr
} e l s e {

6 : h e a d e r = h e a d e r . n e x t ; / / c o r r e c t
h e a d e r = h e a d e r ; / / h e a d E r r

}
7 : s i z e −−; / / c o r r e c t

s i z e = 0 ; / / s i z e E r r
8 : r e t u r n t r u e ;}
9 : p rev = l s t ;

1 0 : l s t = l s t . n e x t ;}
1 1 : r e t u r n f a l s e ;}}

Listing 4.1: LinkedList and its delete method with faults.

Our approach specifically generates tests that would provide effective local-

ization for the fault causing the violation. We enable incremental generation and

processing of tests. Heuristic analysis of the ratings after every round is used to
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refine the localization and provide feedback to improve the test generation strategy

on-the-fly. Test selection strategies face the challenge to balance between choosing

sufficient number and type of tests and keeping the test-suite size manageable under

time constraints. SAT-TAR generates test-suites containing minimal number of test

cases required to produce high quality localization.

Our technique provides effective localization even in multiple fault scenar-

ios. We perform root-cause analysis of the specification violations and support

user-control on addition of tests to prevent different faults from interfering with

each other’s localization.

4.2 Illustrative Overview

We consider the localization of typical faults in the linked list delete

method (Listing 4.1) that we had introduced earlier in Chapter 1. We first highlight

the demerits of applying existing state-of-the-art approaches to locate the faults;

pure spectra-based localization (Tarantula (TAR)) on a test-suite generated using

the most recent directed test generation technique for effective fault localization,

(DT) [8], and pure SAT-based analysis of specifications (SAT). We next illustrate

the application of our approach, SAT-TAR, to locate the same faults.

Example program with faults: Let us consider two faulty versions of the delete

method, one comprising of just sizeErr on statement 7 and the other compris-

ing of just headErr on statement 6. The first fault wrongly sets the size field

to 0 instead of decrementing it whenever a match is found. The second fault in-

correctly updates the header field. We consider two possible versions for the
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pred repOk(This: LinkedList){ // class invariant
all n:This.header.*next | n !in n.ˆnext//acyclicity
# This.header.*next = int This.size//size-invariant
all n, m: This.header.*next |

int m.key = int n.key => n = m//unique-elements}

pred deletepostcond1(This: LinkedList, k:
Int){
//remove-ok
This.header.*next.key-k=This.header‘.*next‘.key‘
&& ((k in (This.header.*next.key))

=> (This.size-1=This.size‘))//size-ok}

pred deletepostcond2(This: LinkedList, k: Int){
repOk[This]}

Figure 4.1: Two different post-conditions for the delete method.

user-defined post-condition specification for the delete method (Figure 4.1). In

deletepostcond1, the user includes constraints to specifically check the func-

tionality of the method alone; only the node with the matching key value has been

removed from the list (remove-ok) and the size of the list has been decremented on

a successful delete (size-ok). On the other hand, in deletepostcond2, the user

ensures that all the class invariants are preserved after deletion without including a

specific check to ensure the removal of the input value. The class invariant (repOk)

consists of the acyclicity constraint, which checks that the list does not contain

any cycles, the unique-elements constraint, which checks that each list node has a

unique key, and size-invariant, which ensures that the size field has a value equal

to the number of nodes reachable from the header through the next pointer. We

use these two versions to show how our technique is intended to work with varying

levels of complexity and completeness in user-defined specifications.

Applying Tarantula (TAR):

The Tarantula tool (Chapter 3) localizes faults in a program based on the
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Table 4.1: Spectra-based localization using Tarantula.
Stmts 0 1 2 3 4 5 6 7 8 9 10 11

Fault Tech. Tests Rating
sizeErr TarDT 2F,2P Susp 0.5 0.5 0.5 0.5 0.6 1.0 0.5 0.6 0.6 0.5 0.5 0.0

Tar

Conf 1.0 1.0 1.0 1.0 1.0 0.5 0.5 1.0 1.0 0.5 0.5 0.5
Tar

Rank 8 8 8 8 4 1 8 4 4 10 10 11
headErrTarDT 2F,2P Susp 0.5 0.5 0.5 0.5 0.6 0.0 1.0 0.6 0.6 0.0 0.0 0.0

Tar

Conf 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5
Tar

Rank 8 8 8 8 4 12 1 4 4 10 10 12

coverage of a given test suite. It associates with each statement a metric of sus-

piciousness, which represents the likelihood of the statement being faulty, and a

metric of confidence in the calculated suspiciousness. In the following definitions,

Failed(s) and Passed(s) show the number of failing and passing tests covering

statement s respectively, while TotalFailed and TotalPassed represent the total

number of failing and passing tests.

SuspTar(s) =
Failed(s)

TotalFailed
Failed(s)

TotalFailed
+

Passed(s)
TotalPassed

ConfTar(s) =Max( Failed(s)
TotalFailed

, Passed(s)
TotalPassed

)

The values of the both the metrics range from 0.0 to 1.0. Statements with

a suspiciousness value of 1.0 are considered to be the most suspicious. Among the

statements with the same suspiciousness values, those having a higher value for

confidence are more likely to be faulty since more number of tests lend evidence to

them being suspicious. A suspect list of statements is produced, which enlists the

statements in descending order of the suspiciousness and confidence metrics. Each

statement is assigned a rank, which indicates the maximum number of statements
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that would need to be examined to reach that statement (inclusive of the statement),

if they were to be arranged in the descending order of suspiciousness and confi-

dence values. The worst-case rank assigned to the faulty statements represents the

effectiveness of the localization.

We first apply Tarantula on a minimal test suite. Consider the use of just

two tests; a failing test case with a two node input list and the value k matching the

key of the second node, and a passing test case with an empty input list, to localize

sizeErr. The traces of the two runs are very dissimilar, so most of the statements

are assigned the same suspiciousness and confidence ratings of 1.0. Hence in the

worst case 6 actually correct statements should be examined before hitting the faulty

statement 7, giving it a rank of 7.

The results improve on using a test-suite with 4 tests generated specifi-

cally for effective fault localization (TarDT in Table 4.1). While headErr is well-

localized ranking the faulty statement 6 first in the list, the ratings are not accurate

for sizeErr. Statement 7 (rank 4) is rated lower than the actually correct statement

5. This is because the suite includes a test that removes from an input list with just

one node, for which setting size to 0 after deletion is valid. Hence statement 7 has

one passing test covering it, whereas all tests covering statement 5 are failing runs.

Applying pure SAT-based analysis of specifications (SAT): Let us now consider

the application of a technique which solely uses static analysis of the code and

violated specifications, such as BugAssist, to localize the same faults.

The BugAssist tool (Chapter 3) employs user-provided specifications of cor-
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rectness to determine the portion of code responsible for the violations. A problem

is formulated in boolean logic and SAT technology is employed to look for a satis-

fying solution that represents a valid path through the code that produces an output

satisfying the correctness specifications for the given input. However, due to the

fault in the code this formula is unsatisfiable. A MAX-SAT solver [79] is used to

determine a maximal set of clauses that can be simultaneously satisfied by any as-

signment. A complement of these clauses represents a Minimal Unsatisfiable Set.

The replacement of some or all of the clauses in this set with a different formula

should yield satisfiability. These are mapped to corresponding source code state-

ments which are considered to be potentially faulty. There may be more than one

such minimal unsatisfiable sets. Hence, if a particular set does not map to the actual

fault then repetitive calls to SAT are performed to parse through all possible faulty

statements.

Consider localizing headErr using deletepostcond2 as the post-condition

specification. A list with the key value of the first node matching the input k, would

expose this fault. The violated constraint is size-invariant, which includes

almost all fields of the linked list (size, header, next). Localization based on

analysis of specifications and code would include all statements that impact the

values of these relations in their post-state (statements 0,1,2,3,4,6,7).

However, complex specifications, made up of a number of dependent con-

straints, result in multiple violated constraints involving many data structure fields.

.

Applying SAT-TAR: The above experiments lend motivation to our intuition that
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Table 4.2: Pure SAT and SAT-TAR localizations for sizeErr.
Stmt SAT Spectra

TarMUC

postcond 1 1F,1F 2F,1P 2F,2P
Susp Rank Susp1 Conf1 Susp2 Conf2 Susp Conf Rank
SAT SAT sattarsattarsattar

0 0.0 12 1.0 1.0 0.5 1.0 0.5 1.0 7
1 1.0 4 2.0 1.0 1.5 1.0 1.5 1.0 4
2 1.0 4 2.0 1.0 1.5 1.0 1.5 1.0 4
3 1.0 4 2.0 1.0 1.5 1.0 1.6 1.0 2
4 0.0 12 1.0 1.0 1.0 1.0 1.0 1.0 6
5 0.0 12 1.0 0.5 1.0 0.5 1.0 0.5 9
6 0.0 12 1.0 0.5 1.0 0.5 1.0 0.5 9
7 1.0 4 2.0 1.0 2.0 1.0 2.0 1.0 1
8 0.0 12 1.0 1.0 1.0 1.0 1.0 1.0 6
9 0.0 12 1.0 0.5 0.3 1.0 0.5 0.5 9

10 0.0 12 1.0 0.5 0.3 1.0 0.5 0.5 9
11 0.0 12 0.0 0.0 0.0 1.0 0.0 1.0 10

Table 4.3: Pure SAT and SAT-TAR localizations for headErr.
Stmt SAT Spectra

TarMUC

postcond 1 1F,1P 2F,1P 2F,2P
Susp Rank Susp1 Conf1 Susp2 Conf2 Susp Conf Rank
SAT SAT sattarsattarsattar

0 1.0 7 1.5 1.0 1.5 1.0 1.5 1.0 7
1 1.0 7 1.5 1.0 1.5 1.0 1.5 1.0 7
2 1.0 7 1.5 1.0 1.5 1.0 1.5 1.0 7
3 1.0 7 1.5 1.0 1.5 1.0 1.6 1.0 4
4 1.0 7 1.5 1.0 1.6 1.0 1.75 1.0 3
5 0.0 12 0.0 1.0 0.0 0.5 0.0 0.3 12
6 1.0 7 2.0 1.0 2.0 1.0 2.0 1.0 1
7 1.0 7 1.5 1.0 1.6 1.0 1.75 1.0 3
8 0.0 12 0.5 1.0 0.6 1.0 0.75 1.0 8
9 0.0 12 0.0 1.0 0.0 1.0 0.0 0.6 11

10 0.0 12 0.0 1.0 0.0 1.0 0.0 0.6 11
11 0.0 12 0.0 0.0 0.0 0.5 0.0 0.6 11

instead of dwelling just in the realm of pure spectra-based localization or pure

SAT-based analysis, it would be helpful to combine the two techniques in order

to achieve effective localization consistently across different fault scenarios.

We present below the main steps of our approach.
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SAT-based localization: Given a program annotated with correctness specifica-

tions and the trace of a single run violating these constraints, our approach inves-

tigates the violated constraints to determine the list of statements responsible for

the specification violation. We employ the Forge framework, with Kodkod at its

backend, to determine a Minimal Unsatisfiable Core of the violated specification

constraints. The MUC consists of the core constraints responsible for the violation

and is mapped back to an initial suspect list of potentially faulty source code state-

ments. The specification constraint violated by the input exposing the sizeErr is

the size-ok constraint. The suspect list produced using unsatisfiability analysis

includes the faulty statement 7 updating size while eliminating statements updat-

ing other fields such as statement 5. Faulty statement 7 (RankSAT in Table 4.2) is

ranked fourth using just a single failing test.

However, complex or incomplete user-defined specifications can yield long

suspect lists such as in headErr. In situations unsatisfiability analysis based filter-

ing does not help much in narrowing down on the faulty statements (RankSAT in

Table 4.3).

Test Spectra-based localization: Instead of performing further analysis in the

SAT-domain, SAT-TAR performs test spectra-based refinement which is more effi-

cient. We use the test-coverage based metrics of the popular Tarantula tool [64] to

obtain suspiciousness ratings for the statements.

We utilize the information obtained from the UNSAT core analysis in two

ways. Firstly, we generate the test cases for spectra-based localization using a vari-

ant of the directed test generation approach [8]. Specifically, we generate the test
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input whose trace is most similar to the failure trace in terms of its coverage of only

those statements that appear in the MUC and hence contributes to the violation.

Spectra-based localization using test cases thus generated, results in more accurate

ratings using fewer number of tests. Secondly, we increase the suspiciousness rat-

ings of those statements that appear in the MUC. Specifically, we add a value of 1.0

to the suspiciousness of statements in the suspect list built using the MUC analysis

(TarMUC in Tables 4.2 and 4.3)

Instead of generating a whole test-suite upfront, we perform incremental

generation and processing of tests. The tables show the tests incrementally added

to the test-suite and the corresponding ratings. For headErr, the test case added in

the first round is a passing run wherein the input k matches the key of the second

node of the list. This test has its code coverage most similar to the failing run, hence

the suspiciousness of all statements in common between the two traces gets reduced

contributing to significant refinement in the ratings (Susp1 and Conf1 in Table 4.3).

Such a passing test case is generated after the second round for sizeErr (Susp2

and Conf2 in Table 4.2). This process continues until no more tests with unique

coverage of the code can be generated.

Incremental processing of test cases facilitates the availability of intermedi-

ate localization results which is beneficial, as elaborated in Section 4.3. Particularly,

the user is presented with the results after every round and he could choose to stop

the addition of tests and further processing when appropriate. In both the fault

cases, the best possible localization of the faulty statements is achieved using the

first few tests. Hence, ideally the user could stop further processing after the second
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Table 4.4: Multi-fault Localization.
Faulty TarDT SAT-TAR(postcond1)
Stmt test suite shows both faults initial trace shows headErr initial trace shows sizeErr

3F,3P 1F,2P 1F,2P
Susp Conf Rank Susp Conf Rank Susp Conf Rank
Tar Tar Tar sattarsattar sattar sattarsattar sattar

6 1.0 0.6 4 2.0 1.0 2 0.5 1.0 11
7 1.0 1.0 3 1.0 1.0 8 2.0 1.0 1

round for sizeErr and the first for headErr.

Observe that faulty statements 7 and 6 are both assigned suspiciousness of

2.0 and confidence of 1.0 respectively (Suspsattar and Confsattar in Tables 4.2 and

4.3), which are higher than the ratings for the correct statements. Hence they rank

first in a descending ordering of the statements based on their suspiciousness and

confidence. Compared to the counterpart techniques (TAR, SAT), we provide high

quality localization consistently for both the fault scenarios.

Multiple Faults: In multi-fault cases, tests covering different faults interfere with

each other impacting the effectiveness of pure spectra-based localization. We ap-

plied Tarantula on a code containing both the faults (sizeErr and headErr). The

test suite was generated using the directed test generation approach for effective

fault localization (DT) and had failing tests covering both of the faults. The local-

ization (TarDT ) did not prove very effective as the faulty statements 7 and 6 ranked

third and fourth respectively (Table 4.4).

Our approach targets localizing only the faults exposed by the initial failing

trace, and performs violated-specification based partitioning of the suite to elim-

inate failing tests covering different faults. The smallest fault revealing input for
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Figure 4.2: SAT-TAR framework

the two fault example would be a run removing a node from a list with only one

node. This run violates the remove-ok constraint alone caused due to headErr on

statement 6. Failing runs covering sizeErr and violating size-ok constraint are

not included in the test-suite, thus preventing interference with the localization of

headErr. The suspect list built using MUC analysis, also aids in augmenting the

suspiciousness of statement 6, ranking it second in the list. Similarly when starting

with an input violating size-ok alone, our approach eliminates the failing runs vi-

olating the remove-ok constraint, thus localizing statement 7 with high precision

with a rank of 1 (sizeErr in Table 4.4).
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4.3 Framework Details

In this section we elaborate on the algorithm and implementation details of

the modules of our framework. Figure 4.2 presents an overview. The input to the

framework is a fault-revealing test which can be produced by any testing or static

verification technique [16, 20]. The two main constituents of our framework are

SAT-based analysis (Section 4.3.1) and spectra-based analysis (Section 4.3.2).

4.3.1 SAT

Minimal Unsatisfiable Core Extraction and Analysis:

Considerable work has been done in recent years to find minimal unsatis-

fiable cores of unsatisfiable constraints written as propositional satisfiability (SAT)

formulas [35, 113]. Given an unsatisfiable CNF formula X, a minimal unsatisfi-

able sub-formula (MUS) is a subset of X’s clauses that is both unsatisfiable and

minimal, which means any subset of an MUS is satisfiable. There could be many

independent reasons for a formula’s unsatisfiability and hence more than one min-

imal cores. Some algorithms such as CAMUS [74] aim to extract all the MUS’s

at the cost of not being able to scale to problems of real world sizes. Additionally,

when using boolean logic to reason about specifications in relational logic, map-

ping of unsatisfiable cores in boolean logic to equivalent relational logic constraints

becomes complex.

Torlak et al. [101] propose an efficient algorithm for the extraction of a

single MUC of declarative specifications based on the resolution refutation proofs

generated by SAT solvers and theorem provers. The Recycling Core Extractor al-
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gorithm (RCE), returns an unsatisfiable core of specifications written in the Alloy

language that is guaranteed to be sound (constraints not included in the UNSAT

core are definitely irrelevant to the unsatisfiability proof) and irreducible (removal

of any constraint from the set would make the remaining formula satisfiable). The

two key ideas of this strategy are i) finding the minimal core at the specification

level rather than at the boolean level by iterative application of reduction and trans-

lation, and ii) enabling reuse of the results of inferences made in earlier iterations

to increase performance. MUC has been shown to be useful in the identification

of over-constrained models, weak theorems, and insufficient scopes while checking

models. We extend its use MUC in localizing faults in imperative code.
Trace t e s t G e n e r a t i o n ( L i s t<Stmt> s u s p e c t L i s t , T race ce , L i s t<Trace> s e l T r a c e s ,

T e s t G e n S t r a t e g y s t ) {
C o n s t r a i n t [ ] pa thConds = p a t h C o n d C o n s t r a i n t s ( ce ) ;
f o r ( i n t i = 0 ; i < pathConds . l e n g t h ; i ++) {

C o n s t r a i n t newPC= c o n j u n c t i o n ( pa thConds [ 0 ] , . . . , pa thConds [ i −1] , n e g a t i o n (
pa thConds [ i ] ) ) ;

T race newTrace = KodKod . s o l v e ( c o n j u n c t i o n ( preCond , newPC ) ) ;
i f ( newTrace . s a t i s f i a b l e ( ) ) {

i f ( s t . e q u a l s (NEW STRATEGY) )
b o o l e a n uniqueCov = un iqueCove rage ( newTrace , s e l T r a c e s , s u s p e c t L i s t ) ;

e l s e
uniqueCov= un iqueCove rage ( newTrace , s e l T r a c e s ) ;

i f ( uniqueCov )
L i s t<Trace> newTraces . add ( newTrace ) ;}}

i n t max = 0 ;
Trace s i m i l a r T r a c e = n u l l ;
f o r ( Trace t : newTraces ) {

L i s t<Stmt> stmtNums = s r c C o d e S t m t s ( t ) ;
f o r ( Stmt s t : s u s p e c t L i s t ) {

i f ( stmtNums . c o n t a i n s ( s t ) ) s c o r e ++;
i f ( max < s c o r e )
{max = s c o r e ; s i m i l a r T r a c e = t ;}}}

s e l T r a c e s . add ( s i m i l a r T r a c e ) ;
r e t u r n s i m i l a r T r a c e ;}

Listing 4.2: Test Input Generation Algorithm.

The Forge framework (Chapter 2) uses symbolic execution to translate the

code of a procedure into a set of formulas in relational logic (Fcode = {f1, ..., fn}).
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Given a fault-revealing input (Ifr) and the correctness specification (ψ), we attempt

to find a valid path through the code for the given input, yielding an output satis-

fying the post-condition specification. Kodkod is invoked with the following Alloy

formula; Fcode ∧ ψ. The pre-state relations are bound to the values in the fault re-

vealing input (Ifr) and the scope is fixed to the size of the input. Due to the fault

in the code, the formula is unsatisfiable and Kodkod returns a proof of unsatis-

fiability (UNSAT). The RCE strategy of Kodkod is used to produce the MUC, a

reduced form which consists of the core constraints responsible for the violation.

MUC = {{f −muc1, ..., f −mucm}, {ψ−muc1, ..., ψ−mucm}}, which is some

subset of {{f1, ..., fn}, ψ}.

Figure 4.3 shows the main formulas that appear in the MUC extracted for

the sizeErr. The first formula represents the violated specification constraint

size-ok. The second formula represents the constraints that appear on the path

that updates the size field. The first two constraints represent conditionals on the

pre-state relations evaluated by branches 2 and 3 (Listing 4.1). The last constraint

represents the faulty statement 7, as an override of the size relation wherein the list

instance, This, is mapped to a value 0. Note that only those branches that are rele-

vant to the violation (branches on which the update statement is control-dependent

on), are included in the MUC. For instance, branch statement 4 is not included in

the MUC for sizeErr.

