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Abstract

Data and Methods for Gazetteer Independent Toponym

Resolution

Grant Hollis DeLozier, M.A.

The University of Texas at Austin, 2016

Supervisor: Jason Baldridge

This thesis looks at the computational task of Toponym Resolution from multiple

perspectives. In its common form the task requires transforming a place name–e.g.

Washington–into some grounded representation of that place, typically a point (lat-

itude, longitude) geometry. In recent years Toponym Resolution (TR) systems have

advanced beyond heuristic techniques into more complex machine learned classifiers

and impressive gains have been made. Despite these advances, a number of issues

remain with the task. This thesis looks at aspects of typical TR approaches in a

critical light and proposes solutions and new methods. In particular, I’m critical of
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the dependence of existing approaches on gazetteer matching and under-utilization

of complex geometric data types. I also outline some of the shortcomings in existing

toponym corpora and detail a new corpus and annotation tool which I helped to

develop.

In earlier work I explored whether TR systems could be built without de-

pendencies on gazetteer lookups. That work, which I expand and review in this

thesis, showed that competitive accuracies can be achieved without using these hu-

man curated resources. Additionally, I demonstrate through error analysis that the

largest advantage of a gazetteer matching component is with ontology correction

and matching, and not with disambiguation or grounding.

These new approaches are tested on pre-existing TR corpora, as well as a

new corpus in a novel domain. In the process of detailing the new corpus, I remark

on many challenges and design decisions that must be made in Toponym Resolution

and propose a new evaluation metric.
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Chapter 1

Introduction

Geospatial information abounds in Natural Language, from geographically sensitive

phonetic and lexical alternations to more obvious semantic contributions of place

names and spatial prepositions. The sources of this geographic information are both

latent and overt. Some of the information is latent: regional dialects and accents, al-

ternating synonymous lexical items, and slang. Overt geographic information, such

as place names and geospatial prepositional phrases, reference geographies directly

and frequently appear in language. This thesis focuses primarily on automated

methods for extracting geographic information from one form of overt geographic

language: place names, aka toponyms, though other latent geographic information

can help to ground more overt language. To better understand the challenges en-

tailed by the task I begin by reviewing some theoretical aspects of toponyms before

moving on to the existing computational methods for the task and its close relatives.

1.1 Semantic Characteristics of Toponyms

Toponyms are named geographic entities. The entities they denote exist at a va-

riety of geographic scales, from the largest–Earth–down to much smaller entities–

bus stops, intersections, and buildings. To date, academic literature on automated

toponym resolution does not go to scales smaller than neighborhood, though com-

mercial geocoders (e.g. Google Maps) attempt this to some degree. Because of

difficulties obtaining annotated data for small scale entities, most of the examples

and literature in this paper focus on entities at the level of neighborhood or higher,
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though recent work has attempted to build such small scale corpora (Matsuda et al.,

2015).

Within formal semantics, the meaning of place names has been subsumed

into a general theory of proper names. Drawing chiefly from Kripke (1980) it is

common for semanticists to argue that named entities are not descriptions of entities

but rather they function as a direct link between a name and its particular in-the-

world referent (Kamp and Reyle, 1993). In this theory outlined by Kripke, there

is said to be some initial ’naming event’ wherein an entity is given a proper name.

All subsequent uses then chain back to this original event, wherein the entity was

directly referred. This story is significant to note for TR work because it points to

an important property of toponyms, namely that they exist as fiat objects: the only

limiting factor on the number of unique toponyms is our willingness to name them

(or perhaps our need to name them).

It should come as no surprise then that there is an extremely large number

of unique toponyms that systems can be asked to resolve. This nearly limitless

capacity for naming places however does not mesh well with how most predominant

systems resolve the meaning of toponyms. All named entity disambiguation systems

rely on curated knowledge bases, which range in their degree of structure. At a lower

level these resources take the form of a semi-structured encyclopedic repository (e.g.

Wikipedia). However, resources such a wikipedia lack enough structure for classical

entity classification procedures, thus researchers commonly rely on entity gazetteers

or databases such as DBPedia and YAGO (Hoffart et al., 2011). All of these entity

gazetteers source their geographic information from GeoNames, a resource which

dictates only 9 million unique geographic entities. In addition to lacking in number,

its place names are heavily biased towards North America and Europe (Graham and

De Sabbata, 2016).

1.1.1 Ambiguity and Toponyms

Given the limitations of geographic gazetteers it is difficult to truly know how am-

biguous toponym strings are. Nevertheless, GeoNames gives the opportunity to es-

timate this, at least in some limited fashion. GeoNames contains 8,943,067 unique

geographic entities which are represented in language by 11,171,842 unique strings.

The average entity ambiguity of these strings is 1.98. This at first seems low, how-
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ever prominent place names tend to be much more ambiguous in the gazetteer (e.g.

’Washington’ is ambiguous over 68 entities).

1.1.2 Representing Geographic Reference

It is difficult to develop geographic representations of toponyms, principally due

to the issue of spatial vagueness. Most toponyms do not have formal boundaries

that describe them, and those which do have a formalized legal boundary (city limit

boundaries, county, and state boundaries) often have socially realized boundaries

that are different from their legal boundaries. For example, consider a representation

of Austin, TX. While most Austinites will agree on the core of what this refers to in

some abstract sense, people will disagree as to the specific borders (e.g. I’ve heard

on multiple occasions that ’Austin’ is north of Ben White and south of Highway 183,

while the city boundaries go significantly further north and south). Crucial then

to developing representations of geographic entities is dealing with this inherent

fuzziness of reference (Montello et al., 2003).

In practice, work in toponym resolution has opted for highly simplified point

based representations of toponyms. This tendency has had noticeable downsides,

particularly with respect to evaluation processes concerning natively discontinuous

polygon geometries and line geometries. For example, in this framework countries

like the United Kingdom become represented by a point in the Irish Sea and rivers

typically become represented by a point at a mouth or head of the river. The use

of such representations, particularly in evaluation corpora, becomes problematic

as systems can produce geometrically correct disambiguations yet fail to achieve a

’correct’ response.

One way of dealing with the spatial vagueness of geographic entities is to

opt for a distributional representation. Distributional geographic representations,

which I (DeLozier et al., 2015) and others (Wing and Baldridge, 2014) explore,

describe the meaning of spatial entities to be distributed over the space which they

are observed. Practically, the geographic meaning of words becomes approximated

with the distribution of the usage of the words over geographic space. For a visual

rendition of ’Washington’ in this framework, see Figure 1.1.

In nice ways this geographically distributional approach to representing place

names coheres with earlier observations made by formal semanticists, particularly
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Figure 1.1: Local Gi∗ values for Washington.

in its ability to fiat new names into existence. In other ways it struggles to co-

here; Kripke’s theory seems to demand that a particular named entity’s referent

not change once it is willed into existence, while distributional approaches suggest

constant fluctuations in the geographic meaning of toponyms (e.g. Austin would not

be observed in the same places in 1990 as 2016). While it doesn’t naturally adhere

to the abstractly anchored referent suggested by semanticists, there may be means

of integrating the concepts; later in this thesis I utilize a ’snapping’ methodology to

try and integrate my distributional approach with an anchored ontology.

1.2 Tasks involving Geographic Information and Text

Most work involving Geographic Information and Text can be grouped within two

domains: Toponym Resolution and Document Geolocation. Toponym resolution

involves assigning geographic reference to individual, potentially ambiguous to-

ponyms, while document geolocation assigns geographic reference to larger spans

of text (documents, broadly construed).
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1.2.1 Toponym Resolution

There are a number of difficulties associated with toponym resolution, but they key

difficulties involve ambiguity and paucity of training corpora. As an example of the

issues surrounding ambiguity, consider the toponym Springfield : dominant place

name gazetteers dictate at least 236 unique senses of the term (and these underesti-

mate the true total), with possible references spanning the globe. TR systems must

choose referents in these highly ambiguous scenarios, even when correct referents

are not listed in gazetteers.

