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 Polyomaviruses are small, DNA tumor viruses that establish persistent infections 

in their natural hosts. Several members of the virus family are associated with human 

pathologies such as Progressive Multifocal Leukoencephalopathy (PML), trichodysplasia 

spinulosa and Merkel cell carcinoma. Polyomaviruses are one of the first virus family 

known to encode miRNAs. These polyomaviral miRNAs are located antisense to the 

early transcripts and hence, mediate the autoregulation of the viral early proteins, the T 

antigens. There are two major questions in the field of polyomaviral miRNAs – What is 

the biological significance of this miRNA-mediated autoregulation of the early 

transcripts? Are there other biological significant targets for these polyomaviral 

miRNAs? 

 This work addressed these two questions through an evolutionary approach. First, 

examination of SV40 and JCV variants indicated the high conservation of the miRNAs 

and their autoregulatory functions. Second, miRNA-mediated autoregulation of the early 

transcripts is conserved in a newly discovered, evolutionarily divergent viruses, the 

Bandicoot papillomatosis and Carcinomatosis viruses (BPCVs). Third, by inspecting 



 x 

divergent members of the polyomavirus family, we have shown that some non-human 

polyomaviruses encode miRNAs, with the function to autoregulate the early transcripts 

conserved. The conservation of miRNAs both among variants of individual member and 

across divergent members of the polyomavirus family implies importance. More 

importantly, a conserved function of autoregulating the early transcript further 

emphasized the biological relevance of the miRNAs in polyomavirus biology. Yet, the 

lack of replicative differences between miRNA-expressing and miRNA-null SV40 strains 

during lytic infections suggests a role for the polyomaviral miRNAs under a different 

setting, perhaps in the establishment of persistent infection of their natural hosts. 

This work represents an evolutionary study of polyomaviral miRNAs that has 

demonstrated the conserved nature of miRNA-mediated autoregulation of the early 

transcripts among various members of the polyomavirus and polyoma-like virus families. 

These results have implicated a potential role for the polyomaviral miRNAs in the 

establishment of persistent infection and raised the possibility of using the JCV miRNAs 

as potential biomarkers as a non-invasive form of diagnostic for PML.
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CHAPTER 1 Introduction 

1.1 Prologue 

“The gift that keeps on giving” may be the perfect description for 

polyomaviruses. Since the discovery of the first two members of Polyomaviridae, murine 

polyomavirus (Polyoma or muPyV) and Simian Virus 40 (SV40, Gross, 1953; Sweet and 

Hilleman, 1960), immense contributions to many faucets of the eukaryotic molecular 

biology and tumor biology have resulted from the intensive studies on these two viruses. 

But these contributions will not the end of what we can learn from these viruses. 

Polyomaviruses again stepped into the spotlight when it became one the first virus 

families known to encode microRNAs (miRNAs, Sullivan et al., 2005). This introductory 

chapter focuses on the discovery of polyomavirus miRNAs and their biological 

significance towards the polyomavirus lifecycle.  

 

1.2 MicroRNAs 

 MicroRNAs (miRNAs) are a class of eukaryotic small RNA molecules (~22nt) 

that play important regulatory roles in multiple biological processes that are of great 

relevance to virology (reviewed in Grundhoff and Sullivan, 2011; Kincaid and Sullivan, 

2012). The biogenesis of miRNAs have been reviewed in depth (see Bartel, 2009; 

Carthew and Sontheimer, 2009; Kim et al., 2009). Briefly, miRNAs are first transcribed 

as a longer primary transcript (pri-miRNA) containing the hairpin precursor known as the 
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precursor miRNA (pre-miRNA). The pre-miRNA hairpin is a small RNA structure of 

approximately 65nt in length, consisting of a terminal loop, a double-stranded RNA stem 

that encompass the miRNA duplex and flanking single-stranded RNA (Denli et al., 2004; 

Gregory et al., 2004; Han et al., 2004; Landthaler et al., 2004; Lee et al., 2003; Zhang and 

Zeng, 2010). The pre-miRNA hairpin structures are processed and liberated by Drosha, 

an endonuclease of the RNase III family (Lee et al., 2003; Zeng and Cullen, 2005; Zeng 

et al., 2004), as part of a larger complex known as the Microprocessor complex (Denli et 

al., 2004; Gregory et al., 204; Han et al., 2006). The pre-miRNA is then exported from 

the nucleus to the cytoplasm by exportin 5 in a GTP dependent process (Bohnsack, 2004; 

Lund et al., 2004; Yi et al., 2003). Dicer, another member of the RNase III endonuclease 

family, cleaves the terminal loop of the pre-miRNA in the cytoplasm, generating a short 

RNA duplex with 2 nucleotides (nt) overhangs at the 3’ end (Bernstein et al., 2001; 

Grishok et al., 2001; Hutvagner et al., 2001; Ketting et al., 2001). The short RNA duplex 

is then loaded into the RNA-induced silencing complex (RISC), with one strand of the 

duplex, the guide strand, preferentially retained over the less abundant strand of the 

duplex, also known as the star (*) strand or the passenger strand. The mature derivative 

miRNA near the 5’ and 3’ are also known as the 5p and 3p miRNAs respectively (Bartel, 

2009). Nucleotides 2 to 8 of the mature miRNA (numbered from the 5’ end), referred to 

as the seed region, are especially important in mRNA recognition with the 

complimentary binding sites being conserved in the target mRNA. miRNA binding sites 

are usually situated in the 3’ untranslated region (3’ UTR) of the target transcripts 

(Doench and Sharp, 2004; Grimson et al., 2007; Lewis et al., 2005; Lim et al., 2005; 
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Nielsen et al., 2007). When bound by miRNAs, the target transcripts display impaired 

translation (Humphreys et al., 2005; Pillai et al., 2005), which is usually followed by an 

increase in turnover rates (Bagga et al., 2005; Bazzini et al., 2012; Behm-Ansmant et al., 

2006; Giraldez et al., 2006). In addition to translational repression, some plant and viral 

miRNAs can bind the target transcripts with perfect complementarity throughout the 

entirety of the miRNA, directing endonucleolytic cleavage, resulting in robust decrease in 

the steady-state levels of those targeted transcripts (Llave et al., 2002). The 

endonucleolytic cleavage is initiated within the complementary region between the 

miRNA and the target transcript (Elbashir et al., 2001; Hammond et al., 2001; Martinez 

et al., 2002; Nykänen et al., 2001; Schwarz et al., 2004), mediated by the Argonaute 

protein 2 (AGO2), the core component of RISC (Liu et al., 2004; Meister et al., 2004; 

Rand et al., 2004). The latter mode of regulation, however, is rare for most animal 

miRNAs (Shin et al., 2010; Yekta et al., 2004a).   

 In 2004, the first viral miRNA was discovered in Epstein-Barr virus (EBV), a 

member of the herpesvirus family (Pfeffer et al., 2004). To date, virus-encoded miRNAs 

have been identified from several different families, including the herpes-, retro- and 

anellovirus families (Grundhoff et al., 2006; Kincaid et al., 2012, 2013; Pfeffer et al., 

2004). Over 300 viral miRNAs have been identified, yet only a small fraction have well-

understood functions. As small, non-immunogenic molecules that do not occupy 

significant genomic space, viral miRNAs have garnered great interest as potential 

effectors of pathogenesis and immune evasion. The main focus of this dissertation is the 
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discovery and characterization of a specific group of viral miRNAs, the polyomaviral 

miRNAs. 

1.3 Polyomaviruses 

Polyomaviruses are small (~50nm in diameter, Liddington et al., 1991; Rayment 

et al., 1982), non-enveloped virus with a circular, double-stranded DNA genome of 

approximately 5000 base pairs (bp). Historically, polyomaviruses are first considered as 

part of the papopaviridae, with the named derived from three of the members of the 

family – rabbit papillomavirus, murine polyomavirus and SV40, originally known as 

vacuolating virus. Extensive studies since then reveal that SV40 and muPyV are different 

from the papillomaviruses. Hence, the Polyomaviridae are now considered an 

independent virus family (Cole, 1996). 

 

1.3.1 History of Polyomaviruses discovery   

The first polyomavirus, muPyV, was discovered in 1953 by Ludwig Gross from 

his study on the transmission of murine leukemia virus (MLV, Gross, 1953), followed by 

SV40, subsequently was identified from a screen for viruses in rhesus macaque kidney 

cell cultures used for the production of poliovirus vaccine (Sweet and Hilleman, 1960). 

The first two human polyomaviruses discovered were JC virus (JCV) and BK virus 

(BKV). JCV was isolated from the brain tissue extract obtained from a patient with 

Progressive Multifocal Leukoencephalopathy (PML), a rare neurodegenerative disease 

caused by JCV lytic infection of oligodendrocytes, BKV was isolated from the urine of 
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an immunosuppressed renal transplant patient. Both JCV and BKV were named after the 

initials of their respective patients in which the viruses were first described (Gardner et 

al., 1971; Padgett et al., 1971). More than 30 years later, following the advent of next 

generation sequencing techniques, discovery of new human polyomaviruses came at a 

blistering pace (Allander et al., 2007; Buck et al., 2012; Feng et al., 2008; Gaynor et al., 

2007; van der Meijden et al., 2010; Schowalter et al., 2010; Scuda et al., 2013; Siebrasse 

et al., 2012; Yu et al., 2012). To date, there are twelve known human polyomaviruses, 

with at least four of them associated with human pathologies: Merkel Cell polyomavirus 

(MCV), trichodysplasia spinulosa polyomavirus (TSV), BKV and JCV (Feng et al., 2008; 

Gardner et al., 1971; van der Meijden et al., 2010; Padgett et al., 1971). Most 

polyomaviruses are known to establish lifelong persistent infection in their native hosts, 

albeit through mechanisms that are not yet fully understood. However, in the laboratory 

settings, polyomaviruses can undergo lytic infection of cell cultures, leading to the 

ultimate destruction of the cells.   

 

1.3.2 Genetic make-up of Polyomaviruses 

 The polyomavirus genome can be divided into three regions: the non-coding 

control region (NCCR), the early and the late regions (Figure 1.1). The essential elements 

that control the genome replication and viral transcription, the origin of replication (ori) 

and the early and late promoters, are encompassed within the NCCR. The early and late 

promoters together drive a divergent transcriptional unit. The early transcripts encode the 

tumor (T) antigens whereas the late transcripts encode three structural capsid proteins, 
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VP1, VP2 and VP3. In addition to the capsid proteins, a forth late protein has been 

recently reported for SV40, VP4, and is suggested to function as a pore to disrupt cellular 

membranes for virion release during the lytic replication (Daniels et al., 2007; Giorda et 

al., 2012; Raghava et al., 2011, 2013). Importantly, individual members of the 

polyomavirus family have alternative repertoires of proteins, such as the agnoprotein in 

SV40, JCV and BKV (reviewed in Gerits and Moens, 2012). 
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Figure 1.1 General Features of Polyomavirus genome.  
The polyomavirus genome can be divided into 3 regions – The non-coding control region 
(NCCR), the early and the late regions. The NCCR contains essential regulatory elements 
that controls DNA replication, promoters and enhancers for the early and late transcripts. 
The arrangement of these elements drives a divergent transcriptional unit, with the early 
transcripts denoted in red, represented in a anti-clockwise orientation and the late 
transcripts denoted in green, represented in a clockwise orientation. The early transcripts 
encode the tumor (T) antigens and the late transcripts encode the structural proteins, VPs.
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1.3.3 Non-coding control region (NCCR) 

 The non-coding control region (NCCR) contains the ori, the early and late 

promoters and enhancers. The SV40 NCCR is one of the best studied among the various 

polyomaviruses and will be the focus here. Two of the most important sequence elements 

within the NCCR are the 72bp pair repeat elements that function as enhancers for the 

SV40 early promoter (reviewed in Jones et al., 1988) and the set of three 21bp repeat 

sequences that is part of the early promoter (Benoist and Chambon, 1981; Everett et al., 

1983; Fromm and Berg, 1982; Hartzell et al., 1983). Based on the combination of these 

repeat elements in the NCCR, variants of SV40 can be classified into 3 different types – 

Archetype, nonarchetype and protoarchetype. The majority of the SV40 variants isolated 

from wild monkeys contain a single 72bp enhancer element and all three 21bp repeat 

sequences in their NCCR and are designated as the archetypes (Forsman et al., 2004; 

Ilyinskii et al., 1992; Lednicky et al., 1998). On the other hand, serial passage of 

archetypal SV40 variants in tissue culture usually leads to a duplication of the 72bp 

enhancer element and is designated as nonarchetypes. The most famous example of 

nonarchetype SV40 is the commonly used laboratory strain 776 (Lednicky and Butel, 

1997; Lednicky et al., 1995a, 1997; O’Neill et al., 2003). The third type of NCCR, the 

protoarchetype, is rarely described in literature and is defined as having a single 72bp 

enhancer element but lacking one of the 21bp repeat sequences, found to arise de novo 

within immunocompromised monkeys (Lednicky et al., 1998; Newman et al., 1998). 

Significantly, the laboratory adapted nonarchetypal SV40 strains can replicate to a higher 

level than the archetypal and protoarchetypal strains in both tissue culture and in vivo 
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infections of Syrian golden hamsters (Lednicky and Butel, 2001; Lednicky et al., 1995b; 

Zhang et al., 2014).  

  

1.3.4 Tumor antigens 

 The tumor (T) antigens are a set of early polyomaviral proteins whose expressions 

are driven by the early promoter when the virus genome enters the nucleus. A single early 

primary transcript is differentially spliced to generate different T antigens (Courtneidge et 

al., 1991; Fu and Manley, 1987; Noble et al., 1987; Riley et al., 1997; Treisman et al., 

1981). Different polyomaviruses possess different splice variants of T antigens (Bollag et 

al., 2006; Carter et al., 2013; Houben et al., 2010; Shuda et al., 2008; Zerrahn et al., 

1993), but three of the best understood early proteins are the large, middle and small T 

antigens. Despite the vast amount of studies done, the sections below will only briefly 

cover some of the functions for each T antigen. 

 

1.3.4.1 Large T antigen 

 The term – “the most amazing molecule in the universe” was coined by Dr. James 

Pipas to describe large T antigen. Indeed, large T antigen is a multi-domain, multi-

enzymatic and multi-functional protein that contributes at various steps in the 

polyomavirus infection. Most of the functions described here are focused on the large T 

antigen of SV40. The large T antigen can be sub-divided into 4 separate domains – the 

ori-binding domain (OBD), the zinc (Zn)- binding domain, the ATPase domain and the J 
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domain (reviewed in An et al., 2012). During lytic SV40 replication, the large T antigen 

is the primary player that coordinates viral DNA replication by binding to the ori. The 

multimeric form of SV40 large T antigen, through the helicase domain, unwinds the 

double-stranded DNA to initiate the DNA replication process (Smelkova and Borowiec, 

1997, 1998). Acting as the helicase component, large T antigen is part of a larger, multi-

protein DNA replication complex consisting of host cell machineries (Dornreiter et al., 

1990, 1992; Huang et al., 1998; Melendy and Stillman, 1993; Weisshart et al., 1998).  

 The T antigens were named as such due to their transforming activity in multiple 

cell types in various host (reviewed in Ahuja et al., 2005). The SV40 large T antigen 

binds to the tumor suppressor retinoblastoma protein (pRb), a molecular brake that 

controls cell proliferation by associating with the E2F family of transcription factor 

(Bagchi et al., 1991; Chellappan et al., 1991). Following large T antigen binding to the 

hypophosphorylated form of pRb, E2F is relieved from its association with pRb. The 

release of E2F allows the activation of E2F-regulated genes, resulting in cell cycle 

progression from G0 to S phase. A subset of the E2F-regulated genes is absolutely 

required for polyomaviral DNA replication (Chellappan et al., 1992). This pRb binding 

motif is highly conserved among many different members of the polyomavirus family, 

including MCV, the first human polyomavirus known to cause cancer in human (Dyson 

et al., 1990; Feng et al., 2008; Houben et al., 2012). Abnormal upregulation of E2F-

regulated genes trigger a cellular defense mechanism via p53, another tumor suppressor. 

Large T antigen, however, is able to counter this cellular response by binding p53 (Lane 
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and Crawford, 1979; Linzer and Levine, 1979), inhibiting tumor suppressing function of 

p53 as well. 

 In summary, the large T antigen of SV40 alone has been shown to be sufficient to 

induce cellular transformation in multiple cell types of various host, by binding to two 

tumor suppressors, pRb and p53. By binding to these two tumor suppressors, large T 

antigen is able to drive cell proliferation.  

 

1.3.4.2 Middle T antigen 

 The middle T antigen, a plasma membrane protein (Ballmer-Hofer and Benjamin, 

1985; Ito et al., 1977), is encoded by the muPyV and closely related viruses (Courtneidge 

et al., 1991; Delmas et al., 1985). Better known for its oncogenic activity, the middle T 

antigen is also important for the lytic life cycle of muPyV, acting as a switch from early 

to late transcription (Chen and Fluck, 2001; Chen et al., 2006, 1995). The oncogenic 

property of the middle T antigen comes from its ability to associate with many celluar 

protein tyrosine kinases involved in a series of signaling cascades. The association of 

middle T antigen with these tyrosine kinases results in constitutive activation of the cell 

cycle (reviewd in Fluck and Schaffhausen, 2009; Gottlieb and Villarreal, 2001). 

   

1.3.4.3 Small T antigen 

 The small T antigen, sharing almost the entire sequence with the middle T 

antigen, can associate with protein phosphatase 2A (PP2A, Pallas et al., 1990), thereby 
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inhibiting the protein’s phosphatase activity (Yang et al., 1991). This inhibition sends 

down a signaling cascade resulting in cell cycle activation (Porrás et al., 1999). In a lytic 

setting, the role of the small T antigen remains uncertain.  

 

1.3.5 Lytic replication 

 The lytic life cycle of polyomavirus has been well demonstrated by the prototypic 

member of the family, SV40 (reviewed by Cole, 1996). Briefly, upon infection of a cell 

and entry into the nucleus, the early promoter drives the expression of the T antigens, 

whose primary roles in a lytic replication is to promote the synthesis of viral DNA 

(reviewed in Cole, 1996). Multimeric large T antigen complexes can then bind the ori to 

mediate viral DNA replication. At the onset of viral genome replication, the late promoter 

is activated and drives the expression of the structural proteins. Accumulation of the 

structural proteins leads to the assembly of mature virus particles, followed by the 

eventual lysis of the infected cells and release of the progeny virions. In the laboratory 

setting, lytic infections of African green monkey kidney cells result in the development of 

cytopathic effect (CPE), characterized by cytoplasmic vacuolization, nuclear swelling 

and eventual lysis of the infected cells (Diderholm, 1963; Miyamura, 1976; Miyamura 

and Kitahara, 1975) 
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1.3.6 Persistent infection  

 One of the earliest reports on SV40 persistence in rhesus macaques came from 

Ashkenazi and Melnick, where they demonstrated that exposure to SV40 occurs early in 

life, with periodic episodes of transient viremia and viruria. Eventually, persistent 

reservoir of SV40 infections are established in the kidney and lymphoid tissues 

(Ashkenazi and Melnick, 1962). In addition to the observations made by Ashkenazi and 

Melnick, SV40 DNA could also be detected in the urine of immunocompetent macaques 

(Newman et al., 1998). The majority of studies on in vivo SV40 infections were done in 

SIV-infected immunocompromised monkeys, and SV40 was detected in the kidney, 

central nervous system, lymph nodes, liver and spleen (Lednicky et al., 1998; Newman et 

al., 1998; Simon et al., 1999). More recently, an SV40 infection study has been 

conducted in Syrian golden hamsters, a widely used model for studying SV40 infections 

and oncogenesis (Butel et al., 1972; Cicala et al., 1993; Diamandopoulos, 1973; McNees 

et al., 2009; Patel et al., 2009; Sroller et al., 2008; Swain et al., 2012; Vilchez et al., 

2004). In their study, Zhang et al. show that acute SV40 infections are observable in 

liver, kidney, spleen, lung and brain, with the kidney harboring the main reservoir of 

persistent infections (Zhang et al., 2014).  

Attempts at understanding SV40 persistent infections in the cell culture settings 

are very limited as well. Leonard Norkin’s work on SV40 infections of rhesus macaque 

monkey kidney epithelial cells (LLC-MK2) demonstrated that SV40 is capable of 

establishing persistent infections in these cells. Eventually the persistently infected cells 

reach the “stable carrier state” in which extensive SV40 replication and progeny release 



 14 

is evident without the presence of CPE, persisting as long as 11 weeks post infection 

(Norkin, 1976, 1977). Besides the rhesus macaque kidney cells, various reports have 

demonstrated SV40’s ability to establish persistent infections in vastly different human 

cells lines such as the human glioblastoma, immortalized human fibroblast cell lines, 

lymphoblastoid B-cell lines and mesothelial cells (Dolcetti et al., 2003; Fahrbach et al., 

2008; Morelli et al., 2004; Norkin et al., 1985). However, the findings of Norkin (Norkin, 

1976, 1977) have been disputed by a separate group, shpwing lytic infection of primary 

rhesus kidney cells by SV40 that results in typical CPE, cell death, and progeny virion 

release comparable to infections of African green monkey cells (von der Weth and 

Deppert, 1992). Despite these studies on SV40 infections of rhesus macaque, under both 

whole animal and tissue culture settings, our understanding of the underlying mechanism 

for the establishment of SV40 persistent remains incomplete. Combined, persistent 

infection is a fascinating facet of the polyomavirus life cycle, one most akin to natural 

infections. Yet, our understanding of persistent infections remains rudimentary.  

  

1.4 Polyomavirus miRNAs discovery 

 The first two published examples of polyomaviral miRNAs are from SV40 and 

muPyV (Sullivan et al., 2005, 2009). However, hints of these two viruses expressing pre-

miRNAs were evident more than three decades ago, from work by Alwine and Khoury 

on SV40-associated small RNA (SAS-RNA (Alwine, 1982; Alwine and Khoury, 1980; 

Alwine et al., 1980)); and by Treisman and Kamen, and Fenton and Basilico on muPyV 

transcriptions (Fenton and Basilico, 1982; Treisman, 1981; Treisman and Kamen, 1981). 
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The discovery process for polyomaviral miRNAs first starts with pre-miRNA hairpin 

candidates prediction using the v-miR algorithm (Seo et al., 2008, 2009; Sullivan et al., 

2005, 2009; Cox et al., in prep). The candidate hairpins are then cloned into a 

heterologous expression vector driven by the cytomegalovirus (CMV) major immediate-

early promoter. The vectors are transfected into culture cells such as the human 

embryonic kidney 293T cells (HEK293T). Northern blot analysis is subsequently 

performed on the total RNA of the transfected cells. A signature northern blot result that 

indicates a particular pre-miRNA candidate is processed into mature miRNA would 

contain both the pre-miRNA signal in the size region between 70nt and 30nt, mature 

miRNAs in the region between 30nt and 10nt (Figure 1.2, McClure et al., 2011). This 

prediction approach, however, has at least one major drawback. The scoring of pre-

miRNA hairpin predictions is based on thermodynamic stability. Therefore, the longer 

the RNA sequence and hence the more thermodynamically stable the secondary structure 

is (lowest ΔG), the higher the v-miR score for that candidate will be, resulting in high 

false-positive predictions. Failure in v-miR prediction, however, is by no means an 

absolute indication that a particular member of polyomavirus is miRNA-null. With the 

availability of next generation small RNA sequencing, discovery of polyomaviral 

miRNAs can be performed, bypassing the need for v-miR predictions (Chen et al., 2011; 

Lin et al., 2010). After confirming the expression, it is essential to determine if the 

predicted viral miRNA is biologically active. The biological activity of the newly 

discovered polyomaviral miRNAs can then be demonstrated using a luciferase reporter 

system. This reporter-based assay allows for observing the downregulation of luciferase 
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signal when target sequences for the miRNAs are inserted downstream of the luciferase 

open reading frame (Figure 1.2).   
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Figure 1.2 Discovery of Polyomaviral miRNAs.  
There are two general approaches to discovery novel polyomaviral miRNAs. The first 
approach (boxed in blue) involves v-miR prediction of candidate hairpins acroos the 
entire polyomaviral genome. The candidate hairpins are then cloned into heterologous 
expression vector (such as pcDNA3.1) and transfected into HEK293T. Total RNA from 
the transfected cells is then subjected to northern blot analysis to confirm the expression 
of the miRNA (boxed in green). A signature miRNA northern blot will indicate a pre-
miRNA signal between the 70nt and 30nt size markers, combined with signals from the 
5p, 3p or both miRNAs between the 30 and 10nt size markers. The second approach 
involves cloning the entire polyomaviral genome into the heterologous expression vector 
in both the late and early orientations (boxed in orange). The vectors are transfected into 
HEK293T. Small RNA fraction from the transfected cells is then subjected to next-
generation small RNA deep sequencing (Illumina or SOLiD sequencing platforms). The 
sequencing results are then confirmed by northern blot analysis as described. To test for 
functionality of the polyomaviral miRNAs, reporters are constructed by cloning the 
miRNA anti-sense sequence into the 3’ UTR of a Renilla luciferase open reading frame. 
A dual-luciferase assay is then conducted to test the candidate miRNAs’ activities on 
their respective anti-sense reporters.
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The small size of polyomaviral genome (~5kb) allows them to be genetically manipulated 

with relative ease. To study the relevance of the miRNAs on polyomaviral biology, a 

mutagenesis-based approach is usually employed to disrupt the hairpin structures, 

generating miRNA-null mutants (Bauman et al., 2011; Broekema and Imperiale, 2013; 

Sullivan et al., 2005, 2009). In addition to naturally circulating miRNA-null and miRNA 

variants, deletion mutants constructed from previous studies of polyomaviruses can also 

serve as useful tools for deciphering the biological roles of these polyomaviral miRNAs 

(Chen et al., 2013; Sullivan et al., 2009; Chen et al., in prep). It is highly likely that 

polyomaviral miRNAs have both viral and cellular targets, but deducing the biological 

significance of these targets will be a challenging task.  

  Polyomaviral miRNAs identified thus far are classified into two categories 

(Figure 1.3). The first category is the SV40-like, for which the miRNAs are located 

antisense to the C-terminus of the large T antigen open reading frame. The second is the 

muPyV-like, for which the miRNAs are also located antisense, but closer to the N-

terminus of the large T antigen open reading frame. The SV40-like category includes 

SV40, BKV and JCV whereas the muPyV-like category includes muPyV, MCV, 

PtsPyV2a, GggPyV1 and RacPyV. Since the polyomaviral miRNAs are all antisense, 

they maintain perfect sequence complementarity to the early transcripts. Polyomaviral 

miRNAs, therefore, are expected to mediate the endonucleolytic cleavage of the early 

transcripts, which has been demonstrated for SV40 and muPyV (Chen et al., 2013; 

Sullivan et al., 2005, 2009). 



 19 

 
 

Figure 1.3 Known polyomaviral miRNAs and their genomic locations. 
The polyomaviral miRNAs known thus far are all located antisense to the early 
transcripts. These miRNAs can be categorized into two different groups based on their 
genomic location. The first group, muPyV-like, includes the murine polyomavirus 
(muPyV), Merkel cell polyomavirus (MCV), Pan troglodyte verus polyomavirus 2a 
(PtsPyV2a), Gorilla gorilla gorilla polyomavirus 1 (GggPyV1) and raccoon 
polyomavirus (RacPyV) miRNAs, and are located closer to the N-terminus of the large T 
antigen. The second, group, SV40-like, includes the simian virus 40 (SV40), JC virus 
(JCV) and BK virus (BKV) miRNAs, and are located near the C-terminus of the large T 
antigen. 
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1.4.1 SV40 miRNAs   

 The first ever hint of polyomavirus-encoded miRNAs was described by Alwine 

and Khoury in 1980 as SV40-associated small RNA (SAS-RNA, Alwine and Khoury, 

1980; Alwine et al., 1980). SAS-RNA was characterized as a small RNA of 

approximately 65 nucleotides that was induced late during lytic infection. Surprisingly, 

the SAS-RNA was shown to share sequence homology with the 3’ end of the early viral 

mRNA as well. The function of SAS-RNA was not yet determined when it was first 

described, however, from the temporal expression and sequence homology within the 

SV40 genome, it was suggested that the SAS-RNA could play a possible role in 

controlling the gene expression of SV40 (Alwine, 1982; Alwine et al., 1980). The 

genomic location and sequence of the SAS-RNA were subsequently determined by 

Alwine and Khoury, mapping to nucleotide positions 2760 to 2825 of the SV40 776 

genome (the laboratory strain of SV40 is designated as 776). The combined works of 

Alwine and Khoury laid the foundation for the discovered miRNAs in SV40. Fast 

forward to 2005, a candidate miRNA with the highest scoring hairpin structure was 

predicted (v-miR prediction program (Grundhoff et al., 2006)) in the SV40 genome at 

around the same genomic location as the SAS-RNA. A series of northern blot analysis 

confirmed the hairpin candidate as a bona fide pre-miRNA, thereby revealing the true 

identity of SAS-RNA as the SV40 pre-miRNA, mapping to nucleotide positions 2794 to 

2851 of the genome, and is antisense to the T antigen transcripts. Just as described by 

Alwine and Khoury, the SV40 pre-miRNA and miRNAs accumulates at late times during 
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infection, with both the 5p and 3p miRNAs having perfect complementarity to the early 

transcripts (Sullivan et al., 2005).  

 Since both the 5p and 3p miRNAs are antisense to the early transcripts, it was 

predicted that the miRNAs would direct the endonucleolytic cleavage of the early 

transcripts (Chen et al., 2013; Sullivan et al., 2005). Indeed, the SV40 miRNAs were 

demonstrated to direct the cleavage of the early transcripts. Despite a decrease in T 

antigen expression (both large and small T antigens), the expression profile for both early 

proteins were still robust. Surprisingly, the decrease in T antigens production did not 

translate to a reduced virus yield for 776, when compared to a mutant SV40 incapable of 

expressing the miRNA (SV40 miRNA mutant (SM), (Sullivan et al., 2005)). Is the SV40 

miRNA mediated autoregulation of the T antigens a biologically relevant function during 

lytic replication, or is it a consequence of the genomic location of the SV40 miRNAs 

(antisense and therefore, perfectly complementary to the early transcripts). A hint of the 

answer to this question may have already been provided by Mother Nature, in the form of 

multiple SV40 variants circulating in the wild. A screen by Chen et al. of all 63 deposited 

fully sequenced isolates of SV40 for possible variations in their pre-miRNAs and 

derivative miRNAs revealed 17 unique classes of pre-miRNA primary sequence variants 

(Chapter II, Chen et al., 2013). A naturally circulating variant, strain RI257, identified 

from this study, displays an entirely different miRNA expression profile. The laboratory 

strain, 776, displays dominant expression of two different 3p derivative miRNAs, 

whereas for strain RI257, robust expression of both the 5p and the 3p miRNAs is evident, 

with the 5p miRNA as the more dominant derivative. More importantly, all the RI257 
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derived miRNAs possess different seed sequences than those from the strain 776 (Chen et 

al., 2013). As predicted from the altered seed repertoires, the strain 776 and RI257 

miRNAs target different repertoire of host transcripts. Despite having different seed 

sequences, the strain RI257 miRNAs still efficiently autoregulate the early transcripts to 

levels comparable to strain 776. This observation further highlights the likely biological 

importance of SV40 miRNA-mediated autoregulation of the T antigen transcripts, at the 

same time, tolerating substantial variability in their miRNA targetomes (Chen et al., 

2013). 

 The importance of miRNA-mediated autoregulation of T antigens is further 

highlighted when this mode of viral gene regulation is discovered in a fascinating group 

of recently described viruses, the Bandicoot Papillomatosis Carcinomatosis viruses 1 and 

2 (BPCV1 and 2, Chapter III (Chen et al., 2011). The BPCVs represent a group of 

naturally occurring hybrids between two different virus families, the Polyomaviridae and 

the Papillomaviridae. Since the genome of BPCVs are similar in size to known 

papillomaviruses and encode putative capsid proteins with similar nucleotide and amino 

acid sequences to the L1 and L2 capsid proteins of papillomaviruses (Woolford et al., 

2007), BPCV has been classified under the papillomavirus family. Despite their 

classification, the BPCVs maintained the same genomic organization of the 

Polyomavirus family and more importantly, the capacity to express the T antigen proteins 

(Bennett et al., 2008a; Woolford et al., 2007). BPCVs also encode miRNAs, albeit not 

antisense to the early transcripts, these BPCV miRNAs still direct the autoregulation of 

the early transcripts by binding to the 3’ UTR of the early transcripts, with near sequence 
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complementarity (20 out of 22nt). This discovery most likely represents the first example 

of miRNA-mediated autoregulation of the T antigen transcripts that is not through 

endonucleolytic cleavage but translational repression (Chen et al., 2011). The fact that the 

BPCV1 miRNAs are also found at abundant level in vivo further argues for a biologically 

significant role for the miRNAs, perhaps the autoregulation of the T antigen transcripts 

via the 3’ UTR (Chen et al., 2011). 

 The conserved nature of the miRNA-mediated autoregulation of the T antigen 

transcripts suggests biological importance. What, then, is the biological role of this 

regulation? One possibility is that the miRNA may function in maintaining persistent 

infection. In this model, the miRNA prevents excessive or untimely expression of the T 

antigens, thereby avoiding the persistent reservoir from entering the lytic replication 

cycle without induction and the subsequent clearance by the adaptive immune response. 

The best evidence for this is that the downregulation of T antigens expression during lytic 

infection leads to a reduction in the susceptibility to cytotoxic T lymphocytes (CTL)-

mediated lysis when compared to the miRNA-null mutant SV40 (SM) infection 

counterpart, emphasizing on the importance of modulating the expression of the 

immunogenic T antigens, possibly in immune evasion (Sullivan et al., 2005). In vivo 

evidence for the effect of SV40 miRNA on viral pathogenesis was demonstrated by 

Zhang et al., from their work on SV40 pathogenesis in Syrian Golden hamsters (M. 

auratus, Zhang et al., 2014) . The SV40 miRNAs were detected in both kidney and liver 

tissue, the two major sites of persistent infections in the infected hamsters. More 

importantly, there was an negative correlation between the expression level of the 
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miRNA and the viral loads in those tissues – that is, hamsters infected with SM harbored 

higher levels of viral DNA in the kidney and liver tissues than animals infected by the 

wild type viruses. This result, again, is congruent with the autoregulatory effect of the 

SV40 miRNAs on the T antigen transcripts since higher levels of T antigens in the SM 

infected cells could be expected to support enhanced viral DNA replication (Zhang et al., 

2014). 

 The conserved nature of the autoregulation of the T antigen transcripts in both 

SV40 and polyoma-like viruses leaves no doubt that regulating the level of T antigens, in 

order to establish persistent infection, is one of the main function. As we continue to 

explore the BKV, JCV, muPyV and MCV miRNAs in the following sections, the 

autoregulatory effect of the polyomaviral miRNAs will be further emphasized. Yet, it is 

by no means that we could rule out any possibility for the existence of cellular target(s) 

for the SV40 miRNAs. 

 

1.4.2 BKV and JCV miRNAs 

 Like the SV40 miRNA, the BKV and JCV miRNAs were identified from northern 

blot screening of potential pre-miRNA candidates obtained from the v-miR prediction 

program (Seo et al., 2008). The BKV and JCV encoded miRNAs show striking 

similarities with the SV40 miRNAs – 1. Located in the late orientation, 2. Genomic 

location, 3. Conserved function of T antigen transcripts autoregulation. 4. miRNA-

mediated cleavage of the T antigen transcripts. Despite having a 5p dominant miRNA 

expression profile and different seed sequences than the SV40 miRNAs, both the BKV 
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and JCV miRNAs lie antisense to the T antigen transcripts, suggesting the potential 

autoregulatory function of the human polyomaviral miRNAs. Indeed, from the results of 

both dual-luciferase reporter system and 5’ rapid amplification of cDNA ends (5’ RACE) 

from BKV and JCV miRNA expression vectors transfected cultured cells, Seo et al. 

concluded that the autoregulation of the T antigen transcripts is a conserved role of the 

BKV, JCV and SV40 miRNAs. Furthermore, the JCV miRNAs are found at robust levels 

in brain samples obtained from patients suffering from PML (Seo et al., 2008). However, 

the pathological implication of the in vivo detection of the JCV miRNAs remains 

unknown.  

It would be of no surprise for viral miRNAs to regulate transcripts of the infected 

cells. Due to the non-immunogenic nature of the miRNA, occupying minimal genomic 

space and the potential to target a vast array of cellular transcripts based on a short stretch 

of seed sequence (n=16384), miRNAs would be the perfect tools for viruses to evade the 

immune response. The most well known examples of viral miRNAs participating in 

immune evasion comes from members of the Herpesviridae (Cullen, 2013; Ramalingam 

et al., 2012). As for the polyomaviruses, the first reported cellular target for any 

polyomaviral miRNAs came from the study of the BKV and JCV miRNAs (Bauman et 

al., 2011). Bauman et al. first generated different lentiviral miRNA vectors each 

expressing the BKV 5p miRNA, JCV 5p miRNA and the BKV/JCV 3p miRNA, since the 

3p miRNA has 100% sequence identity between the two viruses. Using a combination of 

reporter system and fluorescence-assisted cell sorting (FACS) analysis, the authors 

determined UL16 binding protein 3 (ULBP3) to be a target for the BKV and JCV 3p 
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miRNAs. The ULBPs belong to a novel class of human, MHC class I-related cell surface 

proteins. The primary function of the ULBPs is to activate the natural killer (NK) cell, an 

important arm of the innate immune response that is responsible for the recognition and 

destruction of cells under stress, such as viral infections (Sutherland et al., 2002). Binding 

of ULBP3 by an NK cell surface receptor, NKG2D, stimulates NK cytotoxicity (Cosman 

et al., 2001). The results by Bauman et al. suggest an immune evasion effect for the BKV 

and JCV miRNAs-mediated downregulation of cellular ULBP3 level. Indeed, the 

expression of the JCV 3p miRNA in the JCV infected cells resulted in a reduction in NK-

mediated killing. Conversely, co-expression of a molecular sponge against the JCV 3p 

miRNA restored NK-mediated killing of the JCV infected cells (Bauman et al., 2011).  

The first phenotypic effect on the polyomaviral lifecycle by the viral miRNA 

came from the studies on BKV replication in cultured primary human renal proximal 

tubule epithelial (RPTE) cells, which is the natural cell culture model for BKV lytic 

replication (Broekema and Imperiale, 2013). Unlike the methodology employed in the 

construction of SM (SV40 miRNA mutant), Broekema and Imperiale constructed the 

BKV miRNA-null mutant by making just 3 surgical mutations designed to disrupt the 

BKV pre-miRNA hairpin structure, and thus, abolishing the mutant virus’ capacity to 

encode miRNAs. In agreement with previous works on SV40 and muPyV (Sullivan et al., 

20005, 2009), deletion of the BKV miRNA has no significant effect on the replication of 

BKV with a rearranged NCCR (analogous to nonarchetypal SV40). However, in the 

archetype NCCR background, the absence of the miRNA resulted in a 100-fold increase 

in early transcript production and a 50-fold increase in viral DNA replication. These 
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increases translated into decreased of progeny virions (Broekema and Imperiale, 2013). 

This study, in conjunction with the studies on SV40 and BPCV miRNAs, suggest a role 

for the polyomaviral miRNAs in maintaining persistent infections in their natural host. 

Expression of the polyomaviral miRNAs would curtail the level of T antigens in the 

infected cells, keeping them at a low enough level that would not support and sustain 

lytic infections (Chen et al., 2011, 2013). The idea of viruses using viral miRNAs to 

target its own transcripts to serve as a switch between persistent and lytic infections 

mirrors the switch between latent and lytic infections observed in some members of the 

herpesvirus family (Bellare and Ganem, 2009; Lei et al., 2010; Lu et al., 2010; Umbach 

et al., 2008). It is therefore, not surprising for the polyomaviruses to utilize its own 

miRNAs to regulate the T antigens, the essential components that drive the polyomavirus 

lytic life cycle. 

 

1.4.3 Murine Polyomavirus (muPyV) miRNAs 

The polyomaviral miRNAs described thus far (SV40, JCV and BKV) are 

conserved in terms of their genomic location, antisense to the C-terminus coding region 

of large T antigen. However, this is not the case for the miRNA encoded by the muPyV. 

Similar to the discovery of the SV40 miRNAs, the muPyV miRNAs were identified by 

the v-miR hairpin prediction algorithm (Sullivan et al., 2009). Despite still being in the 

late orientation and antisense to the early transcripts, the highest scoring candidate 

hairpin was found at a different genomic location that is much further downstream than 

the SV40 miRNA. This however, does not represent the first recorded description of the 
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muPyV pre-miRNA. In his thesis work and subsequent publication of the mapping of the 

muPyV late nuclear RNA, Richard Treisman provided the first description of the muPyV 

pre-miRNA (Treisman, 1981; Treisman and Kamen, 1981). Using the S1 nuclease 

protection assay, Treisman identified the 5’ and 3’ ends for a particular species of late 

muPyV small RNA that is consistent with the ends of the muPyV pre-miRNA hairpin. 

