
Copyright

by

Kaiyuan Wang

2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/322359236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Kaiyuan Wang
certifies that this is the approved version of the following dissertation:

Automated Synthesis and Debugging of Declarative

Models in Alloy

Committee:

Sarfraz Khurshid, Supervisor

Vijay Garg

Milos Gilgoric

Christine Julien

Darko Marinov

Automated Synthesis and Debugging of Declarative

Models in Alloy

by

Kaiyuan Wang

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2018

Dedicated to my family

Acknowledgments

First of all, I would like to thank my adviser, Sarfraz Khurshid. If it

were not for him, I would have never finished my PhD. Sarfraz accepted me

as a PhD student after I did a master thesis with him. He spent tremendous

amount of time to discuss research ideas with me and helped me with different

problems I encountered during my research. I will never forget the numerous

nights we worked together to catch up with paper deadlines. I learned how

to come up with research ideas and how to write technical papers from him

and I feel very lucky to have him to be my adviser. Although I could never

do enough to return all that he had done for me, I hope that I could advise

students with the same passion some time in the future.

I would also like to thank Milos Gligoric for his rigorous training shortly

after he joined University of Texas at Austin. During the time we worked

together, I learned ways to set up experiments efficiently as well as writing

good performance code. I really enjoy working with him. Although Milos is

not my official co-adviser, he helped me a lot and I treat him as my co-adviser

in my mind. I will miss the nights we worked together on our projects.

I want to thank Darko Marinov from University of Illinois at Urbana-

Champaign for the nights we spent together to discuss and improve our projects.

Darko is a very kind person who helped me a lot with my dissertation. He also

v

gave me advices about my future career and I really enjoy talking with him.

I would like to thank Vijay Garg, Milos Gligoric, Christine Julien and

Darko Marinov for their generous help during my graduate studies. They

served on my thesis committee and helped me improve the presentation of

this dissertation.

None of the projects would have been fun and successful without my col-

laborators: Don Batory, Ahmet Celik, Milos Gligoric, Divya Gopinath, Jinru

Hua, Sarfraz Khurshid, Jongwook Kim, Manos Koukoutos, Corina Pasareanu,

Allison Sullivan, Zijiang Yang, Razieh Nokhbeh Zaeem, Mengshi Zhang, and

Chenguang Zhu. I look forward to working with them again in the future.

I was lucky to have a number of office mates who share their thoughts

and enrich my life at grad school: Ahmet Celik, Yen-Jung Chang, Hayes

Converse, Nima Dini, Changyong Hu, Jinru Hua, Chenguang Liu, Alyas Mo-

hammed, Pengyu Nie, Karl Palmskog, Rui Qiu, Shikhar Singh, Marko Vasic,

Mengshi Zhang, Tianyi Zhang, Xiong Zheng, and Chenguang Zhu. I was

also happy to work with several exceptional master students, including Oguz

Demir, Jingjiang Li, Kewei Ma, Zijiang Yang, and Cagdas Yelen.

This work would not have been possible without the support from my

family and friends. I especially thank my parent, Rong Xie and Zhen Wang,

for their love, encouragement and trust.

Parts of this dissertation were published at ABZ 2018a [143] (Chap-

ter 3); ABZ 2018b [146] and FSE Demo 2018 [144] (Chapter 4); and ASE

vi

2018 [141] (Chapter 6). In addition, Chapter 5 is available on arXiv [145]. I

would like to thank the anonymous reviewers and conference audience for their

invaluable comments.

My research was funded in part by the National Science Foundation.

vii

Automated Synthesis and Debugging of Declarative

Models in Alloy

Publication No.

Kaiyuan Wang, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Sarfraz Khurshid

In theory, formal specifications offer numerous benefits in developing

more reliable software. In practice however, the use of specifications is rather

limited, and practitioners often consider them more trouble than they are

worth. Indeed, manually writing detailed specifications using notations that

have unfamiliar syntax and semantics can be a daunting task – even for experi-

enced programmers. We introduce a new automated approach for synthesis of

desired specifications and debugging of faulty specifications using given exam-

ples that capture the essence of desired properties and serve as test cases. Our

focus is specifications written in the declarative language Alloy – a first-order

logic based on relations with transitive closure, and its SAT-based analysis

engine. Our key insight is that a test-driven foundation enables modern ap-

proaches to synthesis and debugging of imperative code to serve as a basis for

developing novel analogous techniques for declarative specifications. For syn-

thesis, we build on equivalence in relational algebra and introduce techniques

viii

for generating candidate Alloy expressions. We also introduce a technique to

complete a partial Alloy model with holes using constraint solving. For locat-

ing faults in buggy specifications, we build on mutation-based fault localization

and introduce techniques for locating likely faulty nodes in the abstract syntax

tree of the faulty specification. Moreover, we integrate our expression genera-

tion and fault localization techniques to introduce a technique for automated

specification repair. We experimentally evaluate our techniques using several

Alloy models as subjects, including those with real faults. The results show

that our techniques are effective at synthesis and debugging of the subjects.

We believe our techniques provide an important step towards increasing the

role of formal specifications in developing more reliable software and realizing

their promise.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1
1.1 Thesis Overview . 3

1.1.1 Expression generation for Alloy 5
1.1.2 Sketching for Alloy . 6
1.1.3 Fault localization for Alloy 7
1.1.4 Automated repair for Alloy 9

1.2 Contributions . 9
1.3 Organization . 12

Chapter 2. Background 13
2.1 Unit testing for Alloy . 13
2.2 Mutation testing for Alloy . 15

Chapter 3. Non-Equivalent Expression Generation1 17
3.1 Example . 17
3.2 RexGen Framework . 20

3.2.1 Technique input . 20
3.2.2 Generating expressions 21

3.3 Experimental evaluation . 27
3.3.1 Evaluation models . 27
3.3.2 RexGen results . 29

3.4 Summary . 32

x

Chapter 4. Solver-based Sketching of Alloy Models2 35
4.1 Example . 35
4.2 ASketch Framework . 39

4.2.1 Input Language . 39
4.2.2 Solver-based sketching 41

4.2.2.1 Parameterize Alloy constructs 42
4.2.2.2 Create Alloy meta constructs to encode holes . 43
4.2.2.3 Express test valuations as facts 46
4.2.2.4 Invoke Alloy Analyzer to complete holes 46

4.3 Evaluation . 47
4.3.1 Sketching problems . 47
4.3.2 ASketch results . 48

4.4 Summary . 52

Chapter 5. Fault Localization for Alloy 54
5.1 Example . 54
5.2 Technique . 58

5.2.1 Suspiciousness Formulas 59
5.2.2 AlloyFL . 60

5.3 Distance Metrics . 66
5.4 Evaluation . 69

5.4.1 Experiment Setting . 70
5.4.2 RQ1: AlloyFL Accuracy and Time Overhead 72
5.4.3 RQ2: Suspiciousness Formula Impact 81

5.5 Summary . 84

Chapter 6. Automated model repair for Alloy3 85
6.1 Example . 85
6.2 Technique . 88

6.2.1 Create Holes . 89
6.2.2 Generating Expressions 91
6.2.3 Search Strategies . 93
6.2.4 Running Tests . 96

xi

6.2.5 Hierarchical Caching . 98
6.2.6 Repair Algorithm . 100

6.3 Evaluation . 102
6.3.1 Experiment Setting . 104
6.3.2 Repair Efficacy . 105
6.3.3 Patch Quality . 107
6.3.4 Limitation . 109

6.4 Summary . 110

Chapter 7. Related Work 112
7.1 Expression Generation . 112
7.2 Program Sketching . 114
7.3 Fault Localization . 115
7.4 Program Repair . 117
7.5 Alloy . 118

Chapter 8. Conclusion and Future Work 120

Bibliography 122

xii

List of Tables

3.1 Static pruning rules . 25
3.2 Syntactic approximation for a ⊆ b. ∼= means syntactic match. 26
3.3 Basic information of models used to evaluate RexGen 29
3.4 RexGen performance . 34

4.1 Supported fragments for non-recursively defined holes 40
4.2 ASketch results for finding a solution. Times are in seconds. . 51

xiii

List of Figures

1.1 Techniques as a whole . 4

2.1 Acyclic Singly Linked List. 14
2.2 Mutation Operators . 16

4.1 Four test valuations . 36

5.1 Faulty Farmer Example and MuAlloy Generated Tests. 55
5.2 Suspiciousness Formulas in AlloyFL. 59
5.3 Illustration of AlloyFLun and AlloyFLsu 60
5.4 Distance Metrics Examples . 67
5.5 Correct Models Information. 71
5.6 Distance Metrics for Real Faults. 73
5.7 Top-k Metrics for Real Faults. 76
5.8 Distance Metrics for Mutant Faults. 78
5.9 Top-k Metrics for Mutant Faults. 80
5.10 Formula Impact on AlloyFL for Real Faults. 82
5.11 Formulas Impact on AlloyFL for Mutant Faults. 82

6.1 First Suspicious Node for Faulty Farmer Example. 86
6.2 Patches for the faulty farmer model. 88
6.3 Hole creation schemas for Alloy Surface Syntax 90
6.4 Expression generation syntax. 92
6.5 All combinations partitions. 95
6.6 Dependency graph for test1 in Figure 5.1b. 97
6.7 ARepair Results . 103
6.8 Patches comparison . 107

xiv

Chapter 1

Introduction

Building software models plays an important role in building reliable

systems. Alloy is a well-known modeling language that has been used effec-

tively in academic and industrial settings [28, 43, 88, 160]. Alloy models are

declarative and consist of relational, first-order logic formulas with transitive

closure. Two key strengths of Alloy are its expressive notation that allows

succinctly writing complex structural properties, and its analyzability. Al-

loy has a SAT-based analyzer that performs automatic analysis within the

user-defined scope, i.e., bound on the universe of discourse. Specifically, the

analyzer finds instances, i.e., valuations for relations in the model such that

the (chosen) formulas in the model evaluate to true. The analyzer can also find

counterexamples that refute properties of interest; an instance for the negation

of the property formula serves as a counterexample. Moreover, the analyzer

can enumerate valuations and graphically display them.

While Alloy’s expressive notation allows succinct formulation of com-

plex properties, reasoning about the correctness of Alloy formulas, e.g., in the

presence of quantification and transitive closure, requires much care. Because

Alloy models are logical constraints, they can have two basic kinds of faults:

1

overconstraints that rule out valid valuations, and underconstraints that per-

mit invalid valuations. Traditionally, Alloy users validate their models using

two approaches: (1) use the analyzer to enumerate instances (and/or coun-

terexamples) for their model and inspect them to see if some unexpected,

invalid valuations are present and/or some expected, valid valuations are ab-

sent; or (2) write alternative constraints and use the analyzer to check for

expected logical relationships, e.g., equivalence or implication between differ-

ent formulas.

Consequently, correctly writing declarative models that represent non-

trivial properties is not easy, especially for practitioners who are not well-versed

with the intricate syntax and semantics of declarative languages. For example,

in a declarative language, which lacks sequencing of operations, when trying to

test, there is no notion of where the “execution” starts, how it proceeds, what

conditional branches it encounters, what path it takes, and how the values

of the program variables are updated and the final return value is computed.

Indeed, even “what is the analog of a traditional test?” may not be formally

defined.

Recent work introduced AUnit [131, 134], a unit testing framework for

Alloy. AUnit defined test cases, test execution, and model coverage for Alloy.

We propose four techniques on top of AUnit foundation. Specifically, our

work leverages AUnit test cases. We first introduce a relational expression

generator, called RexGen, which is able to generate non-equivalent expressions

within a given bound. To evaluate RexGen, we use a set of well-studied Alloy

2

models and show that RexGen is able to prune a large number of equivalent

expressions. We next introduce a sketching technique, called ASketch, which

is able to complete a partial Alloy model with holes such that the completed

model satisfies the properties captured by a give AUnit test suite. ASketch

encodes a partial Alloy model, a set of given candidate fragments and an AUnit

test suite into a meta Alloy model and invokes the SAT solver to search for

solutions. To evaluate ASketch, we use a set of intricate Alloy formulas and

show that ASketch is promising to sketch Alloy models. We next introduce

a set of fault localization techniques, called AlloyFL, which takes as input a

faulty Alloy model and a suite of AUnit tests. AlloyFL’s output is a ranked

list of Alloy AST nodes in the descending order of their suspiciousness. We

evaluate AlloyFL using a set of real faults and injected faults. The experiment

shows that AlloyFL is effective. Lastly, we introduce an automated repair tool,

called ARepair, which takes as input a faulty Alloy model and a suite of AUnit

tests. The output is a fixed model which makes all tests pass. We evaluated

ARepair on real faulty Alloy models and the experimental results show that

ARepair is effective.

1.1 Thesis Overview

This thesis introduces four techniques that work in tandem. Two of the

techniques (RexGen and ASketch) address the core synthesis problem for Alloy,

and two of them (AlloyFL and ARepair) address the core debugging problem

of Alloy. All four of them apply in synergy to provide a viable solution to

3

Figure 1.1: Techniques as a whole

synthesis-driven repair for faulty models (Figure 1.1). RexGen enriches the

use of synthesis techniques for relational algebra. We show that it can be used

together with ASketch to complete partial Alloy models. AlloyFL helps Alloy

users to find fault locations and is shown to be more accurate than the Alloy

built-in unsat core. We show that both RexGen and AlloyFL can be integrated

as parts of ARepair which can automatically fix faulty Alloy models for users.

This thesis makes a four-fold contribution:

4

1. We introduce RexGen to reduce the search space of synthesis techniques
proposed in this thesis.

2. We introduce ASketch to reduce the manual effort for writing completed
Alloy model.

3. We introduce AlloyFL to reduce the manual effort for locating faults and
debugging faulty Alloy models.

4. We introduce ARepair to reduce the manual effort for fixing faulty Alloy
models.

1.1.1 Expression generation for Alloy

We introduce new techniques for generating non-equivalent relational

expressions and embody the techniques in RexGen. RexGen takes as input a

set of basic Alloy expressions and a bound on the target expression size, and

outputs a set of Alloy expressions up to the specified size (built on top of the

basic expressions). RexGen offers three automatic pruning modes for bottom-

up generation of relational expressions. One mode, static pruning, directly

prunes from generation many equivalent expressions based on a fixed suite

of equivalence rules, which include well-known equivalences and also dozens

more that we discovered using the Alloy analyzer. Another mode, dynamic

pruning, uses the analyzer during generation to prune equivalent expressions

incrementally by comparing each new expression to a representative from each

equivalence class formed thus far, while forming new equivalence classes as

needed. The third mode, modulo-instance pruning, allows the user to provide

AUnit test valuations, and prunes an expression if it is equivalent to some

5

generated expression with respect to all given test valuations (even if not

equivalent for some other valuations).

We perform an experimental evaluation of RexGen using expression

generation problems derived from 12 Alloy models. We evaluate the number

of expressions that RexGen generates and the time that RexGen takes to

generate those expressions for each problem under different settings. The

experimental results show that static pruning offers the best trade-off, creating

mostly semantically different expressions, substantially reducing the number

of expressions from simple grammar-based generation, while not increasing the

generation time—in fact, often having smaller generation time than not using

any equivalence pruning rules.

1.1.2 Sketching for Alloy

We introduce the first solver-based sketching technique for Alloy, called

ASketch, which takes as input a partial Alloy model with holes, a candidate

fragment generator and a suite of AUnit test cases that captures the desired

model properties. The output is a complete Alloy model that makes all tests

pass.

ASketch focuses on sketching several constructs of Alloy models, includ-

ing relational expressions, logical operators, and quantifiers. Given a partial

model and the corresponding test valuations, ASketch first parses the user-

provided regular expressions and generates pools of matching fragments that

can replace the holes. Then, ASketch systematically explores the resulting

6

search space of candidate Alloy models, to find a model that satisfies all test

valuations. Specifically, ASketch uses constraint solving to explore the space of

candidate models by creating one Alloy meta-model that encodes the model to

sketch along with the fragments for holes and test valuations all at once. The

meta-model effectively encodes multiple Alloy models, i.e., all models from

the entire candidate space. Finally, ASketch uses the Alloy Analyzer to find

solutions that can fill in the holes.

We perform an experimental evaluation of ASketch using 24 sketches

derived from 5 core Alloy models. Experimental results show that ASketch

can complete sketches with various holes and a large search space.

1.1.3 Fault localization for Alloy

We introduce the first fault localization technique for Alloy, called Al-

loyFL, which takes as input a faulty Alloy model and a suite of AUnit test

cases that capture the desired model properties. The output is a list of Alloy

AST nodes ranked in descending order of suspiciousness.

AlloyFL contains 5 techniques: AlloyFLco, AlloyFLun, AlloyFLsu, AlloyFLmu

and AlloyFLhy. AlloyFLco implements the spectrum-based fault localization

(SBFL) technique [2, 41, 51, 95] for Alloy. AlloyFLco statically analyzes Alloy

paragraphs that are transitively used in each test. Then, it ranks the Al-

loy paragraphs based on the number of passing/failing tests that invoke the

paragraphs and a suspiciousness formula. AlloyFLun implements a SAT-based

technique, which leverages the unsat core [120, 137, 138]. AlloyFLun collects all

7

AST nodes that are highlighted by the unsat core for each unsatisfiable failing

test, and nodes highlighted more often are more likely to be faulty. AlloyFLun

is designed to simulate how Alloy users would debug a faulty model manu-

ally using the unsat core. AlloyFLsu is similar to AlloyFLun except that it

uses both satisfiable and unsatisfiable failing tests to rank the AST nodes.

AlloyFLsu collects the nodes transitively used in satisfiable failing tests and

nodes returned by unsat core in unsatisfiable failing tests. Nodes covered more

often are ranked at the top. AlloyFLmu implements the mutation-based fault

localization (MBFL) technique [92, 101] for Alloy. AlloyFLmu mutates Alloy

AST nodes, e.g. "a&&b" to "a||b", to create non-equivalent mutants and check

if the test results differ compared to the original model. AlloyFLmu uses a sus-

piciousness formula to compute the suspiciousness score for each mutant based

on the number of passing/failing tests that kill the mutant. A test kills a mu-

tant if its satisfiability changes compared to that of the original model. The

node whose mutation gives the highest suspiciousness score, e.g. mutations

on the node make almost all failing tests pass while preserving the results of

passing tests, ranks at the top. The suspiciousness score of the mutated node

conceptually propagate to all its descendants until mutations on its descen-

dant nodes overwrite the corresponding suspiciousness scores. AlloyFLhy is a

hybrid technique of both SBFL and MBFL. It takes the average of suspicious-

ness scores obtained from both AlloyFLco and AlloyFLmu and assign the score

to the corresponding AST node. If an AST node is not mutable and does

not have a suspiciousness score from AlloyFLmu, then the suspiciousness score

8

from AlloyFLco is used. Finally, if multiple nodes have the same suspiciousness

score, then AlloyFL prioritizes the nodes with less descendants.

We evaluate AlloyFL on a set of real world faults as well as injected

faults. The experimental results on 38 real faults and 9000 mutant faults

show that AlloyFLmu and AlloyFLhy are significantly more accurate than the

baseline techniques, i.e. AlloyFLco, AlloyFLun and AlloyFLsu.

1.1.4 Automated repair for Alloy

We introduce the first automated repair technique for Alloy, called ARe-

pair, which takes as input a faulty Alloy model and a suite of AUnit tests that

reveal the faults. The output is either a fixed model that pass all tests or a

partially fixed model if ARepair cannot fix it.

1.2 Contributions

We make the following contributions in this dissertation.

RexGen

• Problem. We are the first to study the problem of expression generation

for relational algebra.

• Optimizations. We introduce a suite of equivalence pruning rules for

relational expressions to improve the efficacy of expression generation.

We also build techniques on top of these equivalence pruning rules and

9

show that these techniques can significantly reduce the number of gen-

erated expressions.

• Experiments. We present an experimental evaluation based on prob-

lems derived from a set of Alloy models; the results show that Rex-

Gen with static pruning offers a promising approach for generating non-

equivalent relational expressions.

ASketch

• Idea. We introduce the idea of sketching Alloy models using AUnit test

valuations.

• Technique. We introduce a technique for completing Alloy sketches

based on constraint solving.

• Experiments. We present an experimental evaluation with intricate

Alloy formulas; the results show that ASketch introduces a promising

approach for sketching Alloy models.

AlloyFL

• Technique. We propose, AlloyFL, the first set of AST node level fault

localization techniques for Alloy that leverage multiple tests.

• Metrics. We follow the spirit of an existing nearest neighbor distance

metric [111] and define 3 new distance metrics at the AST level to mea-

sure the accuracy of AlloyFL.

10

• Evaluation. We evaluate AlloyFL using 38 real faults and 9000 mutant

faults derived from 18 existing models. The subject models all contain 1

or more faults and our experimental results show that MBFL techniques

are significantly more accurate than the baseline SBFL techniques and

SAT-based techniques.

ARepair

• Alloy Model Repair. ARepair is the first repair technique for Alloy,

which uses both mutations and synthesis to repair faulty models. The

experimental results show that the combined approach works well and

many faulty models require both mutations and synthesis for a complete

fix. ARepair does not require isolated faults. It can fix models with

multiple faults or faults involving multiple locations.

• Optimizations for Practical Model Repair. ARepair does not

search for fault patterns and apply repair templates to fix faults. In-

stead, it tries to repair a faulty AST in a bottom-up fashion, so it is

more likely to repair faults with unseen patterns. The absence of re-

pair templates results in an immense search space and we implement

the following optimizations to make the technique tractable and reduce

end-to-end time. (1) The expression generator RexGen prunes equiv-

alent expressions based on equivalence pruning rules and modulo test

inputs [68]. (2) The enumeration based approach explores the search

space without expensive constraint solving [8]. (3) The construction of

11

dependency graphs for constraint formulas enables a small number of

evaluator calls during the enumeration based approach. (4) The base-

choice search strategy reduces the exploration space. (5) The hierarchical

caching reduces sizes of the inputs to evaluator calls.

• Evaluation. We evaluate ARepair on real faults and the experimental

results show its efficacy. We qualitatively compare patches generated by

ARepair and human written patches, and show that the quality of the

generated patches is good.

1.3 Organization

The rest of the thesis is organized as follows:

Chapter 2 describes the background of AUnit and MuAlloy. AUnit

tests serve as the foundation of all techniques in this thesis. MuAlloy is a

mutation testing framework for Alloy and AlloyFL is partly built on top of

it. MuAlloy can automatically generate tests that kill mutated Alloy models

and these tests are heavily used to evaluate AlloyFL and ARepair. Chapter 3

describes the expression generation technique RexGen. Chapter 4 describes

the sketching technique ASketch. Chapter 5 described the fault localization

technique AlloyFL. Chapter 6 describes the automated repair technique ARe-

pair. Chapter 7 describes the related work. Finally, Chapter 8 concludes the

thesis and discuss about the future work.

12

Chapter 2

Background

2.1 Unit testing for Alloy

Conceptually, a test case in AUnit is a pair that consists of an Al-

loy valuation and a command. To illustrate, Figure 2.1 (incorrectly) models

an acyclic singly-linked list. The signature (sig) declaration "one sig Node"

introduces a singleton set of list atom; "sig Node" introduces a set of node

atoms. Each signature declaration also introduces a binary relation. The rela-

tion header maps List atoms to Node atoms. The relation link maps Node to

Node. The keyword lone constrains the corresponding relation to be a partial

function; therefore, each of header and link is a partial function. The predi-

cate body contains an implication (=>) and intends to state that if the list has

some header node, there exists a node reachable from the header with no link,

i.e., the list is “null-terminated”. The formula "some List.header" declares

that the list has a header. The operator "·" is relational composition and "ˆ"

is transitive closure. The expression "l.header.ˆlink" represents the set of

nodes reachable from l’s header following one or more traversals along link.

Structuring Acyclic as an implication allows for the list to be empty, as with-

out the implication, the existential quantified formula requires there to be at

least one Node atom in the List. The test predicate testNoHeader states that

13

one sig List { header: lone Node }
sig Node { link: set Node }
pred Acyclic() {

some List.header => some n: List.header.ˆlink | no n.link }

pred testNoHeader() {
some disj L: List {

List = L
no Node
no header
no link
Acyclic[] }}

run testNoHeader expect 1

pred testOneHeader() {
some disj L: List {

some disj N: Node {
List = L
Node = N
header = L -> N
no link
Acyclic[] }}}

run testOneHeader expect 1

Figure 2.1: Acyclic Singly Linked List.

List has one atom and no Node, header or link is allowed. The correspond-

ing run command enforces the valuation in testNoHeader and it is expected

to be satisfiable. Another test predicate testOneHeader states that List and

Node are singleton sets; header maps the List atom to the Node atom; and no

link is allowed. The corresponding run command enforces the valuation in

testOneHeader and it is expected to be satisfiable.

In this case, testNoHeader is satisfiable and it passes, but testOneHeader

14

is unsatisfiable and it fails. The fault is in the use of transitive closure "ˆ"

instead of reflexive transitive closure "*".

2.2 Mutation testing for Alloy

Mutation testing is a powerful methodology for evaluating test suite

quality [49]. AlloyFL borrows some of the mutation operators defined in pre-

vious work (MuAlloy [133, 140, 142]). Our mutation testing approach MuAlloy

brings the spirit of traditional mutation testing to Alloy and defines how to cre-

ate mutants of Alloy models, compute mutation testing results, and check for

equivalent mutants. We introduce a suite of mutation operators for Alloy and

introduce the use of SAT-based analysis for mutation testing and equivalent

mutant checking. We transform the equivalent mutant checking problem into

a satisfiability check such that if there is a solution to the resulting formula,

we get a test that kills the mutant. While Alloy is based on first-order logic,

checking for equivalent mutants can lead to higher-order solving, which the

standard Alloy analyzer does not support. We ignore higher-order equivalence

checking in this thesis for simplicity.

Figure 2.2 shows the mutation operators supported in MuAlloy. MOR

mutates signature multiplicity, e.g. "lone sig" to "one sig". QOR mutates

quantifiers, e.g. all to some. UOR, BOR and LOR define operator replacement

for unary, binary and formula list operators, respectively. For example, UOR

mutates a.∗b to a.ˆb; BOR mutates a=>b to a<=>b; and LOR mutates a&&b

to a||b. UOI inserts an unary operator before expressions, e.g. a.b to a.∼b.

15

Mutation Description
Operator
MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR Formula List Operator Replacement
UOI Unary Operator Insertion
UOD Unary Operator Deletion
LOD Logical Operand Deletion
PBD Paragraph Body Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange

Figure 2.2: Mutation Operators

UOD deletes an unary operator, e.g. a.∗ ∼b to a.∗b. LOD deletes an operand

of a logical operator, e.g. a||b to b. PBD deletes the body of an Alloy

paragraph. BOE exchanges operands for a binary operator, e.g. a=>b to b=>a.

IEOE exchanges the operands of imply-else operation, e.g. "a => b else c"

to "a => c else b". All mutation operators are defined at the AST level and

modifying AST nodes properly is non-trivial. For example, && and || are list

operators in Alloy. Replacing && with || in "a || (b && (c || d))" should

results in "a || b || c || d", which means we need to properly flatten the

parent and child AST nodes after mutation.