The second key difficulty—paucity of training corpora—is one that is shared

among document geolocation and toponym resolution. All existing training cor-

pora in both domains fixate around very narrow ranges of geographic entities. One

major corpus used in toponym resolution for example, TR-CoNLL Leidner (2008),

has only 800 unique toponym referents while gazetteers such as GeoNames list over

8 million places (and these resources greatly underestimate the true number of to-

ponyms). Such mismatches do more than underscore the need for larger and domain

diverse corpora, they point to fundamental issues associated with learning to resolve

geographies from language. Dealing with this paucity is a challenge for all geolo-

cation systems and many systems attempt to alleviate it by splicing corpora with

latent annotations inferred from a more general resource like Wikipedia (Speriosu

and Baldridge, 2013; Santos et al., 2014; DeLozier et al., 2015)

Many other issues associated with how one defines Toponym Resolution as

a task can affect how one creates a corpus. Metonymy–the ability of a place name

to refer to something closely related to a place (e.g. a government)–is one such

issue. All existing TR corpora include metonymic uses of place names. Demonymy–

names for the people who inhabit an area (e.g. Americans)–is another such issue.

The Local Global Lexicon (LGL) corpus (Lieberman and Samet, 2012) includes

such terms as toponyms and georeferences them, while all other corpora do not. An

additional issue pertains to the range of entity types a system is expected to resolve;

many corpora limit their expectations to larger entities (e.g. TR-CoNLL is limited

to cities, states, and countries), while others focus more on highly local entities (e.g.

bus stops) (Matsuda et al., 2015). The last issue relates to whether systems ought

resolve places which are embedded inside other named entities. For example, the

LGL corpus expects New York in the expression New York Times, to be resolved
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to the state of New York.

1.2.2 Document Geolocation

The first Geolocation tasks to use machine learning arose in the related task of

document geolocation (Backstrom et al., 2008). The conceptual goal of the task

is not straightforwardly defined, rather it depends on the specific application. For

example, in Twitter-based Document Geolocation tasks, the goal is typically to

geolocate a twitter user, given a sampling of their messages (Wing and Baldridge,

2011). When geolocating images, the goal is to find the location at which an image

was taken using accompanying text as aids (O’Hare and Murdock, 2013; van Laere

et al., 2013). However in tasks such as geolocating Wikipedia Pages and Civil

War Correspondences (Cite Ben’s dissertation), the goal is often more abstract–to

represent the geographic topic or summary of some text.

The goal of the task is thus somewhat different than Toponym Resolution

in that it is not directed at any linguistically definable unit of speech. This yields

both advantages and disadvantages for researchers seeking to enrich their texts with

geographic information. On the one hand such loosely defined systems can quickly

generate geographic information in a wider variety of contexts, even in contexts

where place names are not given at all. On the other hand it is less clear how

such information actually connects with the particular utterances and content of

the text. For example, a single news article may discuss events that are widely

dispersed in geographic space and cover several semantic topics. The inability of

document geolocation systems to situate their geo-references in a specific syntactic

and semantic organizational scheme can make untying geographically complicated

documents very difficult.

1.3 Applications

Toponym resolution has far reaching applications, with uses in question answering

and information retrieval tasks Leidner (2008); Daoud and Huang (2013), auto-

mated geographic wayfinding, and social and historical research Smith and Crane

(2001); Grover et al. (2010); Nesbit (2013). Commercial Toponym Resolvers such
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as GeoParser, Clavin, and FinchText utilize the technology to aid in geographic

summarization of news content and defense-oriented intelligence gathering.
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Chapter 2

Data

In this chapter I describe existing corpora for Toponym Resolution before detailing

work I did to create a novel toponym resolution corpus in a historical domain.

To date very few corpora exist for text geolocation tasks, and those which

do exist have flaws or are very small in size. This is particularly true for tasks

seeking to do geolocation work with historical texts. In the realm of document

geolocation, there exist no historical corpora whatsoever; in the realm of toponym

resolution historical corpora exist, but are flawed in important respects (Speriosu

and Baldridge, 2013; DeLozier et al., 2015).

2.1 Existing TR Data

Many of the characteristics of existing TR corpora are summarized in Table 2.1.

2.1.1 LGL

The Local-Global Lexicon corpus (LGL) was developed by Lieberman et al. (2010)

to evaluate TR systems on geographically localized text domains. It is widely used

in current toponym resolution research (Lieberman and Samet, 2012; Santos et al.,

2014; DeLozier et al., 2015). LGL consists of 588 news articles across 78 sources.

The sources were selected purposefully to highlight less dominant senses of common

places names; e.g., some articles are from the Paris News (Texas) and the Paris Post-

Intelligencer (Tennesee). LGL contains 5,088 toponyms, which are mostly small

populated places, although a significant number of locales, counties, states, and

8



countries appear. LGL also has important differences in how annotations were

done compared to related datasets. Demonyms (e.g. Canadian and Iranian) are

marked as toponyms and annotated with latitude-longitude pairs throughout the

corpus. Also, organization names that contain place names are marked solely as

toponyms; e.g., Woodstock is marked as a toponym even when it is in the larger

phrase Woodstock General Hospital and London is marked as a toponym in Financial

Times of London. While nested named entities have been recognized as an important

problem in NER system design and evaluation (Finkel and Manning, 2009), using

inner-most entities is unconventional in the context of other Toponym Resolution

work. The geographic spread of the toponyms in LGL dev can be seen in the density

map in Figure 2.1.
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Figure 2.1: LGL Dev Toponym Density
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2.1.2 TR-CoNLL

TR-CoNLL has been used in several papers, and was the first proper toponym resolu-

tion corpus devloped Leidner (2008); Speriosu and Baldridge (2013); DeLozier et al.

(2015). TR-CoNLL was constituted from the CoNLL-2003 (Conference on Natural

Language Learning, Shared task 2003 on Named Entity Recognition) and consists

of roughly 1,000 Reuter’s international news articles and identifies 6000 toponyms

in 200,000 tokens. Place names in the dataset were hand-annotated with latitude-

longitude coordinates. The feature types in this corpus are: countries, states, and

cities. Reference is represented as a point, and is not linked to a knowledge base or

structured ontology. The domain is about 1000 Reuters international news articles.

This is one of the easier toponym corpora in that a large proportion of the toponyms

it contains are that of countries and prominent places. Within the corpus there is

also a low level of ambiguity among toponym strings (hence population heuristics

perform very well Speriosu and Baldridge (2013)). TR-CoNLL was split by Speriosu

and Baldridge (2013) into a dev (4,356 Toponyms) and a held-out test set (1,903

Toponyms).The geographic spread of the toponyms can be seen from the density

map in Figure 2.2. Speriosu (2013) observed many annotation errors in the corpus

and attempted to provide corrections prior to his evaluations. Informally, I utilized

this ’fixed’ verson of TR-CoNLL in my own experiments but found a large number

of lingering annotation errors. Some of these errors I detail in chapter 4.
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Figure 2.2: TR-CoNLL Dev Toponym Density
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2.1.3 CWar

CWar is the Perseus Civil War and 19th Century American Collection, which con-

sists of 341 books (58 million tokens) printed around the time of the United States

Civil War. Tuft’s university digitized and OCR corrected much of the collection,

then place names were annotated with single latitude-longitude pairs using a combi-

nation of manual annotation with off-the-shelf toponym resolvers and named entity

recognizers. We use the same split of CWar as Speriosu and Baldridge (2013): dev

(157,000 toponyms) and test (85,000 toponyms). It is an interesting dataset for TR

evaluation because it is a different domain than contemporary news articles. It also

contains a larger proportion of more localized (less populous) place names and is

much less geographically dispersed than TR-ConLL. Unfortunately, numerous is-

sues exist with the named entity annotations in the corpus (Speriosu (2013) gives

details) so it is only appropriate for evaluating using oracle toponyms, but not those

identified by a named entity recognizer. The basic problem with using CWar is that

only a subsection of place names were annotated (i.e. it lacks gold NER annotations

for place names). Because of this, it is impossible to do a proper evaluation of TR

systems as they would appear in the wild. Later, when we evaluate a number of

baseline systems on this corpus we purposefully only include systems evaluated us-

ing ’oracle’ NER. In addition to problems with the range of place names annotated,

the toponym annotations themselves were done using a computer assisted approach.