Forge maintains a formula slice map when performing the translation of im-

perative code to logic. This maps each formula inserted into the path-constraint

(fi), to the set of statements or slice of code from which the formula was gener-
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((k in (This.header.*next.key)) =>(This.size-1=This.size‘))

!(no This.header)=> (This.header.key = val)=>
This.size‘ = size ++ (This -> 0)

Figure 4.3: MUC for sizeErr.

ated [34]. This is utilized to determine the set of statements mapping to the formulas

in the MUC (f −muci), which can be considered responsible for the unsatisfiabil-

ity. This forms the initial list of suspicious statements. For the sizeErr, statements

1,2,3,7 are short-listed using this analysis from the list of all statements in the trace

0,1,2,3,4,6,7,8. The suspiciousness of statement s is, SuspSAT (s) = 1.0, if statement

s is in the initial suspect list, otherwise it is 0.0.

Kodkod returns only a single MUC for a violation, which is not sufficient

when the trace covers multiple faults violating more than one constraints. Hence af-

ter processing an MUC, we remove the corresponding violated constraints from the

specifications, and invoke the unsatisfiability analysis again to extract other MUCs.

We thus form a consolidated list of suspicious statements covering all faults in the

code.

Test Input Generation:

This module aims to generate test inputs that would provide the most benefit

in localizing the fault exposed by the initial failure trace. The algorithm involves

two main steps (pseudo-code in Listing 4.2): i) using the conditionals on the failure

trace to generate a set of additional inputs covering new portions of the code, and

ii) selecting the input which is the most similar to the failure trace as the next test

input (similarTrace). The heuristic behind this technique is that if the input

with a trace most similar to the failure trace happens to be a passing run then it
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would provide the most benefit in improving the precision of the localization, since

a considerable number of statements in common between the two traces could be

considered non-faulty. The first step is accomplished by systematically negating

each of the path constraints on the failure trace, {f − pc1, ..., f − pcn}, obtained by

solving for Fcode binding the pre-state to Ifr. The following new path constraints

get generated; f−pc1∧f−pc2∧ ...∧¬f−pcn, f−pc1∧f−pc2∧ ...∧¬f−pcn−1

etc. until ¬f − pc1. For every new path constraint (newPC), SAT is employed to

look for a valid input whose trace includes that constraint.

Given a failure trace and its unsatisfiability core (MUC), we define the sim-

ilarity score of another trace with respect to the failure trace, as the number of

source code statements covered by it that map to the MUC. The trace with the high-

est similarity score is considered the most similar. The selected trace needs to cover

at least one statement from the suspect list. Such a trace would provide the most

benefit in refining the suspect list generated using MUC analysis. The most similar

test input along with the initial fault-revealing input form the initial test-suite.

4.3.2 Spectra

The tests generated in the SAT domain are executed, followed by spectra-

based localization using the formulas of Tarantula. The suspiciousness and confi-

dence metrics are calculated as follows,

Suspsattar(s) = SuspMUC
Tar (s) + SuspSAT (s)

Confsattar(s) = ConfMUC
Tar (s).
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The superscript MUC represents MUC based test generation.Tar indicates

Tarantula’s spectra-based localization metrics.SAT represents the metric obtained

from SAT-based analysis.

Violated specification based filtering of tests: For failing tests, the violated con-

straints are analyzed to confirm that they match the constraints violated by the initial

failing run. Tests that violate distinctly different constraints are not considered since

they pass through different code faults and would wrongly reduce the ratings of the

faulty statements in the initial failure trace.

Heuristic Analysis of Ratings: The test inputs are generated and used for local-

ization one at a time. Such incremental addition and processing of tests facilitates

application of heuristics to refine the precision of the ratings and to provide feed-

back to improve the effectiveness of test generation.

• Refinement of Ratings: In every round the ratings are updated based on the

test added in that round. If the test happens to be a failing run, the state-

ments whose suspiciousness and confidence values decrease from the previ-

ous round are not faulty in most probability. This is under the assumption

that the new failing test also covers the same code faults as the initial run.

Hence the ratings of these statements are not augmented (i.e. Suspsattar(s) =

SuspTar(s)). When the added test violates a subset of the constraints violated

by the initial failing run, it probably covers a subset of the faults exposed by

the initial run. In such a case, the above heuristic is not applied since it may

reduce the suspiciousness of the faulty statements present in the initial failure
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trace and not covered by the new test.

• Feedback to customize test generation strategy: Analysis of the ratings

also helps improve the test input generation strategy on-the-fly. Statements

heuristically determined to be non-faulty could be removed from the suspect

list. The feedback of this updated suspect list to the test input generation

module improves the effectiveness of the similarity criterion. We also asses

the performance of the tests heuristically to identify redundant tests. Big

fault-revealing inputs, such as long lists, lead to the generation of a series

of failing runs with very similar code coverage, providing little benefit in

refining the ratings. Hence the ratings are observed periodically to detect

such series of redundant tests. Subsequently, the test input generation strategy

switches to generating tests which differ from the previous tests not only in

their total code coverage, but specifically in their coverage of the suspicious

statements (NEW STRATEGY in Listing4.2).

User control (Optional):

The incremental generation and processing of tests is continued until no

more test cases with unique coverage can be generated. The user can optionally be

presented with the output after a specified number of rounds and if he is satisfied

with the precision he can choose to stop further refinement. This helps in cases

when additional tests could reduce the localization accuracy, such as passing runs

covering the faulty statement. Since we generate test cases that are as close to the

initial failing run as possible, the first few tests could be assumed to cover the same
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code faults in most probability (in multi-fault scenarios). But as the rounds increase,

the chance of hitting new faults increases and user-control could aid in stopping the

process before the generation of these tests.

4.3.3 Discussion of Correctness

In this section, we argue that our algorithm produces a suspect list that does

not miss any faulty statement, assigns the highest suspiciousness value to the faulty

statement(s), and in most cases ranks them higher than actually correct statements.

We assume that the provided specification is not erroneous, the translation of code

to logic is correct.

For single fault cases, the MUC is guaranteed to include the faulty state-

ments responsible for the violation. The suspiciousness ratings of the statements

in the suspect list are all incremented by 1.0. Hence the faulty statements would

be assigned the highest suspiciousness value of 2.0. There may statements in the

initial suspect list that are actually correct. Our test-generation strategy is geared to

generate passing tests that aid in reducing the ratings of these statements.

We focus on localizing all faults exposed by the initial failure trace. When

there are multiple faults occur simultaneously in a single failure trace, we require

each of the faults to violate a distinct specification constraint. Our iterative process-

ing of MUCs aids in producing a suspect list that contains all the faulty statements

in the trace. Violated specifications analysis helps eliminate failing tests that cover

faults not exposed by the initial trace. This prevents the assignment of lower ratings

to the faulty statements due to interference from other faults.

59



4.4 Evaluation

We address the following research questions in the evaluation.

RQ1: Does SAT-TAR perform better than existing pure spectra-based localization

and pure SAT-based analysis of specifications, for different types and number of

faults and varying complexity of specifications?

RQ2: How much do the individual components of our localization algorithm, a)

test generation using UNSAT core, and b) augmentation of ratings using UNSAT

core, contribute to its effectiveness?

4.4.1 Candidates

Please refer Appendix B for code-snippets used for the evaluation.

BST.add(Integer k): Binary search tree (BST) is a data structure with com-

plex structural properties, commonly used in applications requiring efficient search.

The data structure invariants include uniqueness of each element, acyclicity with

respect to left, right and parent pointers, size correctness, and search con-

straints. The add method inserts a node at an appropriate position in the tree based

on the input value.

BaseTree.addChild(Tree t): ANother Tool for Language Recognition

(ANTLR) [86] is a commonly used open source tool to build recognizers, inter-

preters, and compilers from grammars (DaCapo benchmarks [15]). It is an excel-

lent candidate because it uses various kinds of data structures, specially trees, as its

backbone. BaseTree class implements a generic tree structure customized to parse
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Table 4.5: Single Fault Results. SAT: pure MUC based localization, TarRand: Taran-
tula with a randomly generated suite, TarDT : Tarantula with tests generated by [8],
and SAT-TAR (user - SAT-TAR with user-control).

Fault SAT TarRand TarDT SAT-TAR SAT-TAR
#Tests=1 #Tests=10 <#Tests,Rank> #Tests

Rank Rank (user)
BST-sizeErr1 6 7.3 <6, 9.4> <6, 2> 2
BST-sizeErr2 9 7.3 <6, 10> <6, 5.4> 5
BST-parentErr 11 6.1 <6, 10.8> <6, 2> 4
BST-rightErr 11 1.2 <6, 1> <6, 1> 3
BST-traverseErr 7 2.4 <6, 4.2> <6, 2> 3
BST-branchErr 11 6.1 <6, 6.3> <6, 1> 4
ANT-parentErr1 3 2 <4, 3.4> <4, 1> 3
ANT-parentErr2 4 2 <4, 3.9> <4, 2.1> 3
ANT-childparErr1 8 6.3 <4, 6.6> <4, 3.6> 2
ANT-childparErr2 9 6.3 <4, 6.4> <4, 4.1> 3
ANT-childErr 7 6 <4, 6.8> <4, 1.8> 2
ANT-loopErr 10 6 <5, 6> <5, 4> 1

Table 4.6: Results of 2 restricted variants of SAT-TAR.
Fault TarDT + SAT SAT-TAR TarMUC TarDT

Rank
BST-sizeErr1 2.6 2 9 9.4
BST-sizeErr2 7 5.4 9 10
BST-parentErr 8.2 2 2 10.8
BST-rightErr 1 1 1 1
BST-traverseErr 4 2 2 4.2
BST-branchErr 3.2 1 2 6.3

input grammars. Each instance maintains its children as a list, each child is in turn

a tree and has a pointer to its parent. Every tree node may also contain a token

field which represents the payload. The addChild(Tree t) is the main method

used to build all tree structures. Based on the comments and the program logic, we

derived the following specifications: acyclicity of the children list, accurate parent-

child relationships, and addition of child without any unwarranted modifications to

the tree structure.
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Table 4.7: Multiple faults localization.
Multi-Fault TarRand SAT-TAR SAT

#Tests=1
Rank #Tests Rank Rank

<#Tests,(r1,...,rn)> loc1,loc2 r1,...,rn r1,...,rn
BSTrootparErr <10,(16.3,7.2)> 2,3 2,3 5,10
BSTrootsizrghtErr <10,(6.6,9.1,16.3)> 5,4 4,5,2 12,12,5
ANTtwoErrs <10,(10.3,2.3)> 2,3 5,1 9,3
SLLsizremErr <4,(6,1)> 4 5,1 9,9

4.4.2 Experiment Setup

Fault scenarios: We seeded different types of faults in both these methods (Ta-

ble 4.5), including incorrect updates to data structure fields, local variables which

impact the traversal of the tree, branch conditions and loop indices. Some faults lead

to the violation of just one constraint such as BST-parentErr, which only violates

the constraint n = n. left‘.parent‘, while others such as BST-rightErr vi-

olate many constraints, involving almost all fields of the data structure. Error names

ending with labels 1 and 2 represent the same code fault but with different post-

condition specifications, impacting the UNSAT core. For instance BST-sizeErr1

violates only size‘ = size + 1, while BST-sizeErr2

violates size‘ =#this.root‘.*(right‘ + left‘), producing a bigger core

and suspect list. Similarly, for ANT-parentErr2, the post-condition only checks

if for every node the parent pointers have been set correctly for all its children,

while Err1 also checks if the input tree has been added correctly as a child. We

also seeded more than one faults simultaneously to simulate multi-fault scenarios

(Table 4.7).

Localization techniques: The spectra-based localization approaches

62



(TarRand,TarDT ) use the same suspiciousness and confidence formulas for local-

ization as Tarantula. For TarRand, we used the state-of-the-art test input generation

technique for data structures, Korat [16], to generate tests exhaustively up to a size

such that there was a failing run for every fault. For each fault, we used a code

version containing only that fault and selected 10 tests randomly (ensuring the in-

clusion of at least one failing run). For TarDT , the test-suite was generated using

the directed test generation algorithm [8]. We implemented the algorithm using

Forge, with SAT as the back-end technology, instead of concolic execution as done

previously. This enables an efficient application of the technique on data structure

programs with complex invariants. We employed a prototype implementation of

our algorithm, built on top of the Forge framework, to obtain results for SAT-TAR.

In both SAT-TAR and TarDT , tests are incrementally added to the suite. In order to

compare the test-suite effectiveness, we used the same number of tests for TarDT as

that produced by SAT-TAR to localize a particular fault. SAT is the pure UNSAT

core analysis based technique which assigns the same suspiciousness value of 1.0

to all statements in a suspect list obtained by mapping from the MUC.

Metrics: The effectiveness of localization was measured by assigning a rank to

the faulty statement (Section 2) based on its position in the descending order of the

suspiciousness and confidence ratings of all the statements. The lower the rank of

the faulty statement the better the localization.

Kodkod with MiniSAT as the backend SAT solver was employed to obtain

the minimal unsatisfiable cores. All the experiments were run on a system with

2.50GHz Core 2 Duo processor and 4.00GB RAM running Windows 7. The results
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are an average of 10 runs. All the localization approaches, except TarRand, start with

a single failing run. Hence for every run, we used bounded verification (Forge) to

generate a fault-revealing input of random size.

4.4.3 Result Discussion

Table 4.5 shows the ranks assigned to the faulty statements for each fault

under each technique. The # Tests for TarDT and SAT-TAR is the minimum number

of tests amongst the 10 runs (for the run with the fault-revealing input of smallest

size).

RQ1: SAT-TAR vs Tar: For all types of faults, our approach consistently produces

lower ranks using lesser number of tests than TarRand. For most of the faults, the

best possible ranking is obtained using the first few tests and the algorithm could

ideally be stopped at that point under user-control mode (user in Table 4.5). The

precision is better than TarDT as well, despite the latter approach using a test-suite

produced specifically for effective localization.

The use of UNSAT core helps filter out statements not related to the spec-

ification violation. For instance, in BST-sizeErr1, MUC analysis helps narrow

down to 6 statements responsible for the violation, from a total of 14 statements.

Even in faults not directly updating fields appearing in the specifications, such as

ANT-loopErr and BST-branchErr, around 30% of statements are eliminated

based on MUC analysis.

BST-sizeErr2 is one of the many cases where our heuristic refinement of

ratings proves beneficial. On processing two failing test cases, one adding a right
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child to the tree and the other a left child, statements updating the right and left

fields are rightfully eliminated from being faulty.

ANT-parentErr1 is an instance, where our test-generation strategy pro-

duces a passing test most similar to the initial failing trace in the second round,

resulting in the faulty statement being ranked first. The randomly selected tests

(TarRand) comprise of many failing tests with similar coverage which assign the

same ratings to almost all statements.

Multiple faults: Table 4.7 shows the results for multi-fault scenarios (r1, ..., rn rep-

resent ranks of faulty statements 1 to n, loc1,loc2 indicate the separate localizations

runs for each failure trace). The test-suite used by TarRand contains failing tests

exposing different faults simultaneously which decreases the quality of localiza-

tion due to interference. Our approach works on a single failure trace and builds a

suitable suite to localize the faults exposed by that trace.

Consider BSTrootparErr, containing two faults simultaneously in BST.add;

BSTrootErr and BSTparentErr (Figure B.2a). Two distinct failing tests cover

each of these faults and violate two distinct constraints; one this.root’ and

all n :n.left’.parent’ = n respectively. Our approach processes each of

these failing tests separately and eliminates each of these tests from the other fault’s

localization. The faulty statements are thus assigned lower ranks in their respective

localizations as compared to the ranks assigned to them by TarRand using a test-suite

containing both the failing tests.

SAT-TAR vs SAT: The high ranks of faulty statements (SAT in Tables 4.5 and 4.7),
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highlight the poor precision of the localization based on pure SAT-based analysis

of specifications. Specifically, BST-sizeErr2, ANT-parentErr2,

and ANT-childparErr2 have exactly the same faults as their counterpart error

cases ending with 1. However MUC analysis returns longer suspect lists for these

cases either due to the increase in the complexity or decrease in the completeness

of the post-condition specifications. On the other hand, SAT-TAR employs the

coverage of additional tests to refine the ratings in the initial suspect list and hence

the precision does not suffer much.

RQ2: To address RQ2, we compare SAT-TAR with two restricted variants, each

including one specific component of the technique but not the other; i) TarDT +

SAT: This represents a mere aggregation of the ratings obtained from the stand-

alone application of pure spectra-based localization and SAT-based analysis (Susp

= SuspDT
Tar + SuspSAT ), ii) TarMUC : This represents the use of MUC analysis only

for test generation (Susp = SuspMUC
Tar ). SAT-TAR includes both the components,

Susp = SuspMUC
Tar + SuspSAT .

Comparing the results of TarDT + SAT with SAT-TAR (Table 4.6), shows

that in most cases, our technique performs better than a technique that merely aggre-

gates the ratings from pure spectra-based and SAT-based localizations. This high-

lights the benefits of our strategy to specifically generate tests using the information

gained from MUC analysis. The results of SAT-TAR are better than TarMUC , in-

dicating the benefit of UNSAT core based augmentation of suspiciousness ratings.

Specifically, in cases such as BST-sizeErr, where the tests produced by our algo-

rithm and the counterpart technique (DT) are almost the same, MUC analysis based
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filtering helps lower the ranks significantly.

JTopas Case Study:

JTopas [1] is a Java library used for parsing arbitrary text data such as

HTML, XML, programming language source code so on. We used SAT-TAR to

localize a fairly complex fault (from version 0.4 of the application in SIR [2]) and

another fault seeded by us. We tested the Tokenizer class by asserting that the

parsed output satisfies the following two properties i) the ’@’ sign is followed by

a keyword inside a Javadoc comment, ii) the number of open and closed braces are

the same. Assuming that the test code was error free, we performed modular anal-

ysis of the nextToken method, which parses the input at the next position into an

appropriate token. The code of this method with the called helper methods inlined,

was encoded in the Forge Intermediate Language [34] with a total LOC of 100.

SAT-TAR handled the size and complexity of the code quite well and localized the

faults precisely (ranked the faulty statements amongst the top 2).
1 I n p u t 1 : I n p u t 2 :
2 /∗ ∗@author ∗ / /∗ {} ∗ /

Listing 4.3: Fault-revealing inputs for the two faults in JTopas.

Performance: Table 4.8 shows the average times taken by TarDT , pure SAT-based

analysis and SAT-TAR for localizing each of the errors. SAT-TAR consumes, on

an average, about twice as much time as pure spectra-based localization. More

than 97% of this time is spent in the extraction of the unsatisfiable core. Hence the

difference in times is more pronounced for applications with large specifications

such as ANTLR, wherein every node of the tree has multiple children. The large
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Table 4.8: Localization Times.
Fault TarDT SAT SAT-TAR

Time in secs
BST-sizeErr1 2.91 8.17 8.30
BST-sizeErr2 2.56 7.14 7.27
BST-parentErr 2.97 7.69 7.75
BST-rightErr 3.98 7.23 7.37
BST-traverseErr 2.27 7.41 7.51
BST-branchErr 4.57 7.40 7.54
ANT-parentErr1 3.98 15.42 15.73
ANT-parentErr2 5.31 15.61 15.96
ANT-childparErr1 19.16 95.42 95.88
ANT-childparErr2 18.13 24.27 24.55
ANT-childErr 20.12 36.4 40.10
ANT-loopErr 43.78 15.54 15.96

Time in mins
JTOPAS-Err1 15.77 1.43 18.12
JTOPAS-Err2 1.80 1.45 4.48

size of the source code impacts the performance of all three techniques for the

JTOPAS application.

Threats to Validity: Use of our implementations of the SAT technique and the

directed test generation algorithm (DT used in TarDT ) may impact the construct

and conclusion validity of our experiments. However, comparing the test-suite gen-

erated by SAT-TAR with the SAT-based implementation of DT, aids in rightly at-

tributing the differences in the results to purely algorithmic differences, without

being impacted by the back-end technology. The number of test cases used for

techniques TarRand and SAT differ from SAT-TAR. However, they represent typ-

ical applications of these existing approaches in practise. Representatives of the

candidate programs may impact the external validity of the results.

4.5 Related Work

In this section we present a detailed discussion and comparison of our ap-

proach with other approaches that are closest to ours.
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Directed Test Generation for Effective Fault Localization (DT): Recent work

[8] presents a test-generation strategy specifically directed at localizing faults. This

approach is similar to SAT-TAR in its attempt to specifically build a suite that con-

tains tests that are similar to the initial failing test. However, we differ from this

technique in the following manner, which aids in producing better localization.

Firstly, DT employs concolic execution [94] to keep track of path-constraints

and generate test inputs covering new portions of code. The scalability of this ap-

proach has not been evaluated on data structure methods, wherein a repOk method

would have to be symbolically executed before every method invocation to gener-

ate valid inputs. Our approach represents both code and specifications in relational

logic which aids in the use of SAT for efficient generation of the test cases.