16

Chapter 3

Non-Equivalent Expression Generation1

In this chapter, we introduce RexGen – the first generator for seman-

tically non-equivalent relational expressions. We present the algorithms that

define our generator, its embodiment based on the Alloy tool-set, and an ex-

perimental evaluation to show the effectiveness of its non-equivalent generation

for a variety of problems with relational constraints.

The rest of the chapter is organized as follows. Section 3.1 presents

an example. Section 3.2 describes in detail the techniques to generate non-

equivalent relational expressions. Section 3.3 evaluates RexGen. Section 3.4

summarizes the chapter.

3.1 Example

We next present an example model to motivate relational expression

generation and introduce the basic concepts of our approach. Consider this

small but illustrative Alloy model of directed trees, adapted from a recent

paper [96]:

1Kaiyuan Wang, Allison Sullivan, Manos Koukoutos, Darko Marinov, and Sarfraz Khur-
shid. Systematic generation of non-equivalent expressions for relational algebra. In ABZ,
2018.

17

sig Node { edges: set Node }
pred Acyclic { no iden & ^edges }
pred Injective { edges.~edges in iden }
pred Connected { (Node -> Node) in ^(edges + ~edges) }
pred isDirectedTree { Acyclic and Injective and Connected }
run isDirectedTree for 4 Node

The model declares a set (called signature in Alloy) of nodes with a

field called edges that is a binary relation of type Node×Node. The keyword

set declares an arbitrary relation; Alloy also has keywords one and lone to con-

strain the relation to be a total or partial function, respectively. The predicate

(pred) is a named formula that can be invoked elsewhere. The conjunction

of Acyclic, Injective, and Connected would precisely represent directed trees.

The binary operator & is set intersection; + is set union; "in" is subset; "." is

relational join; and -> is Cartesian product. The (prefix) unary operator ^ is

transitive closure, and ∼ is transpose; Alloy also has reflexive transitive closure

(*). The keyword iden represents the identity relation. The formula "no E"

for expression E constrains E to be the empty set. The run command runs a

given formula, and presents an instance of the given formula if the formula is

satisfiable. The scope of 4 instructs the analyzer to create an instance with at

most 4 nodes.

To illustrate expression generation using our approach, consider the

signature declaration in this model, which introduces one set (Node) and one

binary relation (edges). Given those declarations, a user may want to generate

various expressions, e.g., in synthesis or repair tasks. For example, many Al-

loy beginners write "pred Acyclic’ { all n: Node | n !in n.^edges }" and

18

may want to know if there is a semantically equivalent formula without any

quantified variables (as in Acyclic). In that case, the user may want to sys-

tematically try {UO E} where UO represents any unary operator (no, some, lone,

one) and E represents any valid expression, such that the formula {UO E} is

equivalent to Acyclic’.

Assume we set the maximum size of any generated expression to 5,

which suffices to generate even the largest relational expressions in this partic-

ular model. RexGen generates 581 expressions with no pruning, 438 with

AC pruning (i.e., associativity and commutativity), 116 with static prun-

ing, 105 with dynamic pruning, and 102 with modulo-instance pruning (for

14 tests). The generation time is largest for dynamic pruning, which uses Al-

loy analyzer to check each equivalence and takes 2.8 sec; in all other cases,

no constraint solving is used, and the generation time is <1 sec. The follow-

ing shows some of the equivalences discovered with dynamic pruning (where

univ denotes the universe of discourse, which is equal to Node in the example

model):

Node->Node = univ->univ (~edges)&(^edges) = (~edges)&(*edges)
(~edges).Node = Node.edges *((^edges)-edges) = *((*edges)-edges)
edges.(Node.edges) = edges.Node ^(edges.(^edges)) = edges.(^edges)

To illustrate generation of larger expressions, consider size 7. Rex-

Gen generates 17109 expressions with no pruning, 11191 with AC pruning,

1464 with static pruning, 771 with dynamic pruning, and 691 with modulo-

instance pruning (for 14 tests). The generation time for dynamic pruning

increases to 82.3 sec, for modulo-instance pruning increases to 1.7 sec, and for

19

the other techniques remains <1 sec. Thus, for this example, static pruning

reduces the number of expressions by 86.9% over AC pruning while taking

a similar amount of time; dynamic pruning reduces the number by 47.3%

over static pruning but takes much longer due to many SAT calls. Moreover,

modulo-instance pruning creates a similar number of expressions as dynamic

pruning, which indicates the diversity of the tests, but takes less time due to

not making SAT calls.

3.2 RexGen Framework

We next present our Relational Expression Generator (RexGen) ap-

proach for generating non-equivalent relational expressions. We first describe

the technique input and then the expression generation techniques.

3.2.1 Technique input

RexGen takes as input (1) a number of sets (signatures), relations

(fields), and variables declared in an Alloy model (in the context in which the

expressions should be generated), (2) a limit on the size of generated expres-

sions, (3) optionally a target arity of expressions to generate, and (4) optionally

a number of test valuations, i.e., values for the input sets and relations (but

not for the bound variables). RexGen generates expressions using the following

20

grammar:

expr ::= expr binOp expr | expr∗ | expr+ | expr−1 | terminal

binOp ::= ∪ | ∩ | \ | × | ./

terminal ::= set | relation | variable

The grammar captures a subset of syntactically possible Alloy expres-

sions, which cover a large space of candidate expressions likely to be intended

by Alloy users. For example, we do not consider rarely used Alloy operators

such as domain restriction (<:). We use standard notation of relational alge-

bra: ∪ is set union, ∩ is set intersection, \ is set difference, × is Cartesian prod-

uct, ./ is the relational join; e∗, e+, e−1 denote the reflexive transitive closure,

transitive closure, and transpose of e, respectively. Additionally we use the

empty set ∅, the universal set univ, and the identity iden = {(x, x)|x ∈ univ}.

To systematically generate expressions, RexGen limits: (1) the size of

expressions and (2) the maximum arity of expressions. There are different

ways to define expression size; we consider the number of AST nodes in the

expression: size(terminal) = 1, size(e1 binOp e2) = size(e1) + size(e2) +

1, size(exprunOp) = size(expr) + 1.

3.2.2 Generating expressions

We next describe how RexGen enumerates expressions within the given

limits. In the spirit of synthesis tools [8], enumeration works bottom-up, start-

ing from terminal expressions (sets, relations, and variables given as inputs)

21

and then iteratively combining smaller expressions to generate larger ones.

Our key contribution is pruning that aggressively removes expressions

to increase the efficiency of the generation and/or reduce the number of gen-

erated expressions. The goal of pruning is to eliminate expressions that are

semantically equivalent with previously generated expressions. Pruning has

three modes: static, dynamic, and modulo pruning.

Expression generation algorithm. The generation algorithm maintains a

list of expressions, exprs[arity], indexed by the arity. The list maintains a

total order among expressions of the same arity; we use ind(e) to denote the

index of the expression e in the list, and some pruning rules use this index.

The lists are instantiated with the terminal expressions (i.e., sets, rela-

tions, and variables declared in the model), based on their arity. The size of

these expressions is 1. Then, until a limit is reached, the algorithm iteratively

increases size and combines every operator and every combination of expres-

sions of appropriate smaller sizes to generate expressions of the larger size.

Each generated expression is then added to exprs if it is (1) within the limits

given for the generation, (2) well typed in Alloy, and (3) not pruned by the

current pruning mode. Note that, by construction, expressions in exprs are

syntactically different. The rest of this section explains in detail well typedness

and the three pruning modes.

Well typedness. RexGen tracks type information for generated expressions,

typically using the default Alloy type system, which includes subset/subtyping

22

and union types [42]. However, for some expressions, RexGen tracks a more

precise type than the default type system. The main reason is the semantics

of reflexive transitive closure (∗). In Alloy, reflexive transitive closure is a

superset of the identity relation for the union of all sets (univ) and thus has

type univ×univ. For example, if a model has two sets, Node and V alue, and

a relation, edges, of type Node×Node, then edges∗ is not of type Node×Node

but univ×univ, where univ = Node∪V alue. However, this type is too broad;

it allows for arbitrary applications of other operators and makes expression

generation intractable, producing expressions that are not intended in practical

use.

For example, consider the expression a∗ + b, where a has type A × A.

Intuitively, we want to allow only expressions of type A × A for b; however,

we cannot track this precisely if we allow a∗ to have type univ × univ. On

the other hand, we cannot consider a∗ to have type A×A because that would

make a∗ a subset of A × A, causing the static pruning to incorrectly prune

expressions like a∗ + A × A. Therefore, RexGen conceptually uses a special

type system to type intermediate generated expressions, but uses Alloy type

for static pruning.

Static pruning. Static pruning removes expressions that are known to be

semantically equivalent with other generated expressions. This pruning con-

siders equivalence with respect to all possible valuations not only given test

valuations. To prune equivalent expressions, we derive a comprehensive suite of

equivalence rules specific to relational algebra. Other generation systems [106]

23

use similar pruning rules for other domains, but our work is the first to provide

rules specific to relational algebra.

Table 3.1 presents the static pruning rules of RexGen. The first column

gives the pattern of equivalent expressions that the rule intends to eliminate.

RexGen prunes the expression whose syntactic shape is the left-hand side of

the equivalence. The second column specifies the condition for pruning. Note

that almost all rules use only syntactic information or type (and arity) infor-

mation for the involved expressions, which makes the rules easily checkable.

An exception are a few rules that check the subset property between two

sets/relations; because subset is a semantic property and not easily checkable,

we approximate it conservatively, as shown in Table 3.2. Another exception is

the rule for commutativity. To avoid generating both a op b and b op a, where

op is a commutative operation, we use the total order defined for each arity

by exprs: we prune the expression with ind(a) > ind(b), where ind(e) is the

index of e in the list exprs.

Dynamic pruning. Dynamic pruning removes equivalent expressions by us-

ing the Alloy analyzer to check whether an expression is equivalent to another

one already generated. Unlike static pruning, dynamic pruning considers (1)

all signature/field constraints (e.g., that a relation must be a function) and (2)

bound variables in the scope of the generated expression. To our knowledge,

no previous work handles variables locally bound by a quantifier in the scope

of the generated expression.

For a new expression, E, and a previously generated expression, E ′,

24

Table 3.1: Static pruning rules

Equivalence (lhs = rhs) Condition if needed; otherwise true
a op (b op c) = (a op b) op c op associative
a op b = b op a op commutative and ind(a) > ind(b)
a ∪ b = b and b ∪ a = b JaK ⊆ JbK
– Similar for ∩ and ⊇

a \ b = ∅ JaK ⊆ JbK
a ∪ b = c ∪ b ∃c.a ∼= c ∪ b or a ∼= b ∪ c or a ∼= c \ b
a ∪ b = b ∃c.a ∼= c ∩ b or a ∼= b ∩ c or a ∼= b \ c
– Also symmetrically – where ∼= is syntactic pattern matching

(a op1 b) op2 (a op1 c) = a op1 (b op2 c) op1 ∈ {./,×,∩}, op2 ∈ {∪,∩}
– Similar for (a op1 b) op2 (c op1 b)

a−1 op b−1 = (a op b)−1 op ∈ {∪,∩, \, ./}⋃
ei =

⋃
i 6=j ei, ej ∼= ek for some j 6= k

– Similar for
⋂

a \ (b ∪ c) = (a \ b) \ c
a \ (a ∩ b) = a \ b
– Similar for a \ (b ∩ a)

a \ (a \ b) = a ∩ b
a \ (b \ a) = a
(a ∪ b) \ a = b \ a
(a op b) \ (a op c) = a op (b \ c) op ∈ {×,∩}
(a ∩ b) \ c = a ∩ (b \ c)
a ./ (a× b) = b card(a) ≥ 1
– Similar for (b× a) ./ a

a ./ b−1 = b ./ a arity(a) = 1
A ./ b∗ = A b : A× A
– Similar for b∗ ./ A – where b : A× A means that b has type A× A

A ./ b+ = A ./ b b : A× A
b+ ./ A = b ./ A b : A× A
b ./ b∗ = b+

– Similar for b∗ ./ b
a∗+ = a∗

– Similar for a+∗

a−1−1
= a

a∗−1 = a−1∗

a+−1
= a−1+

(a op b−1)
−1

= a−1 op b op ∈ {∪,∩, \, ./}
(a× b)+ = a× b
a ./ (b× c) = (a ./ b)× c arity(a) + arity(b) > 2
– Similar for (a× b) ./ c

b−1 ./ a = a ./ b arity(a) = 1
a+ ./ a = a ./ a+

a∗ ./ a∗ = a∗

a∗ ./ a+ = a+

– Similar for a+ ./ a∗

a+ ./ a+ = a ./ a+

(a \ b) ./ (b× c) = ∅
– Also symmetrically

a ./ ((b \ a)× c) = ∅
– Also symmetrically

A ./ (A× b) = b arity(A) = 1
– Similar for (b× A) ./ A b : B1 × ...× A× ...×Bn for some Bi = A

25

Table 3.2: Syntactic approximation for a ⊆ b. ∼= means syntactic match.

1. b ∼= A, a : A 5. a ∼= b \ c
2. a ∼= b 6. a ∼= c+, b ∼= c∗

3. b ∼= a ∪ c or b ∼= c ∪ a 7. a ∼= c ./ c .// c, b ∼= c+ or b ∼= c∗

4. a ∼= b ∩ c or a ∼= c ∩ b 8. a ∼= c× c, b ∼= d∗, a has cardinality 1, c has arity 1

RexGen creates a new Alloy model that includes all sig/field declarations from

the RexGen input plus check { all v1: D1 |...| all vn: Dn | E = E′ },

where v1 . . . vn are variables used in the two expressions (except for sigs/fields

from the model) and D1 . . . Dn are their corresponding domains. For exam-

ple, if E is n.^edges and E ′ is Node.*edges, then the equivalence checking

command is check { all n: Node | n.^edges = Node.*edges }. This check

is issued for every previously generated expression in exprs until either the

new expression is found equivalent to some previously generated one, or the

new expression is found not equivalent to any previously generated one and is

thus added to exprs. Dynamic pruning can be applied to all expressions for

every arity or only expressions of the target arity.

Modulo pruning. Modulo pruning [68] removes equivalent expressions based

on their values for the user-given valuations of the input test suite. Specifically,

modulo pruning builds equivalence classes of expressions by grouping together

all expressions that evaluate to the same value across all test valuations, and

keeping only one expression per equivalence class.

Modulo pruning determines an expression’s equivalence class without

constraint solving, by utilizing the Evaluator feature of the Alloy Analyzer to

26

perform constraint checking. The Evaluator takes as input an Alloy instance

and an Alloy expression, and returns the concrete value of the expression for

the given instance. For a new expression E, modulo pruning evaluates E for

every test valuation in the suite, building a map of E’s concrete values. If

E contains any free variable(s), modulo pruning evaluates E for each element

in the variable’s domain, or more generally, for the cross product of domain

elements if E contains multiple variables. If E’s concrete-value map matches a

previous expression, then E is pruned out; otherwise, E is kept. Modulo prun-

ing determines equivalence based on the user-given test suite, not guaranteeing

equivalence across all instances in scope as dynamic pruning does.

3.3 Experimental evaluation

We next present our experimental evaluation of RexGen. We use 12

diverse Alloy models for evaluation (Section 3.3.1). We evaluate the number

of expressions RexGen generates and the time it takes for each model under

different settings (Section 3.3.2).

3.3.1 Evaluation models

We evaluate RexGen using 12 models comprised of a wide variety of

example, educational, and “real-world” specifications. Address book (addr),

Dijkstra mutual exclusion algorithm (dijkstra), farmer crossing-river puzzle

(farmer), Halmos handshake problem (hshake), and genealogy (gene) are

from the Alloy’s distribution examples. Bad employee (bempl), colored tree

27

(ctree), directed tree (dtree), and grade book (grade) are Alloy transla-

tions of access-control specifications used to evaluate existing scenario-finding

work [96, 115]. Binary tree (btree) constrains the graph to be a binary tree.

Propositional resolution (resfm) is from Torlak et al. [137]. Singly linked list

(sll) models acyclic lists.

Table 3.3 shows the basic information of these models. Model is the

name. #AST is the number of AST nodes in each model. #Sig is the number

of signatures declared in each model. #Rel is the number of relations declared

in each model. For each model, we find all identifiers in scope, including

signatures, relations, and bound variables, for the largest expression (w.r.t. our

measure of size). #Var is the number of all identifiers in scope to generate

expressions. In our experiment, we first find the expression with the largest

size in each model and then use all sigs, relations, and variables in the scope

of that expression to generate more expressions. #PrimVar is the number

of primary variables when we run an empty command (run {}) without test-

specific constraints; it represents the basic complexity of signature declarations

and constraints that always hold in each model. #Test is the number of

tests; we use the same number of tests for each model so that the results do

not depend on the number of tests. We chose the number of tests based on

the sll model, where we create tests such that modulo pruning generates the

same number of expressions of size 4 as dynamic pruning for this model. We

iteratively add tests until modulo pruning and dynamic pruning create the

same set of expressions. In the end, we obtain 14 tests for sll and use the

28

Table 3.3: Basic information of models used to evaluate RexGen

Model #AST #Sig #Rel #Var #PrimVar #Test
addr 114 4 2 8 45 14

bempl 46 6 3 11 38 14
btree 53 2 2 6 24 14
ctree 71 4 2 8 18 14

dijkstra 385 3 1 10 57 14
dtree 49 1 1 2 12 14

farmer 169 6 3 14 24 14
gene 139 5 2 8 20 14
grade 64 5 4 11 48 14

hshake 127 3 2 6 19 14
resfm 285 8 7 19 101 14

sll 33 2 2 5 15 14

same number of tests for other models.

Our experiments are performed on a MacBook Pro running OS X El

Capitan with 2.5 GHz Intel Core i7-4870HQ and 16GB of RAM.

3.3.2 RexGen results

Table 3.4 shows the performance of RexGen across different expression

pruning environments: No Pr. uses no pruning rules, AC Pr. uses just asso-

ciativity and commutativity pruning rules, Static Pr. uses all static pruning

rules, Dynamic Pr. uses dynamic pruning, and Modulo Pr. uses modulo-

instance pruning. Note that both dynamic pruning and modulo-instance prun-

ing are applied on expressions after they are pruned by static pruning. Column

Problem shows the Alloy model and the corresponding size used for genera-

tion. For each pruning environment, #expr shows the number of expressions

29

generated and time shows the time duration in milliseconds to generate all

expressions, with a time-out of one hour. The number of generated expressions

shown in the table is for expressions of all arities up to 3.

Expression generation using No Pr., AC Pr., and Static Pr. is

fast, taking at most 7.9 seconds (farmer and size 7 using No Pr.), but fre-

quently finishing in under a second. Accordingly, both AC Pr. and Static

Pr. have negligible overhead. However, the number of expressions gener-

ated can vary greatly, as seen in Table 3.4. No Pr. generates all possible

expressions and provides a means of measuring the effectiveness of different

pruning environments. Compared to No Pr., AC Pr. reduces the number

of expressions generated by 8.7–54.7%, while Static Pr. reduces the num-

ber of expressions generated by 36.6–91.4%. Compared directly, Static Pr.

generates 28.4–86.9% fewer expressions than AC Pr.. In other words, Static

Pr.’s additional pruning rules highlight that associativity and commutativity

are not strong enough to prune relational expressions on their own. Moreover,

Table 3.4 shows that the pruning rules for AC Pr. and Static Pr. reduce the

space of possible expressions by a large enough degree that both techniques

often finish faster thanNo Pr., despite the time they spend on applying equiv-

alence rules to check expressions. Although Static Pr. has 40 more rules than

AC Pr., the difference in runtime between AC Pr. and Static Pr. is often

less than a second. Therefore, Static Pr.’s rules are inexpensive to run but

effective at reducing the number of generated expressions.

We can analyze expressions to prune out more equivalences. Dynamic

30

Pr. further prunes expressions generated by Static Pr.; Dynamic Pr. is

motivated by using Alloy to find all equivalences (within a given scope), thus

capturing equivalences which cannot be captured by generic static pruning

rules. As expected, Dynamic Pr. reduces the number of expressions from

Static Pr., by 3.6–71.4%. Dynamic Pr. gives the minimum number of

non-equivalent expressions for each model, showing the lower bound of what

Static Pr. could achieve.

Modulo Pr. also filters expressions generated by Static Pr.; specif-

ically, Modulo Pr. reduces the expressions from Static Pr. by 5.0–91.3%.

Dynamic Pr. can be viewed as Modulo Pr. if the input test suite cov-

ered all instances in scope. However, since we use only 14 tests per model for

Modulo Pr., Modulo Pr. may even prune expressions that are semanti-

cally non-equivalent up to a given scope but equivalent over all 14 tests. For

example, Modulo Pr. prunes 10 more size 4 expressions and 223 more size

5 expressions for addr compared to Dynamic Pr.. Therefore, as expected,

Modulo Pr. can reduce the number of generated expressions compared to

Dynamic Pr., by as much as 50.2% (addr), or Modulo Pr. can generate

the same number of expressions (sll and size 4) but 5.2× faster. The trade-off

is that, while Dynamic Pr. is guaranteed to not prune expressions that are

semantically non-equivalent within a given scope, it is slower than Modulo

Pr.; Dynamic Pr. times out on 7 different problems, while Modulo Pr.

frequently finishes in under a minute, with the longest runtime being 2156.7

seconds. While Modulo Pr. provides a practical, lighter-weight alternative

31

to Dynamic Pr., Modulo Pr. still has a high overhead over Static Pr..

For instance, for farmer and size 7, Static Pr. can generate expressions in

4.0 seconds, while Modulo Pr. needs 2156.7 seconds to finish.

In our experiment, applying Dynamic Pr. orModulo Pr. on expres-

sions generated with No Pr. or AC Pr. takes significantly longer. Static

Pr.’s ability to significantly reduce the number of generated expressions, with

a negligible overhead, makes Static Pr. the recommended approach for re-

lational expression generation (even when considering more advanced pruning

techniques like Dynamic Pr. or Modulo Pr.). To check that our static

pruning rules are correct, we ran dynamic pruning on expressions generated

using AC Pr. and Static Pr.: we found that the numbers of non-equivalent

expressions generated after dynamic pruning for bothAC Pr. and Static Pr.

are exactly the same, which indicates that Static Pr. does not incorrectly

prune any non-equivalent expression.

3.4 Summary

We introduced RexGen, the first generator for non-equivalent relational

expressions. We presented a set of equivalence rules for relational expressions,

used them for pruning in our generator, embodied the generator based on the

Alloy tool-set, and presented an experimental evaluation of the effectiveness

of our non-equivalent generation for a variety of problems with relational con-

straints. RexGen provides the key step to address the broader problems of

synthesis and repair of declarative models in Alloy. The next chapter on AS-

32

ketch shows how to use the generated expressions to synthesize Alloy models

from sketches. We hope our work inspires the development of a broader tool-

set to support software models and eventually leads to more reliable software

systems.

33

Table 3.4: RexGen performance. Times are in ms. ⊥ indicates a timeout (>1
hour).

Problem No Pr. AC Pr. Static Pr. Dynamic Pr. Modulo Pr.
#expr time #expr time #expr time #expr time #expr time

ad
d
r

4 231 2 199 4 129 25 118 1259 108 279
5 3984 18 2374 19 1335 56 823 15869 600 1396
6 7913 27 5563 29 2034 64 1193 19359 900 1879
7 139971 204 65346 131 24839 189 7116 635296 3546 7902

b
em

p
l 4 427 5 377 6 261 29 246 1939 237 343

5 7027 27 4369 25 2463 64 1708 25098 1424 2999
6 15396 50 11144 41 4096 80 2588 43840 2198 3814
7 254843 363 128706 274 47747 296 15363 1555983 10309 29174

b
tr
ee

4 415 4 355 6 223 29 215 6247 196 484
5 3264 18 2391 18 1032 51 915 62153 740 1920
6 17956 42 12919 41 4553 93 3424 999892 2227 6221
7 139882 204 88578 148 25031 195 ⊥ ⊥ 8505 26140

ct
re
e

4 369 4 327 6 202 27 185 2773 144 754
5 4625 21 3031 21 1446 59 996 28674 737 5282
6 14315 37 10707 38 3473 79 2143 192314 1169 9584
7 168181 221 93805 175 27660 213 ⊥ ⊥ 5530 60968

d
ij
ks
tr
a 4 287 2 251 4 140 26 135 2235 133 264

5 4661 19 2763 20 1397 53 1097 20544 1069 2185
6 9939 30 7159 39 2175 60 1637 36446 1552 3083
7 138703 213 65991 139 17976 180 7007 670275 5704 17820

d
tr
ee

4 111 1 95 3 40 21 38 680 37 144
5 581 4 438 6 116 30 105 2809 102 401
6 2957 15 2130 14 376 39 250 11247 234 841
7 17109 40 11191 34 1464 61 771 82268 691 1686

fa
rm

er

4 1077 8 939 8 654 39 619 28327 454 695
5 41007 73 24322 53 16969 141 ⊥ ⊥ 5116 8992
6 96607 140 68468 124 33097 215 ⊥ ⊥ 9247 22555
7 3666499 7942 1661501 4581 923952 3985 ⊥ ⊥ 80553 2156722

ge
n
e

4 641 5 551 6 376 32 348 10853 242 916
5 12055 31 7653 29 4597 83 3228 632913 1675 8614
6 42897 76 30703 64 14621 145 ⊥ ⊥ 4324 20490
7 763031 1998 393015 1150 177920 665 ⊥ ⊥ 26222 326804

gr
ad

e

4 421 4 373 6 267 30 244 2570 229 447
5 6533 25 4168 25 2342 65 1496 28995 1105 2450
6 14930 45 11033 42 4141 89 2321 52542 1740 3446
7 234482 373 122012 258 45312 311 13166 1858565 7300 19416

h
sh
ak
e 4 471 3 403 5 260 31 244 8543 173 1131

5 5625 20 3805 22 1936 61 1505 164478 1020 8180
6 25523 51 18319 46 7640 112 5378 2570827 3031 21775
7 286661 355 163874 247 58505 318 ⊥ ⊥ 16149 222019

re
sf
m

4 1030 8 940 12 652 38 625 10051 510 767
5 18692 50 12250 42 7337 99 5705 336197 3626 5634
6 47128 111 35984 94 13384 146 9406 938031 5026 9076
7 822434 2107 449935 653 175337 845 ⊥ ⊥ 24997 181425

sl
l

4 209 2 183 4 104 25 98 1468 98 283
5 1549 10 1100 13 397 40 331 6868 330 987
6 6267 25 4694 25 1203 58 808 37988 803 2593
7 45527 86 28622 64 5463 95 2712 429769 2671 9391

34

Chapter 4

Solver-based Sketching of Alloy Models2

In this chapter, we introduce ASketch – the first solver-based sketching

framework for Alloy. We present the technique through an example and show

in detail each step of the technique. Experimental results show that ASketch

works well for different Alloy models with various number of holes, providing

a promising approach to bring the success of traditional program sketching for

imperative and functional programs to declarative, relational logic.