I speculate that this is how the corpus obtains its size, and it does so at the cost of

quality. Toponyms which lack gazetteer entries are simply not annotated, greatly

restricting the scope of the dataset. This undermines one of the core reasons for

using the dataset in the first place (frequency of less popular, ’small’ places).

2.1.4 LRE

The Location Referring Expression (LRE) corpus developed by (Matsuda et al.,

2015) is the newest of the preexisting toponym corpora available. Due to its age,

and perhaps its language domain (Japanese), it has not yet been utilized in the

toponym resolution literature. They develop the corpus with two main goals in

mind: (1) annotate highly local geographic features which they term ’facilities’ and

(2) do so within the social media domain of Twitter. The corpus consists of 951

toponyms across 10,000 tweets. LRE adheres to a point based reference ontology
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Table 2.1: Toponym Corpora

Corpus Domain Entity Types Reference
Types

Metonyms Demonyms Nested
NE

Toponyms

TR-CoNLL Contemporary
International
News

Cities,States,
Countries

Point
only

Yes No Most
Encom-
passing
NE

5000

LGL Contemporary
Local Newspa-
pers

Few Locales,
cities, states,
countries

Point
only

Yes Yes Annotates
Embed-
ded
Places

5088

LRE Tweets from
Japan

Highly local
’facilities’ and
above

Point
only

? No ? 951

WOTR US Civil War
Letters + Re-
ports

Locales, Cities,
and States

Point and
Polygon

No No Most
Encom-
passing
NE

10380

which they hand build, with most geographic entities being highly local features

(e.g. bus stops). The corpus is novel in that it contains a wide range of geographic

entities, but it is very small compared to related corpora.

2.2 War of the Rebellion Corpus

In order to address some of the shortcomings of existing TR corpora, I helped build

a novel TR corpus called WoTR-Topo (War of the Rebellion - Toponyms). The

corpus was designed to be novel in its (1) domain, (2) size, (3) richness and depth

of geographic annotation. This section describes the annotation procedure that was

followed, as well as summarizes aspects of the data.

The War of the Rebellion corpus is a large set of United States Civil War

archives, published in 128 books (which were broken into 70 volumes and four series)

by the United States Government between 1881 and 1901. The archives consist

of military orders and reports, governmental correspondence, proclamations, court

reports, maps, and other primary sources generated during the war. Each volume

is about 1,000 pages, for a total of 138,579 pages.1 The Ohio State University

version of the corpus which we utilize was digitized and OCR corrected, making

1See http://en.wikipedia.org/wiki/Official_Records_of_the_American_Civil_War.

14



Topo subset Full data

Total tokens 447,703 57,557,037
# volumes 15 126
# documents 1,644 254,744
Avg. tokens/document 272.32 225.94

Avg. toponyms/document 7.17 NA
Toponyms 11,795 NA
Toponyms with geometries 10,380 (88%) NA
Toponyms with points 8,130 (69%) NA
Toponyms with polygons 2,296 (19%) NA
People 7,994 NA
Organizations 2,591 NA

Table 2.2: Statistics on WOTR, annotated subset and full data.

it a high quality digital version of the archive http://ehistory.osu.edu/books/

official-records. This section describes the process of annotating the Official

Records of the War of the Rebellion (officially titled The War of the Rebellion:

a Compilation of the Official Records of the Union and Confederate Armies and

henceforth abbreviated as WOTR).

To begin the toponym annotation procedure, we identified a subset of the

volumes which had been annotated with document geolocations (subsections of 15

volumes, selected in part for geographic and topic diversity). Stanford’s Named

Entity Recognizer (NER) was then run on the collection of documents, using the

standard MUC, CoNLL trained models Finkel et al. (2005). The place annotations

that Stanford NER produced were used as a pre-annotated set, which annotators

were then asked to correct and add geographic reference to.

The scope of the annotation process is given in Table 2.2. The toponym

annotation process, which spanned 4 months, resulted in the annotation of 11,795

toponyms spanning 1,644 annotated documents across 15 volumes. Originally all

annotations were done by a single annotator. After this process all of the original

annotations were reviewed by a second team of three annotators. These annotators
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were asked to correct a number of problems with the annotations that were not real-

ized until after the initial annotation process had finalized. Mostly these corrections

were focused on (1) conjunctive toponyms, (2) possessive toponyms, (3) difficult to

find toponyms, (4) geo-reference for rivers, (5) vague region toponyms, (6) gray ar-

eas between proper names and referring expressions, (7) gray areas regarding nested

named entities. Also in this process of correction, reviewers discovered a large num-

ber of errors in the NER which were not properly identified and corrected by the

initial annotator. The review process resulted in about a 20% increase in the total

number of toponyms in the corpus. Details on the challenges of annotation in this

dataset are given later.

2.2.1 Toponym annotation guidelines and challenges

Annotators were asked to quickly scan the documents and look for place names.

Place names which were not detected by Stanford NER were asked to be added,

and other entities which were incorrectly classified as places were deleted. These

annotations were done inside of a HTML/JavaScript interface which allowed anno-

tators to highlight spans of text, then add reference directly through a simple web

map. We directed annotators to include point, multi-point, polygon, and multi-

polygon geometries where appropriate by drawing the reference directly onto a

Google Streets web map embedded into the interface via the JavaScript library

OpenLayershttp://openlayers.org/. A screen shot of the tool is shown in Fig-

ure 2.3.

They key guidelines annotators were given for the task concerned three as-

pects of toponyms: metonymy, demonymy, and nested named entities.

Metonymy refers to a phenomenon wherein a place name comes to refer

to a non-place entity that is closely associated with a place (e.g. a government).

Washington in the sentence Washington passed several laws this term is an example

of a metonymic place name. Metonyms are seen most commonly in WOTR as

country and state names. Annotators were asked to exclude metonymic names from

annotation.

Demonyms are terms that refer to the people who live or come from a certain

area (e.g. Iranians). They are typically not annotated as toponyms, except for in

LGL. We follow most of the toponym literature in asking our annotators to not
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Figure 2.3: Screen shot of the toponym annotation tool. Place names highlighted
in yellow, place names with geoemetries in green.

annotate and reference these entities.

Nested named entities were addressed by Finkel and Manning (2009). Re-

searchers have typically adopted the stance of annotating the most encompassing

named entity, though there are exceptions to this trend as is the case in the LGL

corpus. We ask annotators to only mark toponyms which constitute the most encom-

passing named entity (e.g. in 44th Virginia Cavalry, Virginia is not marked, as the

larger encompassing entity is an organization). Not included among nested named

entities are toponym hierarchies, or disambiguators such as in the phrase Richmond,

VA, CSA. In these cases each toponym is annotated with separate reference.

To find the reference of places, annotators were allowed access to Internet

search. Annotators were encouraged to look up troublesome toponyms with helpful

relevant keywords, such as Civil War or the region or commander mentioned of the

larger document context. Post-hoc review of the resources annotators used revealed
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that Wikipedia was the most dominant resource used, though Google Maps and

niche US Civil War websites were used as well.

A number of challenges were encountered during the annotation process:

(1) conjunctive toponyms, (2) possessive toponyms, (3) difficult to find to-

ponyms, (4) geo-reference for rivers, (5) vague region toponyms, (6) gray areas

between proper names and referring expressions, (7) gray areas regarding nested

named entities.

1. Conjunctive toponyms, or toponyms that are joined by conjunction, became

a problem during the annotation process. Typically these are a problem when

they are in the form of Varnell’s and Lovejoy’s Stations. Here we assumed two

toponyms should be added, however due to how our GeoAnnotate tool worked,

we could not annotate overlapping, discontinuous spanning place names. In

these cases we asked annotators to separately mark Varnell’s as a place sepa-

rate from Lovejoy’s Stations, including the Stations term only with the second

toponym.

2. Possessive toponyms, or toponyms partially constituted of a person’s name,

appeared in the corpus (e.g. Widow Harrow’s house). Originally, we asked an-

notators to avoid annotating these as toponyms, and instead merely annotate

the embedded person as a person. This guideline was complicated in many ex-

amples such as Lovejoy’s Station [railroad station] or Varnell’s Station where

the possessed enity was also capitalized. We amended our guidelines to ask

annotators to mark fully capitalized, possessed entities as toponyms.