Secondly, the similarity score of a trace in the DT approach is based on the

number of conditionals it covers in common with the failure trace that have the same

truth value. On the other hand, our similarity metric compares the coverage of the

statements deemed suspicious by MUC analysis. The benefit of our metric is high-

lighted in in the comparison TarMUC vs TarDT (Table 4.5). In BST-branchErr, a

test case inserting a node into an empty list is the passing test case that is most ef-

fective in refining the precision of localization. The similarity score assigned to this

test using our metric which is based on the coverage of the suspicious statements is

higher than the score assigned to it using the counterpart technique, which is solely

based on the truth values of the path conditions covered. Hence this test case is not

included in the suite for TarDT .

Thirdly, the counterpart approach is used to generate a pre-determined set of
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tests upfront before the localization phase begins. The advantage of the feedback-

based improvement of test-generation strategy (employed in SAT-TAR) is high-

lighted in the localization of the JTopas faults. When the input file (Input1 in List-

ing 4.3) is parsed, the assertion on the first property (Section 4.4) fails, despite the

fact that the token author following the ’@’ sign is a keyword. The first set of

test inputs generated, comprised of different types of tokens (separator, space, etc.)

substituted before and after ’@author’, leading to a series of similar failing runs.

On detecting that even after processing 3 failing tests, the suspiciousness of the

statements in the suspect list did not change, the test generation strategy switched

to producing a run differing from the previous runs in its coverage of the suspicious

statements. A passing test case was produced shooting up the precision of localiza-

tion. The faulty statement in the test4Normal helper method which wrongly sets

the type of the author token as Normal instead of Keyword is assigned a rank

of 2. TarDT , on the other hand, ends up generating series of 5 similar failing tests

shooting up the rank to 29.

Correctness Oracle based augmentation of Tarantula’s ratings: Artzi et al.

present an effective localization approach for web applications [9], that is related

to ours in terms of augmenting the ratings of Tarantula based on an oracle for cor-

rectness. However, this technique is very specific to errors in PHP applications

generating HTML pages. Also, only statements for which Tarantula assigns a rat-

ing greater than 0.5 are augmented, which is not very effective for typical errors in

data structure methods wherein both passing and failing runs cover the erroneous

statements. It is not explicitly shown if multiple error cases are handled effectively
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by the technique. The paper presents a novel condition modeling approach to catch

omitted branch statements. We envisage the use of MUC based analysis for the

same purpose. For instance, if the update to size were omitted in the list exam-

ple, the violated size-ok constraint would indicate that the size field was possibly

wrongly updated or not updated at all. Analyzing the code statements that the MUC

contains, would likely show the omission error.
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Chapter 5

SAT based Program Repair

.

This chapter is based on our paper, ”Specification-based program repair us-

ing SAT”, published at the 17th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS 2011) [45]. Dr. Malik and

Dr. Khurshid were the co-authors on this paper. Dr. Malik helped me with the ex-

periments and Dr. Khurshid provided useful insights to improve the approach and

refined many sections of the paper.

5.1 Summary

Our key insight is to transform a faulty program into a nondeterministic pro-

gram and use SAT to prune the nondeterminism in the ensuing program to transform

it into a correct program with respect to the given specification. The key novelty of

our work is the support for rich behavioral specifications, which precisely specify

expected behavior, e.g., the delete method of a binary search tree only removes

the given key from the input tree and does not introduce spurious keys into the tree,

as well as preserves acyclicity of the tree and the other class invariants, and the use

of these specifications in pruning the state space for efficient generation of program
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statements.

We present a framework that embodies our approach and provides repair

of Java programs using specifications written in the Alloy specification language.

Given a fault revealing input, which yields an output structure that violates the post-

condition and a candidate list of faulty statements, we parameterize each statement

with variables that take a nondeterministic value from the domain of their respec-

tive types. A conjunction of the fixed pre-state, nondeterministic code, and post-

condition is solved using SAT to prune the nondeterminism. The solution generated

by SAT is abstracted to a list of program expressions, which are then iteratively fil-

tered using bounded verification.

5.2 Illustrative Overview

Let us consider our running example of the faulty delete method of a

singly linked list (Listing. 1.1). It uses two local pointers, prev and lst, to traverse

the list and bypass the relevant node by setting the next of prev to the next of

lst. Let us consider the post-condition specification (Figure 1.3), that checks that

the specified value has been removed from the list in addition to ensuring that the

invariants such as acyclicity of the list are maintained. In the faulty version, on

statement 5 prev.next is assigned to lst instead of lst.next.

A scope bounded verification technique such as Forge can statically verify

this method against the post-condition and produce a fault-revealing input that ex-

poses the fault (Figure 1.2). The pre-state is a linked list with two nodes (List0 is an

instance of a list from the LinkedList domain, N0 and N1 are instances from the
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Node domain). In the corresponding erroneous post-state, node N1 with element

value 2 is still present in the list since the next pointer ofN0 points toN1 rather than

null. Let us assume the presence of a fault localization technique which identifies

the statement prev.next = lst as being faulty.

Our aim is to correct this assignment such that for the given input in the

pre-state, there exists a path through the code that yields an output that satisfies

the post-condition. To accomplish this, we replace the operands of the assignment

operator with new variables which can take any value from the Node domain or

can be null. The statement would get altered to Vlhs.next = Vrhs, where Vlhs

and Vrhs are the newly introduced variables. We then use SAT to find a solution

for the conjunction of the new formula corresponding to the altered code and the

post-condition specification. The values of the relations in the pre-state are fixed

to correspond to the fault revealing input as follows, header =< List0, N0 >,

next =< N0, N1 >, prev =< N1, N0 >, elem = < N0, 1 >,< N1, 2 >. The

solver searches the bounded state-space of the failing execution for suitable val-

uations to the newly introduced variables, such that an output state is produced

that satisfies the post-condition for the given fixed pre-state. In our example, these

would be Vlhs = N0 and Vrhs = null.

These concrete state values are then abstracted to programming language

expressions. For instance, in the example, the value of the local variables before the

erroneous statement would be, lst = N1, prev = N0 and this = List0. The expres-

sions yielding the value for Vrhs = null would be prev.next.next, lst.next,

this.header.next.next. Similarly, a list of possible expressions can be arrived
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at for Vlhs = N0. Each of these expressions yields an altered program statement pro-

ducing correct output for the specific fault revealing input. The altered program is

then validated for all other inputs within a pre-defined scope using the bounded-

verification technique,Forge. This process filters out candidates that may work

for the specific input that revealed the fault but may not be generalizable enough

to work correctly on other inputs. In our example, Forge would throw a counter-

example on using the altered statement prev.next = this.header.next.next

since it would not work for lists having more than two nodes. When no counter-

example is thrown, it indicates that the altered statement works correctly on all

inputs within the scope and is considered correct repair of the fault. In this exam-

ple, prev.next = prev.next.next and prev.next = lst.next emerge as

the correct statements satisfying all inputs.

5.3 Framework Details

Fig. 5.1 gives an overview of our framework for program repair. We assume

the presence of a verification module indicating the presence of faults in the pro-

gram. In our implementation, we have employed bounded verification (Forge) to

generate the smallest fault revealing input (st) that satisfies the pre-condition of the

method and yields an output (s′t) that violates the post-condition. A trace, compris-

ing of the code statements in the path traversed for the given input, is also produced.

We also assume the presence of a fault localization scheme, which yields a mini-

mal list of possibly faulty statements. Please note that the technique works on the

Control Flow Graph representation of the program (CFG) and the relational model
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Figure 5.1: Overview of our repair framework.

view of the state.

Given a counter-example from the verification module and a list of suspi-

cious statements S1, . . . , Sm, the first step performed by the repair module is to

parameterize each of these statements. The operands in the statement are replaced

with non-deterministic variables. For instance, consider an assignment statement

of the form, x.{f1.f2. · · · .fn−1}.fn = y. The presence of a commission error lo-

cally in this statement indicates that either the source variable x, one or more of

the subsequently de-referenced fields f1, f2, . . . , fn−1 or the target variable y have

been specified wrongly. The altered statement would be Vlhs.fn = Vrhs, where Vlhs

and Vrhs can be null or can take any value from the domains A and B respectively,

if fn is a relation mapping type A to B. Similarly a branch statement such as x
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> y, would be altered to Vlhs > Vrhs and a variable update y = x to y = Vrhs.

A new set of variables would thus get defined for each statement in suspect list,

{V Si
lhs, V

Si
rhs},∀i ∈ {1, . . . ,m}.

New constraints for the code with the newly introduced variables are gen-

erated in the next step. The input is fixed to the fault revealing structure by bind-

ing the pre-state relations exactly to the values in st when supplying the formula

to the Kodkod engine. A formula made up of the conjunction of the fixed pre-

state, the formula for non-deterministic code and the post-condition, pre-state∧

code-constraints ∧ post-condition, is fed to the SAT solver. The solver looks

for suitable valuations to the new variables such that a valid trace through the code

is produced for the specified input (st) that yields an output (s′′t ) that satisfies the

post-condition. If V Si
lhs is a variable of type Node, then a possible solution could

bind it to any concrete state value in its domain, V Si
lhs = n,∀n ∈ {N0, . . . , Nscope−1}

(scope is the user-defined bound on the number of instances that the Node domain

can contain). Hence every new variable in every statement in the suspect list would

be bound to a concrete state value as follows, V Si
lhs = CSi

lhs, V
Si
rhs = CSi

rhs,∀i ∈

{1, . . . ,m}, where CSi
lhs and CSi

rhs are the state values at every statement.

The ensuing abstraction module attempts to map every concrete valuation

to local variables or expressions that contain that value at that particular program

point. The expressions are constructed by applying iterative field de-references to

local variables. We ensure that we do not run into loops by hitting the same object

repeatedly. Stating it formally, if for variable v, and fields f1, . . . , fk, v.f1. · · · .fk

evaluates to v, then for any expression e that evaluates to v, the generated expression
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will not take the form e.f1. · · · .fk.e′, rather it will take the form v.e′. Please note

that when a parameterized statement occurs inside a loop, there would be several

occurrences of it in the unrolled computation graph. Each occurrence could have

different state valuations, however, their abstractions should yield the same expres-

sion. Hence we only consider the last occurrence to perform the abstraction. A new

CFG is generated with the altered statements. In the event that no abstractions can

be produced for a particular concrete valuation, we invoke SAT again to check if

there are alternate correct valuations for the given input.

Please note that if SAT is unable to find suitable valuations that yield a satis-

fying solution for the given input or none of the valuations produced by SAT can be

abstracted, it indicates that the fault cannot be corrected by altering the statements

in the suspect list. The reason for this could either be that some statements had been

omitted in the original code or that the initial list of suspicious statements is inac-

curate. At this stage, manual inspection is required to determine the actual reason.

Omission errors could be corrected by the tool using ”templates” of the missing

statements inserted by the user at appropriate locations. In case of the suspect list

being incomplete, a feedback could be provided to the localization module to alter

the set of possibly faulty statements.

In the validation phase, we use scope bounded checking to systematically

ensure that all inputs covering the altered statements yield outputs satisfying the

post-condition. If a counter-example is detected, the new fault revealing input and

the corresponding trace, along with the altered CFG are fed back into the fault lo-

calization module. Based on the faults causing the new counter-example, an altered

78



or the same set of statements would get short-listed in the suspect list. The pro-

cess is repeated until no counter-example is detected in the validation phase. There

could be faults in the code not detected during the initial verification or during the

above mentioned validation process. These may be present in a portion of code not

covered by the traces of the previously detected faults. Hence as a final step, we

verify that the CFG is correct for all inputs covering the entire code. Thus, the repair

process iteratively corrects all faults in the code. In case, all the faulty statements

can be guaranteed to be present in the suspect list, the entire CFG can be checked

whenever an abstraction is generated. When a counter-example is detected, the sub-

sequent abstractions for the same set of statements could be systematically checked

until one that satisfies all inputs is produced.

5.3.1 Discussion of Correctness

In this section, we argue that the repair algorithm terminates, is accurate

(yields statements that are correct for all inputs within a given scope or bound)

and covers all types of commission errors. We start with a scenario with the most

number of assumptions and go down progressively relaxing the constraints for sub-

sequent scenarios. The basic assumptions are that the specifications are accurate

and that the faults are not present in the operator or constant values specified in a

statement. Omission errors can be identified but out of scope for automatic correc-

tion.

Scenario 1: Only commission errors, All code faults have been identified in the

initial verification, and the fault localization scheme produces the exact list of faulty
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statements.

We attempt to correct a statement by changing the values read or written

by it. In a statement of the form x.fn = y, we do not parameterize the field being

updated (fn). If fn had been specified wrongly instead of fn‘, then either the update

to fn‘ field should have been omitted or specified wrongly elsewhere. As indicated

earlier, automatic correction of omission errors are beyond the scope of this work.

In the latter case, the erroneous update to fn‘ should also be in the list of faulty

statements. The repair algorithm would correct the update to fn‘ as well as make

the erroneous update to fn a no-op.

Our algorithm can correct destructive updates to class fields, faulty updates

to local variables, and faulty branch conditions. We do not alter the operators or

constant values specified in the statement. We hypothesize that such errors can

typically be caught by the programmer during his initial unit testing phase itself,

whereas detection of errors relating to the state depends on the input being used.

This may get missed during manual review or testing and a bounded verification

technique which systematically checks for all possible input structures is adept in

detecting such errors. However, if by altering the placement of the operands, the

semantics of a wrongly specified operator can be made equivalent to the correct

operator, then we can correct such errors. For instance, if x < y has been wrongly

specified as x > y, the corrected statement would be y > x.

The abstraction phase ensures that the algorithm finds values in the state-

space that not just yield the correct output state, but are mappable to correct pro-

gram expressions. For instance, in a branch statement there could be a number of
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possible values for the operands that could yield the boolean outcome required to

direct the control flow in the right direction. However, only a particular combina-

tion would be mappable to the variables at that program point. Following from our

assumptions for this scenario that all the faulty statements are guaranteed to be in

the initial suspect list, the program variant that would work correctly for all inputs

should be in the list derived by analyzing the initial fault revealing input. Hence,

the repair process is guaranteed to terminate. The guarantee on the completeness

and correctness of the repaired program is the same as that provided by other spec-

ification based scope bounded verification techniques. The repaired statements are

correct with respect to the post-condition specifications for all inputs within the

highest scope used to validate the repaired program.

Scenario 2: Fault localization scheme produces a possibly faulty list. All the state-

ments in the list (correct and faulty) are parameterized. This weakens the code

constraints leading to a number of iterations of valuations and abstractions before

a repaired program satisfying all inputs could be found. We assume that a good

localization scheme would yield a minimal number of possibly faulty statements

hence the process should terminate in a reasonable amount of time and the repaired

program would not differ too much from the intended algorithm. In case, all the

statements in the suspect list are actually not faulty, SAT would not be able to gen-

erate a valuation which yields a correct output for the given input. This case is

identified and the user notified.

Scenario 3: There could be faults other than those revealed by the initial verifica-

tion. New faults could get revealed when an abstraction for the first fault is being
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validated. As explained earlier, the new input and the repaired CFG are fed back

into the localization module. If the first fault had not been corrected, the program

could fail again for the same fault in the subsequent validation phases. In order

to prevent exploration of expressions that had already been considered and inval-

idated previously for a particular fault, we maintain a list of already seen expres-

sions which are avoided in the subsequent abstraction phases.

5.4 Evaluation

This section presents two case studies on (i) Binary Search Tree insert

method and (ii) addChild method of the ANTLR application [86], described in

Section 4.4.1. Please refer Appendix B for the code snippets used in the evaluation.

5.4.1 Metrics

The efficiency of the technique was measured by the total time taken to

repair a program starting from the time a counter-example and suspect list of state-

ments were fed into the repair module. This included the time to correct all faults

(commission) in the code satisfying all inputs within the supplied scope. Since the

time taken by the SAT solver to systematically search for correct valuations and

validate repair suggestions is a major factor adding to the repair time, we also mea-

sured the number of calls to the SAT solver. The repaired statements were manually

verified for accuracy. They were considered to be correct if they were semantically

similar to the statements in the correct implementation of the respective algorithms.

Our repair technique is implemented on top of the Forge framework [33].
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Table 5.1: Case Study Results: P1 - BST.insert, P2 - ANTLR BaseTree.addChild.
Errors categorized into 3 scenarios described in section 5.4.2. The number of actually faulty and
correct statements in the suspect list of fault localization(FL) scheme are enumerated. Description
highlights the type of the faulty statements. Efficiency measured by Repair Time and number of
SAT Calls. Accuracy measured by (i) whether a fix was obtained, (ii) was the repaired statement
exactly same as in correct implementation. Every result is an average of 5 runs(rounded to nearest
whole number).

Name Scr# Error# FL Scheme Output Type of Stmts Repair # SAT Accuracy
# Faulty # Correct Time(secs) Calls

P1

1

1 1 0 Assign Stmt 3 2
√

, Same
2a 1 0 Branch stmt 34 114

√
, Diff

2b 1 0 Branch stmt 4 2
√

, Same
3a 1 0 Assign stmt 5 2

√
, Diff

3b 1 0 Assign stmt 5 4
√

, Same
4a 1 0 Branch stmt 12 96

√
, Diff

4b 1 0 Branch stmt 4 2
√

, Same
4c 1 0 Loop condition 1 2

√
, Same

5 2 0 Branch, Assign stmts 7 5
√

, Same
6 2 0 Assign stmts 5 3

√
, Same

2 7 1 2 Branch, Assign stmts 15 21
√

, Same
8 2 1 Branch, Assign stmts 6 2

√
, Same

9 1 1 Assign stmts 11 2
√

, Same
3 10 4 0 Branch, Assign stmts 6 8

√
, Same

11 2 0 Branch, Assign stmts 26 9
√

, Same
12 2 1 Branch, Assign stmts 33 14

√
, Same

13 2 1 Assign, Branch stmts 14 24
√

, Same
14 0 2 Omission error NA NA NA

P2 1 1 2 0 Assign Stmt 71 2
√

, Diff
2 2 2 2 Branch, Assign stmts 1 5

√
, Same
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The pre, post-conditions and CFG of the methods were encoded in the Forge Inter-

mediate Representation (FIR). Scope bounded verification using Forge was used to

automatically detect code faults. The suspect list of possibly faulty statements was

generated manually. The input scope and number of loop unrolls were manually

fixed to the maximum values required to produce repaired statements that would

be correct for all inputs irrespective of the bounds. MINISAT was the SAT solver

used. We ran the experiments on a system with 2.50GHz Core 2 Duo processor and

4.00GB RAM running Windows 7.

5.4.2 Results

Table 5.1 enlists the different types of errors seeded into the BST insert

and ANTLR addChild methods. Figures B.1a and B.1b show the code snippets

of the methods with the errors seeded. The errors have been categorized into 3

scenarios as described below.

Binary Search Tree insert:

Scenario 1: Only commission errors, All code faults identified in the initial verifi-

cation, suspect list contains the exact list of faulty statements.

In the first eight errors only one statement is faulty. In errors 1 and 3, the

fault lies in the operands of an assignment statement. Error 1 involves a wrong

update to the parent field causing a cycle in the output tree. The faults in the latter

case, assign wrong values to local variables x and y respectively. For instance,

in error 3a, the variable x is assigned to x.right instead of x.left if the input

value k < x.key inside the loop. This impacts the point at which the new node
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gets added thus breaking the constraints on the key field. The repaired statement

produced is x = y.left which is semantically similar to the expected expression,

since the variable y is always assigned to x before this statement executes. A bigger

scope and larger number of unrools are required to detect the the faults in error 3.

This increases the search space for the solver to find correct valuations resulting in

higher repair time.

Errors 2 and 4 involve faulty branch statements present outside and inside

a loop respectively. In Errors 2a and 4a, the comparison operator is wrong and

both the operands are parameterized as Vlhs > Vrhs. The search is on the integer

domain and passes through many iterations before resulting in valuations that pro-

duce an expression satisfying all inputs. The final expression is semantically same

as the correct implementation, with the operands interchanged (y.key > k vs k

< y.key). In errors 2b and 4b, the expression specified in the branch condition is

faulty. Hence only the variable in the expression is parameterized (k < Vrhs.key).

The search on the Node domain results in correctly repaired statements with lesser

number of SAT calls than a search on the bigger integer domain. In errors 5 and

6, combinations of branch and assignment statements are simultaneously faulty.

Since the number of newly introduced variables are higher, the repair times are

higher than the previous errors. Also, when there are more than one statements in

fault, combinations of abstractions and valuations corresponding to each statement,

need to be parsed to look for a solution satisfying all inputs.

Scenario 2: Fault localization scheme produces a possibly faulty list.

In this scenario, the suspect list also includes statements which are actually
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correct. For instance, in error 7, the fault lies in an assignment statement which

wrongly updates the parent of the inserted node similar to error 1, but the suspect

list also includes 2 branch statements before this statement. In this case, all the

operands of the 3 statements are parameterized leading to an increase in the search

space and hence the repair time. It can be observed that as the percentage of ac-

tually faulty statements increases, the number of SAT calls decreases. In error 9,

an assignment statement inside a loop wrongly updates a variable which is used by

a subsequent branch statement. Owing to the data dependency between the state-

ments, the number of possible combinations of correct valuations are less resulting

in just 2 SAT calls, however, the large size of the fault revealing input increases

the search time. The results were manually verified to ensure that the expressions

assigned to the actually correct statements in the final repaired program were the

same as before.