The rest of the chapter is organized as follows. Section 4.1 presents an

example. Section 4.2 describes the technique in detail. Section 4.3 evaluates

ASketch. Section 4.4 summarizes the chapter.

4.1 Example

To illustrate our ASketch approach, consider the following partial Alloy

model for an acyclic singly linked list:

one sig List { header: lone Node } sig Node { link: lone Node }
pred Acyclic() { \Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ }
q := {| all|no|some|lone|one |}

2Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. Solver-based
sketching Alloy models using test valuations. In ABZ, 2018.

35

T0 T1 T2 T3

L0 L0

N0

header

L0

N0 N1

header

link

L0

N0 N1

header

link

Figure 4.1: Four test valuations shown graphically: T0, T1, and T3 are valid
for the expected acyclicity; T2 is invalid. L0 is the list atom; N0 and N1 are
node atoms.

co := {| =|in|!=|!in |}
e := {| (List.header|n).(~?)(*|^)link |}

The signature (sig) declaration introduces a set of atoms and a user-

defined type. A signature may declare fields, i.e., relations. List declares

a set of list atoms; one makes the set singleton, i.e., have exactly 1 atom,

which represents the list we are modeling. The field header declares a binary

relation of type List× Node; lone declares header to be a partial function, i.e.,

each List atom maps to at most one Node atom. Node declares a set of nodes

and introduces the field link, which is a partial function of type Node× Node.

The predicate (pred) Acyclic introduces a named formula (which may have

parameters).

The body of the predicate is a formula sketch with three different kinds

of holes: \Q,q\ (quantifier hole), \CO,co\ (comparison operator hole), and

\E,e\ (expression hole). For the sake of illustrative example, we create several

holes of different kinds (potentially more than a user would actually create),

and we explicitly list all potential fragments for each hole. Each hole states the

36

syntactic kind of the hole followed by an identifier, e.g., E followed by e. Each

identifier refers to a regular expression (within {| ... |}, following [126]),

e.g., e refers to "(List.header|n).(~?)(*|^)link", which encodes a set of eight

Alloy expressions in this example, including expressions List.header.*link

and n.^link. ASketch extends the Alloy grammar [136] with these holes. The

variable n is introduced by the quantifier (to be sketched) and is of type Node;

the operator => denotes logical implication.

The goal is to fill in the holes such that the formula constrains the

nodes in the list to form an acyclic structure. Figure 4.1 graphically illustrates

four test valuations for the model. Three valuations—T0, T1, and T3—are

valid with respect to the expected acyclicity constraint. One valuation, T2, is

invalid. Note that T3 is valid although N1 links to itself: N1 is not in the list,

and the formula we are sketching should constrain only the nodes that are in

the list, i.e., reachable from the header.

The user can provide the test valuations simply as Alloy predicates. For

example, the following represent test valuations T0 and T2 from Figure 4.1:

pred Test0() {
some L0: List {

List = L0 and no header and no Node and no link and Acyclic[] }}
pred Test2() {

some L0: List | some disj N0, N1: Node {
List = L0 and header = L0->N0
Node = N0+N1 and link = N0->N1 + N1->N0 and !Acyclic[] }}

The predicate Test0 uses an existentially quantified (some) formula to assign a

value to the List set. Using the Alloy keyword "no", Test0 declares the other

37

signatures and relations to be empty. The predicate invocation Acyclic[]

labels the valuation as valid for the expected acyclicity constraint. The pred-

icate Test2 uses existentially quantified formulas to assign values to the List

and Node sets. The keyword "disj" requires the variables in the declara-

tion to represent disjoint sets (i.e., unique nodes), the operator -> denotes

Cartesian product, the operator + denotes set union, and the predicate invo-

cation !Acyclic[] labels the valuation as invalid for the expected acyclicity

constraint.

Consider using ASketch to complete all five holes. Two are expression

holes \E,e\ with the same given regular expression assigned for the fragment

space, and each expression hole has eight syntactically different expression

fragments. Alloy also allows five quantifiers for \Q,q\ (all, no, some, lone,

and one) and four comparison operators for \CO,co\ (=, in, !=, and !in). In

total, there are 5 × 4 × 8 × 4 × 8 = 5, 120 candidate Alloy models. For our

example, we use 8 test valuations to obtain the expected solutions (4 shown

in Figure 4.1 plus 4 more). To complete the sketch, ASketch takes less than

1 second when solving the entire Alloy meta-model that encodes all 5,120

models and 8 valuations at once. Here is a solution ASketch finds:

all n: Node | n in List.header.*link => n !in n.^link

The Alloy keyword "in" represents the subset, and ! denotes logical

negation. The operator * denotes reflexive transitive closure, and ^ denotes

transitive closure. The expression "List.header.*link" represents the set of

all nodes reachable from the list’s header (following zero or more traversals

38

of the field link). The expression "n.^link" represents the set of all nodes

reachable from n (following one or more traversals of the field link). Thus,

this universally quantified formula states that for any node that is in the list,

the node is not reachable from itself, which correctly characterizes our expected

acyclicity constraint.

4.2 ASketch Framework

We next present the ASketch grammar for Alloy models with holes

and describe how ASketch determines which fragments complete the sketch to

produce an Alloy model that satisfies all the given test valuations.

4.2.1 Input Language

The input to ASketch is an Alloy model with holes. For lack of space,

we do not show the full grammar for ASketch’s input language, but it effec-

tively extends the Alloy grammar with new syntactic constructs that repre-

sent holes. The current Alloy grammar is available at http://alloy.csail.

mit.edu/alloy/documentation/alloy4-grammar.txt; we follow an older expo-

sition [42] that included the semantics of the kernel Alloy language. Consider

this part of the ASketch grammar:

quant ::= "all" | "no" | "some" | "lone" | "one" | "\Q," identifier "\"
expr ::= "*"expr | expr "+" expr | ... | "\E," identifier "\"
compareOp ::= "=" | "in" | "!=" | "!in" | "\CO," identifier "\"
formula ::= quant v ":" type "|" formula | ...
regExDecl ::= identifier ":=" "{|" regex "|}"
regex ::= nonSpecial | regex "?" | "(" regex ")" | regex regex | regex "|" regex

39

Table 4.1: Supported fragments for non-recursively defined holes

Sketch Kind Hole Candidates Sketch Kind Hole Candidates
Quantifier \Q\ all, no, some, lone, one Unary Operator Formula \UOF\ !, ε
Logical Operator \LO\ ||, &&, <=>, => Unary Operator Expression \UOE\ ~, *, ^
Compare Operator \CO\ =, in, !=, !in Binary Operator \BO\ &, +, -
Unary Operator \UO\ no, some, lone, one

We extend quant so the quantifier can be a hole \Q,i\ where Q indi-

cates the quantifier hole kind and i is an identifier that maps to a regular

expression via regExDecl. The expr options include the expressions from Al-

loy, formed with unary (e.g., *) or binary operators (e.g., +), and we add a hole

(\E,i\) that can replace an entire expression. Comparison operators include

all operators from Alloy and also a hole \CO,i\. The formula options include

the Alloy first-order logic formulas. regExDecl has the form i:={|e|} where

i is referred from a hole and e is a regular expression. We follow the design

of popular sketching system [46, 126, 128] that include a few regular expres-

sion operators: options (e?), concatenations (e1 e2), and choices (e1 | e2).

nonSpecial is any character that Alloy supports except for "?", "(", ")", and

"|"; to use those, requires escaping them as "\(", "\)", and "\|". Finally,

ASketch generates all possible fragments that match e using a standard back-

tracking algorithm [65]. ASketch supports all fragments for non-expression

holes, as shown in Table 4.1. Our current implementation requires an explicit

regular expression for every hole, although a default could be set up such that

non-expression holes implicitly get all possible fragments without listing them

explicitly.

40

4.2.2 Solver-based sketching

ASketch reduces the sketching problem to a constraint-solving prob-

lem in the Alloy language itself, which is then solved by the Alloy Analyzer.

Effectively, ASketch generates one meta-model in Alloy that encodes multi-

ple potential solutions (i.e., concrete models) to the sketch. To represent the

fragments for each hole, two constructs are added to the meta-model: (1) an

Alloy atom that names a specific fragment for the hole, and (2) constraints

that characterize the semantics of the different fragments for the sketch.

Because ASketch uses the Alloy tool-set itself to encode Alloy expres-

sions and formulas, their semantics need not be explicitly modeled in Alloy;

rather, they just need to be stated—indeed, the Alloy tool-set understands

the semantics of Alloy. Therefore, we can use a shallow embedding of Alloy

fragments in the model. Specifically, to represent the expression fragments,

ASketch creates new Alloy functions, i.e., parameterized expressions. To rep-

resent the operator fragments, ASketch creates new Alloy predicates, i.e., pa-

rameterized formulas. Moreover, to encode multiple given test valuations in

the same meta-model, ASketch parameterizes formulas with respect to user-

defined relations, which are extracted out of their declaring signatures and

added as new parameters. Our encoding allows constraining the model with

respect to all valuation constraints at once—without causing an unnecessary

increase in the number of propositional variables in the resulting SAT formula

and without requiring higher-order solving [88].

We use the linked-list example from Section 4.1 to describe how AS-

41

ketch sketches the body of a predicate and completes five holes of three kinds—

quantifiers (\Q,q\), comparison operators (\CO,co\), and expressions (\E,e\).

ASketch uses the following steps to create an Alloy meta-model whose solu-

tions complete the sketch: (1) parameterize Alloy construct (Section 4.2.2.1);

(2) create Alloy meta constructs to encode holes (Section 4.2.2.2); (3) translate

test valuations to facts (Section 4.2.2.3); and (4) invoke the Alloy Analyzer to

complete the holes (Section 4.2.2.4).

4.2.2.1 Parameterize Alloy constructs

In the first step, ASketch parameterizes all predicates, functions, and

facts. To parameterize an Alloy fact, ASketch first converts it to a semantically

equivalent predicate. Without loss of generality, we only present how ASketch

parameterizes predicates. The goal is to allow multiple test valuations to be

encoded in the same meta-model. ASketch constructs a meta-model which

includes (1) all signature declarations from the partial model, but without any

of the declared relations, and (2) all predicates. Moreover, all predicates in the

meta-model get additional parameters: one new parameter per signature and

one new parameter per field; parameters that represent signatures have fresh

variable names generated, whereas those that represent fields use the same

names as in the partial model. In the body of the predicates, any reference to

a declared signature is replaced by the corresponding fresh variable name.

For our acyclic linked-list example from Section 4.1, we get:

one sig List {} sig Node {}
pred Acyclic(ls: one List, header: List -> Node,

42

ns: set Node, link: Node -> Node) {
\Q,q\ n: ns | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ }

4.2.2.2 Create Alloy meta constructs to encode holes

ASketch creates Alloy meta constructs that encode concrete values for

every hole in Alloy predicates. We present how to encode only quantifier holes,

comparison operator holes, and expression holes in Alloy predicates. The algo-

rithm takes as inputs a mapping from expression holes to the corresponding ex-

pression fragments and a mapping from holes to all Alloy variables (sigs, fields,

predicate parameters, let-bound variables, and quantified variables) in scope

of the holes. The algorithm iterates over each Alloy predicate in the meta-

model and updates the predicate body by recursively replacing ASketch holes

with predicate/function calls, and creating and adding the predicate/function

declarations to the meta-model. Note that any reference to a declared sig-

nature in the generated predicate/function is replaced by the corresponding

fresh variable name as described in Section 4.2.2.1, e.g., List with ls.

After this step, ASketch constructs the following meta-model (note that

the two comparison operator holes share the same operator fragments, and the

two expression holes share the same expression fragments):

pred Acyclic(ls: one List, header: List -> Node,
ns: set Node, link: Node -> Node) {
q1[RQ1, ls, header, ns, link] }

abstract sig Q {} one sig RQ1 in Q {}
one sig Q_All, Q_No, Q_Some, Q_Lone, Q_One extends Q {}
pred q1(h: Q, ls: one List, header: List -> Node,

ns: set Node, link: Node -> Node) {
h = Q_All => all n: ns | co2[RCO2, n, expr3[RE3, ls, header, ns, link, n]]

43

=> co2[RCO4, n, expr3[RE5, ls, header, ns, link, n]]
h = Q_No => no n: ns | co2[RCO2, n, expr3[RE3, ls, header, ns, link, n]]

=> co2[RCO4, n, expr3[RE5, ls, header, ns, link, n]]
... }

abstract sig CO {} one sig RCO2 in CO {} one sig RCO4 in CO {}
one sig CO_Eq, CO_In, CO_NEq, CO_NIn extends CO {}
pred co2(h: CO, e1, e2: set univ) {

h = CO_Eq => e1 = e2
h = CO_In => e1 in e2
... }

abstract sig E3 {} one sig RE3 in E3 {} one sig RE5 in E3 {}
one sig E3_1, E3_2, E3_3, E3_4, E3_5, E3_6, E3_7, E3_8 extends E3 {}
fun expr3(h: E3, ls: one List, header: List -> Node,

ns: set Node, link: Node -> Node, n: one Node): univ {
(h = E3_1 => ls.header.*link else
(h = E3_2 => n.^link else
... else none)) }

For quantifier holes, ASketch creates a unique abstract sig Q and de-

clares 5 disjoint singleton sigs that represent all possible values for the hole

(all, no, some, lone, and one). For each quantifier hole, ASketch translates the

quantified formula to a predicate call. The predicate has the following param-

eters: (1) one parameter of the new abstract sig type that allows evaluating

the predicate to one of the 5 quantifiers; and (2) one parameter for each vari-

able in scope: signatures and fields from the original model, and optionally,

predicate parameters, let-bound variables, and/or quantified variables in case

of nested quantified formulas. The corresponding predicate declaration, q1 in

our example, is added to the meta-model. The predicate body is a conjunc-

tion of implications that model different quantified formulas corresponding to

the hole. ASketch also introduces a result sig, RQ1 in our example, that will

obtain one of the 5 values (Q_All, Q_No, Q_Some, Q_Lone and Q_One) to represent

the quantifier to fill in the hole.

44

For comparison operator holes, ASketch creates a unique abstract sig

CO and declares 4 disjoint singleton sigs that represent all possible values for

the hole (=, in, !=, and !in). Unlike for quantifier holes where each hole

requires a new predicate, all comparison operator holes (of the same arity) can

be encoded using a single predicate if they share the same set of fragments.

ASketch creates a predicate, co2 in our example, which encodes a formula that

contains a comparison operator. The predicate contains 3 parameters: (1) one

parameter of the new abstract sig type that allows evaluating the predicate to

one of the 4 comparison operators (CO_Eq, CO_In, CO_NEq, and CO_NIn); (2) left

operand; and (3) right operand. For each comparison operator hole, ASketch

introduces a result sig, RCO2 and RCO4 in our example, similar as for quantifier

holes. (ASketch treats the other non-expression holes similar to comparison

operator holes.)

To model values of expression holes, ASketch creates one new abstract

sig, E3 in our example, for all holes that share the same set of expression

fragments and declares k singleton sigs that partition the new sig, where k is

the number of expression fragments for the corresponding expression hole, 8 in

our example. ASketch also introduces result sigs, RE3 and RE5 in our example,

that will obtain one of the k values to represent which fragment fills the hole.

Next, ASketch creates an Alloy function that can select from these choices.

The function has these parameters: (1) one parameter of the new abstract

sig type that allows evaluating the function to one of the expression fragments

based on the invocation context; and (2) one parameter for each Alloy variable

45

in scope. The function body is a nested if-then-else expression where exactly

one choice is true for any invocation, and the function evaluates to the value

of the expression fragment corresponding to that choice.

4.2.2.3 Express test valuations as facts

To complete the sketch with respect to the given test valuations (la-

beled as valid or invalid), ASketch automatically translates the test valuations

(expressed as predicates in Section 4.1) to facts, which forces any solution

that is created (in the final meta-model) to conform to all given valuations.

Because valuations from different tests may contradict one another, ASketch

uses Alloy’s let construct to introduce the necessary names for sets and rela-

tions that are assigned values. Then, ASketch passes these sets and relations

to the parameterized predicates (described in Section 4.2.2.1) so that the fi-

nal sketched model satisfies all the tests at once. For example, Test0 from

Section 4.1 becomes the following fact:

fact Test0 {
some L0: List {

let ls = L0 | let header = none->none |
let ns = none | let links = none->none |

Acyclic[ls, header, ns, links] }}

4.2.2.4 Invoke Alloy Analyzer to complete holes

The final meta-model consists of all pieces generated in sections 4.2.2.1,

4.2.2.2, and 4.2.2.3. ASketch invokes the Alloy Analyzer to execute an empty

run command (run {}) on the final meta-model. The analyzer searches for

46

possible valuations of the result R sigs so that they conform to all tests. In our

example, RQ1 evaluates to Q_All, RCO2 to CO_In, RE3 to E3_1, RCO4 to CO_NIn, and

RE5 to E3_2. Finally, ASketch maps result values to the corresponding Alloy

fragments and reports concrete values of all holes to the user, e.g., 〈all, in,

List.header.*link, !in, n.ˆlink〉 in our example. The completed, sketched

model becomes this:

one sig List { header: lone Node } sig Node { link: lone Node }
pred Acyclic() { all n: Node | n in List.header.*link => n !in n.^link }

Our example used only 8 expressions, but realistic ASketch models may

have hundreds of expressions, which results in much larger meta-models. Our

experiments show that the above encoding technique still works relatively well

even for a large number of expressions. It also works much better than all

other meta-model encoding techniques we tried.

4.3 Evaluation

We next present our experimental evaluation of ASketch. We use five

small but intricate Alloy problems to derive 24 sketching models for evaluation

(Section 4.3.1). We evaluate how much time ASketch takes to find complete

Alloy models that satisfy all test valuations (Section 4.3.2).

4.3.1 Sketching problems

We use 24 sketches derived from five core Alloy models: sll from Sec-

tion 4.1, btree models the acyclicity constraint of a binary tree, contains

47

checks whether a list contains an element, remove models removing an ele-

ment from a list, and dijkstra models Dijkstra’s mutual exclusion algorithm.

For each core model, we picked one predicate to create several sketches

by increasing the total number of holes in the body of the predicate, from

left to right. This process enables us to systematically create model variants

to explore how the number of holes affects our techniques. For example, for

sll, we identified 3 non-expression holes and 2 expression holes in the Acyclic

predicate and produced these 5 variants:

\Q,q\ n: Node | n in List.header.*link => n !in n.^link // LinkedList 1H
\Q,q\ n: Node | n \CO,co\ List.header.*link => n !in n.^link // LinkedList 2H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n !in n.^link // LinkedList 3H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ n.^link // LinkedList 4H
\Q,q\ n: Node | n \CO,co\ \E,e\ => n \CO,co\ \E,e\ // LinkedList 5H

Our experiments are performed on a MacBook Pro running OS X El

Capitan with 2.5 GHz Intel Core i7-4870HQ and 16GB of RAM.

4.3.2 ASketch results

Table 4.2 shows the results of ASketch for various sketching problems.

The column Model shows the model variants for each core model; columns

#N and #E show the number of non-expression holes and expression holes,

respectively; the column Search Space shows the number of fragments com-

binations for all holes; and the columns #PrimVar, #Clauses, and Solving

Time show the number of primary variables, clauses, and solving time in sec-

onds for the meta model, respectively. The Search Space is computed as

48

the product of the number of fragments for each hole in the model. For ex-

ample, if the sll model with 5 holes has 1 quantifier hole with 5 fragments,

2 comparison operator holes with 4 fragments each, and 2 expression holes

with 400 fragments each, then the sketching problem has a search space of

5× 42 × 4002 = 12, 800, 000 ∼= 1.3e7.

The columns 50, 100, 200, 300, and 400 show the number of expression

fragments in the experiment, e.g., 50 means that we use 50 syntactically dif-

ferent expressions for each expression hole in the model variant. We generate

regular expressions for expression holes using RexGen such that two properties

hold. First, the set of expressions contains the expected solutions. Second, the

larger set of expressions contains all expressions from the smaller set, e.g., the

set of 100 expressions includes the set of 50 expressions and adds 50 more. We

ensure the first property as follows. Suppose we have H expression holes and

E expected expressions to fill the holes. We run RexGen to get X expressions

and exclude E expected expressions from X expressions. Next, we run AS-

ketch to find all solutions w.r.t. the test valuations and exclude any expression

in the solutions that is non-equivalent to any of the E expected expressions.

The idea is to remove all expressions that could lead to a solution that passes

all tests but is incorrect. Then, to form a set of expressions with size Y (where

Y is 50, 100, 200, 300, or 400), we sample the remaining expressions to obtain

Y − E expressions, and add the E expected expressions back .

dijkstra has two expression holes with different variables in scope, so

each expression hole uses a different set of expression fragments (but with

49

the same number of expressions). Expression holes for each of sll, btree,

contains, and remove share the same set of expression fragments. In the

experiments, we use 16 test valuations for each core model, and all model

variants of the same core model share the same test suite. All experiment

settings, with various fragments and test valuations, yield solutions that are

semantically equivalent to the correct solutions.

If a sketch has no expression hole, then increasing the number of the

expression fragments does not increase the search space, primary variables, or

clauses in the generated meta-model. For example, btree model with 1 hole

has only a comparison operator hole, and the search space (4), the number of

primary variables (170), and clauses (7,957) remain unchanged as the number

of expression fragments increases. If the sketch has expression holes, then

the search space, primary variables, and clauses increase when we use more

expression fragments. In our experiment, the search space goes up to 4.1e9

(btree), the number of primary variables goes up to 1420 (remove), and the

number of clauses goes up to 2.3e6 (dijkstra). Overall these numbers show

that the sketching problems are non-trivial.

The solving time depends on various factors, including the number of

primary variables and clauses, the size of each clause, the complexity of the

expression fragments, the search strategy of the SAT solver, etc. In general, the

solving time increases with the size of the search space and the number of holes.

However, there are exceptions. For example, in sll with 4 holes, the solving

time decreases as the size of expression fragments grows from 300 to 400. The

50

Ta
bl
e
4.
2:

A
Sk

et
ch

re
su
lt
s
fo
r
fin

di
ng

a
so
lu
ti
on

.
T
im

es
ar
e
in

se
co
nd

s.

M
od

el
#
N

#
E

S
ea
rc
h
S
p
ac
e

#
P
ri
m
V
ar

#
C
la
u
se
s

S
ol
vi
n
g
T
im

e
50

10
0

20
0

30
0

40
0

50
10

0
20

0
30

0
40

0
50

10
0

20
0

30
0

40
0

50
10

0
20

0
30

0
40

0

sll

1H
1

0
5

5
5

5
5
13

8
13

8
13

8
13

8
13

8
61

70
61

70
61

70
61

70
61

70
0.
1

0.
2

0.
1

0.
1

0.
1

2H
2

0
20

20
20

20
20

14
2

14
2

14
2

14
2

14
2

73
97

73
97

73
97

73
97

73
97

0.
2

0.
2

0.
2

0.
2

0.
2

3H
2

1
1e
3

2e
3

4e
3

6e
3

8e
3
19

2
24

2
34

2
44

2
54

2
6.
3e
4
1.
1e
5
2.
3e
5
3.
6e
5
5.
1e
5

2.
8

4.
5

88
.6

26
7.
9

14
1.
0

4H
3

1
4e
3

8e
3
1.
6e
4
2.
4e
4
3.
2e
4
19

6
24

6
34

6
44

6
54

6
6.
5e
4
1.
2e
5
2.
4e
5
3.
8e
5
5.
3e
5

3.
2

5.
2

91
.1

28
6.
6

15
0.
1

5H
3

2
2e
5

8e
5
3.
2e
6
7.
2e
6
1.
3e
7
24

6
34

6
54

6
74

6
94

6
1.
1e
5
2.
1e
5
4.
4e
5

7e
5

1e
6

6.
7
32

.5
25

2.
9

57
4.
6

75
9.
1

btree

1H
1

0
4

4
4

4
4
17

0
17

0
17

0
17

0
17

0
8e
3

8e
3

8e
3

8e
3

8e
3

0.
1

0.
1

0.
1

0.
1

0.
1

2H
1

1
2e
2

4e
2

8e
2

12
00

16
00

22
0

27
0

37
0

47
0

57
0

6e
4
1.
1e
5
2.
2e
5
3.
5e
5
4.
8e
5

0.
6

1.
1

3.
1

5.
7

5.
6

3H
2

1
8e
2

16
00

32
00

48
00

64
00

22
4

27
4

37
4

47
4

57
4
6.
1e
4
1.
1e
5
2.
2e
5
3.
5e
5
4.
9e
5

0.
5

1.
4

2.
9

3.
6

12
.3

4H
2

2
4e
4
1.
6e
5
6.
4e
5
1.
4e
6
2.
6e
6
27

4
37

4
57

4
77

4
97

4
8.
6e
4
1.
7e
5
3.
6e
5
5.
8e
5
8.
4e
5

1.
4

5.
6

27
.6

36
.9

26
5.
7

5H
3

2
1.
6e
5
6.
4e
5
2.
6e
6
5.
8e
6

1e
7
27

8
37

8
57

8
77

8
97

8
8.
6e
4
1.
7e
5
3.
6e
5
5.
8e
5
8.
4e
5

1.
8

7.
0

30
.3

47
.5

12
7.
4

6H
3

3
8e
6
6.
4e
7
5.
1e
8
1.
7e
9
4.
1e
9
32

8
47

8
77

8
10

78
13

78
1.
1e
5
2.
3e
5
4.
9e
5
8.
1e
5
1.
2e
6

1.
4
37

.7
13

8.
7

51
5.
1

70
9.
3

contains

1H
0

1
50

1e
2

2e
2

3e
2

4e
2
31

2
36

2
46

2
56

2
66

2
3.
3e
4
6.
1e
4
1.
3e
5
2.
2e
5
3.
2e
5

0.
4

0.
7

3.
2

7.
4

7.
6

2H
1

1
2e
2

4e
2

8e
2

12
00

16
00

31
6

36
6

46
6

56
6

66
6
5.
4e
4

1e
5
2.
1e
5
3.
2e
5
4.
6e
5

0.
7

1.
7

9.
4

25
.1

24
.9

3H
1

2
1e
4

4e
4
1.
6e
5
3.
6e
5
6.
4e
5
36

6
46

6
66

6
86

6
10

66
7.
7e
4
1.
5e
5
3.
3e
5
5.
4e
5
7.
9e
5

2.
0
15

.6
10

3.
3

39
7.
0

19
25

.2

remove

1H
0

1
50

1e
2

2e
2

3e
2

4e
2
26

7
31

7
41

7
51

7
61

7
4e
4
7.
3e
4
1.
5e
5
2.
5e
5
3.
6e
5

0.
2

0.
5

1.
1

2.
2

4.
4

2H
1

1
15

0
3e
2

6e
2

9e
2

12
00

27
0

32
0

42
0

52
0

62
0
4.
1e
4
7.
4e
4
1.
5e
5
2.
5e
5
3.
6e
5

0.
3

0.
7

1.
3

2.
8

5.
3

3H
1

2
75

00
3e
4
1.
2e
5
2.
7e
5
4.
8e
5
32

0
42

0
62

0
82

0
10

20
7.
2e
4
1.
4e
5

3e
5

5e
5
7.
3e
5

0.
7

2.
0

3.
6

16
.7

75
.9

4H
1

3
3.
8e
5

3e
6
2.
4e
7
8.
1e
7
1.
9e
8
37

0
52

0
82

0
11

20
14

20
1e
5
2.
1e
5
4.
5e
5
7.
5e
5
1.
1e
6

7.
0
62

.2
61

.6
69

03
.8

19
57

9.
8

dijkstra

1H
1

0
4

4
4

4
4
37

0
37

0
37

0
37

0
37

0
93

48
93

48
93

48
93

48
93

48
0.
1

0.
1

0.
0

0.
0

0.
0

2H
1

1
2e
2

4e
2

8e
2

12
00

16
00

42
0

47
0

57
0

67
0

77
0
9.
2e
4
1.
4e
5
2.
6e
5
3.
9e
5
5.
4e
5

1.
1

2.
1

4.
8

24
.2

21
.9

3H
2

1
1e
3

2e
3

4e
3

6e
3

8e
3
40

4
45

4
55

4
65

4
75

4
9.
2e
4
1.
4e
5
2.
6e
5
3.
9e
5
5.
4e
5

1.
1

2.
2

4.
9

21
.6

22
.1

4H
3

1
5e
3

1e
4

2e
4

3e
4

4e
4
40

9
45

9
55

9
65

9
75

9
9.
4e
4
1.
5e
5
2.
6e
5

4e
5
5.
4e
5

1.
9

4.
2

6.
0

40
.9

41
.3

5H
4

1
2e
4

4e
4

8e
4
1.
2e
5
1.
6e
5
41

3
46

3
56

3
66

3
76

3
9.
8e
4
1.
5e
5
2.
7e
5

4e
5
5.
5e
5

1.
7

2.
9

14
.3

26
.9

46
.9

6H
4

2
1e
6

4e
6
1.
6e
7
3.
6e
7
6.
4e
7
46

3
56

3
76

3
96

3
11

63
2.
7e
5
5.
4e
5
1.
1e
6
1.
7e
6
2.
3e
6
26

.8
80

.6
10

53
.1

45
42

.8
65

35
.0

51

reason is that multiple expression fragments are correct and equivalent. We

cannot control how the Alloy Analyzer generates CNF clauses from the meta-

model, so some solutions are found sooner than the others even if we increase

the search space. Another exception is when btree goes from 4 holes to 5

holes using 400 expression fragments. Again, the solving time decreases as

the number of holes increases. The reasons are that (1) adding an operator

hole does not increase the number of primary variables or clauses by much; (2)

it can make the sketching problem easier to solve as more equivalent correct

solutions can be found; and (3) the Alloy Analyzer encodes the problem such

that the solver is able to find the solution fast. Overall, ASketch’s encoding is

relatively efficient and works well for large search spaces.