His discovery also suggested the necessary presence of an RNaseIII-liked enzyme 

necessary for the generation of those 5’ and 3’ ends. About a year later, in 1982, while 

studying the early transcriptional program during muPyV lytic infection of 3T3D mouse 

fibroblasts, Fenton and Basilico are able to detect a fragment of the early transcripts with 

a 5’ end that mapped antisense and in proximity to where Treisman and Kamen had 

found the late muPyV small RNA (Fenton and Basilico, 1982). The unusual characteristic 

of the muPyV early transcript fragments as reported is their accumulation late during 

muPyV lytic infections. Together, the observations from Treisman, Kamen, Fenton and 

Basilico, combined with what we now know on how polyomaviral miRNAs function, it 

was confirmed that the late muPyV small RNA is the muPyV miRNA, and the early 

transcript fragments are the product of the miRNA-mediated cleavage of the T antigen 

transcripts (Sullivan et al., 2009). Despite not being found in the same genomic location 

as the SV40, BKV and JCV miRNAs, the muPyV miRNAs are still antisense to the T 

antigen transcripts and therefore, miRNA-mediated cleavage of the early transcripts was 

again confirmed, through two independent methods – 1. Mapping of the early transcript 

cleavage site down to a single nucleotide resolution via the 5’ RACE, and 2. a 

corresponding decrease in T antigens expression level via immunoblot analysis.  
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muPyV is an evolutionarily distant member from SV40, BKV and JCV, yet, the 

same mode of miRNA-mediated autoregulation is conserved. This raises an important 

question: How does autoregulation of the T antigens by its own viral miRNAs contribute 

to polyomavirus biology? To address this question, Sullivan et al. infected C57BL/5J 

mice with both the wild type muPyV (PTA) and a mutant virus carrying a small deletion 

(21nt) within the pre-miRNA hairpin region, making it a miRNA-null mutant (PTA-

dl1013). Following by a systematic characterization of the infected animals, there were 

no significant differences between the two different groups. The CD8 T cell responses 

during acute and persistent phases of muPyV infection are comparable, interferon-γ (IFN-

γ) secretion, indicative of T cells functionality, viral clearance within the spleens and 

kidneys are not statistically different and the accumulation of viral DNA in the spleens 

and kidneys of neonatal mice are similar at various time points (Sullivan et al., 2009). 

This set of observations present a very interesting conundrum – is it possible for the 

miRNAs to serve no important biological function during in vivo muPyV infection? If so, 

why did the polyomaviral miRNA evolve to autoregulation the T antigens, a function 

conserved among diverse member of the family? As suggested by the authors, 

experimental protocols on laboratory animal infections are designed and optimized for 

convenience and efficiency, not scoped to mimic the natural routes of entry, nor spread of 

the virus among individuals. Therefore, phenotypic differences between having the 

miRNAs or not can be subtle. To fully tease out the contribution by the miRNAs will 

require long-term population studies focusing on the transmission, shedding and spread 

of the muPyV. 
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Similar to the SV40, BKV and JCV miRNAs, the muPyV miRNAs mediates the 

autoregulation of the early transcripts. However, the in vivo role of this autoregulation is 

not yet established.   

 

1.4.4 Merkel Cell Polyomavirus (MCV) miRNA 

On a historical time scale, the discovery of MCV, the first cancer-causing human 

polyomavirus, is young. Yet, its discovery returned the spotlight once again onto the field 

of polyomavirus biology. Utilizing a next-generation approach, known as digital 

transcriptome subtraction (DTS), which involves in silico subtraction of human cDNA 

sequences from the tumor cDNA sequences to isolate candidate viral sequences (Feng et 

al., 2007, 2008). MCV was found to be clonally integrated into the human genome of 

Merkel Cell Carcinoma (MCC), a rare, yet aggressive form of skin cancer that is usually 

associated with poor prognosis once diagnosed (Agelli and Clegg, 2003; Hodgson, 2005). 

A compilation of epidemiology data further supported the original notion of MCV being 

the etiological agent of MCC, as approximately 70 to 80% of MCC tumors are positive 

for MCV (Arora et al., 2012; Feng et al., 2008). The discovery of MCV miRNAs 

followed a similar trajectory as the discovery of SV40, muPyV, BKV and JCV miRNAs. 

Sequences were subjected to v-miR pre-miRNA hairpin prediction, and high-scoring 

candidates were cloned into a heterologous expression vector, followed by the subsequent 

transfection and screen for miRNA expression via northern blot analysis. The screen 

resulted in the confirmation of MCV miRNA mapping to a region of the genome that was 

previously shown to encode a pre-miRNA hairpin in muPyV (Seo et al., 2009). Being 
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located antisense to the T antigen transcripts, the MCV miRNA is predicted to cleave the 

early transcripts. However, due to the lack of a replication system, the function of the 

MCV miRNA could not be readily established. To circumvent this limitation, Seo et al. 

employed a luciferase-based reporter system to confirm that the MCV miRNA is indeed 

active at directing the inhibition of the reporter gene expression, thereby strongly 

suggesting that miRNA-mediated autoregulation of the T antigen transcripts is conserved 

in MCV (Seo et al., 2009). 

The in silico prediction and subsequent in vitro confirmation of MCV miRNAs, 

and the determination of its activity on the T antigen transcripts in vitro alone provide no 

evidence that the MCV miRNAs contribute to the MCV and MCC biology. Two different 

research groups have independently established partial MCV replication systems by 

transfecting MCV DNA into human embryonic kidney 293 (HEK293) cells and shown 

that both the small T and the large T antigens of MCV are essential for DNA replication 

(Feng et al., 2011; Kwun et al., 2009, 2013; Neumann et al., 2011). MCV was also found 

to express a bona fide middle T antigen-like alternative T antigen open reading frame 

(ALTO) during MCV DNA replication, albeit with functions that are not yet determined 

(Carter et al., 2013). It will be interesting to see if the MCV miRNA is made in these 

replication systems and if the miRNA-mediated autoregulation of the T antigen 

transcripts is observable (including ALTO). The MCV biology in MCC tumors, however, 

is fundamentally different from the laboratory replication systems. In the MCV-positive 

MCC tumors, the viral genomes are clonally integrated into the tumor genome. These 

integrated MCV genomes carry mutations that result in premature truncation of the large 
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T antigen, resulting in the expression of truncated large T antigens that lack the origin 

binding and helicase domains. Therefore, these large T antigens still maintain the 

capacity to bind to the retinoblastoma tumor suppressor protein (Rb) but the capacity to 

replicate the MCV genome is eliminated (Fischer et al., 2010; Shuda et al., 2008). 

However, the MCV miRNAs are still antisense, allowing for the potential autoregulation 

of the T antigen transcripts in MCC tumors, including ALTO. In order to determine if 

miRNA-mediated autoregulation of the early transcripts is relevant to MCC biology, the 

in vivo detection of the MCV miRNA will first have to be established. An initial small 

RNA sequencing screen of 7 MCC tumor samples (3 MCV-positive and 4 MCV-

negative) performed by Lee et al. showed that the MCV miRNA is detectable in 2 out of 

3 MCV-positive tumor samples but not in the 4 MCV-negative tumor samples. 

Additional screening of 51 MCC tumor samples via quantitative reverse-transcription 

PCR (qRT-PCR) for the MCV miRNA detected the viral miRNAs in 19 out of 38 MCV-

positive MCC tumors but in none of the 13 MCV-negative tumors. These data provide a 

positive correlation between MCV DNA positivity and detecting the MCV miRNAs (Lee 

et al., 2011). However, the MCV miRNAs identified in that report contains a shift in 2nt 

at the 5’ end of the miRNA over the entire 22nt mature sequence (Lee et al., 2011), when 

compared to miRNAs generated under transfection conditions (Seo et al., 2009). The 

authors suggest that a cellular context dependent factor might account for the difference 

in mature miRNA sequences between the in silico and the in vivo determinations of the 

miRNA (Lee et al., 2011). Another possible explanation, however, is the possible biases 

introduced during the small RNA library preparation. It has been well-documented that 
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different adapter sequences can introduce variations in the frequencies of 5’ end ligation 

of small RNA species with different sequences at the 5’ end (Jayaprakash et al., 2011). 

The bias introduced at the 5’ end ligation step will then be exacerbated at the PCR 

amplification step (Dabney and Meyer, 2012; Kanagawa, 2003; Sendler et al., 2011), 

resulting in a miRNA expression profile that is not reflective of the actual abundance of 

small RNA species in vivo. 

Both the truncated large and the small T antigens of MCV have been shown to be 

transforming proteins (Cheng et al., 2013; Shuda et al., 2011), making the detection of 

MCV miRNA in MCC tumors presents a very perplexing finding – What is the biological 

significance of detecting both the MCV T antigens and the miRNAs in the same tumor 

samples? Is MCV miRNA-mediated autoregulation of the T antigen transcripts 

functionally relevant to MCC tumor biology? In light of this question, a seed sequence 

identity search revealed that the MCV 5p miRNA shares 6 out of 7 seed sequence 

identity with the cellular miRNA, hsa-miR-7-1 (miR-7), potentially mimicking its 

function (Chapter V, Chen et al., in prep). Relevant to cancer biology, evidence that 

supports a tumor-suppressive role of miR-7 (Fang et al., 2012; Kefas et al., 2008; Okuda 

et al., 2013; Reddy et al., 2008; Saydam et al., 2011; Webster et al., 2009) while 

contradicting reports also suggest the opposite (Cheng et al., 2005; Chou et al., 2010). 

Regardless of its true function, the possibility for the MCV 5p miRNA to mimic a 

cellular miRNA introduces a second layer of complexity to the MCC tumor biology and 

the potential role of MCV miRNAs in tumorigenesis. 
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1.4.5 Other polyomaviral miRNAs 

Thus far, the capacity to encode miRNAs has only been described for SV40, 

BKV, JCV, muPyV and MCV (Chen et al., 2013; Seo et al., 2008, 2009; Sullivan et al., 

2005, 2009). Our lab has shown, through small RNA deep sequencing screening of the 

remaining 9 human polyomaviruses, that only human polyomavirus 12 (HPyV12) 

encodes miRNAs (Kincaid et al., in prep, Cox et al., in prep and unpublished data). 

HPyV12 was discovered by Korup et al., from the sampling of gastrointestinal tract fluid 

and liver samples (Korup et al., 2013). The miRNAs encoded by HPyV12 are also 

located at a genomic region very similar to the muPyV and MCV miRNAs. Being 

antisense to the early transcripts, our lab has also demonstrated, via luciferase reporter 

assay, that HPyV12 miRNAs could potentially autoregulate the early transcripts. Without 

a replication system, however, it remains unclear if this mode of autoregulation is 

observable in vivo and its implication to the HPyV12 biology (Cox et al., in prep). 

One of the ongoing works in our lab involves the determination of miRNA 

encoding capacity for all members of the polyomavirus family. We first looked into 3 

non-human polyomaviruses and one raccoon polyomavirus. Using a similar in silico 

approach in the discovery of MCV miRNAs (Seo et al., 2009), the genomes of Pan 

troglodyte verus polyomavirus 1a and 2a (PtsPyV1a and 2a), Gorilla gorilla gorilla 

polyomavirus 1 (GggPyV1) and raccoon polyomavirus (RacPyV) are first subjected to v-

miR prediction of candidate pre-miRNA hairpins. Transfection studies and northern blot 

analysis confirm the presence of miRNA for PtsPyV2a, GggPyV1 and RacPyV but not 

for PtsPyV1a (Chapter IV, Chen et al., in prep). Expectedly, all 3 miRNAs are shown to 
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be capable of autoregulating the early transcripts as demonstrated by a luciferase reporter 

system. Interestingly, RacPyV is found in 20 out of 20 raccoons diagnosed with olfactory 

tract/frontal lobe brain tumors, and the fact that the large T antigen protein is detectable 

in a subset of neoplastic cells from the tumors, strongly associates RacPyV as the 

etiological agent of raccoon brain tumors (Dela Cruz et al., 2013). Based on the genomic 

location of the miRNAs, RacPyV can be classified under the muPyV-like category 

(which includes MCV). Northern blot analysis of total RNA obtained from 4 raccoon 

brain tumor samples shows that 4 out of 4 are positive for the RacPyV miRNAs (Chen et 

al., in prep). Again, the biological implication of detecting both the miRNAs and the T 

antigens in the same tumor samples is yet to be determined. Similar to the MCV 5p 

miRNA, a minor derivative of the RacPyV 5p miRNA also shares 6 out of 7 seed 

sequence identity with miR-7 as well, but the implication of this finding on RacPyV 

replication and brain tumor biology is yet to be determined. 

 

1.5 Model 

 The combined findings of polyomaviral miRNAs are in line with the following 

model for polyomaviruses. First, during lytic replication, the role of miRNA-mediated 

autoregulation of the early transcripts serves to keep the expression of the T antigens at 

an optimum level. Most of the studies presented here involved the lytic life cycle of the 

polyomavirus, which demonstrated high degree of conservation of the autoregulatory 

function of the polyomaviral miRNAs. Second, polyomaviruses establish life-long, 

persistent infections of their hosts. Therefore, regulating the early transcripts could be one 
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of the mechanisms for the maintenance of persistence. The extent of miRNAs effects is 

generally described as subtle and “rheostatic” (Gottwein et al., 2007; Lim et al., 2005; 

Samols et al., 2007), thereby reducing the emphasis for the essentiality to solely target 

cellular transcripts by a single set of viral miRNAs. This is by no means negating the 

possibility of biologically significant cellular targets for these polyomaviral miRNAs. 

Since only about 25% or fewer viral miRNAs are likely to serve as mimics of host 

miRNAs (Grundhoff and Sullivan, 2011; Kincaid and Sullivan, 2012), the polyomaviral 

miRNAs might target a niche specific selected set of cellular mRNAs in combination 

with autoregulation of the T antigens, enforce in vivo establishment of polyomaviral 

persistent infections. 

 

1.6 Concluding remarks 

 The scope of this dissertation focuses on one central theme – the discovery and 

characterization of the polyomaviral miRNAs. Viral miRNAs is an exploding and 

fascinating field that will impact the way we understand different facets of biology, 

including virology and immune evasion. The discovery of polyomaviral miRNAs, in 

particular, has brought polyomavirus biology back into the limelight. Furthermore, their 

relatively simple genetic make-up and ease of laboratory manipulation makes 

polyomaviruses the perfect tool to better understand the roles of miRNAs in 

pathogenesis.  

 The first chapter has offered a detailed history on the discovery of all 

polyomaviral miRNA, starting with the SV40 miRNAs to the most recent work on non-
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human polyomaviral miRNAs. An in depth review of works done to elucidate the 

function of each polyomaviral miRNA are also included, pointing towards at least one 

major conserved function of the miRNA – autoregulation of the T antigen transcripts.  

 The second chapter takes the focus back to the SV40 miRNAs and its 

conservation among different variants of the member. Different miRNA expression 

profiles was shown for 2 different strains of SV40, potentially allowing the different 

variantss to tolerate substantially different “targetomes”, yet at the same time, conserving 

the autoregulatory function of the miRNAs. 

 The third chapter delves into an evolutionarily divergent class of emerging DNA 

virus, also known as the virological equivalent of the “bigfoot”, the Bandicoot 

Papillomatosis Carcinomatosis Viruses (BPCVs). This chapter details the discovery of 

miRNAs in a recombinant virus that is half-polyomavirus, half-papillomavirus, further 

emphasizing the importance of miRNA-mediated autoregulation of the T antigens.  

 The fourth chapter documents the identification of miRNA in other diverse, non-

human members of the polyomavirus, both primate and non-primate. The focus then 

shifts to an interesting and recently discovered member, the raccoon polyomavirus 

(RacPyV). It is of no surprise that the miRNA-mediated autoregulation of the T antigens 

to be conserved in RacPyV as well. We also hypothesize the possibility for the 5p 

miRNAs of both the RacPyV and MCV to mimic a cellular miRNA, miR-7. 

 The fifth chapter is refocus our attention back to the SV40 miRNAs. The 

identification of miRNA-null strains of SV40 in immunocompromised monkeys provided 

us with useful insight into the impact of the SV40 miRNA on natural infections, tying it 
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back to the conserved autoregulation of the T antigens by the polyomaviral miRNA and 

its possible roles in lytic and persistent infections. 

 The sixth chapter delves into addressing the possible role of the SV40 miRNAs in 

persistent infection, by pre-expressing the 776 miRNAs in African green monkey cells, 

followed by studying the effect of miRNAs on lytic replication and establishment of 

persistent infection. 

 The seventh chapter aims to address the possibility of detecting polyomaviral 

miRNAs as a diagnostic. Here we demonstrate the detection of JCV miRNAs in 

exosomes, extracellular vesicles secreted by cells, as a potential non-invasive and more 

accurate replacement for current diagnostic of PML. 

 The objective of this dissertation work is a straightforward one – to advance our 

knowledge on the polyomaviral miRNAs. Starting with the conservation of T antigen 

autoregulation by the miRNA in SV40 and polyoma-like viruses, to the discovery of 

novel miRNAs in diverse member of the polyomavirus family and studying the impact of 

the SV40 miRNA on both the lytic and persistent infections. This collection of work 

presented here only represents a small step towards unveiling our full understanding of 

polyomaviral miRNAs. For each miRNA found, new polyomaviruses are discovered; for 

each discovery made, more questions were raised. “The gift that keeps on giving” truly is 

the perfect description for polyomaviruses. 
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CHAPTER 2 Divergent microRNA Targetomes of Closely-related 

Circulating Strains of a Polyomavirus 

 

2.1 INTRODUCTION 

miRNAs are a class of eukaryotic small RNA molecules that play a regulatory 

role in several biological processes relevant to virus infection including the immune 

response, apoptosis and tumorigenesis (Kincaid and Sullivan, 2012). Virus-encoded 

miRNAs identified from several different families, including the herpes, retro, and 

polyoma viruses, have generated much interest as potential effectors of pathogenesis. 

Over 300 viral miRNAs have been identified, yet only a small fraction have well-

understood functions (Boss et al., 2009; Gottwein and Cullen, 2008; Grundhoff and 

Sullivan, 2011; Tuddenham and Pfeffer, 2011). Unlike host miRNAs, most viral miRNAs 

are not well conserved and only ~25% or less are likely to serve as mimics or “analogs” 

of host miRNAs (Grundhoff and Sullivan, 2011; Kincaid and Sullivan, 2012).  

 

Chen, C.J., Cox, J.E., Kincaid, R.P., Martinez, A., and Sullivan, C.S. (2013). Divergent 

MicroRNA targetomes of closely related circulating strains of a polyomavirus. J. Virol. 

87, 11135–11147. 

C.J.C., G.J.S., and C.S.S. conceived the project, C.J.C., G.J.S., M.D.B. performed the 

experiments, C.J.C., R.P.K., G.J.S., M.D.B., and C.S.S. analyzed the data, and C.J.C., 

R.P.K., G.J.S., M.D.B., and C.S.S. wrote the manuscript 
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As such, identifying the most relevant targets of viral miRNAs is not straightforward. A 

valuable approach towards understanding the functions of viral miRNAs relies on high-

throughput target transcript identification (Dölken et al., 2010a; Gottwein et al., 2011; 

Grey et al., 2010; Haecker et al., 2012; Plaisance-Bonstaff and Renne, 2011; Riley et al., 

2012; Skalsky et al., 2012; Ziegelbauer et al., 2008). However, it is unlikely that all of 

these identified targets are relevant to the virus infectious cycle, thus limiting the utility 

of such approaches as stand-alone platforms for determining viral miRNA function. Here, 

we take advantage of natural variations in miRNA gene products from closely related 

virus strains, with the assumption that important miRNA target transcripts will be 

preserved throughout evolution.   

miRNAs are ~22 nucleotides long (reviewed in Bartel, 2009), and are derived 

from primary transcripts (pri-miRNA) containing hairpin precursor molecules (pre-

miRNA) (Carthew and Sontheimer, 2009; Kim et al., 2009). The pri-miRNA is cleaved 

by the double-stranded RNA-specific endonuclease Drosha to liberate the pre-miRNA 

(Lee et al., 2003; Zeng and Cullen, 2005; Zeng et al., 2004) that is then exported to the 

cytoplasm (Bohnsack, 2004; Lund et al., 2004; Yi et al., 2003). There, Dicer further 

cleaves the pre-miRNA (Bernstein et al., 2001; Hutvagner et al., 2001), and typically a 

single-stranded 22mer, enriched from one arm of the hairpin, is more abundantly retained 

in the RNA induced silencing complex (RISC). The other less abundant strand is 

sometimes referred to as the “star” strand or “passenger” strand (Bartel, 2009). The 5’ 

end of the 22mer, referred to as the “seed” region (nucleotides 2-8), is especially 

important for mRNA target binding and typically binds with perfect complementarity to 
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the 3’ untranslated (UTR) region of the target transcript (Lim et al., 2005). Most miRNA-

targeted transcripts display impaired translation followed by subsequent increased 

turnover (Bazzini et al., 2012), which can manifest as an overall decreased steady-state 

level of the targets (Lim et al., 2005; Samols et al., 2007). In addition, although rare for 

most animal miRNAs, some plant and viral miRNAs can bind with perfect 

complementarity (all ~22 nucleotides) to their targets and direct “siRNA-like” cleavage 

resulting in robust decreases in the steady state levels of the targeted transcripts. 

The polyomaviruses are a family of small, circular, double-stranded DNA circular 

genome viruses. Most polyomaviruses are thought to take up lifelong infections of their 

hosts, albeit the mechanisms for how this occurs are poorly understood. In addition, 

polyomaviruses can undergo robust lytic infection. There are currently 12 known human 

polyomaviruses, of which at least four: Merkel Cell Polyomavirus (MCPyV), 

Trichodysplasia Spinulosa Polyomavirus (TSPyV), BK Virus (BKPyV), and JC Virus 

(JCPyV) are associated with serious disease in immunosuppressed humans (Dalianis and 

Hirsch, 2013; DeCaprio and Garcea, 2013; Feltkamp et al., 2012; Kazem et al., 2013; 

Spurgeon and Lambert, 2013). Simian Vacuolating Virus 40 (SV40), a prototypic 

polyomavirus, undergoes lytic infection in cultured African green monkey cells and as 

such has been a valuable laboratory model for polyomavirus infection (Cole, 1996). We 

have previously demonstrated that several members of the Polyomaviridae (SV40, BKV, 

JCV, Simian Agent 12 (SA12), murine polyomavirus (muPyV) and Merkel Cell 

Polyomavirus (MCPyV)) express miRNAs that lie antisense to the early transcripts and 

possess the ability to cleave these transcripts via an siRNA-like mechanism (Cantalupo et 
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al., 2005; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009). The conserved nature of this 

mode of autoregulation amongst divergent polyomaviruses implies importance. However, 

at least three observations could suggest otherwise. First, the degree of regulation 

imparted by the miRNA is partial. That is, at least in the laboratory models of lytic 

infection(Sullivan et al., 2005, 2009), a high fraction (~50%) of intact early transcripts 

remains uncleaved by the viral miRNA-RISC (Sullivan et al., 2005, 2009). Second, a host 

target has been reported for the JCV star strand miRNA (Bauman et al., 2011). Third, our 

unpublished data suggest that at least some strains of polyomavirus likely do not encode 

miRNAs (Cox and Sullivan, unpublished). Therefore, it remains to be determined if 

autoregulation of the antisense early transcripts is truly important in the polyomaviral 

lifecycle. 

Here, we address the question of whether polyomaviral miRNA-mediated 

autoregulation of the early transcripts is a relevant activity, or rather results as an off 

consequence of the genomic location of the polyoma miRNAs (antisense and therefore 

necessarily perfectly complementary to the early transcripts). We screened all 63 

deposited fully-sequenced isolates of SV40 for possible variations in their pre-miRNAs 

and derivative miRNAs. We uncovered 17 different classes of pre-miRNA primary 

sequence variants, some of which result in different miRNA products. We identified a 

naturally-circulating variant virus (RI257) that generates derivative miRNAs– all 

possessing different seeds than the miRNA derivatives from the majority of SV40 

isolates. We show that, as would be predicted from the altered seed repertoires, the 

reference strain 776 miRNAs target a different repertoire of host transcripts than RI257. 
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However, strikingly, the RI257 miRNAs efficiently autoregulate early transcript levels to 

a similar degree as strain 776. These results underscore the likely importance of SV40 

miRNA-mediated autoregulation of viral gene expression. Furthermore, this work 

demonstrates that highly similar viruses can tolerate substantial variability in their 

miRNA targetomes. 
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2.2 RESULTS 

 

2.2.1 Identification of 17 classes of sequence variants in the SV40 pre-miRNA 

genomic region.  

Polyomaviruses are common human pathogens that can be associated with cancer 

and other serious diseases in immunosuppressed patients (Dalianis and Hirsch, 2013; 

DeCaprio and Garcea, 2013; Feltkamp et al., 2012; Kazem et al., 2013; Spurgeon and 

Lambert, 2013). We have previously identified several different animal and human 

polyomaviruses that produce miRNAs capable of autoregulating early viral gene 

expression (Cantalupo et al., 2005; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009). 

Whether this function is beneficial to polyomavirus biology remains unknown. The fact 

that this mode of gene regulation is conserved amongst diverse polyomaviruses implies 

importance. However, it is also possible that targeting numerous host transcripts is a key 

function of these miRNAs. Teasing out the relevant importance of these two non-

mutually-exclusive models is complicated by the fact that no variations in the miRNA 

seed sequences have been reported in different strains of the same virus. Such variants 

could allow prioritization of the most relevant targets since even single nucleotide 

changes in the seed can direct a different efficiency of activity and spectrum of target 

transcripts (van Dongen et al., 2008; Fedorov, 2006; Grimson et al., 2007; Jackson, 

2006). Presumably, only important targets, host or viral, will be preserved amongst the 



 45 

variant viruses. Therefore, we first set out to identify isolates of the same virus species 

that give rise to variant derivative miRNAs.  

Our strategy to identify miRNA seed variants of the same species is outlined in 

Figure 2.1A. SV40 is one of the best-studied polyomaviruses with the full genomes of 63 

different isolates deposited in Genbank. Therefore, we focused on SV40. We first 

identified all deposited strains that possess nucleotide variation in the general pre-miRNA 

region of the genome. Because flanking regions can affect the processing of pre-miRNAs 

(Zeng and Cullen, 2005), we defined our region of interest as containing the predicted 

hairpin stem-loop structure plus an additional 10 nucleotides on either side of the hairpin 

(nucleotides 2764 – 2881 in the 776 reference strain). From the 63 isolates examined, we 

identified 17 different classes that contain at least a single nucleotide change in the pre-

miRNA and/or nearby flanking regions (Figure 2.1B). Most classes contained only one or 

two nucleotide substitutions, or larger duplications or insertions that were not predicted to 

dramatically alter the secondary structure of the pre-miRNAs. One notable exception was 

strain RI257 that contains 22 individual nucleotide changes (Figure 2.1B) but nonetheless 

preserves a high-scoring predicted pre-miRNA structure (VmiR analysis (Grundhoff, 

2006), data not shown). Thus, we identified 17 different classes of SV40 strains that 

could possibly give rise to altered miRNA derivatives. 
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Figure 2.1 
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Figure 2.1 Sequence alignment of 63 deposited SV40 genome sequences 
reveals 17 classes of variants in the pre-miRNA genomic region.  
(A) Experimental workflow for identification of unique pre-miRNA variants of SV40. 63 
fully sequenced SV40 genomes were aligned and this resulted in 17 classes of variants in 
the pre-miRNA genomic region. The 17 pre-miRNA genomic regions were synthesized 
and cloned into pcDNA3.1neo. 293T cells were transfected with the expression vectors. 
RNA was harvested for high-resolution northern blot analysis and next generation 
sequencing. (B) Sequence alignment of the 17 classes of variants in the pre-miRNA 
genomic region. Each class was numbered from 1 to 17, and the strain names were 
indicated as well (* indicates the strains that were mentioned in this study). Polymorphic 
bases are highlighted: A in red, T in green, C in purple and G in yellow. The pre-miRNA 
genomic region of 776 was used as the reference strain in the alignment process and the 
corresponding 776 pre-miRNA genomic location is numbered at the 5’ and 3’ end of the 
alignment. The 5p (black) and 3p (blue) miRNA derivatives are underlined and indicated 
by the arrows. 
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2.2.2 RI257: A variant SV40 strain with altered pre-miRNA processing and a different 

seed repertoire.  

As an initial screen for identifying derivative miRNA variants, we conducted 

high-resolution northern blot analysis (Koscianska et al., 2011) of the 17 different classes 

of SV40 pre-miRNA and miRNA derivatives. We synthesized the genomic regions 

encompassing each pre-miRNA sequence variant and engineered expression vectors for a 

single strain that was representative of each of the 17 classes of sequence variants (Figure 

2.1). We transfected cells, harvested total RNA, and conducted high-resolution 

denaturing polyacrylamide gel electrophoresis. Blots were then probed with radioactive 

oligonucleotides. These results showed that 14 of the 17 representative strains displayed a 

band pattern similar to the reference strain 776. Consistent with previous low-resolution 

northern analysis (Sullivan et al., 2005), multiple miRNA derivatives are observed for the 

776-like miRNAs. These include a preponderance of 3p arm derivatives that migrate 

predominantly as a doublet (Figure 2.2A, lanes 1-13 and 776). Additionally, a minor 

proportion of the total derivatives arises from the 5p arm and migrates as a doublet. This 

pattern is identical to what we observed for 776-infected cells (data not shown), 

demonstrating that the transfection assay gives rise to biologically-relevant processed 

miRNA products. Interestingly, 3 strains displayed an altered miRNA migration pattern. 

These include strains MC-028846B (Figure 2.2A, lane 14), K661 (Figure 2.2A, lane 15) 

and RI257, (Figure 2.2A, lane RI257). MC-028846B was discovered as a contaminant in 

a lot of poliovaccine manufactured in 1955 (Rizzo et al., 1999). Like 776, MC-028846B 

produces a predominant 3p derivative, however, unlike 776, it migrates as predominantly 
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a single band. Sequencing of the MC-028846B miRNA demonstrated a seed sequence 

that is identical to the faster migrating miRNA of 776 (Figure 2.2A, lane 14 and lane 776, 

and data not shown), and therefore we did not pursue this variant further. K661 (Forsman 

et al., 2004; Lednicky et al., 1998) appears to make very little detectable miRNA 

derivatives, which suggests that low-miRNA-producing strains, or even null strains, can 

arise in some contexts. As such, K661 will be the subject of a separate publication and is 

not further discussed here. Of all the strains, RI257 is unique in that it produces an 

abundant, slow-migrating 5p derivative as well as a single 3p derivative (Figure 2.2A, top 

panel, lane "RI257"). We quantified the relative distribution of 5p and 3p derivatives 

relative to the pre-miRNA for each strain (Figure 2.2B and data not shown. The 

quantification was performed on the representative Northern blot image shown in Figure 

2.2A). The vast majority of total miRNA derivatives arise from the 3p arm for all strains 

except RI257. Strikingly, although RI257 produces about ~43% of total viral miRNAs 

from the 3P arm, the majority of derivatives (~57%) arise from the 5p arm. Given the 

unique properties of its miRNA derivatives, we focused our efforts on RI257.  
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Figure 2.2 Strain RI257 produces a pre-miRNA variant whose predominant 
derivative switches to the 5p miRNA arm.  
(A) High-resolution Northern blot analysis reveals RI257 produces a pre-miRNA variant 
whose predominant derivative switches to the 5p miRNA. 293T cells were transfected 
with expression vectors of the 17 classes of pre-miRNA variants. Total RNA was 
harvested for high-resolution Northern blot analysis. The top panel represents the 5p 
probe and the bottom panel represents the 3p probe. The strains mentioned in this study 
are indicated by the strain names, otherwise, they were labeled with their corresponding 
numbers from Figure 2.1. The bands corresponding to the pre-miRNA (white 
arrowheads) or the 5p (black arrowhead) and 3p miRNAs (gray arrowhead) are indicated. 
As a loading control, ethidium bromide-stained low-molecular-weight RNA is shown in 
the bottom panel. (B) Graphical representation of the switch in predominant derivatives 
to the 5p miRNA for RI257. The band signals from the high-resolution Northern blot 
analysis were quantified and plotted in a bar graph format. The x-axis indicates the 776 
and RI257 strains and the y-axis indicates the expression of the 5p (black bars) and 3p 
miRNAs (gray bars) as a percentage (%) of the sum of the band signals from both the 5p 
and the 3p miRNAs.  
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   The aberrant slow migration and the “switch” to 5p dominance of the RI257 

miRNA derivatives suggests the possibility that RI257 gives rise to different miRNA 

seeds. To test this in an infectious context, we first had to engineer a virus that makes the 

RI257 miRNA derivatives. To study the effects of varying only the pre-miRNA region, 

we generated a recombinant virus in the genetic background of the reference strain 776 

with the pre-miRNA region replaced by the corresponding genomic region of RI257. We 

named this recombinant virus “RI257-MIR”. RI257-MIR produces high titer stocks and 

displays growth kinetics highly similar to 776 (data not shown). Northern blot analysis 

confirmed identical banding patterns for the miRNA derivatives from the infected cells as 

was observed in the transfected cells (data not shown). We infected cells with RI257-

MIR or 776 and harvested total RNA at 40 hpi. Next, the RNA was size-fractionated to 

isolate RNAs that encompass the pre-miRNA and miRNA size classes. We generated 

cDNA libraries from these small RNAs and conducted next generation deep sequencing 

(Figure 2.3). We note that read counts from next generation sequencing are not 

necessarily linearly quantifiable due to intrinsic biases in small RNA library generation 

(Hafner et al., 2011; Jayaprakash et al., 2011; Linsen et al., 2009; Sorefan et al., 2012; 

Sun et al., 2011; Willenbrock et al., 2009). Nonetheless, consistent with the Northern blot 

analysis, the sequencing reads demonstrated 2 major products for RI257 (a 5p and 3p 

derivative) and two major products for 776 (two different 3p derivatives). This analysis 

demonstrated that the two major miRNA derivatives from RI257 (the 5p and 3p 

derivatives) both possess seeds that differ from 776 (Figure 2.3). As would be predicted 

from its aberrant migration in the northern blot analysis (Figure 2.2A), the RI257 5p 
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miRNA seed differs substantially from its 776 5p counterpart, with 3 of the 7 nucleotides 

altered. 776 produces two 3p derivatives, one that is 21 nucleotides long and more 

abundant (776-3pS) and one that is 22 nucleotides long (776-3pL). The RI257 3p 

derivative seed differs most substantially from the most abundant 776-3pS, with 5 of the 

7 nucleotides altered and by 1 nucleotide from the less abundant 776-3pL seed. Thus, in 

addition to the altered ratios of 5p and 3p derivatives, RI257 also produces miRNA 

derivatives with a different seed repertoire than 776. 
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Figure 2.3 Strain RI257 miRNAs have a unique seed composition compared to 
other SV40 isolates produces a 5p dominant arm and possess a novel seed. 
Coverage plot of the deep sequencing reads from 776 and RI257-MIR infected BSC-40. 
The number of reads that mapped to the 776 (A) and RI257 (B) genomes are plotted on 
the y-axes. The x-axes indicate either the 776 or the RI257 genomic position. For better 
visualization of peak separation, an enlarged inset containing the pre-miRNA region 
(200bp, gray dotted lines) is shown (top panels). The start counts of each miRNA are 
indicated by the black bars and the coverage is represented by the gray filled area. The 
776 strain produces 2 dominant 3p arms (black, dashed arrows) but RI257 produces 
robust amount of both the 5p (black, solid arrow) and 3p (black, dashed arrow) arms, 
with a 5p dominance. The miRNA sequences are indicated above the plots, with the seed 
sequences represented in bold and underlined.
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2.2.3 SV40 strains RI257 and 776 possess divergent miRNA targetomes. 

Previous studies demonstrate that even a single nucleotide change in a miRNA 

seed region can dramatically alter which transcripts are targeted (Baek et al., 2008; 

Bartel, 2009; Hafner et al., 2010; Lewis et al., 2005; Selbach et al., 2008). Therefore, we 

sought to determine if, as would be predicted, that the RI257 miRNAs possess a different 

target repertoire. BSC-40 African green monkey kidney epithelial cells were infected 

with a control miRNA null mutant virus “SM” (Sullivan et al., 2005), RI257-MIR, or 776 

and total RNA was harvested at 44hpi. Biotinylated cRNA was generated from total RNA 

and microarray expression analysis was conducted. Lim et al. previously demonstrated 

that a sizable fraction of miRNA target transcripts display subtle decreases in steady state 

levels upon expression of the miRNA (Lim et al., 2005). It has been estimated that ~60% 

of miRNA regulation occurs through perfect seed complementarity binding to the target 

and many of these interactions map to the 3’ UTR (Bartel, 2009; Zisoulis et al., 2010). 

The African green monkey genome is not yet released, however, a sampling of 10 

different orthologs shows that the 3’ portion of these genes share ~94% identity with 

human and rhesus macaque genes (Spindel et al., 2005). Since the African green monkey 

3'UTRome is not yet annotated, we utilized the human annotation of 3’ UTRs (Genome 

Reference Consortium Human Build 37 patch release 10 (GRCh37.p10)(Flicek et al., 

2012)). We identified likely target transcripts as those that were reduced by 40% or more 

at the steady state level (reduced transcripts). Plotting the number of individual reduced 

transcripts whose 3’ UTRs contain one or more copies of each possible heptamer (of 

16384 total) identified a clear “signature” of seed complementarity, thus confirming the 
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validity of using the human 3' UTR annotations. Transcripts containing the 776-3pL and 

776-3pS seed complements were the first and second, respectively, most represented in 

776-infected cells (n =22 of 117 total). Conversely, transcripts containing the RI257-5p 

and RI257-3p were the first and second, respectively, most represented in RI257-infected 

cells (n =26 of 409). This result is consistent with the increased abundance of RI257 5p 

derivatives relative to 776. Additionally, this analysis showed that the specific miRNA 

seed complement heptamers from the relevant infecting virus exceed all other possible 

16384 heptamers (n= 15-17 transcripts per relevant complementary heptamer versus the 

overall median of 4 or less transcripts for all heptamers), arguing that our approach is 

truly identifying some bona fide targets of these viral miRNAs. 

We next determined if the miRNA target transcripts are different between the 

RI257 and 776-infected cells. Only 3 out of 26 total putative RI257 target transcripts 

overlap with the 22 putative 776 target targets (Figure 2.4A). From this analysis, 

consistent with what would be predicted from having different seed repertoires, we 

conclude that a sizable fraction of host transcripts targeted by viral miRNAs from the 

RI257 and 776 strains are different.  

To test whether similar results would be obtained in a different cellular context, 

we utilized human embryonic kidney cells (HEK293T). Cells were co-transfected with a 

plasmid expressing the relevant miRNA and plasmid expressing EGFP to mark 

transfected cells. Cells were sorted based on EGFP levels to enrich for transfected cells. 

We harvested total RNA from these cells and analyzed a portion via northern blot, and 

subjected the remainder to microarray expression analysis. Northern blot analysis 
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confirmed enrichment for miRNA-expressing cells (data not shown). When comparing 

either RI257 or 776 miRNA-transfected cells to the negative control BPCV1 miRNA-

transfected cells, we observed a distinct “seed complement” signature of “top hits” in 

host mRNAs specific to each viral miRNA at the > 40% reduction cutoff (Figure 2.4B). 

This analysis reveals just 1 of 24 total putative RI257 targets overlap with 1 of 19 total 

putative 776 targets. Consistent with the infection data (Figure 2.4A), these data suggest 

that RI257 and 776 miRNAs possess different targetomes.   
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Figure 2.4 Different miRNA target repertoires for SV40 strains 776 and RI257. 
(A) BSC-40 cells were infected with 776 (top panel) or RI257-MIR (bottom panel), total 
RNA from 44hpi were reverse transcribed to cDNA and subjected to microarray analysis. 
All possible combinations of heptameric sequences are plotted on the x-axis, the number 
of transcripts containing each corresponding seed complements is plotted on the y-axis. 
The number of transcripts containing the 776-3pL (red), 776-3pS (purple), RI257-5p 
(green) and RI257-3p (blue) seed complements are indicated. The sum of numbers of 
transcripts downregulated by 40% or more is indicated by “n”. The white arrowhead 
marks the enriched peak for each plot. The median number of transcripts for each 
heptamer is indicated by the dashed line (776=2.29, RI257=2.498). (B) 293T cells were 
transfected with 776 (top panel) or RI257 miRNAs (bottom panel) expression vectors, 
total RNA from 48 hours post transfected cells were subjected to the same microarray 
analysis as described above. 
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Combined, our microarray analysis identified only 4 host transcripts that are 

possibly regulated by both the 776 and RI257 miRNAs. Luciferase reporter analysis 

showed that only the 3' UTR of one of these, DUSP8, is regulated by both the 776 and 

RI257 miRNAs (Figure 2.5D). Because all four of these 3' UTRs have an above average 

length (2081nt versus an average of 800 nucleotides for all annotated human 3' UTRs 

(Mignone et al., 2002), see Tables S3 and S4), it is possible that our target identification 

assay is biased towards false positives for longer 3' UTRs. Irrespective, our DUSP8 3' 

reporter results suggest that a minority of host targets can be shared in common between 

the RI257 and 776 miRNAs.  

We considered the possibility that the RI257 and 776 miRNAs have different 

targets but effect the same pathways. However, functional classification of gene lists 

from both our transfection and infection studies (DAVID Bioinformatics Resources 6.7 

(Huang et al., 2008, 2009)) did not reveal any significant common functional groups 

(data not shown). We note that our approach likely underestimates the repertoire of 

possible targets. To minimize false positives, we applied a high stringency cutoff (40% 

reduction) and furthermore, our approach would miss those targets whose binding is not 

dependent on perfect seed complementarity docking in the 3’UTR. Therefore, it remains 

possible that some important shared host transcripts or pathways are targeted by both 

RI257 and 776 miRNAs. Nonetheless, our data clearly suggest that many host transcripts 

are uniquely targeted by 776 or RI257. 