Scenario 3: There could be other faults than those revealed by the initial verifica-

tion.

Not all code faults may get detected in the initial verification stage. For

instance, in error 10, an input structure as small as an empty tree can expose the

fault in the branch statement. However, when the correction for this fault is vali-

dated using a higher scope, wrong updates to the parent and the right fields get

detected. The new fault-revealing input and the CFG corrected for the first fault

are fed back into the fault localization scheme and the process repeats until these

faults get corrected. When the entire program is checked again, a wrong update to

the left field of the inserted node gets detected. The process repeats as explained
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before until the last fault is corrected. This explains the 8 calls to SAT to correct this

error scenario. Owing to the small size of the fault revealing inputs, the suspect list

containing only the erroneous statements and the fact that in most runs, the first ab-

straction for every faulty statement happened to be the correct ones, the total repair

took only 5 seconds. However, correction of subsequent errors necessitated more

number of iterations leading to higher repair times, which got exacerbated when the

suspect list also included statements not in error.

In the last case (error 14), the statement to update the parent field is omit-

ted from the code, the localization scheme wrongly outputs the statements which

update the left and right fields as being possibly faulty. The repair module is

unable to find a valuation which produces a valid output for the fault revealing in-

put. It thus displays a message stating that it could possibly be an omission error or

the statements output by the localization scheme could be wrong.

ANTLR addChild:

The addChild method is much more complex than BST insert consisting

of calls to 4 other methods, nested branch structures and total source code LOC of

45 (including called methods). The first fault consists of a faulty increment to the

integer index of a loop. A local variable j is assigned the value of the integer index

i plus 1 inside the loop. After every iteration, i is assigned j + 1, erroneously

incrementing the index by 2 instead of 1. This fault requires an input of size 4 nodes

and 2 unrolls of the loop to get detected. The error can be corrected by assigning

i instead of i + 1 to j, or j to i after every iteration, or i + 1 to i (original

implementation). We assumed that the suspect list includes both the assignment
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statements. In the repaired version, i was assigned i + 1 after every iteration and

the assignment to j was not altered. The correction was performed in just 2 SAT

calls but consumed 71 seconds due to the large state space.

The second scenario simulates a case wherein both a branch statement check-

ing whether the current tree has any children or not and a statement updating the

parent field of the added child tree are faulty. These faults are detected with a

scope of 3 and unrolls 1. Two actually correct update statements are also included

in the suspect list. Our technique is able to repair all the statements in one second.

5.5 Discussion

As can be observed from the results of the evaluation, our repair technique

was successful in correcting faults in different types of statements and programming

constructs. The technique was able to correct up to 4 code faults for BST insert

within a worst case time of 33 seconds. The technique consumed a little more than

a minute (worst case) to correct faults in ANTLR addChild, highlighting its ability

to scale to code sizes in real world applications. Overall, we can infer that the repair

time is more impacted by the size of the fault revealing input rather than the number

of lines of source code. It has been empirically validated that faults in most data

structure programs can be detected using small scopes [7]. This is an indication that

our technique has the potential to be applicable for many real world programs using

data structures.

One of the shortcomings of the technique is that the accuracy of the re-

paired statements is very closely tied to the correctness and completeness of the
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post-condition constraints and the maximum value of scope used in the valida-

tion phase. For instance, in the second error scenario of ANTLR addChild (Fig-

ure B.1b), when the post-condition just checked the addition of a child tree, an

arbitrary expression yielding true was substituted in place of the erroneous branch

condition. Only when the specifications were strengthened to ensure that the child

had been inserted at the correct position in the children list of the current tree, was

an accurate branch condition obtained. Hence, the technique can be relied upon to

produce near accurate repair suggestions, which need to be manually verified by the

user. However, the user can either refine the constraints or the scope supplied to the

tool to refine the accuracy of the corrections.

Following points are avenues for improvements in the repair algorithm; Er-

roneous constant values in a statement could be corrected by parameterizing them

to find correct replacements but avoiding the abstraction step. Erroneous operators

in a statement could be handled with the help of user-provided templates of pos-

sibly correct operators, similar to the handling of omission errors as described in

Section 5.3. The number of iterations required to validate the abstractions for a

particular valuation can be decreased by always starting with those involving direct

use of local variables declared in the methods. Methods that manipulate input ob-

ject graphs often use local variables as pointers into the input graphs for traversing

them and accessing their desired components. Hence the probability of them being

the correct abstractions would increase.
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5.6 Related Work

We discuss two techniques most closely related to our work: program sketch-

ing using SAT [99] (Section 5.6.1) and program repair based on data structure re-

pair [78] (Section 5.6.2).

5.6.1 Program sketching using SAT

Program synthesis using sketching [99] employs SAT solvers to generate

parts of programs. The user gives partial programs that define the basic skeleton

of the code. A SAT solver completes the implementation details by generating ex-

pressions to fill the ”holes” of the partial program. A basic difference between our

work and program sketching is its intention. We are looking to perform repair or

modifications to statements identified as being faulty while sketching aims to com-

plete a given partial but fixed sketch of a program. An application of the sketching

idea in the repair domain would be to use SAT to directly search in the space of

program variants for one that would yield the correct output satisfying the spec-

ifications. Faults in data structure programs typically lead to an erroneous state

that is in close neighborhood of the corrupt structure. Hence a local search in

the state-space should yield a satisfying solution much faster than a technique that

exhaustively enumerates all possible program variants. Moreover, the faults in re-

cursive data structure implementations can be typically revealed using small sized

inputs. Hence the scope of the possible state-space variants at a point would be

lesser than the possible program variants.

To illustrate, consider our running example of the SLL delete method
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(Figure 1.1). The sketching process starts with a random input structure (Fig-

ure 1.2). Assume that the user specified the details for the entire delete method

except for the statement that updates prev.next. The user would then need to

specify a generator stating all possible program expressions that can occur at that

program point. Following the sketch language described in the synthesis paper, this

would be specified using generators as shown below,

#defineLHS = {prev.((next)?.(next)?)}

#defineRHS = {(header|lst|prev).(next)?.(next)?|null}

LHS = RHS;

The list of possible expressions with the LHS fixed to prev would be, prev

= header, prev = header.next, prev = header.next.next, prev =

lst, prev = lst.next, prev = lst.next.next, prev = prev, prev

= prev.next, prev = prev.next.next. Including the options of prev.next

and prev.next.next in LHS, the number of possible expressions at the program

point would double. Even for the small example with just 2 unknowns in 1 state-

ment, the number of possible expressions are many. As the program size and com-

plexity increases, the set of all possible program expressions that could be substi-

tuted at possibly faulty locations can become huge. In such cases, it would be faster

to look for a correct structure in the concrete state space. The number of expres-

sions mapping to the correct state value at a program point would be much lesser in

number. As explained in Section 5.2, the number of options for the example would

reduce to just three.
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The synthesis through sketching technique employs an iterative process of

validation and refinement (CEGIS) to filter out sketches that do not satisfy all in-

puts, similar to our validation phase. However since synthesis starts with a random

input which may have poor coverage, it would require higher number of iterations

to converge to a correct sketch. Since we start with the input that covers the faulty

statement, the iterations should converge to a correct abstraction faster. Further, if

the statements produced by fault localization can be guaranteed to be the only ones

faulty, the correct expression must be present in the list of abstractions for the first

input. Hence scanning this list would be faster than having to feedback every new

counter-example into the system.

5.6.2 Program repair using data structure repair

On-the-fly repair of erroneous data structures is starting to gain more at-

tention in the research community. Juzi [38] is a tool which performs symbolic

execution of the class invariant to determine values for fields that would yield a

structurally correct program state. A recent paper [78] presents a technique on how

the repair actions on the state could be abstracted to program statements and thus

aid in repair of the program. The main drawback of this technique is that it focuses

on class invariants and does not handle the specification of a particular method.

Hence the repaired program would yield an output that satisfies the invariants but

may be fairly different from the intended behavior of the specific method. Further,

in cases where the reachability of some nodes in the structure gets broken, Juzi may

be unable to parse to the remaining nodes of the tree and hence fail to correct the
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structure. Error 4c (Figure B.1a) in the BST insert method, highlights such a sce-

nario wherein the loop condition used to parse into the tree structure being wrong,

the new node gets wrongly added as the root of the tree. Our technique looks for

a structure that satisfies the specific post-condition of method, which requires that

the nodes in the pre-state also be present in the output structure. Hence a correct

output tree structure gets produced.
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Chapter 6

Program Repair using Machine Learning

This chapter describes projects where we have applied techniques from ma-

chine learning to repair database programs (Section 6.1) and imperative programs

(Section 6.2).

6.1 Repair of database programs

This section describes our paper ”Data-Guided Repair of Selection State-

ments.”, published at the 36th International Conference on Software Engineering

(ICSE 2014 [43]. Dr. Saha, Dr. Chandra and Dr. Khurshid were the co-authors on

this paper. Dr. Chandra mentored me in developing the approach and wrote many

sections of the paper, while Dr. Saha helped me with the experiments and also for-

malized the algorithm. Dr. Khurshid provided useful insights and contributed to

the writing of the paper.

6.1.1 Summary

A majority of enterprise software systems are database-centric programs.

Defects in such programs, specifically in database manipulating statements, are ex-

pensive to fix and can require much human effort in understanding the interplay
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1 SELECT CstId Price Year from OrderTab INTO
itab

2
3 SORT itab by CstId
4 DEL from itab where Year <= 2009 and Price > 5

5 LOOP AT itab INTO wa
6 AT NEW CstId
7 amount=0
8 ENDAT
9 amount = amount + wa .Price

10 AT END CstId
11 WRITE wa .CstId amount
12 ENDAT
13 ENDLOOP

Figure 6.1: A sample ABAP code segment.

between traditional imperative code and database-centric logic. Automated tools to

help diagnose these defects, and furthermore, to assist with fixing them can make

a substantial reduction in the cost of developing and maintaining database-centric

programs.

6.1.2 Illustrative Overview

Our specific focus is on SAP ERP systems, in which database-centric pro-

gramming is carried out in a proprietary language called ABAP. ABAP contains

SQL-like commands, but it mixes imperative code and SQL’s declarative syntax.

We introduce the essential constructs of ABAP that are relevant for this paper using

a small example (Figure 6.1).

The meaning of this ABAP code segment is straightforward. At line 1, it

reads all rows from a database called OrderTab into an internal table called itab. The

SORT statement sorts this internal table by CstId, which is the key. The DEL statement

at line 4 removes from itab those rows that match the condition described in the
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statement. The LOOP at line 5 iterates over itab. When it encounters a new CstId—

that is when AT NEW at line 6 is true— it resets an accumulator called amount, and it

prints the accumulated amount when the last record of that CstId has been visited;

this is done when AT END on line 10 is true. (AT NEW and AT END help with key-wise

aggregation akin to the SQL GROUP-BY construct.)

Suppose the program in Figure 6.1 is run on the database in Table 6.1. The

rows marked ‘+’ are retained in itab after the DEL statement. The output of the

program is, which unfortunately differs from the expect output, also shown:

ID Amount Expected Amount
1 51 51
2 25 32
3 7 7

The bug arises from an error in the condition of the DEL statement, which

causes the first row for CstId 2 to be incorrectly deleted (shown by a bold ‘-’).

We can think of the DEL statement as a (equivalent) SELECT statement:

SELECT * FROM itab WHERE Year > 2009 OR Price <= 5. We call such a defect a selec-

tion bug, because the bug is due to an incorrect WHERE condition in a SELECT

statement. The problem is to find an alternate WHERE condition for the faulty

SELECT statement (whose location is assumed to be known), so that the entire

output, corresponding to each of the keys, is correct.

Table 6.1: A sample input to program in Figure 6.1. The last column with ‘+’/‘-’ is
not a part of the input table.

CstId Price Year
1 20 2012 +
1 16 2011 +
1 12 2001 -
1 10 2002 -
1 15 2011 +
Continued on right . . .

CstId Price Year
2 7 2005 -
2 13 2007 -
2 15 2010 +
2 10 2011 +
3 4 2012 +
3 3 2009 +
3 9 2001 -
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Selection bugs are common in ABAP programs. In fact, many database

statements in ABAP programs allow a selection condition, and therefore, are vul-

nerable to a selection bug. For example, the ABAP READ and DELETE ADJACENT state-

ments can be modeled as selection statements. Based on our experience working

with practitioners in IBM Global Business Services, about 25% of the ABAP code

level defects have to do with selection. Such bugs typically do not reveal themselves

while testing with limited set of data that is available in the test environment. The

production environment has a lot more data and therefore exposes the corner cases

that do not show up while testing. Moreover, the lack of an automated test-case

generation tool for this framework is another reason why such bugs are not discov-

ered while testing. Therefore, techniques that can help in fixing defective selection

statements are of much value.

Note that in our setting of debugging ABAP programs, the process starts

with the end user of this software filing a bug report, citing a deviation of the actual

output from the expected output on given input data. Thus, the expected output of

the program is already known to the programmer (or the maintainer). As we shall

see, the challenge here is in determining the correct behavior of the defective SE-

LECT statement from the expected output of the entire program, and in determining

an alternate WHERE condition for the selection that would match the correct be-

havior.

An obvious technique to generate a correct selection condition would be to

explore the space of syntactic mutations of the buggy condition. Because of the

possible presence of data values in the clauses that constitute the conditions, the
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search space for a mutation-based technique is immense. The size of the mutation

search space for our suite of benchmarks is reported in Section 6.1.4. This makes

the technique very inefficient for real use. In comparison, our approach, presented

next, sidesteps the drawbacks of a mutation-based approach.

A Data-Driven Approach: An Overview

Our key observation is that in real-world data, there is information latent in

the distribution of data that can be useful to repair the WHERE condition efficiently.

Syntactic search completely ignores this latent information. In this work, we show

that it is possible to find a good repair suggestion efficiently if we took advantage

of this information.

In our approach, we first discover the correct behavior of the selection state-

ment on the failure causing input data, and then find an alternate selection statement

that exhibits the correct behavior. Our approach leverages the distribution of input

data in both of these phases.

A defective selection statement assigns incorrect + or - labels to some of

the rows of the input; for example, some of the rows for CstId 2 do not have the

correct labels. To discover the correct behavior of the defective selection statement,

we need to search through all possible assignments of labels to rows that have pos-

sible incorrect labels. Our technique carries out this search efficiently by taking

advantage of the distribution of data.

Since part of the output is correct, we can assume that the rows that con-

tributed to that part are labeled correctly; the remaining rows are possibly misla-
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Figure 6.2: Distribution of data in Table 6.1

beled. Our premise is that a possibly mislabeled row that is geometrically close to

a correctly-labeled row is likely to require the same label. Obviously, this notion

of proximity is not guaranteed to produce the correct labels, but they can serve as

a very good starting point from which to carry out the search for the right label-

ing. This is exactly what we do: use a labeling computed on the basis of geometric

proximity, but fix it up based on local search around that labeling.

In Figure 6.2, data of passing keys in Table 6.1 is shown with diamonds for

positively labeled data and squares for negatively labeled data. For rows belonging

to CstId 2, whose labels as generated by the WHERE condition are suspect, data is

shown with a triangle (unlabeled). Assuming that points that are spatially close are
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likely to be labeled similarly, an assignment of a positive label to the two unlabeled

points on the right can be done with relatively high confidence. The two unlabeled

data points in the middle of the chart could go either way, so an assignment of a

negative label to the two points in the middle can be done only with low confidence.

Table 6.2 shows a sample assignment of predicted labels to the failing rows. We

generated these predications using an implementation of support vector machines

(SVM [13, 103]). Informally, SVM creates separating lines A, B, and their center–

C–as its best effort on how to separate positively and negatively labeled data. In

this particular example, the line D would have be the perfect separator; so, the two

points that are close to separator C are predicted incorrectly.

The incorrect lower-confidence predictions can be fixed up by a combinato-

rial search for labels, until we obtain correct labels for all the rows (correctness val-

idated by the final output matching the expected output). We carry out this search

iteratively, starting with the row with the least confident prediction. In realistic

problem sizes, this strategy, which takes advantage of data distribution, is signifi-

cantly more efficient than combinatorial search on all the rows.

Once we have the correct labels for all the rows, the problem reduces to

that of finding a function (a classifier) that attaches correct + or - labels to rows

depending on the contents of the row. As mentioned before, it is difficult to find such

Table 6.2: Predicted label assignment for the failing rows
CstId Price Year Predicted Label Correct Label Confidence

2 7 2005 - + 0.3
2 13 2007 + - 0.2
2 15 2010 + + 0.9
2 10 2011 + + 0.9
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a function by looking for syntactic variations on the existing WHERE condition.

In general, a vast number of different functions could produce the correct labels

for a given set of rows. Not all of these would be close to the one intended by

the programmer, because they may be overfitted to the data, in the sense that those

functions may not label as-yet-unseen data correctly. A common heuristic is to look

for a compact function, because it is more likely to be generalizable, and therefore

(presumably) correct.

We use the distribution of data to guide the search for a compact function

using a well-known technique known as decision-tree learning. This technique per-

forms a greedy search over a space of functions, being guided by the distribution of

data and the label for each row of data. The way this greedy search works is to first

identify a predicate that classifies most of the data correctly, and then iteratively

identify additional predicates as required to classify the residual data.

In the running example, first it would realize that partitioning the rows of the

table on the basis of Year ≤ 2008 gives the maximum, though not perfect, efficacy

in terms of clubbing the + and - labeled rows in distinct partitions. See Figure 6.3(a),

which shows the result of splitting on the basis of Year ≤ 2008; again, squares are

negatively labeled points and diamonds are positively labeled points, and the data

is for the correct labels on all rows of Table 6.1. An alternate split, say on the basis

of Price ≤ 10, shown in Fig 6.3(b) is less effective in clubbing the + and - labeled

data in distinct partitions. The ID3 decision-tree learning algorithm [82] captures

this intuition using the concept of information entropy and automatically chooses

the most advantageous splitting predicate.
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Figure 6.3: Splitting the data points on the basis of alternative conditions

In the partition for which Year ≤ 2008, the maximum efficacy is obtained

by further partitioning on the basis of Price ≤ 8, at which point, all positives are

perfectly separated from the negatives. In the partition for which Year > 2008,

all rows are positive regardless of the price. This decision tree is (written as con-

junctions of clauses on paths from root to +ve leaf nodes, and disjunction over such

paths): Year > 2008 ∨ (Year ≤ 2008 ∧ Price ≤ 8). By DeMorgan’s laws, this

simplifies to the following condition: Year > 2008 ∨ Price ≤ 8 Comparing this to

the previous incorrect WHERE condition, we see that while the learned WHERE

clause for Year is slightly but gratuitously different, for Price it is crucially different.

Our technique manages to find “natural” conditions that a programmer would

have written, and therefore ends up offering useful repair suggestions. We attribute

this desirable property to our data-guided approach. A WHERE condition that a

programmer writes is intended to classify regions of data uniformly, as opposed to

cherry picking points in the data space and classifying them individually by some

102



1 Repair (s , Out , CorrectOut , key fields ,
Trace )

2
3 / / initialize
4 find FKeys , PKeys , sFKeys , sPKeys
5
6 / / step 1 : predict labels for failing key

rows
7
8 projPrediction , inputPrediction , Map ,

prodTbl =
9 predict (sFKeys , sPKeys , sIn , sOut , s )

10
11 / / step 2 : Correct l a b e l computation
12 sCorrectOutSet = l a b e l (s , Trace , sFKeys ,
13 projPrediction )
14
15 / / step 3 : WHERE condition generation
16 generate conditions (sCorrectOutSet ,
17 prodTbl ,Map ,inputPrediction )

Figure 6.4: Algorithm: Generating repair suggestions for selection statement

complex conditional logic. This is the reason that predictions based on spatial prox-

imity work well, and also the reason that the heuristic of finding a compact decision

tree works.

6.1.3 Algorithm Details

In this section we describe the repair algorithm in detail. As shown in Fig-

ure 6.4, the algorithm has three major steps: 1) exploit the distribution of data to

predict the selection result for the input rows of the faulty selection statement, 2)

verify the predictions and if required determine the selection result using combi-

natorial search for the parts where the predictions are incorrect, and 3) generate

correct conditions using decision-tree learning algorithm.

We illustrate the steps of the algorithm using an example shown in Fig-

ure 6.5. The example is a slight variation of the example presented in Section 6.1.2
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1SELECT CstId Price Year
2from Order , Material

into itab
3where Item = ItemId
4 and Year > 2009
5LOOP AT itab INTO wa
6 AT NEW CstId
7 amount=0
8 ENDAT
9 amount = amount + wa .