4.4 Summary

We introduced ASketch, the first solver-based approach for sketching

Alloy models. Given a model with holes and some (valid and invalid) valua-

tions for the desired model, ASketch completes the given model with respect

to the valuations. ASketch performs two key steps: it generates a pool of

fragments (e.g., expressions) for each hole from user-provided regular expres-

sions, and it creates a meta-model to explore the resulting space of candidate

(completed) models to find a model that conforms to the valuations. An ex-

perimental evaluation using a suite of sketches shows that ASketch introduces

a promising approach for sketching Alloy models. ASketch brings the spirit

of traditional program sketching [7, 38, 46, 60, 123, 125–129]—often regarded as

52

the breakthrough approach in program synthesis for imperative and functional

programs during the last decade—to a declarative, relational logic. We hope

ASketch serves as a sound basis for a highly effective methodology for synthe-

sizing Alloy models, which ultimately increases the use of analyzable models

and leads to better software.

53

Chapter 5

Fault Localization for Alloy

In this chapter, we introduce AlloyFL, which includes a set of fault

localization techniques at the AST node granularity for Alloy. These tech-

niques include the spectrum-based (AlloyFLco), mutation-based (AlloyFLmu

and AlloyFLhy) and sat-based (AlloyFLun and AlloyFLsu) fault localization

techniques. We also introduce new distance metrics that measure the cost for

human to inspect the list of suspicious nodes returned by AlloyFL, following

the spirit of the nearest neighbor distance metric based on program depen-

dence graphs [111]. The experimental results show that mutation-based fault

localization techniques outperform other techniques.

The rest of the chapter is organized as follows. Section 5.1 presents

an example. Section 5.2 describes in detail the techniques to locate faults.

Section 5.3 describes the metrics we introduce to measure AlloyFL. Section 5.4

evaluates AlloyFL. Section 5.5 summarizes the chapter.

5.1 Example

This section presents a real-world faulty Alloy model to introduce key

concepts for AlloyFL. We briefly describe the basics of Alloy and AUnit as

54

open util/ordering[State] as ord

abstract sig Object { eats: set Object }

one sig Farmer, Fox, Chicken, Grain

extends Object {}

fact eating {

eats = Fox->Chicken + Chicken->Grain }

sig State { near,far: set Object }

fact initialState {

let s0 = ord/first |

s0.near = Object && no s0.far }

pred crossRiver[from,from’,to,to’: set Object] {

(from’ = from - Farmer &&

to’ = to - to.eats + Farmer)

|| (some item: from - Farmer {

from’ = from - Farmer - item &&

to’ = to - to.eats + Farmer + item }) }

fact stateTransition {

all s: State, s’: ord/next[s] {

Farmer in s.near =>

crossRiver[s.near,s’.near,s.far,s’.far]

else

crossRiver[s.far,s’.far,s.near,s’.near]}
}
pred solvePuzzle { ord/last.far = Object }

(a) Faulty Farmer Model

pred test1 {

some disj F0: Farmer |

some disj X0: Fox |

some disj C0: Chicken |

some disj G0: Grain |

some disj F0, X0, C0, G0: Object |

some disj S0, S1, S2, S3: State {

Farmer = F0
Fox = X0
Chicken = C0
Grain = G0
Object = F0 + X0 + C0 + G0

eats = X0->C0 + C0->G0
State = S0 + S1 + S2 + S3
near = S0->F0 + S0->X0 + S0->C0 + S0->G0 +

S1->X0 + S2->F0 + S2->X0 + S3->X0
far = S1->F0 + S1->G0 + S2->G0 +

S3->F0 + S3->G0

ord/first = S0

ord/next = S0->S1 + S1->S2 + S2->S3

crossRiver[F0+X0+C0+G0,C0,none,F0+X0]

} }

run test1 for 4 expect 1

// More tests ...

(b) MuAlloy Generated Tests

Figure 5.1: Faulty Farmer Example and MuAlloy Generated Tests.

needed.

Figure 5.1a shows a faulty Alloy model of the well-known "farmer river-

crossing" puzzle where the goal is to allow a farmer to transport a chicken, fox,

and grain from one river bank to the other on a boat. However, the farmer

can only carry one belonging on the boat at a time, and if left unattended,

the fox will eat the chicken and the chicken will eat the grain. The model

55

contains a modeling error which prevents the "eating" from happening while

the farmer is away, and instead requires the farmer to be back. Figure 5.1b

shows an AUnit test that fails.

The signature (sig) declaration, "sig Object", introduces a set of ob-

ject atoms; abstract means the Object signature cannot have atoms of its own

type, but its subsignatures can have atoms. eats is a relation that maps an

Object atom to a set of Object atoms. Farmer, Fox, Chicken and Grain are

declared as singleton subsignatures of Object. The fact eating states that

the fox eats the chicken and the chicken eats the grain. Note that any fact

in Alloy is enforced to be true. Signature State models the objects in both

the near and far banks after every farmer’s cross-river movement. The open

declaration linearly orders the State atoms. The fact initialState constrains

that initially everything is on the near bank and nothing is on the far bank.

The predicate crossRiver defines the river crossing action. It takes four pa-

rameters (2 pairs of pre and post states): the set of objects on the bank where

the farmer starts at (pre-state:from and post-state:from’) and crosses to (pre-

state:to and post-state:to’) before and after the cross-river movement. The

predicate states that either the farmer takes nothing or the farmer takes one

item not including himself to the other side of the river. For the case when the

farmer takes nothing the model uses a conjunction formula: "from’ = from -

Farmer && to’ = to - to.eats + Farmer" which means that after the farmer

crosses the river from bank, say A to bank, say B, the farmer is removed from

the set of objects on bank A and added to the set of objects on bank B. When

56

moving, the objects on bank B could change because an object may eat an-

other object before the farmer’s arrival. For the case when the farmer takes an

item, the model uses an existentially quantified formula: "some item: from

- Farmer | ...". The fact stateTransition states that for every two consec-

utive states, if the farmer is on the near bank in the pre-state, then he would

cross the river to the far bank. Otherwise, he would cross the river from the

far bank to the near bank. The predicate solvePuzzle restricts that in the last

state, everything should be on the far bank.

The faults are in the predicate crossRiver and are colored in orange.

The predicate considers eating to happen in "to" instead of "from", which

stops the farmer from leaving and letting the fox eat the chicken without the

farmer coming back. The correct formula should be: "from’ = from - Farmer

- from’.eats && to’ = to + Farmer" and "from’ = from - Farmer - item -

from’.eats && to’ = to + Farmer + item". This modeling error is introduced

in Alloy release 4.1 and fixed in release 4.2. An automatically generated AUnit

test that reveals the fault is shown in Figure 5.1b. Predicate test1 encodes

the valuation of each signature type in the farmer model in Figure 5.1a. Each

relation is assigned some atoms, e.g. Farmer contains a single atom F0. The

invocation of crossRiver predicate states that all objects are on the near bank

in the pre-state and nothing (none) is on the far bank. In the post-state (after

the farmer crosses the river with the fox), only the chicken is left on the near

bank (because the chicken is supposed to eat the grain) and both the farmer

and the fox are on the far bank. The command "run test for 4 expect 1"

57

runs the test with a scope of at most 4 atoms for each signature type and

expects the existence of a solution. However, the faulty farmer model does not

have any solution with respect to this test, which contradicts the expectation

and causes a test failure.

We use a test suite that contains some failing tests (e.g. test1) to locate

the fault using AlloyFL. AlloyFLco assigns all Alloy paragraphs equal suspi-

ciousness scores (except the fact solvePuzzle as it is never covered by any fail-

ing tests) because all tests implicitly invoke facts and the stateTransition fact

invokes the crossRiver predicate. The most suspicious AST nodes are high-

lighted in red (including yellow and green) in Figure 5.1a. Both AlloyFLun and

AlloyFLsu report the entire body of the crossRiver predicate as the most sus-

picious AST node which is highlighted in yellow (including green) . AlloyFLmu

and AlloyFLhy report the node "from’ = from - Farmer - item && to’ = to

- to.eats + Farmer + item" as the most suspicious node because mutating

the root node && makes the most failing tests pass compared to mutating

other AST nodes. Thus, the most suspicious node && and its descendants

are highlighted in green. We can see that the most suspicious node returned

by AlloyFLmu and AlloyFLhy is closest to the faulty node. Thus, the MBFL

techniques are most accurate among all techniques in this example.

5.2 Technique

In this section, we describe the formulas to compute suspiciousness

scores (Section 5.2.1) and all techniques in AlloyFL (Section 5.2.2).

58

Name Formula

Tarantula [52]
failed(e)

totalfailed
failed(e)

totalfailed
+

passed(e)
totalpassed

Ochiai [1]
failed(e)√

totalfailed×(failed(e)+passed(e))

Op2 [95] failed(e)− passed(e)
totalpassed+1

Barinel [3] 1− passed(e)
passed(e)+failed(e)

DStar [151] failed(e)∗

passed(e)+(totalfailed−failed(e))

totalfailed : the total number of test cases that failed.
totalpassed : the total number of test cases that pass.
failed(e): the number of failed test cases that cover or kill e.
passed(e): the number of passed test cases that cover or kill e.

Figure 5.2: Suspiciousness Formulas in AlloyFL.

5.2.1 Suspiciousness Formulas

Figure 5.2 shows the formulas that AlloyFLco, AlloyFLmu and AlloyFLhy

support to compute the suspiciousness score. For AlloyFLco, the code elements

(e) are AST nodes. For AlloyFLmu and AlloyFLhy, killed mutants are treated

as covered code elements while live mutants are treated as uncovered code

elements. totalfailed and totalpassed are the number of test cases which failed

and passed w.r.t. the original model. failed(e) and passed(e) are the number of

test cases which failed and passed that cover the AST node or kill the mutant

e.

59

(a) No hit (b) 1st hit (c) 2nd hit

Figure 5.3: Illustration of AlloyFLun and AlloyFLsu

5.2.2 AlloyFL

AlloyFL locates faults at the AST node granularity, which allows it

to locate faulty expressions or formulas that are hierarchical. We present

AlloyFLco as the first baseline technique and expect it to be inaccurate because

of the non-existence of control flow in the Alloy language. We next present

two baseline techniques, i.e. AlloyFLun and AlloyFLsu which simulate what

Alloy users can achieve by using the unsat core. Finally, we present two more

advanced techniques AlloyFLmu and AlloyFLhy which define a diverse set of

mutation operators and are shown to be more accurate.

AlloyFLco. Since Alloy does not have control-flow and execution traces, every

code element in the same paragraph will be either executed together or not

executed at all by a given test. This means nodes declared in the same para-

graph would share the same suspiciousness score. To implement AlloyFLco,

we build a static analyzer which analyzes the entire AST and binds a variable

60

usage or a predicate/function call to its signature or predicate/function dec-

laration. The static analyzer is used to find all Alloy paragraphs transitively

used by a test. However, the analyzer ignores dependencies that are never

used. For example, if a test uses a formula "all s: S, t: T | some s &&

p[s]" where variable "t" is not used and "p[s]" is a predicate invocation, then

the test only depends on signature "S" and predicate "p". By default, all facts

are implicitly used, and all paragraphs transitively invoked in the facts and

the test predicate are covered by the test. AlloyFLco computes a suspicious-

ness score for each Alloy paragraph based on the number of passing/failing

tests that cover it and a formula shown in Figure 5.2. Finally, all paragraphs

are ranked in descending order of suspiciousness score. In case of a tie, the

paragraph which has a smaller number of descendants is prioritized.

AlloyFLun. To implement AlloyFLun, we modify the standard Alloy toolset to

return AST nodes when the MiniSat solver with unsat core is used [137, 138].

We configure the solver such that it is guaranteed to return a local minimum

core and all formulas are fully expanded (pushing negations in as much as

possible, removing existential quantifiers using skolemization and expanding

universal quantifiers given the bounds on the signatures) to make the returned

core as fine-grained as possible. AlloyFLun constructs a hit-map for the entire

AST and every node in the AST has a count initially set to 0. If a node is

returned by the unsat core, then the count for the node itself and each of its

descendant increases by 1. To illustrate, Figure 5.3 shows how the hit-map is

built. Initially, each node has a count of 0 (Figure 5.3(a)). In Figure 5.3(b),

61

a node denoted by the square is returned by the unsat core and AlloyFLun

increases the counts of all the affected descendants. This process applies for

all the subsequently returned nodes. For example, suppose the square node in

Figure 5.3(c) is returned next, the count of each descendant is increased to 1

and the count of each previously hit node is increased to 2. Note that a child

node always has a count greater than or equal to its parent’s count. AlloyFLun

collects every node whose count is greater than its parent’s count, e.g. the gray

nodes in Figure 5.3(c). AlloyFLun does not collect the root node as we set the

root’s parent to null. The collected nodes are ranked in descending order of

the corresponding count. In case of a tie, nodes with a smaller number of

descendants are prioritized. Note that AlloyFLun only works for unsatisfiable

tests and cannot be used if the model is strictly underconstrained, in which

case no unsatisfiable failing test exists.

AlloyFLsu. Similar to AlloyFLun, AlloyFLsu also constructs a hit-map for

the entire AST. The difference is that AlloyFLsu uses nodes reported from

both unsatisfible and satisfiable failing tests. The nodes reported from the

unsatisfible failing tests are the same as for AlloyFLun, and the nodes reported

from the satisfiable failing tests are from the static analyzer described for

AlloyFLco. We give the official algorithm for AlloyFLsu in Algorithm 13. The

algorithm takes as input a faulty model M and a test suite T, and returns the

ranked list of the suspicious AST nodes L. L’ keeps the nodes returned by the

static analyzer and the unsat core. Both L and L’ are initialized to empty

lists. The algorithm collects the test results R by invoking T over M. For each

62

individual test result r, we skip if r is passed. If r fails and is satisfiable, then

we collect all transitively used nodes of the corresponding test by invoking the

static analyzer and add those nodes to L’. If r fails and is unsatisfiable, we

collect all nodes returned by the unsat core and add them to L’. Note that

L’ is a list of sets of nodes. To sort the nodes, we first initialize a hitmap

as an empty map with a default value of 0. For every set of nodes in L’, we

increase the counts of each individual node n in nodes and n’s descendants

in the hitmap. Then, for each node n whose count is bigger than its parent’s

count, we add it to L. Finally, we sort L in descending order of the number of

times a node is hit and prioritize nodes with a smaller number of descendants

in case of a tie. Algorithm 13 boils down to AlloyFLun if we do not collect

nodes when the test is satisfiable. The intuition of the algorithm is that nodes

covered by more failing tests are more likely to be faulty, and we use nodes

returned by the unsat core if possible because the core typically gives finer

grained nodes compared to the static analyzer.

AlloyFLmu. AlloyFLmu implements a wide variety of mutation operators as

shown in Figure 2.2. MOR mutates signature multiplicity, e.g. "one sig" to

"lone sig". QOR mutates quantifiers, e.g. some to all. UOR, BOR and

LOR define operator replacement for unary, binary and formula list operators,

respectively. For example, UOR mutates a.ˆb to a.∗b; BOR mutates a<=>b

to a=>b; and LOR mutates a||b to a&&b. UOI inserts an unary operator

before expressions, e.g. a.b to a.∼b. UOD deletes an unary operator, e.g.

a.ˆ∼b to a.ˆb. LOD deletes an operand of a logical operator, e.g. a&&b to b.

63

Algorithm 1: Sat-Unsat Based Fault Localization
Input: Faulty Alloy model M, test suite T.
Output: Ranked list of suspicious AST nodes L.

1 L ← [], L’ ← [], R = runTests(M, T)
2 foreach r ∈ R do
3 if r.isPassed() then continue
4 if r.isSatisfiable() then L’.add(staticAnalyze(r))
5 else L’.add(unsatCore(r))

6 hitmap ← <Node,Int>{} // Default value is 0
7 foreach nodes ∈ L’ do
8 foreach n ∈ nodes do
9 foreach d ∈ n.getDesc() do hitmap[d] += 1

10 foreach n ∈ hitmap do
11 if hitmap[n.getParent()] < hitmap[n] then L.add(n)

12 L.sortByHitAndSize(hitmap, reverse=True)
13 return L

PBD deletes the body of an Alloy paragraph. BOE exchanges operands for a

binary operator, e.g. a-b to b-a. IEOE exchanges the operands of imply-else

operation, e.g. "a => b else c" to "a => c else b".

Algorithm 16 shows the details of AlloyFLmu. The algorithm takes as

input a faulty Alloy model M, a test suite T, a set of mutation operators Ops

and a suspiciousness formula F. The output of the algorithm is a ranked list

of suspicious AST nodes (L) sorted in the descending order of suspiciousness.

Initially, L is set to an empty list. S keeps the set of nodes covered by failing

tests and is initialized as an empty set. AlloyFLmu runs T against M and the

results are stored in R. n2s keeps the mapping from a node to its suspiciousness

score and it is initialized to an empty map with a default value of 0. For each

64

Algorithm 2: Mutation-Based Fault Localization
Input: Faulty Alloy model M, test suite T, mutation operators

Ops, suspiciousness formula F.
Output: Ranked list of suspicious AST nodes L.

1 L ← [], S ← ∅, R = runTests(M, T)
2 n2s ← <Node, Double>{} // Default value is 0.0
3 foreach r ∈ R do
4 if r.isPassed() then continue
5 foreach n ∈ staticAnalyze(r) do S.addAll(n.getDesc())

6 foreach n ∈ M.getNodes() do
7 if n 6∈ S then continue
8 foreach op ∈ Ops do
9 if !isApplicable(op, n) then continue

10 M’ = applyOp(op, n, M)
11 if isValid(M’) && !isEquivalent(M, M’) then
12 R’ = runTests(M’, T)
13 n2s [n] = max(n2s [n], computeSusp(F, R, R’))

14 if n2s[n] > 0 then L.add(n)

15 L.sortByScore(n2s, reverse=True)
16 return L

test result r in R, AlloyFLmu collects nodes and their descendants covered

by all failing tests. Then, AlloyFLmu iterates over each node n in M. If n

is not covered by any failing test, i.e. n 6∈ S, then AlloyFLmu skips it. For

each n covered by the failing tests, AlloyFLmu tries to apply every mutation

operator in Ops to the node, one at a time. If the mutation operator is

not applicable, it is skipped. Otherwise, AlloyFLmu mutates M to M’. If M’

leads to a compilation error or is equivalent to M, then AlloyFLmu skips M’.

Otherwise, AlloyFLmu runs T against the mutant M’ and collects the result

65

as R’. Function computeSusp computes the suspiciousness score of the mutant

based on the formula F (Figure 5.2), and test results R and R’. n2s keeps the

maximum suspiciousness score for each node n. After AlloyFLmu exhausts all

mutation operators that are applicable to n, n is added to L if its suspiciousness

score n2s [n] is greater than 0. Finally, after all AST nodes are exhausted, L

is sorted in descending order of suspiciousness and returned.

AlloyFLhy. Inspired by [103], AlloyFLhy assigns the average of suspiciousness

scores calculated from both AlloyFLco and AlloyFLmu to each AST node. If

a node is not mutable, then AlloyFLhy uses the same suspiciousness score as

AlloyFLco. The intuition of AlloyFLhy is that AlloyFLmu sometimes perform

badly for omission errors in which case AlloyFLco performs relatively well.

So AlloyFLhy is designed to combine the strengths of both AlloyFLco and

AlloyFLmu.

5.3 Distance Metrics

To quantitatively measure how close the ranked nodes are to the real

faulty nodes, we follow the spirit of the nearest neighbor distance metric (NN)

in the program dependence graph (PDG) [111]. Since there is no notion of

control dependences in declarative languages like Alloy, we view the Alloy

AST as a PDG and adapt the NN distance metric on the AST.

The original nearest neighbor distance metric quantifies the percent-

age of nodes not needing inspection by the programmer using the formula

1 − |S(R)|
|G| , where R = {n1, n2, ..., nk} is the top k returned suspicious nodes

66

(a) NNUD k = 2 (b) NND (c) NNDW

Figure 5.4: Distance Metrics Examples

(ni, 1 ≤ i ≤ k), S(R) is a sphere of all nodes in the graph G such that the

maximum distance of any node in S to its closest suspicious node is smaller or

equal to the minimum distance of any suspicious node in R to its closest faulty

node. Conceptually, the user does a breadth-first search starting with the sus-

picious nodes, and increasing the distance until a defect is found. The formula

computes the percentage of nodes that need not be examined. However, pre-

vious studies show that: (1) the percentage of nodes needing inspection is a

better estimate than the percentage of nodes not needing inspection [74, 152];

and (2) fault localization techniques should focus on improving absolute rank

rather than percentage rank [102]. Therefore, we enhance the NN metric to

use the absolute number of nodes needing inspection (|S(R)|). Techniques

which give smaller distance metric values are more accurate. We next describe

3 distance metrics used to evaluate AlloyFL.

Nearest Neighbor Up-Down (NNUD). NNUD sets R to the k most sus-

picious nodes returned. It allows traversing upward (parent) and downward

67

(children) from the suspicious nodes in the AST until a faulty node is found.

Figure 5.4(a) shows the number of nodes one needs to explore from the top

two suspicious nodes. The number in the circle represents the position of the

node in the ranked list, e.g. 1 means it ranks at the top. "F" shows the faulty

node and squares are irrelevant nodes. Circles colored in gray estimate the

nodes users need to inspect under NNUD metric with k = 2. Since the min-

imum distance between any of the two suspicious nodes and the faulty node

is 1, all nodes that are reachable from the suspicious nodes within a distance

of 1 are included. Thus, the metric reports 6, i.e. the size of the gray nodes.

NNUD assumes that the programmer may look at the parent or children when

inspecting the top k suspicious nodes until a faulty node is found.

Nearest Neighbor Down (NND). NND does not allow traversing upward

from the suspicious node and it processes suspicious nodes one at a time.

Figure 5.4(b) shows how the metric works. From the top 1 suspicious node,

we can only traversing downward. Since no faulty node is found, we mark all

inspected nodes in gray. Then, NND does a breadth-first search for the second

top suspicious node. In this case, a faulty node is found and all descendants

within the same distance, i.e. 6 1, are included (3 circles colored in white),

excluding already visited nodes colored in gray. Finally, NND reports 6, i.e.

the size of the inspected nodes in circle. This metric assumes that the users

only inspect the children and never reinspect already visited nodes. However,

it is possible that the faulty nodes never appear as the descendants of any

suspicious node. To avoid this scenario, we append the root node of the entire

68

AST to the end of the ranked suspicious node list returned by AlloyFL. This

makes sure that the metric always terminates with a faulty node found.

Nearest Neighbor Down Worst (NNDW). NNDW is similar to NND

(only allows traversing downward) except that it assumes the user is unlucky

and would inspect all non-faulty nodes before finding the fault. Figure 5.4(c)

shows how the metric works. Inspecting the top suspicious node is similar to

NND, with the difference occurring when inspecting the second top suspicious

node. In this case, we traverse downward and include all non-faulty nodes that

have not been visited before (white circles without the faulty node). If a faulty

node can be reached from the current suspicious node, then we stop traversing

and include all such faulty nodes. In this case, two faulty nodes appear as the

children of the second top suspicious node, so we include both faulty nodes.

Finally, NNDW returns 10, i.e. all circle nodes. Similar to NND, we append

the root node of the entire AST to the end of the suspicious node list.

5.4 Evaluation

We evaluate AlloyFL on 38 real faults collected from Alloy release 4.1,

Amalgam [96] and graduate student solutions. These faulty models contain

various types of faults, including overconstraints, underconstraints and a mix-

ture of both. In addition, We also extend MuAlloy with the ability to generate

higher order mutants [48] and evaluate AlloyFL on 9000 mutant models with

exactly two mutant faults. All experiments are performed on Ubuntu 16.04

LTS with 2.4GHz Intel Xeon CPU and 8 GB memory.

69

In this section, we address the following research questions for both real

faults and mutant faults:

• RQ1. What is the accuracy and time overhead of AlloyFL?