We next determined if some of the putative RI257-specific and 776-specific 

targets are indeed directly and specifically regulated via their 3' UTRs by each respective 
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miRNA. We generated 3’ UTR reporter constructs for five of the candidate targets 

identified from the transfection study (two 776-specific and three RI257-specific). As 

expected, none of the five reporters were regulated by both the 776 and RI257 miRNAs 

(Tables S3 and S4). One of the 776 targets, archain 1 (ARCN1), and all three of the 

RI257 targets (ACTN4, C1orf86 and C9orf140) scored positive for specific negative 

regulation (Tables S3 and S4 and data not shown). For two of the targets, ARCN1 and 

C9orf140, we also generated negative control mutant reporters altering two nucleotides in 

each of the seed complementary regions (Figure 2.5A). These mutant 3'UTR reporters 

were at least partially refractory to SV40 miRNA regulation, thereby demonstrating that 

this regulation is direct (Figure 2.5B, C). Importantly, the ARCN1 3' UTR reporter was 

only significantly regulated by the 776 miRNA and conversely the C9orf140 was only 

significantly negatively regulated by the RI257 miRNA (Figure 2.5B, C). These results 

demonstrate that closely related strains of the same virus can have different direct 

miRNA targets.  
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Figure 2.5 Luciferase reporter assays confirm unique 776 or RI257 miRNA 
host targets.  
(A) Diagram of the 3’ UTRs of ARCN1 (776 unique target) and C9orf140 (RI257 unique 
target). The vectors consist of a Renilla luciferase reporter upstream of a single copy of 
an approximately 1kB fragment of the 3’ UTR of ARCN1 or C9orf140 (WT). The seed 
complements in the 3’ UTRs are underlined and base pairings between the 3’ UTRs and 
the miRNAs are indicated by vertical lines. The nucleotide changes in the seed mutant 3’ 
UTR reporter (Mut) are indicated in bold and italicized. (B, C) The reporters from panel 
A were co-transfected with firefly luciferase expression vector individually into 293T 
cells, and the Renilla luciferase readings were normalized to the readings from the firefly 
luciferase (FF. Luc) and plotted (y-axis). The x-axis indicates the different Renilla 
luciferase (R. Luc) reporter constructs. The plasmids expressing either the 776 or the 
RI257 miRNAs are indicated by the gray and the black graphs respectively. As a negative 
control, empty expression vector was used and indicated by the white bars. (D) The 
Renilla luciferase reporter containing the 3’ UTRs from two of the predicted 776 and the 
RI257 miRNAs overlapping target transcripts, EID2B and DUSP8, were co-transfected 
with firefly luciferase expression vector individually into 293T cells. The bar graphs were 
constructed as in figures 2.5B and C. P values are computed using Student’s t test. “***” 
indicates P < 0.0001, “**” indicates P < 0.001, “*” indicates P < 0.05. 
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2.2.4 SV40 strain RI257 autoregulates early mRNA expression similar to strain 776.  

As is true with all known polyomaviral miRNAs, both 776 and RI257 miRNAs lie 

antisense to the early transcripts. Therefore, as has previously been shown for 776, the 

RI257 miRNAs would be predicted to negatively regulate the early transcripts via an 

“siRNA-like” cleavage mechanism to some degree. However, it has been shown that 

siRNAs with different seed compositions can have major differences in the efficiency 

with which their target transcripts are cleaved (Haley and Zamore, 2004; Harborth et al., 

2003; Holen et al., 2002; Reynolds et al., 2004; Schwarz et al., 2006). We determined the 

efficiency of miRNA-mediated cleavage of early transcripts in 776 versus RI257-MIR-

infected cells. BSC-40 African Green Monkey kidney epithelial cells were infected and 

total RNA was harvested. Next, northern blot analysis was performed and the proportion 

of miRNA-mediated 3’ early mRNA cleavage fragments relative to full-length early 

mRNA was determined. As previously demonstrated (Sullivan et al., 2005), the control 

miRNA mutant SM virus produced no detectable early mRNA cleavage fragments, while 

infection with 776 produced readily-detectable amounts (Figure 2.6A). Importantly, 

infection with RI257-MIR also resulted in early mRNA cleavage, suggesting that the 

RI257 miRNA mediates cleavage similar to the 776 miRNA. Quantification of the ratio 

of cleaved early mRNA fragment:full-length mRNA bands demonstrated that both the 

776 and RI257 miRNAs display robust activity with ~50% of total early mRNA being 

cleaved by 60hpi (Figure 2.6B). Thus, despite having different seeds, the 776 and RI257 

miRNAs mediate comparable degrees of autoregulation of the SV40 early mRNAs. 
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Figure 2.6 SV40 strain RI257 autoregulates early mRNA expression similar to 
the reference strain 776.  
(A) Northern blot analysis of early mRNA cleavage. BSC-40 cells were either mock 
infected, infected with 776, miRNA mutant virus SM, or RI257-MIR at an MOI of 10. 
Total RNA harvested from 12, 36 and 60hpi was subjected to Northern blot analysis. A 
pool of 5 probes were designed to recognize the 3’ cleavage fragment of the SV40 early 
mRNA. The uncleaved SV40 early mRNA is indicated by the black arrowhead, and the 
SV40 early cleavage fragment is indicated by the white arrowhead. The 3.0kb and 0.2kb 
RNA marker positions are marked on the left hand side of the blot. As a load control, the 
ethidium bromide-stained 5s rRNA band is shown in the bottom panel. (B) A graphical 
representation of the progression of SV40 early mRNA cleavage as a percentage. The 
band signals from the Northern blot analysis were quantified and plotted in a bar graph 
format. The x-axis indicates the hours post infection and the y-axis indicates the amount 
of early mRNA cleavage for 776 (triangle) and RI257-MIR (square) as a percentage (%) 
of the total amount of early mRNAs (both cleaved and uncleaved).  
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2.2.5 Unlike 776, RI257 autoregulates early mRNA expression through both 5p and 

3p miRNA-mediated cleavage.  

Previously, both the 5p and 3p 776 miRNAs were shown via RNase protection 

mapping to be able to direct cleavage of the early mRNAs (Sullivan et al., 2005). 

However, our results demonstrating that the majority of 776 miRNAs derive from the 3p 

arm of the pre-miRNA predict that this arm of the 776 miRNAs should be more active in 

directing this mode of autoregulation. Conversely, RI257 expresses robust level of both 

the 5p and 3p arms of the pre-miRNA (Figure 2.2A and 3). This might suggest that the 3p 

miRNA is not the only active arm, but rather that the 5p arm of the pre-miRNA is active 

as well. However, the efficiencies of miRNA/siRNA-mediated cleavage can vary 

depending on sequence composition (Haley and Zamore, 2004; Harborth et al., 2003; 

Holen et al., 2002; Reynolds et al., 2004; Schwarz et al., 2006). To determine if both the 

5p and 3p miRNAs direct cleavage of 776 and RI257 early mRNAs, a modified RACE 

protocol was utilized. This protocol enriches for and maps the 5’ ends of miRNA-

mediated cleavage fragments. Consistent with the previously published RNase protection 

assays (Sullivan et al., 2005), early cleavage fragments mapping opposite the miRNA at 

approximately the 10th nucleotide position (the “scissile phosphate” (Hornstein et al., 

2005; Yekta et al., 2004a) (previously shown to be a hallmark of miRNA-mediated 

cleavage (Barth et al., 2007; Seo et al., 2008; Sullivan et al., 2009)) showed that both the 

5p and 3p SV40 miRNAs are active in 776-infected cells, albeit the majority of clones 

(14/15) mapped opposite to the 3p miRNA derivatives (Figure 2.7A). In contrast, all 

clones (15/15) for RI257 map opposite the 5p miRNA. Because RACE could be subject 
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to inherent cloning biases, these results do not rule out that the RI257 3p miRNAs are 

active at directing early mRNA cleavage, but they do establish that the 5p miRNA of 

RI257 is effective at directing early mRNA cleavage. To assess these apparent 

differences between the 776 3p and RI257 5p-dominant effects in a more quantitative 

fashion, we developed a luciferase reporter assay (Figure 2.7B). For this assay, two 

reporters were created; one that can indicate cleavage mediated by the 776 and/or RI257 

5p miRNAs, and one that can indicate cleavage by the 776 and/or RI257 3p miRNAs. 

Co-transfection of these reporters with a negative control MCPyV miRNA showed no 

effect (Figure 2.7C). Similarly, co-transfection of either the 776 or RI257 miRNA 

expression vector had no effect on the negative control vector 3’ UTR reporter. However, 

co-transfection of either the RI257 or 776 miRNA-expressing vector demonstrated the 

ability to negatively regulate both the 5p and 3p reporters. Importantly, we observed a 

substantially greater effect for the 776 miRNA on the 3p reporter over the 5p reporter 

(90% reduction versus 35% reduction). Conversely, a greater effect for RI257 was 

observed on the 5p reporter over the 3p reporter (83% reduction versus a 76% reduction). 

Remarkably, these results demonstrate that although near-identical fractions of the 776 

and RI257 early mRNAs are cleaved in infected cells (Figure 2.7C), the individual 

cleavage events comprising this regulation are mediated more so by the 3p miRNA 

derivatives for 776 and the 5p miRNA derivatives for RI257. 
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Figure 2.7
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Figure 2.7 RI257 predominantly autoregulates early mRNA expression 
through 5p miRNA-mediated cleavage.  
(A) 5’ RACE analysis maps the cleavage of the early mRNA by the RI257 5p miRNA. 
The early transcript is indicated by the long black arrow (going from left to right), the 5p 
(black arrow) and 3p (gray arrow) miRNAs (going from right to left) are shown below 
the early transcript. The cleavage sites mediated by the 5p miRNA (black arrowheads) 
and the 3p miRNA (gray arrowheads) are shown above the early transcript. The cleavage 
position is indicated as “10th” and “11th” nucleotide position starting from the 5’ end of 
the miRNAs. The number of 5’ RACE clones that mapped to the respective cleavage 
sites are indicated beside the arrowheads. (B) Diagram of a luciferase reporter construct 
with the concatamerized 3’ UTR containing either two 5p miRNA binding sites or two 3p 
miRNA binding sites each from both 776 and RI257 (4 binding sites total per reporter). 
The vector consists of the same Renilla luciferase reporter as described in Figure 2.5. (C) 
RI257 autoregulates early mRNA expression predominantly through the 5p miRNA. The 
reporters from panel B were co-transfected with firefly luciferase expression vector 
individually into 293 cells, and the Renilla luciferase readings were normalized to the 
readings from the firefly luciferase (FF. Luc) and plotted (y-axis). The x-axis indicates 
the different Renilla luciferase (R. Luc) reporter constructs. The plasmids expressing 
either the 776 miRNAs (776) or the RI257 miRNAs (RI257) are indicated by the gray 
and black bars respectively. As a negative control, empty expression vector (empty) was 
used and indicated by the white bars. To show specificity of the 776 and the RI257 
miRNA on the reporters, a Renilla luciferase reporter construct carrying MCV miRNA 
binding sites in the 3’ UTR (Seo et al., 2009) was used as a negative control. 
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2.3 Discussion 

There are over three hundred virus-encoded miRNAs that are known, each with 

the potential to regulate hundreds of transcripts (Cullen, 2011; Grundhoff and Sullivan, 

2011; Kincaid and Sullivan, 2012). Many miRNAs derive from viruses of relevance to 

human health, including those from the herpes and polyoma virus families. Additionally, 

considering recent studies demonstrating that experimentally derived RNA viruses 

(Langlois et al., 2011; Varble et al., 2010) and some natural retroviruses (Kincaid et al., 

2012) can generate robust miRNA levels, it seems likely that numerous additional viral 

miRNAs await discovery. Despite much progress in identifying new viral miRNAs, few 

have well understood functions. A major advance in understanding miRNA function 

occurred with the observation that some miRNA targets display subtle decreases in 

steady levels upon miRNA binding (Gottwein et al., 2007; Lim et al., 2005; Samols et al., 

2007) thereby making target identification amenable to high throughput detection 

methods. In addition, recent high throughput positive enrichment strategies either with 

(Gottwein et al., 2011; Haecker et al., 2012; Riley et al., 2012; Skalsky et al., 2012) or 

without crosslinking (Dölken et al., 2010a) have shown much success in identifying viral 

miRNA target transcripts associated with protein components of the silencing machinery. 

However, it remains unclear what fraction of these targets are important during the 

infectious cycle. 

Here we present data that further emphasize the importance of viral miRNA-

mediated autoregulation of polyomavirus early transcripts. Our approach is to identify 

closely related strains of viruses that possess different seed repertoires. Since the seed 
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region plays a major role in dictating target interactions, variants with different seed 

repertoires would be expected to have different miRNA targets. This approach assumes 

that targets (host or viral) preserved throughout evolution will be important; while the 

less relevant, or possibly “niche specific” targets will be unique to each strain. Using this 

approach for SV40, we identify a class of circulating variants, typified by RI257, which 

differ substantially from other classes of SV40 miRNAs. Unlike 776, in which the vast 

majority of miRNAs are derived from the 3p arm of the pre-miRNA, RI257 gives rise to 

abundant miRNAs detectable from both arms. In addition, both the 5p and 3p RI257 

miRNA derivatives possess different seed sequences than 776. We show that, as would 

be predicted by the different seeds, 776 and RI257 miRNAs have some targets unique to 

each respective virus. While this clearly demonstrates that some miRNA targets are 

unique to each strain, it remains to be addressed if these unique targets play any role in 

the polyomavirus lifecycle.  

As RI257 has been isolated independently in different geographical regions 

(Fagrouch et al., 2011), we conclude that RI257-like viruses are circulating in the wild. 

Thus, the different repertoires of host targets for 776 and RI257 miRNAs demonstrate 

that wild circulating strains of SV40 can tolerate different “targetomes” (Figure 2.4). 

These data suggest that some viral miRNA targets may be of little selective advantage to 

the virus. This is consistent with the notion that some viral miRNA targets could be 

neutral or even disadvantageous to the virus, as long as the sum total of regulation 

imparted by the targets is of sufficient benefit (Kincaid and Sullivan, 2012). Here, we 

present data only for some targets of SV40 in cultured cells, and it remains to be seen if 
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this applies in vivo or to viruses other than members of the Polyomaviridae. However, in 

light of our findings, a note of caution is warranted as to meaningfulness of viral miRNA 

targets identified via high throughput studies in the absence of secondary criteria.  

Our study reveals at least one important miRNA target common to both 776 and 

RI257– the early viral mRNAs. Strikingly, despite being mediated predominantly by 

different miRNA derivatives (the 5p miRNA for RI257 and the 3p for 776), and via 

different seed repertoires, the cleavage efficiency of the early mRNAs (~50%) is 

approximately equal for both strains (Figure 6B). This suggests evolutionary pressure to 

maintain a consistent level of this mode of autoregulation. This finding is especially 

noteworthy given the variance in cleavage efficiency that can be associated with siRNAs 

of different sequence (Haley and Zamore, 2004; Harborth et al., 2003; Holen et al., 2002; 

Reynolds et al., 2004; Schwarz et al., 2006). Our results do not rule out important roles 

for select host targets. On the contrary, we speculate that targeting select host transcripts 

may be an essential function of the polyomaviral miRNAs during persistent infection 

(discussed below, Figure 2.8). However, combined with previous studies on other 

polyomaviruses and polyoma-like viruses (Cantalupo et al., 2005; Chen et al., 2011; Seo 

et al., 2008, 2009; Sullivan et al., 2005, 2009), our findings underscore the likely 

importance of miRNA-mediated autoregulation of viral early transcripts in the 

polyomavirus lifecycle. 
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2.4 Model 

 This work establishes that closely related viruses can tolerate different repertoires 

of miRNA targets. The reason why such similar viruses can have different miRNA 

targets is unknown. We propose at least two non-mutually exclusive explanations could 

account for this: First, although these viruses are closely related and fully infectious in 

the same host (Rhesus Macaques), it is possible that these viruses occupy different 

niches. In this scenario, miRNAs could be considered drivers of evolution (e.g., altered 

tissue tropism), perhaps even contributing to the process of viral speciation (Kincaid and 

Sullivan, 2012). Second, any particular individual miRNA target could be of no selective 

advantage to the virus, as long as the sum total of regulation imparted by the miRNA on 

other transcripts is advantageous (Kincaid and Sullivan, 2012). Both of these models may 

be relevant to other virus families in addition to the Polyomaviridae.  

Combined with previous published studies (Cantalupo et al., 2005; Chen et al., 

2011; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009), the findings from this study are 

consistent with the following model for polyomaviruses: First, the striking consistency 

between RI257 and 776 of the fraction of early transcripts that are subject to miRNA-

mediated cleavage implies that maintaining an optimal degree of this regulation provides 

a selective advantage. Since these results were obtained during lytic infection, we 

propose that one function of the SV40 miRNA could be to optimize the abundance of 

early mRNAs and/or early proteins during lytic infection (or at minimum to avoid 

excessive cleavage of the early transcripts). Second, a non-mutually exclusive model is 

for a role of the miRNA during persistent infection (Broekema and Imperiale, 2013; 
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Grundhoff and Sullivan, 2011; Kincaid and Sullivan, 2012). Although the mechanisms 

are poorly defined, SV40 and other polyomaviruses establish long-term persistent 

infections in vivo. Clearly, negatively regulating early gene transcripts could be a way to 

enforce persistence, akin to the role that has been proposed for some herpesviral miRNAs 

(Dölken et al., 2010b; Kincaid and Sullivan, 2012; Murphy et al., 2008). Indeed, a recent 

report from Brokema and Imperiale for the BK human polyomavirus is consistent with 

this notion (Broekema and Imperiale, 2013). Furthermore, considering the robust changes 

in host gene expression associated with lytic infection (Chandriani and Ganem, 2007; 

Ebrahimi, 2003; Marcinowski et al., 2012; Marquitz et al., 2012; Poole et al., 2002) 

compared to the generally more subtle degree of regulation imparted by miRNAs, it 

seems likely that viral miRNA regulation of select host targets may be most relevant 

during persistent infection. In this model, viral miRNA targeting of the early transcripts 

and select host transcripts plays a role in promoting and/or reinforcing persistent 

infection. This could occur analogous to some herpesviral miRNAs, in which host targets 

are associated with increased cell viability, immune evasion and indirectly negatively 

regulating viral lytic genes (Kincaid and Sullivan, 2012; Lei et al., 2010; Murphy et al., 

2008). Clearly, such models await future testing in relevant persistent models of 

polyomavirus infection.  

In conclusion, a surprising degree of plasticity in miRNA targets can be tolerated 

by closely related viruses, yet at the same time, the capacity to regulate common viral 

transcripts is maintained. This work not only advances our understanding of the 
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polyomaviruses, but may be applicable to other type of viruses that utilize miRNAs in 

their infectious cycles.
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Figure 2.8 Model for the roles of SV40 miRNAs during different replication cycles.  
During lytic infection, the SV40 miRNAs serve to optimize the level of early viral transcripts and/or early viral proteins in the 
infected cells (left panel). In another non-mutually exclusive model, the SV40 miRNAs could aid in the establishment and or 
maintenance of persistent infection, by negatively regulating both the early viral transcripts and select host transcripts.
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2.5 MATERIALS AND METHODS 

 

2.5.1 SV40 sequence analysis and alignment.  

63 unique SV40 complete genome sequences were aligned based on a ~120bp 

region encompassing the pre-miRNA, using the Geneious software (Biomatters, New 

Zealand).  

 

2.5.2 Cell culture and RNA isolation.  

Human embryonic kidney (HEK) cells 293 and 293T, African green monkey 

kidney epithelial cells BSC-40, and African green monkey kidney fibroblast cells COS-7, 

were obtained from the American Type Culture Collection (Manassa, VA). All cells were 

maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine 

serum (Life Technologies, New York). Total RNA was harvested using an in-house PIG-

B solution as described previously (Chen et al., 2011; Lin et al., 2010; Seo et al., 2008; 

Weber et al., 1998).  

 

2.5.3 Vector construction, transfection, and High-resolution northern blot analysis.  

All DNA vector constructs were confirmed by sequence analysis through the 

Institute of Cellular and Molecular Biology Sequencing Facility at the University of 

Texas at Austin. The primers used in the construction of the 17 representative SV40 
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microRNA expression vectors are listed. Briefly, the primers are annealed and filled-in 

using Phusion High-Fidelity DNA Polymerase (New England BioLabs, Massachusetts) 

according to the manufacturer’s protocol. The PCR products are cloned into the 

KpnI/XhoI sites of the pcDNA3.1neo expression vector. 

293T cells were plated in 6-well plates and transfected using the Lipofectamine 2000 

transfection reagent (Life Technologies) according to the manufacturer’s instruction. 

293T cells were also transfected with empty pcDNA3.1neo vector as a negative control. 

Total RNA was harvested at 48 hours post-transfection and subjected to a modified 

version of high-resolution Northern blot analysis (Koscianska et al., 2011). Briefly, 30 

micrograms of total RNA was separated on a Tris-borate-EDTA-Urea-15% 

polyacrylamide gel. The bromophenol blue marker was allowed to migrate 30cm along 

the length of the gel. The RNA was transferred into an Amersham Hybond N+ membrane 

(GE Healthcare, Pennsylvania) and probed for miRNA as previously described 

(Grundhoff, 2006). Quantification of the band signals was performed using the Quantity 

One software (Bio-Rad, California) The probe sequences used were as follows: 776-5p 

probe, CAAGGCTCATTTCAGGC; Ri257-5p probe, CAACGCACATTTCAGTC; MC-

028846B-5p probe, CAAAGCTCATTTCAGGC; SV40-3p probe, 

CTCAGGGCATGAAACAGGC.  

 

2.5.4 Construction of the RI257-MIR virus.  

To generate the RI257-MIR chimeric virus, overlapping PCR was used to 

generate 2 fragments joined together via a linker, using Phusion High-Fidelity DNA 
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Polymerase (New England BioLabs). The resulting fragment was inserted into the 

NheI/BstXI sites of the pSVB3 vector, to generate pRI257-MIR. The RI257-MIR 

chimeric virus was produced as described previously (Kraus and Mertz, 2001). Briefly, 

pRI257-MIR was digested with BamHI, followed by intramolecular ligation of the viral 

DNA. The ligation reaction was transfected into BSC-40 and amplified. The primers used 

were as follows: Liner primer: 

GACTGTGAAGATTCGGGGGACTGAAATGTGCGTTGTGATTGTGAGTCAACGC

CTGTTTCATGCCCTGAGTCTTCTAGGTTGTC; Fragment 1 forward primer, 

TATCGTCCATTCCGACAG; Fragment 1 reverse primer, 

CACATTTCAGTCCCCCGAATCTTCACAGTCTGTTTATGATCACAATCAACCAT

ATCACATTTGTAAAGGTTTTACTTGCTTTAAAAAACC; Fragment 2 forward 

primer, 

TGTTTCATGCCCTGAGTCTTCTAGGTTGTCATTCCCCGCCTGTTTTTCCTGCAC

ATTTTCCTCCTCAGCATCATCATCACTGTTTCTTAG; Fragment 2 reverse primer, 

ACTGCAAACAATGGCCTG.    

 

2.5.5 5’ rapid amplification of cDNA ends (RACE) analysis to map the cleavage site of 

early transcripts.  

BSC-40 cells were seeded in T25 tissue culture flask and infected with 776 or the 

RI257-MIR virus at an MOI of 10 as described (SV40 protocol book). Total RNA was 

harvested at 60 hours post infection (hpi) as described above. The total RNA was further 

purified using the Oligotex mRNA Mini Kit (Qiagen, California) according to the 
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manufacturer’s protocol. 5’ RACE was performed using FirstChoice RLM-RACE Kit 

(Life Technologies) according to manufacturer’s protocol. Reverse transcription reaction 

was performed using SuperScript III (Life Technologies) according to the manufacturer’s 

protocol. The reverse transcribed cDNA was subjected to RNaseH (Life Technologies) 

treatment at 37°C for 20 minutes. 1 microliter of the reverse transcription product was 

used as the template for the first round of nested PCR using Taq DNA Polymerase (New 

England BioLabs). 1 microliter of the first round PCR reaction was then used in the 

second round of nested PCR using Taq DNA Polymerase. The PCR products from both 

rounds were TA cloned into pCR2.1-TOPO using the TOPO TA Cloning Kit (Life 

Technologies) according to the manufacturer’s protocol. A combined 15 clones from 

each infection sample were sequence analyzed through he Institute of Cellular and 

Molecular Biology Sequencing Facility at the University of Texas at Austin. The primers 

used were as follows: reverse transcription primer, 

GCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGT; 5’ RACE first round 

PCR forward primer, GCTGATGGCGATGAATGAACACTG; 5' RACE first round 

reverse primer, TAACAACAACAATTGCATTCATTTTATGTTTCAGGTTC; 5’ RACE 

second round PCR forward primer, 

CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG; 5’ RACE second round PCR 

reverse primer, AGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAAC.     
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2.5.6 Luciferase assays.  

The cellular 3’ UTR reporters were constructed by cloning fragments of the 

corresponding genomic regions of the targets from 293T genomic DNA using the primers 

listed. Briefly, the PCR products are generated using KOD Hot Start DNA Polymerase 

(EMD Millipore, Massachusetts) according to the manufacturer’s protocol, and cloned 

into the pcDNA3.1dsRluc vector, which expressed a destabilized version of Renilla 

luciferase. The ARCN1 seed mutant reporter contains engineered point mutations at the 

fourth and fifth nucleotides complementary to the 5’ end of the 776-3pL miRNA. The 

C9orf140 seed mutant reporter contains engineered point mutations at the second and 

third nucleotides complementary to the 5’ end of the RI257-5p miRNA. The seed mutant 

reporters were constructed by using the corresponding wild type reporter as template for 

site-directed mutagenesis using PfuUltra II Fusion HS DNA Polymerase (Agilent 

Technologies, California), according to the manufacturer’s protocol. 293T cells were 

plated in 24-well plates and transfected using the TurboFect transfection reagent (Thermo 

Scientific, Pennsylvania) according to the manufacturer’s protocol. Cells were 

transfectetd with the reporter and the miRNA expression vector. 293T cells were also 

transfected with the empty reporter as a negative control. The pcDNA3.1Luc2CP vector 

was also cotransfected to normalize for transfection efficiency. Cells were collected 24 

hours posttransfection and analyzed with the Dual-Luciferase reporter assay system 

(Promega, Wisconsin) according to the manufacturer’s instruction. The luciferase 

readings were collected using a Luminoskan Ascent microplate luminometer (Thermo 
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Scientific). Results from the Renilla luciferase were normalized to the firefly luciferase 

readings, and the ratios were plotted as a bar graph to the empty vector control.  

The 776/RI257 5p miRNA perfect-match reporter contains 2 miRNA binding 

sites that are perfectly complementary to the 776-5p miRNA and 2 miRNA binding sites 

that are perfectly complementary to the RI257-5p miRNA. The 776/RI257 3p miRNA 

perfect-match reporter is likewise, except with perfect-match to the 3p miRNAs. The 

reporters were generated by first annealing synthesized oligonucleotides carrying the 

miRNA sites, followed by PCR amplification and addition of restriction sites at both 

ends, using Phusion High-Fidelity DNA Polymerase (New England BioLabs). The PCR 

products were cloned into the pcDNA3.1dsRluc vector via the XhoI/XbaI sites. The dual-

luciferase assay was performed in 293 cells as described above. 293 cells were also 

transfected with the reporters along with the MCV miRNA expression vector as a 

negative control. As a second negative control, the MCV miRNA reporter containing 

binding sites that are perfectly complementary tot the MCV miRNA was transfected as 

well. The primers used were as follows: 5p reporter forward oligonucleotide, 

CCCAAGGCTCATTTCAGGCCCCTCAGTCCTGTCCCCAAGGCTCATTTCAGGCC

CCTCAGTCCTGTGATCACAACGC; 5p reporter reverse oligonucleotide, 

GATTCGGGGGACTGAAATGTGCGTTGTGATGAGGATTCGGGGGACTGAAATG

TGCGTTGTGATCACAGGACTGTGG; 5p reporter forward primer, 

ATCGCTCGAGCCCAAGGCTCATTTCAGGCCCCTCAGTCCTGTC; 5p reporter 

reverse primer, 

ATCGTCTAGAGATTCGGGGGACTGAAATGTGCGTTGTGATGAG; 3p reporter 
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forward oligonucleotide, 

GGAAGACTCAGGGCATGAAACAGGCATTGAGTCGGAAGACTCAGGGCATGA

AACAGGCATTGAGTGGAAGACTCAG; 3p reporter reverse oligonucleotide, 

GTCAACGCCTGTTTCATGCCCTGAGTCTTCGAGGTCAACGCCTGTTTCATGCC

CTGAGTCTTCCACTCAATGCCTG; 3p reporter forward primer, 

ATCGCTCGCGGGAAGACTCAGGGCATGAAACAGGCATTGAGTC, 3p reporter 

reverse primer, ATCGTCTAGAGTCAACGCCTGTTTCATGCCCTGAGTCTTCGAG.    

 

2.5.7 SV40 infections.  

BSC-40 cells were seeded in 6-well plates. The cells were infected with either 

776, a miRNA null mutant “SM” (Sullivan et al., 2005)  and the RI257-MIR virus at an 

MOI of 10 when the cells were freshly confluent. The media from the plates were 

aspirated and 500μL of virus inoculum was used per well. The plates were rocked back-

and-forth every 15 minutes for 2 hours at 37°C (Tremblay et al., 2001). The virus 

inoculum was replaced with DMEM with 2%FBS. The titers of all 3 viruses are ~1.0 x 

108 pfu/mL. The viruses were titered using a modified version of the protocol (Drayman 

et al., 2010). Briefly, BSC-40 cells were seeded in 6-well plates and infected with serially 

diluted 776, SM or RI257-MIR as described above. The infected cells were collected by 

trypsinization and fixed in 4% paraformaldehyde in PBS for 20 minutes at 37°C. The 

fixed cells were then permeabilized using 3%BSA in PBS with 0.1% Triton-X-100 at 

room temperature for 10 minutes. The cells were washed with PBS and stained for large 

T antigen using the pAb416 antibodies (kindly provided by Dr. Jim Pipas, University of 
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Pittsburgh) for 1 hour at room temperature. The cells were then washed 3 times with 

PBS, followed by secondary antibody incubation with AlexaFluor 488 goat anti-mouse 

(Life Technologies) for 1 hour at room temperature. The cells were washed 3 times with 

PBS and analyzed using a BD LSRFortessa Cell Analyzer (BD Biosciences, California).     

 

2.5.8 Small RNA library generation and computational analysis of sequencing reads.  

BSC-40 cells were seeded in T75 tissue culture flask and infected with either 776 

or RI257-MIR at an MOI of 10 as described above. Total RNA from 776 and RI257-MIR 

infected BSC-40 was harvested at 40hpi. 200 micrograms of total RNA was gel 

fractionated to isolate small RNAs. The small RNAs from 776 infection was subjected to 

SOLiD sequencing as previously described (Chen et al., 2011; Lin et al., 2010). The 

small RNAs from RI257-MIR infection was subjected to Illumina sequencing as 

described (Burgos et al., 2013).  

 

2.5.9 Fluorescence-activated cell sorting and microarray analysis.  

293T cells were seeded in 10cm dishes and transfected with either empty 

pcDNA3.1neo vector, BPCV1 miRNA expression vector, 776 miRNA expression vector 

or RI257 miRNA expression vector using X-tremeGENE 9 transfection reagent (Roche, 

Indiana). pEGFP vector that expresses an enhanced version of the green fluorescent 

protein (GFP) were co-transfected as a transfection control. Cells were trypsinized at 48 

hours posttransfection and sorted based on the GFP signal. Cell sorting was performed by 
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the Institute of Cellular and Molecular Biology FACS facility at the University of Texas 

at Austin. Total RNA was harvested from the GFP-positive sorted fraction. 10 

micrograms of the total RNA was treated with DNase (Qiagen) followed by purification 

using the RNeasy MinElute Cleanup Kit (Qiagen) according to the manufacturer’s 

instructions. RNA integrity was verified on a 1.0% denaturing MOPS-formaldehyde-

agarose gel electrophoresis. The purified RNA was used as a template to make biotin 

labeled cRNA using an Illumina TotalPrep RNA Amplification Kit (Ambion) according 

to the manufacturer's guidelines. Labeled cRNA was precipitated overnight with 

isopropanol and sodium acetate. Biotinylated cRNA is hybridized to Illumina HumanHT-

12 v4.0 microArray chips at the KECK Institute (Yale University) according to Illumina's 

protocols. Quality control and data analysis were carried out according to the instructions 

provided by Illumina. 

BSC-40 cells were seeded in T25 tissue culture flask and infected with 776 or the 

RI257-MIR virus at an MOI of 10 as described above. Total RNA was harvested at 

44hpi. RNA purification and microarray analysis were performed as described above. 

DAVID functional annotation clustering analysis was performed at the highest stringency 

setting using the online-based software (DAVID Bioinformatics Resources 6.7 (Huang et 

al., 2008, 2009)).  

 

2.5.10 Northern blot analysis of cleavage fragments of early transcripts.  

BSC-40 cells were seeded in T25 tissue culture flask and infected with 776 or the 

RI257-MIR virus at an MOI of 10 as described above. Total RNA was harvested at 12, 
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36 and 60hpi as described above. 2 micrograms of total RNA was subjected to 1.25% 

denaturing MOPS-formaldehyde-agarose gel electrophoresis as described (Molecular 

Cloning manual, third edition chapter 7). The RNA was transferred onto Nytran SPC 

nylon transfer membrane (Whatman, New Jersey) using the TurboBlotter System 

(Whatman) according to the manufacturer’s instructions. The membrane was probed for 

the cleavage fragment of viral early transcripts in ExpressHyb hybridization solution 

(Clontech, California) at 45°C. Quantification of the band signals was performed using 

the Quantity One software (Bio-Rad). The probe sequences used were as follows: SV40 

Early 3p cleavage probe 1, 

GAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATT; probe 2, 

GCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGT; probe 3, 

TAACAACAACAATTGCATTCATTTTATGTTTCAGGTTC; probe 4, 

AGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAAC; probe 5, 

CTCTACAAATGTGGTATGGCTGATTATGATCATGAACA. 
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CHAPTER 3 Insights into Polyomaviridae microRNA function 

derived from the study of the bandicoot papillomatosis 

carcinomatosis viruses 

 

3.1 INTRODUCTION 

microRNAs (miRNAs) are small, approximately 22 nucleotide regulatory RNA 

molecules that have been shown to play an important role in numerous fields, including 

virology and immunology (reviewed in Bartel, 2009; Boss and Renne, 2010; Sullivan, 

2008; Taganov et al., 2007). Virus-encoded miRNAs have been identified that target viral 

or host transcripts (Skalsky and Cullen, 2010; Sullivan and Cullen, 2009).  In some cases, 

mutant viruses defective for miRNA production have been shown to have altered 

activities of obvious relevance to virus infection.  

 

 

Chen, C.J., Kincaid, R.P., Seo, G.J., Bennett, M.D., and Sullivan, C.S. (2011). Insights 

into Polyomaviridae MicroRNA Function Derived from Study of the Bandicoot 

Papillomatosis Carcinomatosis Viruses. J. Virol. 85, 4487–4500. 

C.J.C., J.E.C., and C.S.S. conceived the project, C.J.C., J.E.C., and A.M. performed the 

experiments, C.J.C., J.E.C., R.P.K., and C.S.S. analyzed the data, and C.J.C., J.E.C., and 

C.S.S. wrote the manuscript.  



 85 

Some activities associated with virus-encoded miRNAs include evasion of the innate 

immune response (Stern-Ginossar et al., 2007) and controlling the switch from latent to 

lytic infection (Lei et al., 2010; Lu et al., 2010). Thus, miRNAs represent a strategy used 

by several different virus families for optimizing their infectious life cycle. 

miRNA biogenesis has been reviewed in depth see (Carthew and Sontheimer, 

2009; Kim, 2005). In brief, miRNAs are derived from longer primary transcripts (pri-

miRNAs) that contain a hairpin structure called a precursor miRNA (pre-miRNA). The 

nuclear endonuclease Drosha “liberates” the hairpin pre-miRNA (Lee et al., 2003; Zeng 

et al., 2004), which is then exported to the cytoplasm and further processed into the 22 

nucleotide form by the Dicer endonuclease (Bernstein et al., 2001; Hutvagner et al., 

2001). This final miRNA product is stabilized within the cytoplasmic multi-protein RNA 

induced silencing complex (RISC) (Hammond et al., 2000). RISC-bound miRNAs 

associate with mRNA target transcripts, typically by binding to the 3’ untranslated (UTR) 

region with imperfect complementarity (Bartel, 2009). This results in inhibition of 

protein production and the indirect nucleolytic turnover of the targeted transcripts. 

However, though rare in animals, miRNAs encoded by plants and some viruses can also 

bind to target mRNAs with perfect complementarity and direct a specific, RISC-mediated 

endonucleolytic cleavage of that targeted transcript. Typically, this cleavage occurs in the 

coding portion of the transcript. In this mode, miRNAs act via a mechanism that is 

indistinguishable from small interfering RNA (siRNA)-directed transcript cleavage 

(Carthew and Sontheimer, 2009).  
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Polyomaviruses are small, non-enveloped viruses that contain double-stranded 

circular DNA genomes of approximately 5 kilobase pairs (kb), and have been identified 

from various avian and placental mammalian hosts (reviewed in Cole, 1996; Imperiale 

and Major, 2007). We have previously shown that several members of the 

Polyomaviridae, including three human pathogens, encode miRNAs that lie antisense to 

and with perfect complementarity to the early transcripts (Cantalupo et al., 2005; Seo et 

al., 2008, 2009; Sullivan et al., 2005, 2009). The early transcripts give rise to the tumor 

antigen proteins (T antigens). These immunogenic proteins perform various cell cycle 

regulatory and other functions to initiate and carry out viral genome replication. We have 

identified miRNAs from human host viruses: JC virus (JCV) (Seo et al., 2008), BK virus 

(BKV) (Seo et al., 2008), and Merkel cell carcinoma-associated polyomavirus (MCV) 

(Seo et al., 2009); old world monkey host viruses: SA12 (Cantalupo et al., 2005) and 

simian virus 40 (SV40) (Sullivan et al., 2005), as well as the murine polyomavirus 

(muPyV) (Sullivan et al., 2009). In all cases, these miRNAs lie antisense to the early 

transcripts, albeit their position within the genome can vary by thousands of nucleotides. 

Analysis of early transcripts and proteins, as well as chimeric reporters, confirm that 

these miRNAs can direct siRNA-like cleavage of the early T antigen proteins.  This can 

result in a reduction in early protein levels in cell culture models of lytic infection 

(Sullivan et al., 2005, 2009), and thus represents a form of viral autoregulation of gene 

expression.  

The fact that such evolutionarily divergent members of the Polyomaviridae all 

encode autoregulatory miRNAs underscores the likely importance of this mode of gene 
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expression control. However, there are several observations that make the importance of 

this regulation unclear. First, it is possible that some polyomaviruses might not encode 

miRNAs. For example, computational prediction using the Vmir software package 

(Cantalupo et al., 2005; Grundhoff et al., 2006; Sullivan and Grundhoff, 2007) fails to 

identify strong pre-miRNA candidates from the WU virus (unpublished observations). 

Second, the degree of negative regulation imparted on the early gene products is only 

partial; abundant early protein levels are detectable at late times of lytic infection with 

wild type virus, and inhibition of these miRNAs leads to only minor (a few fold or less) 

increases in early protein levels (Seo et al., 2008; Sullivan et al., 2005, 2009). Third, lytic 

infection of cultured cells with mutant SV40 or muPyV viruses (that are defective for 

miRNA production), shows similar kinetics and virus yields when compared to infection 

with wild type viruses (Sullivan et al., 2005, 2009). Finally, acute in vivo infection of 

mice with the miRNA mutant muPyV shows virus yields that are similar to wild type 

virus (Sullivan et al., 2009). In summary, the conserved autoregulatory activity of the 

polyomavirus miRNAs implies importance, however, numerous observations (as 

discussed above) make the degree and context of this importance unresolved.    

To better understand polyoma virus miRNA function, we sought to determine if 

an evolutionarily distant group of viruses that retain some features of the Polyomaviridae 

might also encode miRNAs and employ similar modes of gene regulation. Bandicoot 

papillomatosis carcinomatosis virus types 1 and 2 (BPCV1 and BPCV2) comprise a 

fascinating group of marsupial viruses that share distinct characteristics of both the 

Polyomaviridae and Papillomaviridae (Bennett et al., 2008a; Woolford et al., 2007).  The 
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BPCV viruses encode T antigen early proteins, and have a genomic organization similar 

to polyomaviruses. Like all polyomaviruses, the BPCV genomes consist of an origin 

flanked with promoters of opposing orientation that encode for either the early regulatory 

or late structural gene products. However, the size of the BPCV genome and the genes 

encoding the late proteins (L1 and L2), are most similar to the papillomaviruses. It has 

been theorized that the BPCVs are derived from an ancient co-infection recombination 

event between a polyomavirus and papillomavirus (Bennett et al., 2010). 