Price
10 AT END CstId
11 WRITE wa .CstId amount
12 END−AT
13ENDLOOP

Program Output
(Out)

CstId Total
2 5
3 32

Correct Program Output
(CorrectOut)

CstId Total
1 10
2 19
3 32

SELECT Statement Input (sIn)
Order

CstId Item
1 i1
1 i2
2 i3
2 i4
2 i5
2 i6
3 i7
3 i8
3 i9
3 i10
3 i11

Material
ItemId Year Price

i1 2009 10
i2 2002 6
i3 2012 5
i4 2005 7
i5 2006 7
i6 2007 14
i7 2011 20
i8 2012 12
i9 2001 9
i10 2001 12
i11 2002 10

Stmt. Output (sOut)
CstId Price Year

2 5 2012
3 20 2011
3 12 2012

Correct Stmt. Output
(sCorrectOut)

CstId Price Year
1 10 2009
2 5 2012
2 14 2007
3 20 2011
3 12 2012

Figure 6.5: An ABAP program and data; s is the SELECT statement

to illustrate some salient features of the algorithm. The SELECT statement (shown

in Lines 1-4) is the faulty statement. Below are the entities used in the algorithm:

• Trace: the execution trace which produces incorrect output.

• s: the trace occurrence of the faulty statement

• sIn, sOut: the set of input tables and current output of s

• Out: incorrect program output

• CorrectOut: expected correct program output

• sCorrectOut: a correct output of s which can produce

CorrectOut
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1 predict (sFKeys ,sPKeys ,sIn ,sOut ,s )
2 svm in = empty
3 prodTbl = empty [s .t . empty X t=t ]
4 for each t ∈ sIn , prodTbl = prodTbl X t
5
6 / / creating classification for prediction
7 for each r ∈ prodTbl
8 r class = 0 if r .key ∈ sFKeys
9 r class = +1 if r .key ∈ sPKeys ,

selection (r ,s )
10 r class = −1 if r .key ∈ sPKeys , !

selection (r ,s )
11 svm in .add(<r ,r class>)
12
13 / / l a b e l input rows
14 Set<r ,r predict> in prediction = SVM (svm

in )
15 where r predict is a real number
16
17 / / l a b e l projected rows (for Joined Table

in Input )
18 for each r ∈ prodTbl st . r .key ∈ sFKeys
19 projected row = projection (r ,s )
20 Map (projected row ) .add (r )
21 for each projectedRow p in Map .keySet
22 predict (p ) =Max (in prediction (r ) ) |r ∈

Map (p )
23 return predict , in prediction , Map ,

prodTbl

Figure 6.6: Algorithm: Prediction

• key fields: a set of fields which uniquely identifies each row of Out

The Out, CorrectOut, sIn, sOut, sCorrectOut for the example are shown in Fig-

ure 6.5.

In the domain of data-centric programs, each row in the output is identified

by a set of field-value pairs, called key. The algorithm compares the current program

output (Out) and the expected output (CorrectOut) to determine a set of failing keys

(FKeys) and passing keys (PKeys) for the program output. A passing key is a set of

key field-value pairs which identifies identical rows in Out and CorrectOut. A failing

key is a set of key field-value pairs which identifies a row which exists in Out but not
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in CorrectOut or vice versa or identifies a row in Out and a row in CorrectOut which

differ in at-least one non-key field value. In the example, CstId=3 is the passing key,

whereas CstId=1 and CstId=2 are the failing keys. Note that, CstId=1 corresponds to a

missing row in the output.

All the input rows in s (obtained using the cartesian product of all tables in

sIn), that directly or indirectly affect the failing rows (incorrect/missing/unwanted)

in the program output are considered as failing input rows and the rest are consid-

ered as passing input rows. Such classification is performed based on a key-based

dependency analysis between the passing and failing keys in the output of the pro-

gram and the input rows in s. The set of passing and failing keys for s are denoted

as sPKeys and sFKeys. In the example, rows corresponding to 〈CstId,1〉 and 〈CstId,2〉

are sFKey rows, and those corresponding to 〈CstId,3〉 are sPKey rows. As described

in Section 6.1.2, the prediction algorithm predicts the selection result for the rows

corresponding to sFKeys using the selection result for the sPKey rows.

Prediction of correct output of s The Function predict in Figure 6.6 first creates

the input (prodTbl) by performing the Cartesian product of all input tables (in the ex-

ample, Material and Order), then assigns label 0 (signifying rows whose values are

to be predicted) to the input rows corresponding to sFKeys. The existing selection

clause behaves (either selects or deselects) correctly for the sPKey rows. Each pass-

ing row in the input is thus classified as +1 if the row has been selected, and -1 if the

row has not been selected, denoting known and correct classification (Lines 7-11).

This forms the input to an SVM, which assigns to each input row with label 0, a
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1 l a b e l (s , Trace , sFKeys , prediction )
2 model = code2model (Trace ,s )
3 sCorrectOutSet = empty
4 for each sFKey ∈ sFKeys
5 threshold = 0
6 while (true )
7 l a b e l = empty
8 for each p ∈ prediction .KeySet
9 s .t . p .key=sFKey

10 predValue = prediction .get (p )
11 if |predValue|> threshold
12 l a b e l (p ) =true if predValue >

0
13 l a b e l (p ) =false if predValue

< 0
14 keyCorrectOutSet = SAT ( l a b e l ∧

Model
15 ∧ CorrectOut )
16 if keyCorrectOutSet is Empty
17 threshold = threshold +
18 ParamThresholdIncrement

19 if (threshold > maximum
confidence value )

20 return failure
21 else
22 continue
23 else
24 break
25 sCorrectOutSet = sCorrectOutSet X

keyCorrectOutSet
26
27 Add passing key data to each selection in

sCorrectOutSet
28 return sCorrectOutSet

Figure 6.7: Algorithm: Labeling for failing keys

signed value called prediction (Line 14). The sign (called label) indicates whether

the input row has been predicted to be selected (positive value) or not selected (neg-

ative value). The unsigned prediction value denotes the confidence associated with

the prediction. In the example, the prodTbl contains 121 rows, 22 of them are for

CstId=1 and 44 rows are for CstId=2, which are marked 0. The remaining 55 rows

for CstId=3 are labeled +1 (22 rows) or -1 (33 rows).

Note that a SELECT statement first performs a selection of the rows in
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prodTbl, followed by a projection to generate the output of s (projected rows). The

set of input rows which correspond to a projected row, is called the block of the

projected row. A projected row is in the output of s, if at-least one input row from

its block is selected. SVM is employed to predict the outcome of the selection of

the input rows. Our algorithm uses this to determine the prediction for the pro-

jected rows (Lines 18-22). The likelihood of a projected row being present in the

output of s, is determined by the maximum likelihood of selection of the input rows

in its block. The algorithm determines the prediction of the projected row as the

maximum prediction (signed value) of all the rows in its block.

In the example, there are 121 rows in the prodTbl, which project to 33 rows,

11 rows per key. The predictions for the projected rows of CstId=1 and CstId=2, are

shown above.
CstId=1, projected rows

CstId Price Year Pred.
1 10 2009 +0.8
1 6 2002 -0.4
1 5 2012 -1
1 7 2005 -1
1 7 2006 -1
1 14 2007 -1
1 20 2011 -1
1 12 2012 -1
1 9 2001 -1
1 12 2001 -1
1 10 2002 -1

CstId=2, projected rows
CstId Price Year Pred.

2 10 2009 -1
2 6 2002 -1
2 5 2012 +1
2 7 2005 -0.1
2 7 2006 +0.1
2 14 2007 +0.2
2 20 2011 -1
2 12 2012 -1
2 9 2001 -1
2 12 2001 -1
2 10 2002 -1

The salient features of this step are summarized here:

• Determining passing and failing input rows and exploiting the data-distribution

to predict selection results of the failing input rows.

• Mapping prediction values from input rows to the projected rows based on

the maximum likelihood of selection.
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Determining Correct Output of s The next step is to use these signed values to

determine the part of sCorrectOut corresponding to the failing keys. The algorithm,

described in Figure 6.7, tries to determine this per failing key (Line 4), for a reason

described later. First, the output of s is created strictly as per the predicted labeling.

The label is determined by the sign of prediction, which if positive denotes that the

row is to be selected to the output, and not selected (label = false) if negative. If this

does not yield the CorrectOut, then the projected rows corresponding to the sFkeys

are gradually unlabeled. The decision whether a row would be unlabeled is done

based the confidence of its prediction. A parameter threshold is used to gradually

un-label low confidence projected rows. A projected row having confidence value

above this threshold is labeled. Note that, the algorithm starts with threshold value

zero to make all the projected rows labeled. In the running example, for CstId=1, the

prediction selects only one row with Price=10 (corresponding to item i1), whereas

for CstId=2, it selects 3 rows with Price values 5 (i3), 7 (i5), and 14 (i6).

Next, we discuss how we verify whether the labeling based on predictions

yields sCorrectOut and if not, how we use combinatorial search to label the rows

whose predictions are relaxed based on the threshold adjustment.

If s contains a selection bug, then there exists a subset of its projected rows

that can produce the expected program output. There can be combinatorial number

of ways to create subsets of the projected rows. We employ a SAT solver to effi-

ciently search for subset/s that lead to the final program output matching CorrectOut.

The scalability of the search depends on the input table size, which is usually

large. To reduce space, we perform this search separately for every failing key.
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Further, as described earlier, we rely on the predicted labelings for rows whose

confidence is greater than threshold and perform combinatorial search only on the

remaining unlabeled rows.

The algorithm creates a model of the code which can execute after s as a first

order formula using Alloy (Line 2). The details of the translation is not provided

in this paper, but is available at [44]. A SAT solver (Line 15) is used to validate if

1 generate conditions (sCorrectOutSet ,prodTbl ,
Map ,inputPred )

2 ConditionSet = empty
3 for each sCorrectOut ∈ sCorrectOutSet
4 weight (sCorrectOut ) = average

prediction value
5 of sFKey rows in answer
6 rankedSet=sort sCorrectOutSet based on

weights
7 for each sCorrectOut ∈ rankedSet in

order
8 c = getCondition (prodTbl ,sCorrectOut ,
9 Map ,prediction )

10 ConditionSet .add (c )
11 if no more results required
12 return ConditionSet ;
13
14 getCondition (prodTbl ,sCorrectOut ,Map ,

predictedlabels )
15 for each projectedRow p ∈ Map .keySet
16 if p ∈ sCorrectOut
17 max pred = max .prediction of rows

in Map .get (p )
18 for each r ∈ Map .get (p )
19 r pred = predictedlabels .get (r )
20 class (r ) =+1 ,
21 if r pred = max pred
22 or |r pred|>threshold ,
23 r pred > 0
24 =−1,
25 if |r pred|>threshold ,
26 r pred < 0
27 else
28 for each r ∈ Map .get (p )
29 class (r ) = −1
30 return ID3(class )

Figure 6.8: Algorithm: Selection condition generation
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the predicted labeling yields the correct output for the respective sFkey, and if not,

perform combinatorial search to find such a labeling. It either returns no solution

or returns a set of correct selections per failing key.

The SAT solver may not yield any satisfying truth assignments to the un-

labeled projected rows for a failing key. This can be attributed to incorrect labels

for rows marked based on the predictions. In this case, the algorithm increases the

threshold to un-label some more low confident projected rows. Iteration based on

adjusting threshold increases the domain size for combinatorial search. However,

in our experiments we have seen that many iterations are seldom needed.

In the running example, SAT solver validates the prediction for CstId=1, but

fails for CstId=2 (yields total 26, expected 19). The low confidence projected rows

for CstId=2, corresponding to

ItemId=i4,i5,i6 are unlabeled. Combinatorial search in the second iteration yields

two satisfactory combinations for CstId=2 - (i3, i4, i5), and (i3, i6). Both of them

yield total Price value 19 as in CorrectOut.

Combining all solutions for failing keys (Line 26) and adding the passing

key selection (Line 27) the algorithm generates the following two sCorrectOuts.

CstId Price Year
1 10 2009
2 5 2012
2 14 2007
3 20 2011
3 12 2012

CstId Price Year
1 10 2009
2 5 2012
2 7 2005
2 7 2006
3 20 2011
3 12 2012

Note that, considering each failing key separately has another advantage

apart from reducing the search space. It avoids unnecessary un-labeling of rows

corresponding to keys for which the current labeling yields the correct output for
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the respective keys.

The salient features of this step are summarized below:

• An iterative algorithm to label fewer projected rows based on predictions, if

the current labeling does not yield sCorrectOut.

• Performing SAT-based combinatorial search on a per failing key basis, to

determine the set of correct outputs for s.

Selection condition generation The algorithm for selection condition genera-

tion is presented in Figure 6.8. The generation of selection condition is performed

using a home-grown implementation of the ID3 decision-tree learning algorithm

which learns a classifier that provides 100% accurate classification for the train-

ing data. The Function ID3 takes the selection result for the input rows to derive

a compact condition satisfying the selection. The algorithm first ranks the set of

correct outputs of s obtained in the previous step and calls the function getCondition

corresponding to each sCorrectOut in order of the ranking. (Lines 7-12).

The Function getCondition classifies each input row of s with +1 or -1 based

on the correct labeling for the projected rows. This is a reverse label mapping

of what is done in Function predict. If the projected row is not present in the

sCorrectOut, then all the input rows in its corresponding block should not be selected

(Line 28). If a projected row is in output then one or more corresponding input rows

can be selected. We mark the input row with the maximum prediction value as the

one to be selected. (Line 21). For each of the other rows in the block, we use the
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predicted label if its confidence is higher than the running threshold (Lines 23-26).

Lesser confidence rows are not fed to the decision-tree learner. Finally ID3 is called

with the classified input.

The conditions generated using this method are shown below:

• (Item = ItemId) and (Year > 2006)

• (Item = ItemId) and (Year > 2008 or Price = 7)

Note that the first condition is more preferable over the second as it is more

compact and not overfitted to a specific value, hence it has more chances of being

valid for unseen inputs. In general there can be many solutions given by combina-

torial search. Since generating all possible repair suggestions is time consuming,

our approach selects as input to the decision-tree learner the solution which has the

potential to generate a good selection condition. The algorithm first ranks the so-

lutions (Figure 6.8, Line 5) based on the average prediction value of the projected

rows present in the respective sCorrectOuts. In our example, for CstId=2, the weight

of the first solution, consisting of items i3, i6 is (1+.2)/2=0.6 whereas it is (+1+0.1-

0.1)/3=0.33 for the second solution corresponding to the selection i3, i4, i5. Based

on our heuristics, the first solution is preferred over the second as the first solution

has (i4) which is predicted to not be selected.

The basis of labeling input rows and ranking solutions is the same - it is pos-

sible to generate better quality condition by following the SVM prediction. There

could be multiple outputs to the SELECT statement that yield the expected output

of the program, however the where condition generated based on the labelings pre-

dicted by SVM is the most natural condition or closest to the ideal manual repair.
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Section 6.1.4 contains experimental validation of this observation.

The salient features of the final step are summarized below:

• Ranking multiple solutions returned by combinatorial search.

• Labeling input rows based on the correct labels for the projected rows.

• Using ID3 to generate compact selection conditions.

More subtle variations of the algorithm, such as handling of multiple occur-

rences of the faulty statement and variations in threshold adjustment, are available

in [44].

Pragmatics The application of SVMs to the problem at hand requires several

steps of data conditioning. The main issue is that SVMs prefer to view data as nu-

merical values for the purpose of distance computation. Relational database tables

seldom contain data in this form. We discuss the problems and our solutions.

Nominal Attributes The table could contain nominal attributes, which are com-

pared for equality, but not for order. For example, State (2-letter state abbreviation)

is a nominal attribute. For such data, we introduce fresh columns, one for each

distinct value of the nominal attribute that appears in tables. For State, we might

introduce boolean attributes such as State=AK to State=WY and hide the original

State attribute. At other times, data that looks like non-numeric data might need to

be treated numerically. For example, dates have to be mapped to a numeric interval.

Key Attributes Keys are usually nominal data in that value-based proximity of two

keys is not meaningful. Table joins created by Cartesian cross product of two tables
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contain distinct key attributes coming from each of the tables in the join. Since

it would require too many additional attributes to “de-nominalize” these key at-

tributes, we instead include an additional boolean attribute that denotes the equality

of these two keys (as it is common to have key equality comparison in SELECT

statements for a natural join.)

Scaling It is typical in the use of SVMs to scale data to a normalized [0.0,1.0] range

for each attribute. In case the range of data for a certain attribute is very large due

to a few outliers, care is needed to prevent lower values being scaled down to too

close to zero.

Selecting Relevant Attributes for ID3. The input tables of the buggy query typi-

cally have large number of attributes, many of which are irrelevant. We heuristically

perform the following selection of potentially relevant attributes: (1) all attributes

projected by the query (2) attributes that have been frequently used whenever this

table has been used earlier in the code(such as key attributes). (3) attributes having

the same data-type and overlapping values with the state variables at that execution

point.

Seeding Synthetic Attributes in ID3. Decision-tree based algorithms are only

equipped to learn clauses that compare attribute values with constants. However,

WHERE conditions can contain comparison of two attributes. We seed binary-

valued equality predicates between attributes as extra attributes into the learning

algorithm. These predicates are seeded based on domain knowledge, for instance,

attributes of the same data-type and having same range of values may be compared

to select records.
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Table 6.3: Summary of results. Times in Minutes (TO - 15mins)
Subjects # Passing # Failing Prediction Correct label computation Cond learning

input rows input rows Accuracy(%) time search space #itrs #soln. time useful?
Ex1 40129 10032 99.9 (10029) 4 6 3 1 2 Yes
Ex2 16641 30 36.6 (11) 2 22 + 217 2 32 10 Yes
Ex3 316 12 100 (12) 1 0 1 1 0.16 Yes
Ex4 274 58 25.8 (15) 3 258 30 1 0.03 No
Ex5 993 84 92.8 (78) 8 24 3 1 0.08 Yes
Ex6 90346 1816 99.8 (1814) 5 4 3 1 5 Yes
Ex7 13911 2 0 (0) 2 4 2 1 25 Yes

In the current state of our tool, each of the three modules of the algorithm are

automated except as follows; predict requires data-conditioning as described above,

label works based on a manual translation of the ABAP code-fragment to Forge

Intermediate Language following the pseudo-code in [44], and generate conditions

requires heuristic selection and seeding of attributes.

6.1.4 Evaluation

This section first presents a summary of the experimental results which is

subsequently explained using case studies of a select set of subject programs. Fi-

nally, it discusses relevant research questions and limitations of our approach.

We selected seven subject programs, which are fragments of ABAP code

from industrial applications running on real data sets. The criteria employed to se-

lect these subjects were: (1) cover different types of selection bugs commonly found

in bug reports (2) highlight the different characteristics and design decisions of the

repair algorithm. Our evaluation covers different types of statements such as SELECT

statements on single tables and JOINs of tables with buggy WHERE clauses, and DELETE

statements with buggy COMPARING clauses. The repair is applied on different types of
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faults such as missing field checks, incorrect data value used in the conditions, in-

correct/missing join conditions and also incorrect/missing range checks (equivalent

to two missing conditions). The subjects fit into different scenarios (Section 6.1.4.1)

highlighting the different features of our approach. The excerpts of real programs,

the buggy selection conditions, and their fixes are available at [44]. The bugs in

these programs are actual bugs that occurred in the past. In all cases we know the

manual fix to the bug.

Our implementation uses the Alloy 4.2 [58] tool-set (specifically, Forge,

Kodkod and miniSAT), SVM Light [62] in transductive learning mode, and a home-

grown implementation of the ID3 decision-tree learning algorithm. All experiments

were conducted in a 2.53Ghz CPU, 4GB RAM laptop running Ubuntu Linux.

The summary of our experimental results is shown in Table 6.3. For ev-

ery candidate, we recorded the number of rows in the input table corresponding

to the passing and failing keys, shown as #Passing input rows and #Failing input

rows respectively in Table 6.3. Column 4 highlights the prediction accuracy, i.e.

the % of failing rows for which the labels were predicted correctly. We also tabu-

late the total time for correct label computation (dominated by SAT solving times),

the combinatorial search space, the total number of threshold relaxation iterations,

and the number of sCorrectOuts generated. We also present the time to learn the

WHERE condition. Finally, we state whether the repair suggestion was useful or

not by comparing how close it was with the manual fix for the bug.
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6.1.4.1 Example Scenarios

We describe details of applying our approach to four subjects to highlight

some of its key characteristics and how it handles different types of faults.

Scenario 1: Repair without predictions. For simplicity, we start with Ex3, which

illustrates a case in which just the basic approach for repair (without the use of

predictions) can successfully produce a valid repair suggestion.

Consider the following buggy select statement in Ex3:
select ∗ from ekbe into table tab ekbe

where ( vgabe eq ’2 ’ or vgabe eq ’3 ’ )
/ / and ebeln in ebeln range Needed in the correct query

order by ebeln ebelp .

The where clause is essentially missing two predicates in the form of a

missing range-check predicate for the field ebeln. This error results in 12 unex-

pected rows in the output of the program.

Correct Label Computation. The incorrect rows in the program output correspond

to 12 failing rows in the input ekbe table. SAT quickly finds that none of these

records should get selected.