• RQ2. How does the suspiciousness formula affect AlloyFL?

5.4.1 Experiment Setting

Table 5.5 gives an overview for the 18 correct models used to generate

mutant faults in the evaluation. Address book (addr), Dijkstra mutex algo-

rithm (dijkstra), farmer cross-river puzzle (farmer), and Halmos handshake

problem (hshake) are from Alloy’s example set. Bad employee (bempl),

grade book (grade), and other groups (other) are Alloy translations of access-

control specifications used to benchmark Amalgam [96]. Binary tree (bt),

colored tree (ctree), full tree (fullTree), n-queens problem (nqueens) and

singly-linked list (sll) are from MuAlloy [142]. Array model (array), bal-

anced binary search tree (bst), class diagram (cd), doubly-linked list (dll),

finite state machine (fsm), and singly-linked list with sorting and counting

functions (stu) are homework questions we assigned to graduate students.

For each subject, Figure 5.5 shows the number of AST nodes (#AST),

the number of nonequivalent first-order mutants (1st), the number of tests

automatically generated (tot), the number of tests that are expected to be

satisfiable (sat) and unsatisfiable (uns), the number of nonequivalent second-

order mutants (2nd), and the scope used to run tests or equivalence checks

70

Model #AST 1st #Test 2nd scptot sat uns
addr 124 62 30 19 11 2.0k 3
array 68 51 36 14 22 1.3k 3
bst 175 167 110 50 60 21.1k 4

bempl 57 35 25 11 14 594 3
bt 61 74 34 20 14 3.4k 3
cd 52 46 24 9 15 1.6k 3

ctree 76 83 22 9 13 4.8k 3
dijkstra 410 183 120 44 76 19.7k 3

dll 92 81 48 22 26 3.6k 3
farmer 180 106 56 33 23 6.5k 4

fsm 85 63 15 3 12 3.0k 3
fullTree 85 100 44 24 20 6.5k 3
grade 77 44 41 23 18 978 3

hshake 136 107 33 10 23 10.3k 4
nqueens 110 101 75 36 39 5.3k 4

other 40 32 21 9 12 558 3
sll 38 31 22 14 8 574 3
stu 201 143 87 40 47 14.2k 3

Sum 2.1k 1.5k 843 390 453 106.0k

Figure 5.5: Correct Models Information.

(scp). Prior works shows that test cases generated by MuAlloy are effective

in detecting real faults [133, 142], so we use MuAlloy to generate first-order

non-equivalent mutants and the corresponding tests that kill the mutants.

We choose to generate second-order mutants for the injected faults because

(1) it quickly becomes time consuming to generate mutants with an order

higher than 2; and (2) we want to enhance the credibility of our results by

using models with more than 1 fault. We filter out second-order mutants that

cannot be killed by the generated test suite to make sure at least one fault

can be revealed by the test suite. For real faults, we manually inspect all

71

of the faults and try to fix them without changing the model structure. For

example, if the model has a fault in the quantifier body, then we try to fix

it without replacing the entire quantifier formula. The expressions/formulas

modified due to the fix are labeled as faulty. For mutant faults, following

standard practice [66, 67, 157] the mutated nodes are labeled as faulty. We

collect 5 real faults from [96], 1 real fault from Alloy release 4.1 and 32 real

faults from graduate students. Additionally, we randomly sample 500 second-

order mutants for each subject (9000 in total). The models we used to generate

mutants contain all correct versions of the real faults.

To evaluate AlloyFL, we use both distance metrics, i.e. NNUD top1

(nnud1), NNUD top5 (nnud5), NNUD top10 (nnud10), NND(nnd) and NNDW(nndw),

and the traditional top-k metric, i.e. number of faults in top1, top5 and top10

suspicious nodes. We pick k up to 10 because [62] showed that 98% of prac-

titioners consider a fault localization technique to be useful only if the fault

appears in the top-10 suspicious elements. Techniques with smaller values of

distance metrics and larger values of top-k metrics are more accurate.

5.4.2 RQ1: AlloyFL Accuracy and Time Overhead

72

M
od

el
nn

ud
1

nn
ud

5
nn

ud
10

nn
d

nn
dw

C
o

U
n

Su
M

u
H

y
C

o
U

n
Su

M
u

H
y

C
o

U
n

Su
M

u
H

y
C

o
U

n
Su

M
u

H
y

C
o

U
n

Su
M

u
H

y
ad

dr
1

78
24

24
1

1
78

57
48

5
5

73
57

61
10

10
50

10
10

1
1

57
15

15
1

1
ar

r1
51

20
20

14
14

51
56

56
38

34
51

61
61

38
49

32
61

61
8

8
41

64
64

15
15

ar
r2

29
1

1
1

1
26

2
2

4
5

26
2

2
4

8
22

1
1

1
1

52
3

3
3

3
bs

t1
32

32
32

5
5

58
55

55
5

5
65

55
55

6
10

5
5

5
5

5
5

5
5

5
5

bs
t2

3
3

40
4

1
15

15
53

14
5

28
15

23
10

10
2

2
64

7
1

6
6

76
7

5
bs

t3
19

68
68

1
1

47
34

32
5

5
62

34
40

10
10

6
14

14
1

1
9

17
17

1
1

be
m

pl
1

19
19

19
3

3
7

19
7

10
10

17
19

18
17

19
6

19
6

2
2

6
48

6
2

2
cd

1
23

45
45

4
4

38
45

40
5

5
45

45
45

10
10

9
45

15
3

3
14

58
21

5
5

cd
2

16
34

34
1

1
25

34
31

4
5

25
34

31
4

6
6

34
12

1
1

9
47

16
2

2
ct

re
e1

18
18

18
39

39
5

18
9

56
56

8
18

17
21

21
4

18
5

61
47

4
67

5
71

51
dl

l1
6

4
4

4
4

30
16

16
19

14
33

16
16

19
26

4
3

3
3

3
7

6
6

6
6

dl
l2

6
4

4
1

1
30

16
14

5
5

36
16

22
10

10
4

3
3

1
1

8
7

7
1

1
dl

l3
1

31
31

2
2

5
26

38
5

5
7

26
22

10
10

1
11

11
2

2
1

13
13

2
2

dl
l4

6
4

4
1

1
30

16
16

4
5

33
16

16
4

8
4

3
3

1
1

8
7

7
1

1
fa

rm
er

1
90

17
17

9
9

90
94

94
26

26
79

94
94

40
43

54
13

13
7

7
74

30
30

12
12

fs
m

1
50

4
4

1
1

49
19

15
5

5
50

19
25

10
10

71
3

3
1

1
91

7
7

1
1

fs
m

2
59

59
59

1
1

59
59

59
5

5
59

59
59

10
10

69
59

44
1

1
78

87
52

1
1

gr
ad

e1
1

19
19

23
4

5
19

27
15

5
7

19
18

25
10

1
19

21
42

18
1

56
29

71
18

ot
he

r1
27

27
27

28
28

28
27

28
5

5
17

27
23

7
10

14
27

15
8

8
18

60
19

9
9

st
u1

7
4

4
11

11
21

18
18

8
9

41
18

18
24

19
4

3
3

5
5

12
11

11
11

11
st

u2
9

4
4

4
4

26
18

10
5

5
47

18
26

10
10

4
3

3
4

4
6

11
11

5
5

st
u3

3
1

1
3

3
9

4
5

13
11

24
4

10
10

10
2

1
1

2
2

10
4

4
10

10
st

u4
7

4
4

11
11

21
18

18
8

9
42

18
18

24
19

4
3

3
5

5
12

11
11

11
11

st
u5

7
4

4
11

11
21

18
18

8
9

42
18

18
24

19
4

3
3

5
5

12
11

11
11

11
st

u6
32

10
10

1
1

38
45

45
5

5
9

45
45

7
10

35
5

5
1

1
51

7
7

1
1

st
u7

3
1

1
1

1
9

5
5

5
5

24
5

10
10

10
2

1
1

1
1

10
7

7
7

7
st

u8
7

4
4

4
4

22
19

19
23

9
47

19
19

23
21

4
3

3
3

3
7

6
6

6
6

st
u9

9
66

66
1

1
36

66
66

5
5

47
66

60
10

10
4

66
86

1
1

5
16

6
98

1
1

st
u1

0
7

4
4

11
11

22
19

19
8

9
47

19
19

25
19

4
3

3
5

5
12

11
11

11
11

st
u1

1
23

8
8

11
11

41
38

38
10

10
70

38
38

27
19

7
6

6
9

9
17

16
16

15
15

st
u1

2
7

90
90

11
11

31
29

17
5

5
46

29
27

10
10

4
11

11
3

3
13

20
20

3
3

st
u1

3
45

11
6

11
6

1
1

63
11

6
11

6
5

5
98

11
6

10
2

10
10

11
11

6
28

1
1

18
20

4
39

1
1

st
u1

4
34

9
9

1
1

40
46

46
5

5
10

46
46

7
10

40
5

5
1

1
52

7
7

1
1

st
u1

5
7

4
4

11
11

21
22

22
8

9
43

22
22

24
19

4
3

3
5

5
12

11
11

11
11

st
u1

6
1

32
32

60
1

5
32

38
56

5
10

32
25

64
10

1
32

47
63

1
1

94
55

94
1

st
u1

7
32

4
4

11
11

38
22

22
11

9
9

22
22

9
19

55
3

3
5

5
69

11
11

11
11

st
u1

8
74

17
17

4
4

53
4

5
5

5
76

4
10

10
10

12
8

8
9

9
14

10
10

9
9

st
u1

9
3

1
1

1
1

12
5

5
5

5
24

9
10

10
10

2
1

1
1

1
4

1
1

3
3

A
vg

22
.4

21
.5

22
.4

8.
2

6.
1

31
.7

30
.8

30
.8

11
.4

9.
1

38
.9

31
.1

31
.4

15
.9

14
.6

14
.9

16
.5

14
.0

7.
5

4.
7

21
.7

32
.2

19
.6

11
.5

7.
1

M
ed

12
.5

9.
5

13
.5

4.
0

3.
5

29
.0

20
.5

22
.0

5.
0

5.
0

41
.5

20
.5

22
.5

10
.0

10
.0

4.
0

5.
0

5.
0

3.
0

2.
5

12
.0

11
.0

11
.0

5.
5

5.
0

S
td

23
.0

26
.4

26
.4

11
.8

7.
8

20
.2

24
.1

24
.6

12
.6

9.
6

22
.7

24
.2

22
.2

11
.9

8.
9

19
.9

23
.9

19
.7

14
.5

7.
8

24
.4

43
.9

21
.6

20
.4

8.
7

W
in

6
16

16
23

25
5

5
4

26
26

6
11

7
21

15
5

16
16

23
25

5
13

13
31

33

F
ig
ur
e
5.
6:

D
is
ta
nc
e
M
et
ri
cs

fo
r
R
ea
lF

au
lt
s.

73

Figure 5.6 shows the distance metric results, i.e. the number of AST

nodes to inspect before finding the first fault, of AlloyFL for real faults. We

use Ochiai formula for AlloyFLco, AlloyFLmu and AlloyFLhy. The most accu-

rate AlloyFL techniques w.r.t. each distance metric are highlighted in bold.

For each distance metric, we show the results of all AlloyFL techniques per

real fault. Avg, Med and Std show the average, median and standard de-

viation of the corresponding distance metric for each AlloyFL technique over

all real faults. Win shows the number of times the corresponding AlloyFL

technique gives the best distance metric result among all techniques. Co, Un,

Su, Mu and Hy represent AlloyFLco, AlloyFLun, AlloyFLsu, AlloyFLmu and

AlloyFLhy, respectively. We can see that AlloyFLhy has the smallest distance

metric result in terms of both Avg and Med, indicating that AlloyFLhy is the

most accurate technique in terms of distance metrics for real faults. More-

over, AlloyFLhy is more stable because it has the smallest Std. Out of 38 real

faults, AlloyFLhy is the most accurate technique in 25 times under NNUD when

k = 1, 25 times under NND, and 33 times under NNDW. For NNUD when

k = 5, 10, AlloyFLhy gives the best results in 26 and 15 times, respective, which

is close to AlloyFLmu. AlloyFLmu is slightly less accurate than AlloyFLhy in

terms of Avg and Med. AlloyFLco, AlloyFLun and AlloyFLsu perform almost

equally bad in terms of Avg under NNUD metrics, and AlloyFLun is even

worse than AlloyFLco and AlloyFLsu under NND and NNDW metrics. All of

AlloyFLco, AlloyFLun and AlloyFLsu are significantly worse than AlloyFLmu

and AlloyFLhy. AlloyFLco is accurate for omission faults which happen at

74

the level of paragraph bodies, e.g. when users leave the entire predicate body

empty (stu16) or miss some conjunct/disjunct constraints at the body of a

predicate (grade1). On the contrary, AlloyFLmu is not accurate for omission

errors because no mutation operator is applicable for an omitted faulty expres-

sion/formula. As a consequence, we design AlloyFLhy to leverage the benefits

from both AlloyFLco and AlloyFLmu. AlloyFLun prioritizes AST nodes that

are highlighted the most number of times by the unsat core across all unsat-

isfiable failing tests and is designed to be comparable or more accurate than

using a single unsatisfiable failing test, i.e. the traditional way an Alloy user

would debug a faulty model using the unsat core. Our experiments show that

the unsat core’s accuracy in highlighting suspicious Alloy code is compara-

ble to SBFL (AlloyFLco) and significantly worse than MBFL (AlloyFLmu and

AlloyFLhy).

Figure 5.7 shows the traditional top-k metric results, i.e. the number

of top k suspicious nodes that exactly match the faulty nodes, of AlloyFL

for real faults. We highlighted the most accurate AlloyFL techniques w.r.t.

each top-k metric in bold. Sum shows the total number of faults that exactly

match the top-k suspicious nodes for each AlloyFL technique over all real

faults. Win shows the number of times the corresponding AlloyFL technique

gives the best top-k metric result among all techniques. Similar to the ob-

servation for distance metrics, AlloyFLmu and AlloyFLhy perform equally well

and are significantly more accurate than AlloyFLco, AlloyFLun and AlloyFLsu.

AlloyFLhy locates 2 more faulty AST nodes than AlloyFLmu for top-1 metric

75

Model top1 top5 top10
Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy

addr1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
arr1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
arr2 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
bst1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1
bst2 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1
bst3 0 0 0 1 1 0 0 0 2 1 0 0 0 5 1

bempl1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cd1 0 0 0 0 0 0 0 0 2 2 0 0 0 3 2
cd2 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

ctree1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
dll1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
dll2 0 0 0 1 1 0 0 0 2 1 0 0 0 2 2
dll3 1 0 0 0 0 1 0 0 2 2 1 0 0 5 4
dll4 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

farmer1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fsm1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
fsm2 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

grade1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1
other1 0 0 0 0 0 0 0 0 1 1 0 0 0 2 2

stu1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu2 0 0 0 0 0 0 0 0 1 2 0 0 0 2 2
stu3 0 1 1 0 0 0 2 2 0 0 0 2 2 1 1
stu4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu6 0 0 0 1 1 0 0 0 2 1 1 0 0 2 2
stu7 0 1 1 1 1 0 2 2 2 2 0 2 2 3 2
stu8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu9 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

stu10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu12 0 0 0 0 0 0 0 0 2 2 0 0 0 2 2
stu13 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
stu14 0 0 0 1 1 0 0 0 2 1 1 0 0 2 1
stu15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu16 1 0 0 0 1 1 0 0 0 1 3 0 0 0 1
stu17 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
stu18 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1
stu19 0 1 1 1 1 0 2 2 2 2 0 2 2 3 3
Sum 3 4 4 14 16 4 8 8 30 30 9 8 8 44 37
Win 3 4 4 14 16 3 5 5 20 20 4 3 3 23 18

Figure 5.7: Top-k Metrics for Real Faults.

but it locates 7 less faulty AST nodes than AlloyFLmu for top-10 metric. Both

AlloyFLhy and AlloyFLmu locate the same number (but different set) of faulty

AST nodes in total for top-5 metric. AlloyFLco, AlloyFLun and AlloyFLsu

76

are comparable to each other and they locate more or less the same number

of faulty AST nodes for top-k metrics (except that AlloyFLun and AlloyFLsu

locate 4 more faulty AST nodes than AlloyFLco for top-5 metric).

77

M
od

el
nn

ud
1

nn
ud

5
nn

ud
10

nn
d

nn
dw

C
o

U
n

Su
M

u
H

y
C

o
U

n
Su

M
u

H
y

C
o

U
n

Su
M

u
H

y
C

o
U

n
Su

M
u

H
y

C
o

U
n

Su
M

u
H

y
ad

dr
32

.3
32

.0
32

.0
5.

5
10

.0
30

.4
31

.9
30

.5
7.

4
13

.2
27

.5
28

.6
28

.4
10

.4
12

.7
21

.1
21

.0
19

.7
5.

6
12

.5
22

.9
38

.4
31

.7
8.

3
13

.7
ar

ra
y1

9.
4

7.
0

7.
5

2.
4

3.
2

18
.1

8.
1

8.
8

5.
7

6.
1

18
.8

8.
1

9.
6

7.
7

9.
6

14
.7

6.
9

5.
9

2.
7

2.
9

21
.0

16
.4

7.
8

5.
1

4.
2

bs
t5

9.
84

3.
64

2.
4

4.
3

7.
5

64
.1

50
.9

47
.9

6.
8

7.
2

71
.9

50
.7

51
.4

10
.8

10
.9

23
.5

25
.5

19
.1

4.
4

3.
7

31
.1

51
.7

27
.7

6.
4

4.
3

be
m

pl
13

.0
19

.2
17

.2
5.

7
7.

7
8.

81
6.

61
2.

6
6.

5
7.

7
11

.3
16

.6
14

.1
7.

0
9.

8
4.

71
6.

31
0.

2
3.

4
3.

9
5.

1
46

.7
20

.8
4.

6
4.

6
bt

23
.8

12
.9

12
.3

3.
1

3.
5

28
.3

17
.0

17
.6

5.
8

5.
7

28
.3

17
.0

17
.8

8.
8

9.
4

12
.5

9.
4

8.
8

2.
7

2.
5

17
.5

16
.5

12
.8

3.
8

3.
3

cd
13

.0
13

.6
13

.5
3.

1
1.

8
16

.0
16

.4
15

.3
5.

6
5.

0
17

.1
16

.4
16

.2
8.

1
8.

4
4.

91
0.

3
6.

1
3.

0
1.

5
6.

0
20

.9
9.

6
4.

4
1.

7
ct

re
e2

9.
11

7.
91

7.
8

5.
9

9.
2

24
.2

24
.6

22
.8

7.
3
11

.1
27

.4
24

.6
24

.7
9.

6
11

.9
16

.1
13

.5
10

.7
4.

7
6.

8
19

.0
28

.3
16

.4
6.

3
7.

9
di

jk
st

ra
46

.5
49

.5
53

.0
6.

6
5.

1
58

.6
46

.1
44

.0
9.

6
7.

1
71

.0
48

.9
46

.2
13

.3
11

.8
18

.0
37

.5
23

.9
12

.0
6.

8
59

.8
12

7.
26

2.
22

6.
11

2.
6

dl
l2

2.
81

8.
51

9.
1

4.
2

3.
4

27
.7

28
.3

26
.5

5.
8

5.
3

30
.2

28
.3

28
.6

8.
9

10
.0

10
.4

14
.2

12
.5

3.
4

2.
1

13
.0

33
.9

19
.5

4.
8

2.
3

fa
rm

er
45

.3
29

.2
29

.1
13

.1
15

.2
41

.7
40

.5
39

.2
14

.4
19

.4
38

.2
40

.0
39

.2
16

.6
21

.5
27

.5
24

.0
23

.1
12

.1
10

.0
35

.1
67

.9
49

.2
31

.3
12

.7
fs

m
27

.9
16

.1
15

.9
11

.1
10

.2
24

.2
21

.1
20

.2
12

.3
12

.9
25

.5
22

.0
22

.4
13

.9
15

.7
21

.6
11

.8
10

.8
10

.7
8.

4
27

.3
28

.2
16

.5
16

.8
10

.0
fu

llT
re

e2
7.

51
7.

81
7.

6
4.

1
3.

4
34

.5
23

.5
23

.6
6.

3
5.

5
34

.8
23

.5
24

.1
9.

6
9.

7
11

.2
13

.0
10

.6
3.

6
2.

3
15

.6
26

.7
15

.9
4.

8
2.

8
gr

ad
e1

2.
11

9.
31

8.
4

2.
2

1.
9

10
.7

14
.6

12
.8

4.
8

5.
3

13
.4

14
.6

14
.3

6.
6

8.
8

5.
31

2.
91

0.
0

2.
5

1.
9

7.
6

48
.0

31
.1

3.
3

2.
1

hs
ha

ke
38

.7
25

.8
26

.6
6.

1
7.

0
38

.2
33

.7
32

.5
8.

2
8.

3
40

.5
35

.1
35

.1
11

.8
13

.1
24

.6
21

.7
18

.2
6.

6
5.

2
35

.8
46

.2
26

.4
11

.2
6.

5
nq

ue
en

s2
2.

5
5.

0
5.

1
3.

0
3.

5
26

.4
7.

5
7.

6
6.

0
5.

7
26

.4
7.

6
8.

5
9.

4
10

.0
15

.8
5.

2
3.

8
3.

8
3.

4
31

.4
15

.2
6.

1
6.

9
8.

9
ot

he
r1

0.
31

0.
61

1.
3

2.
5

2.
8

8.
01

1.
3

9.
9

4.
9

5.
8

10
.3

11
.3

11
.6

6.
7

9.
9

4.
41

0.
7

8.
2

2.
4

1.
8

4.
8

24
.0

14
.3

3.
9

1.
9

sl
l

9.
11

1.
91

1.
0

2.
3

2.
5

11
.7

13
.6

13
.3

4.
5

5.
0

11
.7

13
.6

13
.3

6.
2

7.
3

4.
91

1.
5

9.
2

2.
1

2.
1

7.
6

22
.6

17
.2

2.
5

2.
5

st
u4

5.
93

0.
83

4.
9

5.
2

6.
0

50
.1

48
.4

43
.8

6.
7

7.
6

53
.8

49
.9

46
.5

10
.8

10
.4

15
.1

21
.9

21
.4

4.
8

3.
4

21
.1

52
.9

32
.5

8.
1

3.
8

A
vg

27
.7

21
.2

21
.4

5.
0

5.
8

29
.0

25
.2

23
.8

7.
1

8.
0

31
.0

25
.4

25
.1

9.
8

11
.2

14
.2

16
.0

12
.9

5.
0

4.
5

21
.2

39
.5

23
.2

8.
8

5.
9

M
ed

25
.6

18
.2

17
.7

4.
2

4.
3

27
.1

22
.3

21
.5

6.
4

6.
6

27
.4

22
.8

23
.2

9.
5

10
.0

14
.9

13
.3

10
.6

3.
7

3.
4

20
.0

31
.1

18
.4

5.
7

4.
2

S
td

14
.2

11
.7

12
.3

2.
9

3.
5

16
.1

13
.5

12
.7

2.
5

3.
7

18
.1

13
.8

13
.2

2.
7

3.
1

7.
3

7.
7

6.
1

3.
2

3.
1

13
.7

25
.8

14
.0

7.
8

4.
0

W
in

0
0

0
12

6
0

0
0

12
6

0
1

0
15

2
0

0
0

4
14

0
0

1
3

14

F
ig
ur
e
5.
8:

D
is
ta
nc
e
M
et
ri
cs

fo
r
M
ut
an

t
Fa

ul
ts
.

78

Figure 5.8 shows the distance metric results of AlloyFL for mutant

faults. We use Ochiai formula for AlloyFLco, AlloyFLmu and AlloyFLhy. The

most accurate techniques w.r.t. each distance metric are highlighted in bold.

Avg, Med and Std show the average, median and standard deviation of

the corresponding distance metric for each AlloyFL technique over all 9000

mutant faults. Each row shows the distance metric results for various AlloyFL

techniques on average over 500 second-order mutant faults. AlloyFLmu is the

most accurate technique in terms of Avg, Med and Std under the NNUD

metrics (k = 1, 5, 10). AlloyFLhy is the most accurate technique in terms of

Avg, Med and Std under the NND and NNDW metrics. Both AlloyFLmu

and AlloyFLhy significantly outperform AlloyFLco, AlloyFLun and AlloyFLsu.

AlloyFLco is the least accurate technique in terms of Avg under NNUD metrics

(k = 1, 5, 10), and AlloyFLun is the least accurate technique under NND and

NNDW metrics.

Figure 5.9 shows the traditional top-k metric results of AlloyFL for

mutant faults. We highlighted the most accurate AlloyFL techniques w.r.t.

each top-k metric in bold. Sum shows the sum of the average faults (over

500 mutants) that exactly match the top-k suspicious nodes for each AlloyFL

technique over all 18 unique models. Win shows the number of times the

corresponding AlloyFL technique gives the best top-k metric result among

all techniques. Similar to the observation for distance metrics, AlloyFLmu

and AlloyFLhy are equally accurate and significantly better than AlloyFLco,

AlloyFLun and AlloyFLsu. AlloyFLco is the least accurate technique for top-

79

Model top1 top5 top10
Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy

addr 0.1 0.1 0.1 0.8 0.6 0.5 0.2 0.3 1.4 0.9 0.5 0.2 0.3 1.5 1.4
array 0.1 0.6 0.6 0.8 0.8 0.4 0.8 0.9 1.2 1.3 0.4 0.8 0.9 1.5 1.6

bst 0.1 0.2 0.2 0.7 0.7 0.1 0.2 0.3 1.1 1.0 0.1 0.2 0.3 1.2 1.2
bempl 0.2 0.1 0.1 0.8 0.6 0.9 0.1 0.6 1.1 1.0 1.1 0.1 0.8 1.4 1.6

bt 0.1 0.4 0.4 0.7 0.7 0.1 0.4 0.4 1.1 1.1 0.1 0.4 0.4 1.3 1.3
cd 0.2 0.2 0.3 0.8 0.8 0.4 0.3 0.4 1.3 1.3 0.4 0.3 0.4 1.4 1.5

ctree 0.1 0.2 0.2 0.7 0.6 0.4 0.2 0.3 1.0 0.9 0.4 0.2 0.3 1.1 1.2
dijkstra 0.1 0.3 0.3 0.8 0.8 0.2 0.4 0.4 1.2 1.1 0.2 0.4 0.5 1.3 1.3

dll 0.1 0.1 0.2 0.7 0.7 0.2 0.1 0.2 1.3 1.2 0.3 0.1 0.2 1.4 1.5
farmer 0.1 0.1 0.1 0.6 0.5 0.3 0.2 0.3 0.8 0.7 0.4 0.2 0.3 0.9 1.0

fsm 0.1 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.8 0.8 0.3 0.3 0.4 0.9 1.0
fullTree 0.1 0.3 0.3 0.8 0.8 0.2 0.3 0.3 1.1 1.1 0.2 0.3 0.3 1.3 1.3

grade 0.2 0.1 0.2 0.9 0.9 0.7 0.2 0.3 1.4 1.4 0.8 0.2 0.4 1.5 1.7
hshake 0.1 0.2 0.2 0.7 0.7 0.2 0.2 0.3 1.0 1.0 0.3 0.2 0.3 1.0 1.1

nqueens 0.1 0.8 0.8 0.8 0.7 0.1 1.1 1.1 1.3 1.2 0.1 1.1 1.1 1.4 1.5
other 0.2 0.2 0.2 0.9 0.9 0.9 0.3 0.6 1.2 1.4 1.1 0.3 0.8 1.3 1.7

sll 0.3 0.0 0.1 0.8 0.7 0.5 0.0 0.1 1.4 1.4 0.5 0.0 0.1 1.5 1.5
stu 0.1 0.1 0.1 0.8 0.8 0.2 0.2 0.2 1.1 1.1 0.3 0.2 0.2 1.3 1.3

Sum 2.1 4.3 4.5 13.2 12.8 6.7 5.6 7.4 20.7 20.2 7.5 5.6 8.1 23.2 24.6
Win 0 1 1 10 7 0 0 0 11 8 0 0 0 3 15

Figure 5.9: Top-k Metrics for Mutant Faults.