Bandicoots comprise a genus of small to medium-sized omnivorous marsupials. 

BPCV1 infects western barred bandicoots (Perameles bougainville), an endangered 

species whose only remaining natural range is on Bernier and Dorre Islands in Western 

Australia.  Infection with BPCV1 is associated with an often fatal papillomatosis and 

carcinomatosis disease that is endemic amongst the western barred bandicoots and has 

therefore hindered repopulation efforts (Woolford et al., 2009). BPCV2 is a related virus 

that was isolated from a papillomatous lesion from a southern brown bandicoot (Isoodon 

obesulus) (Bennett et al., 2008a). BPCV1 and 2 display the hallmarks of a common 

evolutionary ancestor, possessing similar genomic organizations and gene products, and 

are ~85% identical at the nucleotide sequence. Here, we show that both BPCV1 and 2 

encode evolutionarily conserved miRNAs that bind to and negatively regulate transcripts 

containing the 3’ UTR of the large T antigen transcripts. This novel mechanism of T 

antigen regulation lends strong support to the importance of miRNA- mediated 

autoregulation in the polyoma and polyoma-like viruses.  
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3.2 RESULTS 

 

3.2.1 Discovery of a BPCV1-encoded miRNA. 

To identify miRNAs encoded by BPCV1, we sub-cloned the entire viral genome 

downstream of a heterologous CMV promoter. Two different vectors were created, each 

designed to drive expression of transcripts from either the early or late orientations 

(pBPCV1-Early and pBPCV1-Late) (Fig. 1A). Next, we transfected human embryonic 

kidney cells (293T) with either vector, and then isolated total RNA. The RNA was size-

fractionated to isolate small RNAs (between ~10 – 70 nucleotides in length), which were 

then subjected to next generation sequencing via the massively parallel SOLiD platform. 

Analysis of the pBPCV1-Early and pBPCV1-Late sequencing results showed 39,390 and 

82,208 reads, respectively, that mapped perfectly to the BPCV1 genome. Surprisingly, 

the vast majority of the reads from both the pBPCV1-Early and pBPCV1-Late-

transfected samples mapped to a single 22 nucleotide RNA encoded in the late 

(papilloma-like) orientation at nucleotides 4963 – 4984. This region of the genome lies 

within the second non-coding region (NCR2) that is located in between the 3’ ends of the 

T antigens and L1/L2. (Fig. 1B). Although the distribution of reads from both samples 

was surprisingly similar, we confirmed that the sequencing reads were obtained from 

correct transfection events, since we were able to isolate a few reads that spanned the 

junctions of the plasmid vector backbone and the viral genome (data not shown). The 

relative abundance and size of this small RNA suggested it as a good candidate miRNA. 
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We then analyzed the genomic region surrounding this abundant 22 nucleotide 

RNA and predicted the secondary structure (Fig. 1C). This analysis revealed a predicted 

hairpin structure that possesses features common to many pre-miRNAs including a low 

∆G of -41.20kcal/mol, and a long stem portion (>30 nucleotides) with few large 

asymmetrical bulges. The abundant 22 nucleotide RNA maps to the top portion of the 3 

prime arm of the stem portion of the predicted hairpin (Fig. 1C, indicated in bold). These 

results suggest that the abundant 22 nucleotide RNA could be a miRNA derived from this 

hairpin pre-miRNA. Upon closer inspection of the sequencing reads, we observed 

additional evidence consistent with miRNA production. First, we observed an enrichment 

in 35mer reads (the maximum read length of our library) starting at position 4934 – 4936 

with the highest number of reads in both samples at position 4934. These full-length 

reads are consistent with being derived from the 5’ end of the predicted pre-miRNA 

hairpin structure. Second, we observed a small number of 21 – 23 nucleotide reads with 

5’ start sites co-terminal with the full length reads that mapped to the 5’ arm of the 

predicted hairpin stem, consistent with it being a passenger strand derivative of a putative 

pre-miRNA (typically, processing of a pre-miRNA yields one abundant derivative, the 

“guide strand miRNA”, and a less abundant derivative from the other arm of the stem 

called the “*star strand” or “passenger strand” miRNA). Combined, these results strongly 

suggested that we had identified a pre-miRNA (and its derivatives) that are encoded by 

BPCV1.  

To confirm the authenticity of this candidate miRNA, we conducted Northern blot 

analysis using several different probes (diagrammed in Fig. 1C). When probing with a 
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radiolabeled oligonucleotide that is perfectly complementary to the abundant 22 

nucleotide RNA, we observe a prominent band migrating at 22 nucleotides (Fig. 1F). In 

addition, we see a fainter band migrating at approximately 60 nucleotides that is 

consistent with a pre-miRNA (Fig. 1F). Next, we probed for the other, less abundant 

strand and observed a banding pattern completely consistent with it being a passenger 

strand RNA. Note that there are bands present at ~22 nucleotides and ~60 nucleotides, 

but that the ratio of the smaller band to the larger band is much lower than when probing 

for the guide strand derivative (Fig. 1D). We utilized two negative control probes, one 

designed to recognize the loop portion of the pre-miRNA (which should not be processed 

into a stable, smaller ~22 nt RNA), and one designed to a flanking region just outside the 

predicted hairpin region. As expected, the “loop” probe detected a band consistent with 

the pre-miRNA but did not detect any bands migrating at ~22 nucleotides (Fig. 1E). The 

negative control “flank” probe did not detect any specific bands (Fig. 1G). These results 

strongly suggest that the ~22 and ~60 nucleotide bands we detect are not due to non-

specific degradation or siRNA generation, since in either of these scenarios flanking 

genomic regions should also produce detectable small RNAs. Thus, we conclude we have 

identified a bona fide BPCV1-encoded miRNA, and according to the conventions of 

miRBase (Griffith-Jones et al. 2006), name it “BPCV1-miR-B1”. 
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Figure 3.1



 93 

Figure 3.1 BPCV1 encodes a microRNA.  
(A) The BPCV1 genome was cloned into a heterologous expression vector in either the 
early or the late orientations. pBPCV1-Early and pBPCV1-Late were transfected and 48 
hours post transfection, small RNAs were size fractionated and subjected to ABI SOLiD 
sequencing.  Corresponding reads were mapped to the BPCV1 genome. Arrow indicates 
the SalI restriction site used to sub-clone the viral genome (B) Coverage plot of deep 
sequencing reads. The frequency of reads that mapped to the BPCV1 genome from the 
early and late expression vectors are plotted (log2 scale) on the y-axis. The x-axis 
indicates BPCV1 genomic position. Each graph is divided into an early orientation (top, 
rightward arrow) and a late orientation (bottom, leftward arrow) as indicated on the right 
side of the figure. The coverage plot revealed abundant reads in both the early and the 
late expression vector samples. The majority of the reads mapped a 22-nt RNA in the late 
orientation, nucleotide position 4963 – 4984, located in the second non-coding region 
(NCR2). The gray angled arrowheads indicate the high-scoring peaks (C) Predicted 
secondary structure of the BPCV1 pre-miRNA and the associated probes designed to 
verify the deep sequencing reads. The 3p miRNA is shown in bold. (D – G) Northern blot 
analysis confirms the expression of BPCV1-miR-B1. Probes were designed to recognize 
the 5p miRNA (D), terminal loop (E) and 3p miRNA (F). An additional downstream 
flanking probe (flank, not diagrammed in figure C) was used as a negative control (G). 
Both the 5p and the 3p miRNAs were readily detectable, with the 3p miRNA the most 
abundant. As a loading control, ethidium bromide-stained low-molecular weight RNA is 
shown in the bottom panels. The bands corresponding to the pre-miRNA (gray 
arrowhead) or the 5p and 3p miRNAs (black arrowhead) are indicated.  
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3.2.2 Evolutionary conservation of the BPCV1 miRNA 

BPCV2 is the only other known virus closely related to BPCV1, possessing ~85% 

nucleotide identity and a similar genomic organization. An alignment of both genomes 

shows that the region spanning the pre-miRNA shares 89.5% (153 / 171 nucleotide) 

identity (data not shown). These data imply a high likelihood that BPCV2 would encode 

a miRNA homologous to BPCV1-miR-B1. To test this notion, we first utilized a 

bioinformatic approach using the Vmir miRNA prediction software (Grundhoff et al., 

2006; Sullivan and Grundhoff, 2007; Sullivan et al., 2005). This analysis showed the 

BPCV1-pre-miR-B1 scored as the fifth highest candidate in the late orientation and the 

eleventh highest scoring overall candidate (Fig. 2A, top panel and data not shown). 

Interestingly, this analysis showed that an analogous region of the genome in BPCV2 

predicted a candidate pre-miRNA that scored even higher as the best candidate in the late 

orientation and the second best overall candidate (Fig. 2B, top panel, and data not 

shown). Notably, this predicted hairpin encompasses a 22 nucleotide stretch that is 100% 

conserved with the BPCV1 miRNA (Fig. 2 A, B, bottom panels, indicated in bold). To 

test if this high-scoring candidate miRNA is actually made by transcripts derived from 

the BPCV2 genome, we sub-cloned the entire BPCV2 NCR2 behind a chimeric 

promoter, transfected cells, and harvested total RNA. Northern blot analysis of this RNA 

confirms that BPCV2 encodes a homologous miRNA to BPCV1 (Fig. 2C). Accordingly, 

we name this miRNA “BPCV2-miR-B1”. 
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Figure 3.2
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Figure 3.2 BPCV miRNAs are evolutionarily conserved.   
(A and B) Vmir predictions for BPCV1 and BPCV2 pre-miRNAs. The top panels show 
the Vmir predicted pre-miRNA candidates from BPCV1 and BPCV2. The y-axis 
indicates the Vmir scores of the candidate pre-miRNAs. The x-axis indicates the genomic 
position for BPCV1 and BPCV2 respectively. Candidate pre-miRNAs of the late 
orientation for both BPCV1 and BPCV2 are indicated by triangles. The verified BPCV1-
miR-B1 and BPCV2-miR-B1 are marked with a circle. The secondary structure 
predictions for BPCV1 and BPCV2 pre-miRNAs are shown below each Vmir plot. The 
sequences of 3p miRNAs are indicated in bold. (C) Northern blot analysis confirms 
BPCV2 encodes a miRNA. The analysis was performed as described in the figure legend 
for Figure 3.1. 
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3.2.3 Biogenesis of BPCV1-miR-B1. 

 
As described above, we obtained numerous sequencing reads for BPCV1-miR-B1 

irrespective of whether the RNA was harvested from cells transfected with the early or 

the late orientation expression vectors. Furthermore, Northern blot analysis readily 

identifies the miRNA from both constructs (Fig. 1C). Our ability to detect the miRNA 

from the early orientation construct implies an intrinsic robust promoter activity is 

present in the late (papillomavirus) orientation of the BPCV genome that drives 

expression of BPCV1-miR-B1. Since both the BPCV miRNAs are found within NCR2, 

and this region is not predicted to encode any proteins (Bennett et al., 2008a; Woolford et 

al., 2007) we speculated that it may serve as a cassette that contains a promoter to drive 

expression of the primary transcripts that give rise to the BPCV miRNAs. To test this 

hypothesis, we first subjected the NCR2 sequences from both BPCV1 and BPCV2 to 

bioinformatic analysis (Reese, 2001) to identify candidate promoter regions (Table 1). 

The highest ranked candidate promoter regions for both BPCV1 (nt 4769-4818) and 

BPCV2 (nt 4745-4794) were found to be located in similar genomic locations, 

approximately 60 nucleotides upstream of each respective BPCV pre-miRNA. Both of 

these candidate promoters contain a putative TATA box (Table 1). A sequence alignment 

between the NCR2 of BPCV1 and BPCV2 revealed that despite having only 73.9% 

(Bennett et al., 2008a) sequence identity in this region, the pre-miRNA and putative 

promoter regions are highly conserved (~90%, 187 / 211 nucleotide) (Fig. 3A), implying 

a conserved function. To test for functional activity of these putative promoters, a series 
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of constructs was created (Fig. 3B). We first cloned the entire NCR2 of BPCV1, as well 

as various truncations/internal deletions of this region. We individually transfected each 

of these constructs and then conducted Northern blot analysis for BPCV1-miR-B1 3p 

miRNA. The construct containing the full length NCR2 (named “1” in Fig. 3B & C) 

expressed robust levels of the miRNA (Fig. 3C). However, the truncation construct 

pcDNA3.1-BPCV1-∆pro∆NCR2, that has eliminated the predicted promoter and all 

upstream sequences within NCR2 (nucleotides 3758 – 4808), showed a dramatic 

reduction in the expression of the miRNA (Fig. 3C). To rule out the possibility that this 

truncation mutation somehow compromised important features of the pre-miRNA, we 

generated a chimeric construct containing an SV40 early promoter upstream of this 

truncation (named “3” in Fig. 3B & C). This chimeric construct was able to rescue 

readily detectable levels of the miRNA. These data argue that all essential cis processing 

elements for the pre-miRNA lie within ~60 nucleotides of the base of the stem portion of 

the predicted hairpin pre-miRNA. To determine if removal of the predicted promoter 

region (nucleotides 4769 – 4808) was sufficient to dramatically reduce transcription, an 

internal deletion mutant that deleted just the predicted promoter (preserving the rest of 

the NCR) was created (pcDNA3.1-BPCV1-∆pro, named “4” in Fig. 3B & C). This 

mutant construct showed greatly reduced transcription on par with the large deletion 

mutation (pcDNA3.1-BPCV1-∆pro∆NCR2, named “2” in Fig. 3B & C). Combined, these 

data support the existence of a strong promoter in the BPCV1 genome that lies upstream 

of the pre-miRNA, with essential elements at nucleotides position 4769 – 4808. 
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Since there is a high degree of conservation of the BPCV1 miRNA promoter 

region with BPCV2 (Fig. 3A), we examined whether expression of the BPCV2 miRNA is 

driven by a similar promoter. We sub-cloned the entire BPCV2 NCR2, containing both 

the putative promoter region and pre-miRNA regions, into a vector that does not contain 

a mammalian promoter. This construct drove high expression of the BPCV2 miRNA to 

levels comparable to BPCV1 (Fig. 3D). We therefore, conclude that the NCR2 of BPCV1 

and BPCV2 each contain a robust transcription-inducing activity, making the BPCV1 and 

2 miRNAs some of the only viral miRNAs with well-defined miRNA-specific promoters. 
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Table 3.1 The predicted promoter sequences in BPCV1-NCR2 and BPCV2-NCR2.  
Sequences from both the BPCV1-NCR2 and BPCV2-NCR2 were subjected to promoter prediction via the Neural Network 
Promoter Prediction Program (Reese, 2001). The predictions were ranked according to their scores, from 0 to 1.00, with an 
arbitrary cutoff of 0.8. The start and the end columns indicate the genomic location of the predictions in BPCV1 and BPCV2, 
respectively. The nucleotides in bold indicate the predicted transcription start site. The row shaded in gray represents the 
region containing the promoter activity we identified in this study. The highest ranked predictions for both BPCV1 and 
BPCV2 were located at similar relative genomic locations (nucleotides 4969 – 4818 in BPCV1, 4745 – 4794 in BPCV2), ~60-
nt upstream of the BPCV pre-miRNAs. 
 

BPCV1-NCR2 
       Start End Score Rank   Predicted Promoter Sequence   

4769 4818 1.00 1 atgtgggcttataaaaggggctgcagaggtctgtagcttgtgcacactgt   
4554 4603 1.00 1 gcattctctatataaagctgcagcggccgtgccgcttttcgttgcagccg 

4546 4595 0.95 3 tgttatatgcattctctatataaagctgcagcggccgtgccgcttttcgt 

4663 4712 0.93 4 aaaataatttttaatagcctggatatctgccatgacagttaaatcagtag 

3852 3901 0.83 5 gggaaatgtataattttcaggcctacatcattatgcagttagtctgtgtg 

         BPCV2-NCR2 
       Start End Score Rank   Predicted Promoter Sequence   

4745 4794 0.99 1 tatgtgggtctataaaaggggctgcagaggtctgaaagctgtgcacactg 

4710 4759 0.93 2 tatcccctgcactaaaatatgggctgttcctaccgtatgtgggtctataa 

4929 4978 0.93 2 accgaaagtatataatactgtgcttgagagtgcgcggtaaataaacatta 

4525 4574 0.90 4 tttgtaagtatattaccgccgtatcggcttatacctctgcagccgctctg 

4992 5041 0.84 5 agcagcactgtttattaatactgtgcttgggagtgcacgcagacagcaaa 
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Figure 3.3
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Figure 3.3 An evolutionarily conserved promoter in NCR2 drives the 
expression of the BPCV miRNAs.  
(A) Sequence alignment plot between BPCV1 and BPCV2 NCR2 revealed a highly 
conserved region upstream of BPCV1-miR-B1. The percentage identity between BPCV1 
and BPCV2 is calculated over a window of 20 nucleotides and is plotted on the y-axis. 
The x-axis represents the genomic position of the NCR2, with 1 being the first nucleotide 
immediately downstream of the large T antigen stop codon. Black horizontal bars 
represent BPCV1-miR-B1-3p and 5p miRNAs. The gray bar represents the position of 
the conserved promoter. (B) Deletion constructs used to map the NCR2 promoter activity. 
The construct, pcDNA3.1-BPCV1-NCR2, included flanking regions from both L1 and 
large T antigen genes. Various internal deletion or truncation constructs (as diagrammed) 
were assayed. The dotted lines represent the deleted region from the NCR2 and the 
dashed lines represents vector sequences. The column on the right indicates the 
expression of the miRNA relative to the FL construct, “+++” represent abundant miRNA 
expression, “++” represents intermediate miRNA expression, “–” represents no 
detectable miRNA expression. (C) Northern blot analysis from various NCR2 constructs 
identifies promoter activity at nucleotides 4769 – 4808. The 3p miRNA probe was used 
for the analysis. The loading control, shown in the bottom panels, is ethidium bromide-
stained low-molecular weight RNA. The miRNA band is indicated by the black 
arrowhead. (D) Northern blot analysis shows NCR2 promoter activity is conserved 
between BPCV1 and BPCV2. Analysis and labeling is as described in Figure 3.3C, 
above. The miRNA band is indicated by the black arrowhead. 
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3.2.4 miRNAs encoded by BPCV1 and BPCV2 negatively regulate transcripts 

containing the Large T antigen 3’ UTR via a manner distinct from all known 

polyomaviruses. 

Because all known Polyomaviridae miRNAs are encoded antisense to the early 

transcripts, we wondered if this might also be the case for the BPCV1 miRNA. Inspection 

of the genomic location of BPCV1-miR-B1 shows that the miRNA lies 85 nucleotides 

downstream from the large T antigen stop codon (nucleotides 5070 - 5072). Two 

different algorithms predict a strong polyadenylation recognition site at nucleotides 5023 

- 5038 in the early orientation (Cheng et al., 2006; Tabaska and Zhang, 1999, data not 

shown). If these predictions are correct, it would mean that the early transcripts would 

likely terminate before they reached the BPCV1 miRNA genomic location encoded on 

the opposite strand. This would render antisense miRNA-mediated cleavage of the early 

transcripts impossible. We therefore performed 3’ Rapid Amplification of cDNA Ends 

(3’ RACE) analysis on RNA harvested from cells transfected with pBPCV1-Early to map 

the 3’ end of the BPCV early transcripts. We sequenced PCR reactions as well as 

individual clones from the RACE reaction. The results were identical in both types of 

analyses– all sequencing reactions including the PCR reactions, as well as 9 out of 9 

individual clones, mapped to the same site. These analyses mapped a polyadenylation 

cleavage site between nucleotides 5008-5010 (since this region of the genome contains 

three Thymidines, it is unclear if the first three Thymidines mapped are derived from the 

genomic template or are added by the cellular polyadenylation machinery) (Figure 3.4A). 
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This site is consistent with the computationally-predicted polydenylation site (Cheng et 

al., 2006; Tabaska and Zhang, 1999), and lies greater than 20 nucleotides away from the 

BPCV1-miR-B1. As described in a later section, we were able to obtain RNA from a 

natural BPCV1 infection of a western barred bandicoot, and mapping of the 3’ end of the 

early transcripts from this source further confirms the polyadenylation cleavage site we 

mapped in RNA harvested from transfected cells (sequencing of the PCR reactions and 7 

out of 7 individual clones mapped a single location identical to the one mapped for the 

transfected samples, Figure 3.4A). Combined, these data demonstrate that unlike all 

known Polyomaviridae miRNAs, the BPCV1-miR-B1 is not encoded antisense to the 

early mRNAs, but rather lies in a separate downstream portion of the genome. Therefore, 

BPCV1-miR-B1 does not possess perfect complementarity to the early mRNAs and is 

less likely to direct siRNA-like, miRNA-mediated cleavage of these transcripts (Figure 

3.4B). 

During the course of analyzing the sequencing data, we noted that performing a 

local BLAST search (Altschul et al., 1997) of BPCV1-miR-B1 to the BPCV1 genome 

produced two significant “hits” at different locations within the genome. As expected, the 

one hit displayed a perfect 22 of 22 nucleotide match and mapped to BPCV1-miR-B1 

itself. Unexpectedly, the other hit displayed a 20 of 22 nucleotide match that mapped to 

the 3’ UTR of large T antigen (Figure 3.4A). Several reasons suggest this would be a 

likely target site for regulation by BPCV1-miR-B1. First, the portion of complementarity 

to the seed region (nucleotides 2-7, known to play an especially important role in miRNA 

target recognition) (Lim et al., 2005) is a perfect match (Figure 3.4C). Second, as 
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discussed in a later section, the BPCV1 T antigen 3’ UTR complementary region is 100 

% conserved (22 of 22 nucleotides) with the related BPCV2 early 3’ UTR, while the 

remaining portions of the 3’ UTRs share only 76.7% identity (33 of 43 nucleotides). This 

implies a conserved function in the putative miRNA target portion of early transcript 3’ 

UTRs. Third, miRNA target sites are thought be more active when located close to the 

ends of the 3’ UTR, but greater than 15 nucleotides from the stop codon (Grimson et al., 

2007), and the putative BPCV1-miR-B1 target site matches these criteria (close to both 

ends of the 3’ UTR– only ~20 nucleotides from the 3’ terminus of the early transcripts 

and 19 nucleotides downstream from the stop codon). Therefore, we set out to explore 

whether BPCV1-miR-B1 regulates transcripts containing the early gene 3’ UTR.  
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Figure 3.4 
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Figure 3.4 The BPCV1 pre-miRNA is not complementary to the early 
transcripts.  
(A) 3’ RACE analysis maps the polyadenylation cleavage site of early transcripts. The 
polyadenylation cleavage site is indicated by a black triangle. * and # indicate number of 
individual clones that that were mapped from the transfected or in vivo RNA samples, 
respectively. In both cases all of the clones mapped the same polyadenylation cleavage 
site. (B) Circular map of BPCV1 genome shows the genomic location of the BPCV 
miRNA and the miRNA complementary site. (C) Diagram showing the predicted base-
pairing interaction between the BPCV1 miRNA and the miRNA binding site in the 3’ 
UTR of the large T antigen transcript. The canonical Watson-Crick base pairings are 
represented by the thick vertical lines, the wobble pairing is indicated with a thin vertical 
line.
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To test the hypothesis that BPCV1-miR-B1 regulates early gene expression, we 

utilized Renilla luciferase reporter constructs containing the entire BPCV1 3’ UTR. In 

addition, we generated a negative control 3’ UTR containing a 2-nt point mutation in the 

miRNA seed region, a second negative control 3’ UTR containing a deletion of the entire 

predicted 22-nt binding region, or a positive control 3’ UTR containing an engineered 

binding site that is perfectly complementary to the BPCV1 miRNA (Figure 3.5A). Co-

transfection of a vector expressing BPCV1-miR-B1 with a reporter plasmid containing 

the entire BPCV1 early 3’ UTR results in a marked decrease in luciferase expression 

(Figure 3.5B). Notably, co-transfection of either a control vector that does not express 

any miRNA, or a control vector expressing an irrelevant miRNA, has little effect on the 

luciferase activity of the plasmid containing the wild type BPCV early 3’ UTR, thus 

implying specificity. Importantly, when we delete the entire putative miRNA target 

region, or more surgically, alter only two nucleotides within the seed complementary 

region, we observe no negative regulation. As expected, when we engineered a perfectly 

complementary reporter, we also observed BPCV1-miR-B1-specific negative regulation. 

Notably, the degree of regulation observed for this positive control reporter was similar to 

the natural large T antigen 3’ UTR reporter. These results strongly suggest that BPCV1-

miR-B1 can negatively regulate the BPCV1 early transcripts by binding to the 3’ UTR. 

Thus, although 3’ UTRs represent the most common locale of miRNA-mediated 

repression in animals, this is the first demonstration of such regulation for polyomavirus-

like transcripts. 
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The BPCV1 large T antigen 3’ UTR shares 84.6% identity (55 of 65 nucleotides) 

with BPCV2, however, the miRNA binding site is 100% conserved (22 of 22 

nucleotides) (Figure 3.5C). Therefore, we hypothesized that BPCV2 would undergo 

miRNA-mediated regulation of its early transcripts. To test this, we conducted identical 

experiments to those described in Figure 3.5A, except that we utilized a reporter vector 

that contains the entire BPCV2 large T antigen 3’ UTR and a BPCV2 miRNA-expressing 

vector (Figure 3.5D). Strikingly, these results mirrored precisely the trends we observed 

for BPCV1 (Figure 3.5E), and suggest that this novel form of miRNA-mediated 

regulation of the BPCV T antigens is evolutionarily conserved. 
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Figure 3.5
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Figure 3.5  Evolutionarily conserved negative regulation of the 3’ UTR of the 
early transcripts.  
(A) Diagram of luciferase reporter construct containing the entire 3’ UTR of large T 
antigen, as well as control constructs. The vectors consist of a Renilla luciferase reporter 
upstream of a single copy of the entire 3’ UTR of BPCV1 large T antigen (WT), a 
negative control 3’ UTR containing a 2-nt point mutation in the miRNA seed region (Pt), 
a negative control 3’ UTR containing a deletion of the predicted 22 nucleotide binding 
region (Del), or a positive control 3’ UTR containing an engineered perfectly 
complementary site to the BPCV1 miRNA (Perfect) at nucleotide positions 5043 and 
5050. Numbers at either end indicate the location of the BPCV1 nucleotides that were 
cloned. (B) The BPCV1 miRNA negatively regulates the 3’ UTR of large T antigen. The 
reporters from (A) were co-transfected individually into 293 cells and normalized to 
Firefly luciferase (FF. luc) and plotted (y-axis). The x-axis indicates the different Renilla 
luciferase (R. luc) reporter constructs. The plasmids expressing either vector alone, MCV 
miRNA, or BPCV1 miRNAs are indicated by the black, gray and white bar graphs 
respectively. P-values were computed using Student’s t-test. * indicates P < 0.05, ** 
indicates P < 0.01 and *** indicates P < 0.001. (C) The miRNA binding site is 100% 
conserved between the BPCV1 and BPCV2 3’ UTRs. Diagram depicting the level of 
conservation in miRNA and binding site between BPCV1 and BPCV2. The region 
between the pre-miRNA and the large T antigen stop codon was divided into various 
regions, showing the percent conservation between BPCV1 and BPCV2. The regions of 
100% conservation are shaded in gray. The BPCV 3p miRNA is indicated by the black 
bar and the miRNA binding region is indicated by the gray bar. The BPCV1 nucleotide 
positions 4869 – 5072 and the BPCV2 nucleotide positions 4846 – 5051 were used in this 
conservation analysis. (D) The BPCV2 3’ UTR is negatively regulated by the BPCV2 
miRNA. Similar reporters as described above in panel A were engineered for the BPCV2 
3’ UTR. (E) Luciferase assays for the BPCV2 large T antigen 3’ UTR reporters were 
performed as described above in panel B. 
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3.2.5 BPCV1-miR-B1 is expressed in vivo. 

 
Infection with BPCV1 is associated with papillomas and carcinomas in western 

barred bandicoots (Woolford et al., 2007). PCR detection and in situ hybridization 

analyses demonstrated that the virus is present in the majority of papillomatous and 

carcinomatous lesions tested (Bennett et al., 2008b; Woolford et al., 2007, 2009). 

Because the western barred bandicoot is an endangered species, obtaining tissue explants 

from infected animals is a challenge. We were able to obtain both lesional and a small 

amount of non-lesional tissue samples from a single infected animal that had to be 

euthanised for humane reasons due to complications arising from BPCV1-associated 

metastatic squamous cell carcinoma. We harvested total RNA from two different lesional 

regions on the same animal as well as non-lesional skin from a different portion of the 

animal. We were pleased to observe a robust signal showing a specific band from both 

lesional samples (Figure 3.6A). This band co-migrates with the BPCV1-miR-B1 band 

that is detected in the positive control RNA derived from BPCV plasmid-transfected cells 

(Figure 3.6A). Probing any of four different negative control samples, RNA from non-

lesional bandicoot skin (Figure 3.6C), HEK 293 cells (Figure 3.6A), HEK 293T cells 

(Figure 3.6A), or BSC40 African green monkey cells (Figure 3.6A), did not detect any 

specific bands. As a control to rule out that the band we detect from the lesional samples 

could be from random degradation of total RNA, we stripped the blot in Figure 3.6A and 

then re-probed with the terminal loop probe (as described in Figure 3.1C). If the band we 

detect is random degradation of a larger viral transcript, then other probes for RNA 
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sequences proximal to the BPCV1-miR-B1 should also provide a signal at ~22 

nucleotides. Probing with the terminal loop probe (recognizes an RNA sequence just 

proximal to the miRNA) did not detect any bands from the lesional samples (Figure 

3.6B). This result strongly argues that neither random degradation fragments nor siRNAs 

can account for the miRNA signal we detect migrating at  ~22 nucleotides, since both of 

these processes would be expected to generate Northern blot detectable bands throughout 

this region of the genome (and not just from one arm of the pre-miRNA precursor 

hairpin). It is worth noting that the terminal loop probe recognizes the pre-miRNA band 

in the positive control RNA sample but not in the lesional samples. Either of two 

explanations likely account for this: 1) more efficient processing of the pre-miRNA in 

vivo, or 2) a pre-miRNA nuclease activity that is active in the preparation of the in vivo 

samples. Irrespective, the fact that the loop probe recognizes the pre-miRNA from the 

positive control transfected sample, rules out any technical artifact that could account for 

its inability to detect bands from the lesional tissue. Together, these data demonstrate that 

the BPCV1 miRNA is expressed at high levels in some contexts of in vivo infection. 
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Figure 3.6
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Figure 3.6 BPCV1-miR-B1 is expressed in vivo.  
(A) Northern blot analysis scores positive for RNA harvested from either of 2 different 
bandicoot lesions. Negative control lanes are from human embryonic kidney cells (HEK) 
293, HEK 293T cells, and BSC40 African green monkey cells. RNA from cells 
transfected with BPCV1 miRNA-expressing plasmid is included as a positive control. 
The loading control, shown in the bottom panels, is ethidium bromide-stained low-
molecular weight RNA. The bands corresponding to the pre-miRNA (gray arrowhead) or 
the 5p and 3p miRNAs (black arrowhead) are indicated. (B) The signal detected from 
lesional tissue is not due to random degradation. The blot from panel A was stripped and 
re-probed with the terminal loop specific probe. The pre-miRNA band was detected from 
the transfected positive control sample confirming the activity of the probe. No signal 
was detected at 22 nucleotides from the lesional tissue, ruling out that the band detected 
in panel B was due to random degradation of transcripts spanning the pre-miRNA region 
of the genome. The pre-miRNA detected by the terminal loop is indicated by the gray 
arrowhead. (C) BPCV1-miR-B1 is expressed only in bandicoot lesions. Northern blot 
analysis of both non-lesional and lesional RNA samples indicates that BPCV1-miR-B1 
can only be detected in lesional tissue. The loading control, shown in the bottom panel, is 
Northern blot detection of the let-7a miRNA. The BPCV1-3p miRNA is indicated by the 
black angled arrowhead. 
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3.3 DISCUSSION 

 
The discovery of new virus-encoded miRNAs and understanding their functions 

represents an exciting developing sub-field of virology. Here, we describe miRNAs from 

a fascinating group of recently described viruses, representing only the sixth virus 

family/group shown to encode miRNAs. BPCV1 and BPCV2 are remarkable because 

they represent natural hybrids of two different virus families, the Polyomaviridae and 

Papillomaviridae. Like the polyoma viruses, the BPCVs express T antigen proteins and 

have a genomic organization that consists of an origin of replication flanked by 

promoters that drive the regulatory T antigen transcripts in one direction around the 

circular genome, and drive the capsid transcripts in the other direction (Figure 3.7). 

However, unlike the polyomaviruses, the capsid proteins are clearly related to the 

papillomavirus capsid proteins L1 and L2. Furthermore, the size of the genome is ~7300 

base pairs, closer to the papillomaviruses (~7-8.5 kb) than the polyomaviruses (~5.2 kb). 

In contrast to the known polyomaviruses and most papillomaviruses, the BPCVs also 

contain a long untranslated region (NCR2) of ~1.3 kb, which we have shown serves as 

both promoter and template to drive the primary miRNA-encoding transcript (Figure 3.1, 

3.3).  
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Figure 3.7 Model for miRNA-mediated viral gene regulation of Polyomaviridae 
and polyoma-like viruses.  
Both the polyoma and BPCV viruses encode miRNAs with the ability to negatively 
regulate the early T antigen transcripts. The mechanism of this regulation, however, 
differs between the polyoma and BPCV viruses. BPCV viruses encode a miRNA that is 
located in a non-coding portion of the genome and is not antisense nor fully 
complementary to the early transcripts. All polyomaviral miRNA that have so far been 
reported are found antisense and complementary to the early transcripts, albeit they are 
found in different regions of the genome. 
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We have demonstrated that the BPCV miRNAs can direct negative regulation of 

transcripts that contain the large T antigen 3’ UTR (Figure 3.5A, B). This suggests that 

similar to what has been observed in the polyoma (Seo et al., 2008, 2009; Sullivan et al., 

2005, 2009), herpes (Bellare and Ganem, 2009; Grey et al., 2010; Murphy et al., 2008; 

Umbach et al., 2008), and ascoviruses (Hussain et al., 2008), that BPCV miRNAs play a 

prominent role in the regulation of viral gene expression. This notion is supported by the 

observation that the BPCV large T antigens have a relatively small 3’ UTR at ~60 

nucleotides (Figure 3.4A), however 20 of 22 are perfectly complementary to the miRNA. 

Since one of the mismatched target nucleotides could bind as a GU wobble, this 

potentially leaves only a single unpaired nucleotide between miRNA and mRNA target 

site (Figure 3.4C)– significantly fewer than almost all known animal miRNA-target pairs. 

Adding further weight to the model that BPCV1-miR-mediated viral gene 

regulation is relevant during infection is the fact that 3’ UTR regulation we observe is 

evolutionarily conserved with BPCV2 (Figure 3.5D, E). Using the Vmir miRNA 

prediction software, we easily identified the pre-miRNA that gives rise to BPCV2-miR-1 

(Figure 3.2B). Interestingly, the BPCV2 pre-miRNA scores as a higher ranked candidate 

than BPCV1-miR-1 (overall rank 2 versus 11). We previously observed a similar 

phenomenon for two different strains of MCV (Seo et al., 2009). These observations have 

relevance to future attempts of using bioinformatics approaches for identifying new viral 

miRNAs. Rather than analyzing a single viral genome, future bioinformatics efforts 

might be better served if a series of closely related viruses, or even different isolates of 

the same virus, were compared to identify common regions of predicted pre-miRNAs. 
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Finally, the fact that we show the BPCV1 miRNA is abundantly expressed during 

infection in vivo (Figure 3.6) argues that the regulation of the T antigen 3’ UTR we 

observe in cultured cells likely occurs in at least some in vivo settings. 

We have determined that the function of the second non-coding region of the 

BPCVs includes encoding a promoter and template for the primary transcript that 

contains the pre-miRNA. We note that we cannot rule out additional promoters and 

transcripts may be used to generate this miRNA during some stages of infection. It is 

interesting to point out that both NCR2 regions of BPCV1 and BPCV2 contain a 

predicted large T antigen binding site consensus sequence of GAGGC (Bennett et al., 

2008a; Pomerantz and Hassell, 1984; Woolford et al., 2007). In addition, our observation 

that this promoter is robustly active in cells derived from placental mammals, suggests it 

is responsive to transcription factors that were present in the last common ancestor of 

placental and marsupial mammals. Of note, possible host transcription factor binding 

sites that are predicted in these NCR2 regions include p53, E2F1, p300, and NF-kappaB, 

(Messeguer et al., 2002, data not shown). These observations suggest that regulation of 

the expression of the BPCV miRNAs may be complex and affected by numerous trans 

factors of both host and viral origin. Future experiments are required to test this 

hypothesis. 

We have previously shown that six different polyoma viruses encode miRNAs 

that negatively regulate, or are predicted to negatively regulate T antigen transcripts. In 

all cases, despite some sequence differences, these miRNAs are encoded on the opposite 

strands and antisense to the T antigen transcripts (Cantalupo et al., 2005; Seo et al., 2008, 
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2009; Sullivan et al., 2005, 2009). This conserved mode of regulation implies 

importance, however, one could argue that since the degree of regulation imparted by 

these is only partial (Sullivan et al., 2005, 2009), the polyomaviral miRNA-mediated 

viral transcript regulation is a secondary consequence of the genomic location of these 

miRNAs. However, the results we present here strongly imply that some diverse viruses 

that have polyoma or polyoma-like genomic organizations are under evolutionary 

pressure to maintain miRNAs that regulate T antigen expression. Because unlike the 

polyomaviral miRNAs, the BPCV miRNAs are encoded in a different region of the 

genome (Figure 3.4), and possess an alternative mechanism of action (3’ UTR regulation 

versus antisense miRNA-mediated cleavage of the coding sequence); we conclude that 

the miRNA-mediated regulation of T antigen expression is selected for in diverse viruses. 

We stress that in no way does this rule out the possibility that important host targets exist 

for these miRNAs. Indeed, as has been shown for several members of Herpesviridae, 

viral miRNAs will target virus-encoded or host-encoded transcripts and sometimes a 

single miRNA can target both (Grey et al., 2007; Stern-Ginossar et al., 2007). 

What is the purpose of polyomaviral and BPCV miRNA-mediated regulation of T 

antigen transcripts? One possibility, is that similar to the many Herpesviridae miRNAs 

that play a role in latency, the polyomaviral and BPCV miRNAs may play a role in 

maintaining persistent infection. In this scenario, these miRNAs would prevent excessive 

or untimely expression of the T antigens, thereby avoiding the triggering of inappropriate 

lytic induction or clearance by the adaptive immune response. In this regard, it is 

interesting to note that a putative T antigen binding site exists in the NCR2 region of both 
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BPCV1 and BPCV2 (Bennett et al., 2008a; Pomerantz and Hassell, 1984; Woolford et 

al., 2007).  Thus, BPCV T antigen could play a role in either a positive or negative 

feedback loop regulating expression of the miRNA. Currently, persistence is a poorly 

understood facet of the polyomaviral life cycle. To further elucidate the role of virus 

encoded miRNAs in regulating persistent and/or lytic infections, future studies will 

require the development of appropriate in vivo models.  

Finally, our results identify the first 2 viruses that encode papillomavirus-like 

gene products that also encode a miRNA. A previous study of human papillomavirus type 

31 strongly suggested that at least some papillomaviruses are not likely to encode 

miRNAs (Cai et al., 2006). However, it is still formally possible that other 

papillomaviruses may encode miRNAs. Our results suggest that those papillomaviruses 

with multiple non-coding regions, such as the Felis domesticus papillomavirus type 1, 

belonging to the genus Lambdapapillomavirus (λ-PV) (Rector et al., 2007), would be 

attractive candidates to hunt for true papillomavirus-encoded miRNAs. 

In summary, we have shown that an interesting new group of viruses encode 

miRNAs, which has important implications for distantly related viruses– including some 

human pathogens. In the future, exciting questions will be addressed such as the role of 

polyomavirus and polyomavirus-like miRNAs in possibly targeting host transcripts and 

establishing or maintaining persistent infection. What is clear at this point is that viral 

miRNA-mediated regulation of viral transcripts is important for divergent viruses, 

including herpesviruses, polyomaviruses, and the BPCVs. 
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3.4 MATERIALS AND METHODS 

 

3.4.1 Ethics Statement 

The use of animals is noted as tissue samples, blood samples and cadavers 

collected at the Kanyana Wildlife rehabilitation centre and therefore a formal approval 

application is not necessary as determined by the Murdoch University Department of 

Environment and Conservation Animal Ethics Committee, 2006/08.  