Although it is not required for this scenario, we did run SVM for predicting

the labels for the 12 failing rows. The predictions were 100% accurate, and all the

12 records were assigned negative prediction values. We ran SAT marking them as

dneg and the labeling was deemed satisfiable within a minute, i.e. not much savings

in time over the basic approach.

Decision-tree learning. The condition learned was as given below and was correct
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in not selecting exactly the 12 failing rows.

vgabe = ’2’and
ebeln <= 4500000229

The generation of a comparison on ebeln conveys to

the programmer that a bound check is missing. Indeed, the

source code defines the constant ebeln range as [ebeln low, ebeln high], but

the buggy query fails to use it.

The generated repair could not infer the lower bound on ebeln, nor it could

generate an additional condition on vgabe, because such conditions were not war-

ranted by this specific input data. Nonetheless, the repair suggestion is useful in

helping the programmer fix the problem. Our technique is intended to generate a

useful repair suggestion for the programmer, as opposed to a perfect replacement.

Scenario 2. SELECT with table joins. This scenario illustrates a case where

highly accurate prediction helps to significantly reduce the combinatorial search

space for labeling.

The program (Ex1) creates a sales order report by calculating order amount

and unbilled amount for each sales order. It first creates a table called p i vbrp using

the following query:
select vbeln posnr aubel aupos matnr netwr
from vbrp , p i vbap
into table p i vbrp
where aubel = p i vbap−vbeln
and aupos = p i vbap−posnr
/ / and netwr ¿ 0. Needed in the correct query

However, the missing netwr > 0 predicate from the WHERE condition causes

incorrect p i vbrp formation, shown below for the key aubel=102.
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Computed:
aubel aupos netwr
102 20 0.00
102 20 8000.00
102 30 0.00
102 30 11200.00

Expected:
aubel aupos netwr
102 20 8000.00
102 30 11200.00

The program logic after the SELECT statement reads the rows <102, 20, 0>

and <102, 30, 0> corresponding to two posnr values 20 and 30, instead of <102, 20,

8000> and <102, 30, 11200>, which it would have read from the correct version of the

table. This leads to the incorrect output for the failing key 102. Altogether there are

18 failing keys in this example.

Correct Label Computation.

There were 40129 passing input rows that were labeled as per their outcome

in the existing execution. 10032 failing input rows were unlabeled. SVM attached

a positive prediction to 19 unlabeled rows and a negative prediction to the remain-

ing. As noted in Table 6.3, in this case the prediction is highly accurate (99.9%),

leaving only 3 input rows incorrectly predicted. Each of these rows corresponds to

a distinct failing key. and happens to be the one with the maximum prediction value

in the block of the respective projected row. Thus for each of the 3 failing keys,

the projected row was incorrectly labeled. For each key, the iterative threshold

adjustment process was invoked until a correct solution was found. For example,

for key 146, initially both rows were marked negative (as shown below) leading to

unsatisfiability.

aubel aupos netwr pred
146 10 0 -0.9
146 10 30 -0.3

With a threshold of 0.4, the second row with confi-

dence less than 0.4 was assigned an unknown label (to be

determined by SAT), while the first row was given nega-
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tive label. The same was done with the other two failing key records. SAT assigned

positive labels to these rows leading to satisfiable solutions. In all, this process

completed in 4 minutes. Utilizing predictions produces a total search space of 3.21

= 6 for the SAT solver.

We also give an estimate of the combinatorial search space if predictions

had not been used at all. For each of the 18 failing keys, on average there are 3

projected rows, where each projected row maps to a block size of 227 input rows.

For each failing key, the state space for choosing the set of projected rows that

yield the correct output is 23. Each solution comprising of projected rows, needs

to be mapped to input rows of the joined table, before being fed to the ID3. The

state space for this would be 2273 in worst case, when the solution contains all

three projected rows. Thus the total search space, in worst case, to generate correct

condition without using any predictions would 18(23+2273). As explained earlier,

use of predictions helps reduce this space to just 6.

Decision-tree Learning. Decision-tree learning discovered the correct WHERE

condition:

aubel = p_i_vbap-vbeln and
aupos = p_i_vbap-posnr
and netwr > 6

Note that our approach was able to learn the join

condition. For each projected row, the input row that is

selected from the corresponding block, is critical in deter-

mining the correct join condition. We would like to highlight that for the given

data, the only input row in every block that satisfied the join condition, was the one

with maximum prediction value in that block. Hence the selection of any other row

from the block would have not lead to the discovery of the join condition. This
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adds evidence to the fact that our design decision of selecting the row with maxi-

mum prediction value, would result in producing high quality conditions close to

the ideal.

The constant discovered is 6 rather than 0, due to the distribution of the data.

But it is a good repair suggestion since it points out an important missing clause.

Scenario 3. Use of predictions to rank candidate solutions. This scenario high-

lights that our repair algorithm is not restricted only to select statements, and

further illustrates a case where predictions aid in reducing the space of candidate

solutions on which decision-tree learning has to be performed.

The buggy statement in this example (Ex2) is a DELETE statement, shown

below.
DELETE ADJACENT DUPLICATES FROM db tab

COMPARING kunnr matnr
/ / arktx Needed in the correct query

The DELETE ADJACENT DUPLICATES statement deletes a row from the

table that has same values in its immediately previous row for the fields specified in

COMPARING clause. This could be modeled as an equivalent select statement as

shown below.
select ∗ from db tab rc as db tab1 , db tab rc as db tab2
where db tab 1 .rc = db tab 2 .rc+1 and
db tab 1 .kunnr = db tab 2 .kunnr and
db tab 1 .matnr = db tab 2 .matnr and

/ / db tab 1 .arktx = db tab2 .arktx Needed in correct query

Where db tab rc has an extra column rc in addition to all the columns of

db tab. It contains the same records as db tab with the rc column populated with
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the row number. This statement selects rows that would need to be deleted by the

original statement. The code after the DELETE statement, in a nutshell, aggregates

the netwr amounts corresponding to every unique value in monat field of db tab.

The output report had incorrect amounts displayed for two monat values - Sep2008

and Oct2008 (2 failing keys).

Correct Label Computation. The db tab had 10 records with monat as Sep2008

and 20 records with Oct2008. Note that although the select is over a join and ev-

ery row of db tab rc maps to a block of rows in the joined table, we know upfront

the exact record that needs to be considered from every block. The only record that

can be selected in the block corresponding to every failing row of db tab is the

one where db tab1.rc = db tab2.rc+1 is satisfied (as this predicate should be

present in the correct version of the query). Hence the input state space for SAT

remains 10 and 20 respectively for the two failing keys and it becomes feasible to

apply the basic approach of label computation without predictions.

SAT is invoked separately on the records for the 2 failing keys to determine

the possible subsets of the records that would sum up to the respective expected

final amounts. There are 8 possible subsets for Sep2008 and 32 possible subsets

for Oct2008, leading to 256 possible correct labelings. It would be inefficient to

generate 256 possible where clauses. This is where predictions aid in heuristically

selecting the solution that is most likely to yield the ideal where clause. Note that

this displays a scenario wherein label predictions aid in reducing the state-space of

decision-tree generation even if the number of failing rows may be small enough

for SAT to process.
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Label Predictions-based solution ranking. There are only 80 positively labeled

passing key records compare to 12691 negatively labeled records in the joined ta-

ble. Hence the prediction accuracy in terms of the classification is low. However,

the confidence of the incorrectly predicted labels were lower than the correctly pre-

dicted ones. We used predication-value based ranking of the solutions to select the

desired solution for both for the two failing keys (comprising of 2 records and 17

records respectively).

Decision-tree Learning. The where clause learnt for the select statement was,

db_tab1.rc = db_tab2.rc + 1 and
db_tab1.kunnr = db_tab2.kunnr
and
db_tab1.arktx = db_tab2.arktx

As can be observed, the condition on

arktx that was missing in the incorrect version is

correctly discovered. However, the condition on

matnr is missing from the learned clause. This is because the matnr values are

equal for all adjacent records in which the other two conditions are also satisfied.

This makes the learned where clause correct for the given input set.

Scenario 4. Impact of incorrect selection on passing keys. Ex4 displays an inter-

esting scenario which violates our assumption about the correctness of erroneous

SELECT statement for the passing keys. The final output corresponding to passing

keys is still correct but the SELECT acts incorrectly on some of them.

The erroneous SELECT statement given below leads to the inclusion of 58

extra records for the failing keys in the actual output of the program, compared to
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the expected correct output.
select ebeln ebelp belnr buzei bewtp

budat matnr werks ernam
from ekbe into table it ekbe
where budat in s crdate

/ / AND vgabe = 1 Needed in the correct query

In this example, for the passing keys too, the erroneous SELECT statement

selected some extra rows, but subsequently they got deleted by a DELETE statement

in the program. Consequently, these passing keys yielded the correct final output

anyway.

Correct Label Computation. The incorrect labeling for 16 passing key records

where vgabe = 1 impacts the accuracy of predictions as seen from Table 6.3. Hence

the approach of using predictions to label records performs poorly. The algorithm

passes through 4 iterations of threshold adjustment and produces correct solution

only when all records are labeled based on SAT-based search.

Decision-tree Learning. The incorrect labeling of the passing key records impacts

the WHERE clause condition learned. The condition is quite different from the

one in the correct version of the code. It leads to the expected final output on this

data set, but this is not a useful repair suggestion.

6.1.4.2 Discussion

Based on our experimental evaluation we address the following key research

questions.

RQ1. Do the predictions based on the data distribution aid in finding the cor-
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rect output for the failing keys efficiently?

In all cases, prediction based labeling of rows helps in determining a correct output

state to the faulty statement within 8 minutes in the worst case.

The efficiency of our algorithm is attributed to high prediction accuracy

which effectively reduces the combinatorial search space, and further design deci-

sions such as: 1) an iterative threshold relaxation strategy which judiciously un-

labels incorrect predictions. The low number of iterations (in most cases) suggest

that there were only few incorrect predictions that needed to be labeled by SAT,

2) ranking of solutions based on predictions which saves the effort of generating

conditions corresponding to all the solutions.

As noted in Scenario 2 (Ex1), in the absence of predictions, in the worst

case, a combinatorial search based strategy has to explore huge search space to ar-

rive at useful solution. Even for subjects that do not involve joins predictions-based

labeling brings about significant reduction in search spaces: 87% reduction from a

total of 210 + 220 for Ex2, and almost 100% reduction from a total of 284 for Ex5.

RQ2. How useful are the repair suggestions?

The usefulness of the generated repair suggestions is summarized in the last column

of Table 6.3. Except for Ex4, the repair suggestions were close to manual (ideal)

fixes for the bugs. The reason for high quality of our repair suggestions can be

attributed to the labeling of failing-key data based on its proximity to passing-key

data which generates the conditions that classify regions of data uniformly, which

is typical of WHERE clauses. Even though theoretically it is possible to generate
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many sCorrectOuts which generate the expected correct output of the program, our

approach only generates few of them based on the prediction. This in turn generates

few good conditions which are close to the ideal fix.

For Ex6, we show below the manual fix and the condition generated by our

approach using a solution that respects the predicted labels. In this case p p werks is

a parameter to the program which had a value GBS1. As can be seen, this condition

is very close the ideal fix.

Ideal fix for Ex6:

vbeln = p_i_vbak-vbeln
and
werks = p_p_werks

Condition learned from a solution
based on predictions:

vbeln = p_i_vbak-vbeln and
werks = ’GBS1’

We also show few conditions generated from other solutions that yield CorrectOut

but do not use the predicted labels. Clearly such solutions are far away from the

ideal fix.
Conditions learned from other solutions

vbeln = p_i_vbak-vbeln
and
(werks = ’GBS1’ and
(vbeln <= 102.0 and
(waer = ’EUR’) or
(waer = ’USD’ and
(posnr <= 15.0))) or
(vbeln > 102.0))

vbeln = p_i_vbak-vbeln and
(werks = ’GBS1’ and
(vbeln <= 102.0 and
(netwr <= 3524.4) or
(netwr > 6336.4)) or
(vbeln > 102.0))

RQ3. Is syntactic mutation technique feasible for real data?

To check the feasibility of mutation-based repair, we consider a repair strategy

which checks if the WHERE condition could be corrected by either adding one

clause, removing one existing clause, or replacing an existing clause with a new

one. Clauses of the form Field Operator Field, Field Operator Constant and

Field Operator Variable are considered as mutants.
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Subjects Mutation
Repair

time space
Ex1 24.5 17663
Ex2 22 15860
Ex3 8.9 6434
Ex4 0.9 63
Ex5 56.1 40434
Ex6 25.4 18346
Ex7 200 147350

In almost all the cases the search space of the number

of mutants is very huge (in the order of 40,000) leading to

a blow-up in the worst-case exploration time (in the order

of 40 hours assuming an average of 5 seconds to execute

1 mutant). The main reason being the large number of distinct values that could

be compared in the clauses of the form Field Operator Constant. An algorithm that

does not consider clauses that involve constants would work much faster, however it

would be unsuccessful in discovering the correct WHERE condition for bugs such

as in Ex1, Ex3, and Ex7.

Limitations 1. Our technique assumes that the incorrect selection criteria works

correctly for keys that satisfy the final output correctness criteria. Violation of this

assumption (Ex4) impacts the quality of the predictions and the WHERE condition

learned.

2. Sufficient amount of diverse passing data is required to make the learning ef-

fective. For example, in Ex7, the failing rows were all erroneously predicted to

be negatively labeled. This is because majority of the rows corresponding to the

passing keys were negatively labeled; very few rows were positively labeled.

3. Attention must be paid to data conditioning, which currently uses heuristics

based tuning (described in Pragmatics in Section 6.1.3) to arrive at good label pre-

diction.

4. ID3 algorithm is designed to correctly label all training data. However, if the data
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in the current execution is not representative enough, then the WHERE condition

created may be overfitted to the data (Ex4). Techniques to avoid overfitting [82]

compromise the accurate labeling of training data. Finding the right balance for our

application is the subject of future work.

5. Our algorithm strives to generate the most compact classifier for the given data.

In some cases, this could exclude clauses that would be in general necessary, but

do not impact the outcome for the given data. To reiterate, our technique generates

useful repair suggestions and not necessarily plug-and-play repairs.

6.2 Repair of imperative programs

This section describes our paper ”Use of Learning to perform Intricate Cor-

rections to Faulty Branches.”, submitted to 30th International conference on Auto-

mated Software Engineering (ASE 2015).

6.2.1 Summary

We present a novel approach to correct bugs that impact the branching be-

havior of imperative programs. Our insight is that mining the data-spectra (i.e.,

distribution of data in the state space of passing and failing tests) can aid in quick

generation of a repaired branch condition that is heuristically close to an oracular

fix. We define an integrated approach to repair Java programs based on (1) semi-

supervised learning to predict expected behavior of failing tests based on similar

passing tests, (2) state-space exploration to rectify incorrect predictions, and (3) de-

cision tree learning to generate a classifier that represents the repaired condition.
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Our case studies demonstrate the ability of the approach to generate intricate re-

pairs accurately (including synthesis of omitted if statements and correcting loop

constructs).

6.2.2 Illustrative Overview

Debugging code is often a tedious and error-prone process. In recent years,

a number of research projects have introduced novel techniques to automate the

two key tasks in debugging: (1) identifying the faulty lines of code, termed fault

localization [87], [64], [48]; and modifying the faulty code to fix the faults, termed

program repair, which is the focus of our work. A number of program repair tech-

niques, e.g., those based on evolutionary algorithms [109], applying mutations to

suspicious statements [18], performing program code transformations [29], have

been demonstrated to hold potential. However, performing intricate repairs in-

volving the addition or omission of multiple lines of code or correcting incorrect

language constructs is still a challenge. Moreover, the large space of possible pro-

gram variants impedes the efficiency and scalability of mutation or search based

repair. Furthermore, the accuracy of the repair often is not generalizable beyond

the given test-suite [85] or requires the presence of precise formal behavioral spec-

ifications [46].

Our focus in this paper is to provide efficient and accurate repair for the class

of programs where the failure occurs due to wrong behavior of a branch. We employ

learning techniques to generate accurate repairs even on structurally complex data,

with the only oracle of correctness being the status of the tests. Conceptually, our
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approach has two steps: (1) determine the behavior/s for the branch such that final

outputs are correct; (2) synthesize a condition that represents a fix that generalizes

beyond the given tests.

public static boolean repOK (List list ) {
1 List .Node l = list .header ;
2 int cnt1 = 0 ;
3 boolean res = true ;
4 while (cnt1 < list .size ) {

/ / L is tERR1
5 if (l == l .next ) {
6 res=false ;
7 break ;}
8 l = l .next ;
9 cnt1++;}
10 if (res == false )
11 return res ;

/ / s i z e check
12 List .Node l1 = list .header ;
13 int size=0;
14 while (l1 != null ) {
15 size++;
16 l1 = l1 .next ;}
17 if (size != list .size )
18 res=false ;
19 return res ;}

Listing 6.1: List.repOK

Problem Context:

Consider the repOK method for a doubly linked list data structure (Listing

1). A doubly linked list (DLL) is a popular data-structure that is made up of nodes

connected to each other by a next pointer. The header of the list points to the first

node and the size field keeps count of the total number of nodes in the list. Each

node has a prev pointer that points to the node preceding. The repOK is a com-

monly used data-structure class method, which checks that the underlying structure

conforms to its structural integrity constraints. The code in Listing 1 checks if
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the list conforms to the acyclicity constraint (i.e. no node has its next field point-

ing back into the list) and that the size field correctly holds the number of nodes

reachable from the header. It returns true if both these constraints are satisfied and

false otherwise. There is a bug in the code on statement 5 which detects only self-

loops (l = l.next) as cycles, however, loops involving two or more nodes, such as

l = l.next.next, go undetected.

Test-suite 1 (Figure 6.9 is executed on this buggy code. It contains 9 tests,

each of which invokes the repOK on a doubly linked list input (some valid and some

invalid) and checks if the repOK returns true on valid inputs and false on the invalid

ones. Owing to the bug in the code, 3 of the tests fail which return true on invalid

inputs (having cycles other than self-loops).

Let us assume that the programmer is able to determine that the fault lies on

statement 5. Despite this knowledge, it is challenging to determine what the correct

condition should be. The functionality of detecting a loop in a DLL is considerably

complex and the correction is non-trivial which cannot be generated using simple

mutations. The space of possible program variants is large. For instance, the num-

ber of possible de-references of the next or prev fields on any variable could be

as big as the number of nodes on the heap. Further, the only oracle of correctness

being the final program output, the program needs to be executed to validate each

possible variant. This makes applying search-based repair approaches expensive.

The method also does not mutate the underlying structure and has a boolean return

value. Hence, the output does not give any indication as to why the failure occurred.

Mining the data-spectra:

132



F1 F2
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Test-Suite 2: T1 replaces P1

T1

Test-Suite 1

Figure 6.9: Test-Suites.

Our approach targets failures due to faulty branch behavior. The key idea is

that there is information latent in the data-spectra of tests (distribution of data in the

state space of passing and failing executions), which could be utilized to guide the

generation of the correct branch condition.

The first step is to determine the correct behavior of the branch such that the

failing tests pass. This has specific significance in cases where the faulty branch is

invoked more than once in a single execution. For instance, in the above example,

the faulty branch lies within a loop and hence there are multiple occurrences of the

branch in a single failing test execution. One or more of these occurrences could

have displayed faulty behavior leading to the wrong final output. There are multiple

paths through the branch that need to be explored to discover the path/s leading to

133



Table 6.4: SVM input
Test l SVM input

cnt1 l l.next l.next l.prev l.prev l.next l.prev l=l.next
6= null .next 6= null 6= null .prev 6= null.next 6= null 6= null 6= null

F3
N0 0 1 1 1 0 0 1 0 0
N1 1 1 1 1 1 0 1 1 0
N2 2 1 1 1 1 1 1 1 0

P4 N0 0 1 1 1 0 0 1 0 0
N1 1 1 1 1 1 0 1 1 1
l l= l=l. l=l. l=l. l=l. cnt1= cnt1≤ l= label

l.prevnext.next prev.prev next.prev prev.next list.size list.sizelist.header

F3
N0 0 0 0 1 0 0 1 1 0
N1 0 1 0 1 1 0 1 0 0
N2 0 1 0 0 1 0 1 0 0

P4 N0 0 0 0 1 1 0 1 1 -1
N1 0 1 0 0 0 0 1 0 +1

the correct output. Our insight is that considering that branch conditions usually

behave uniformly for sets of similar inputs, we could localize the faulty branch

occurrences based on the behavior of the branch on similar passing test executions.

This localization would not only reduce the search space for path exploration but

also help choose the path closest to ideal behavior of the program. Hence, we

employ semi-supervised learning enabled by support vector machine, SVM [13], to

utilize the spectra of the passing tests to predict the behavior of the branch on the

failing tests.