1 metric and AlloyFLun is the least accurate technique for top-5 and top-10

metric.

Overall, both AlloyFLmu and AlloyFLhy are significantly more accurate

than AlloyFLco, AlloyFLun and AlloyFLsu for both real faults and mutant

faults. AlloyFLsu is comparable or more accurate than both AlloyFLco and

AlloyFLun. AlloyFLco and AlloyFLun are the least accurate techniques and

they are comparable to each other. AlloyFLun gives better result for NNUD

metrics and worse result for NND and NNDWmetrics, compared to AlloyFLco.

All of AlloyFLco, AlloyFLun and AlloyFLsu are comparable in terms of top-k

80

metrics.

MBFL techniques (e.g. AlloyFLmu and AlloyFLhy) are the most accurate
fault localization techniques and are significantly better than SBFL techniques
(e.g. AlloyFLco) and SAT-based techniques (e.g. AlloyFLun and AlloyFLsu).
Importantly, our result indicates that AlloyFLmu and AlloyFLhy can more
accurately highlight suspicious Alloy code compared to state-of-the-art unsat
core.

Because of space limit, we cannot show the time overhead of AlloyFL

for individual faults. On average, AlloyFLco, AlloyFLun and AlloyFLsu take

less than 5 sec to run for both mutant faults and real faults. AlloyFLmu takes

on average 24.2 sec for mutant faults and 33.7 sec for real faults. AlloyFLhy

takes on average 38.0 sec for mutant faults and 67.0 sec for real faults. Both

AlloyFLmu and AlloyFLhy run the test for each mutation and AlloyFLhy has

the extra overhead to run AlloyFLco and compute the average suspiciousness

scores, thus AlloyFLhy is slower than AlloyFLmu and both of them are slower

than AlloyFLco, AlloyFLun and AlloyFLsu.

MBFL techniques are significantly slower than SBFL techniques and SAT-
based techniques. But since all techniques finish under 2 min on average, the
time overhead are reasonable.

5.4.3 RQ2: Suspiciousness Formula Impact

Since AlloyFLun and AlloyFLsu do not use suspiciousness formulas, we

answer RQ2 only for AlloyFLco, AlloyFLmu and AlloyFLhy.

81

Formula nnud1 nnud5 nnud10 nnd nndw top1 top5 top10

C
o

Tarantula 25.6 32.8 38.8 15.0 20.9 0.1 0.2 0.3
Ochiai 22.4 31.7 38.9 14.9 21.7 0.1 0.1 0.2
Op2 28.8 35.7 38.9 23.6 32.1 0.0 0.1 0.2

Barinel 25.6 32.8 38.8 15.0 20.9 0.1 0.2 0.3
DStar 23.4 33.0 38.9 16.5 23.5 0.1 0.1 0.2

M
u

Tarantula 10.2 15.2 19.0 8.7 13.3 0.3 0.8 1.0
Ochiai 8.2 11.4 15.9 7.5 11.5 0.4 0.8 1.2
Op2 12.6 12.8 17.4 10.4 15.4 0.3 0.7 1.0

Barinel 10.2 15.2 19.0 8.7 13.3 0.3 0.8 1.0
DStar 8.2 11.4 16.3 7.8 12.2 0.3 0.7 1.1

H
y

Tarantula 9.9 12.4 14.5 5.9 8.1 0.4 0.8 1.1
Ochiai 6.1 9.1 14.6 4.7 7.1 0.4 0.8 1.0
Op2 26.2 22.5 19.2 21.8 26.7 0.2 0.3 0.7

Barinel 10.0 12.4 14.5 6.1 8.2 0.3 0.8 1.1
DStar 6.6 9.2 15.0 5.1 7.8 0.3 0.7 0.9

Figure 5.10: Formula Impact on AlloyFL for Real Faults.

Formula nnud1 nnud5 nnud10 nnd nndw top1 top5 top10

C
o

Tarantula 29.2 29.0 31.0 16.3 23.1 0.1 0.4 0.4
Ochiai 27.7 29.0 31.0 14.2 21.2 0.1 0.4 0.4
Op2 29.9 29.5 31.2 15.8 23.0 0.1 0.4 0.4

Barinel 29.2 29.0 31.0 16.3 23.1 0.1 0.4 0.4
DStar 27.8 29.1 31.0 14.4 21.4 0.1 0.4 0.4

M
u

Tarantula 10.8 9.8 11.9 8.0 12.3 0.5 1.0 1.1
Ochiai 5.0 7.1 9.8 5.0 8.8 0.7 1.2 1.3
Op2 7.3 8.5 10.6 6.6 11.0 0.7 1.1 1.2

Barinel 10.8 9.8 11.9 8.0 12.3 0.5 1.0 1.1
DStar 5.4 7.5 9.9 5.3 9.2 0.7 1.1 1.3

H
y

Tarantula 10.8 9.8 12.8 7.1 8.4 0.5 1.1 1.3
Ochiai 5.8 8.0 11.2 4.5 5.9 0.7 1.1 1.4
Op2 17.0 13.5 12.7 11.8 14.6 0.4 0.9 1.3

Barinel 11.0 9.7 12.8 7.0 8.2 0.5 1.1 1.3
DStar 6.4 8.5 11.3 5.2 6.7 0.7 1.1 1.3

Figure 5.11: Formulas Impact on AlloyFL for Mutant Faults.

82

Figure 5.10 shows the average results for both distance metrics and

top-k metrics under different suspiciousness formulas for AlloyFLco, AlloyFLmu

and AlloyFLhy over 38 real faults. The best results for each metric among all

suspiciousness formulas are highlighted in bold. We can see that for AlloyFLco,

the metric values do not change much for various formulas and Op2 seems to

be the worst formula. For AlloyFLmu, Ochiai and DStar outperform other

formulas and Ochiai is slightly better than DStar. For AlloyFLhy, Ochiai

seems to be comparable or better than other formulas, followed by DStar.

Although Tarantula and Barinel are sometimes the best formulas to use, the

improvement is not significant over Ochiai.

Figure 5.11 shows the average results for both distance metrics and top-

k metrics under different suspiciousness formulas for AlloyFLco, AlloyFLmu and

AlloyFLhy over 9000 mutant faults. The best results for each metric among all

suspiciousness formulas are highlighted in bold. For AlloyFLco, all formulas

give similar results. For AlloyFLmu and AlloyFLhy, Ochiai gives the best

results among all metrics and DStar gives the second best results.

Overall, the choice of formulas does not impact the accuracy of AlloyFLco

much for both real faults and mutant faults. Ochiai seems to be the best for-

mula to choose for AlloyFLmu and AlloyFLhy (followed by DStar) for both real

faults and mutant faults.

Suspiciousness formulas do not have much impact on the accuracy of SBFL
techniques (e.g. AlloyFLco). Ochiai formula gives the best result of most
metrics for MBFL techniques (e.g. AlloyFLmu and AlloyFLhy).

83

5.5 Summary

This chapter introduces, AlloyFL, a set of 5 fault localization techniques

for declarative Alloy models. Our techniques take inspiration from spectrum-

based, mutation-based, and SAT-based techniques for imperative code, and

build on them to define the core techniques for debugging Alloy. Moreover,

we propose 3 new effectiveness metrics to evaluate AlloyFL. We evaluate Al-

loyFL using a suite of Alloy models including 38 real faults and 9000 mutant

faults. The results show that the mutation-based techniques (AlloyFLmu and

AlloyFLhy) with Ochiai suspiciousness formula perform well and are particu-

larly effective. We believe that our techniques can substantially benefit model

developers by speeding up the debugging process, and thus can help improve

the quality of software systems.

84

Chapter 6

Automated model repair for Alloy3

In this chapter, we introduce ARepair, a novel generate-and-validate

program repair technique for Alloy, which is able to handle Alloy models with

multiple faults. ARepair has three main components: (1) AlloyFL, which lo-

cates faults at the AST node granularity; (2) RexGen, which systematically

generates Alloy expressions (with equivalence pruning rules for relational alge-

bra); and (3) a synthesizer that explores the search space until a model with all

passing tests is found. The experimental results show the efficacy of ARepair.

The rest of the chapter is organized as follows. Section 6.1 presents

an example. Section 6.2 describes in detail the techniques to repair models.

Section 6.3 evaluates ARepair. Section 6.4 summarizes the chapter.

6.1 Example

We use the same example as shown in Figure 5.1. Note that the fault

is in the crossRiver predicate (highlighted in orange). The predicate enforces

eating to happen only after the farmer comes back and not immediately after

3Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. Automated model repair for
alloy. In ASE, 2018.

85

&&

= =

from' − to' +

− item + item

from Farmer − Farmer

to ·

to eatsLevel 7

Level 6

Level 1

Figure 6.1: First Suspicious Node for Faulty Farmer Example.

the farmer leaves the bank. This modeling error was in Alloy release 4.1 and

was fixed in release 4.2. An AUnit test [131] that reveals the fault is shown in

Figure 5.1b.

ARepair invokes AlloyFL to locate faults at the AST node granularity.

The most suspicious node AlloyFL returns is shown in Figure 6.1. ARepair

creates holes to replace each level of AST nodes in a bottom-up fashion. For

example, it first creates holes for to and eats (highlighted in red). Then,

ARepair generates a set of candidate expressions for each hole using all signa-

tures/fields/variables in scope, e.g. Farmer, from and item, etc. Next, ARepair

enumerates the candidate expressions for each hole and runs all affected tests

to see if any test result changes from failing to passing. ARepair keeps the

candidate values that make some failing tests pass and preserves the results

of passing tests. In this case, ARepair replaces to with none and now one fail-

ing test passes (and no passing test fails). Next, ARepair reruns AlloyFL and

finds that the most suspicious node is still the same. In this iteration, ARepair

86

creates holes for to and the relational join operator "·" (highlighted in yellow).

ARepair keeps synthesizing expressions/formulas under each suspicious node

to make failing tests pass. If ARepair cannot make any failing test pass for

the suspicious node, then it repeats the same process for the next suspicious

node. Note that AlloyFL is a mutation-based technique and it can also repair

the model with mutations. Each time AlloyFL is invoked, we check if there is

a mutation over the most suspicious node AlloyFL reports that makes some

failing tests pass and no passing test fails. If such mutation exists, then we

mutate the model and start the next iteration. Finally, if ARepair is able to fix

the faulty model, i.e. all tests pass, then it post-processes the fixed model to

remove redundant code, e.g. replace "to - none.eats" with "to", and returns

the final model to the user.

Figure 6.2 shows the human written patch (A) and the first patch gen-

erated by ARepair (B). We can see that the human written patch fixes the

“eating” action both when the farmer crosses the river with (lines 7-10) or

without (lines 2-5) an item. The patch ARepair generates deletes the formula

that models the farmer’s crossing-river without an item (lines 2-3), and fixes

the “eating” action when the farmer crosses the river with an item (lines 6-9).

The interesting part is that the patch also changes the domain of variable dec-

laration (lines 4-5), which actually merges both cases when the farmer crosses

the river with/without an item. The new domain (line 5) allows the item to

be the farmer himself and it models the correct semantics corresponding to

the deleted formula on lines 2-3. In this case, we validate the equivalence of

87

(A) A human-written patch.
1. pred crossRiver[from,from’,to,to’: set Object] {
2.- (from’ = from - Farmer
3.+ (from’ = from - Farmer - from’.eats
4.- && to’ = to - to.eats + Farmer) ||
5.+ && to’ = to + Farmer) ||
6. (some item: from - Farmer {
7.- from’ = from - Farmer - item
8.+ from’ = from - Farmer - item - from’.eats
9.- && to’ = to - to.eats + Farmer + item })}

10.+ && to’ = to + Farmer + item })}
(B) A patch generated by ARepair.

1. pred crossRiver[from,from’,to,to’: set Object] {
2.- (from’ = from - Farmer
3.- && to’ = to - to.eats + Farmer) ||
4.- (some item: from - Farmer {
5.+ (some item: from + Farmer {
6.- from’ = from - Farmer - item
7.+ from’ = from - (Farmer + from’.eats) - item
8.- && to’ = to - to.eats + Farmer + item })}
9.+ && to’ = to + Farmer + item })}

Figure 6.2: Patches for the faulty farmer model.

generated patch and the human-written patch with a scope-bounded analysis

using the Alloy analyzer and find that the generated patch is semantically

equivalent to the human written patch.

6.2 Technique

In Section 6.2.1, we describe how we create holes and generate expres-

sions to fill in holes (Section 6.2.2). Next, we describe the search strategies

(Section 6.2.3). Then, we describe how we run tests without invoking a SAT

solver (Section 6.2.4) and the hierarchical caching we use to improve per-

formance (Section 6.2.5). Finally, we describe the enumeration-based repair

approach as a whole (Section 6.2.6).

88

6.2.1 Create Holes

For each suspicious AST node returned by AlloyFL, we create holes at

each level of the corresponding AST in a bottom-up fashion. For example,

the most suspicious node in the faulty farmer model (Figure 6.1) has 7 levels.

We first create holes at level 7 (shown in red) and synthesize new expressions

at that level without modifying nodes of other levels. We repeat this process

from level 7 to level 1 (root level) until some failing test passes and no passing

test fails. The intuition is that AlloyFL is designed to mutate upper-level

operator nodes and if the fault cannot be fixed by AlloyFL, then the issue is

likely at the lower levels of the AST. This approach also prioritizes patches

with smaller perturbations to the original model, which is consistent with the

insight – patches that introduce smaller perturbations to the original program

are more likely to be correct [16, 69].

Creating a single hole for each node in a given level may not result

in valid models. For example, replacing the && node with a hole at level 1 in

Figure 6.1 does not make the new program compile. Consequently, the schema

to create holes for different AST nodes may vary. ARepair introduces different

types of holes, i.e. quantifier holes (denoted by qh), logical operator holes (de-

noted by loh), comparison operator holes (denoted by coh), implication holes

(denoted by ih), cardinality holes (denoted by ch), boolean holes (denoted by

bh) and expression holes (denoted by eh). The value of qh can be one of all,

no, some, lone or one. The value of loh can be either && or ||. The value of

coh can be one of =, in, != or !in. The value of ih can be either => or <=>.

89

Meaning Schema
Cartesian product h̄(φ× ψ) := eh
Relational join h̄(φ ./ ψ) := eh

Union h̄(φ ∪ ψ) := eh
Intersection h̄(φ ∩ ψ) := eh
Set difference h̄(φ \ ψ) := eh

Overriding union h̄(φ++ψ) := eh
Domain restriction h̄(φ <: ψ) := eh
Range restriction h̄(φ :> ψ) := eh
Transitive closure h̄(ˆφ) := eh

Reflexive transitive closure h̄(∗φ) := eh
Inverse relational join h̄(φ[ψ]) := eh
Relational transpose h̄(~φ) := eh

Cardinality h̄(#φ) := eh
Set comprehension h̄({t̄ : φ|α(t̄)}) := eh

Identity relation (binary) h̄(iden) := eh
Universe (unary) h̄(univ) := eh

Conjunction h̄(α ∧ β) := h̄(α) loh h̄(β)
Disjunction h̄(α ∨ β) := h̄(α) loh h̄(β)
Implication h̄(α⇒ β) := h̄(α) ih h̄(β)

Bi-implication h̄(α⇔ β) := h̄(α) ih h̄(β)
If-then-else h̄(α?β : γ) := h̄(α) h̄(β) h̄(γ)
Negation h̄(¬α) := bh h̄(α)

Relational equality h̄(φ = ψ) := h̄(φ) coh h̄(ψ)
Relational containment h̄(φ in ψ) := h̄(φ) coh h̄(ψ)
Universal quantification h̄(∀t̄ : φ|α(t̄)) := qh h̄(φ) h̄(α(t̄))
Existential quantification h̄(∃t̄ : φ|α(t̄)) := qh h̄(φ) h̄(α(t̄))

|φ| = 1 h̄(one φ) := ch h̄(φ)
|φ| ≤ 1 h̄(lone φ) := ch h̄(φ)
|φ| ≥ 1 h̄(some φ) := ch h̄(φ)
|φ| = 0 h̄(no φ) := ch h̄(φ)

Figure 6.3: Hole creation schemas for Alloy Surface Syntax. h̄(x) computes
the holes for syntax x. α, β and γ denote formulas which evaluate to true or
false. φ and ψ denote expressions which evaluate to relations. t̄ : φ denote
tuple membership t̄ ∈ φ.

The value of ch can be one of no, lone, one or some. The value of bh can be

either empty ε or !. The value of eh can be any expression.

Figure 6.3 shows the meaning of different types of AST nodes and the

corresponding schemas to create holes. Each schema is denoted by "h̄(x) :=

90

H ", where h̄(x) means the holes created from AST node type x and H shows

the way to compute holes. For example, the most suspicious node returned

by AlloyFL is a conjunction node (&& as shown in Figure 6.1). To create holes

for the root node, we can apply the schema for the conjunction node, which

states that the holes we should create include a logical operator hole loh, holes

created from the left child and holes created from the right child. In this

case, both the left and right children of the conjunction node are set equality

node (=), so we recursively apply schemas in Figure 6.3 until no more holes are

created. In the end, we would create 4 expression holes, 2 comparison operator

holes and a logical operator hole. This step guarantees that if we fill holes

with candidate operators/expressions, then the resulting expression/formula

is always compilable.

6.2.2 Generating Expressions

The space of candidate fragments for operator holes, e.g. quantifier

holes and cardinality holes, are fixed, but the space of candidate fragments

for expression holes depends on the expression generator. To generate valid

candidate fragments for expression holes, we need to find all atomic expressions

in the model that can be used. ARepair has a static analyzer which finds all

atomic expressions, i.e. sigs, fields, predicate/function parameters, quantifier

variables and let variables, in scope of each expression hole. The holes that

share the same set of atomic expressions in scope have the same set of generated

candidate fragments.

91

expression e := uop e | e bop e | atome | const
unary op uop := ∗ | ˆ | ˜
binary op bop := + | & | − | ·
atomic expr atome := sige | fielde | parame | vare
constant const := none | iden | univ | Int | 0 | 1

Figure 6.4: Expression generation syntax.

ARepair leverages RexGen to generate expressions following the gram-

mars in Figure 6.4. We enable both static pruning and modulo test pruning in

RexGen to prune equivalent expressions. The pruning strategies significantly

reduce the number of expressions to consider and make the repair problem

tractable.

We describe the modulo test pruning technique with an example. Con-

sider the model shown below:

sig Node { link: lone Node } pred p { some n: Node | ?? }
pred t1 { some disj N0: Node | Node=N0 && link=N0->N0 }
pred t2 { some disj N0,N1: Node {

Node=N0+N1 && link=N0->N1+N1->N0 && p[] } }

The model has a signature Node, a binary field link and a quantifier

variable n. Implicitly, n is of type Node and has a cardinality of 1. The model

contains two AUnit tests t1 and t2. Suppose we want to generate expressions

of type Node in the body (denoted by ??) of the existential quantification, and

we can use n, link and Node as the atomic expressions. The following table

shows the valuations of four syntactically different expressions, i.e. n, n.link,

link.(Node-n) and (link.Node)&n, with respect to t1 and t2.

92

test n n n.link link.(Node-n) (link.Node) & n
t1 N0 {N0} {N0} ∅ {N0}

t2 N0 {N0} {N1} {N0} {N0}
N1 {N1} {N0} {N1} {N1}

For test t1, n can only be N0 and link is N0->N0. It’s easy to see

that n, n.link and (link.Node)&n evaluate to the same set {N0} and thus are

equivalent with respect to t1. For test t2, n can be N0 or N1, and link is

{N0->N1, N1->N0}. n, link.(Node-n) and (link.Node)&n are equivalent with

respect to t2 both when n=N0 and n=N1. So n and (link.Node)&n are equiv-

alent with respect to the test suite and the modulo test checker can prune

either n or (link.Node)&n. In practice, we keep expressions with smaller sizes,

so (link.Node)&n will be pruned. If the expression does not contain any free

variable, its valuation does not change based on the valuations of free vari-

ables. If the expression contains more than one free variable, then we need to

enumerate all combinations of possible valuations of the free variables to get

the valuations of the expression. If the free variable’s cardinality is greater

than 1, then its valuation can be any subset of its declaring type. Two ex-

pressions are equivalent with respect to a test if their valuations are the same

across all combinations of possible valuations of free variables in the scope

under test. The expression generator prunes expressions that are equivalent

to any existing expression with respect to the entire test suite.

6.2.3 Search Strategies

Given a level of nodes in a suspicious node and the corresponding holes

created, ARepair implements two search strategies: all combinations and base

93

choice [9].

All combinations . Under this search strategy, ARepair tries all combinations

of candidate fragments for all holes until it finds some failing test passed and no

passing test fails. This search strategy is typically impractical as the number of

holes and the number of candidate fragments for each hole grow. For example,

with 4 holes and 100 candidate fragments for each hole, the search space is

108. In our implementation, we limit the maximum number of combinations to

explore (per level of holes) for this search strategy. Typically, the limit we set is

still large, so we stop exploring more combinations the first time a combination

of candidate fragments makes some failing test pass and no passing test fails. If

such a combination is found, we fill the holes with the corresponding fragments

and save the changes before starting the next iteration.

Intuitively, we want to first explore combinations of candidate frag-

ments of expression holes with smaller expression sizes, because we assume

small-sized expressions are more natural to developers, e.g. n vs (Node-∗link.n).

Figure 6.5 shows how we prioritize exploring combinations of candidate ex-

pressions with smaller sizes. Suppose we have n holes (hole1 to holen) and

holei has Si number of candidate fragments. Then we can partition the can-

didate fragments of holei into ki parts (P i
1 to P i

ki
). Next, we create size-

n tuples U = {(x1, x2, . . . , xn) |
n∧
i=1

xi ∈ [1, ki]} and sort the tuples first by
n∑
i=1

xi and then by | max
∀i∈[1,n]

xi − min
∀i∈[1,n]

xi| to gets a ranked list of tuples L.

For example, if n = 2, k1 = 2, k2 = 3, then the ranked tuple list L =

[(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (2, 3)]. Finally, we iterate each tuple (x1, . . . , xn)

94

hole1

P1
1

P1
2

...

P1
k1

S1

hole2

P2
1

P2
2

...

P2
k2

S2

...

holen

Pn
1

Pn
2

...

Pn
kn

Sn

Figure 6.5: All combinations partitions.

in L and explore all combinations of candidate fragments C = {(f1, . . . , fn) |
n∧
i=1

fi ∈

P i
xi
}. Since expressions are generated in a bottom-up fashion, expressions with

smaller sizes are generated first, which means expression sizes in P x
i are smaller

than expression sizes in P x
j if i < j. Therefore, the exploration strategy guar-

antees that combinations of smaller expressions are explored first.

Base Choice . Under this search strategy, ARepair holds candidate fragments

of all holes constant except one hole (base choice). It enumerates candidate

fragments of holei with the candidate fragments of the rest holes unchanged.

For each holei, ARepair explores all candidate fragments and picks the one (fi)

that makes the maximum number of failing tests pass and no passing test fails.

Then, ARepair enumerates candidate fragments of holei+1 with the fragment

of holei set to fi. ARepair uses this exploration strategy from hole1 to holen

and saves the final changes as the potential fix. For example, with 4 holes and

100 candidate fragments for each hole, the search space is 400. In practice, the

number of generated candidate fragments for an expression hole can be large,

95

so we set a limit on the number of candidate fragments to explore per hole.

6.2.4 Running Tests

ARepair invokes tests in the expression generation phase (to prune

expressions), the fault localization phase (to locate faults) and the repair phase

(to validate candidate patches). Since the search space is large and each repair

problem contains many tests, invoking all tests at the repair phase takes a

majority of the time. Moreover, invoking each test predicate with a SAT

solver is expensive. We introduce a technique that determines test satisfiability

using Alloy’s built-in evaluator (without expensive sat solving) and builds a

dependency graph for each test to reduce the number of evaluator calls.

For a given faulty Alloy model, ARepair normalizes the signature mul-

tiplicity constraints, the field multiplicity constraints and the signature facts,

and creates a formula for each constraint. In the faulty farmer example (Fig-

ure 5.1a), the Object signature is declared to be an arbitrary set of atoms, so

it does not need to be normalized and we create an empty formula (denoted

by Objectmult) which evaluates to true by default. Similarly, the field eats is

declared to relate an object to a set of objects, so we simply create an empty

formula (denoted by eatsmult). one sig Farmer is declared to be a singleton

set so we normalize it as sig Farmer (remove signature multiplicity constraint)

and create a formula one Farmer (denoted by Farmermult). Thus, ARepair cre-

ates a formula for each signature and field. Since the farmer model does not

have any signature facts, we do not need to create any formula for signature

96

test1

Objectmult

Farmermult

Foxmult

Chickenmult

Grainmult
Statemult

eatsmult

nearmult

farmult

eating

initialState

stateTransition

crossRiver

Figure 6.6: Dependency graph for test1 in Figure 5.1b.

facts. For each fact paragraph, ARepair creates a formula (denoted by the

fact name) that is identical to the fact body.

For each AUnit test, we create a dependency graph that encodes the

formulas the test depends on. For example, Figure 6.6 shows the depen-

dency graph for test1 in Figure 5.1b. test1 depends on all signature/field

multiplicity constraints and all fact constraints, because those constraints are

enforced by the Alloy analyzer when we invoke the test. Since both test1 and

stateTransition directly invoke the crossRiver predicate, they both depend

on crossRiver.

Once we build the dependency graph for each AUnit test, it is easy to

compute a test’s satisfiability from the formulas the test depends on. Initially,

ARepair evaluates each formula the test depends on and stores the satisfiability

of each formula. When ARepair enumerates candidate fragments for holes, it

only evaluates the affected formulas to determine the satisfiability of the test.