3. Difficult Toponyms, or toponyms that could not be geographically referenced,

made up about 12% of the overall toponyms in Wotr-Topo. This was typical of

toponyms that described the locations of ferries, bridges, railroads, and mills.

These features usually no longer exist, so discovering their exact reference even

with access to Google is very difficult. These appear in the corpus as toponym

entities without geographic reference.

4. Rivers, and physical features more generally, are difficult to reference ge-

ographically because their geometric definitions are often highly complex,

vague, and poorly defined in gazetteers. Rather than ask annotators to anno-

tate the full extent of rivers, we asked them to mark a point on the river that
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they felt was most relevant to the context. Annotators tended however to opt

for whichever point the river’s Wikipedia page indicated, though this was not

always the case.

5. Geographically vague toponym regions appear in the texts. Some of the com-

mon examples appearing in the text are the North, the South, the West, and

Northern Mississippi. We asked annotators to mark these as toponyms, and

attempt to draw their reference given the context. Mostly, annotators did not

feel comfortable annotating such entities, so they appear as toponyms without

defined geographic references.

6. We asked annotators not to annotate referring expressions (e.g. the stone

bridge), yet we failed to anticipate referring expressions which were partially

constituted of place names (e.g. the Dalton road). Given that these expressions

contain proper place names, and are places themselves, we decided to ask them

to try and annotate them as toponyms. Such expressions were common ways

of indicating the names of roads, prior to more well developed highway systems

(i.e. they describe the road that takes one from the current place to the noted

place. Sometimes this appears as two places as in the Decatur and Atlanta

road). Annotators tended to mark the location of such entities as a point near

one of the embedded city toponyms.

7. We gave our annotators a rule to only annotate the entity type of the most-

encompassing named entity. Using this rule expressions like 44th Virginia

Cavalry became annotated as one single organization, rather than a place in-

side an organization. We did not anticipate however the range of semantically

equivalent expressions such as 44th Cavalry of Virginia or 44th Cavalry from

Virginia.

2.2.2 WoTR Summary

Summary of the important aspects of the corpus I helped to create are given in

Table 2.1 and Table 2.2. From the perspective of toponym resolution, the War of

the Rebellion Corpus is innovative in many respects: richness of geometric anno-

tation (annotations with multi-point, polygon geometries), corpus size (wotr-topo
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Figure 2.4: Distribution of Toponyms in WOTR-Topo

has roughly 2X the toponyms of other corpora), and place names not in gazetteers.

Baseline system resolution results (given in chapter 3) indicate that the corpus is

the most difficult of the corpora surveyed, with Accuracy @ 161 km scores–and es-

pecially NER inclusive scores–being significantly lower than the next most difficult

coprus, LGL.

The geographic distribution of the annotations is given in Figure 2.4. As can

be seen in the map, the annotated volumes skew towards western theatres of the

war, though events in Virginia and South Carolina are healthily represented. State

names are among the most frequent toponyms in the dataset, so states tend to be

outlined in the distribution.
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Chapter 3

Gazetteer Independent

Toponym Resolution

This chapter addresses a weakness of prior toponym resolution work: explicit re-

liance on curated knowledge resources such as gazetteers. These are highly incom-

plete resources that depict only narrow portions of the total set of place names.

To reduce dependence on them, we rely on recent advances in the related task of

document geolocation, where the goal is to predict the geographic context of a much

larger span of text. Much of this work has been directed at guessing social media

users’ locations given only their observed language (Cheng et al., 2010; Eisenstein

et al., 2010; Wing and Baldridge, 2011; Roller et al., 2012; Wing and Baldridge,

2014). The success of these approaches is generally on a much coarser geographic

scale than is required by TR systems, but the approaches used are applicable to

TR. Crucially important to our work are geographically situated language models.

Geographic language models describe the probability of observing certain words at

different places on the earth and capture not just explicitly geographic words like

Philadelphia and Midwest, but also over latently geographic words such as y’all and

hockey. In the gazetteer-independent method I’ve helped to develop, we take these

geographic language models, spatially smooth and geographically cluster them, and

use them to form the core of a toponym resolution process.

Only limited attempts have been made to use local geographic clustering

techniques in the context of text-based geographic disambiguation. Cheng et al.

(2010) derive information analogous to local geographic clusters for words to geo-
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reference Twitter users. Following work by Backstrom et al. (2008) on determining

the geographic focus of queries, they identify a subset of words with a prominent

geographic center (characterized by large probability of the word occurring at a

location) and steep decay of the probability over distance from that center. This

approach does find many geographically indicative words, but it makes assumptions

about their distributions that are not ideal for toponym resolution. In particular,

they assume that geographic words have well-defined centers and highly peaked

distributions. Many toponyms–which intuitively should be the most helpful words

for geographic disambiguation–lack such distributions. Instead, many toponyms

are widely dispersed over distance (e.g. toponyms that describe large geographic

spaces like countries lack steeply peaked centers) or have multiple prominent geo-

graphic centers. Figure 3.1 gives an example of how the toponym Washington is

characterized via multiple prominent geographic clusters.

In Topocluster DeLozier et al. (2015) use the profiles of these local clusters to

build a system that grounds toponyms by finding areas of overlap in the distributions

of toponyms and other words in a toponym’s context. We also demonstrate that

such a system can operate well without the aid of gazetteer resources and extensive

metadata, and as a result, it performs better than gazetteer-bound methods on

toponyms found by a named-entity recognizer.

3.1 TopoCluster

The key insight of language modeling approaches to geolocation is that many words

are strong indicators of location, and these tend to surface in regionally specific mod-

els. However, rarely is any attempt made to determine the specific spatial strength

of a given word. Our approach, TopoCluster, derives a smoothed geographic likeli-

hood for each word in the vocabulary and then finds points of strongest overlap for

a toponym and the words surrounding it—effectively merging the shared geographic

preferences of all words in the context of a toponym, including the toponym itself.

Consider a very ambiguous toponym like Hyde Park. The standard view asks

what the probability of a given location is given the context, using a set of models

per location. Various models of this kind have been proposed, including genera-

tive models for geolocation, possibly with feature selection Speriosu and Baldridge

(2013). TopoCluster in contrast employs an indirect relation between a target and
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its context by appealing to a shared relation in geographic space. Crucially, that geo-

graphic space is defined by how tightly all the words in the vocabulary tie themselves

to local regions—effectively doing selection of geographically releveant features in

the determination of a given location. One effect of this is that even in situations

where Hyde Park does not appear at all in training, our system can guess a referent

given the geographic clusters associated with known context words like Austin or

Texas.

Figure 3.1: Left: Local Gi∗ values for Washington. Right: interpolated Gi∗ values
for Washington + Seahawks.

The above motivation requires identifying geographic clusters for every word.

We derive these by applying local spatial statistics over large numbers of geo-

referenced language models. Disambiguation is performed by overlaying the ge-

ographic clusters for all words in a toponym’s context and selecting the strongest

overlapping point in the distribution. Gazetteer matching can optionally be done by

finding the gazetteer entry that is closest to the most overlapped point and matches

the toponym string being evaluated.

Local spatial statistics have long been used to derive hot spots in geographic

distributions of variables. TopoCluster uses the Local Getis-Ord Gi∗ statistic to

measure the strength of association between words and a geographic space Ord and

Getis (1995). Local Gi∗ measures the global proportion of an attribute that is

observed in a local kernel.
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Gi
∗(x) =

n∑
j=1

wijxj

n∑
j=1

xj

(3.1)

Each xj is a measure of the strength of the variable x at location j and wij is a

kernel defining the weight (similarity) between locations i and j. For xj , we use an

unsmoothed local language model as the strength of a word x in each geolocated

document D. In addition to single-token words being in the unigram model, multi-

token named entities are included. These were derived from Stanford NER’s 3-class

CRF model Finkel et al. (2005).