 

3.4.2 Cell Culture and RNA isolation 

Human Embryonic Kidney cells 293 and 293T were obtained from American 

Type Culture Collection (Manassas, VA) and maintained in Dulbecco’s Modified Eagle’s 

Medium supplemented with 10% fetal bovine serum (Cellgro, VA). Total RNA was 

harvested using an in house PIG-B solution (2M guanidinium thiocyanate (EMD, NJ), 

20mM citrate buffer, pH 4.5, 5mM EDTA, (Fisher Scientific, NH), 0.25% Sarkosyl 

(Sigma Aldrich, MO), 48% saturated phenol, pH 4.5 (Amresco, OH), 2.1% isoamyl 

alcohol (Fisher Scientific), 0.5% β-mercaptoethanol (Sigma Aldrich), 0.1% 8-

hydroxyquinoline (EMD) and 0.0025% Coomassie blue (EMD)) as described (Lin et al., 

2010; Seo et al., 2008; Weber et al., 1998).  
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3.4.3 Vector construction, transfection and Northern blot analysis 

All DNA vector constructs were confirmed by sequence analysis through the 

Institute of Cellular and Molecular Biology Sequencing Facility at the University of 

Texas at Austin. The entire BPCV1 genome (kindly provided by Lucy Woolford, 

Murdoch University, Australia) was digested with restriction enzyme SalI (New England 

Biolabs, MA) and cloned into the XhoI site of the pcDNA3.1puro expression vector. The 

resulting BPCV1 expression vectors were named pBPCV1-Early and pBPCV1-Late. The 

plasmid pcDNA3.1-BPCV1-NCR2, which contains the entire BPCV1 non-coding region 

2 and partial large T antigen and L1 open reading frame, was generated by cloning an 

approximately 1500-bp PCR-amplified fragment of the BPCV1 genome into the 

BglII/XhoI sites of the pcDNA3.1neo expression vector, removing the CMV promoter in 

the process. The primers used were as follows: BPCV1 NCR2 forward primer, 

ATCGATCGAAGATCTGGAGAAAGTTCTTGTATCAGAGCAG, and BPCV1 NCR2 

reverse primer, TAGCTAGCTCTCGAGCCAAAGCTCATAAAGCAGAACTTG.  

The plasmid pcDNA3.1-BPCV1-∆pro, which has the putative promoter in NCR2 

replaced with a unique KpnI restriction site, was generated through a three way ligation 

between two PCR-amplified NCR2 fragments into the BglII/XhoI sites of the 

pcDNA3.1neo expression vector. The primers used were as follows: BPCV1 NCR2 KpnI 

reverse primer, ATCGATCGAGGTACCAGCTGGGAACATCCCCTAAC, paired with 

the BPCV1 NCR2 forward primer described above to generate the first fragment, and 

BPCV1 NCR2 KpnI forward primer, 

ATCGATCGAGGTACCTGCACACTGTGCACATGTATTG, paired with the BPCV1 
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NCR2 reverse primer described above to generate the second fragment. The plasmid 

pcDNA3.1-BPCV1-∆pro∆NCR2, which had the entire NCR2 deleted except for the 

BPCV1 pre-miRNA, was generated by digesting pcDNA3.1-BPCV1-NCR2-∆pro using 

KpnI and BglII. The digested vectors were blunt-ended using Klenow fragment (New 

England Biolabs) and 10mM dNTPs (Invitrogen, CA), at 37°C for 30 minutes. Following 

Klenow fragment fill-in, the vectors were gel purified (Fermentas, MD) and self-ligated 

using T4 DNA Ligase (New England Biolabs). All constructs were linerized by SalI 

restriction digest prior to transfection into 293 cells. The chimeric truncation construct 

containing an SV40 early promoter is the non-linerized form of pcDNA3.1-BPCV1-

∆pro∆NCR2.   

The plasmids pcDNA3.1-BPCV1-miR-B1 and pcDNA3.1-BPCV2-miR-B1, 

which express the BPCV1 miRNA and BPCV2 miRNA, respectively, were generated by 

cloning an ~400-bp PCR-amplified fragment of either the BPCV1 genome or the BPCV2 

genome into the KpnI/XhoI sites of the pcDNA3.1neo expression vector. The primers 

used were as follows: BPCV1-miR-B1 forward primer, 

ATCGATCGAGGTACCGGATGTTCCCAGCTTATGTG, and BPCV1-miR-B1 reverse 

primer, ATCGATCGACTCGAGGCAGAACTTGAACTGTTAGACTC; BPCV2-miR-

B1 forward primer, ATCGATCGAGGTACCGGCTGTTCCTACCGTATG, and BPCV2-

miR-B1 reverse primer, TAGCTAGCTCTCGAGTCAGAGCTTGAATTATTGGACTC. 

293T cells were plated in 6-wells plates and transfected using Lipofectamine 2000 

reagent (Invitrogen) according to the manufacturer’s instructions. 293T cells were also 

transfected with empty pcDNA3.1neo vector as a negative control. Total RNA was 
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harvested at 48 hours post transfection. Ten micrograms of total RNA was separated on a 

Tris-borate-EDTA-Urea-15% polyacrylamide gel. The gel was transferred onto an 

Amersham Hybond N+ membrane (GE Healthcare, IL) and probed for miRNA as 

previously described (Grundhoff et al., 2006). The probe sequences used were as follows: 

BPCV1 3p probe, GCGCACTCTCAAGCACAGTATT; BPCV1 5p probe, 

AAGTACTAAGCCTGAGAGTTCCCATGCGATTCAAAAGT; BPCV1 loop probe, 

TATTATACTTTCGGTTTATAAAGTACTA; BPCV1 downstream flank probe, 

GAGATTTTCAAATTATGTATCTGCAATTAATGCTGAGA   

 

3.4.4 Computational prediction of viral pre-miRNAs, promoters, and polyadenylation 

recognition sites  

A viral miRNA prediction algorithm, Vmir (Grundhoff et al., 2006; Sullivan and 

Grundhoff, 2007), was used to obtain candidate pre-miRNAs from the genomes of 

BPCV1 and BPCV2 (genome accession number NC_010107.1 and NC_010817 

respectively). The secondary structure of pre-miRNAs were predicted via the Mfold RNA 

folding prediction web server (Zuker, 2003). The intrinsic promoters for both BPCV1 and 

BPCV2 were predicted via the Berkeley Drosophila Genome Project web server 

(Messeguer et al., 2002; Reese, 2001). The non-coding region 2 from both BPCV1 and 

BPCV2 were analyzed in the late orientation, with a default minimum promoter cut off 

score of 0.80 (between 0 and 1.00). To predict polyadenylation recognition and/or 

cleavage site of the BPCV T antigen transcripts, two different algorithms were used 

(Cheng et al., 2006; Tabaska and Zhang, 1999). 
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3.4.5 Small RNA library generation and computational analysis of sequencing reads 

for SOLiD 

293T cells were plated in T75 flasks and transfected with either pBPCV1-Early or 

pBPCV1-Late, using Lipofectamine 2000 reagent as described above. Total RNA was 

harvested at 48 hours post-transfection as described above. One hundred and sixty 

micrograms of total RNA was gel-fractionated to isolate small RNAs. The gel fraction 

containing the ~10 – 70 nucleotides size ranges were excised. The excised gel fragment 

was cut into smaller pieces, and soaked in 30 milliliters of 1M NaCl (Ambion, TX) for 

~40 hours at 4°C, while under constant rotation using a LabQuake Shaker Rotisserie 

(Thermo Fisher Scientific). The supernatants were concentrated through centrifugation 

with the Vivaspin 15R concentrator (Sartorius, Germany) at 3000 x g for 30 minutes at 

4°C. The RNA was precipitated by adding an equal volume of isopropanol and one-tenth 

total volume of 3M sodium acetate, pH 5.2 (Fisher Scientific). One microliter of 

glycogen (20 microrgrams / microliter, Invitrogen) was also added to the precipitation 

mixture to aid in the visualization of the RNA pellet. RNA precipitation was done at -

20°C overnight. The RNA pellet was washed with ice-cold 100% ethanol and air-dried. 

The RNA was then dissolved in water and converted into cDNA libraries for SOLiD 

sequencing as previously described (Lin et al., 2010). The 3’ sequencing adapter 

sequence was trimmed from the color space reads using custom Python scripts and any 

sequences with ambiguous calls or less than 18 nucleotides in length after trimming were 
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removed from further analysis.  The preprocessed reads were then mapped to the BPCV1 

genome (NCBI accession number NC_010107.1) using the SHRiMP2 software package 

(Rumble et al., 2009). Uniqueness of reads of interest were further analyzed using the 

BLAST algorithm and the “nr/nt” database (Altschul et al., 1997). Secondary structure 

predictions for regions with abundant reads were generated using the mfold server 

(Zuker, 2003). 5p start site counts and coverage relative to total number of preprocessed 

reads were calculated using custom Python scripts and visualized using the gnuplot 

software package. Only reads with full length perfect matches to the reference genome 

were considered during the generation of coverage plots.  

 

3.4.6 3’ RACE analysis to map the polyadenylation cleavage site of early transcripts  

293T cells were plated in 6-well plates and transfected with pBPCV1-Early, using 

Lipofectamine 2000 reagent as described above. Total RNA was harvested at 48 hours 

post-transfection as described above. 1 microgram of the total RNA was reverse 

transcribed using Superscript III (Invitrogen) according to the manufacturer’s 

instructions. 2 microliters of the reverse transcription product was PCR-amplified using 

Phusion High-Fidelity DNA Polymerase (Finnzymes, Finland) according to the 

manufacturer’s instructions. The PCR product was sequence analyzed through the 

Institute of Cellular and Molecular Biology Sequencing Facility at the University of 

Texas at Austin. In addition, the PCR products were TA-cloned into pCR2.1-TOPO and 

individual clones were sequenced. The primers used were as follows: 
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Reverse Transcription primer, GACTCGAGTCGACATCGTTTTTTTTTTTTTTTTT, 

PCR forward primer, GACTCGAGTCGACATCG, PCR reverse primer, 

CCACCTACAGTAACTGTGAGATG      

 

3.4.7 Luciferase assays 

The BPCV1-miR-B1 and BPCV2-miR-B1 reporters were constructed by cloning 

a ~90-bp fragment corresponding to the entire large T antigen 3’ UTR non-coding region 

into the pcDNA3.1dsRluc vector that expressed a destabilized version of Renilla 

luciferase (Seo et al., 2008), via the XhoI/XbaI sites. The inserts were generated by 

oligonucleotide synthesis. For all oligonucleotides used, see list below. The negative 

control 2 nucleotide seed-region-mutated reporters contain engineered point mutations at 

the second and third nucleotides complementary to the 5’ end of the BPCV 3p miRNA. 

The negative control deletion reporters contain internal deletions of the 3p miRNA 

binding site. The positive control perfect-match reporters contain a miRNA binding site 

that is perfectly complementary to the BPCV 3p miRNA. 293 cells were plated in 12-

well plates and transfected using FuGENE HD transfection reagent (Roche, Switzerland) 

according to the manufacturer’s instructions. Cells were transfected with the reporter and 

the miRNA expression vector. 293 cells were also transfected with the reporter along 

with either MCV miRNA expression vector or empty vector as negative controls. The 

pcDNA3.1Luc2CP vector was also co-transfected to normalize for transfection 

efficiency. Cells were collected 48 hours post transfection and analyzed with the Dual-

Luciferase Reporter Assay System (Promega, WI) according to the manufacturer’s 
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instructions. The luciferase readings were collected using a Luminoskan Ascent 

Microplate Luminometer (Thermo Fisher Scientific). Results from the miRNA Renilla 

luciferase were normalized to the firefly luciferase readings and the ratios were plotted as 

a bar graph relative to the empty vector control.    

 

The primers used were as follows:  

BPCV1 WT forward primer, 

AAACTCGAGCTGCTTGTTCTTTTCTGTGTGCACTCCCAAGCACAGTATTAAAT

AAACAGTGCT 

BPCV1 WT reverse primer, 

TTTTCTAGAGGTAAAAAAACATTAGACACGGGTTTAGAGCAGCACTGTTTATT

TAATACTGTG 

BPCV1 Perfect forward primer (paired with BPCV1 WT reverse primer), 

AAACTCGAGCTGCTTGTTCTTTTCTGTGCGCACTCTCAAGCACAGTATTAAAT

AAACAGTGCT 

BPCV1 Deletion forward primer,  

AAACTCGAGCTGCTTGTTCTTTTCTGTAAATAAACAGTGCTGCTCTA 

BPCV1 Deletion reverse primer, 

TTTTCTAGAGGTAAAAAAACATTAGACACGGGTTTAGAGCAGCACTGTTTATT

TACA 

BPCV1 Point mutant forward primer, 
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AAACTCGAGCTGCTTGTTCTTTTCTGTGTGCACTCCCAAGCACAGTCATAAAT

AAACAGTGCT 

BPCV1 Point mutant reverse primer, 

TTTTCTAGAGGTAAAAAAACATTAGACACGGGTTTAGAGCAGCACTGTTTATT

TATGACTGTG 

BPCV2 WT forward primer, 

ATGATGCTCGAGGCTGTCTTTTGCTGTCTGCGTGCACTCCCAAGCACAGTATT

AATAAACAGTGCT 

BPCV2 WT reverse primer, 

ATGATGTCTAGAGGTAAATAAACATTAGACACGGGTTTTGAGCAGCACTGTT

TATTAATACTGTGC 

BPCV2 Perfect forward primer (paired with BPCV2 WT reverse primer), 

ATGATGCTCGAGGCTGTCTTTTGCTGTCTGCGCGCACTCTCAAGCACAGTATT

AATAAACAGTGCTG 

BPCV2 Deletion forward primer, 

ATGATGCTCGAGGCTGTCTTTTGCTGTCTGCAATAAACAGTGCTGCTCAA 

BPCV2 Deletion reverse primer, 

ATGATGTCTAGAGGTAAATAAACATTAGACACGGGTTTTGAGCAGCACTGTT

TATTGCAG 

BPCV2 Point mutant forward primer, 

ATGATGCTCGAGGCTGTCTTTTGCTGTCTGCGTGCACTCCCAAGCACAGTCAT

AATAAACAGTGCTG 
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BPCV2 Point mutant reverse primer, 

ATGATGTCTAGAGGTAAATAAACATTAGACACGGGTTTTGAGCAGCACTGTT

TATTATGACTGTG  

 

3.4.8 Bandicoot lesion extraction, RNA isolation and Northern blot analysis 

An adult western barred bandicoot (Perameles bougainville) severely affected by 

multicentric papillomas and squamous cell carcinomas associated with BPCV1 infection 

was euthanised for humane reasons. Cutaneous papillomas and non-lesional skin biopsies 

were collected into sterile tubes and rapidly frozen in liquid nitrogen. Skin samples were 

finely minced using sterile scalpel blades then 20mg of tissue was mixed with 350 µL of 

RTL:β-ME solution (1 milliliters buffer RTL (Qiagen) with 10 µL β-mercaptoethanol), 

and homogenized using a Heidolph DIAX 600 homogenizer (John Morris Scientific P/L, 

Bentley, Western Australia, Australia) for 5 minutes on the highest setting (24,000 min-1). 

The lysate was centrifuged at maximum speed in a microcentrifuge for three minutes and 

transferred to a fresh microcentrifuge tube. Ethanol (100%) was added to the cleared 

lysate to bring the final concentration up to 60% ethanol. Next, the samples were applied 

to an RNeasy (Qiagen) mini spin column to purify the total RNA according to the 

manufacturer’s instructions, except that after the final wash step, the samples were stored 

at approximately 4 degrees C for several days while still on the column. The final elution 

steps were conducted with one volume of nuclease free water and then repeated with one 

volume of nuclease free TE, pH7. 
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Northern blot analysis was done as described for transfected samples (see above). 

The blot was first probed with the 3p probe, stripped with boiling hot stripping buffer 

(0.1% sodium dodecyl sulfate in double-distilled water, J.T. Baker, NJ) and then probed 

with the control terminal loop probe. Due to the low amount of non-lesional RNA 

negative control sample that was available, a second Northern blot analysis was 

conducted using only 180 ng of non-lesional RNA sample and lesional sample 1. The 

blot was first probed with the 3p probe, stripped as described above, and then probed 

with the loading control probe (hsa-let-7a). The probe sequence for the hsa-let-7a probe 

was TGAGGTAGTAGGTTGTATAGTT. 
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CHAPTER 4 Naturally Arising Strains of Polyomaviruses with 

Severly Attenuated microRNA Expression 

 

4.1 INTRODUCTION 

 

microRNAs (miRNAs) are small regulatory molecules that play a role in numerous 

and diverse processes, including those highly relevant to viral infection (Kincaid and 

Sullivan, 2012). For example, both host and viral miRNAs have been implicated in the 

adaptive and innate immune responses, cell death, and tumorigenesis (Bartel, 2009; Boss 

and Renne, 2010; Sullivan, 2008; Taganov et al., 2007). miRNAs are generally derived 

from primary transcripts (pri-miRNAs) that are processed by the Microprocessor 

complex (comprised of the endonuclease Drosha and its binding partner DGCR8) that 

give rise to the ~65 nucleotide hairpin precursor miRNA (pre-miRNA) (Lee et al., 2003; 

Zeng and Cullen, 2005; Zeng et al., 2004). In general, miRNAs function as part of the 

RNA induced silencing complex (RISC), directing its repressive activity to target mRNA 

transcripts. There are over 300 known viral miRNAs, and despite increasing progress, the 

majority lack an in depth understanding of their functions. 

 

We have identified miRNAs encoded by diverse polyomaviruses (Cantalupo et al., 

2005; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009). Polyomaviruses have small 

circular DNA genomes and take up long-term persistent infections via incompletely-
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defined mechanisms. Although undoubtedly there exist important host targets, 

independent evolutionary-based rationales suggest that polyomaviruses and "polyoma-

like" viruses (i.e., BPCV1&2) utilize miRNAs to autoregulate early viral gene expression 

of the T antigen proteins (Chen et al., 2011). Despite being able to demonstrate 

autoregulatory activity of the polyomaviral miRNAs during lytic infection of cultured 

cells, the relevance of the polyomaviral miRNAs during natural infection remains 

unknown. 

 

Here we have utilized a comparative genomics strategy to determine the 

preservation of the miRNA allele amongst strains of diverse polyomaviruses. Our work 

demonstrates that loss of miRNA expression is rare. Those cases where null or 

hypomorphic strains are found occur in immunocompromised hosts and all preserve the 

amino acid coding potential of the overlapping large T antigen ORF. In depth 

characterization of K661, a Simian Virus 40 (SV40) miRNA hypomorphic strain, 

identifies a defect in the processing of the primary miRNA transcript (pri-miRNA). K661 

and a recombinant virus that rescues miRNA expression show only modest differences, if 

any, in virus growth in both immortalized and primary cells. Thus, the polyomaviral 

miRNAs are preserved in most natural settings but can be dispensable in certain cell 

culture and rare in vivo contexts. Combined, our work demonstrates that the functional 

importance of polyomaviral miRNAs is context dependent, consistent with an activity 

connected to the immune status of the host. 
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4.2 RESULTS 

 

4.2.1 SV40 strain K661 is severely attenuated for miRNA expression. 

In order to better understand the functions of polyomaviral miRNAs, we 

attempted to identify conditions where polyomaviral strains null or hypomorphic for 

miRNA expression arise. As a starting point, we focused on SV40, for which we have 

previously used comparative genomics to examine the pre-miRNA loci from all 63 

strains deposited in Genbank (Chen et al., 2013). Our previous analysis identified 17 

different classes of SV40 strains that each had at least a single nucleotide change in the 

pre-miRNA genomic region. Of all different classes, only a single class, comprised of 

strains K661 (Figure. 4.1A – C) and I275, apparently fails to give rise to detectable 

miRNAs (Chen et al., 2013). We first set out to repeat these results. Plasmids containing 

a heterologous CMV promoter driving the K661 pre-miRNA genomic region were 

transfected into BSC-40 cells, and RNA was harvested and subjected to high-resolution 

denaturing polyacrylamide gel electrophoresis and Northern blot analysis (Chen et al., 

2013; Koscianska et al., 2011). This analysis confirmed that no bands consistent with 

either 5p or 3p derivative miRNAs are detectable from the K661 constructs. However, 

the 5p and 3p derivative miRNAs are readily detectable from the control plasmids 

encompassing the pre-miRNA regions from the reference "3-p-dominant" 776 and the 
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“5p-dominant” RI257 control strains ((Chen et al., 2013) and Figure 4.1D and E).  These 

results suggest that K661 has dramatically reduced miRNA expression.  

Because the above findings were derived from transfection-based studies, we next 

examined if similar results are obtained during infection. We infected BSC-40 cells with 

K661 virus (Lednicky et al., 1998) at a multiplicity of infection (MOI) of 10 PFU/cell , 

and conducted similar Northern blot analysis. Total RNA was harvested at 48 and 60 

hours post infection (hpi). This analysis confirmed the lack of detectable bands consistent 

with viral pre-miRNA and mature miRNA during K661 infection (Figure 4.2A and B, 

lanes ”K661”). Additional Northern blot analysis using the terminal loop, 5’ and 3’ 

flanking probes, which were designed to recognize the terminal loop of the pre-miRNA 

and regions upstream and downstream of the pre-miRNA location, respectively, did not 

reveal any potential derivative miRNAs located immediately upstream or downstream of 

the pre-miRNA region (data not shown). These results demonstrate that the K661 strain 

does not express a detectable level of miRNAs via Northern blot analysis during lytic 

infection. Importantly, miRNA bands are readily detectable from cells infected with 

control viruses, either the reference strain 776, which has a duplicated enhancer, or an 

archetype strain SVCPC, which similar to K661, has only a single copy of the enhancer 

(Figure 4.2A and B, lanes “776” and “SVCPC”). Combined with our previous results, 

these data demonstrate that K661 produces substantially less miRNAs than all other 

SV40 strains studied to date.  
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Next, we addressed whether there are any low abundance viral miRNAs generated 

during infection with K661. BSC-40 cells were infected at an MOI of 20 PFU/cell and 

total RNA was harvested at 40hpi. Small RNAs (~10-70 nucleotides long) were isolated, 

ligated to linkers, reverse transcribed, and subject to high throughput massively parallel 

sequencing. 1.9 million total reads were obtained. However, only 794 reads mapped to 

the K661 genome, of which, only 40 reads mapped to the pre-miRNA region of K661. 

This sample did however yield a prominent spike in the ~22 nucleotide size class of small 

RNAs mapping to the miRN repository miRBase, consistent with our libraries being 

enriched for miRNAs (Figure 4.3A). Importantly, infection with miRNA wildtype 776 

revealed an ~22 nucleotide peak mapping to the pre-miRNA region of the viral genome 

(Figure 4.3B). This peak was mostly absent in cells infected with K661. We note the lack 

of significant “miRNA-like” reads mapping to any other location of the K661 genome 

argues against the emergence of other possibly compensatory miRNA loci. These data 

further confirm that K661 is severely attenuated for miRNA production. 
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Figure 4.1
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Figure 4.1 SV40 strain K661 is severely attenuated for miRNA expression. 
(A) SV40 strain K661 represents one of the unique classes of variants in the pre-miRNA genomic region from a previously 
published sequence alignment of 63 fully sequenced SV40 genomes (Chen et al., 2013). Gaps in the alignment are indicated by 
“-“ and nucleotide substitution in the terminal loop is indicated by “*”. The corresponding nucleotide positions in the 776 
reference strain genome are labeled at the 5’ and 3’ ends of the sequence. The 5p (black) and 3p (gray) miRNA derivatives are 
underlined and indicated by the arrows. (B) Comparison of large T antigen amino acid sequence between 776 and K661. Gaps 
in the alignment are indicated by “-“. The large T antigen primary sequences are provided for both strain 776 and K661. (C) 
Predicted RNA secondary structures for 776 (top panel) and K661 (bottom panel). The genomic sequences from the alignment 
were subjected to mfold prediction of secondary hairpin structures. The 5p (black) and 3p (gray) miRNA derivatives are 
indicated. The genomic location of the three deleted guanosine residues is indicated by a black arrow. The nucleotide 
substitution in the terminal loop is indicated by “*”. (D and E) High-resolution Northern blot analysis reveals K661 strain as a 
miRNA-null variant of SV40. 293T cells were transfected with the K661, RI257 or the 776 miRNA expression vectors. Total 
RNA was harvested for high-resolution Northern blot analysis. The strain names are indicated at the top of both blots, and the 
blots were probed for either the (D) 5p or the (E) 3p derivative miRNAs. The bands corresponding to the pre-miRNA (white 
arrowhead), the 5p (black arrowhead) and the 3p (gray arrowhead) miRNA derivatives are indicated. As a loading control, 
ethidium bromide-stained low-molecular-weight RNA is shown in the bottom panel and indicated as “EtBr”. 
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Figure 4.2 SV40 strain K661 is severely attenuated for miRNA expression during 
infection.  
Northern blot analysis of SV40 miRNA expression during lytic infections. BSC-40 cells 
were either mock infected, infected with 776, K661, or SVCPC, an archetype SV40 strain 
at an MOI of 10. Total RNA harvested from 48 and 60hpi was subjected to Northern blot 
analysis. Probes designed to recognize the (A) K661 3p miRNA derivative region and the 
(B) K661 5p miRNA derivative region. The bands corresponding to the pre-miRNA 
(white arrowhead), 3p (gray arrowhead) and 5p miRNA (black arrowhead) miRNA 
derivatives are indicated. As a loading control, ethidium bromide-stained low-molecular-
weight RNA is shown in the bottom panel for each blot and indicated as “EtBr”.The 
K661 pri-miRNA is a poor Microprocessor substrate. 
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Figure 4.3 SV40 strain K661 is hypomorphic for miRNAs expression.  
Coverage plot of the deep sequencing reads from (A) K661 and (B) 776 infected BSC-40 
cells. The number of reads that mapped to the indicated viral genomes are represented by 
the black bars. The number of reads that mapped to the miRNA database, miRBase are 
represented by the white bars. The x-axis represents the length of the reads that mapped 
to either the K661 genome or miRBase, the y-axis represents the percent of the mapped 
reads. 
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4.2.2 The K661 pri-miRNA is a poor Microprocessor substrate. 

 

K661 has a three nucleotide deletion mapping to the genomic region containing 

the 5p arm of the pre-miRNA. The nucleotide deletion still allows for preservation of the 

large T antigen amino acid coding potential which overlaps the pre-miRNA locus in the 

opposite orientation. To better understand why K661 has such reduced miRNA levels, we 

re-examined the Northern blot analysis. In addition to the absence of a miRNA band, 

these blots show no detectable pre-miRNA band (Figure 4.1D and E ), consistent with a 

defect in Microprocessor processing of the pri-miRNA. To test this hypothesis, we took 

advantage of a luciferase-based Microprocessor efficiency assay (Ref James’ latest 

(Kincaid et al., 2012; Lin and Sullivan, 2011)). We cloned the pre-miRNA genomic 

regions from either K661 or 776 into the 3’ UTR region of a destabilized Renilla 

luciferase reporter construct (R. luc, Figure 4.4A). As expected, co-transfection of these 

constructs with plasmids expressing Drosha and DGCR8 resulted specific reduction in 

luciferase signal (approximately 70%) consistent with cleavage of the R. luc reporter 

mRNAs by Microprocessor. Importantly, K661 pre-miRNA reporters retained most of 

their activity upon co-expression of exogenous Microprocessor, consistent with an 

ineffective processing (Figure 4.4B). Combined with the Northern blot analysis, these 

results suggest the K661 pri-miRNA is only weakly processed by Microprocessor, 

thereby accounting for at least part of the attenuation of miRNA expression. 
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4.2.3 Rescue of K661 pri-miRNA by restoring four nucleotides.  

K661 represents the only known pre-miRNA class with an internal deletion 

within the pre-miRNA stem region (Chen et al., 2013). To test if this internal deletion 

contributes to the inefficient processing of the K661 pre-miRNA hairpin, we inserted the 

three missing guanosine residues into the K661 heterologous expression vector and 

named the resulting construct “K661+3G”. Northern blot analysis demonstrated that this 

resulted in a partial but substantial rescue of miRNA expression (Figure 4.4C). To 

independently test this construct, we generated an R. luc Microprocessor reporter 

containing the K661+3G chimeric hairpin in its 3’ UTR. Unlike the K661 reporter, co-

transfection of Drosha and DGCR8 expressing plasmids with the K661+3G reporter 

resulted in ~40% reduction in Renilla luciferase activity (Figure 4.4B). The ~40% 

decrease observed, however, was less than the ~70% observed for the 776 pri-miRNA 

reporter. These results suggest that reinsertion of the three guanosine residues allows 

Drosha processing of the K661 pre-miRNA hairpin, but not to the same efficiency as the 

776 pre-miRNA hairpin. Thus, in addition to the three guanosine residues, other 

sequences and/or structural motifs in the K661 pri-miRNA also contribute to the 

decreased miRNA expression. Therefore, we made an additional change, converting the 

adenine located in the terminal loop of the K661 hairpin (Figure 4.1A) to a guanosine, as 

is found in the 776 reference strain, and named the resulting construct 

“K661+3G+776L”. Both Northern blot and reporter construct analyses indicated that 

replacing the three deleted guanosine residues and converting the terminal loop adenine 

to a guanosine residue was able to substantially rescue the K661 hairpin processing 
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(Figure 4.4B and C). These data define sequence changes in the K661 that can account 

for its reduced production of miRNAs.  
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Figure 4.4 Rescue of K661 pri-miRNA by restoring four missing nucleotides.  
(A) Diagram of the K661 and 776 hairpin luciferase reporter. The vectors consist of a 
Renilla luciferase reporter upstream of a single copy of the hairpin structures in the 3’ 
UTR as indicated. (B) The reporters from panel A were co-transfected with firefly 
luciferase expression vector individually into 293T cells, and the Renilla luciferase 
readings (R. Luc) were normalized to the firefly luciferase readings (FF. Luc) and plotted 
on the y-axis. Either the pcDNA3.1neo vector alone or pCK-Drosha-FLAG and pcDNA-
DGCR8-FLAG (1:1) were transfected along with the reporters as well, represented by the 
white and grey bars respectively. The x-axis indicates the different hairpin structures 
cloned into the 3’ UTR of the Renilla luciferase reporter construct. As a negative control, 
Renilla luciferase without 3’ UTR hairpin was used. P values were computed using 
Student’s t test. “*” indicates P < 0.005, “**” indicates P < 0.001, “N.S.” indicates no 
statistical significance. (C) High-resolution Northern blot analysis of K661 rescue 
miRNA expression vectors transfected 293T cells. 293T cells were transfected with 776, 
K661, K661+3G or K661+3G+776L miRNA expression vector. Total RNA was 
harvested and subjected to high-resolution Northern blot analysis. The blot was probed 
for the 3p miRNA derivative. The identities of the expression vectors are indicated at the 
top of the blot. The bands corresponding to the pre-miRNA (white arrowhead) and the 3p 
(gray arrowhead) miRNA derivatives are indicated. A longer exposure of the blot is 
provided in the middle panel to better visualize the 3p miRNA derivatives and indicated 
as “Dark”. As a loading control, ethidium bromide-stained low-molecular-weight RNA is 
shown in the bottom panel and indicated as “EtBr”. 
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4.2.4 Restoring miRNA expression does not result in substantial differences in virus 

growth of K661. 

Our previous cell culture studies with the non-archetype 776 strain failed to 

uncover major differences in virus growth between the wild type reference strain virus 

(776) and one engineered to not express the miRNA (“SM”) (Sullivan et al., 2005). 

However, Broekema and Imperiale recently demonstrated a phenotype for the related 

human polyomavirus BKPyV when it was engineered to lack miRNA expression and 

infections were performed in primary renal proximal epithelial tubule cells (Broekema 

and Imperiale, 2013). Because the phenotype observed by Brokema and Imperiale was 

dependent on the virus having non-rearranged enhancers, we wished to explore if K661 

(which unlike SM lacks a duplicated enhancer), might more readily display miRNA 

effects.  

 

We first engineered a recombinant K661 virus that makes the 776 miRNA 

derivatives by swapping nucleotide position 2770 to 2863 of the corresponding 776 pre-

miRNA region into K661. We named this recombinant virus “K661-776miR”. Northern 

blot analysis of RNA harvested from infected cells confirmed that K661-776miR 

expresses the miRNA (Figure 4.5A). Next we confirmed activity of the miRNA by 

demonstrating that cells infected with K661-776miR give rise to the 3’ early mRNA 

cleavage fragments that we previously have demonstrated are dependent on miRNA-

mediated cleavage (Figure 4.5A, (Chen et al., 2013; Sullivan et al., 2005)). These studies 

demonstrate that replacing nucleotide position 2770 to 2863 in an otherwise K661 genetic 
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background is fully competent to give rise to bioactive viral miRNAs and a replication 

competent chimeric virus. 

 

To determine if restoring the miRNA to K661 results in altered virus replication 

kinetics or yield, BSC-40 cells were infected at an MOI of 10 PFU/cell and media was 

harvested at various times post-infection. As measured by immune staining and flow 

cytometry for infected cells, single step replication cycle analysis of both K661 and 

K661-776miR infections revealed little to no differences (at most less than 1.6-fold 

increase) in the end-point titer for K661-776miR at 96hpi (Figure 4.5B). Besides having 

comparable end point titers, the single step replication cycle kinetics were also highly 

similar between the two viruses (Figure 4.5B). To test virus growth via an independent 

assay, we also determined the release of viral genomes into the supernatant. In agreement 

with our flow cytometry-based infectious assay, real time quantitative PCR (qPCR)-

based quantitation of viral genomes present in the extracellular supernatant did not detect 

any significant differences between K661 and K661-776miR (data not shown). For 

increased sensitivity, we next conducted a multi-step virus replication cycle analysis over 

a 15-day period. Cells were infected at an MOI of 0.01 PFU/cell and approximately every 

3 days post infection (dpi) media was collected. Similar to the single step replication 

cycle analysis, no robust differences in end point titer, replication kinetics, or 

extracellular viral genomes were observed between K661 and K661-776miR (Figure 

4.5C). Finally, we repeated the multiple step virus replication assays on primary rhesus 

kidney epithelial cells. Immunofluorescent microscopy analysis for large T antigen 
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confirmed that primary epithelial cells were readily infected with SV40 (data not shown).  

This analysis revealed that at most, only a subtle difference of less than 2-fold growth 

advantage is observed for K661 over K661-776miR (Figure 4.5D). Combined, these data 

argue that at least in cultured cells, restoring miRNA expression to the proto-archetype 

K661 has only minimal consequences on virus yield and kinetics of virus production. 
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Figure 4.5 Restoring miRNA expression does not result in substantial differences in 
virus growth of K661.  
(A) K661-776miR is a replication competent chimeric virus. K661-776miR was 
generated by swapping the K661 pre-miRNA genomic region with the corresponding 
region in 776. BSC-40 cells were infected with either 776 (WT), K661 (K) or K661-
776miR (K7) at an MOI of 10 PFU/cell. Total RNA was harvested and subjected to 
Northern blot analysis. Uninfected BSC-40 cells were used as a negative control (M). 
The blot was probed for the early transcript cleavage fragment. The bands corresponding 
to the early transcript cleavage fragment (black arrowhead) is indicated. The same RNA 
samples were subjected to Northern blot detection of the 776 3p derivative miRNA 
(indicated as “776 miRNA”). As a loading control, ethidium bromide-stained 28s 
ribosomal RNA is shown in the bottom panel and indicated as “28s rRNA”. (B to D) 
Replication cycle analysis of K661 and K661-776miR. BSC-40 cells were infected with 
either K661 or K661-776miR at an MOI of either (B) 10 or (C) 0.01 PFU/cell. (D) 
Primary rhesus macaque kidney epithelial cells were infected with either K661 or K661-
776miR at an MOI of 0.01 PFU/cell. Supernatant was collected at the time points 
indicated, followed by three rounds of freeze-thaw cycles. The supernatant was titered via 
flow cytometry (Drayman et al., 2010). The titer was determined in terms of PFU/mL and 
plotted on the y-axis. The time points are plotted on the x-axis. The K661 infections are 
indicated as solid lines and the K661-776miR infections are indicated as dotted lines. 
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4.2.5 miRNA-null variants of JCV can arise in humans.  

To determine if other polyomaviruses give rise to strains that are 

null/hypomorphic for miRNA expression, we bioinformatically compared a combined 

3145 different strains of polyomaviral genomes deposited in Genbank. We examined 528 

JCV, 2325 BKV and 292 MCPyV strains. We specifically examined the pre-miRNA 

genomic region with an additional 30 nucleotides of flanking sequence on both sides of 

the precursor hairpin. First, we aligned each to the relevant reference genomes to identify 

those with nucleotide variations in the pre-miRNA genomic region. Those that shared 

93% or less sequence identity with the miRNA-positive reference strain were selected for 

further study. These were then subjected to mfold analysis to identify predicted structures 

inconsistent with the features of a typical pre-miRNA. Using these criteria, we did 

identify any potential miRNA-null strains of BKV or MCPyV, however, we identified 2 

candidates for further study, both strains of JCV (Table 4.1). JCV strain Seq 3-5 contains 

two point mutations in the terminal loop region and a six base pair duplication in the 3p 

mature miRNA, and JCV strain HWM contains a 18 base pair deletion on the 5p side of 

the hairpin including a large portion of the 5p arm of the pre-miRNA region (Figure 

4.6A). As with SV40 K661, these mutations do not alter the amino acid reading frame of 

the large T antigen (Figure 4.6B). Mfold secondary structural analysis predicted distorted 

secondary hairpin structures for both HWM and Seq-3-5, with both unlikely to serve as 

substrates for the Microprocessor (Figure 4.6C). HWM exhibits a shorter, truncated 

hairpin and Seq 3-5 contains an internal bulge that generates a kink in the hairpin 
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structure. We cloned these pre-miRNA and flanking genomic regions behind a 

heterologous promoter that we have previously established is sufficient to drive miRNA 

expression (Figure 4.1 and (Seo et al., 2008)). Although the positive control Mad-1 

reference strain produced readily detectable miRNAs, as predicted from the secondary 

structure analysis, the pre-miRNA genomic regions from both HWM and Seq 3-5 failed 

to produce any specific miRNA products that are detectable by Northern blot analysis 

(Figure 4.6D and E, lanes “Seq 3-5” and “HWM”). This suggests, that similar to SV40 

K661, JC viruses null or hypomorphic for miRNA expression can arise during in vivo 

infection of immunocompromised hosts.
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Table 4.1. SV40, JCV, BKV and MCPyV pre-miRNA sequences examined. 

*Max Percent Identity Cutoff of 93% 

 
 

Number of 
Sequences 
Examined 

Number of 
Predicted Null 

Strains* 

Predicted 
miRNA 
Positive 

Sequences 

Experimentally 
Verified miRNA 

Negative Sequences 
SV40 63 1 62 (98.4%) 1/1 
JCV 528 2 526 (99.6%) 2/2 

MCPy
V 292 0 292 (100%) - 

BKV 2325 0 2325 (100%) - 
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Figure 4.6 
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Figure 4.6 miRNA-null variants of JCV can arise in humans.  
(A) More than six hundred JCV pre-miRNA genomic sequences were subjected to sequence alignment (Kearse et al., 2012). 
Gaps in the alignment are indicated as “-“. The nucleotide position is indicated above the reference JCV strain, Mad-1, at both 
the 5’ and 3’ ends. The 5p (black) and 3p (gray) miRNA derivatives are underlined and indicated by the arrows. (B) The large 
T antigen amino acid sequences of strains Mad-1, Seq 3-5 and HWM are aligned. Gaps in the alignment are indicated as “-“. 
The amino acid position is indicated above strain Mad-1. (C) Predicted RNA secondary structures for Mad-1 (top panel), Seq 
3-5 (middle panel) and HWM (bottom panel). The genomic sequences from the alignment were subjected to mfold prediction 
of secondary hairpin structures. The 5p (black) and 3p (gray) miRNA derivatives are indicated for strain Mad-1. (D and E) 
Northern blot analysis reveals Seq 3-5 and HWM are miRNA-null JCV strains. 293T cells were transfected with the individual 
JCV strains miRNA expression vectors. A plasmid expressing the bovine leukemia virus (BLV) B1 miRNAs was co-
transfected into 293T cells as a transfection control ((Kincaid et al., 2012) indicated as “BLV-B1”). Total RNA was harvested 
for regular Northern blot analysis at 48 hours post transfection. The strain names are indicated at the top of each blot. The blots 
were probed using the HWM 3p probe, Seq 3-5 3p probe or the BLV-B1 3p probe. The bands corresponding to the JCV pre-
miRNA (white arrowhead) and the JCV 5p derivative miRNA (black arrowhead) are indicated. As a loading control, ethidium 
bromide-stained low-molecular-weight RNA is shown in the bottom panel and indicated as “EtBr”. 
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4.3 DISCUSSION 

 

Diverse viruses, including members of the herpes, polyoma and retro virus families 

encode miRNAs, but an depth understanding of their functions remains a work in 

progress. Our previous work has established that at least 6 different polyomaviruses 

encode miRNAs that are all capable of autoregulating T antigen transcripts expression via 

RISC-mediated cleavage (Chen et al., 2013; Seo et al., 2008, 2009; Sullivan et al., 2005, 

2009). Furthermore, bandicoot papillomatosis viruses 1 & 2 (BPCV 1 & 2), hybrid 

polyomavirus-papilloma viruses, also encode miRNAs capable of regulating the T 

antigen transcripts, albeit this likely does not occur through RISC-mediated direct 

cleavage of the target transcripts (Chen et al., 2011). The conservation of miRNA-

mediated regulation of the T antigen transcripts in such diverse viruses implies that this is 

advantageous to the lifecycles of some polyoma and polyoma-like viruses. However, the 

exact component(s) of the virus lifecycle where miRNA-mediated autoregulation is 

relevant remains unclear. Here, we set out to identify polyomavirus variants that are 

null/attenuated for miRNA expression (and the conditions where they can arise) in an 

attempt to better understand miRNA function in the polyomavirus lifecycle. 

 

We bioinformatically screened over 3208 strains from 4 different polyomaviruses. 