97

In the faulty farmer example, when ARepair enumerates candidate fragments

for holes under the most suspicious AST node (Figure 6.1), the only affected

predicate is crossRiver and the affected formulas are stateTransition and

test1. To determine the satisfiability of test1, we only need to evaluate the

body of stateTransition and the body of test1. Moreover, if any unaffected

formula is unsatisfiable, then we know the test is unsatisfiable even without

invoking the evaluator. In practice, the technique improves the performance

of ARepair because it does not involve any expensive SAT solving and is able

to determine the test satisfiability with a minimal number of evaluator calls.

6.2.5 Hierarchical Caching

The evaluator-based approach to determine the test satisfiability can

be further improved by our hierarchical caching algorithm. The idea is that we

can reuse the previously evaluated result (i.e. valuation) of a formula if its sub-

formulas evaluate to the same set of values as some subformulas we evaluated

before. We explain hierarchical caching through the farmer example. Suppose

we want to determine the satisfiability of test1 (Figure 5.1b) by evaluating

the fact formula stateTransition, and the created holes correspond to nodes

at level 7 of the most suspicious AST node, i.e. to and eats in Figure 6.1 high-

lighted in red. Also assume that hole h̄(to) is first replaced by fragment none

and hole h̄(eats) is unchanged. We create a hierarchical cache for test1 as

follows. First, we invoke the evaluator for the fragments of both holes and find

that none evaluates to ∅ and eats evaluates to {X0→C0, C0→G0}. So we cre-

98

ate mappings <"none", [∅]> for h̄(to) and <"eats", [{X0→C0, C0→G0}]>

for h̄(eats). Since the join operator "·" in level 6 is the lowest common an-

cestor of both holes in level 7, a mapping <"∅.{X0→C0, C0→G0}", [∅]> is

created for the join operator. Note that the key of the join operator is its

string representation with all descendant holes replaced by their valuations

under test1. The value of the mapping is obtained by evaluating the string

representation of the join operator, i.e. none.eats, which is ∅. We then create

a mapping for the body of the declaring crossRiver predicate. But because

the body has parameters (from, from’, to, to’), we need to assign possible

values to all parameters and create a mapping for the body <"A1A2...An",

[{B1},{B2},...,{Bn}]>, where Ai means the string representation of the body

(with the join operator "·" replaced with its actual valuation) given ith pos-

sible assignment of parameters, and Bi is the corresponding boolean result of

the body formula in this case. We finally maps the cached value of crossRiver,

i.e. [{B1},{B2},...,{Bn}], to the satisfiability of the stateTransition fact.

If the next fragment of hole h̄(to) is item-Object which evaluates to

∅ (h̄(eats) is unchanged), then we immediately know that stateTransition

evaluates to the same result as when hole h̄(to) is none. Because the new

keys we computed for other nodes, e.g. the join operator in level 6, are al-

ready in the cache. Therefore, we only invoke the evaluator once to evaluate

item-Object instead of evaluating the big stateTransition body to determine

its satisfiability. In general, the hierarchical cache reduces the input size of

evaluator calls but increase the number of evaluator calls. In practice, we ob-

99

Algorithm 3: ARepair algorithm.
Input: Faulty Alloy model M, test suite T.
Output: Fully fixed model or partially fixed model.

1 canFix = True
2 while canFix do
3 res = runTests(M)
4 if allTestsPassed(res) then return M // Full fix.
5 L = locateFaults(M, res)
6 if isEmpty(L) then return M // Partial fix.
7 canFix = False
8 if isFixed(M, L[0]) then
9 M = applyChange(M, L[0])

10 canFix = True

11 else
12 foreach n ∈ L do
13 patch = synthesize(M, n)
14 if isFixed(M, patch) then
15 M = applyChange(M, patch)
16 canFix = True
17 break

18 return M // Partial fix.

serve speed-ups for a majority of repairing problems and few repair problems

suffer from a slow-down.

6.2.6 Repair Algorithm

Algorithm 3 shows the algorithm of ARepair. The algorithm takes

as input a faulty Alloy model M and a test suite T that reveals the fault.

The output is either a fully fixed model if all tests pass or a partially fixed

model otherwise. In the worst scenario, ARepair is not able to fix any fault,

in which case the partially fixed model is the original faulty model. Initially,

100

we set canFix to true (line 1) and enter the loop (line 2). For each iteration

in the loop, we first run all tests against M (line 3). If all tests pass, M is

returned (line 4). Otherwise, we run AlloyFL to return a ranked list (L) of

suspicious AST nodes (line 5). If L is empty, then the algorithm cannot fix the

faulty model and it returns the latest state of M (line 6). Otherwise, we set

canFix to false (line 7) and try to fix the faults. The algorithm checks if the

most suspicious AST node (L[0]) is a potential fix (line 8). The isFixed check

determines if we want to use the mutation or the synthesizer to fix the model.

In general, the isFixed method returns true if the mutation makes X failing

tests pass and Y passing tests fail, where X > 0 and Y = 0. In practice, X

and Y can be arbitrary numbers as long as X > Y holds, because we want

to make sure the algorithm terminates. Since initially we have finite number

of failing tests and X > Y makes sure that fewer tests are failing at each

iteration. The total number of iterations is bounded by the number of initial

failing tests. If isFixed (line 8) returns true, then we apply the mutation to M

(line 9) and set canFix to true (line 10). Otherwise, we iterate over the ranked

suspicious nodes (line 12) and try to fix the model using the synthesizer. For

each suspicious node in L, we invoke the synthesizer to create holes, generate

candidate fragments, explore the search spaces and find a potential patch (line

13). Then, the algorithm checks if the patch is a potential fix (line 14). The

isFixed method in line 14 is similar to the method in line 8. If the patch is a

fix, then we apply the patch to the model (line 15) with canFix set to true and

exit the inner loop (line 12-17). Otherwise, we invoke the synthesizer on the

101

next suspicious node in L. If the synthesizer cannot find a fix after exploring all

suspicious nodes, then the algorithm exits the outer loop (line 2) and returns

the latest state of M.

If the resulting model passes all tests, ARepair simplifies the model to

make it look more natural to the developer. For example, ARepair replaces "to

- none.eats" with "to" because "none.eats" always evaluates to an empty

set.

6.3 Evaluation

We evaluate ARepair on 38 real faults collected from Alloy release 4.1,

Amalgam [96] and Alloy homework solutions from graduate students. These

faulty models contain various types of faults, i.e. overconstraints, undercon-

straints and a mixture of both. We define the number of faults as the number

of incorrectly modeled Alloy paragraphs, e.g. signatures, predicates, functions

and facts.

We address the following research questions in this section:

• RQ1. What is the repair efficacy of ARepair?

• RQ2. How does the quality of ARepair generated patches compared to

human-written patches?

• RQ3. Why is ARepair unable to fix some models?

102

al
l-
co
m
bi
na

ti
on

s
se
ar
ch

st
ra
te
gy

ba
se
-c
ho

ic
e
se
ar
ch

st
ra
te
gy

M
od

el
#
A
ST

#
T
es
t
#
F
lt

#
F
ix

St
at
us
T
yp

es
SS

E
S

F
L
(s
)
E
G
(s
)E

E
(s
)

#
F
ix

St
at
us
T
yp

es
SS

E
S

F
L
(s
)
E
G
(s
)E

E
(s
)

ad
dr
1

12
4

30
1

1
H

M
1

1
41
.0

0.
0

45
.3

1
H

M
1

1
7.
3

0.
0

8.
3

ar
r1

64
37

1
0

7
–

1.
7e
5

1.
3e
5

36
.0

13
.5

29
1.
4

1
H

S
4e
4

88
1.
8

1.
9

6.
7

ar
r2

80
37

1
1

H
M
+
S

3.
4e
7

5e
6

11
.6

1.
9

3.
4e
3

1
H

M
+
S

3.
4e
7

17
8

11
.4

1.
9

16
.9

bs
t1

18
6

12
4

1
1

3
M

1
1

67
.6

0.
0

74
.2

1
3

M
1

1
46
.4

0.
0

48
.8

bs
t2

16
1

12
4

3
–
∞

–
–

–
–

–
–

0
7

–
2e
17

1.
6e
5

67
8.
6

59
7.
2

4.
8e
3

bs
t3

16
5

12
4

2
–
∞

–
–

–
–

–
–

2
3

M
+
S

2e
8

4e
3

24
1.
3

11
74

1.
5e
3

be
m
pl
1

51
25

1
0

7
–

32
5

32
5

2.
6

0.
4

5.
3

0
7

–
32
5

67
2.
6

0.
3

5.
3

cd
1

59
31

2
1

=
M

1e
4

99
3

5.
9

1.
3

10
.6

2
3

M
+
S

1.
9e
5

68
8

6.
0

3.
9

12
.7

cd
2

50
31

1
1

3
S

96
6

35
0

2.
3

0.
6

6.
4

1
3

S
2.
4e
5

81
0

2.
2

4.
7

11
.2

ct
re
e1

71
22

1
1

3
M

1
1

5.
6

0.
0

6.
5

1
3

M
1

1
5.
5

0.
0

6.
4

dl
l1

10
9

50
2

2
3

S
4.
9e
4

85
22

19
.5

2.
3

42
.1

2
3

S
6.
7e
4

23
9

19
.0

8.
3

34
.1

dl
l2

10
5

50
2

2
3

M
+
S

4.
9e
4

85
21

26
.7

1.
7

46
.9

2
3

M
+
S

6.
6e
4

19
2

27
.3

7.
7

39
.8

dl
l3

10
1

50
3

–
∞

–
–

–
–

–
–

0
7

–
1.
7e
9

2.
1e
4

31
.3

30
.4

94
.7

dl
l4

10
9

50
1

1
3

M
+
S

4.
9e
4

83
84

16
.3

1.
7

36
.2

1
3

M
+
S

6.
6e
4

19
1

16
.5

7.
7

28
.8

fa
rm

er
1

18
0

76
1

–
∞

–
–

–
–

–
–

1
3

M
+
S

7.
6e
13

45
56

14
0.
7

1.
6e
4

4.
5e
4

fs
m
1

11
6

15
2

2
H

M
2

2
7.
0

0.
0

7.
7

2
H

M
2

2
6.
9

0.
0

7.
7

fs
m
2

93
15

1
1

H
M

1
1

3.
8

0.
0

4.
7

1
H

M
1

1
3.
9

0.
0

4.
7

gr
ad

e1
71

42
1

–
∞

–
–

–
–

–
–

1
3

S
1.
5e
9

1e
3

5.
2

9.
5

73
9.
6

ot
he
r1

68
22

1
1

H
S

75
93

58
6

2.
4

0.
7

8.
3

0
7

–
1.
7e
4

38
7

2.
4

0.
7

8.
4

st
u1

21
3

98
1

1
3

S
9.
3e
4

83
6

52
.6

6.
7

85
.1

1
3

S
1.
7e
6

18
6

26
.3

1.
8

46
.6

st
u2

19
5

98
2

–
∞

–
–

–
–

–
–

1
7

S
9.
6e
12

99
05

14
1.
7

40
.0

45
3.
5

st
u3

23
7

98
2

–
∞

–
–

–
–

–
–

0
7

–
1.
7e
15

3.
5e
4

34
7.
9

35
5.
9

2.
8e
3

st
u4

19
0

98
1

1
3

S
9.
3e
4

83
6

53
.6

6.
6

85
.6

1
3

S
1.
7e
6

18
6

26
.8

1.
9

46
.9

st
u5

23
5

98
1

1
3

S
9.
3e
4

83
6

55
.0

6.
7

87
.9

1
3

S
1.
7e
6

18
6

27
.5

1.
9

48
.4

st
u6

19
1

98
3

–
∞

–
–

–
–

–
–

2
7

M
+
S

3.
8e
8

4e
3

12
0.
2

22
.4

28
2.
4

st
u7

17
4

98
2

2
3

M
+
S

5.
4e
5

1e
4

18
8.
9

15
.4

26
5.
7

1
7

S
9.
3e
10

2.
5e
4

21
3.
7

29
1.
6

1.
7e
3

st
u8

21
3

98
1

1
3

S
1.
4e
4

1e
4

33
.4

7.
9

78
.7

1
3

S
1.
4e
4

12
0

33
.4

7.
5

54
.7

st
u9

19
8

98
1

1
H

M
1

1
49
.0

0.
0

51
.0

1
H

M
1

1
49
.9

0.
0

51
.9

st
u1

0
20
0

98
1

1
3

S
9.
3e
4

83
6

63
.7

6.
4

95
.9

1
3

S
1.
7e
6

18
6

30
.4

1.
9

50
.5

st
u1

1
22
1

98
1

1
3

S
1.
4e
7

43
17

97
.6

20
.7

17
4.
5

1
3

S
1.
4e
7

57
1

65
.3

16
.4

13
1.
5

st
u1

2
20
1

98
2

2
3

M
+
S

9.
3e
4

88
7

17
9.
8

8.
1

22
4.
6

2
3

M
+
S

1.
7e
6

26
4

15
2.
9

3.
5

18
6.
9

st
u1

3
22
1

98
1

1
H

M
1

1
64
.3

0.
0

66
.4

1
H

M
1

1
64
.5

0.
0

66
.5

st
u1

4
18
3

98
3

–
∞

–
–

–
–

–
–

2
7

M
+
S

3.
8e
8

4e
3

10
5.
5

23
.4

26
6.
2

st
u1

5
20
7

98
1

1
3

S
9.
3e
4

83
6

68
.6

6.
8

10
0.
7

1
3

S
1.
7e
6

18
6

33
.7

2.
0

53
.6

st
u1

6
11
3

98
4

–
∞

–
–

–
–

–
–

0
7

–
5.
9e
5

69
01

43
.0

67
.9

25
0.
3

st
u1

7
19
0

98
2

–
∞

–
–

–
–

–
–

1
7

S
3.
5e
8

37
41

61
.0

22
.5

20
5.
5

st
u1

8
20
7

98
3

3
3

M
+
S

2.
9e
9

3.
7e
5

16
0.
6

6.
8

1.
1e
3

3
3

M
+
S

2.
9e
9

40
9

11
5.
4

7.
4

15
2.
1

st
u1

9
21
6

98
2

–
∞

–
–

–
–

–
–

1
7

S
1e
13

82
21

19
4.
1

9e
3

95
96

F
ig
ur
e
6.
7:

A
R
ep
ai
r
R
es
ul
ts
.
T
im

es
ar
e
in

se
co
nd

s.
–
de
no

te
s
no

t
ap

pl
ic
ab

le
.

103

6.3.1 Experiment Setting

Unlike existing datasets that isolate faults for the repair techniques,

e.g. Defects4J [55], we use the exact human-written faulty Alloy models as an

input to ARepair. We use the Ochiai [2] formula to rank suspicious AST nodes

in AlloyFL, because existing studies [130, 156] show that Ochiai is effective.

The expression generator generates different sizes of expressions based on the

level of the holes in the suspicious AST. We set the expression size to 3 for the

deepest level of holes in each suspicious AST. The expression size increases by

1 for holes at depth Di−1 compared to holes at depth Di where Di−Di−1 = 1,

up to a maximum expression size of 6. For the all-combinations search

strategy, we partition the candidate fragments for each hole into 10 parts (i.e.

ki = 10 in Figure 6.5), and we set the maximum number of combinations of

candidate fragments to explore to 10000 (per level of holes). For the base-

choice search strategy, we set the maximum number of candidate fragments

to explore for each hole to 1000. The AUnit tests we use to validate the

patches are generated so that they are able to detect all non-equivalent mutant

models [133]. Additionally, the authors manually inspect the generated tests

and add some new tests to cover different corner cases.

We validate the correctness of a generated patch by both inspecting

them manually and using the Alloy analyzer to perform a scope bounded

equivalence check. The human-written patches are written with the intention

of introducing small perturbations that are sufficient to fix the faults. We

terminate ARepair once it finds a patch that passes all tests.

104

All experiments are performed on Ubuntu 16.04 LTS with 2.4GHz Intel

Xeon CPU and 16 GB memory. To save space, we denote the all-combinations

search strategy as AC and the base-choice search strategy as BC in the fol-

lowing sections.

6.3.2 Repair Efficacy

Figure 6.7 shows the detailed results for ARepair. Model, #AST,

#Test and #Flt show the name, the number of AST nodes, the number of

tests and the number of faults, respectively, for each subject model. farmer1

is from Alloy release 4.1. addr1, bempl1, grade1 and other1 are from

Amalgam [96]. The rest models are from graduate student solutions. Student

solutions for the same question share the same test suite. #Fix shows the

number of faults a search strategy is able to fix. Status shows the repair

status. H means the generated patch is syntactically identical to the human-

written patch. 3 means the generated patch is syntactically different but

semantically equivalent to the human-written path. = means the patch is

plausible (incorrect but passes all tests). 7 means ARepair fails to generate a

patch that pass all tests. ∞ means the repair times out after 15 hours. Types

shows whether the fix requires mutations (M) or synthesis (S). SS shows the

search space size, which is defined as the sum of the number of combinations of

candidate fragments (including applied mutations for fixes) to consider in each

iteration. ES is the actual number of combinations (or mutations) ARepair

tried. FL is the fault localization time. EG is the expression generation time.

105

EE is the end-to-end time. All times are in seconds.

The entire experiments contain 38 faulty models and 62 individual

faults. AC is able to fix 24 models and 31 faults. BC is able to fix 26 models

and 42 faults. Additionally, AC times out (≥ 15h) for 12 models while BC

finishes all models in 15h. AC is able to fix 2 models that BC is not able to

fix, e.g. other1 and stu7. BC is able to fix 5 models that AC is not able to

fix (including 1 plausible patch for cd1), e.g. arr1, bst3, cd1, farmer1 and

grade1. Many models require both mutations and synthesis for a complete

fix, e.g. arr2 and dll2. AC’s search space ranges from 1 to 2.9e9 and the

maximum size of the explored space is 5e6. BC’s search space ranges from 1

to 2e17 and the maximum size of the explored space is 1.6e5. We can see that

BC explores less of its search space than AC, though BC typically has a much

larger search space. In general, BC runs faster than AC, with the exceptions of

cd1, cd2 and stu7. For AC, the fault localization time ranges from 2.3 sec to

188.9 sec and the maximum expression generation time is 20.7 sec, excluding

timeout cases. For BC, the fault localization time ranges from 1.8 sec to 678.6

sec and the maximum expression generation time is 1.6e4 sec. Typically, AC

times out for models whose expression generation time is large (≥ 1000s) under

BC. A large expression generation time is a reflection of ARepair producing a

large number of expressions, resulting in large search spaces. This means that

when there are so many combinations of candidate fragments to consider, AC

typically times out. In comparison, despite the large number of expressions

produced, BC explores much less space and thus is faster. However, BC can

106

(A) Human-written patch for bst1.
1. pred Sorted() { all n: Node {
2.- all n2: n.^left | n2.elem < n.elem
3.+ all n2: n.left.*(left+right) | n2.elem < n.elem
4.- all n2: n.^right | n2.elem > n.elem}}
5.+ all n2: n.right.*(left+right) | n2.elem > n.elem}}

(B) ARepair generated patch for bst1.
1. pred Sorted() { all n: Node {
2.- all n2: n.^left | n2.elem < n.elem
3.+ all n2: n.^left.*right | n2.elem < n.elem
4.- all n2: n.^right | n2.elem > n.elem}}
5.+ all n2: n.^right.*left | n2.elem > n.elem}}

(C) Human-written patch for cd2.
1. pred Acyclic() {
2.- no c: Class | c = c.ext }
3.+ no c: Class | c in c.^ext }

(D) ARepair generated patch for cd2.
1. pred Acyclic() {
2.- no c: Class | c = c.ext }
3.+ no c: Class | c = c & c.^ext }

(E) Human-written patch for stu8.
1. pred Sorted(This: List) {
2.- all n: Node | n.elem<=n.link.elem }
3.+ all n: Node | some n.link => n.elem<=n.link.elem }

(F) ARepair generated patch for stu8.
1. pred Sorted(This: List) {
2.- all n: Node | n.elem<=n.link.elem }
3.+ all n: link.Node | n.elem<=n.link.elem }

Figure 6.8: Comparison of ARepair generated patches and human-written
patches.

run into its local optimum. For example, the explored space for other1 is less

than 600 for both BC and AC, but BC cannot fix the model. Overall, AC and

BC are complementary and BC is superior in the sense that it takes less time

to run and fixes more faults.

6.3.3 Patch Quality

To answerRQ2, we find that BC generates 26 patches that pass all tests

(all patches are correct and 7 patches exactly match human-written patches).

107

AC generates 24 patches that pass all tests (23 patches are correct; 7 patches

exactly match human-written patches; and 1 patch is plausible but incor-

rect). We compare the generated patches that are syntactically different but

semantically equivalent to human-written patches. In addition to patches for

the faulty farmer model (Figure 6.2), Figure 6.8 compares ARepair generated

patches and human-written patches for bst1 (A and B), cd2 (C and D) and

stu8 (E and F). The Sorted predicate in bst1 models that the value of the

current node should be greater than values of its left descendants and less

than values of its right descendants. The developer incorrectly use "n.^left"

to represent the domain of n’s left descendants. The correct domain should

be "n.left.*(left+right)" as shown in the human-written patch. The gener-

ated patch restricts the domain to be "n.^left.*right" which means all nodes

that can be reachable from n by first following one or more left relation and

then zero or more right relation. The Acyclic predicate in cd2 models that

a class does not transitively extend itself. The faulty model does not consider

the transitivity requirement, which is fixed in the human-written patch by

replacing "c = c.ext" with "c in c.^ext". The generated patch uses "c = c

& c.^ext" which states that no class is equal to the intersection of the class

and all its subclasses, transitively. The Sorted predicate in stu8 models a

linked list sorted in descending order of the node values. The faulty model

does not allow the existence of any list with a single node (without any link).

The human-written patch allows such cases by stating that if a node n has a

subsequent node following the link, then its value should be less than or equal

108

to the value of its subsequent node. The generated patch instead modifies the

domain to restrict the less than or equal relation only applying to nodes that

have a subsequent node.

The authors check the correct patches that are syntactically different

from human-written patches and find that these patches are easy to under-

stand in general. There are rare cases that ARepair generates some complex

expressions that can be further simplified through semantic reasoning. Addi-

tionally, ARepair generates a patch which fixes a fact instead of the predicate

the developer would fix for ctree1.

6.3.4 Limitation

To answer RQ3, we manually inspect all faulty models that ARepair

is unable to fix. The reasons are categorized as follow:

1. The repair requires synthesizing predicate and function calls. For example,

one of the property to fix in bst2 requires invoking predicates and functions.

2. The repair requires moving a field declaration from one signature to another,

e.g. bempl1.

3. The repair requires creation of new syntactic structures. For example, dll3

models a property using a single quantifier, but the model needs two. stu2

has a formula with the structure (α⇒β) ||γ, but the correct fix requires

α⇒β elseγ, where α, β and γ are formulas. stu6 is overconstrained and

the fix requires creating a disjunction of a formula and an existing formula.

109

dll3 and stu16 have empty predicate and require ARepair to synthesize

formulas from scratch.

4. Both AC and BC search strategies are greedy and may run into a local

optimum. For example, a correct patch of other1 requires changing two

formulas at the same time and BC runs into a local optimum that leads to

a repair failure. Similarly, AC runs into a local optimum for arr1.

We find that the majority of the faults ARepair is unable to fix fall

under category 3, followed by category 4. To handle faults in category 3, we

can add repair templates that introduce new syntactic structures if the current

version of ARepair is not able to find a correct patch. New search strategies

can be designed to address faults under category 4. From our experiment,

ARepair is able to handle majority of the faulty models (28 out of 38) and we

plan to handle the limitations in future works.

6.4 Summary

This chapter introduces a generate-and-validate repair technique, ARe-

pair, to fix faulty Alloy models. ARepair leverages AlloyFL, RexGen and a

synthesizer to repair various kinds of faults. ARepair is enumeration-based

and it enbodies two search strategies, i.e. the all-combination strategy and

the base-choice strategy. ARepair implements various optimizations, includ-

ing the use of modulo test input pruning to remove equivalent expressions, the

construction of dependency graph to reduce evaluator calls, and the employ-

110

ment of a hierarchical cache to reduce evaluator input size. The experimental

results show that ARepair works well in fixing real faulty models.

111

Chapter 7

Related Work

This chapter presents an overview of the work related to the contribu-

tions of this dissertation. There has been a lot of work on expression gener-

ation [63], program sketching [46], automated program fault localization [51]

and automated program repair [149]. These work mainly focuses on impera-

tive languages like C and Java. We bring all of the above technologies to the

declarative language Alloy, which is a first-order relational logic with transi-

tive closure. The fundamental differences between imperative languages and

declarative languages enable a set of new techniques to solve existing problems.

This chapter is organized as follows. Section 7.1 discusses work related to ex-

pression generation. Section 7.2 discusses work related to program sketching.

Section 7.3 discusses work related to fault localization. Section 7.4 discusses

work related to program repair. Section 7.5 discusses work related to Alloy.

7.1 Expression Generation

Expression generation serves as the fundamental step for program syn-

thesis. Enumeration algorithms include bottom-up enumeration [8, 139], used

by RexGen, and top-down enumeration [24]. EuSolver [8] has been one of the

112

most prominent solvers in Syntax-Guided Synthesis (SyGuS) competitions.

FlashMeta [108] uses version-space algebra to concisely represent a large num-

ber of programs. Neither EuSolver nor FlashMeta focus on relational expres-

sions, which can generate a large number of equivalent expressions. Our work

proposes a number of pruning rules that substantially reduce the number of

equivalent expressions, thus providing basis for practical synthesis with rela-

tional expressions.

Search space pruning of expression generation is important because

search spaces for any realistic programming language quickly become intractable.

Pruning techniques include indistinguishability of expressions modulo a set of

inputs [8, 139] and partial evaluation of incomplete expressions [24]. Knowl-

edge about operator properties has also been used to explore equivalent ex-

pressions, either after expression generation [106] or by applying an auto-

mated transformation to the grammar which represents candidate programs

[63]. However, most techniques have only been explored in the domains of in-

tegers, booleans, and abstract data types, all of which have less comprehensive

sets of equivalence rules than our work with the domains of sets and relations.

Applications of expression generation are quite common. For exam-

ple, program synthesis has attracted attention for a few decades [83], and

researchers have applied it in a variety of domains [23, 24, 27, 36, 61, 82]. Pro-

gram sketching [129] is another example, which demonstrated the opportu-

nities to apply modern solver technology to the synthesis problem, and in-

troduced the counter-example guided inductive synthesis paradigm to pro-

113

gram synthesis. Sketch requires the user to provide generators of expressions

for expression holes [7, 38, 46, 125]. While most work on sketching is in the

context of synthesis, SketchFix [37] applies sketching to the problem of pro-

gram repair [31, 50, 78, 113, 150], i.e., correcting faulty lines of code. Synthesis

from examples, the inspiration behind test valuations, has also been exten-

sively studied [6, 104]. Notably, synthesis from examples has been successfully

employed in commercial products [34]. The key enabler of all of the above

applications is efficient expression generation; RexGen is the first work that

addresses generation for relational algebra.