We use an Epanichnikov kernel Ord and Getis (1995); O’Sullivan and Unwin

(2010) and a distance threshold of 100 km to define the weight wij between a grid

point i and a document location j.

wij = .75(1 − (
dist(i, j)

100km
)2){dist(i,j)≤100km} (3.2)

This weights the importance of particular documents at locations j to their near

grid points i. When used in the Gi∗of equation 3.1, the kernel has the effect of

smoothing the contributions from each document according to their nearness to i,

the current cell under consideration.

The output of the local statistic calculations is a matrix of statistics with

grid cells as columns and each word as a row vector ~g∗(x). The Gi∗ statistic serves

primarily to create a geographically aggregated and smoothed likelihood of seeing

each word at certain points in geographic space.

In practice the Gi∗ statistic can be run directly from the points in the ob-

served documents, or it can be calculated from points in a regularized grid. We use

the the latter to reduce the computational cost of calculating Gi∗ for all words. A

grid of .5o geographic degree spaced points was created, beginning with a point at

latitude of 70o N proceeding down to -70o S. The grid was clipped to only include

points within .25o of land mass. In total, the grid used for this study represents

60,326 unique points on the earth.

Because more prominent senses of a place name are represented in more

documents, clustering based on regional language models derived from a source
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like Wikipedia is likely to show preferences for prominent senses of a place name

without being overly tied to a specific aspect of a place (e.g. administrative level

or population). This is seen in the interpolated heat map of the local Gi∗ clusters

for Washington in Figure 3.1. Washington has strong clusters around Washington

state and Washington DC, with a slight preference toward the latter in an empty

context. However, this preference changes in contexts favorable towards other senses

(e.g. Seahawks in the context shifts towards the state referent). TopoCluster code

and precomputed local statistic calculations are available online 1.

Domain adaptation: Because the local Gi∗ statistic is bounded between 0

and 1, it is straightforward to adapt it to new domains and new data with a simple

linear interpolation of values derived from different corpora.

~g∗ = λ ~g∗InDomain + (1−λ) ~g∗GeoWiki (3.3)

We run several experiments to test the importance of domain adapting Gi∗ values.

For each corpus (TR-CoNLL, CWar, and LGL), we construct pseudo-documents

from its development set by converting each toponym and the 15 words to each

side of it into a document. Each pseudo-document is labeled with the latitude-

longitude pair of the corpus annotation for the toponym, which allows us to train

domain-specific regional unigram language models.

Resolution: To disambiguate a toponym z, we separate the toponyms t

from non-toponym words x in that z’s context window c (size of window is optimized

differently for each domain, and function words are filtered). We then compute a

weighted sum of all the ~g∗ values of the toponyms t and words x in c. For metrics

deriving Accuracy @ 161km, mean, and median distance toponyms are sourced

from oracle recognition, or directly from the annotation source. Precision, Recall

and F-1 Score are given for appropriate datasets when off-the-shelf Named Entity

Recognition systems are used as a prerequisite to the Toponym Resolution process.

g∗(z, c) = θ1 ~g∗(z) + θ2
∑
t∈c

~g∗(t) + θ3
∑
x∈c

~g∗(x) (3.4)

The parameters θ1, θ2, and θ3 weight the contribution of the main toponym, other

toponyms and the generic words, respectively. The chosen location is then the grid

1https://github.com/grantdelozier/TopoCluster
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cell i with the largest value in g∗(z, c), which represents the most strongly overlapped

point in the grid given all words in the context. Weights are decided on a per domain

basis, based on a training procedure described in section on toponym weighting.

TopoClusterGaz: The output of the above disambiguation process is gazetteer-

free: a single point i representing a cell in the grid is produced. However, we can

restrict the prediction to a gazetteer by forcing place names to match title case

and primary names, alternate names, and 2-3 letter abbreviations contained in our

Geonames-Natural Earth hybrid gazetteer. Reference for the toponym is snapped

to the gazetteer entry that matches the term in one of these fields and has geometry

closest to the most overlapped point i.

Self-training using metadata: Documents often contain metadata that

is useful for toponym resolution Lieberman and Samet (2012). One such feature is

domain locality, wherein certain geographies are weighted according to their corre-

spondence with the spatial extent of a document’s intended audience. This typically

requires explicit correspondence with such metadata at test time (e.g. ‘publisher’

or ‘domain’) and also requires additional training annotations corresponding to an

oracle geolocation for a publication’s place of focus. As such, they do not eas-

ily generalize to all use cases; nonetheless, their usefulness is naturally of interest,

particularly in very localized datasets such as LGL.

We explore use of a very limited domain locality feature through a self-

training procedure which only uses the name of the publication at train and test

time. For every publisher (e.g. theparisnews.com, dallasnews.com), TopoClusterGaz

is run on all documents. The predictions are then filtered to only include references

to countries, regions, states, and counties. This filtered set of toponyms is then as-

sociated with the publication domain. Later, when toponyms in the respective local

domains are disambiguated, our system injects the domain’s associated country, re-

gion, state, and county toponyms, applying the θ2 weight used with other toponyms

in the text context. In this way, we use very little manually specified knowledge to

bootstrap and exploit a characterization of the domain.

3.2 Experimental Setup

We consider both TopoCluster and TopoClusterGaz (which uses a gazetteer),

and we compare using domain adaptation (λ>0) or not (λ=0). These are compared
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Figure 3.2: Domain adaptation: optimizing λ for each corpus. Left: TR-CoNLL,
Middle: CWar, Right: LGL.
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to two gazetteer-based baselines: Random, which randomly selects an entry from

the possible referents for each toponym, and Population, which selects the entry

with the greatest population (according to the gazetteer). We also compare to six

of the systems of Speriosu and Baldridge (2013):

• SPIDER: a weighted spatial minimization algorithm that selects referents for

all toponyms in a given text span.

• TRIPDL: a document geolocation model that predicts the probability of a

referent being in a grid cell given a document, restricted to valid cells according

to a gazetteer.

• WISTR: a discriminative classifier per toponym, trained using distant super-

vision from GeoWiki.

• TRAWL: a hybrid of WISTR and TRIPDL with preferences for administra-

tively prominent locations.

• WISTR+SPIDER and TRAWL+SPIDER: two combinations of spatial

minimization with classification.

Other systems of interest include Santos et al. (2014) and Lieberman and

Samet (2012). However, direct comparison with those is challenging because they

exploit metadata features, such as a hand-annotated indicator of a newspaper’s

geographic focus Lieberman et al. (2010), that are not available in the version of

LGL we have. We compare where possible, but our primary focus is resolution using
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only the text, in large part because we are interested in resolution on historical

corpora such as CWar, which do not have such metadata available.

3.2.1 Evaluation Metrics

One of the most commonly used metrics in geolocation is Accuracy at 161 kilome-

ters (100 miles). This measure is preferred to simple accuracy because it allows

systems to stray from evaluation ontologies (i.e. you can predict Austin, TX to

be a point somewhere near the particular gazetteer reference used for annotation).

This measure originated in document geolocation, along with two other primary

metrics three primary metrics: mean error distance, median error distance Leidner

(2008); Eisenstein et al. (2010); Wing and Baldridge (2011); Speriosu and Baldridge

(2013); Santos et al. (2014). Unfortunately however there have been different in-

terpretations as to what Accuracy @ 161km means in practice. Some authors seem

to calculate this as (the number of predictions within 161km of their referent) /

(total number of predictions made) (as with (Speriosu, 2013) and likely (Lieber-

man and Samet, 2012)). Others include all gold toponyms, even ones not predicted

on in the calculation (the number of predictions within 161km of their referent) /

(total number of annotated toponyms) ((DeLozier et al., 2015) with respect to the

TopoCluster systems). For purposes of clarity, one can say that A @161 breaks into

two interpretations: precision @ 161km and recall @ 161km ).

It is also important to measure the coverage of TR systems with NER errors,

as this is the natural use case of TR systems in the wild. Recall in this scenario is

affected not only by gazetteer incompleteness, but also failure of NER systems to

recognize actual place names. This is one of the places where gazetteer indepen-

dent techniques should shine, as they remove one of the sources of error in recall

calculation.