Applying this idea to our example, we intend to obtain the correct behavior

for statement 5 on the failing test inputs based on its behavior for the passing test

inputs. We build the SVM input by creating one row for every execution of the

impacted branch (every occurrence) for both failing and passing tests. Each row

is assigned a class label that represents the output of the branch on that input. For

passing tests, the output produced by the occurrences of the branch during the ac-

tual execution is used (1 for true, -1 for false). For failing tests, the class labels

are unknown (0). SVM looks for a classifer (a hyperplane) that distinguishes the
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Table 6.5: ListERR1 SVM predictions
Test cnt1 l l.next Predictions Label

Test-Suite 1
F1 0 N0 N1 -0.8701 -1

1 N1 N0 0.7077 +1
F2 0 N0 N1 -1.1623 -1

1 N1 N2 -0.3441 -1
2 N2 N0 1 +1

F3 0 N0 N1 -1.1623 -1
1 N1 N2 -0.0519 -1
2 N2 N1 1 +1

Test-Suite 2
F1 0 N0 N1 -0.9999 -1

1 N1 N0 -0.3762 -1
F2 0 N0 N1 -1.4646 -1

1 N1 N2 -0.8820 -1
2 N2 N0 -0.0259 -1

positively labeled rows from the negatively labeled ones, in terms of the attributes

or features of the input rows. It uses this classifier to predict the class labels for

the failing tests or the behavior of the branch for the failing tests. Table 6.4 shows

a sample of the SVM input for the above example. The features comprise of the

variables visible at the program point before the branch statement (l, cnt1). Please

refer Section 6.2.3 for more details on selection and generation of the features.

The predictions generated by SVM are shown in the Table 6.5. We label the

failing test rows based on the sign of their respective predictions. For the above ex-

ample, SVM prediction based labeling assigned 1(true) to those rows where l.next

pointed back into the list and -1(false) otherwise. Re-running the failing tests again

with the branch condition being forced to behave as labeled for each iteration, we

find that all tests pass. Note, however, that in order to make the failing test pass, it

would suffice if the condition on statement 5 evaluated to true on some iteration of

the while loop. However, similarity based prediction correctly identifies the points

where cycles are actually present in the list and thus the correct iteration for which
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the branch condition needs to return true. This adds proof to our hypothesis that the

correct intended behavior for the failing tests can be guessed based on the behavior

of similar passing tests.

Once the correct behavior of the impacted branch has been determined, the

next step is to alter the condition such that the expected behavior is produced for

both failing and passing tests. The search space for the correct expression can be

huge and is proportional to the number of variables and reachable heap states at

that program point. Also, for non-pointer variables the number of possible com-

parisons with absolute values can be huge. Further, we need an expression that is

not just correct for the given set of tests but is generalizable. Our second insight

is to employ data-mining techniques to efficiently generate compact conditions that

would be accurate on unseen inputs as well. Decision-tree based classifier learning

algorithms, generate classifiers in the form of disjunction of predicates in terms of

the features of the input data. The algorithm utilizes the data coverage of a clause

to guide the generation of a compact classifier that distinguishes the positive labels

from the negative. The most compact classifier can be considered to be the most

generalizable and hence would be a useful repair suggestion.

Applying the ID3 algorithm [82] to our example, we obtain the following

classifier for label 1 or the condition that makes the branch of statement 5 to evaluate

to true, (l = l.next)||((l.next! = null)&&(l! = l.next.prev)). This condition

correctly describes the intended behavior of branch 5 or is the specification for

correct behavior at that program point. It can be applied to detect cycles on unseen

inputs as well (provided there prev field values are correct). The decision tree
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Figure 6.10: Block Diagram.

could be easily translated to an equivalent if-else-if condition in the code, as shown

in Listing 2.

Note that this repair involves the generation of a new else branch with an if

condition. This would be non-trivial to generate using any other repair technique

using mutations or even genetic programming.
if (l == l .next ) {

res=false ;
break ;}

else
if ( (l .next != null ) &&

(l != l .next .prev ) ) {
res = false ;
break ;}

Listing 6.2: ListERR1 repair
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6.2.3 Algorithm Details

The block diagram of our algorithm is shown in Figure 6.10. The inputs to

the technique along with our assumptions about the problem space are listed below,

• A program with a bug. We assume that the only impact of the fault is on a

single branch statement.

• The impacted branch statement. We assume that a mechanism to localize the

fault accurately is available.

• A test suite with failing and passing tests, with the assumption that the im-

pacted branch statement has some passing test coverage.

The algorithm comprises of three main modules; i) Ideal behavior predic-

tion for the failing tests based on the passing tests, enabled by SVM (Section 6.2.3),

ii) Correct behavior computation, which validates the predicted behavior and if in-

valid, searches for the correct behavior using JPF (Section 6.2.3), iii) Generation of

the correct branch statement, accomplished by decision-tree learning(Section 6.2.3).

Ideal Behavior Prediction:

This module takes as input, a set of rows corresponding to the failing and

passing tests (F1:{< r0, 0 >, ..., < rn, 0 >},... Ff :{< r0, 0 >, ..., < rn, 0 >}

and P1:{< r0, l0 >, ..., < rn, ln >}, ..., Pp:{< r0, 0 >, ..., < rn, 0 >}), f and p

are the number of failing and passing tests respectively. The row ri corresponds

to the state at the program point before the ith occurrence of the impacted branch

statement in the test case execution. Each row has a label associated with it, which
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corresponds to the behavior of the faulty branch statement on the respective input

state. For passing tests, the label li is based on the actual behavior of ith occurrence

in the execution, while for failing tests, the labels are 0 or unknown and need to be

predicted. Each row is characterized by feature variables.

Feature selection: Support Vector Machines (SVM [13]) generate a classifier that

distinguishes positively labeled data-points from the negative ones based on the

geometric distance between their respective feature values. The failing test rows

that are closer to the passing rows in geometric space are predicted to have the

same label. When applied to the behavior of a branch statement, this classifier can

be considered equivalent to the branch condition. Hence the features need to be

variables and/or clauses that could impact the behavior of the branch. They need

to be useful and relevant in comparing the state of failing and passing executions at

that program point.

The variables of interest (relevant or base variables) are determined by short

listing those that get defined and/or updated within two edges of the faulty branch

statement in the control flow graph. We also consider de-referencing of variables

on every field contained in their respective types. Similarly, the addition operation

is applied amongst integer variables. User input is also taken (optionally) to refine

the relevant variables list, based on his knowledge of the code. For instance, the

user could filter out cnt1 from being relevant for our example.

Branch conditions usually do not comprise of clauses that use absolute val-

ues for pointer variables (such as l). Hence, we include comparison of pointer

variables with null and with other variables of the same type. Pointer variables
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may have different values for different tests but they may be similar with regards to

the comparison clauses. On the other hand, for integer variables like cnt1, the abso-

lute values held by these variables can impact the behavior of the branch and hence

these variables are directly fed in as features. For integer variables, we generate =

and <= comparison clauses with every other integer variable. Global variables and

data-structure fields such as header and size may not be in the relevant variables

list but are used in the RHS of the comparison clauses. We heuristically assume that

the comparison clauses would definitely involve the stack variables, so the LHS is

always set to the base variable which are on the stack. For instance, we do not

include clauses that compare one de-referenced pointer with another.

It is tricky to determine the number of times to de-reference pointers. On

the one hand, the functionality may require considering the structure of the heap

beyond the current state on the stack. For instance, in the case of the example,

l = l.next.next needs to be detected as a loop. Without this comparison clause

as a feature, a failing row where l! = any other node in the list and a row where

l! = l.next but l = l.next.nextwould be considered equally dissimilar with a pass-

ing row where l = l.next. Inclusion of the feature l = l.next.next, would decrease

the geometric distance between the passing row and the latter failing row, thereby

increasing its similarity. This would enable SVM to predict the latter failing row to

have a positive label with higher confidence. On the other hand, when the function-

ality does not require a global view, inclusion of many de-references may give rise

to irrelevant features which may in turn impact the accuracy of the predictions. The

default is set to the size of the biggest test input. The user may (optionally) fix this
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number explicitly based on his knowledge of the functionality.

Semi-supervised learning using SVM: SVMLight [62] is employed to generate

the predictions for the failing test rows (Table 6.5). The sign of the prediction

represents the label and the absolute value of the prediction is the confidence of

prediction.

Correct behavior computation:

This module validates if the predicted behavior for the faulty branch occur-

rences yields the correct final output and if not, employs JPF to search for path/s

that produce the correct result. Correct behavior computation is done individually

for every failing test. The code is instrumented such that the faulty branch behaves

as per the predicted labels and the test is executed again. For the list example, for

all the failing tests, the predicted labels yield the correct output. For instance for

F1, in the second iteration of the while loop when l = N1, N1.next points to N0,

and so the prediction that the condition to detect the loop should evaluate to true is

correct.

Incorrect Predictions: Let us consider the same example with a different test-suite

where test case P1 is a three node list without loops (Test-suite2 in Figure 6.9). In

this case, for tests F1 and F2, all the rows are predicted to have negative labels

(Table 6.5). This implies the condition does not detect loops in any iteration and

so these 2 tests fail. Although the passing test coverage is the same as before,

the diversity of passing behavior is not good and hence the predictions are skewed

in the direction of the negative labels. In such cases, we take guidance from the
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confidence values to guess which of the predictions may be wrong. The prediction

with the lowest confidence value for F1 is for the 2nd iteration (0.3762) and for F2

it is the 3rd iteration (0.0259). The predicted labels are relaxed on these rows and

the respective tests executed again with JPF being used to non-deterministically

generate the output (true and false) for the branch in the respective iterations. The

paths generated by each of the labels is explored to determine if the final output

yields the correct result. Both F1 and F2 pass when the branch evaluates to true in

the 2nd and 3rd iterations respectively. Hence the labels for these rows are marked

+1.

In case, the correct output cannot be obtained even after relaxing the labels

on the lowest confidence rows, the algorithm looks for the prediction with the next

lowest confidence value and sets it as a new confidence threshold for label relax-

ation. This process of iterative relaxation of labels and JPF based exploration of the

possible paths continues until the test passes.

Multiple solutions: There could be situations where the JPF detects more than one

paths making a test pass. For instance, let us assume that the predictions generated

using test-suite 2 were the same for both the iterations for F1 (-0.3762). With the

confidence threshold set to 0.3762, the labels on both these iterations would get

relaxed, which would lead to two possible labelings that make the test pass (-1,-

1,+1) and (-1,+1,NA) for the the three iterations respectively. Both these solutions

are considered equally probable and passed on to the subsequent module.

Please note the following points about the execution of a branch based on

labeling or non-deterministic choice.

142



1. Forcing a particular occurrence of a branch statement to behave as per a label

or a non-deterministic choice may invalidate other occurrences which were

part of the original failing execution. For instance, if the branch in our ex-

ample (which is within a loop) is forced to evaluate to true in an iteration,

the occurrences for subsequent iterations (if any) would not be applicable.

Similarly, occurrences with input states not encountered in the original exe-

cution may also appear. For any such new input, the behavior is determined

non-deterministically.

2. The branch may be executed on the same input state more than once. We set

a time-out limit to prevent infinite loops.

3. The branch may behave differently for the same input, when the behavior is

determined non-deterministically. As a post-processing step, we invalidate

such solutions.

As mentioned earlier, the validation of predictions and JPF based path ex-

ploration is done separately for each failing test. Once a test passes, the updated

set of rows and correct labels are fed back into the SVM-based learning module.

For tests, where the JPF-based path exploration time or the number of possible so-

lutions exceed a threshold limit, predictions are regenerated based on the updated

SVM input. The new predictions are likely to be more accurate and aid in reducing

the search space.

Generation of the correct branch condition.
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This module takes as input the set of rows corresponding to all the tests

in the suite and the respective labels that make them pass, (P1:{< r0, l0 >, ..., <

rn, ln >}, ..., Pn:{< r0, l0 >, ..., < rn, l0 >}). Note that li is assigned a value 1 for

a positive label and 0 for a negative label.

Decision-tree learning: We apply a home-grown implementation of the ID3 decision-

tree learning algorithm [82] to generate a classifier that generates the labels. The

ID3 algorithm repeatedly splits the input rows into smaller groups by performing a

test on an attribute such that each group maximally contains labels of one particular

type. This is continued until all groups contain labels of only one particular type.

This process builds a a decision-tree and the disjunction of paths (attribute tests)

corresponding to the groups of one particular type form the classifier for that type.

This classifier is in the form of disjunction of conjunctions of clauses which is the

syntax of branch conditions in imperative programs.

In order to generate a compact decision-tree and classifier, at each level, the

algorithm chooses the attribute test which provides the maximum information gain

or reduction in entropy to perform the split. The resultant classifier is the smallest

or the most compact rule that classifies the respective input correctly according to

the labels. A compact classifier is usually generalizable and could be considered

closest to the ideal oracular fix.

Attribute selection: The features used for SVM based learning are fed as attributes

to the decision-tree learning algorithm as well. Conditions involving local pointer

variables usually do not involve more than 1 field de-references. However, this may

be required for the repair depending on the type of the error. For instance, a faulty
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branch behavior within a loop, could lead to an accumulation of faulty state in such

a way that more than 1 de-references may be required to obtain the correct state.

Avoiding Overfitted classifiers: Note that our implementation of ID3 does not

perform any pruning and has a zero error threshold. This is because we want to

produce a classifier that is 100% accurate for the tests which act as the training

data, so that they pass. In order to avoid over-fitting of the classifier to the tests and

ensure that it is generalizable, we make the following amendments to the algorithm

based on heuristics.

1. When more than one attributes have the same entropy, we rank them such

that attributes which involve clauses with lesser number of field de-references

are given more priority than others. The rationale being that more compact

expressions tend to be more globally valid.

2. Despite the first amendment, classifiers with considerably large number of

clauses and field de-references may be produced. This may be the require-

ment of the repair or this could be over-fitting. Over-fitting may happen be-

cause the paths, represented by the failing and passing rows and labels, may

produce the correct result for the test-suite but may not be the ideal paths.

In order to avert this, as a post-processing step the algorithm attempts to re-

move clauses with expressions having more than a threshold number of de-

references. This may invalidate the labels on certain rows. JPF is invoked

again to determine if the new labels can generate alternate paths that produce

correct outputs. If so, then learning is invoked again using the new labels to
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determine if a more compact decision-tree can be learnt. This is referred to

as Heuristic refinement of labels in Figure 6.10.

3. Over-fitting could also lead to classifiers that are shorter than ideal, i.e. it may

miss some clauses that are redundant for the given test-suite but need to be

included for global validity. As another post-processing step, the algorithm

checks if any of the clauses already present in the original condition is redun-

dant for the inputs in the presence of the learnt classifier. Such clauses are

appended to the classifier thus reducing the distance between the original and

the repaired condition.

Multiple labelings: When there are multiple possible labellings or multiple solu-

tions produced by the previous module for failing tests, sets of inputs are generated

, each comprising of a particular combination of solutions for the different failing

test merged with the set of passing rows. The classifiers generated for all the input

sets are ranked based in the ascending order of compactness (# of clauses and # of

field de-references). The repair suggestions are presented to the user in the ranking

order.

Other errors impacting branch behavior:

Variable update errors: Our algorithm can also handle erroneous variable

updates that may impact the behavior of a branch. However, we require the faulty

statement to be accurately localized. Further, the erroneous update should only

impact the behavior of a branch such that path exploration based on that branch’s

behavior can produce the correct final output.
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We retain the variable as a feature during SVM prediction, despite its update

being erroneous. The rationale being that since the branch does work for passing

tests, failing tests having similar value for the variable could be assumed to have

correct behavior. However, we also include as features, the variables that the update

is a function of, and the possible operations that could be used in the function.

Dissimilarity introduced by these variables would help differentiate or isolate the

defect-inducing rows of the failing test. We also retain the impacted variable in

the decision-tree learning phase since we want to have minimal changes from the

original condition (which uses the variable).

The condition learnt by applying our algorithm is equivalent to a specifica-

tion of correctness at that program point. Any specification based repair or synthesis

technique may then be applied to obtain the correct repair for the variable update.

Loop construct errors: Our algorithm can identify and repair erroneous

while constructs which should ideally have been if conditions (while-to-if ). In the

process of heuristic refinement of labels, our algorithm makes a special check when

the impacted branch is a while construct. If no alternate paths can be detected based

on the new labels, the algorithm checks if the correct output can be obtained by not

considering any of the rows with invalidated labels (i.e. JPF would not explore

any paths for those states). If this is possible, it generates a classifier based on

this reduced set and considers it as the condition for an if statement instead of the

original while construct.

It is difficult to correct the bug if it is the other way around if-to-while. The

reason being that this would involve force executing the branch on new inputs, by
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Table 6.6: Faults
Fault# Fault Generated Repair(GR) Oracular Fix(OF) GR ≡ OF

ListERR1 if (l == l.next){ ... } if (l == l.next){ ... } same as repair Y
else if ((l.next != null)

&& (l != l.next.prev)){ ... }

ListERR2 while(cnt2 < size) while((cnt2 <= size) same as repair Y
&& (p != null))

ListERR3 p = l.next p = l.next ... p = p.next Y
if(l == p){ ... }

else if((l.next != null)
&& (l != p.prev)){ ... }

RBTERR1 while((p != null) while((p != null) same as repair Y
&& (p.left == null)) && (ch == p.right))

RBTERR2 while(p != null) while((p != null) while((p != null) N
&& (ch != p.right)) && (ch == p.left))

RBTERR3 ch = e.parent.right ch = e.parent.right ... ch = e Y
if ( e == p.right )

RBTERR4 if (e.right != null) if (e.right != null) same as repair* Y
&& (e.left != null)

BSTERR1 while((x != null) if((x != null) same as repair* Y
&& (k < x.key)) && (k < x.key))

transferring control back to the program point before the branch statement. JPF,

an explicit state model checker, cannot execute an if condition as a while loop.

However, it can be made to ignore paths corresponding to certain iterations of a

while loop, which enables us to handle while-to-if repairs.

6.2.4 Evaluation

The aim of our evaluation was to determine the efficacy of our approach to

correct different types of faults that impact the behavior of a branch in a program.

We also propose to address the following research questions,
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RQ1: How effectively can the correct behavior of failing tests be predicted based

on the behavior of similar passing tests?

RQ2: How accurate is the repair generated by decision-tree learning?

Subjects: We chose three data-structure programs to evaluate our approach. These

programs have non-trivial functionality making it challenging to correct bugs man-

ually or using other mutation or search based techniques, specifically in the absence

of correctness specifications. Further, they mostly handle heap-allocated structures

and hence number of reachable states at any program point is considerably large.

The program functionality is mostly recursive in nature. Hence the faulty branch

usually has high coverage, however the bug manifests itself only on some occur-

rences. It is challenging to make a repair that not only fixes the code for given tests

but is generalizable and close to an ideal oracular fix. These characteristics may

these subjects ideal candidates for the evaluation of our learning based approach.

• List.repOK: This is a commonly used method which checks if the underly-

ing doubly linked list (DLL) structure complies to its invariants (acyclicity

and size check). We consider two different versions of this method (repOK

(Listing 1) and repOKmod (Listing 3).

• BST.insert: Binary Search Tree(BST) is a popular data-structure used in

search algorithms. The structure is fairly complex, with each node having at

most two children (left and right) and pointer to its parent. The class invari-

ants are; acyclicity of pointer fields, uniqueness of key, and search constraints

(key of every node is larger than the keys in its left sub-tree and smaller than
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the keys in the right sub-tree). The code for the insert method is shown in

Listing 5.

• java.util.TreeMap.containsValue(Object): Java.utils is a very commonly

used library. The TreeMap class has a Red-Black Tree implementation, which

is one of the most complex data-structures in terms of the invariant con-

straints. The containsValue method returns true if the map maps one or more

keys to the input value.

Faults: We manually seeded faults into the subject methods (Listings 3,4,5). As can

be seen, we simulated both omission and commission errors, incorrect and/or miss-

ing clauses, fault in operators and loop constructs, and faulty variable updates. Only

one of the faults were present in the code at a time (For instance, ListERR2 and Lis-

tERR3 were not simultaneously present in List.repOKmod). We ran our algorithm

for every fault in each subject individually. We used randomly generated test-suites;

List.repOK(8 tests), List.repOKmod(9 tests), TreeMap.containsValue(11 tests), and

BST.insert(8 tests) respectively.

Our implementation uses SVM Light [62] in transductive learning mode,

Java Path Finder model checker version 6.0, and a home-grown implementation

of the ID3 decision-tree learning algorithm. All experiments were conducted in a

2.53Ghz CPU, 4GB RAM laptop running Windows 7.0.

Table 6.7 shows the statistics for the SVM predictions-based labeling and

correct behavior generation modules. Passing test coverage shows the % of SVM

input rows that belonged to the passing tests.

150



Table 6.7: Results
Fault# Passing test Predictions based Reduction in JPF

coverage(%) labeling search space(%)

Recall(%) Accuracy(%)

ListERR1 53(9/17) 100 100 100

ListERR2 41(18/43) 84(21/25) 47(10/21) 46.7

ListERR3 53(17/32) 100(6/6) 100(6/6) 100

RBTERR1 60(12/20) 53(8/15) 87.5(7/8) 91.6

RBTERR2 18.5(5/27) 60(12/20) 41.6(5/12) 3.6

RBTERR3 40(13/32) 42(8/19) 62.5(5/8) 94.2

RBTERR4 45(14/31) 100(7/7) 57(4/7) 81

BSTERR1 68.4(13/19) 50(4/8) 50(2/4) 25

Metrics: We evaluated the following metrics for the application of our algorithm

on each fault.