From this, we identified only three virus strains, one SV40 and two JC viruses, that have 

lost the ability to code for miRNAs. Although we cannot rule out that our approach 
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missed additional strains hypomorphic for miRNA production, we can say with 

confidence that major aberrations to the pre-miRNA genomic region are only rarely 

observed (Table 4.1). How do variants attenuated for miRNA production arise? Two of 

the miRNA null/attenuated viruses we identified arose from small deletions in the pre-

miRNA region, and one from a small insertion. Interestingly, all three variants preserve 

the amino acid reading frame of the large T antigen (Figure 4.1 and 4.6), demonstrating 

that while loss of the miRNA expression may be tolerated in some circumstances, 

naturally arising large T antigen truncations are not detected. Our in depth 

characterization of SV40 K661 demonstrates that at least part of the defect in miRNA 

biogenesis is due to an inefficient early processing event of the pri-miRNA. Both 

Northern blot analysis and a luciferase-based Drosha-mediated cleavage assays suggest 

that the K661 pre-miRNA region is a poor substrate for Microprocessor (Figure 4.4). 

Structural predictions from the pre-miRNA regions of both JCV strains, Seq 3-5 and 

HWM, suggest that they are also poor Dicer substrates (Figure 4.6C). Thus, a picture 

emerges whereby rare occurrences of miRNA attenuated/null polyomaviruses can occur 

due to defects in Drosha processing, but preservation of the carboxy terminus of large T 

antigen remains essential.  

 

All three miRNA null/attenuated polyomaviruses that we identified were detected 

in severely immunocompromised hosts. Although immunocompromisation is clearly not 

sufficient to give rise to miRNA attenuated/null polyomaviruses (as the vast majority of 

deposited JCV strains are from immunocompromised patients suffering from Progressive 
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multifocal leukoencephalopathy (PML)), this nonetheless may be an informative 

observation given previous reports suggesting a possible link for the polyomaviral 

miRNAs in suppressing the immune response (Bauman and Mandelboim, 2011; Bauman 

et al., 2011). Previous studies in cell culture and in vivo failed to identify any defect in 

various polyomaviruses engineered to lack miRNA expression (Sullivan et al., 2005, 

2009), and in certain conditions such mutants actually display a replicative advantage 

(Broekema and Imperiale, 2013; Zhang et al., 2014). Nonetheless, the high degree of 

conservation of the polyomaviral miRNAs implies a fitness disadvantage for strains that 

lose the miRNA. Therefore an important challenge for the future is developing an in vivo 

model system where a fitness cost is observable for miRNA mutant viruses. In light of 

our findings, a likely fruitful pursuit in this arena is determining experimental conditions 

that better approximate natural infection and immune response. 

 

All three polyomaviral miRNA attenuated/null polyomaviruses that we have 

identified likely arose during infection of an immunocompromised host (Table 4.2). The 

JCV strain Seq 3-5 was detected in the cerebral spinal fluid (CSF) of a severely 

immunocompromised patient suffering from PML (Dang and Koralnik, 2006). Seq 3-5 

arose upon a six base pair insertion within the 3p arm of the pre-miRNA genomic region 

(Zheng et al., 2005). We reach this conclusion because the distinct enhancer region and 

other atypical identifying genomic features of Seq-3-5are observed in other JCV strains 

isolated from the same patient, yet these parental strains still preserve an in tact pre-

miRNA genomic region (Zheng et al., 2005). For SV40 K661, it seems likely that the 
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immunocompromised host where K661 was isolated from was de novo infected with this 

virus (Lednicky et al., 1998). We base this hypothesis on the observation that a very 

closely related SV40 strain, I275, was isolated from an older immunocompromised host 

rhesus macaque housed at the same primate center. The host, from which I275 was 

isolated, also contained highly similar SV40 strains with the same genomic “fingerprint” 

(same genetic features in the non-coding control region), except that they contained the 

pre-miRNA genomic region in tact (Newman et al., 1998). Thus, it seems that under 

some circumstances, SV40 viruses defective for miRNA production can be transmitted. 

In this example, it is important to note that out of the eight rhesus macaques hosts tested, 

only the host of K661 did not have a neutralizing antibody response to SV40 (Lednicky 

et al., 1998). Thus, we cannot rule out the possibility that transmission of miRNA 

defective K661 is an uncommon event due to atypical immunocompromisation of the 

recipient host. Although immunocompromisation is clearly not sufficient to give rise to 

miRNA attenuated/null polyomaviruses (as the vast majority of deposited JCV strains are 

from immunocompromised patients suffering from Progressive multifocal 

leukoencephalopathy (PML)), our findings may nonetheless be informative given 

previous reports suggesting a possible link for the polyomaviral miRNAs in suppressing 

the immune response (Bauman and Mandelboim, 2011; Bauman et al., 2011).  

 

In summary, we show that polyomaviruses defective for miRNA expression can 

infrequently arise during in vivo infection. Our results show that loss of the miRNA can 

be observed under conditions of immune suppression, consistent with a functional role 
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that is most important in hosts/model systems possessing an in tact immune response. As 

most polyomavirus-associated disease is thought to derive from dysregulation of 

persistent infection, testing such a model should advance our understanding of disease 

genesis and possibly contribute to the development of new biomarkers for early detection 

of disease. 
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Table 4.2. Isolation of miRNA-null/attenuated strains of SV40 and JCV in 
immunocompromised host. 

Viruses Strains Host Detected Immunocompromisation 
SV40 K661 Rhesus macaque SIV-infected, SV40-

induced lesions in brain, 
lung, thymus, small 

intestine and kidney. No 
detectable level of SV40 

neutralizing antibody. 
SV40 I275 Rhesus macaque SIV-infected, minimal 

retroviral encephalitis. 
SV40-induced lesions. 

JCV HWM Human HIV-positive, PML 
lesions in the hemispheric 

white matter. 
JCV Seq 3-5 Human PML, quadriplegia and 

pseudobulbar paralysis  
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4.4 MATERIALS AND METHODS 

 

4.4.1 SV40 and JCV sequence analysis and alignment.  

63 unique SV40 complete and 656 genome sequences were aligned based on a ~ 

120bp region encompassing the pre-miRNA, using the Geneious software (Biomatters, 

New Zealand, (Kearse et al., 2012)). The genome accession numbers of the miRNA-

positive reference strains are as follows: SV40 (J02400.1), JCV (NC_001699), BKV 

(NC_001538), MCPyV (EU_375803). 

 

4.4.2 Cell culture and RNA isolation.  

Human embryonic kidney 293T cells (HEK293T), African green monkey kidney 

epithelial cells BSC-40 were obtained from the American Type Culture Collection 

(Manassas, VA). All cell cultures were maintained in Dulbecco’s modified Eagle’s 

medium supplemented with 10% fetal bovine serum (Life Technologies, Carlsbad, CA). 

Total RNA was harvested using an in-house PIG-B solution as described previously 

(Chen et al., 2011; Lin et al., 2010; Seo et al., 2008; Weber et al., 1998). 
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4.4.3 MiRNA expression vector construction, transfection, and Northern blot 

analysis.  

All DNA vector constructs were sequence verified through sequence analysis at 

the Institute of Cellar and Molecular Biology Sequencing Facility at the University of 

Texas at Austin. The primers used in the construction of 776, K661 and RI257 miRNA 

expression vectors have been listed previously (Chen et al., 2013). The primers used in 

the construction of K661+3G and seven unique JCV miRNA expression vectors are listed 

in Table 4.3. The construction of wild type JCV (Mad-1) miRNA expression vector has 

been described previously (Seo et al., 2008). Briefly, the primers are annealed and filled-

in using Phusion High-Fidelity DNA polymerase (New England BioLabs, Ipswich, MA) 

according to the manufacturer’s protocol. The PCR products are cloned into the 

KpnI/XhoI or the XhoI/XbaI sites of the pcDNA3.1 expression vector. 293T cells were 

plated in 6-wells plates and transfected with the expression vectors using the 

Lipofectamine 2000 transfection reagent (Life Technologies) according to the 

manufacturer’s instruction. As a negative control, cells were transfected with empty 

pcDNA3.1neo vector. Total RNA was harvested at 48 hours post-transfection. Total 

RNA from SV40 strain miRNA expression vectors transfected 293T cells were subjected 

to a modified version of high-resolution Northern blot analysis (Chen et al., 2013; 

Koscianska et al., 2011), and total RNA from JCV strain miRNA expression vectors 

transfected 293T cells were subjected to regular Northern blot analysis (Sullivan et al., 

2005). A plasmid expressing the bovine leukemia virus (BLV) B1 miRNAs was co-

transfected as a transfection control (Kincaid et al., 2012). Briefly, 30 micrograms of total 
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RNA (High-resolution) or 10 micrograms of total RNA (regular) was separated on a Tris-

borate-EDTA-Urea-15% denaturing polyacrylamided gel. The bromophenol blue marker 

was allowed to migrate 30cm (High-resolution) or 7cm (regular) along the length of the 

gel. The RNA was transferred onto a Hybond N+ membrane (GE Healthcare, Pittsburgh, 

PA). The probe sequences used are listed in Table 4.4. 

 

4.4.4 Construction of the K661-776miR virus.  

To generate the K661-776miR chimeric virus, PCR was used to amplify the 776 

pre-miRNA region (nucleotide position 2770 to 2863). Two sets of overlapping PCR 

were then performed to generate the resulting K661-776miR chimeric fragment. The 

K661 viral DNA was digested and cloned into the BamHI site of the pUC19 vector, 

generating pUC19-K661. The K661-776miR PCR fragment was digested and cloned into 

the BamHI/BstXI sites of the pUC19-K661 vector to generate pUC19-K661-776miR. 

The K661-776miR chimeric virus was produced as described previously (Kraus and 

Mertz, 2001). Briefly, pUC19-K661-776miR was digested with BamHI, followed by 

intramolecular ligation of the viral DNA. The ligation reaction was then transfected into 

BSC-40 and further amplified. The primers used are listed in Table 4.3. 

 

4.4.5 Luciferase Assays.  

The viral pre-miRNA hairpin 3’ UTR reporters were constructed by cloning the 

pre-miRNA region of each strain using the primers listed in Table 4.3. Briefly, the PCR 
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products are generated using Phusion High-Fidelity DNA polymerase (New England 

BioLabs) according to the manufacturers protocol, and cloned into the pcDNA3.1dsRluc 

vector, which expressed a destabilized version of Renilla luciferase. 293T cells were 

plated in 24-wells plates and transfected using the Turbofect transfection reagent 

(Thermo Scientific, Waltham, MA). In addition to the individual reporters, 293T cells 

were co-transfected with pCK-Drosha-FLAG and pcDNA-DGCR8-FLAG at a ratio of 

1:1. 293T cells were also transfected with the empty Renilla reporter construct as a 

negative control. The pcDNA3.1Luc2CP vector was also co-transfected to normalize for 

transfection efficiency. The transfected cells were collected and lysed at 24 hours post-

transfection and analyzed with the Dual-luciferase reporter assay system (Promega, 

Fitchburg, WI) according to the manufacturer’s instruction. The luciferase readings were 

collected via a Luminoskan Ascent microplate luminometer (Thermo Scientific). The 

readings from the Renilla luciferase were normalized to the readings from the firefly 

luciferase, and the ratios were plotted as a bar graph relative to the empty vector control. 

 

4.4.6 SV40 infections for single and multi-replication cycle analyses.  

BSC-40 cells were seeded in 6-wells plates. The cells were infected with either 

K661 or K661-776miR when the cells were freshly confluent. For single-replication 

cycle analysis, cells were infected at an MOI of 10, for multi-replication cycle analysis, 

cells were infected at an MOI of 0.01. 500 microliters of viral inoculum was used for 

each well after aspiration of the original media, with each infection performed in 

triplicates. The plates were rocked back-and-forth every 15 minutes for 2 hours at 37°C 
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(Tremblay et al., 2001). The viral inoculum was replaced with DMEM supplemented 

with 2% FBS. For multi-replication cycle analysis in primary rhesus macaque kidney 

epithelial cells (Diagnostic Hybrids, Athens, OH), cells were also infected at an MOI of 

0.01. 200 microliters of viral inoculum was used for each vial of cells and infection was 

performed as described above. For the single-replication cycle analysis, supernatant was 

collected and subjected to three rounds of freeze-thaw cycles every 24 hours post 

infection, from 24 to 96 hours post infection. For the multi-replication cycle analysis, 

supernatant was subjected to the same freeze-thaw cycles every 3 days post infection, 

from 3 to 15 days post infection (for BSC-40) or every 4 days post infection, from 4 to 16 

days post infection (for the primary rhesus macaque kidney epithelial cells).  

 

4.4.7 Titering of supernatant via flow cytometry.  

The supernatant was titered using a modified version of the protocol published 

(Chen et al., 2013; Drayman et al., 2010). Briefly, BSC-40 cells were seeded in 6-wells 

plate and infected with diluted supernatant as described above. The infected cells were 

harvested using cell dissociation buffer (Life Technologies). Cells were fixed, 

permeabilized and stained for large T antigen using the pAB416 antibody (kindly 

provided by Dr. Jim Pipas) as previously described (Chen et al., 2013). The cells were 

analyzed using a BD ACCURI C6 flow cytometer (BD Biosciences, San Jose, CA). The 

titer for the supernatant was determined from a standard curve generated using viral 

stocks with known titers. 
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4.4.8 Titering of supernatant via real time quantitative PCR (qPCR).  

The supernatant was also titered using a modified version of the protocol 

published (Murata et al., 2009). Briefly, the collected supernatant was diluted by a 

hundred fold in water. One microliter of the diluted supernatant was used in a twenty 

microliters qPCR reaction with ten microliters of 2X PerfeCTa® SYBR® Green FastMix® 

ROX master mix (Quanta Biosciences, Gaithersburg, MD), 0.2 microliters each of the 

forward and reverse primer at 10μM. The qPCR reactions were performed on a ViiATM 7 

Real-Time PCR system (Life Technologies). For the quantification of the absolute 

number of viral genome equivalence, a serial dilution of pUC19-K661 vector was 

included as well. 

 

4.4.9 Small RNA library and computational analysis of sequencing reads.  

BSC-40 cells were seeded in T75 tissue culture flask and infected with K661 at an 

MOI of 20 as described above. Total RNA from the infected cells was harvested at 40hpi. 

The small RNA fraction was gel fractionated as previously described and subjected to 

SOLiD next generation sequencing as previously described (Chen et al., 2013; Lin et al., 

2010). The next generation sequencing analysis of 776 infected BSC-40 was obtained 

from a previously published report (cite chen Sullivan 2013). 

4.4.10 Northern blot analysis of cleavage fragments of early transcripts. 

BSC-40 cells were seeded in 6-wells plates and infected with 776, K661 or K661-

776miR at an MOI of 10 as described above. Total RNA was harvested at 48 and 60hpi 



 167 

as described above. 10 micrograms of total RNA was subjected to 1.5% denaturing 

MPOS-formaldehyde-agarose gel electrophoresis as described (Molecular cloning 

manual). The RNA was transferred onto Nytran SPC nylon transfer membrane (GE 

Healthcare Life Sciences, Pittsburgh, PA) using the TurboBlotter System (GE Healthcare 

Life Sciences) according to the manufacturer’s instructions. The membrane was probed 

for the cleavage fragment of viral early transcripts in ExpressHyb hybridization solution 

(Clontech) at 45°C. The probe sequences used are listed in Table 4.4. 
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Table 4.3 List of primers for the construction of miRNA expression vectors, K661-776miR chimeric virus and 3’ UTR 
hairpin reporter constructs. 
 

Construction of JCV miRNA expression vectors 
JCV HWM Long 
Forward CTTTACAGATGTGATAGGTGCAGTGTTCCTGTGTGTCTGCACCAGAGGCTTCTGAGACCTGAGATTCAGTGCTTGATCCATG 
JCV HWM Long 
Reverse GGGGAGACCCATTCTTGACTTTCCTAGAGAGGAAGATTCTGAAGCAGAAGACTCTGGACATGGATCAAGCACTGAATCTCAG 
JCV miR KpnI 
Forward ATCGATCGAGGTACCCTTTACAGATGTGATAGGTGCAGTGTTC 
JCV miR XhoI 
Reverse ATCGATCGACTCGAGGGGGAGACCCATTCTTGACTTTC 

SAM-12 Forward ACTGCTCGAGAGGTGCAGTTTTCCTGTGTGTCTGCACCAAAGGCTTCTGAAACCTGGGAAAAGCATTGTGATTGTGATTCAGT 

SAM-12 Reverse ACTGTCTAGAACTTTCCTAGAGAGGAAGATTCTGAAGCAGAAGACTCTGGACATGGATCAAGCACTGAATCACAATCACAATG 

Seq 3-5 Forward ACTGCTCGAGAAGTGCAGTGTTCCTGTGTGTCTGCACCAGAGGCTTCTGAGACCTGGGAAAAGCATTGTGACTGAGATTCAGTGCT 

Seq 3-5 Reverse ACTGTCTAGAACTTTCCTAGAGAGGAAGATTCTGAAGCAGAAGACTCTGGACATGGACATGGATCAAGCACTGAATCTCAGTCACA 

FC-1 Forward ACTGCTCGAGAAGTGCAGTGTTCCTGTGTGTCTGCACCAGAGGCTTCTGAGACCTGGGAATAGCATTGTGATTGAGATTCAGT 

FC-1 Reverse ACTGTCTAGAACTTTCCTAGAGAGGAAGATTCTGAAGCAGAAGACTCTGGACATGGATCAAGCACTGAATCTCAATCACAATG 

JAL Forward ACTGCTCGAGAAGTGCAGTGTTCCTGTGTGTCTGCACCAGAGGCTTCTGAGACCTGGGAAGAGCATTGTGATTGAGATTCAGT 

JAL Reverse ACTGTCTAGAACTTTCCTAGAGAGGAAGATTCTGAAGCAGAAGACTCTGGACATGGATCAAGCACTGAATCTCAATCACAATG 

FL-7 Forward ACTGCTCGAGAAGTGCAGTTTTCCTGTGTGTCTGCACCAGAGGCTTCTGAGACCTGGGAAAAGCATTGTGATTGTGATTCAGT 

FL-7 Reverse ACTGTCTAGAACTTTCCTAGAGAGGAAGATTCTGAAGCAGAAGACTCTGGACATGGATCAAGCACTGAATCACAATCACAATG 

MO-1 Forward ACTGCTCGAGAAGTGCAGTGTTCCTGTGTGTCTGCACCAGAGGCTTCTGAGACCTGGGAAAAGCATTGTGATTGAGATTCAGT 

MO-1 Reverse ACTGTCTAGAACTTTCCTAGAGAGGAAGATTCTGAAGCAGAAGACTCTGGACATGGATCAAGCACTGAATCTCAATCACAATG 

Construction of K661+3G miRNA expression vector 
K661+3G Forward GATGTGATATGGCTGATTATGATCATGAACAGACTGTGAGGACTGTGAGGGCTGAGGGGCCTGAAATGAGCCTTGAGACTGTGAATCAA 

K661+3G Reverse CAGCCAGGAAAATGCTGATAAAAATAGAACATGGAAGACTCAGGGCATGAAACAGGCATTGATTCACAGTCTCAAGGC 

Construction of K661-776miR 
776 miRNA Reverse AGAACATGGAAGACTCAGGGC 
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Table 4.3, cont.  
miRNA antisense GTCCTCACAGTCTGTTCATGATCA 

miRNA sense GCCCTGAGTCTTCCATGTTCT 

K661 BamHI Forward CTGGGGATCCAGACATGATAAGATA 

K661 BstXI Reverse AAAGATCCACTTGTGTGGGTTG 

Construction of pre-miRNA hairpin reporter constructs 
SV40 miR Forward ATCGATCGACTCGAGTTATGTTTCAGGTTCAGGGGG 

776 miR Reverse ATCGATCGATCTAGAGTGGCTATGGGAATTGGAG 

K661 miR Reverse ATCGATCGATCTAGAGTGGCTATGGGAGTTGGAG 

K661+3G Forward GCATCCTCGAGGATGTGATATGGCTGATTATGATC 

K661+3G Reverse GACTAGGCCCCAGCCAGGAAAATGCTGATAAAAATG 
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Table 4.4 List of probes used in the Northern blot analysis. 
 

Northern Blot Probes 
776 3p probe CTCAGGGCATGAAACAGGC 

JCV 5p probe CAATCACAATGCTTTTCCCAGGTCTCAGAAGCCTCT 

JCV 3p probe CAGAAGACTCTGGACATGGATCAAGCACTGAATCA 

JCV loop probe AGCACTGAATCACAATCACAAT 

JCV HWM 5p probe CTGAATCTCAGGTCTCAGAAGCCTCTGGTGCAGA 

JCV HWM 3p probe TCTGAAGCAGAAGACTCTGGACATGGATCAAGCA 

JCV HWM loop probe GAATCAAGCACTGAATCTCA 

SAM-12 5p probe CAATCATGCTTTTCCCAGGTTTCAGAAGCCTTTGGTGCAGA 

SAM-12 loop probe CACTGAATCACAATCACAATG 

SAM-12 5' flank probe TTGGTGCAGACACACAGGAAAACTGCACCT 

SAM-12 3' flank probe ACTTTCCTAGAGAGGAAGATTCTGAAGCAG 

Seq 3-5 5p probe CAGTCACAATGCTTTTCCCAGGTCTCAGAAGCCTCTGGTGCAGA 

Seq 3-5 3p probe TCTGAAGCAGAAGACTCTGGACATGGACATGGATCAAGCACTGAATCTC 

Seq 3-5 loop probe CACTGAATCTCAGTCACAATG 

Seq 3-5 5' flank probe CTGGTGCAGACACACAGGAACACTGCACTT 

Seq 3-5 3' flank probe ACTTTCCTAGAGAGGAAGATTCTGAAGCAG 
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CHAPTER 5 Conservation of Viral MicroRNAs Among Diverse, 

Non-human Members of the Polyomavirus Family 

 

5.1 INTRODUCTION 

 

Multiple members of the polyomavirus family have been shown to encode viral 

miRNAs (Cantalupo et al., 2005; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009). 

Based on their genomic location, the polyomaviral miRNAs can be catergorized into two 

groups. The “SV40-like” category encompasses the Simian Virus 40 (SV40), Simian 

agent 12 (SA12), BK virus (BKV) and JC virus (JCV) miRNAs (Cantalupo et al., 2005; 

Seo et al., 2008; Sullivan et al., 2005), which are located antisense to the C-terminus of 

the large T antigen coding region. The “muPyV-like” category, on the other hand, 

contains the murine polyomavirus (muPyV) and Merkel Cell polyomavirus (MCV) 

miRNAs (Seo et al., 2009; Sullivan et al., 2009), which are also located antisense, but 

near the N-terminus of the large T antigen coding region. Regardless of their genomic 

location, these polyomaviral miRNAs have been demonstrated to have autoregulatory 

effect on the T antigen transcripts (Cantalupo et al., 2005; Seo et al., 2008, 2009; Sullivan 

et al., 2005, 2009). The conserved nature of this mode of autoregulation implies 

importance. However, it remains unclear as to how this miRNA-mediated autoregulation 

of the early transcripts contribute to polyomavirus biology. 
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miRNAs are small (approximately 22nt) molecules with regulatory functions. 

miRNAs play important roles in multiple faucets of biology, in particular, immunology 

and virology (reviewed in (Bartel, 2009; Boss and Renne, 2010; Cullen, 2011, 2013; 

Grundhoff and Sullivan, 2011; Kincaid and Sullivan, 2012)). The biogenesis of miRNAs 

have been intensely reviewed (Carthew and Sontheimer, 2009; Kim et al., 2009; Winter 

et al., 2009). Briefly, miRNAs are transcribed first as a longer, pre-miRNA hairpin 

containing pre-cursor RNA molecule known as the primary-miRNA (pri-miRNA). The 

pre-miRNA hairpin structure is recognized and process by Drosha and DGCR8 as part of 

a multi-protein complex, known as the Microprocessor complex (Denli et al., 2004; 

Gregory et al., 2004; Lee et al., 2003; Zeng and Cullen, 2005; Zeng et al., 2004). The pre-

miRNA is then exported from the nucleus to the cytoplasm via Exportin 5 (Bohnsack, 

2004; Lund et al., 2004; Yi et al., 2003). In the cytoplasm, the pre-miRNA molecule 

undergoes a second processing step, mediated by Dicer, to remove the terminal loop, 

which results in a small RNA duplex (Bernstein et al., 2001; Grishok et al., 2001; 

Hutvagner et al., 2001; Ketting et al., 2001). The abundant strand of the duplex, known as 

the guide strand, is preferentially loaded into the RNA-induced silencing complex (RISC) 

(Gregory et al., 2005). The less abundant strand, sometimes referred to as the passenger 

or the “*” (star) strand (Bartel, 2009), is ultimately turned over. When the miRNA binds 

to its target transcripts with imperfect sequence complementarity, translational repression 

of the target transcripts occurs (Humphreys et al., 2005; Pillai et al., 2005), followed by 

an increase in turnover of those target transcripts (Bagga et al., 2005; Bazzini et al., 2012; 

Behm-Ansmant et al., 2006; Giraldez et al., 2006). Although rare, some plant, animal and 
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viral miRNAs can also bind with perfect sequence complementarity to their target 

transcripts, resulting in an endonucleolytic cleavage (Hornstein et al., 2005; Llave et al., 

2002; Shin et al., 2010). 

In this study, we set out to better understand the biological significance of 

miRNA-mediated autoregulation of the early transcripts. We have previously 

demonstrated that the miRNAs are highly conserved among different strains of SV40 and 

JCV. In addition, a circulating SV40 isolate, despite encoding miRNAs with substantially 

different seed repertoire, could still mediate the cleavage of the early viral transcripts. 

Furthermore, we have also shown that a similar mode of autoregulation of the T antigens 

occurs in a very different class of viruses, the polyoma-like Bandicoot Papillomatosis 

Carcinomatosis Viruses 1 and 2 (BPCV1 and 2), There, the BPCV miRNAs recognizes 

the 3’ UTR of the early transcripts (Chen et al., 2011). Combined, these results imply an 

evolutionary pressure to maintain the autoregulation of the early viral transcripts. 

Furthermore, since members of the “muPyV” like category can also encode the middle T 

antigen, it is possible for the polyomaviral miRNAs to have independently evolved. 

Therefore, we set out to determine if like the SV40-like viruses, the miRNA-mediated 

autoregulation of the early transcripts is also conserved in divergent polyomaviruses. 

Here, we make use of the recent boom in the discovery of new polyomaviruses, both 

human and non-human (Buck et al., 2012; Dela Cruz et al., 2013; Korup et al., 2013; 

Leendertz et al., 2011; Scuda et al., 2011, 2013; Siebrasse et al., 2012; Stevens et al., 

2013), combining an evolutionary and computational approach to determine if other 

evolutionarily distant polyomaviruses are capable of encoding miRNAs. We inspected 
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four recently discovered non-human polyomaviruses – the Pan troglodyte verus 

polyomaviruses 1a and 2a (PtsPyV1a and 2a), Gorilla gorilla gorilla polyomavirus 1 

(GggPyV1) (Leendertz et al., 2011) and the raccoon polyomavirus (RacPyV) (Dela Cruz 

et al., 2013), which are closely related to MCV, the first oncogenic human polyomavirus 

(Feng et al., 2008), and determine if they would also encode miRNAs. We demonstrated 

that three of the four polyomaviruses inspected indeed expressed miRNAs. More 

importantly, for RacPyV, which has been strongly suggested as the etiological agent of 

raccoon brain tumors, we were able to demonstrate the robust expression of the viral 

miRNAs in raccoon brain tumor samples. 
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5.2 RESULTS 

 

5.2.1 Computational prediction and verification of PtsPyV2a, GggPyV1 and RacPyV 

miRNAs.  

We have previously demonstrated that diverse members of the polyomavirus 

family encode miRNAs that autoregulate the early viral gene products (Cantalupo et al., 

2005; Chen et al., 2013; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009). The 

biological significance of this conserved mode of autoregulation, however, remains 

unclear. Thus far, the capacity to encode miRNAs has only been demonstrated for a few 

members of the polyomavirus family, to better understand the biological significance of 

autoregulation of the early transcripts, we sought to determine if other evolutionarily 

distant members of this virus family encode miRNAs as well. We inspected four recently 

discovered non-human polyomaviruses, two from West African chimpanzee (Pan 

troglodytes verus), one from western lowland gorilla (Gorilla gorilla gorilla), and one 

from North American raccoon (Procyon lotor). Phylogenetic analysis of these four 

viruses and six other polyomaviruses that are known to encode miRNAs indicates that 

Pan troglodyte verus polyomavirus 2a (PtsPyV2a) (Leendertz et al., 2011) and Gorilla 

gorilla gorilla polyomavirus 1 (GggPyV1) (Leendertz et al., 2011) are evolutionarily 

closest to MCV but distant from the two prototypic members of the family, muPyV and 

SV40. Whereas for Pan troglodyte verus polyomavirus 1a (PtsPyV1a), it is still an 
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evolutionarily close relative of MCV, but not to the same extent as PtsPyV2a and 

GgGPyV1 (Leendertz et al., 2011). On the other hand, raccoon polyomavirus R45 strain 

(RacPyV) (Dela Cruz et al., 2013) is a much more distant relative of MCV than the other 

three non-human primate polyomaviruses (Figure 5.1A). However, these four 

polyomaviruses are all evolutionarily closer to MCV than SV40 and muPyV, which is in 

agreement with other phylogenetic analysis (Figure 5.1A, (Dela Cruz et al., 2013; 

Leendertz et al., 2011; Stevens et al., 2013; Yamaguchi et al., 2013)). Whole genome 

sequences of PtsPyV1a and 2a, GggPyV1 and RacPyV were first subjected to the VMir 

pre-miRNA hairpin prediction algorithm (Grundhoff et al., 2006). Our strategy for 

selecting possible pre-miRNA candidates was based on three parameters. First, the raw 

score for each candidate has to be scored at a VMir cut-off value of at least 125. Second, 

based on all previously discovered polyoma and polyoma-like viral miRNAs (Chen et al., 

2011, 2013; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009), the pre-miRNA 

candidates had to be in the late orientation. Third, since phylogenetic analysis had 

identified the four polyomavirus in this study to be evolutionarily close to MCV (Dela 

Cruz et al., 2013; Leendertz et al., 2011; Stevens et al., 2013), we therefore put our 

emphasis on the pre-miRNA hairpin candidates that are located near the genomic loci at 

which the MCV miRNAs were discovered (Figure 5.1B, C, D and E).  
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Figure 5.1 Selection of polyomaviruses and computational prediction of pre-
miRNA candidates.  
(A) Phylogenetic analysis of polyomavirus encoded large T antigen. Phylogenetic tree 
was constructed using the large T antigen amino acid sequences. The phylogenetic 
analysis was performed by the neighbor-joining method, with the amino acid replacement 
per site indicated along the length of each branch. (B – E) Vmir prediction of pre-miRNA 
candidates for RacPyV (B), PtsPyV1a (C), PtsPyV2a (D) and GggPyV1 (E) pre-miRNAs 
candidates. The pre-miRNA candidates were selected based on RNA secondary structure 
folding and genomic locations. The chosen pre-miRNA candidates are circled.
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To determine if the selected pre-miRNA candidates are indeed processed into 

bona fide miRNAs, approximately 140bp regions encompassing the candidate pre-

miRNAs were synthesized and individually cloned into a heterologous expression vector. 

The expression vectors were then transfected into 293T cells and total RNA was 

harvested at 48 hours post transfection. Northern blot analysis of the RNA clearly 

demonstrates that PtsPyV2a (Figure 5.2C and D), GggPyV1 (Figure 5.2E and F) and 

RacPyV (Figure 5.2G and H) encode miRNAs. For these three polyomaviruses, probes 

that had been designed to recognize the 5p derivative miRNAs resulted in higher 

intensity miRNA bands (Figure 5.2C, E and G, lanes “2”, “G” and “R”, black 

arrowheads) than the probes that recognized the 3p derivative miRNAs (Figure 5.2D, F 

and H, lanes “2”, “G” and “R”, grey arrowheads). Due to high sequence similarity 

between the PtsPyV2a and GggPyV1 5p probes (45 out of 50 nucleotide identity), cross-

reactivity between the PtsPyV2a and GggPyV1 5p miRNAs could be observed (Figure 

5.2C and 2E, lanes “2” and “G”, black arrowheads). Probes that had been designed to 

recognize the loop region of the pre-miRNA hairpin allowed the detection of only the 

higher-molecular-weight pre-miRNA species via Northern blot analysis (data not shown), 

suggesting that the predicted hairpins of PtsPyV2a, GggPyV1 and RacPyV to be bona 

fide pre-miRNAs. Furthermore, neither upstream nor downstream probes that had been 

designed to recognize the 5’ and 3’ regions flanking the pre-miRNA hairpin revealed any 

signals for PtsPyV2a, GggPyV1 and RacPyV (data not shown). This result confirms the 

small RNA signals observed in the Northern blot analysis cannot be accounted for by 

random RNA degradations. The combined Northern blot analysis of PtsPyV2a, GggPyV1 
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and RacPyV indicates that the 5p miRNA derivatives for all three aforementioned 

polyomaviruses are most likely the guide strands (Figure 5.2C to H). However, probes 

that had been designed to recognize the 5p, 3p derivative miRNA regions of the predicted 

pre-miRNA candidate for PtsPyV1a did not result in any detectable small RNA signals 

via Northern blot analysis (Figure 5.2A and B). Additional Northern blot analysis using 

5’, 3’ flanking and the terminal loop probes also failed to reveal any detectable signals 

from the PtsPyV1a pre-miRNA candidate expression vector transfected cells, suggesting 

that PtsPyV1a does not encode miRNA, at least from the genomic loci chosen in this 

study.  
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Figure 5.2 PtsPyV2a, GggPyV1 and RacPyV encode miRNAs.  
Northern blot confirmation of miRNA expression. The selected Vmir predicted pre-
miRNA candidates were cloned into heterologous expression vectors and transfected into 
293T cells. Total RNA from 48 hours post transfected cells were subjected to Northern 
blot analysis. Probes designed to recognize the (A) PtsPyV1a 5p, (B) PtsPyV1a 3p, (C) 
PtsPyV2a 5p, (D) PtsPyV2a 3p, (E) GggPyV1 5p, (F) GggPyV1 3p, (G) RacPyV 5p and 
(H) RacPyV 3p were used. As controls, cells were transfected with either the empty 
pcDNA3.1neo vector (indicated as “N”) or an SV40 miRNA expression vector (indicated 
as “S”). As Northern blot analysis controls, the blot were probed for either the SV40 3p 
miRNA or the cellular miRNA, let-7a. The bands corresponding to the pre-miRNAs 
(white arrowhead), 5p miRNAs (black arrowhead) and 3p miRNAs (grey arrowhead) are 
indicated. As a loading control, ethidium bromide-stained low-molecular-weight RNA is 
shown in the bottom panel for each blot. The identity of each lane is indicated at the top 
of each blot as follows: 1 = PtsPyV1a, 2 = PtsPyV2a, G = GggPyV1 and R = RacPyV.



 181 

 
To determine if the PtsPyV2a, GggPyV1 and RacPyV miRNAs are biologically active, 

we next engineered 3’ UTR reporter constructs with sequences antisense to each of the 

corresponding pre-miRNA region (Figure 5.3A). Co-transfection of the corresponding 

viral miRNA expression vector resulted in approximately 70%, 60% and 55% reduction 

in the Renilla luciferase signal from the PtsPyV2a, GggPyV1 and RacPyV miRNA 3’ 

UTR reporter constructs, respectively (Figure 5.3B), suggesting that these polyomaviral 

miRNAs are bona fide, functional miRNAs. Co-transfection of the PtsPyV2a miRNA 

expression vector also led to a comparable reduction in the GggPyV1 Renilla luciferase 

signal, which is in congruent with the Northern blot analysis results, that the PtsPyV2a 

and GggPyV 5p derivative miRNAs share sequence similarities (Figure 5.3B). However, 

co-transfection of the PtsPyV1a miRNA expression vector did not result in any 

significant reduction of signal from the corresponding Renilla luciferase reporter 

construct (Figure 5.3B), which is in agreement to the lack of PtsPyV1a miRNA signal as 

observed from the Northern blot analysis (Figure 5.2A and B). 
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Figure 5.3 The PtsPyV2a, GggPyV1 and RacPyV miRNAs can autoregulate the 
early mRNA expression.  
(A) Diagram of a luciferase reporter construct with a miRNA binding site. The miRNA 
binding sites used were: PtsPyV1a, PtsPyV2a, GggPyV1 and RacPyV. (B) The 
PtsPyV2a, GggPyV1 and RacPyV can autoregulate the early mRNA expression. The 
reporters from panel A were cotransfected with firefly luciferase expression vector 
individually into 293T cells, and the Renilla luciferase readings were normalized to the 
readgins from the firefly luciferase (FF. Luc) and plotted on the y axis. The x axis 
indicates the different Renilla luciferase (R. Luc) reporter constructs. The plasmid 
expressing the PtsPyV2a, GggPyV1 or RacPyV miRNAs are indicated by different bars 
as described in the legend. An SV40 miRNA expression vector was used as an irrelevant 
control and indicated as “SV40”. A Renilla luciferase reporter constructs without 
polyomaviral miRNA binding sites cloned in was used as a negative control. 
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5.2.2 The PtsPyV2a, GggPyV1 and RacPyV miRNA biogenesis are Drosha/DGCR8 and 

Dicer dependent.  

To determine if the biogenesis of the PtsPyV2a, GggPyV1 and RacPyV miRNAs 

are Drosha- and Dicer-dependent, we first engineered 3’ UTR reporter constructs with 

the corresponding pre-miRNA region. To test for Drosha-dependency, the pre-miRNA 

hairpins will be cloned into the 3’ UTR of Renilla luciferase. Co-transfection of Drosha 

and DGCR8 expression vectors along with the various pre-miRNA 3’ UTR reporter 

constructs (Lin et al., 2010) will be performed in 293T cells. To test for Dicer-

dependency in miRNA biogenesis, each individual miRNA expression vector will be 

transfected into the colorectal cancer cell lines, DLD-1, with either wild type DLD-1 

(DLD-1WT) or a derivative cell line that is hypomorphic for Dicer (DLD-1Ex5-/-) due to a 

disruption of exon 5 of the Dicer gene loci (Cummins et al., 2006). Total RNA will then 

be harvested at 48 hours post transfection and subjected to Northern blot analysis. Both 

analysis to test for Drosha and Dicer-dependency in miRNA biogenesis are currently in 

progress. However, we do anticipate that upon over-expression of Drosha and DGCR8, 

there will be an increase in the reduction of Renilla luciferase signal from the PtsPyV2a, 

GggPyV1 and RacPyV pre-miRNA 3’ UTR reporter constructs, indicating that the 

biogenesis of these viral miRNAs are indeed Drosha-dependent. We also anticipate that 

upon transfection of the PtsPyV2a, GggPyV1 and RacPyV miRNA expression vectors 

into the Dicer hypomorphic colorectal cancer cell line, DLD-1Ex5-/-, there will be a 

relative decrease in the mature miRNA signal as determined via Northern blot analysis, 
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when compared to the signal observed from transfected wild type DLD-1 cells. This 

result will indicate that the biogenesis of the PtsPyV2a, GggPyV1 and RacPyV miRNAs 

are also Dicer-dependent. Combined, these results will suggest that biogenesis for the 

three aforementioned polyomaviral miRNAs follow the canonical pathway (In progress). 

 

5.2.3 Determination of the sequences of the PtsPyV2a, GggPyV1 and RacPyV mature 

miRNAs.  

To determine the sequences of the mature miRNAs for PtsPyV2a, GggPyV and 

RacPyV, 293T cells were transfected with the corresponding miRNA expression vector. 

Small RNAs (ranging from 10 to 70nt) were then size-fractionated from total RNA at 48 

hours post transfection, followed by cDNA library construction and subsequently 

subjected to next generation small RNA deep sequencing mapping of the miRNAs. The 

deep sequencing result indicates that the majority of the miRNA reads mapped as the 

22nt 5p derivative miRNAs, corresponding to nucleotide position 815 to 836 on the 

RacPyV genome (Figure 5.4, black, thick arrow). In addition, two minor populations of 

the 5p derivative miRNAs are detected as well. The first minor form mapped as a 21nt 

miRNA, shorten by one nucleotide at the 5’ end of the major form of the 5p derivative 

miRNA, corresponding to nucleotide position 815 to 835 (Figure 5.4, black, dashed 

arrow). The second minor form mapped as a different 22nt miRNA, corresponding to 

nucleotide position 816 to 837 (Figure 5.4, black, dotted arrow). Another small minority 

of the reads mapped as the 3p derivative miRNA, corresponding to nucleotide position 

784 to 804 (Figure 5.4, black, thin arrow). This deep sequencing result, in addition to the 
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Northern blot analysis, indicates the RacPyV 5p derivative miRNA as the guide strand 

and the 3p derivative miRNA to be the passenger strand. The deep sequencing mapping 

of the PtsPyV2a and GggPyV1 miRNAs is currently ongoing. However, we do anticipate 

high sequence similarities between the PtsPyV2a and GggPyV1 miRNAs, especially the 

5p derivative miRNA. Furthermore, these two 5p miRNAs can also be expected to share 

seed sequence similarities with the 5p derivative miRNA of MCV (In progress). 