3.2.2 Parameter tuning

Toponym Weighting: A grid search was run on the dev portions of the datasets

to derive values of three parameters θ1, θ2, and θ3 corresponding to weights on the ~g∗

of the main toponym, context toponyms, and other context words, respectively. The

search was performed by running the disambiguation procedure on 80/20 splits of

the dev set using a closed set of parameter values ranging from .5 to 40. Performance
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Table 3.1: Toponym Weights Resulting from Gridsearch.

Dataset Resolver θ1 θ2 θ3 window

TR-CoNLL TopoCluster 40 1 0.0 10
TR-CoNLL TopoClusterGaz 40 1 0.0 10
LGL TopoCluster 20 5 0.0 100
LGL TopoClusterGaz 10 5 0.0 100
CWar TopoCluster 40 1 0.0 10
CWar TopoClusterGaz 40 1 0.0 10
Wotr-Topo TopoClusterGaz 3 1 0.0 200

of the theta combinations was then averaged over the splits. The combination that

produced the lowest average kilometer error scores for the respective models were

then selected for future runs on the corpus. Table 3.1 shows the values obtained for

the respective Model-Domain combinations. The weights for CWar and TR-CoNLL

are very similar, with very strong preferences being shown for spatial statistics of

the main toponym. The weights obtained for LGL show more balanced preferences

for the clusters associated with both the main and context toponyms.

Domain Adaptation: We also determine values for the λ′s of Equation

3.2 by varying them from 0 to 1 and measuring A@161, again on 80/20 splits of the

dev portions. An average was taken of the accuracy over the 5 splits and is depicted

in Figure 3.2. In five of six cases, TopoCluster benefits from domain adaptation;

the exception is when using gazetteer matching on TR-CoNLL. This is unsurprising

since TR-CoNLL is the corpus most similar to the background GeoWiki corpus

and it contains many large, discontinuous geographic entities (e.g. states, countries)

that are poorly represented as single points. Predictions for such geographic entities

constitute a large portion of changes as the in-domain λ increases. Both CWar and

LGL constitute substantially different domains; for these, λ values that equally

balance the in-domain and GeoWiki models are best.

3.3 Toponym resolution results

Table 3.2 shows test set performance for all models when resolving gold-standard

toponyms. The base TopoCluster model (trained only on GeoWiki and not using a

gazetteer) performs relatively poorly, even on TR-CoNLL. However, when combined

with in-domain data, it ties for best performance on CWar (A@161 of 93.1) and is
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Table 3.2: Toponym resolution performance of all models using oracle NER. *A
@ 161 does not mean the same thing with respect to all systems. TopoCluster
and TopoClusterGaz actually measure Recall @ 161km while Random, Population,
SPIDER, TRIPDL, WISTR, WISTR+SPIDER, TRAWL, and TRAWL+SPIDER
all measure Precision @ 161km

TR-CoNLL CWar LGL
Resolver Mean Median A@161 Mean Median A@161* Mean Median A@161

Random 3891 1523.9 38.4 2393 1029 13.4 2852 1078 26.1
Population 219 30.3 90.5 1749 0.0 62.0 1529 38 62.7
SPIDER 2175 40.1 65.3 266 0.0 67.0 1233 16 68.4
TRIPDL 1488 37.0 72.9 848 0.0 60.2 1311 46 60.9
WISTR 281 30.5 89.1 855 0.0 73.3 1264 27 64.0
WISTR+SPIDER10 432 30.7 87.4 201 0.0 87.1 830 3 77.7
TRAWL 237 30.5 89.7 944 0.0 70.8 2072 324 46.9
TRAWL+SPIDER10 300 30.5 89.1 148 0.0 88.9 873 6 74.4

TopoCluster λ=0 560 122 53.2 1226 27 68.4 1735 274 45.5
TopoCluster λ=.6 (.5,LGL) 597 20 85.2 141 22 93.1 1193 41 67.0

TopoClusterGaz λ=0 209 0.0 93.2 1199 0.0 68.7 1540 1.5 61.4
TopoClusterGaz λ=.6 (.5,LGL) 351 0.0 91.6 120 0.0 93.1 1183 0 74.8

competitive with others for TR-CoNLL (85.2) and LGL (69.0). Furthermore, this

strategy is more effective than TopoClusterGaz without domain adaptation on both

CWar and LGL, though vanilla TopoClusterGaz does obtain the best performance

on TR-CoNLL. This is mostly likely due to two factors: GeoWiki is a good match

for the international news domain of TR-CoNLL and the GeoNames gazetteer was

one of the main resources used to create TR-CoNLL Leidner (2008).

TopoClusterGaz with domain adaptation is the best overall performer across

all datasets. It beats the best models of Speriosu and Baldridge for both TR-

CoNLL and CWar by large margins. LGL proves to be a more challenging dataset:

TopoClusterGaz is second (by a large margin of 6 absolute percentage points), to

WISTR+SPIDER. This indicates an opportunity for further gains by combining

TopoCluster and SPIDER. We also performed the self-training technique described

previously to see whether bootstrapping information on metadata can help. It does:

TopoClusterGaz with domain adaptation and self-training obtains A@161 of 75.8

on LGL, near the 77.7 of WISTR+SPIDER. It also easily beats the 77.5 A@250

obtained by Santos et al. (2014).

Table 3.3 shows final performance scores for versions of TopoCluster run

using an off-the-shelf NER on simple tokenized versions of the TR-CoNLL corpora.

In this combined system evaluation, large differentiation is seen between the models
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Table 3.3: TR-CoNLL performance with predicted toponyms.

Resolver P R F

Random 26.4 19.2 22.2
Population 71.7 52.0 60.2
SPIDER 49.1 35.6 41.3
TRIPDL 51.8 37.5 43.5
WISTR 73.9 53.6 62.1
WISTR+SPIDER10 73.2 53.0 61.5
TRAWL 72.6 52.6 61.0
TRAWL+SPIDER10 72.4 52.5 60.8
TopoCluster λ=.6 75.1 84.0 79.3
TopoCluster λ=0 46.7 52.2 49.2
TopoCluster-Gaz λ=0 81.9 91.6 86.5

of Speriosu and Baldridge (2013) and our own, with the largest differences being seen

in the Recall metric–though some of the difference likely comes from Speriosu and

Balridge’s use of OpenNLP NER as opposed to TopoCluster’s use of Stanford NER.

This large difference in Recall is in part due to our model’s non-reliance on gazetteer

matching. This makes it possible for TopoCluster to make correct resolutions even

in cases when the NER output uses a non-standard place name variant (e.g. Big

Apple for NYC ) or when slight errors are made in tokenization or NER (e.g. NYC. is

output as opposed to NYC ). TopoCluster succeeds in these cases because language

models typically include these variants, and their distributions pattern in ways that

are similar to the more commonly occurring dominant form. The advantage of our

models in the combined NER and TR evaluation matters because almost all real-

world use cases of TR apply to toponyms identified by a named entity recognizer.

Table 3.4 shows the resolution results of many state-of-the-art toponym res-

olution systems on the WoTR corpus. As can be seen, TopoClusterGazoutperforms

all resolvers on all metrics when oracle NER is used, and significantly outperforms

others on Recall and F-1 Score. The exact reason for this success is explored more

deeply in the next chapter, but key to the system’s success is the ability to predict

on non-gazetteer matched entities. The ability to use toponyms who lack gazetteer

referents aids in direct and indirect ways. First, the system is able to predict in

cases where other systems cannot, directly boosting Recall and F-1 Score. Second,

the ability to predict predict on non-gazetteer matched entities indirectly bene-
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Table 3.4: WoTR Toponym Resolution Results

System A@161km* Mean P R F-1
Random 27.0 2259 15.2 6.2 8.8
Population 63.7 1507 39.4 16.1 22.8
SPIDER 68.6 593 37.8 15.4 21.9
WISTR 62.9 965 53.3 15.9 24.5
WISTR+SPIDER 68.7 610 38.1 15.5 22.1
TopoCluster 60.0 662 36.2 26.9 30.8
TopoClusterGaz 71.28 564 40.6 30.3 34.7

fits gazetteer matched entities. For example, a correspondence includes toponyms

”Northern Mississippi” and ”Corinth”. Corinth is a highly ambiguous toponym

and Northern Mississippi does not appear in gazetteers. Systems such as SPIDER

cannot utilize the information from Northern Mississippi as it does not match a

toponym; in contrast, TopoClusterGazutilizes the densely clustered Gi* vector of

Northern Mississippi to disambiguate the ambiguous Corinth. NER inclusive scores

are generally much lower for WoTR-Topo than other datasets because NER systems

utilized (Stanford-NER and openNLP-NER) are trained are very different domains.