Recall(%): This metric calculates the percentage of rows in the correct solution,

that were also part of the original execution.

Recall = #ri s.t. ri in
f∑
1

({rin0, ..., rinnin}∩{ro0, ..., ronop})/
f∑
1

#{ro0, ..., ronop},

where in represents the rows in the SVM input, o represent the rows present in the

actual solution and nin, nop represent the respective set sizes. Let us term these

rows and their respective predictions relevant.

Prediction Accuracy(%): This metric determines how many of the relevant pre-

dictions were accurate or assigned the correct label to the respective rows. Accu-
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racy = #rrelevanti s.t. (sign of pi) = li) / #{rrelevanti , ..., rrelevantn }, where pi, li are the

predictions and labels for the ith relevant row respectively.

Reduction in search space(%): In the absence of any predictions, we could solely

use JPF based path exploration to determine path/s that produce the correct solution.

The search space in such a case would in the worst case be 2b, where b represents

the number of occurrences of the faulty branch. With the help of predictions, we

fix the behavior of the branch on certain inputs and hence reduce the space of paths

to be explored. This metric measures the % reduction as #(b − bpred)/#b, where

#bpred represents the number of branch occurrences for which the predicted label

produces the correct behavior.

Table 6.6 shows the repairs generated by our approach for each fault (GR).

Oracular fix represents the original statement in the code which is considered the

ideal repair (OF). We tabulate if GR is syntactically same as OF and also if GR ≡

OF. The latter indicates behavioral or semantic equivalence for all inputs.

Case Studies:

We first describe the application of our approach on specific examples to

highlight the design decisions and intricacies of our algorithm.

Scenario 1: Near accurate predictions and ideal repair: This scenario highlights

the ability of our algorithm to efficiently generate an accurate repair for a branch

condition with an incorrect clause in a while condition (RBTERR1 in Listing 4).

The TreeMap.containsValue method (Listing 4) parses the tree (using the

variable e) by starting from the first entry which is the leftmost child of the root.
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Subsequently, while e! = null, its value is compared with the input. If a match is

found, true is returned. If not, the successor is determined, which is the left most

child of e.right. If e.right is null, then the tree is parsed upwards until e is not the

right child of its parent, at which point the variable e is set to its parent’s value and

the comparison with input is made again. This process continues until e == null

and false is returned if a match has not been found until then. RBTERR1 corrupts

the parsing logic when e.right == null. It is non-trivial to manually correct subtle

bugs in a complex code such as this.

Generation of correct behavior: The base variables for the features are the

pointer variables e, p, ch and their de-references for fields left, right and parent.

the number of de-references is set to 3 (depth of the biggest input). There were

477 total features. Note that this is equivalent to the population of variants for the

condition at that program point. It would be infeasible for a technique based on

search in the program space since it would also need to look at combinations of

two or more expressions from the population, joined by operators such as OR and

AND.

The coverage of the passing tests was high (60%) with good behavioral

diversity which aided in the generation of near accurate predictions. Labeling based

on predictions makes 2 failing tests pass, while the third one passes by changing the

predicted label on just one row. This resulted in a search space saving of 91.6% if

JPF-based path exploration were employed without any predicted labels.

Generation of correct condition: The decision-tree learnt was exactly

same as the ideal condition (p! = null)&&(ch == p.right). Note that the condi-
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tion (p! = null) was included despite being redundant (was true for all rows where

(ch == p.right)).

Scenario 3: Variable update and loop construct faults: This scenario demon-

strates the application of our algorithm on faults which indirectly impact branch

behavior.

ListERR3 in repOKmod (Listing 3) is an erroneous update to the local

variable p which in turn impacts the behavior of the branch on statement 8. Only

input lists which have self-loops are detected as cycles, similar to the behavior of

the repOK method with ListERR1 as the fault.

Given that variable p impacts only the branch at statement 8, the correct

output for the program can be obtained by exploring the paths through the branch.

We determined that the update would be a function of l,p and de-references of left,

right and parent. These were included as the feature variables.

The decision-tree learnt was (l = p)||((l.next! = null)&&(l! = p.prev)).

This is not syntactically same as the repair of changing p = l.next to p = p.next

on statement 12. However, it is functionally or behaviorally equivalent since both

the repaired versions would provide the same output for any input (provided the

prev field is set correctly). The decision-tree actually serves as a globally valid

specification for a cycle at the program point before statement 8. Any mutation or

synthesis based technique could then be used to look for expressions for p (other

than l.next) at statement 12 that would satisfy this specification.

Consider the bug BSTERR1 in the BST.insert code (Listing 5). The while
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loop at statement 3 parses through the binary search tree abiding by the search

constraints. Due to the bug on statement 7, as long as the input k < x.key, x is

constantly updated with x.left until it becomes null. This leads to failures where the

variable y does not contain the correct point where the insertion needs to be made.

Based on the initial round of correct label computation, the decision-tree generated

was while((x! = null)&&(k < y.key)&&(x == y)). Heuristic refinement was

invoked on the condition, in an attempt to make it more compact. On removing

the clause (x == y), the labels on all rows (except those corresponding to the first

iteration of the while loop) were invalidated for all the failing tests. Since x gets

updated within the loop and y does not, the new condition marks their labels to be

positive which differs from the previous labeling. JPF is unable to make the tests

pass with the new labels, however, the tests pass when these rows are skipped from

the execution of the while loop. The condition learnt from the shortened set of rows

is if((x! = null)&&(k < x.key)) which is the desired repair.

Scenario 2: Impact of poor passing test coverage: This scenario demonstrates

how our algorithm handles the impact of poor passing test coverage on predictions.

The bug ListERR2 in the while condition in List.repOkmod (Listing 3) in-

hibits the detection of cycles leading to the failure of 6 out of 9 tests. None of

the passing tests possess cycles and hence are quite dissimilar to the failing tests.

This leads to poor prediction accuracy (47%), which increases the search space for

JPF-based path exploration. Specifically for one of the tests, the row which had to

ideally have a positive label was assigned a prediction of -1.68. This confidence

value was the largest amongst all the predictions for the test and hence in order
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to obtain the correct solution, the labels for all the rows had to be determined by

JPF based exploration. The number of possible solutions were also huge ranging

from the smallest solution set containing just 1 row for every value of l, {< cnt1 =

0, cnt2 = 1, l = N0, p = N1, label = −1 >,< cnt1 = 1, cnt2 = 2, l = N1, p =

N2, label = −1 >,< cnt1 = 2, cnt2 = 3, l = N2, p = N2, label = 1 >} to the

largest set with the same row for l=N2 but 3 and 2 rows for l = N0 and l = N1

respectively, with -1 only assigned to the row where p = NA. We invoked SVM to

predict the labels for this again based on the updated labels for the other tests. The

new predictions pointed to just 1 path (the largest solution set) which is the ideally

desired behavior.

Discussion:

This section addresses the research questions based on the results presented

in tables, Table 6.6, and Table 6.7.

RQ1: The effectiveness of similarity based prediction of correct behavior for fail-

ing tests is dependent on the passing test coverage. In most cases, where the passing

coverage is> 50%, the prediction accuracy is> 80%. The diversity of the behavior

of the branch for the passing tests also impacts the accuracy, otherwise the predic-

tions tend to get skewed towards one label.

Low recall can also impact the quality of predictions as is the case with

BSTERR1. Due to less number of relevant rows in the SVM input, data points

used for semi-supervised learning are not representative enough, leading to poor

predictions. Further, the logic of the incorrect code was such that the behavior of
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the branch was not same as the ideal, even for some of the passing tests but there

existed an alternate path that produced the correct output for these tests. The wrong

labels for the passing tests impacts the prediction accuracy for the failing tests.

RQ2: In all the cases, the generated repair was 100% accurate for the test-suite. In

5 out of 9 cases, the repair generated was exactly the same as the ideal fix. For the

cases marked with *, the initial decision-tree was overfitted (with number of clauses

and de-references > 2), however the ideal condition was arrived at by heuristic

refinement of labels. In the case of RBTERR2, there were no input instances where

ch! = p.left and ch! = p.right, hence due to the lack of representativeness of the

test inputs, the generated repair is not globally valid. For faults in local variable

updates, the algorithm generates a specification, which in most cases contains hints

to the repair of the update statement. Note that the repair generated for RBTERR3

is if(e == p.right). It can be determined by simple program analysis that at

that program point p = e.parent and ch has been incorrectly set to p.right. This

indicates that setting ch to e should produce the same effect as the if condition.

6.2.5 Related Work

This section compares our work with other recently proposed approaches

for program repair.

Use of machine learning for program repair:

Our previous work [43] employs machine learning to repair incorrect Where

clauses in database statements in ABAP programs. In this paper, we have extended

the idea to repair branch conditions in imperative programs. Although the crux of
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the approach is similar, there are couple of differences between the two domains.

Input to database statements are tables with rows characterised by attributes, which

is exactly the form of input for SVM. Each row is identified by a key field and in

a single execution the selection statement may behave incorrectly for certain keys

(failing keys) and correctly for others (passing keys). Each row is independent of

the others. In an imperative program, on the other hand, the mapping of program

state to SVM input format is not straight-forward. Each row represents different

occurrences of the branch condition during a single execution and hence they may

be dependent on each other. This necessitates the use of JPF to explicitly execute

the code to explore subsequent states. The output of a selection statement is always

a subset of its input rows and a SAT-based combinatorial search is employed in the

previous work.

Our work differs from Alijareh et.al [6], which employs logic learning to

diagnose and correct errors in finite state transition systems, in the following ways.

ILP can express first order logic constraints and can probably generate programs

with complex logic. However, a fully specified property needs to be provided. Our

approach, on the other hand, works with just the test-suite and attempts to gener-

ate a globally valid condition. We focus on incorrect branch behavior, for which

decision-tree learning can quickly generate correct solutions. We assume accurate

fault localization and restrict the region of repair locally around the faulty statement.

We attempt to learn not a global property of correctness but the condition for a spe-

cific branch functionality. Such a specification can be expressible as disjunctions of

conjunctions and would not involve first order logic operations.
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The Daikon tool based data-structure program repair described in [31],

learns specification constraints from passing test behavior alone. Hence they repre-

sent general data-structure constraints which may be different from the specification

of correctness at the point of fault. Therefore, the repaired data-structure may sat-

isfy the data-structure invariants but may not be the same as the output intended

by the ideal behavior of the program. Further, the technique is only applicable to

programs that mutate the data-structure.
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Chapter 7

Conclusion

Debugging, i.e., locating and removing bugs in faulty code, is expensive and

itself error-prone. We introuduced a suite of techniques for more effective debug-

ging. Our key insight is that integrating systematic search based on state-of-the-art

constraint solvers with techniques to analyze artifacts (such as correctness specifi-

cations and test cases) that describe application specific properties and behaviors

provides the basis for developing more effective debugging techniques. We fo-

cused on faults in programs that operate on structurally complex inputs, such as

heap-allocated data or relational databases. Debugging such faults using traditional

methods is particularly ineffective and time consuming. We used a number of real-

world subjects to evaluate our techniques and show their effectiveness. We believe

our work provides a viable foundation for new debugging approaches that further

improve the effectiveness of automated debugging while lowering its cost.
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Appendix A

Background Information

A.1 Alloy constraints for SLL

This section describes the Alloy model of the singly linked list data struc-

ture (Figure 2.1 in more detail. SLL and Node are signatures of the respective Java

classes. Fields of these classes such as header, size, next are represented as bi-

nary functions. The multiplicity of the functions are expressed using keywords such

as lone, some, and no. For instance, the lone keyword indicates that header,

and next are partial functions, while size and next are total functions. The pred

repOk defines the invariant constraints on the linked list, that is passed on to it as

parameter l. It consists of three constraints; acyclicty, size-invariant and

unique-elements. The acyclicity constraint ensures that for every node in

the list, it should not be possible to reach the same node , when parsing through

the subsequent nodes via the next pointer. The join l.header accesses the node

mapped to the list present in the scalar l by the header relation. Operators *

and represent reflexive and transitive closures on relations. For instance, *next

represents the relations next, next.next, next.next.next, so on until the op-

eration results in nulls. Hence, l.header.*next accesses all the nodes reachable

from the header node until null is hit. The universal quantifier all indicates that

this constraint applies to all the elements in the set accessed by l.header.*next.
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Cardinality, membership and complement operations are represented using the key-

words; #, in and - respectively. Alloy also supports logical binary operators, such

as implication (⇒ in uniqueness constraint).

A.2 Code to Logic

We illustrate in detail how the delete procedure is translated to a formula

in relational logic P (s, s‘).
boolean delete (int k ) {

0 : Node prev = null ;
1 : Node lst = header ;
2 : if (lst != null ) {
3 : if (lst .key == k ) {
4 : if (prev != null ) {
5 : prev .next = lst .next ;

}else{
6 : header = header .next ;

}
7 : size−−;
8 : return true ;}
9 : prev = lst ;

1 0 : lst = lst .next ;
}

1 1 : if (lst != null ) {
1 2 : if (lst .key == k ) {
1 3 : if (prev != null ) {
1 4 : prev .next = lst .next ;

}else{
1 5 : header = header .next ;

}
1 6 : size−−;
1 7 : return true ;}
1 8 : prev = lst ;
1 9 : lst = lst .next ;

}
2 0 : assume (lst == null ) ;
2 1 : return false ;}

Listing A.1: SLL delete method with 2 loop unrolls.

Every loop in the control-flow graph of the procedure is unrolled a pre-

defined number of times and is represented as a nested-if statement. Listing A.1

shows the computation graph after unrolling the delete procedure two times.
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Symbolic execution is employed to convert the FIR representation of the procedure

to relational logic.

The state of the symbolic execution at each program point has three com-

ponents; i) Relational declaration of the set of relations at that program point(D),

ii) Path Constraints, set of constraints on the relations that need to be satisfied for

execution to reach that program point(P ), iii) Environment, mapping the variables

and fields in the program to the respective relations in logic(E)). For instance, the

initial symbolic state of the delete procedure would be as shown below,

Dinit = List0,Node0,size0,header0,next0,prev0,key0,k0

Pinit = (header0 ⊆ List0 → Node0), (next0 ⊆ Node0 → Node0), (prev0 ⊆

Node0→ Node0), (size0 ⊆ List0→ Integer), (key0 ⊆ Node0→ Integer)

Einit = (This 7→ List0), (Node 7→ Node0), (size 7→ size0), (header 7→ header0),

(next 7→ next0), (prev 7→ prev0), (key 7→ key0), (k 7→ k0)

The following binding satisfies the path constraints in Pinit; List0 = {L0},

Node0 = {N0, N1}, size0 = {1}, header0 = {< L0, N0 >}, next0 = {<

N0, N1 >}, prev0 = {< N1, N0 >}, key0 = {< N0, 1 >,< N1, 2 >},

k0 = {2}. However, it does not represent a valid input state that satisfies the

size constraint, part of the repOk invariant. Such invalid bindings/states would

be eliminated when the formulation for SAT includes an invariant check on the

pre-state in conjunction with the constraints corresponding to the code, (Pre −

condition(s)
∧
P (s, s‘) ).
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The components of the symbolic state is updated after the execution of each

statement. For instance, after the assignment statement 0 Node prev = null,

D0 = Dinit

⋃
prev0, P0 = Pinit

⋃
prev0 = {} and E0 = Einit

⋃
(prev 7→

prev0). Field updates are modeled as relational overrides. For instance, state-

ment 5 prev.next = lst.next would be modeled as an override of the next

relation, wherein tuples with prev as the first element would be replaced with

< prev, lst.next >. The if-then-else code snippet from statements 4 to 6, would

update the path constraints as follows P5 = P3
⋃
((prev0! = null) ⇒ (next1 =

next0 + +(prev0 → lst0.next0))), P6 = P3
⋃
((prev0 = null) ⇒ (header1 =

header0 + +(List0 → List0.header0.next0))). The statements in the then por-

tion of the if statement are added as the consequents of an implication with the if-

condition as the antecedent, while the statements in the else portion have the nega-

tion of the if-condition as the antecedent. The relational declarations D5 and D6

are updated as D3
⋃
next1 and D3

⋃
header1 respectively, and the environments

E5 and E6 are updated as E3
⋃
(next 7→ next1) and E3

⋃
(header 7→ header1)

respectively. After the execution of the last statement of the procedure, the final

version of the relations have their names suffixed with the back tick ‘.

The symbolic execution finally generates a final symbolic state; Dfinal, in-

cluding all the declared relations, Pfinal, the path constraints corresponding to all

the execution paths in the procedure within the scope of the unrolls, and Efinal,

the final environment. An assignment to all the relations in Dfinal that satisfy the

constraints in Pfinal correspond to a valid execution of the procedure and the satis-

faction of the formula P (s, s‘). In the specification, S(s, s‘), s corresponds to the
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relations in the initial state Dinit, while s‘ corresponds to the post-state relations in

Dfinal. For instance, in the analysis of the delete procedure, the remove-ok con-

straint would be evaluated as List0.header0.*next0.key0-k0= List0.header‘.*next‘.key‘.
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Code Snippets
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bool insert(Tree t, int k){
Node y = null;
Node x = t.root;
while (x != null)
//while(x.left != null) (4c)
{ y = x;
//y = t.root; (3b)(8)(9)
if (k < x.key)
//if(k < t.root.key) (9)(13)

x = x.left;
//x = x.right; (3a)
//x = x.left.right (13)

else
{ if (k > x.key)

//if (k < x.key) (4a)
//if(k > t.root.key) (4b)
x = x.right;

else
return false;}}

x = new Node();
x.key = k;
if (y == null)
//if(x != null) (10)

t.root = x;
else
{ if (k < y.key)

//if(k > y.key) (2a)
//if(k < x.key) (2b)(5)(11)(12)
y.left = x;
//y.left = y; (6)(10)(11)

else
y.right = x;}
//y.right = y;}(10)(12)

x.parent = y;
//x.parent = x; (1)(7)(8)
//y.parent = x; (5)(6)(10)
/*x.parent = y;*/ //Omission Err(14)
t.size += 1;
return true;}

void addChild(Tree t){
if ( t == null} return;
BaseTree childTree = (BaseTree)t;
if (childTree.isNil()) {
if (this.children != null &&

this.children == childTree.children)
throw new RuntimeException("...");

if (childTree.children != null) {
int n = childTree.children.size();
for (int i = 0; i < n; i++) {
//for (int i = 0,j = 0; i < n; (i = j + 1)) { (1)
Tree c = childTree.children.get(i);//list get
this.children.add(c);//list add
c.setParent(this);
//j = i + 1; (1)}}

else this.children = childTree.children;}
else {
if (children == null)
//if (childTree.children == null) (2)

children = createChildrenList();
children.add(t); //list add
childTree.setParent(this);
//childTree.setParent(childTree); (2)}}

(a) (b)
Figure B.1: Code Snippets used in Section 5.4. Repaired version produced in the CFG form,
manually mapped back to source code.
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boolean add(int k){
0 Node y = null;
1 Node x = this.root;
2 while (x != null)
3 { y = x;
4 if (k &lt; x.key)
5 x = x.left;

//BSTtraverseErr
x = x.right;

else
6 { if (k &gt; x.key)
7 x = x.right;

else
8 return false;}}
9 x = new Node();
10 x.key = k;
11 if (y == null)
12 this.root = x;

//BSTrootErr
this.root = null;

else
13 {if (k &lt; y.key)

//BSTbranchErr
if (k &lt; y.key)

14 y.left = x;
else

15 y.right = x;}
//BSTrightErr
y.right = y;}

16 x.parent = y;
//BSTparentErr

x.parent = x;
17 this.size += 1;

//BSTsizeErr1,2
this.size = 1;

18 return true;}

void addChild(Tree t){
0 if ( t == null} return;
1 BaseTree childTree =

(BaseTree)t;
2 if (childTree.isNil()) {
3 if (this.children != null &&

this.children ==
childTree.children)

4 throw
new RuntimeException();

5 if (childTree.children
!= null){

6 int n =
childTree.children.size();

7 if (children != null) {
8 for (int i = 0; i &lt; n; i++)
9 { Tree c =

childTree.children.get(i);
10 this.children.add(c);
11 c.setParent(this);

//ANTchildparErr1,2
c.setParent(c);}}
else{

12 children =
childTree.children

13 int i = 0;
14 while (i &lt; n){
15 Tree c =

childTree.children.get(i);
16 c.setParent(this);

//ANTchildErr
c.setParent(c);

17 i++;
//ANTloopErr
i = i + 2;}}}}

else {
18 if (children == null)
19 children = createList();
20 children.add(t);
21 childTree.setParent(this);

//ANTparentErr1,2
childTree.setParent;

(childTree);}}

(a) (b)
Figure B.2: Code Snippets used in Section 4.4.
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