7.2 Program Sketching

Program sketching [7, 46, 123, 125–129] is a form of program synthesis,

which is a mature yet active research topic [11, 23, 25, 27, 36, 61, 64, 82, 100,

123]. Researchers have proposed program synthesis techniques for a number

of languages, including synthesis of logic programs, e.g., using inductive syn-

thesis based on positive and negative examples [20]. However, prior work has

not addressed the complexity of synthesis in the presence of quantifiers, tran-

sitive closure, relational operators, and more generally, formulas that express

structurally complex properties, which are the focus of our work.

The Sketch system [126] takes as input a partial program in the Java-

like Sketch language, and uses SAT and inductive synthesis in a counterexample-

guided loop. Sketch requires users to provide generators for expression frag-

ments for expression holes. The JSketch tool translates Java to Sketch to allow

114

sketching Java programs [46]. Some tools focus on specific kinds of programs

to sketch, such as PSketch for concurrent data structures [128].

SyPet [23] introduced a novel use of Petri nets in synthesizing se-

quences of method invocations for complex APIs using tests. EdSketch [38]

and EdSynth [158] introduced an optimized backtracking search for completing

Java sketches using test executions for pruning. Test-Driven Synthesis itera-

tively builds a C# program such that it satisfies all tests [106]. Component-

based synthesis builds programs by combining components from given libraries,

e.g., work in this line used I/O oracles to synthesize loop-free programs [47].

ASketch shares the spirit of storyboard programming, which uses user-

provided graphical representations of data structures to synthesize imperative

code that performs desired data structure manipulations based on the insight

that it can be easier and more intuitive for a user to provide concrete data

structure manipulations than to write the code [125]. Our test valuations make

use of a similar insight.

7.3 Fault Localization

Automated debugging of Alloy models can be traced back to Alloy’s

early days when highlighting unsat cores in unsatisfiable Alloy formulas was

introduced [120]. Moreover, for satisfiable formulas, Alloy’s symmetry break-

ing indirectly supports debugging by allowing the user to inspect fewer in-

stances [29, 58, 97, 121]. More recent work on Amalgam allows the user to ask

questions of the form “why a tuple is or is not in a relation” for a chosen

115

instance [96]. While Amalgam provides a useful tool to aid debugging by al-

lowing the user to enhance their understanding of the model by asking a series

of questions, the restricted form of the questions limits its effectiveness, e.g.,

the user cannot ask why certain formulas hold or not, or why certain relations

are empty.

A number of approaches assist users to write correct Alloy models.

Montaghami and Rayside [90, 91] enable Alloy users to more easily provide

partial instances, which are tangible, expressive example solutions that aid

in writing correct, complete models. Sullivan et al. [134] follow the spirit of

JUnit and introduce a test automation framework for Alloy by defining test

case, test execution and model coverage. AUnit has enabled further test au-

tomation efforts for Alloy, ranging from automated test generation to mutation

testing [133, 142].

While our focus in this paper is on declarative models written in Alloy,

fault localization for imperative languages is a well-studied area. AlloyFL im-

plements spectrum-based, mutation-based, and SAT-based techniques. Among

these, spectrum-based techniques [1, 2, 15, 21, 51, 52, 72, 103, 112], are the most

widely studied; they focus on collecting execution information, such as state-

ments and methods. Mutation-based fault localization techniques [92, 101]

were introduced more recently. They perform mutations on the faulty program

to study their impact on the test execution results and determine likely faulty

locations. SAT-based techniques use either the minimal satisfiability [33] or

the negation of maximal satisfiability [53] to identify suspicious code.

116

A number of other techniques have also been proposed for fault lo-

calization. Comparing program states between passing and failing tests has

shown to be highly effective and was pioneered by delta debugging [161, 162],

which has led to various other approaches [13, 35, 163]. Statistic-based ap-

proaches [75, 152] focus on determining the likelihood of different portions of

a program being faulty. Feedback-based debugging [71, 73] is an interactive

fault localization approach that utilizes execution traces and user feedback.

Program slicing [4, 5, 80] isolates relevant program elements that can trigger

the execution traces that lead to errors.

7.4 Program Repair

The generate-and-validate repair techniques apply a set of code trans-

formations to generate program candidates and validate each candidate under

the given test suite. These techniques implement different search strategies,

e.g. genetic algorithms [149], semantic search [57], random search [109] and

adaptive search [148], to explore the immense search space of repair candidates.

Researchers also proposed other repair techniques that remove program func-

tionalities [110], create program variants [12, 17], leverage dynamic program

state [39, 40, 158], or focus on improving performance by removing bottlenecks

in concurrent programs [159]. Astor [87] is a repair library that implements

existing techniques to fix Java code. Techniques that prioritize patches are

built based on human-written code [59, 77, 122, 154], historical data [22, 70],

document analysis [76, 116, 155], anti-patterns [135] and test generation [153].

117

The constraint-solving repair techniques use the semantics of the faulty

program and translate the repair problem into a constraint solving problem.

Then, the constraint solving problem is solved by an off-the-shelf solver to find

a repair that satisfies all inferred specifications. The constraints can be inferred

from test executions [18, 79, 118] or semantic analysis [16, 56, 69, 99]. Other

techniques use formal specifications [32, 60, 124, 147] or infer invariants [19, 54,

107, 117] to fix programs.

The fundamental idea of declarative debugging is that the programmer

(or some oracle) has an intended interpretation of the program and debuggers

can query the programmer to obtain this information. The debugger compares

the intended interpretation of a (buggy) program with its (incorrect) actual

behavior on some computation. The cause of the difference is isolated to a

small section of code which must contain a bug. Declarative debugging was

first introduced in Prolog [119] and then extended for functional and logic

programs [93, 94, 105]. Researchers also developed program repair technique

for SQL [10, 30].

7.5 Alloy

Alloy is a well studied lightweight modeling approach that has been ap-

plied in various domains, including software design [84, 85], networking [114],

and security [81, 98] Various approaches assist Alloy users to build their mod-

els correctly, e.g., by improving scenario exploration [96, 97], supporting state

modeling [26, 44, 45, 86, 132], highlighting unsat cores [120, 137, 138], and cre-

118

ating tests [133, 142]. Over the past years, many extensions have been built

for Alloy. Alloy∗ [88] allows users to write models in second order logic. Elec-

trum [14] is used to validate the train system. Molina et al. [89] uses genetic

programming algorithm to generate Alloy specification..

119

Chapter 8

Conclusion and Future Work

Since writing models correctly is challenging, models often have faults.

We propose to alleviate the manual effort put into debugging models by au-

tomating the expression generation, fault localization and repairing. Specifi-

cally, we implement our ideas in a widely used declarative language, i.e. Alloy.

We first introduce RexGen, a expression generator for Alloy, which systemati-

cally generates non-equivalent Alloy expressions. Then, we introduce ASketch

a solver-based sketching framework. ASketch takes as input a partial Alloy

model, a generator and a set of AUnit tests that capture the desire properties

of the model. ASketch is able to complete the partial Alloy model such that all

tests pass. We next introduce AlloyFL, a set of fault localization techniques

for Alloy, which takes as input a faulty Alloy model and a suite of AUnit tests.

AlloyFL returns a list of Alloy AST nodes in the descending order of suspi-

ciousness. Finally, we propose ARepair, an automated repair technique that

leverages both RexGen and AlloyFL. It takes as input a faulty Alloy model

and a suite of AUnit tests and outputs a fixed Alloy model that passes all

tests. We believe our work in this thesis can reduce the manual debugging

efforts of Alloy users and help them write correct specification.

120

We plan to collect more real-world faulty Alloy models to better un-

derstand the reasons and types of faults developers make. This can further

help us design better debugging/repair tools to reduce human effort involved

in debugging Alloy models. It would be useful to modify the official Alloy

analyzer to record developer activities when they write and fix models. A user

study of AlloyFL and ARepair would be good to check if our tool can actually

help Alloy developers debug/fix their models faster.

121

Bibliography

[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund.

A practical evaluation of spectrum-based fault localization. JSS, 2009.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accu-

racy of spectrum-based fault localization. In TAICPART-MUTATION,

2007.

[3] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. Spectrum-

based multiple fault localization. In ASE, 2009.

[4] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong. Fault localiza-

tion using execution slices and dataflow tests. In ISSRE, 1995.

[5] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. In

PLDI, 1990.

[6] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive

program synthesis. In Natasha Sharygina and Helmut Veith, editors,

CAV, 2013.

[7] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund

Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,

Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In FM-

CAD, 2013.

122

[8] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enu-

merative program synthesis via divide and conquer. In TACAS, 2017.

[9] Paul Ammann and Jeff Offutt. Introduction to Software Testing. 2008.

[10] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Specifying and

querying database repairs using logic programs with exceptions. In

Flexible Query Answering Systems. 2001.

[11] Rastislav Bodík and Barbara Jobstmann. Algorithmic program synthe-

sis: Introduction. STTT, 2013.

[12] Antonio Carzaniga, Alessandra Gorla, Andrea Mattavelli, Nicolò Perino,

and Mauro Pezzè. Automatic recovery from runtime failures. In Pro-

ceedings of the 2013 International Conference on Software Engineering,

ICSE, 2013.

[13] Holger Cleve and Andreas Zeller. Locating causes of program failures.

In ICSE, 2005.

[14] Alcino Cunha and Nuno Macedo. Validating the hybrid ertms/etcs level

3 concept with electrum. In ABZ, 2018.

[15] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight

defect localization for java. In ECOOP, 2005.

[16] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program

repair with quantitative objectives. In CAV, 2016.

123

[17] Vidroha Debroy and W. Eric Wong. Using mutation to automatically

suggest fixes for faulty programs. In ICST, 2010.

[18] Favio Demarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus.

Automatic repair of buggy if conditions and missing preconditions with

SMT. In CSTVA, 2014.

[19] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant,

Jeff H. Perkins, and Martin C. Rinard. Inference and enforcement of

data structure consistency specifications. In ISSTA, 2006.

[20] Yves Deville and Kung-Kiu Lau. Logic program synthesis. The Journal

of Logic Programming, 1994.

[21] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.

Dynamically discovering likely program invariants to support program

evolution. In ICSE, 1999.

[22] Fan Long and Martin Rinard. Automatic patch generation by learning

correct code. In POPL, 2016.

[23] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W.

Reps. Component-based synthesis for complex APIs. In POPL, 2017.

[24] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data

structure transformations from input-output examples. In PLDI, 2015.

124

[25] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data

structure transformations from input-output examples. In PLDI, 2015.

[26] Marcelo F. Frias, Juan P. Galeotti, Carlos G. López Pombo, and Nazareno M.

Aguirre. DynAlloy: Upgrading Alloy with actions. In ICSE, 2005.

[27] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and

Koushik Sen. CodeHint: Dynamic and interactive synthesis of code

snippets. In ICSE, 2014.

[28] Juan P. Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and

Marcelo F. Frias. TACO: efficient sat-based bounded verification using

symmetry breaking and tight bounds. TSE, 2013.

[29] Juan Pablo Galeotti, Nicolas Rosner, Carlos G. Lopez Pombo, and

Marcelo F. Frias. Taco: Efficient sat-based bounded verification us-

ing symmetry breaking and tight bounds. TSE, 2013.

[30] Divya Gopinath, Sarfraz Khurshid, Diptikalyan Saha, and Satish Chan-

dra. Data-guided repair of selection statements. In ICSE, 2014.

[31] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. Specification-

based program repair using SAT. In TACAS, 2011.

[32] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. Specification-

based program repair using SAT. In TACAS, 2011.

125

[33] Divya Gopinath, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid. Im-

proving the effectiveness of spectra-based fault localization using speci-

fications. In ASE, 2012.

[34] Sumit Gulwani, José Hernández-Orallo, Emanuel Kitzelmann, Stephen H

Muggleton, Ute Schmid, and Benjamin Zorn. Inductive programming

meets the real world. CACM, 2015.

[35] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating

faulty code using failure-inducing chops. In ASE, 2005.

[36] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive synthe-

sis of code snippets. In CAV, 2011.

[37] Jinru Hua and Sarfraz Khurshid. A sketching-based approach for de-

bugging using test cases. In ATVA, 2016.

[38] Jinru Hua and Sarfraz Khurshid. EdSketch: Execution-driven sketching

for Java. In SPIN, 2017.

[39] Jinru Hua, Mengshi Zhang, KaiyuanWang, and Sarfraz Khurshid. Sketch-

fix: A tool for automated program repair approach using lazy candidate

generation. In FSE, 2018.

[40] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. To-

wards practical program repair with on-demand candidate generation.

In ICSE, 2018.

126

[41] Paul Jaccard. Étude comparative de la distribution florale dans une por-

tion des alpes et des jura. Bulletin del la Société Vaudoise des Sciences

Naturelles, 1901.

[42] Daniel Jackson. Alloy: A lightweight object modelling notation. TSE,

2002.

[43] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.

The MIT Press, 2006.

[44] Daniel Jackson and Alan Fekete. Lightweight analysis of object inter-

actions. In TACS, 2001.

[45] Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint

solver. In ISSTA, 2000.

[46] Jinseong Jeon, Xiaokang Qiu, Jeffrey S. Foster, and Armando Solar-

Lezama. JSketch: Sketching for Java. In FSE, 2015.

[47] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-

guided component-based program synthesis. In ICSE, 2010.

[48] Yue Jia and Mark Harman. Higher order mutation testing. Inf. Softw.

Technol., 2009.

[49] Yue Jia and Mark Harman. An analysis and survey of the development

of mutation testing. TSE, 2011.

127

[50] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. Pro-

gram repair as a game. In CAV, 2005.

[51] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test informa-

tion to assist fault localization. In ICSE, 2002.

[52] James A. Jones and Mary Jean Harrold. Empirical evaluation of the

tarantula automatic fault-localization technique. In ASE, 2005.

[53] Manu Jose and Rupak Majumdar. Cause clue clauses: Error localization

using maximum satisfiability. In PLDI, 2011.

[54] Frolin S. Ocariza Jr., Karthik Pattabiraman, and Ali Mesbah. Vejovis:

suggesting fixes for javascript faults. In ICSE, 2014.

[55] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database

of existing faults to enable controlled testing studies for java programs.

In ISSTA, 2014.

[56] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro

Orso. Minthint: automated synthesis of repair hints. In ICSE, 2014.

[57] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. Repair-

ing programs with semantic code search. In ASE, 2015.

[58] Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson.

A case for efficient solution enumeration. In SAT, 2003.

128

[59] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Auto-

matic patch generation learned from human-written patches. In ICSE,

2013.

[60] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. Deductive

program repair. In CAV, 2015.

[61] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. Syn-

thesis modulo recursive functions. In OOPSLA, 2013.

[62] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. Practi-

tioners’ expectations on automated fault localization. In ISSTA, 2016.

[63] Manos Koukoutos, Etienne Kneuss, and Viktor Kuncak. An update on

deductive synthesis and repair in the leon tool. In SYNT Workshop,

2016.

[64] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. Com-

plete functional synthesis. In PLDI, 2010.

[65] E. Larson and A. Kirk. Generating evil test strings for regular expres-

sions. In ICST, 2016.

[66] Tien-Duy B. Le, David Lo, and Ferdian Thung. Should i follow this

fault localization tool’s output? ESE, 2015.

[67] Tien-Duy B. Le, Ferdian Thung, and David Lo. Theory and practice, do

they match? A case with spectrum-based fault localization. In ICSME,

2013.

129

[68] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via

equivalence modulo inputs. In PLDI, 2014.

[69] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and

Willem Visser. S3: syntax- and semantic-guided repair synthesis via

programming by examples. In FSE, 2017.

[70] Xuan-Bach D. Le, David Lo, and Claire Le Goues. History driven

program repair. In SANER, 2016.

[71] Xiangyu Li, Shaowei Zhu, Marcelo d’Amorim, and Alessandro Orso.

Enlightened debugging. In ICSE, 2018.

[72] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable

statistical bug isolation. In PLDI, 2005.

[73] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. Feedback-

based debugging. In ICSE, 2017.

[74] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and S. P. Midkiff. Statis-

tical debugging: A hypothesis testing-based approach. TSE, 2006.

[75] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff.

Sober: Statistical model-based bug localization. In FSE, 2005.

[76] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Hafiz. R2fix: Automat-

ically generating bug fixes from bug reports. In ICST, 2013.

130

[77] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of

code transforms for patch generation. In FSE, 2017.

[78] Fan Long and Martin Rinard. Staged program repair with condition

synthesis. In FSE, 2015.

[79] Fan Long and Martin Rinard. Staged program repair with condition

synthesis. In FSE, 2015.

[80] James R. Lyle and Mark Weiser. Automatic Program Bug Location by

Program Slicing. In ICCA, 1987.

[81] Ferney A. Maldonado-Lopez, Jaime Chavarriaga, and Yezid Donoso.

Detecting network policy conflicts using alloy. In ABZ, 2014.

[82] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jun-

gloid mining: Helping to navigate the API jungle. PLDI, 2005.

[83] Zohar Manna and Richard Waldinger. Toward automatic program syn-

thesis. CACM, 1971.

[84] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy:

Class diagrams analysis using Alloy revisited. In MODELS, 2011.

[85] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Se-

mantic differencing for class diagrams. In ECOOP, 2011.

[86] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for

automated testing of Java programs. In ASE, 2001.

131

[87] Matias Martinez and Martin Monperrus. ASTOR: a program repair

library for java (demo). In ISSTA, 2016.

[88] Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jack-

son. Alloy*: A general-purpose higher-order relational constraint solver.

In ICSE, 2015.

[89] Facundo Molina, César Cornejo, Renzo Degiovanni, Germán Regis, Pablo F

Castro, Nazareno Aguirre, and Marcelo F Frias. An evolutionary ap-

proach to translate operational specifications into declarative specifica-

tions. In BSFM, 2016.

[90] Vajih Montaghami and Derek Rayside. Extending alloy with partial

instances. In ABZ, 2012.

[91] Vajih Montaghami and Derek Rayside. Staged evaluation of partial

instances in a relational model finder. In ABZ, 2014.

[92] S. Moon, Y. Kim, M. Kim, and S. Yoo. Ask the mutants: Mutating

faulty programs for fault localization. In ICST, 2014.

[93] Lee Naish. A declarative debugging scheme. Journal of Functional and

Logic Programming, 1997.

[94] Lee Naish. A three-valued declarative debugging scheme. In Computer

Science Conference, 2000.

132

[95] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A model for

spectra-based software diagnosis. TSE, 2011.

[96] Tim Nelson, Natasha Danas, Daniel J. Dougherty, and Shriram Krish-

namurthi. The power of "why" and "why not": Enriching scenario

exploration with provenance. In FSE, 2017.

[97] Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, and

Shriram Krishnamurthi. Aluminum: Principled scenario exploration

through minimality. In ICSE, 2013.

[98] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler,

and Shriram Krishnamurthi. The Margrave tool for firewall analysis. In

LISA, 2010.

[99] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish

Chandra. Semfix: Program repair via semantic analysis. In ICSE, 2013.

[100] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed

program synthesis. In PLDI, 2015.

[101] Mike Papadakis and Yves Le Traon. Metallaxis-fl: Mutation-based fault

localization. STVR, 2015.

[102] Chris Parnin and Alessandro Orso. Are automated debugging tech-

niques actually helping programmers? In ISSTA, 2011.

133

[103] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu,

Michael D. Ernst, Deric Pang, and Benjamin Keller. Evaluating and

improving fault localization. In ICSE, 2017.

[104] Yu Pei, Carlo A. Furia, Martín Nordio, and Bertrand Meyer. Automated

program repair in an integrated development environment. In ICSE,

2015.

[105] Luís Moniz Pereira. Rational debugging in logic programming. In

ICLP, 1986.

[106] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost.

Test-driven synthesis. PLDI, 2014.

[107] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe,

Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood,

Stelios Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D.

Ernst, and Martin C. Rinard. Automatically patching errors in deployed

software. In SOSP, 2009.

[108] Oleksandr Polozov and Sumit Gulwani. FlashMeta: A framework for

inductive program synthesis. In OOPSLA, 2015.

[109] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang.

The strength of random search on automated program repair. In Pro-

ceedings of the 36th International Conference on Software Engineering,

2014.

134

[110] Zichao Qi, Fan Long, Sara Achour, and Martin C. Rinard. An analy-

sis of patch plausibility and correctness for generate-and-validate patch

generation systems. In ISSTA, 2015.

[111] M. Renieres and S. P. Reiss. Fault localization with nearest neighbor

queries. In ASE, 2003.

[112] M. Renieris and S. P. Reiss. Fault localization with nearest neighbor

queries. In ASE, 2003.

[113] Bat-Chen Rothenberg and Orna Grumberg. Sound and complete mutation-

based program repair. In FM, 2016.

[114] Natali Ruchansky and Davide Proserpio. A (not) NICE way to verify

the Openflow switch specification: Formal modelling of the Openflow

switch using Alloy. SIGCOMM, 2013.

[115] Salman Saghafi, Ryan Danas, and Daniel J. Dougherty. Exploring The-

ories with a Model-Finding Assistant. 2015.

[116] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad.

Elixir: effective object oriented program repair. In ASE, 2017.

[117] Hesam Samimi, Max Schäfer, Shay Artzi, Todd D. Millstein, Frank Tip,

and Laurie J. Hendren. Automated repair of HTML generation errors

in PHP applications using string constraint solving. In ICSE, 2012.

135

[118] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scal-

able multiline program patch synthesis via symbolic analysis. In ICSE,

2016.

[119] Ehud Y. Shapiro. Algorithmic Program DeBugging. MIT Press, 1983.

[120] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri.

Debugging overconstrained declarative models using unsatisfiable cores.

In ASE, 2003.

[121] Ilya Shlyakhter. Generating effective symmetry-breaking predicates for

search problems. Discrete Appl. Math., 2007.

[122] Stelios Sidiroglou-Douskos, Eric Lahtinen, Fan Long, and Martin Rinard.

Automatic error elimination by horizontal code transfer across multiple

applications. In PLDI, 2015.

[123] Rishabh Singh and Sumit Gulwani. Predicting a correct program in

programming by example. In CAV, 2015.

[124] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Auto-

mated feedback generation for introductory programming assignments.

In PLDI, 2013.

[125] Rishabh Singh and Armando Solar-Lezama. Synthesizing data structure

manipulations from storyboards. In FSE, 2011.

136

[126] Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis,

University of California, Berkeley, 2008.

[127] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik,

Vijay Saraswat, and Sanjit Seshia. Sketching stencils. PLDI, 2007.

[128] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik.

Sketching concurrent data structures. In PLDI, 2008.

[129] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,

and Vijay Saraswat. Combinatorial sketching for finite programs. In

ASPLOS, 2006.

[130] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. Threats to the

validity and value of empirical assessments of the accuracy of coverage-

based fault locators. In ISSTA, 2013.

[131] Allison Sullivan, Kaiyuan Wang, and Sarfraz Khurshid. AUnit: A Test

Automation Tool for Alloy. In ICST, 2018.

[132] Allison Sullivan, Kaiyuan Wang, Sarfraz Khurshid, and Darko Marinov.

Evaluating state modeling techniques in alloy. In SQAMIA, 2017.

[133] Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz

Khurshid. Automated test generation and mutation testing for Alloy.

In ICST, 2017.

137

[134] Allison Sullivan, Razieh Nokhbeh Zaeem, Sarfraz Khurshid, and Darko

Marinov. Towards a test automation framework for Alloy. In SPIN,

2014.

[135] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roy-

choudhury. Anti-patterns in search-based program repair. In FSE,

2016.

[136] Alloy Team. http://alloy.mit.edu/alloy/documentation/alloy4-grammar.

txt.

[137] Emina Torlak, Felix Sheng-Ho Chang, and Daniel Jackson. Finding

minimal unsatisfiable cores of declarative specifications. In FM, 2008.

[138] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.

In TACAS, 2007.

[139] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-

Haim, Milo M. K. Martin, and Rajeev Alur. TRANSIT: Specifying

protocols with concolic snippets. In PLDI, 2013.

[140] Kaiyuan Wang. muAlloy – an automated mutation system for Alloy.

Master’s thesis, University of Texas at Austin, May 2015.

[141] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. Automated

model repair for alloy. In ASE, 2018.

138

[142] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. MuAlloy: A

Mutation Testing Framework for Alloy. In ICSE, 2018.

[143] Kaiyuan Wang, Allison Sullivan, Manos Koukoutos, Darko Marinov, and

Sarfraz Khurshid. Systematic generation of non-equivalent expressions

for relational algebra. In ABZ, 2018.

[144] Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid.

Asketch: A sketching framework for alloy. In FSE, 2018.

[145] Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khur-

shid. Fault localization for declarative models in Alloy. In eprint

arXiv:1807.08707, 2018.

[146] Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid.

Solver-based sketching Alloy models using test valuations. In ABZ,

2018.

[147] Yi Wei, Yu Pei, Carlo A. Furia, Lucas Serpa Silva, Stefan Buchholz,

Bertrand Meyer, and Andreas Zeller. Automated fixing of programs

with contracts. In ISSTA, 2010.

[148] Westley Weimer, Zachary P. Fry, and Stephanie Forrest. Leveraging

program equivalence for adaptive program repair: Models and first re-

sults. In ASE, 2013.

139

[149] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie

Forrest. Automatically finding patches using genetic programming. In

ICSE, 2009.

[150] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie

Forrest. Automatically finding patches using genetic programming. In

ICSE, 2009.

[151] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. The dstar

method for effective software fault localization. IEEE Transactions on

Reliability, 2014.

[152] W. Eric Wong, Vidroha Debroy, and Dianxiang Xu. Towards bet-

ter fault localization: A crosstab-based statistical approach. In IEEE

Transactions on SMC, 2012.

[153] Qi Xin and Steven P. Reiss. Identifying test-suite-overfitted patches

through test case generation. In ISSTA, 2017.

[154] Qi Xin and Steven P Reiss. Leveraging syntax-related code for auto-

mated program repair. In ASE, 2017.

[155] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang

Huang, and Lu Zhang. Precise condition synthesis for program repair.

In ICSE, 2017.

[156] Jifeng Xuan and Martin Monperrus. Learning to combine multiple

ranking metrics for fault localization. In ICSME, 2014.

140

[157] Jifeng Xuan and Martin Monperrus. Test case purification for improving

fault localization. In FSE, 2014.

[158] Zijiang Yang, Jinru Hua, KaiyuanWang, and Sarfraz Khurshid. Edsynth:

Synthesizing api sequences with conditionals and loops. In ICST, 2018.

[159] Tingting Yu and Michael Pradel. Pinpointing and repairing performance

bottlenecks in concurrent programs. Empirical Software Engineering,

2017.

[160] Pamela Zave. Using lightweight modeling to understand chord. SIG-

COMM Comput. Commun. Rev., 2012.

[161] Andreas Zeller. Yesterday, my program worked. today, it does not.

why? In FSE, 1999.

[162] Andreas Zeller. Isolating cause-effect chains from computer programs.

In FSE, 2002.

[163] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults

through automated predicate switching. In ICSE, 2006.

141