Nonetheless, TopoClusterGaz outperforms all systems in NER-inclusive scores ex-

cept for precision, which WISTR prevails.
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Chapter 4

Error Analsyis and Conclusions

In this chapter I analyze in detail the errors that TopoCluster, SPIDER, and WISTR

make on LGL, TR-CoNLL, and WoTR-Topo.

4.1 Error Analysis

Error in Toponym Resolution systems can be sourced to a relatively small subset

of underlying causes. The first group of errors I class as system design or setup

design errors. Most commonly this appears as systems being unable to predict on a

correct referent due to a dependency in the system on gazetteer matching and also

as a prediction that is correct in some sense, but differs from that of the evaluation

ontology. The second group of errors are endemic to all TR systems, irrespective of

system design. The principal error type in this group is disambiguation error, where

a system incorrectly predicts the wrong referent for a toponym.

In the genre of spatial minimization systems, which SPIDER is an example

of, disambiguation errors frequently occur in situations where a single article jumps

in its geographic focus (e.g. articles with lists of country names). SPIDER also

suffers in situations where texts are short and lack a large number toponyms in

context. As can be seen in Tables Table 3.2 and Table 3.4 this type of system does

much better in domains that have relatively restricted spatial focus (Local news

articles of LGL and spatially organized reports/letters of WoTR), but does much

poorer on the international news of TR-ConLL.

In the genre of language-context based systems, such as TopoCluster and
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WISTR, disambiguation errors frequently occur when the natural language context

lacks geographically specifying information. These systems can typically do much

better in international domains such as TR-CoNLL, where toponyms are less likely

to be geographically close to one another and where frequency of ’prominent’ sense

toponyms if very high (i.e. ’prominent’ toponyms are much more likely to have

training contexts which characterize them well).

4.1.1 LGL Errors

The first major class of errors on LGL involve demonyms. Two of these that appear

in LGL-dev of are American and Georgian (Table 4.1). For TopoClusterGaz, the

source of errors is listed as ’Gazet Match Error’. This type of error corresponds to

situations wherein the system correctly disambiguates to a Gi* cluster in the correct

location, but a gazetteer ’snap’ step causes an error. Plain TopoCluster correctly

disambiguates these demonyms to locations very near their intended referents (LGL

annotation dictates they should be at the centroids of the related country). Geon-

ames lacks demonyms as alternate names for countries, but in fact American and

Georgian refer to actual cities completely unrelated to the country. SPIDER and

WISTR also fail to predict on the demonyms, but are not penalized in the A @

161km measure because they are not penalized for non-predictions. While SPIDER

and WISTR utilize the same Geonames resource as TopoClusterGaz, TopoClus-

terGaz allows toponyms to match on the geonames ’alternate names’ field, while

SPIDER and WISTR do not.

SPIDER and WISTR also fail to make predictions are certain acronyms (Ga.)

while TopoClusterGaz does well on these type of references. This, once again, goes

back to the difference in whether the systems utilize the altnames field of Geonames.

Certain toponyms TopoClusterGaz is better at disambiguating, while SPI-

DER and WISTR succeed at others. TopoClusterGaz does well on Boone County,

Cookville, and Dublin while SPIDER and WISTR do not. SPIDER fails on these

toponyms because the spatial minimization procedure is mislead by clusters of to-

ponyms in areas unrelated to the true referent. One example of this is Boone County,

which is a county that appears in Missouri, Kentucky, Indiana, and Illinois. In LGL

the Boone County (KY) co-occurs with a set of toponyms with possible referents in

Indiana. This misleads SPIDER into selecting Boone County (IN). Both TopoClus-
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Figure 4.1: TR-CoNLL instances of corpus errors

1. Jiri Novak (Czech Republic) beat Ben Ellwood (Austrialia <lat=27, long=0>)
6-2 6- 4 6-3

2. Sao Paulo <lat=-7.233, long=-62.9> state power firm Electropaulo said it has
named Eduardo Bernini as new president, replacing Emmanuel Sobral...

terGaz and WISTR succeed at disambiguating Israel, while SPIDER fails. This is

due to Israel frequently appearing in articles talking about US, Israeli relations. In

these situations, Israel becomes disambiguated to a place within the US, due to the

variety of US toponyms that appear in the articles.

SPIDER on the other hand is better at disambiguating articles with highly

concentrated, ambiguous toponyms. It does well where TopoClusterGaz and WISTR

fail on toponyms such as Georgia and Iran. In these cases of LGL-dev, the coun-

try names appear with a variety of toponyms which uniquely predict to points in

the Caucuses and Iran (the country). TopoClusterGaz can sometimes fail in these

scenarios because the GI* densities of country names are typically widely dispersed

(i.e. the terms are associated and used over wide areas), and the clusters which do

appear don’t necessarily overlap with all regions and cities contained in the country.

TopoClusterGaz ends up disambiguating Iran to a city in western Syria due to the

frequency of Palestine and Syria in its context.

4.1.2 TRCoNLL Errors

Errors observed with TR-CoNLL are a little different than with LGL and WoTR.

Suprisingly, the biggest class of errors observed turned out not to actually be errors

but instead problems with the annotated corpora. These problems in the corpora

exist despite the use of TR-CoNLLf (’f’ for fixed) developed by (Speriosu, 2013)

to fix problems with the base TR-CoNLL. Because the primary errors are corpora

related, I only list the results from TopoClusterGaz.

Table 4.2 displays the primary errors on TR-CoNLL. As an example of ’cor-

pus errors’, sentences and associated annotations for Australia and Sao Paulo are

displayed in Figure 4.1. As can be seen, the annotated geo-references for the places

are incorrect.
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A second source of error in TR-CoNLL are Gazet Match Errors. These are

seen in TR-CoNLL dev with the toponym Guerrero. Gi* clusters for Guerrero and

its context correctly disambiguate to a point within the state of Guerrero Mexico

within 161 km of the true referent. Nevertheless, the gazeteer matching procedure

causes TopoCluster to snap to a city in a neighboring state rather than the correct

referent, due to there being no match for that particular spelling of the state within

GeoNames.

Disambiguation errors occur as well with TR-CoNLL, but are generally much

less of a problem. Georgia for appears 3 times in the dev set (two times as the

country, one time as the state). TopoClusterGaz tends to prefer the state sense of

the toponym in empty contexts due to fact that there are many more Wikipedia

articles for places within the US state of Georgia than the country in the Caucuses.

Figure 4.2: Sao Paulo Error in sentence (2)

.
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Table 4.2: TopoCluster Principal Errors TrCoNLL-Dev

TrCoNLL-Dev
Toponym Frequency Avg Error Error Explanation

Argentina 14 7600km Corpus Error
Australia 14 13000km Corpus Error
Austria 14 1400km Corpus Error
Berlin 7 337km Corpus Error
China 3 6300km Corpus Error
Georgia 2 9800km Disambiguation Error
Guerrero 6 268km Gazet Match Error
Johannesburg 5 373km Corpus Error
Malaysia 7 500km Corpus Error
Paris 4 440km Corpus Error
Sao Paulo 7 2500km Corpus Error
Sudan 8 329km Corpus Error
WA 3 12000km Disambiguation Error
Zaire 9 1468km Disambiguation Error

4.1.3 Wotr-Topo Errors

The errors seen with the systems on WoTR-Topo are mostly disambiguation errors,

though gazetteer matching and ontology mismatch errors are also represented.

Toponyms that do well in SPIDER but not other systems are Alexandria,

Clarksville, Houston, and Pocahontas.