 186 

 

 
 

Figure 5.4 Small RNA mapping of RacPyV miRNAs.  
Coverage plot of the deep sequencing reads from RacPyV miRNA expression vector 
transfected 293T cells. The number of reads was mapped onto the RacPyV genomic 
region that was cloned into the heterologous expression vector (nucleotide position 738 to 
876, indicated on the x axes) and plotted on the y axes. For better visualization of peak 
separation, an enlarged inset containing the pre-miRNA region (grey dotted lines) is 
shown (top panel). The black bars indicate the start count of each miRNA species and the 
coverage is represented by the grey filled area. RacPyV produces a dominant 5p miRNA 
derivative (indicated by the black, thick arrow) over two less abundant 5p miRNA 
derivatives (indicated by the corresponding black, dotted and dashed arrows) and an even 
less abundant 3p derivative miRNA (indicated by the black, thin arrow). Each miRNA 
sequence is indicated above its corresponding arrow.
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5.2.4 The RacPyV miRNAs are readily detectable in vivo.  

RacPyV has been identified as a candidate etiologic agent of a rare, but high-

grade brain tumors located in the frontal lobes and olfactory tracts in raccoons (Dela Cruz 

et al., 2013). Previous reports have demonstrated that miRNAs encoded by the human 

polyomavirus, JC virus (JCV), and a polyoma-like virus, bandicoot papillomatosis 

carcinomatosis virus 1 (BPCV1), are detectable in the brain tissues of PML patients and 

skin lesion of Western barred Bandicoots, respectively (Chen et al., 2011; Seo et al., 

2008). We next determine if the RacPyV miRNAs can be detected in raccoon brain 

tumors as well. Total RNA was harvested from four different raccoon brain tumor 

samples and one normal raccoon brain sample, followed by Northern blot detection of the 

RacPyV miRNAs. Northern blot analysis revealed that the RacPyV 5p derivative miRNA 

was detectable in all four brain tumor samples (Figure 5.5A, lanes “R1” to “R4”, black 

arrowhead, and from longer exposure indicated by “*”) but not the normal raccoon brain 

sample (Figure 5.5A, lane “N”). The 3p derivative miRNA signal was not detectable via 

Northern blot analysis (Figure 5.5B), which was as expected since the RacPyV 3p 

derivative miRNA has been demonstrated to be the passenger strand from the transfection 

and deep sequencing studies (Figure 5.2H and 4). Probes that had been designed to 

specifically recognize the terminal loop region of the RacPyV pre-miRNA could only 

detect the pre-miRNAs in two of the 4 raccoon brain tumor samples, without additional 

signal around the 22nt size region (Figure 5.5C, lanes “R3” and “R4”, white arrowhead). 

This result, in conjunction with the lack of signal from the probes specific for the 



 188 

RacPyV pre-miRNA 5’ and 3’ flanking region (Figure 5.5D and E), and a probe to detect 

the cellular miRNA let-7a (Figure 5.5F), strongly suggest that non-specific RNA 

degradation fragments in the 22nt size region could not have accounted for the specific 

5p derivative miRNA bands detected in all four raccoon brain tumor samples. To 

determine the full repertoire of RacPyV derivative miRNAs and their sequences, RNA 

was size-fractionated to enrich for the pre-miRNA and mature miRNA derivative size 

classes (ranging from 10 to 70nt) from both transfected 293T cells and two raccoon brain 

tumor samples (Rac#10 and Rac#14). We then generated cDNA libraries from the small-

RNA fraction and performed next generation small RNA deep sequencing. This work is 

currently ongoing, however, we do not anticipate any major deviation in the mature 

RacPyV sequences from the mapping as determined from transfected 293T cells (Figure 

5.4 and in progress).  
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Figure 5.5 The RacPyV 5p miRNA is detected in vivo.  
Northern blot analysis of total RNA from raccoon brain tumor samples. Total RNA was 
harvested from 4 different raccoon brain tumor samples and 1 normal raccoon brain 
sample and subjected to Northern blot analysis. Probes designed to recognize the (A) 
RacPyV 5p, (B) 3p, (C) terminal loop, (D) 5’ flanking region, (E) 3’ flanking region were 
used. As controls, cells were transfected with either the empty pcDNA3.1neo vector 
(indicated as “-”) or the RacPyV miRNA expression vector (indicated as “+”). As 
Northern blot analysis controls, the blot was probed for the cellular miRNA, let-7a (F). 
The bands corresponding to the pre-miRNAs (white arrowhead), 5p miRNAs (black 
arrowhead) and the cellular miRNA, let-7a (grey arrowhead) are indicated. As a loading 
control, ethidium bromide-stained low-molecular-weight RNA is shown in the bottom 
panel for each blot. The identity of each lane is indicated at the top of each blot as 
follows: R1 to R4 = raccoon brain tumors samples 1 to 4 and N = normal raccoon brain 
sample.
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5.2.5 In vivo miRNA-mediated cleavage of the early transcripts is not detectable via 

5’ RACE.  

Similar to all known polyomaviral miRNAs reported thus far, the RacPyV 

derivative miRNAs are also located antisense, necessarily with perfect sequence 

complementarity to the T antigen transcripts. Polyomaviral miRNA-mediated 

autoregulation of the early viral transcripts is a conserved function for the polyomaviral 

miRNAs, and we have also demonstrated, through a reporter assay, that the RacPyV 

miRNAs are capable of autoregulating the viral early transcripts. We next determine if 

this mode of autoregulation is observable in vivo. A modified protocol of 5’ rapid 

amplification of cDNA ends (5’ RACE) was performed on raccoon brain tumor RNA 

samples that had been pre-enriched for polyadenylated mRNA. If miRNA-mediated 

cleavage of the early transcript happened in vivo, early cleavage fragments mapping 

opposite the 5p derivative miRNA at approximately the 10thh nucleotide position (the 

“scissile phosphate”) should be detectable (Hornstein et al., 2005; Yekta et al., 2004b). 

The expected early transcript cleavage fragment would be expected to map to nucleotide 

position 827 of the RacPyV genome. However, multiple 5’ RACE attempts failed to 

reveal any fragments starting at position 827 of the RacPyV genome. Despite this result, 

a different stable early transcript fragment that started at position 844 of the RacPyV 

genome was readily detectable (data not shown). The mechanism and identity of the 

detected early transcript fragment, however, remains to be determined. 
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5.3 DISCUSSION 

 

miRNA-mediated regulation of the T antigen transcripts has been a well-

documented function of the polyomaviral miRNA, via both reporter assay (Chen et al., 

2013; Seo et al., 2008, 2009) and the actual mapping of the early transcript cleavage 

fragments (Chen et al., 2013; Seo et al., 2008; Sullivan et al., 2005, 2009). Regardless of 

their genomic locations, the polyomaviral miRNAs are always found antisense, and 

therefore, with perfect sequence complementarity to the early transcripts. If this 

conserved mode of autoregulation is biologically important in polyomavirus biology, it 

should at least be observed in other members of the family that are evolutionarily close to 

members that are known to encode miRNAs. Furthermore, based on the genomic 

locations of these polyomaviral miRNAs, it is possible that they have evolved 

independently. Therefore, in this study, to address the question whether the miRNAs are 

conserved in polyomaviruses that are divergent from SV40, we inspected four non-

human polyomaviruses that are evolutionarily distant from the prototypic member of the 

family, SV40 and muPyV. We have shown that the capacity to encode for miRNA may 

not be a universal characteristic of the Polyomaviridae. As evident from the Northern blot 

analysis, we were able to confirm the VMir prediction of pre-miRNA hairpin for 

PtsPyV2a, GggPyV and RacPyV, but not PtsPyV1a (Figure 5.1 and 2). Since these 

miRNAs are antisense to the T antigen transcripts, we have also demonstrated, via 

reporter constructs, that the PtsPyV2a, GggPyV1 and RacPyV miRNAs, like all known 

polyomaviral miRNAs, can also autoregulate the early transcripts (Figure 5.3).  
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Since the non-human polyomaviruses in this study are closely related to MCV, one might 

speculate that they would encode miRNAs in a similar genomic location. Therefore, the 

inherent limitations imposed upon by the VMir prediction algorithm and the selective 

verification methodology employed in this study might mean that that the lack of pre-

miRNA and mature miRNA signals could simply be an outcome of PtsPyV1a not 

encoding miRNAs at the particular genomic region inspected. Since SV40, SA12, JCV 

and BKV encode miRNAs at a very different genomic location (antisense to the C-

terminus of the large T antigen(Seo et al., 2008, 2009; Sullivan et al., 2005)), PtsPyV1a 

might still encode miRNA from that location or perhaps, at other locations of the 

genome. However, the Vmir pre-miRNA prediction algorithm, failed to predict good 

candidates near the C-terminus region of the large T antigen, thereby ruling out the 

former possibility. On the other hand, an alternative explanation could be that PtsPyV1a 

might indeed be a miRNA-null polyomavirus, which would not be the first example for 

this virus family. A whole viral genome wide search is required to determine if PtsPyV1a 

is a true miRNA-null member of the polyomavirus family. We have unpublished work to 

demonstrates that more than half of the human polyomaviruses do not encode miRNAs 

(Cox and Sullivan, unpublished). Combined, the discovery that not all polyomaviruses 

encode miRNA will be of great implications to polyomavirus biology. To date, there are 

more than fifty members in the polyomavirus family, but thus far, the capacity to encode 

miRNAs has only been described for nine of the members (Cantalupo et al., 2005; Chen 

et al., 2013; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009), including the three 
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polyomaviruses from this study. This raises the following questions – Do the other 

polyomaviruses encode miRNAs? Are there more miRNA-null members than miRNA-

positive members? Furthermore, if miRNA-mediated autoregulation of the early 

transcripts is a biologically important function in polyomavirus biology, how then would 

the miRNA-null polyomaviruses circumvent the lack of miRNAs? Or is autoregulation of 

the T antigens only relevant to a small subset of polyomaviruses. In order to address these 

questions, it is necessary to screen all known polyomaviruses to identify the miRNA-

positive and the miRNA-null members. 

It has been previously reported that the polyomaviral protein, the large T antigen, 

could be detected within the nuclei of a subset of neoplastic cells in the raccoon brain 

tumors, but not from unaffected region, tissues or normal raccoon brains (Dela Cruz et 

al., 2013). Therefore, this makes our discovery of the RacPyV 5p derivative miRNA in 

all four raccoon brain tumor samples tested a perplexing one. Why would the large T 

antigen, an important driver of tumorigenesis, and the viral miRNA, a regulator of T 

antigen, found in the same raccoon brain tumor? From our reporter assay, we show that 

the RacPyV miRNA can potentially autoregulate the early transcripts (Figure 5.3). 

However, we have failed to detect any miRNA-mediated early transcript cleavage 

fragment from the raccoon brain tumor samples. One possible explanation could be that 

since large T antigens can only be detected in a subset of neoplastic cells, the large T 

antigen transcripts would be expected to be present at a low level. Therefore, the limit of 

detection offered by the 5’ RACE method may not be low enough to detect the even 

lower abundant early cleavage fragments. However, it can be speculated that the identity 
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of the early transcript fragment with a 5’ end mapping to nucleotide position 844 on the 

RacPyV genome to be a stable cleavage fragment that had been derived from the actual 

miRNA-mediated early transcript cleavage fragment. However, the true identity of the 

fragment remains to be determined. 

We have also determined the exact sequence of the RacPyV miRNAs from 

transfection study (Figure 5.4) and are currently mapping the RacPyV miRNAs from the 

actual raccoon tumor samples. However, we do not anticipate any major deviation in the 

in vivo sequencing results from the sequences obtained in the transfection study (In 

progress). Sequence analysis of the RacPyV miRNA has revealed that one of the minor 

species of the 5p derivative miRNA shares partial seed sequence (nucleotide position 2 to 

8) identity with the cellular miR-7-1 5p miRNA, with a GU wobble base pairing at 

nucleotide position 7. It has been previously demonstrated that the murine miR-296 can 

still regulate its target, Nanog, despite a single GU wobble base-pair at nucleotide 

position 3 in the seed sequence (Tay et al., 2008). Therefore, even though a 100 percent 

seed sequence identity is not observable, the minor species of the RacPyV 5p derivative 

miRNA can still be a viral mimic of miR-7-1 5p miRNA. The idea of viral miRNAs 

mimicking cellular oncogenic miRNAs (oncomiRs) is not unprecedented, as evident from 

Bovine Leukemia Virus encoded miRNAs (Kincaid et al., 2012). Various reports have 

been implicated miR-7-1 as tumor suppressor, especially in glioblastoma and 

schwannoma tumors (Kefas et al., 2008; Saydam et al., 2011), at the same time, 

contradictory oncogenic role for miR-7-1 has been suggested as well (Cheng et al., 2005; 

Chou et al., 2010). The potential biological implication of the RacPyV miRNA 
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mimicking the cellular miR-7-1, however, is only speculative at best. In fact, the 5p 

derivative miRNA of the closely related MCV also shares seed sequence identity with 

miR-7-1 (nucleotide position 2 to 7). In addition, the 5p derivative miRNA region of both 

PtsPyV2a and GggPyV1 display high sequence similarity to the MCV 5p derivative 

miRNA, further suggesting that multiple members of the polyomavirus family encode 

miR-7-1 mimics. 

In conclusion, we have shown that the capacity to encode viral miRNAs is not 

conserved among members of the polyomavirus family. To fully decipher the biological 

significance of miRNA-mediated autoregulation of the early transcripts would require a 

screen for miRNAs from all known members of the polyomavirus family. 
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5.4 MATERIALS AND METHODS 

 

5.4.1 Cell culture and RNA isolation.  

Human embryonic kidney 293T cells (HEK293T) were obtained from the 

American Type Culture Collection (Manassa, VA) and maintained in Dulbecco’s 

modified Eagle’s medium supplemented with 10% fetal bovine serum (Life 

Technologies, Carlsbad, CA). The colorectal cancer cell lines DLD-1WT and DLD-1Ex5-/- 

(Cummins et al., 2006) was maintained in Roswell Park Memorial Institue-1640 medium 

supplemented with 10% fetal bovine serum (Life Technologies). Total RNA was 

harvested using an in-house PIG-B solution as previously described (Chen et al., 2011; 

Lin et al., 2010; Seo et al., 2008; Weber et al., 1998). 

 

5.4.2 Computational prediction and selection of viral pre-miRNA candidates.  

The complete genome sequences for PtsPyV1a (Accession number: 

HQ385746.1), PtsPyV2a (Accession number: HQ385748.1), GggPyV1 (Accession 

number: HQ385752.1) and RacPyV (Accession number: JQ178241.1) were subjected to 

a viral miRNA prediction algorithm, VMir (Grundhoff et al., 2006). A minimum cutoff 

score of 125 was applied to the pre-miRNA prediction for PtsPyV1a and 150 for 

PtsPyV2a, GggPyV1 and RacPyV. A candidate pre-miRNA was only selected for 

verification if it was found in the late orientation and located either in the SV40-like 
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(Sullivan et al., 2005) or the muPyV-like (Sullivan et al., 2009) pre-miRNA locus. The 

pre-miRNA candidate for each polyomavirus was predicted using the mfold RNA folding 

prediction web server (Zuker, 2003). 

 

5.4.3 Construction of polyomavirus large T antigen phylogenetic tree.  

The phylogenetic tree was constructed based on the amino acids sequences of the 

following polyomaviruses: PtsPyV1a, PtsPyV2a, GggPyV1, RacPyV, SV40 (Accession 

number: J02400.1), JCV (Accession number: NC_001699.1), BKV (Accession number: 

JQ713822.1), murine polyomavirus (Accession number: NC_001515.1), SA12 

(Accession number: AY614708.1), Merkel Cell Carcinoma virus, 350 (Accession 

number: JN707599.1). The phylogenetic tree was constructed using the neighbor-joining 

method using the Geneious software (Kearse et al., 2012). 

 

5.4.4 MiRNA expression vector construction, transfection, and Northern blot 

analysis.  

All DNA vector constructs were sequence verified through sequence analysis at 

the Institute of Cellular and Molecular Biology Sequencing Facility at the University of 

Texas at Austin. The primers used in the construction of the pre-miRNA candidates 

expression vectors have been listed in Table 5.1. Briefly, the primers are annealed and 

filled-in using Phusion High-Fidelity DNA polymerase (New England BioLabs, Ipswich, 

MA) according to the manufacturer’s protocol. The PCR products were then cloned into 
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the XhoI/XbaI sites of the pcDNA3.1neo expression vector. 293T cells were plated in 6-

wells plates and transfected with the expression vectors using the Lipofectamine 2000 

transfection reagent (Life Technologies) according to the manufacturer’s instruction. As a 

negative control, cells were transfected with empty pcDNA3.1neo vector. Total RNA was 

harvested at 48 hours post transfection. The total RNA was subjected Northern blot 

analysis as described previously (Sullivan et al., 2005). Briefly, 10 micrograms of total 

RNA was separated on a Tris-borate-EDTA-urea-15% denaturing polyacrylamide gel. 

The RNA was transferred onto a Hybond N+ membrane (GE Healthcare, Pittsburgh, PA). 

The probe sequences used are listed in Table 5.2. 

 

5.4.5 Luciferase assays.  

The miRNA reporter constructs and the viral pre-miRNA hairpin reporters were 

constructed by cloning the pre-miRNA region of each polyomavirus in the early 

orientation (T antigen orientation) and late orientation (pre-miRNA orientation) 

respectively, using the primers listed in Table 5.1. Briefly, the PCR products were 

generated using Phusion High-Fidelity DNA polymerase (New England BioLabs) 

according to the manufacturer’s protocol, and cloned into the XhoI/XbaI sites of the 

pcDNA3.1dsRluc vector, which expressed a destabilized version of the Renilla 

luciferase. 293T cells were plated in 24-wells plates and transfected using the TurboFect 

transfection reagent (Thermo Scientific, Waltham, MA). For the miRNA reporter 

luciferase assay, 293T cells were co-transfected with the corresponding viral miRNA 

expression vector. As negative controls, the SV40 miRNA expression vector (Chen et al., 
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2013) and the empty Renilla luciferase reporter construct were used. For the viral pre-

miRNA hairpin reporter luciferase assay, 293T cells were co-transfected with pCK-

Drosha-FLAG and pcDNA-DGCR8-FLAG (Han et al., 2004) at a ratio of 1:1. As a 

negative control, the empty Renilla luciferase reporter construct was used. The luciferase 

signal from microprocessor overexpressed 293T cells was compared to 293T cells co-

transfected with the empty pcDNA3.1puro vector. The pcDNA3.1luc2CP vector, which 

expressed a destabilized version of the firefly luciferase, was also co-transfected in both 

assays to normalize for transfection efficiency. The transfected cells were collected at 24 

hours post transfection and analyzed with the Dual-luciferase reporter assay system 

(Promega, Fitchburg, WI) according to the manufacturer’s instruction. The luciferase 

readings were collected using a Luminoskan Ascent microplate luminometer (Thermo 

Scientific). The readings from the Renilla luciferase were normalized to the readings 

from the firefly luciferase, with the ratios plotted as a bar graph relative to the empty 

Renilla luciferase vector control. 

 

5.4.6 Dicer dependence assay.  

DLD-1WT and DLD-1Ex5-/- cells were seeded in 6-wells plates. The cells were 

transfected with the polyomaviral miRNA expression vectors using the TurboFect 

transfection reagent (Thermo Scientific) at approximately 50% confluence. Total RNA 

was harvested at 48 hours post transfection using the PIG-B solution (Weber et al., 1998) 

followed by Northern blot analysis as described in the “Northern blot analysis” section. 

The probes used were listed in Table 5.2 as well. The SV40 miRNA expression vector 
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and an empty pcDNA3.1neo vector were used as the positive and negative controls, 

respectively.  

 

5.4.7 Small RNA library and computational analysis of sequencing reads.  

293T cells were seeded in 10cm tissue culture dishes and transfected with the 

PtsPyV2a, GggPyV1 or the RacPyV miRNA expression vector using the Lipofectamine 

2000 transfection reagent (Life Technologies). Total RNA was harvested at 48 hours post 

transfection. Two raccoon brain tumor tissue samples (Rac#12 and Rac#14) were 

homogenized in Lysing Matrix A tubes (MP Biomedicals, Solon, OH), each containing 

one milliliter of TRIzol RNA isolation reagents (Life Technologies), using a Mini-

Beadbeater-24 (Bartlesville, OK) at the fastest setting for one minute followed by cooling 

on ice for one minute. The process of homogenization and cooling was repeated for two 

additional times. The lysate was then centrifuged at 100G for one minute to pellet the 

beads. The supernatant was then transferred into four milliliters of TRIzol and subjected 

to RNA isolation according to the manufacturer’s protocol. The small RNA fraction from 

the transfected 293T cells and the brain tumor tissue samples was gel fractionated as 

previously described (Chen et al., 2013; Lin et al., 2010). The small RNA cDNA library 

was generated using the NEBNext Multiplex Small RNA library prep set for Illumina kit 

(New England BioLabs) according to the manufacturer’s instructions. The resulting 

cDNA library was then subjected to paired-end sequencing on the Illumina HiSeq 

(Illumina, San Diego, CA). 
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Table 5.1 List of primers for the constructions of miRNA expression vectors, miRNA reporter constructs and 3’ UTR 
hairpin reporter constructs. 
 

Construction of Polyomavirus miRNA expression vectors 
PtsPyV1a 
Forward 

ACTGCTCGAGGGACTCATCGCAGTAGAGATCATCCCAGGTGCTACTGCTCCTGGAAGAACTTCCAGGTACACTGGCTCC
GCAGGGTGTGC 

PtsPyV1a Reverse 
ACTGTCTAGAAGTCTGCAGAATCCACCGCATCCACTTCAGCCGAGACCACCGATTCCAGAAGAGAATCCAGCACACCCT
GCGGAGCCAGT 

PtsPyV2a 
Forward 

ACTGCTCGAGATCGACTCGTCACAGAACAAATCATCCCAGGTGCCATCACTTCTGGAAGAACCTCTAGGTACACTGGTT
CCGTGTTGTGT 

PtsPyV2a Reverse 
ACTGTCTAGACAATACTCTGATGACACCTCCGATGCAACAGAGACCACCAATTCAGGAAGAGAATCCAGCACACAACAC
GGAACCAGTGT 

GggPyV1 
Forward 

ACTGCTCGAGAATGGATTCATCACAGAACAGATCATCCCAGGTGCCATCACTTCTGGAAGAACCTCTAGGTACACTGGT
TCTTGGCTGTG 

GggPyV1 
Reverse 

ACTGTCTAGAAACACTCTGCAGAGACTTCCGATGGAACCGAGACCACCAGTCCAAGAAGAGAACCAGGCACACAGCCA
AGAACCAGTGTA 

RacPyV Forward 
ACTGCTCGAGGGAATTATCTCCGTGTAGATTGGCTGAGGAGTGGGGTCTGTGGGAAGGCATAGAGGTACTTGACTTTGA
GGTATGTACCC 

RacPyV Reverse 
ACTGTCTAGAGGATTCCTCTCGGGATCATGGAGAATTCGCCGGAGGCGAGGGGTCCAGCGGGAGGGACAGGGTACATA
CCTCAAAGTCAA 

Construction of miRNA reporter constructs 
PtsPyV1a 
Forward ATCGCTCGAGAGTCTGCAGAATCCACCGCATC 
PtsPyV1a Reverse ATCGTCTAGAGGACTCATCGCAGTAGAGATCATC 
PtsPyV2a 
Forward ATCGCTCGAGCAATACTCTGATGACACCTCCG 
PtsPyV2a Reverse ATCGTCTAGAATCGACTCGTCACAGAACAAATC 
GggPyV1 
Forward ATCGCTCGAGAACACTCTGCAGAGACTTCCG 
GggPyV1 
Reverse ATCGTCTAGAAATGGATTCATCACAGAACAGATCATCCC 
RacPyV Forward ATCGCTCGAGGGATTCCTCTCGGGATCATGG 
RacPyV Reverse ATCGTCTAGAGGAATTATCTCCGTGTAGATTGGC 
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Table 5.1, cont. 
Construction of 3'UTR Hairpin Reporters 

PtsPyV1a 
Forward 

ACTGCTCGAGGGACTCATCGCAGTAGAGATCATCCCAGGTGCTACTGCTCCTGGAAGAACTTCCAGGTACACTGGCTCC
GCAGGGTGTGC 

PtsPyV1a Reverse 
ACTGTCTAGAAGTCTGCAGAATCCACCGCATCCACTTCAGCCGAGACCACCGATTCCAGAAGAGAATCCAGCACACCCT
GCGGAGCCAGT 

PtsPyV2a 
Forward 

ACTGCTCGAGATCGACTCGTCACAGAACAAATCATCCCAGGTGCCATCACTTCTGGAAGAACCTCTAGGTACACTGGTT
CCGTGTTGTGT 

PtsPyV2a Reverse 
ACTGTCTAGACAATACTCTGATGACACCTCCGATGCAACAGAGACCACCAATTCAGGAAGAGAATCCAGCACACAACAC
GGAACCAGTGT 

GggPyV1 
Forward 

ACTGCTCGAGAATGGATTCATCACAGAACAGATCATCCCAGGTGCCATCACTTCTGGAAGAACCTCTAGGTACACTGGT
TCTTGGCTGTG 

GggPyV1 
Reverse 

ACTGTCTAGAAACACTCTGCAGAGACTTCCGATGGAACCGAGACCACCAGTCCAAGAAGAGAACCAGGCACACAGCCA
AGAACCAGTGTA 

RacPyV Forward 
ACTGCTCGAGGGAATTATCTCCGTGTAGATTGGCTGAGGAGTGGGGTCTGTGGGAAGGCATAGAGGTACTTGACTTTGA
GGTATGTACCC 

RacPyV Reverse 
ACTGTCTAGAGGATTCCTCTCGGGATCATGGAGAATTCGCCGGAGGCGAGGGGTCCAGCGGGAGGGACAGGGTACATA
CCTCAAAGTCAA 
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Table 5.2 List of probes used in the Northern blot analysis. 
 

Northern blot probes 
PtsPyV1a 5p arm probe GAGCCAGTGTACCTGGAAGTTCTTCCAGGAGC 
PtsPyV1a 3p arm probe ACCGATTCCAGAAGAGAATCCAGCACACCCTG 
PtsPyV1a 5' flanking probe GTTCTTCCAGGAGCAGTAGCACCTGGGATGATCTCTACTGCGATGAGTCC 
PtsPyV1a 3' flanking probe AGTCTGCAGAATCCACCGCATCCACTTCAGCCGAGACCACCGATTCCAGA 
PtsPyV1a loop probe GCACACCCTGCGGAGCCAGT 
PtsPyV2a 5p arm probe GAACCAGTGTACCTAGAGGTTCTTCCAGAAGT 
PtsPyV2a 3p arm probe CAATTCAGGAAGAGAATCCAGCACACAACACG 
PtsPyV2a 5' flanking probe TCTTCCAGAAGTGATGGCACCTGGGATGATTTGTTCTGTGACGAGTCGAT 
PtsPyV2a 3' flanking probe CATACTCTGATGACACCTCCGATGCAACAGAGACCACCAATTCAGGAAGA 
PtsPyV2a loop probe CACAACACGGAACCAGTGTA 
GggPyV1 5p arm probe GAACCAGTGTACCTGGAAGTTCTTCCAGGAGC 
GggPyV1 3p arm probe ACCGATTCCAGAAGAGAATCCAGCACACCCTG 
GggPyV1 5' flanking probe CTTCCAGAAGTGATGGCACCTGGGATGATCTGTTCTGTGATGAATCCATT 
GggPyV1 3' flanking probe AACACTCTGCAGAGACTTCCGATGGAACCGAGACCACCAGTCCAAGAAGA 
GggPyV1 loop probe CACAGCCAAGAACCAGTGTA 
RacPyV 5p arm probe AAAGTCAAGTACCTCTATGCCTTCCCACAGACCCCACTCCTCAGCCAATCTACACG 
RacPyV 3p arm probe CATGGAGAATTCGCCGGAGGCGAGGGGTCCAGCGGGAGGGACAGGGTACATACCTC 
RacPyV 5' flanking probe TCCTCAGCCAATCTACACGGAGATAATTCCGAGGACCCAC 
RacPyV 3' flanking probe GATGGGATTCCTCTCGGGATCATGGAGAATTCGCCGGAG 
RacPyV loop probe AGGGTACATACCTCAAAGTCAAGTACCT 
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CHAPTER 6 Establishment of Laboratory SV40 Persistently 

Infected Cell Lines 

 

6.1 INTRODUCTION 

 

Polyomaviruses establish life-long, persistent infections in their natural hosts, but 

the underlying mechanism remains poorly understood. Rhesus macaques are exposed to 

SV40 infections early in their lives, followed by the establishment of persistent infections 

in the kidney and lymphoid tissues. Throughout the lifetime of the host, periodic episodes 

of transient viremia and viruria are readily observable (Ashkenazi and Melnick, 1962). 

Subsequent in vivo studies of SV40 persistent infections conducted in SIV-infected 

immunocompromised monkeys reveal that under the context of natural infection, SV40 

can be detected in multiple organ tissues, including the kidney, central nervous system, 

lymph nodes, liver and spleen (Lednicky et al., 1998; Newman et al., 1998; Simon et al., 

1999). A recent in vivo study of SV40 persistent infection was conducted in the Syrian 

golden hamsters, a widely used model for studying SV40 infections and oncogenesis 

(Butel et al., 1972; Cicala et al., 1993; Diamandopoulos, 1973; McNees et al., 2009; Patel 

et al., 2009; Sroller et al., 2008; Swain et al., 2012; Vilchez et al., 2004). In that study, 

Zhang et al. has shown that following the initial acute SV40 infections in the liver, 

kidney, spleen, lung and brain of the infected animal, the kidney becomes the preferred 
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site of SV40 persistent infection, with the organ harboring the main reservoir of persistent 

infections (Zhang et al., 2014). 

In the cell culture setting, the earliest SV40 persistence cell line was established 

using the Rhesus macaque monkey kidney epithelial cells (LLC-MK2). Upon de novo 

infection of SV40, these cells transition into a “stable carrier state” characterized by 

extensive viral replication without obvious development of cytopathic effect (CPE), 

persisting for as long as eleven weeks post infection (Norkin, 1976, 1977). Additional 

reports have also demonstrated SV40’s ability to establish persistent infections in vastly 

different human cell lines such as the human glioblastoma, immortalized human 

fibroblast cell lines, lymphoblastoid B-cell lines and mesothelial cells (Dolcetti et al., 

2003; Fahrbach et al., 2008; Morelli et al., 2004; Norkin et al., 1985). Despite these 

studies on SV40 infections of Rhesus macaque, under both the whole animal and cell 

culture settings, our understanding of the underlying mechanism for the establishment of 

SV40 persistent infections remains rudimentary.  

Several members of the polyomavirus, including SV40, have been shown to 

express miRNAs (Cantalupo et al., 2005; Seo et al., 2008, 2009; Sullivan et al., 2005, 

2009). The polyomaviral miRNAs are located antisense to the T antigen transcripts, and 

thus, maintain perfect sequence complementarity and mediate endonucleolytic cleavages 

of these early transcripts (Chen et al., 2013; Sullivan et al., 2005, 2009). Since the T 

antigens, especially the large T antigen, play essential roles in multiple stages of the 

polyomaviral lifecycle (An et al., 2012; Sullivan and Pipas, 2002), the miRNA-mediated 

autoregulation of the early transcripts has been suggested as a possible driver in the 



 206 

establishment of persistent infections for SV40 and BKV, a human member of the 

polyomavirus family (Broekema and Imperiale, 2013; Sullivan et al., 2005).  

In this study, we set out to address the question whether the SV40 miRNAs can limit the 

lytic replication of SV40 and its potential role in the establishment of persistent SV40 

infections. Using a cell culture approach, we first generated stable African green monkey 

cells that pre-expressed the SV40 miRNAs followed by studying their effect on lytic 

SV40 replication. Surprisingly, we observed rare cases of cells that survived the initial de 

novo infection went on to become persistently infected. Here, we characterize these 

persistently infected cell lines and discuss the potential implications in our understanding 

of SV40 persistent infections.  
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6.2 Results 

6.2.1 Effects of pre-expression of the 776 miRNAs on lytic replication of SV40. 

Polyomaviral miRNA-mediated autoregulation of the early transcripts has been 

well documented for several members of the family (Seo et al., 2008, 2009; Sullivan et 

al., 2005, 2009). The biological implications of the polyomaviral miRNAs in immune 

evasion and control of replication have been further demonstrated for the SV40 and BKV 

miRNAs respectively (Broekema and Imperiale, 2013; Sullivan et al., 2005). These 

reports combined to suggest a potential role of polyomaviral miRNAs in the 

establishment of persistent infections. In light of this model, we first constructed an 

African green monkey kidney epithelial cell line (BSC-40) that stably expressed the 

SV40 776 miRNA (Chen et al., 2013; Sullivan et al., 2005). Northern blot analysis was 

then conducted on the derived monoclonal stable cell line and the clone with the highest 

expression of 776 miRNA was used throughout the rest of the study and was named “B7” 

(data not shown). A control stable BSC-40 cell line that did not express the 776 miRNA 

was constructed using the same methods. One of the clonal derivative was used and was 

named “BN”. To determine the effect of 776 miRNA pre-expression on the lytic 

replication of SV40, the stable cell lines were infected with six different permutations of 

the SV40 virus – miRNA expressing virus (WT) or miRNA-null mutant (SM) under three 

different genetic background of nonarchetype, protoarchetype or archetype. To assay for 

the effect of 776 miRNA pre-expression, plaque assay was conducted to track the lytic 

spread of virus infection. The results of the plaque assay did not reveal any robust 
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difference in the plaque sizes between the B7 stable cell and the parental BSC-40 cells, 

suggesting no significant effect on the lytic replication of SV40 when the 776 miRNA 

was pre-expressed in the cells (Figure 6.1). However, infections of the BN stable cell line 

resulted in plaques that are larger in size when compared to the plaques from the infected 

B7 stable cell line and the infected parental BSC-40 cells (Figure 6.1). This result 

suggests that during the construction of the BN and B7 stable cell lines, the act of 

selection using G418 sulfate may have selected for cells that are more susceptible to 

SV40 lytic replication, as evident from the larger plaque sizes observed from all six 

infections. 
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Figure 6.1 Plaque assay analysis of SV40 infections on BSC-40 pre-expressing the 776 miRNA.  
Parental BSC-40 and two stable cell lines, one expressing the 776 miRNA (indicated as “B7”) and the other not expressing the 
viral miRNAs (indicated as “BN”) were infected at an MOI of 0.01. The viruses were miRNA expressing SV40 (indicated as 
“WT”) and miRNA-null mutant SV40 (indicated as “SM”) in three different genetic background (indicated as “nonarchetype”, 
“protoarchetype” and “archetype”). Plaques were stained using neutral red at 15 days post infection. 
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6.2.2 Derivation of cell lines that survived the protoarchetype-SM infections.  

SV40 is known to undergo lytic replication in permissive cell lines such as the 

African green monkey cells, as evident from the cytopathic effect (CPE) characterized by 

vacuoles formation in the cytoplasm, swelling of the nucleus and eventual lysis of the 

infected cells (Diderholm, 1963; Miyamura, 1976; Miyamura and Kitahara, 1975). 

Surprisingly, colonies that survived the initial protoarchetype-SM infections of the BN 

and B7 stable cell lines are observable even after more than 30 days post infection. To 

characterize these surviving cell lines, individual colonies were selected and amplified, 

with the leftover cells pooled and amplified as well. Three different survivor cell lines 

were selected for the subsequent studies – a pooled survivor derived from the B7 stable 

cell line, named B7-PSMp and two clonal lines of survivor derived from the BN and B7 

stable cell lines, named BN-PSM1 and B7-PSM1 respectively. To characterize these 

surviving cell lines, they were first subjected to Western blot analysis for SV40 proteins, 

large T antigen and VP1. The Western blot analysis of 5 days old cultures indicates that 

all three surviving cell lines express the large T antigen (Figure 6.2A, “Large T antigen” 

panel). Comparing the large T antigen expression levels in the surviving cell lines to the 

levels obtained from the BN and B7 cell lines that had been de novo infected with 

protoarchetype-SM demonstrates that the large T antigen expressed by the B7 derived 

surviving cell lines migrate similarly to the de novo infection controls (Figure 6.2A, lanes 

“B7-PSMp” and “B7-PSM1”). However, the BN derived surviving cell line expresses an 

altered form of large T antigen that migrate differently than the other two survivor cell 

lines (compare lane “BN-PSM1” to lanes “B7-PSMp” and “B7-PSM1”, indicated by 
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“*”). Further Western blot analysis of BN-PSM1 lysate on lower percentage 

polyacrylamide gel reveals that there are two different species of large T antigen, both 

with faster migrations than the large T antigen observed in de novo infections and the B7 

derived surviving cell lines (Figure 6.2B, lane “BN-PSM1”). In addition, larger 

molecular weight bands from the large T antigen Western blot analysis, indicative of the 

multimeric form of the viral protein (Montenarh et al., 1984; Schürmann et al., 1985), is 

only observable in the B7 derived survivors as well (Figure 6.2, indicated by “**”). This 

observation further suggests that the large T antigen expressed in BN-PSM1 is different 

from the wild type large T antigen. Western blot analysis for the viral capsid protein, VP1 

indicates that VP1 expression could only be detected for the two B7 derived cell lines 

(Figure 6.2, “VP1” panel, lanes “B7-PSMp “ and “B7-PSM1”). This result suggests that 

either BN-PSM1 does not express VP1 at all, or the expression level was too low to be 

detectable via Western blot analysis. 

As an initial attempt to determine the effect of cellular stress on the expression of 

large T antigen in the three surviving cell lines, they were treated with sodium butyrate 

(NaB) at 0.01M for 24 hours prior to Western blot analysis for the large T antigen. NaB 

has multiple effects on mammalian cell cultures including alteration of gene expression 

and inhibition of proliferation (Candido et al., 1978; Davie, 2003). At 24 hours post NaB 

treatment, lower expression level for large T antigen is observed for both B7-PSMp and 

B7-PSM1 (Figure 6.2B, lanes “B7-PSMp” and “B7-PSM1”). This result is not surprising 

due to previous reports of NaB being an inducer of apoptosis (Chopin et al., 2002; 

Soldatenkov et al., 1998; Wang et al., 2002, 2006). Interestingly, NaB treatment of BN-
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PSM1 cells resulted in the switch in expression level between the slower migrating and 

the faster migrating large T antigens (Figure 6.2B, lane “BN-PSM1”). However, at this 

time, the identities of these two variants of large T antigen variants remain undetermined. 
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Figure 6.2 Western blot analysis of lytic infection surviving cell lines.  
(A) Western was performed on the three 5 days old cultures of protoarchetype-SM 
infection surviving cell lines for large T antigen and VP1. (B) Effects of sodium butyrate 
treatment on the surviving cell lines. The surviving cells were treated with sodium 
butyrate at 0.01M (indicated as “0.01M NaB”) for 24 hours. As negative controls, 
surviving cells were left untreated for 24 hours. As positive controls, the BN and B7 
stable cell lines were either de novo infected with the protoarchetype-WT or SM viruses 
(indicated as “WT” and “SM”), and total protein from 47 hours post infection was 
included in the analysis. Uninfected BN and B7 cell lines were included as negative 
controls and indicated as “Mock”. The monomeric and multimeric form of large T 
antigens are indicated by “*” and “**” respectively.  
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6.2.3 Differential large T antigen expression pattern among the surviving cell lines. 

Western blot analysis is a sampling of the overall population of cells, and is 

therefore, not reflective of protein expression at the level of individual cell. To address 

the question if large T antigen is expression in every cells or only a subpopulation of 

cells, immunofluorescence for large T antigen was conducted on all three surviving cell 

lines. The results indicate that only a subpopulation of the cells in the B7-PSMp and B7-

PSM1 survivor cell lines expresses large T antigen but is evident in every BN-PSM1 cell 

(Figure 6.3). However, the large T antigen expression level in both the B7-PSMp and B7-

PSM1 cell lines were higher than expression level observed in the BN-PSM1 cell line 

(Figure 6.3). This result suggests that the higher expression of large T antigen in a 

subpopulation of B7-PSMp and B7-PSM1 cells as determined by immunofluorescence 

can account for the Western blot signal observed, resulting in an overall expression level 

that is comparable to the BN-PSM1 cells (Figure 6.2). 
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Figure 6.3 Different large T antigen expression pattern across whole 
populations of the surviving cell lines.  
Immunofluorescence was conducted on 3 days old culture of the B7-PSMp, BN-PSM1 
and B7-PSM1 cell lines. The anti-mouse IgG conjugated with AlexaFluor 594 was to 
visualize the cells. Hoechst 33342 was used to stain the nucleus. Signal from the large T 
antigen (red) was overlayed onto the signal from the nucleus (blue).  
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6.2.4 The survivor cell lines release progeny virions.  