Alexandria solely refers to Alexandria, Lousiana in WoTR-Topo Dev. TopoClus-

terGaz tends to disambiguate the toponym to the city in Egypt due to the strength

of the Gi* cluster there. WISTR tends to disambiguate to Alexandria, Virginia

due to the amount of material written on the place, especially concerning the civil

war. Clarksville refers to Clarksville, Arkansas in WoTR-Topo Dev. TopoClus-

terGaz tends to disambiguate the toponym to Clarksville, Tennessee due to the

strength of the Gi* cluster there and the lack of specifying context. SPIDER suc-

ceeds because the documents containing Clarksville are typically headed by a single

contextual toponym, Arkansas. This is enough to set SPIDER on the right track,

but unfortunately for TopoCluster the Gi* clusters for Arkansas and Clarksville,

Arkansas overlap only partially. In documents with a single instance of Clarksville

and a single instance of Arkansas, TopoCluster makes the right decision; however,

when a document has multiple instances of the same toponym, the top clustered
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sense merely stacks in its preference. In future work, it may be advantageous to

TopoCluster to avoid this kind of stacking of redundant context toponyms. Hous-

ton solely refers to Houston, Missouri in the dev set analyzed here. Because the

sense is so minor in Wikipedia and the context not especially helpful, TopoClus-

terGaz and WISTR struggle to disambiguate correctly. Pocahontas, Arkansas is a

struggle for TopoClusterGaz and WISTR primarily because instances of this name

are strongly associated with Virginia. SPIDER is able to make many fewer errors

due to using instances of Arkansas that co-occur in the document. Unfortunately

for TopoCluster, the Arkansas clusters only slightly overlap with Pocahontas and

the single instance of Arkansas is not enough to outweigh the multiple instances of

Pocahontas.

Toponyms that do well in TopoClusterGaz but not other systems are Ark.,

Camp Lapwai, Colo. Terr., Richmond, San Francisco, and West Tennessee.

Ark. does well in TopoCluster and TopoClusterGaz because even without

a gazetteer, use of Ark. is centered in Arkansas. WISTR and SPIDER fail to make

predictions for this acronym because they do not utilize GeoNames altnames field.

Camp Lapwai, West Tennessee, and Colo. Terr. lack entries in GeoNames, but Gi*

Vectors of TopoCluster center the strings in the correct locations near western Mon-

tana, western Tennesee, and central Colorado. WISTR and SPIDER fail to make

predictions because the toponyms are not represented in GeoNames. Richmond

and San Francisco are handled much better by TopoClusterGaz primarily because

they only refer to their dominant senses in the dev portion of the corpus. SPIDER

struggles with Richmond due to a sense in which it refers to a place in southern

Pennsylvania; in documents that preample with Washington, SPIDER prefers the

technically closer Richmond within Pennsylvania.

Toponyms which are difficult for all systems are Bonnet Carre, Cal., Jack-

sonport, Mississippi River, Red River, and Washington.

Bonnet Carre lacks a GeoNames entry at the annotated referent, but does

have an entry in the alternate name field that links to a place in France. For this

reason, TopoClusterGaz is listed as a ’Gazet Match Error’–TopoCluster produces

the correct reference but the act of gazetteer matching snaps to a place on the

completely wrong side of the globe. WISTR and SPIDER do not utilize alternate

names in GeoNames, so they simply produce no prediction. Cal. lacks an entry in

GeoNames, including an altnames field entry. TopoCluster tends to disambiguate
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this to a point near San Francisco, which is about 300km away from the Califor-

nia state centroid. SPIDER and WISTR cannot disambiguate the toponym due to

lacking a gazetteer entry for this particular spelling. Jacksonport is always disam-

biguated to the city in Wisconsin by all systems, even though the correct referent

is in Arkansas. The reason for this error is complex; the vasty majority of written

material in Wikipedia on Jacksonport concerns the much more populous city in

Wisconsin. This causes the Gi* clusters and classifiers of WISTR to more easily

select that sense. Adding to this, contexts where Jacksonport frequently mention

the highly ambiguous physical feature the Black River, which has referents in both

Arkansas and Wisconsin. Because of this geographically shared referent ambiguity,

SPIDER selects Jacksonport, Wisconsin over the Arkansas sense. Mississippi River

runs into ontology mismatch issues; annotators tended to select the Wikipedia entry

referent (at the mouth of the river), while GeoNames links to the head waters of

the same river. The evaluation metric captures this behavior of TopoClusterGaz

as an error, but it is more a matter of parallel ontologies pointing to the same

referent. Washington is one of the most ambiguous toponyms in GeoNames, and

within WoTR-Topo both the Washington, DC sense and Washington state sense are

prevalent. Most of the Washington errors occur in scenarios where the dominant

focus of the document is geographically localized, but contains a phrase such as

”orders from Washington”, often in the document header. WISTR does best on

Washington, getting about 60% of its instances right.

4.2 Conclusions

The gazetteer independent toponym resolver Topocluster-Gaz performs well on in-

ternational news and historical corpora, beating other state-of-the-art resolvers by

large margins. Gazetteer-independent versions of our models perform competitively

with many high performing resolvers, and TopoCluster works especially well on pre-

dicted toponyms—which is arguably the key use case for toponym resolution in the

wild.

One criticism that could me made of toponym resolution systems more gen-

erally is that they ought to be subsumed into the more general task of named entity

linking, where important scholarship has explored the use of joint modeling (Durrett

and Klein, 2014), as well as a variety of machine-learned and probabilistic classifiers
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(Shen et al., 2015). The work contained in this thesis however should undermine

at least some of this criticism. Toponym grounding is unique among word sense

disambiguation in that the words can naturally be projected into an objective 2

dimensional (or 2d + elevation) space. This constrained prediction space allows

the development of systems like TopoCluster which are less dependent on human-

curated reference ontologies, and as I have demonstrated these systems can perform

very well in a variety of domains, side-stepping some issues endemic with entity link-

ing, such as poor recall resulting from ontology mismatches and query expansion

failures.

The results of the gazetteer-independent models call into question whether

gazetteer matching or ontology matching is truly an essential component of a to-

ponym resolution process. Theoretically, gazetteer matching could do significant

work correcting a completely wrong output of a non-gazetteer utilizing model like

TopoCluster, particularly in cases where a toponym string is unambiguous in a

gazetteer. Empirically however we found these cases to be extremely rare—the

primary benefit of the gazetteer in our models was ontology correction of large

geographic entities and not disambiguation per se.

4.3 Future Work

Two areas within text geolocation that I think are promising, but I didn’t have

enough time to explore are (1) automated geographic feature type inference, and

(2) application of sequence modeling and related techniques to toponym resolution.

I observed two undesirable behaviors of TopoCluster that were related to is-

sues of geographic feature typing and scale. The first was that more administratively

prominent toponyms tend to have Gi∗clusters that are more dispersed and thus have

much lower peak values. The second, and somewhat related, is that toponyms in

the same administrative hierarchy (e.g. Spokane, and Washington) do not necessary

overlap in their Gi∗distributions. This leads to certain Gi∗clustered toponyms, such

as cities being a much more dominating force than desired. One way that I could

have alleviated this would be to automatically infer the feature type from patterns

in the Gi∗distribution, and re-weight certain points in the Gi∗vector according to

the inferred feature typing.

It is somewhat surprising that sequence modeling approaches, which are
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widely found in the problem of Named Entity Recognition, have not been applied

to resolving sequences of toponyms. Besides being an elegant computational frame-

work for optimally resolving sequences, it gives the toponym resolution community

access to a body of scholarship that ought to help with ancillary problems (i.e. han-

dling the tendency of named entity strings to have one referent per discourse (Finkel

and Manning, 2009)). The main roadblock I had in applying sequence modeling ap-

proaches in TR is that they seem to require a relatively small number of states to

work well. This requires partitioning geograhic space into a relatively small subset

of areas, which fails to produce predictions at the scale necessary for most toponym

resolution tasks. One possible work-around in this framework would be to apply

hierarchical modeling techniques like those used in Wing and Baldridge (2014) to

alter the scale of the prediction to that for which there is training data.
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