Western blot detection of the capsid protein, VP1, suggests the potential ability of 

these survivor cell lines to produce progeny virions. CPE is an obvious characteristic of 

African green monkey kidney cells undergoing lytic SV40 replication, however, CPE is 

not observable in these cell lines (data not shown), despite the robust expression of large 

T antigen in all three cell lines, and VP1 in two of the cell lines (Figures 6.2, 6.3). The 

combined results suggest that even if these surviving cells were capable of producing 

progeny virions, it would have to be through a route that is not characterized by the lysis 

of the cells. To determine if these surviving cells do indeed release progeny virions, 

culture supernatant was harvested from all three cell lines at 5 days post culture. The 

supernatant was then used to infect parent BSC-40 cell, followed by immunofluorescence 

for VP1. The immunofluorescence results suggest that all three cell lines do indeed 

release progeny virions into the culture supernatant, as indicated by the expression of 

VP1 in the infected parent BSC-40 cells (Figure 6.4). The greater number of VP1 positive 

cells from B7-PSMp and B7-PSM1 supernatant infection than BN-PSM1 supernatant 

indicated that the amount of virion release is higher for the two B7 derived surviving cell 

lines (Figure 6.4). The result is in agreement with the VP1 Western blot analysis, 

indicating the VP1 expression level in BN-PSM1 was too low to be detected via Western 

blot analysis (Figure 6.2). The combined immunofluorescence and Western blot analysis 

results indicate that these three surviving cell lines are capable of releasing progeny 

virions without significant CPE. 
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Figure 6.4 Production of progeny virions from all three surviving cell lines.  
Culture supernatant was obtained from 5 days old cultures of B7-PSMp, BN-PSM1 and 
B7-PSM1. Supernatant was used to infect parent BSC-40. The infected cells were stained 
for VP1, and visualized using an anti-rabbit IgG conjugated with AlexaFluor488. DAPI 
was used to stain the nucleus. The VP1 signals (green) were overlayed onto the DAPI 
signals (blue). 
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6.2.5 Episomal protoarchetype-SM genomes are detected in B7-PSMp, BN-PSM1 and 

B7-PSM1.  

It has been previously demonstrated that SV40 persistent infection can be 

established in A172 human glioblastoma cells (Norkin et al., 1985). Furthermore, the 

SV40 DNA was found to persist in an episomal state. To determine the state of the 

protoarchetype-SM genome in the three surviving cell lines, total genomic DNA was 

harvested and linearized via restriction digestion, followed by Southern blot analysis. The 

result demonstrates that the when compared to a positive control restriction digestion of 

protarchetype-SM genome isolated from de novo infection (Figurer 6.5, lane “+”), the 

majority of the protoarchetype-SM genomes in the surviving cell lines are in the episomal 

state (Figure 6.5, lanes “B7-PSMp”, “BN-PSM1” and “B7-PSM1”, indicated by “*”). 

However, apart from the episomal genomic DNA band, other smaller bands are observed 

as well. The radioactive probe was designed to recognize the mutant pre-miRNA region 

of the protoarchetype-SM genome, therefore, suggesting that one of the smaller bands 

that is only visible in B7-PSMp and B7-PSM1 could be the stably integrated 776 miRNA 

expression loci that cross-reacted with the probe (Figure 6.5, lanes “B7-PSMp” and “B7-

PSM1”). However, the identities of the other remaining bands remain to be determined. 

At this time, we cannot rule out possible occurrence of integration events of the 

protoarchetype-SM genome into the cellular genome. Interestingly, the genomic DNA 

used in the Southern blot analysis was obtained from cells that had been successively 

passaged in cell culture for at least ten times, spanning over a period of 30 days, 
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indicating possible segregation of the viral genome to the daughter cells during each cell 

division. The combined results suggest that the protoarchetype-SM genome persists in all 

three surviving cell lines and are maintained over multiple passages. 
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Figure 6.5 Majority of the protoarchetype-SM genomes persist in an episomal 
state in the surviving cell lines.  
Genomic DNA was harvested from the surviving cell lines after 10 successive passages 
in cell culture over the span of 30 days. The genomic DNA was linearized using either 
the AgeI or the BamHI restriction enzyme. An approximately 300bp region spanning the 
mutant pre-miRNA region of protoarcehtype-SM was used to generate the radioactive 
probe. Genomic DNA from the BN and B7 stable cell lines were included as negative 
control. 10ng of protoarchetype-SM genome obtained from lytic replication was included 
as a positive control (indicated as “+”). The band representing the linearized 
protoarchetype-SM genome is indicated by “*”. The band representing stably integrated 
776 miRNA expression loci is indicated by “**”. 



 221 

 

6.3 Discussion 

Persistent infection is a poorly understood area of polyomavirus biology. Despite 

prior studies of SV40 persistent infections in Rhesus macaque cell cultures (Norkin, 

1976, 1977), our understanding remains rudimentary. In this study, we describe the 

establishment of African green monkey kidney epithelial cell lines that are persistently 

infected with protoarchetype-SM, a miRNA-null mutant of SV40. A recent study by 

Broekema and Imperiale has demonstrated the effect of the BKV miRNAs in limiting the 

replication of BKV, indicating a potential role for the polyomaviral miRNAs in the 

establishment of persistent infections (Broekema and Imperiale, 2013). However, for 

SV40, we have shown that pre-expression of the 776 miRNA in African green monkey 

kidney epithelial cells does not significantly alter the lytic replications of both SV40 and 

SM, regardless of their genetic background (Figure 6.1). Yet, it is important to point out 

that the plaque assays was performed in stable cell lines that were constructed under 

G418 selection. Therefore, it can be speculated that during the selection process, a cell 

line that is more susceptible to SV40 infection may have arose. Therefore, the lack of 

effect on SV40 and SM lytic replication by the pre-expressed miRNAs observed is only 

limited to this specific result, and we cannot formally rule out that the 776 miRNAs do 

not have an effect at all. Broekema and Imperiale had used primary human renal 

proximal tubule epithelial (RPTE) cells, the natural host for BKV whereas in this study, 

infection of African green monkey cells was used, which supports lytic replication of 
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SV40. Therefore, the fact that a cell type from a non-natural host of SV40 was used can 

explain the lack of effect on SV40 replication from the 776 miRNAs. 

The surprising outcome of this study is the establishment of African green monkey 

kidney cells that are persistently infected with protoarchetype-SM, in both BSC-40 cells 

with or without the stable expression of the 776 miRNAs. By the tenth passage in cell 

culture, corresponding to over 30 days in culture, the majority of the protoarchetype-SM 

genomes are still maintained as episomes in all three persistent cell lines. Maintenance of 

episomal viral genome is a well-known characteristic for some members of the 

herpesvirus and the papillomavirus family (Hammerschmidt and Sugden, 2013; 

Lieberman, 2013; McBride, 2013; You, 2010). For Epstein-Barr virus (EBV) and 

Kaposi’s sarcoma-associated herpesvirus (KSHV), tethering of the viral episome to the 

host chromatin is mediated by the viral proteins EBNA-1 and LANA, respectively 

(Ballestas and Kaye, 2011; Frappier, 2012). For the papillomavirus family, the viral 

protein E2 facilitates the retention, maintenance and partition of the viral genome 

(McBride, 2013). However, there are no known reports of such polyomaviral protein 

mediated maintenance of the polyomaviral episomes. However, previous studies have 

demonstrated the potential for the SV40 large T antigen to associate with cellular 

chromatin (Schirmbeck and Deppert, 1987; Vassetzky et al., 1999), therefore, it might be 

formal possibility for the large T antigen to serve as a viral “tetherin” to maintain the 

episomal SV40 genomes.  
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Previous work by Chittenden et al. has demonstrated that SV40-origin containing 

plasmid can be maintained in stably transfected African green monkey cells, COS7 

(Chittenden et al., 1991). In those stable cell lines, the plasmid can be maintained for at 

least 2 months in culture. In addition, the plasmids are maintained at 100 to 1000 copies 

per cell and is paralleled to cellular DNA replication, replicating once per round of cell 

cycle (Chittenden et al., 1991). The persistent infection system established in this study 

shares striking similarities with the aforementioned persistent plasmid system. First, 

crude quantification of the protoarchetype-SM genome in the persistent cell lines resulted 

in copy numbers in the thousands range. (data not shown) Second, majority of the viral 

genomes exist as episomes and are maintained even after over 30 days in culture (Figure 

6.5). Third, the SV40 large T antigen is present at a lower level than lytic replication 

(Figure 6.2). Fourth, G418 was used during the selection process of the BN and B7 cell 

lines, from which the persistent cell lines were derived from. However, at this time, it 

remains unclear if large T antigen is involved in the maintenance of the viral episomes, or 

if the act of stable clones selection using G418 had also inadvertently selected for cells 

that are more conducive to the establishment of persistent infections. Since COS7 is a cell 

line that stably expresses the SV40 large T antigen, determining if large T antigen plays 

any role in the persistent infection cell lines could be one of the first step towards a 

greater understanding of SV40 persistence. 

The inherent differences in viral progeny release and large T antigen expression 

pattern between the persistently infected cell lines point to at least two different 

variations of persistent infections (Figure 6.2, 6.3, 6.4). Yet, the mechanism behind these 
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variations remains to be determined. A slight hint however, may have been provided by 

the expression of large T antigen with different mobility as determined by Western blot 

analysis (Figure 6.2). Several studies have previously demonstrated that phosphorylation 

of the SV40 large T antigen can alter its migration during Western blot analysis (Grässer 

and König, 1992; Grässer et al., 1988). Therefore, it can be speculated that the large T 

antigens expressed by BN-PSMp are hyperphosphorylated when compared to the large T 

antigens expressed by B7-PSMp and B7-PSM1. How can phosphorylation of large T 

antigen contribute to the establishment of SV40 persistent infection? It has been 

previously demonstrated that phosphorylation of large T antigen can inhibit the 

unwinding of the origin of replication and the subsequent DNA replication (Cegielska 

and Virshup, 1993; Cegielska et al., 1994). If the large T antigens expressed by BN-

PSM1 are indeed in the hyperphosphorylated form, it may explain the low yield of virus 

progeny produced by this cell line. Yet at this time, we cannot formally rule out that the 

large T antigens expressed by BN-PSM1 are not truncated. 

Here, we have derived an SV40 persistent infection system from African green 

monkey kidney cells, BSC-40.  
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6.4 Future Directions 

The conserved nature of miRNA-mediated autoregulation of the early transcripts 

implies biological importance (Broekema and Imperiale, 2013; Seo et al., 2008, 2009; 

Sullivan et al., 2005, 2009). Yet, pre-expression of the 776 miRNA did not alter lytic 

replication of all six viruses tested in this study. However, the assays were performed on 

clonal derivatives of the BN and B7 stable cell lines. To ensure that the result observed 

was not due to clonal artifact from the stable cell lines, plaque assays will next be 

conducted on the pooled BN and B7 stable cell lines. 

Even though the capacity to release progeny virions has been demonstrated for all 

three persistent cell lines in this study, one of the most important next step is to sequence 

their corresponding genome, to ensure that the identity of the protoarchetype-SM has 

been preserved during the establishment of these persistently infected cell lines. Next, in 

situ hybridization will be performed to confirm that the viral genomes do indeed 

persistent as episomes in these cell lines. Furthermore, in situ hybridization will also 

reveal the specific nuclear localization of the viral genome, whether they exist as free 

episomes or are tethered to the cellular chromatin. 

To better understand the underlying difference between the persistently infected 

cell lines, it is necessary to first determine the molecular contribution to the aberrant 

migrating form of large T antigen observed in the BN-PSM1 cell line. Phosphatase 

treatment of the cell lysate will be performed prior to Western blot analysis to determine 

if it is a phosphorylation mutant. Sequencing of the genome will allow us to know if it is 
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a truncated form of large T antigen. Large T antigen can be overexpressed in these 

persistently infected cells to determine if it will lead to an increase in the release of viral 

progenies.  
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6.5 Materials and Methods 

 

6.5.1 Cell culture.  

African green monkey kidney epithelial cells BSC-40 were obtained from the 

American Type Culture Collection (Manassas, VA). The BSC-40 cell culture was 

maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS) (Life Technologies, Carlsbad, CA). 

 

6.5.2 Stable cell line construction.  

All DNA vector constructs were sequence verified through the sequence analysis 

at the Institute of Cellular and Molecular Biology Sequencing Facility at the University 

of Texas at Austin. The two vectors used in the construction of stable BSC-40 cell lines 

were pcDNA3.1neo and pcDNA3.1neo-776miR (Chen et al., 2013). Briefly, BSC-40 

cells were first seeded in 10cm tissue culture dishes. The cells were then transfected with 

either pcDNA3.1neo or pcDNA3.1neo-776miR using the Lipofectamine 2000 

transfection reagent (Life Technologies) according to the manufacturer’s instruction. At 

24 hours post transfection, the transfected BSC-40 cells were sub-cultured at a 1:3, 1:5 

and 1:10 ratio intp 10cm tissue culture dishes. Stable cell lines were selected for using 

G418 sulfate at a concentration of 600μg/mL (EMD Millipore, Darmstadt, Germany). 

Individual colonies were selected and amplified into clonal cell lines. The remaining 
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leftover cells were collected as a pool and amplified as well. The derivative stable cell 

line were maintained in DMEM supplemented with 10% FBS and 600μg/mL G418 and 

the culture media was refreshed every three days.  

 

6.5.3 Construction of chimeric SV40 viruses.  

To generate the SV40 and SV40 miRNA mutant virus (SM) (Sullivan et al., 2005) 

under the protoarchetype and archetype genetic background, K661 (protoarchetype) and 

SVCPC (archetype) genomes were first digested with BstXI and KpnI (New Engladn 

BioLabs, Ipswich, MA) to excise the non-coding regulatory region (NCCR). The vectors 

carrying the wild type SV40 or SM (pSVB3 and pSVB3-SM, both of nonarchetype 

genetic background) were also digested with BstXI and KpnI to remove their NCCR. The 

protoarchetype or the archetype were sub-cloned into the BstXI/KpnI sites in the vector 

to generate the protoarchetype-WT, –SM , archetype-WT and –SM vectors. The 

corresponding chimeric viruses were produced as described (Kraus and Mertz, 2001). 

Briefly, the viral vectors were digested with BamHI (New England BioLabs), followed 

by intramolecular ligation of the excised viral DNA. The ligation reaction was then 

transfected into BSC-40 and further amplified. 

 

6.5.4 SV40 infections.  

BSC-40 cells (parent), stable BSC-40 without SV40 miRNA expression (BN) and 

with SV40 776 miRNA expression (B7) were seeded in 6-wells plates. The cells were 
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infected with nonarchetype, protoarchetype or archetype WT, or SM virues at an MOI of 

10. 500 microliters of viral inoculum was used for each well after aspiration of the culture 

media. The plates were rocked back-and-forth every 15 minutes for 2 hours at 37°C 

(Tremblay et al., 2001). The viral inoculum was replaced with DMEM supplemented 

with 2% FBS, without G418 sulfate. 

 

6.5.5 Derivation of the persistent cell lines.  

Both the BN and B7 stable BSC-40 cell lines were infected with protoarchetype-

SM at an MOI of 0.01 as described in the “SV40 infections” section. The media was 

replaced with DMEM supplemented with 2% FBS every 3 days until complete 

destruction of the cell monolayer. The media replacement continued until individual 

surviving colonies were observable. Individual colonies were selected and amplified into 

clonal cell lines. The remaining leftover cells were collected as a pool and amplified as 

well. The cell lines were maintained in DMEM supplemented with 10% FBS, without 

G418.  

 

6.5.6 RNA isolation and Northern blot analysis.  

Total RNA was harvested from the cells using an in-house PIG-B solution as 

described previously (Chen et al., 2011; Lin et al., 2010; Seo et al., 2008; Weber et al., 

1998). The total RNA were then subjected to Northern blot analysis as described 

(Sullivan et al., 2005). Briefly, 10 micrograms of total RNA was separated on a Tris-
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borate-EDTA-Urea-15% denaturing polyacrylamide gel. The RNA was transferred onto a 

Hybond N+ membrane (GE Healthcare, Pittsburgh, PA). The membrane was probed for 

overnight at 38.5°C in the ExpressHyb hybridization solution (Clontech, Mountain View, 

CA). The SV40 3p miRNA probe sequence is: CTCAGGGCATGAAACAGGC. 

 

6.5.7 Plaque assay.  

The BN and B7 stable BSC-40 cell lines were seeded in 6-wells plate and infected 

as described in the section “SV40 infections”. The viral inoculum was replaced with a 

2mL 1:1 mixture of Minimal Essential Medium (MEM) supplemented with 10% FBS and 

twice the amount of Penicillin (200 I.U/mL) and Streptomycin (200 μg/mL), and 1.8% 

Bacto-agar (BD Biosciences, San Jose, CA). The same mixture was re-fed to the existing 

layer every 3 days until 15 days post infection (dpi). The plaques were visualized by 

adding neutral red dissolved in the media-agar mixture at 100 μg/mL at the last re-fed. 

The dye was allowed to diffuse through the layer for one day prior to plaque 

visualization.  

 

6.5.8 Protein isolation and western blot analysis.  

The uninfected and 47 hours post infected BN and B7 stable BSC-40 cells, and 5 

days old cultures of the surviving cell lines were lysed in RIPA buffer (150mM sodium 

chloride [Avantor Performance Materials, Center Valley, PA], 10mM Tris, pH 7.2 

[Fisher Scientific], 0.1% sodium dodecyl sulfate [Avantor Performance Materials], 1% 
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Triton X-100 [Fisher Scientific], 1% sodium deoxycholate [Alfa Aesar, Ward Hill, MA], 

5mM EDTA [Fisher Scientific] and 1 tablet of complete mini, EDTA-free protease 

inhibitor (Roche, Indianapolis, IN) per 10mL of RIPA buffer). For sodium butyrate 

treatment, the surviving cell lines were treated with sodium butyrate at 0.01M for 24 

hours prior to total protein harvest using RIPA buffer. 50 micrograms of total protein 

were heated at 95°C for 5 minutes in SDS sample buffer with β-mercaptoethanol 

(375mM Tris-HCL, pH6.8 [Fisher Scientific], 6% (w/v) sodium dodecyl sulfate [Avantor 

Performance Materials], 48% (v/v) glycerol [Sigma-Aldrich], and 0.03% (w/v) 

bromophenol blue [Fisher Scientific]) and subjected to electrophoresis using a 10% 

denaturing acrylamide gel (Bio-Rad). Proteins were transferred onto Immobilon-FL 

PVDF membrane (Millipore, Billerica, MA) using the Bio-Rad Mini Trans-Blot 

electrophoretic transfer cell (Bio-Rad, Hercules, CA).  The membrane was blocked in 5% 

(w/v) skim milk powder (HEB, San Antonio, TX) in Tris-buffered saline with 0.1% (v/v) 

Tween-20 (TBST, Fisher Scientific) for 1 hours at room temperature. Membrane was 

probed using a mouse antibody against the large T antigen, pAB416 (1:200, a gift from 

Dr. James Pipas) or a mixture of two rabbit antibody against the BC and DE loop of VP1, 

respectively (1:2000 each, gifts from Dr. Robert Garcea), overnight at 4°C. After 

overnight incubation, the membrane was washed with TBST, 4 times, 15 minutes each, 

followed by incubation with either anti-mouse or anti-rabbit secondary antibody IgG 

conjugated to HRP (1:5000, Bio-Rad) for 1 hours at room temperature. The membrane 

was washed 4 times with TBST, 15 minutes each. The West Dura chemilumimnescent 
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substrate (Thermo Scientific, Rockford, IL) was used to generate the signal for 

visualization on the Blue Ultra Autorad film (BioExpress, Kaysville, UT).  

 

6.5.9 Immunofluorescence detection of large T antigen in the persistent cell lines. 

The protoarchetype-SM infection surviving BN and B7 stable BSC-40 cells were 

seeded in 6-wells plates. The 3 days old cell culture was stained for large T antigen and 

visualized via immunofluorescence. Briefly, the cells were washed with phosphate buffer 

saline (PBS) (Life Technologies) and fixed using 4% paraformaldehyde in PBS 

(Affymetrix, Cleveland, OH) at 37°C for 30 minutes. The cells were permeabilized with 

0.1% Triton X-100 (Thermo Scientific) in 3% bovine serum albumin (BSA) – PBS. The 

cells were then blocked with 3% BSA – PBS for 1 hour at room temperature. The cell 

were stained for large T antigen using pAb416 (1:200), overnight at 4°C. After staining, 

the cells were washed four times using PBS, 10 minutes each. The cells were then 

incubated with anti-mouse IgG conjugated with AlexaFluor488 (1:1000, Life 

Technologies) for 1 hour at room temperature. Following secondary antibody staining, 

the cells were washed four times with PBS, with DAPI included in the final wash at 

1μg/mL. The cell were kept in PBS and imaged using a Nikon Eclipse TS100 

fluorescence microscope fitted with a Nikon Digital-Sight DS-2MBW (Nikon, Melville, 

NY).  
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6.5.10 Immunofluorescence detection of VP1.  

The protoarchetype-SM infection surviving BN and B7 stable BSC-40 cells were 

seeded in 6-wells plates. Supernatant was collected from 5 days old cell culture. BSC-40 

cells were seeded in 6-wells plates and infected with the supernatant as described in the 

“SV40 infections” section. Cells were stained as describe in the “Immunofluorescence 

detection of large T antigen in the persistent cell lines” section at 43 hours post infection. 

VP1 was stained using the mixture of two rabbit antibodies against the BC and DE loop 

of VP1 (1:2000 each). The anti-rabbit IgG conjugated with AlexaFluor594 (1:1000, Life 

Technologies) was used. Hoechst 33342 was used at a concentration of 1μg/mL. 

 

6.5.11 Southern blot analysis of persistent cell lines.  

Genomic DNA was harvested from the persistent cell lines as described (Strauss, 

2001). 10 μg of genomic DNA was digested with either BamHI or AgeI (New England 

BioLabs). The digested DNA was purified using phenol-chloroform extraction followed 

by ethanol precipitation. The samples were separated on a 1% agarose-TAE gel at 4°C, 

overnight at 70V. The gel was transferred onto an Amerisham Hybond-XL membrane 

(GE Healthcare) according to the manufacturer’s instructions. Radioactive probes was 

generated using the Amersham Rediprime II Random Prime Labelling System (GE 

Healthcare). The membrane was probed overnight at 55°C in ExpressHyb hybridization 

solution (Clontech). The template for the random priming reaction was generated by PCR 

amplification of a 301bp region of the SM pre-miRNA mutant region (nucleotide position 
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2663 to 2963) using the following pair of primers: SV40 ATTAAA-F, 

CAAGTTAACAACAACAATTGCATTC; SV40 ATTAAA-R, 

GTGGCTATGGGAATTGGAG.  
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CHAPTER 7 Detection of Extracellular JCV miRNAs as a Non-

Invasive Diagnostic for Progressive Multifocal 

Leukoencephalopathy 

 

7.1 Introduction 

 There are currently four known human polyomaviruses associated with human 

pathologies – JC virus (JCV), BK virus (BKV), Merkel cell carcinoma virus (MCV) and 

trichodysplasia spinulosa virus (TSV) (Feng et al., 2008; Gardner et al., 1971; van der 

Meijden et al., 2010; Padgett et al., 1971). JCV is the etiological agent of Progressive 

Multifocal Leukoencephalopathy (PML), a rare, neurodegenerative disease caused by the 

lytic reactivation of JCV in the brain of immunocompromised patients (Astrom et al., 

1958; Padgett et al., 1971). From a historical perspective, PML is mostly associated with 

patients with acquired immunodeficiency syndrome (AIDS), as a study in the United 

States between 1998 and 2005 showed that 82% of PML patients also had AIDS (Molloy 

and Calabrese, 2009). However, in recent years, an entirely new group of patients 

undergoing immunomodulatory drug regime were found to be at risk of developing PML. 

Current diagnostics for PML involve detection of JCV DNA via the polymerase 

chain reaction (PCR) from cerebrospinal fluid (CSF) or a direct brain biopsy (Brew et al., 

2010; Major, 2010). Both of these assays are invasive and impractical for routine 

sampling. Other PML biomarker approaches have attempted to utilize PCR for JCV DNA 

from isolated blood/serum or detection of immunoreactive antibodies against JCV. Both 
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of these approaches fall short as biomarkers for PML since many healthy non-PML 

patients have been previously exposed to JCV and will periodically have JCV viremia. In 

fact, approximately 50 to 80% of the human population is seropositive for JCV antibodies 

as JCV is found to persistently infect the kidney and perhaps other non-neural tissues 

such as lymphocytes (Brew et al, 2010). Thus, being seropositive for JCV-reactive 

antibodies or even having viral DNA detected in bodily fluids via PCR is not predictive 

of the neural disease PML. 

 In patients with PML, magnetic resonance imaging (MRI) can sometimes be used 

to reveal changes in local brain features characteristic of this condition. However, this 

methodology misses many cases of PML and is not amenable as an early diagnostic of 

PML. Furthermore, other neurological disorders can cause white matter abnormalities 

such as multiple sclerosis and systemic lupus erythematosus (Brew et al., 2010). 

Therefore, at present, a definitive diagnosis for PML can only be confirmed by the 

detection of JCV DNA in the CSF or in brain biopsy, which is too invasive to be 

routinely performed as a prognostic diagnostic for rare incidences of PML associated 

with various drug regimens. 

Several potentially important immunomodulatory drugs that could benefit patients 

includes: Natalizumab (trade name Tysabri) for multiple sclerosis, efalizumab (trade 

name Raptiva) for psoriasis and rituximab (trade name Rituxan) for arthritis are 

associated with rare occurrences of PML. The gold standard for the diagnosis of PML is 

through a brain biopsy, in combination with the detection of JCV DNA in the CSF via 

PCR. Both methodologies are invasive in nature.  Thus, there is a need in the art for non-
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invasive and accurate methods for detecting JCV infections.  This study therefore 

addresses these and other needs in the art. This study addresses the need to find an 

alternate, non-invasive diagnostic for PML. 

Exosomes are small, membrane vesicles of approximately 40 to 100nm in 

diameter. Exosomes are secreted by a various cell types, in particular, neuronal cells such 

as oligodendrocytes, microglial cells and astrocytes (Frühbeis et al., 2012). Exosomes 

originate from the invagination and budding from the membrane of late endosomal-

derived structures known as the multivesicular bodies (MVBs). Exosomes are then 

released into the extracellular environment as a result of a fusion event between the 

MVBs with the plasma membrane. Since exosomes can be found to in various body 

fluids such as breast milk, saliva, plasma and urine (Lässer et al., 2011a; Pisitkun et al., 

2004; Skog et al., 2008) makes them a novel non-invasive, alternative for the diagnostics 

of diseases. Recently, it has been demonstrated that in addition to proteins, exosomes also 

carry nucleic acids such as mRNA and miRNAs (Skog et al., 2008). The profile of 

exosomal contents, therefore, are useful indications of the content of the exosomes 

secreting cells. 

miRNAs are eukaryotic, small, regulatory molecules (approximately 22nt in 

length) that controls the expression of their target mRNAs by binding to them, resulting 

in translational repression or degradation (Bartel, 2009). Several virus families, such as 

herpesviruses and polyomaviruses, encodes miRNAs (Grundhoff et al., 2006; Pfeffer et 

al., 2004; Seo et al., 2008, 2009; Sullivan et al., 2005, 2009). It has recently been reported 

that both Epstein-Barr virus (EBV), a member of the herpesvirus family, proteins and 
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miRNAs are detected in exosomes released by EBV infected cells (Meckes et al., 2010, 

2013; Pegtel et al., 2010). Along these findings, we have previously shown that JCV also 

encodes miRNA and are detected via Northern blot analysis of brain samples obtained 

from patients suffering from PML (Seo et al., 2008). Here, we address the question 

whether JCV miRNAs can be detected in exosomes secreted by astrocytes where JCV 

lytic replication is occurring, therefore, serving as a non-invasive, alternate diagnostics 

for PML.  
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7.2 Results 

 

7.2.1 JCV miRNAs are detected in exosomes secreted by JCV infected astroglial cells.  

We have previously demonstrated that the JCV 5p derivative miRNAs were 

detectable in brain samples obtained from patients suffering from PML (Seo et al., 2008). 

To determine if JCV miRNAs are detectable in the exosomes, we first established a cell 

culture system for the isolation and characterization of exosomes secreted from JCV 

infected cells. SV40-transformed human astroglial cells, SVGA (Major et al., 1985), were 

first infected with the Mad-1 strain of JCV. Exosomes from 3 days post infected (dpi) 

infected SVGA cell culture supernatant were isolated via differential ultracentrifugation. 

The first step in determining the identity of the exosomal pellet obtained from the 

ultracentrifugation procedure, TEM was performed on an aliquot of the pellet. The TEM 

image showed that vesicular structures between 40 to 100nm were visible in the 

ultracentrifugation purified exosomal samples with “saucer-like” morphology (Figure 

7.1A and B), consistent with the observed size and morphology from previously reported 

structural analysis of exosomes preparations (Raposo et al., 1996). As a second, 

independent method to confirm the identity of the exosomes preparation obtained via 

ultracentrifugation, western blot detection of CD63, a member of the tetraspanin family 

that has been previously reported to be present at high abundance in exosomes (Pols and 

Klumperman, 2009), was performed. The western blot result indicated that exosomes 
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were indeed isolated via ultracentrifugation of cell culture supernatant from JCV infected 

SVGA cells (Figure 7.1C).  
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Figure 7.1 TEM and western blot analysis confirmed the identity of exosomes isolated via ultracentrifugation.  
Exosomes were isolated from JCV infected SVGA cell culture supernatant at 3dpi, via ultracentrifugation. (A and B) TEM 
images of exosomes secreted by JCV infected SVGA at 3dpi. The exosomes are indicated by the red arrows. The size scale 
is indicated at the bottom of each panel. (C) Western blot analysis for CD63 from total cell lysate and exosomes under non-
reducing condition. Enrichment of CD63 signal was observable in 1 microgram of exosomal samples obtained via 
ultracentrifugation but not in 1 microgram to total cell lysate. 
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To determine if the JCV miRNAs were detectable in the exosomes, RNA was 

harvested from exosomes obtained from JCV infected SVGA, followed by Northern blot 

analysis for the JCV 5p derivative miRNA. The result however, did not reveal any signals 

from the JCV 5p derivative miRNAs (Figure 7.2A). A second Northern blot analysis for 

the abundant miRNA, let7-a, demonstrated that the cellular miRNA was not detectable in 

the exosomal RNA sample as well (figure 7.2B). These results suggested that either JCV 

miRNAs were not encapsulated by the exosomes, or that the amount of JCV miRNAs 

present was too low to be detectable via Northern blot analysis. The stem-loop RT PCR 

analysis was next performed to increase the detection sensitivity for the JCV 5p 

derivative miRNA (Chen et al., 2005; Kramer, 2011). Reverse transcription reaction was 

performed on exosomal RNA obtained from both uninfected and JCV infected SVGA. 

The total RNA was either left untreated or treated with DNase to reduce the amount of 

contaminating viral DNA during the reverse transcription reaction. Using a modified 

stem-loop primer designed to specifically recognize the last 9 nucleotides of the JCV 5p 

derivative miRNA, followed by end-point PCR identification. The RT-PCR results 

demonstrated that the JCV 5p derivative miRNA was detectable in the exosomal RNA 

preparation obtained from the cell culture supernatant of SVGA cells undergoing lytic 

JCV replication (Figure 7.2C). This end-point RT PCR assay, however, did not 

demonstrate high enough sensitivity and specificity. Without DNase treatment of the total 

RNA sample, amplified signal was also observed in total RNA from JCV infected 

SVGA, suggesting non-specific amplification of JCV DNA. Furthermore, RT PCR signal 

from exosomal samples was observable only after 45 cycles of amplification, suggesting 
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that the end-point PCR assay was not a sensitive method for detecting viral miRNAs 

from exosomes. 
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Figure 7.2
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Figure 7.2 Detection of JCV 5p derivative miRNA via Northern blot analysis and 
end-point stem-loop RT PCR.  
(A, B) Northern blot analysis of total and exosomal RNA. Exosomes from 3dpi SVGA 
was isolated via ultracentrifugation. Total and exosomal RNAs were subjected to 
Northern blot analysis for the JCV 5p derivative miRNA (A) and a control cellular 
miRNA, let7-a (B). The JCV pre-miRNA signal is indicated by a white arrowhead, the 
JCV 5p derivative miRNA signal is indicated by a black arrowhead whereas the let7-a 
miRNA is indicated by a grey arrowhead. As a loading control, ethidium bromide-stained 
low-molecular-weight RNA is shown in the bottom panel for each blot. (C) End-point 
stem-loop RT PCR detection of JCV 5p derivative miRNA from exosomal RNA. Total 
(indicated as “Total”) and exosomal (indicated as “Exo”) RNA from 3dpi SVGA 
(uninfected, “M” and JCV infected, “J”) were either left untreated or subjected to DNase 
elimination of contaminating DNA prior to end-point stem-loop RT PCR designed to 
recognized the last 9nt of the JCV 5p derivative miRNA. PCR bands corresponding to the 
JCV 5p derivative miRNA were detected after 45 cycles of PCR amplification only from 
the JCV infected samples. The row “DNase” indicates whether the RNA samples had 
been treated with DNase prior to the RT reaction and the row “RT” indicates whether the 
reverse transcriptase enzyme had been added to the reaction. The red “*” indicates 
detection of the JCV 5p derivative miRNA from exosomal RNA obtained from JCV 
infected SVGA.
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7.2.2 Confirmation of exosomal JCV 5p derivative miRNA via TaqMan-based stem-

loop RT PCR.  

The end-point PCR method for detecting the JCV 5p derivative miRNA consisted 

of 45 cycles of amplification steps. To increase the sensitivity of this assay and improve 

the limit of detection, a TaqMan-based stem-loop RT PCR was performed. SVGA cells 

were first infected with the Mad-1 strain of JCV and total RNA was harvested from the 

infected cells at 1, 3, 5 and 7dpi infection. To better improve efficiency and streamline 

the exosomes isolation process, a commercial exosomes precipitation solution, 

ExoQuick-TC (Taylor et al., 2011; Yamada et al., 2012) was used isolate exosomes from 

SVGA culture supernatant at 1, 3, 5 and 7dpi. Prior to detection of the JCV 5p derivative 

miRNA, the purity of the exosomes were first determined. Total cellular protein and 

exosomal protein were subjected to western blot analysis for Tsg101 and Calnexin. 

Tsg101 is an essential protein in exosomes biogenesis and are enriched in exosomes 

whereas Calnexin is an endoplasmic reticulum marker and are absent in exosomes 

(Lässer et al., 2011b; Urbanelli et al., 2013). Western blot analysis of exosomes isolated 

using the ExoQuick-TC exosomes precipitation solution indeed displayed enrichment of 

Tsg101 and an absence of Calnexin (Figure 7.3). RNA from the precipitated exosomes 

and the infected cells were then harvested and subjected to the TaqMan-based stem-loop 

RT PCR that specifically recognized the JCV 5p derivative miRNA. The quantitative 

PCR result demonstrated that the JCV 5p derivative miRNA was readily detectable in 

both the total and exosomal RNA from the JCV infected Mad-1 cells at all time points 
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but not from uninfected SVGA cells (Table 7.1), suggesting that the viral miRNAs were 

indeed detectable in exosomes secreted by JCV infected cells. However, detection of the 

viral miRNA signals from the total RNA samples registered at least 2.7 Ct cycles (3dpi) 

to 3.13 Ct cycles (7dpi) earlier than their exosomal counterparts, suggesting the need for 

further enrichment of neuronal exosomes prior to detection of the viral miRNAs via the 

TaqMan-based stem-loop RT PCR. 
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Figure 7.3 Western blot confirmation of exosomes isolated via ExoQuick-TC 
exosomes precipitation solution.  
Exosomes were isolated from uninfected (indicated as “Mock”) and JCV infected 
(indicated as “JCV”) SVGA at 1, 3, 5 and 7dpi using the ExoQuick-TC exosomes 
precipitation solution. 50 micrograms of total protein and exosomal protein were 
subjected to Western blot analysis for Tsg101, an exosomes marker, and Calnexin, an 
endoplasmic reticulum marker absent in exosomes. “DPI” indicates the days post 
infection of each sample.
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Table 7.1 TaqMan stem-loop RT PCR detection of JCV 5p derivative miRNA from 
exosomes secreted by JCV infected SVGA.  
Commercial TaqMan stem-loop RT PCR kit was used to detect the JCV 5p derivative 
miRNA from both total and exosomal RNA samples derived from 1, 3, 5 and 7dpi 
SVGA. Each data is represented as an average and standard deviation of Ct cycle number 
in triplicate. Uninfected SVGA is indicated by “Mock” and JCV infected SVGA is 
indicated by “JCV”. “N.D.” represents not detectable due to Ct cycle number greater than 
40.

 
 

Total Exosomes 

Mock JCV Mock JCV 

1dpi N.D. 25.78 ± 0.04 39.63 ± 0.65 30.49 ± 0.24 

3dpi 39.07 ± 0.82 27.29 ± 0.02 N.D. 30.00 ± 0.04 

5dpi 39.54 ± 0.79 26.04 ± 0.03 39.21 ± 0.77 30.14 ± 0.09 

7dpi 39.55 ± 0.78 24.81 ± 0.02 39.86 ± 0.24 30.41 ± 0.12 
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7.2.3 Enrichment of neuronal exosomes via PLP-mediated Immunoaffinity capture. 

Since the cells were cultured in media containing regular fetal bovine serum 

(FBS), the exosomal preparations from the virus infected cells would therefore, contain 

exosomes from the serum itself. The presence of exosomes would be expected to increase 

the background signal when detecting the JCV 5p derivative miRNA. Previous reports 

have demonstrated successful isolation of exosomes of specific cellular origin via 

immunoaffinity capture, through targeting of membrane proteins that are unique to the 

exosomes of interest (Clayton et al., 2001; Koga et al., 2005; Mathivanan et al., 2010; 

Tauro et al., 2012). Proteomic profiling of oligodendroglial exosomes revealed the 

presence of unique myelin proteins such as proteolipid protein (PLP), 2’, 3’-cyclic 

nucleotide 3’ phosphodiesterase (CNP), myeline-associated glycoprotein (MAG) and 

myelin oligodendrocyte glycoprotein (MOG) (Krämer-Albers et al., 2007). Western blot 

analysis demonstrated that PLP was readily detectable in SVGA cells under both 

uninfected and JCV infected conditions (data not shown), therefore, PLP was selected as 

the target protein for isolation of SVGA exosomes via immunoaffinity capture. Exosomes 

were first isolated from JCV infected SVGA supernatant at 3dpi, using the ExoQuick-TC 

exosomes precipitation solution. Four different antibodies against PLP were used 

individually to immunoaffinity capture SVGA secreted exosomes, following by 

harvesting of exosomal RNA. As a control for exosomes immunoaffinity capture, an 

antibody against CD63 was used. TaqMan stem-loop RT PCR was next performed on the 

exosomal RNA for the JCV 5p derivative miRNA. The result, however, did not reveal 

any enrichment of the viral miRNA signal over the input total exosomes as the Ct cycle 
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number observed for each immunoaffinity capture sample was greater than the Ct cycle 

number for the total exosomes sample (Table 7.2), indicating the failure to enrich for 

neuronal exosomes via PLP-mediated immunoaffinity capture. In addition, the lack of 

signal from CD63-mediated immunoaffinity capturing of exosomes (Ct cycle number of 

37.90) further suggesting the general inefficiency or lack of complete capturing of 

exosomes through this methodology. 
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Table 7.2 No enrichment of SVGA secreted exosomes via PLP-mediated 
immunoaffinity capture.  
Exosomes from 5dpi uninfected (“Mock”) and JCV infected SVGA were isolated via 
ExoQuick-TC exosomes precipitation solution. Four different antibodies against PLP 
were used in the immunoaffinity capture of SVGA exosomes. An antibody against CD63 
was used as a control. RNA from immunoaffinity captured exosomes were harvested and 
subjected to TaqMan stem-loop RT PCR to detect the JCV 5p derivative miRNA. The 
result suggests none of the tested antibodies displayed enrichment of SVGA exosomes. 
Each data is represented as an average and standard deviation of Ct cycle number in 
triplicate. Uninfected SVGA is indicated by “Mock” and JCV infected SVGA is 
indicated by “JCV”. “N.D.” represents not detectable due to Ct cycle number greater than 
40. 

 Mock JCV 

CD63 N.D. 37.90 ± 1.85 

PLP (O10) 39.70 ± 0.32 30.38 ± 0.09 

PLP (9001) N.D. 37.66 ± 2.10 

PLP (2D7) 38.99 ± 1.57 39.25 ± 1.30 

PLP (G-17) N.D. 39.38 ± 1.07 

ExoQuick-TC 39.36 ± 1.10 30.25 ± 0.06 

Total RNA 35.72 ± 0.16 26.96 ± 0.01 
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7.3 Discussion 

In the early 1980s, despite being a rare disease in the general population, before the 

era of highly active anti-retroviral drug therapies, PML was as one of the top disease 

affecting patients suffering from AIDS (Collazos, 2003). More recently, the introduction 

of monoclonal antibodies as therapeutic agents against autoimmune disease, PML is a 

clinical problem of rising interest and economic importance to several 

biotechnology/pharmaceutical companies. The lack of antiviral drug against JCV 

replication calls for closer monitoring of patients under these therapeutic regimes for lytic 

JCV replication in the brain. However, the current gold standard of PML diagnosis 

involves detection of JCV genome in the CSF via PCR or by brain biopsy are too 

invasive to be implemented for routine surveillance of patients under the monoclonal 

antibodies treatment regime. Until the availability of effective treatment against active 

JCV replication in the brain, the development of a non-invasive diagnostic for PML is of 

the utmost importance. Here, we describe a methodology for detecting JCV miRNA in 

exosomes secreted by neuronal cells as a potential non-invasive diagnostic for PML. We 

first demonstrate that cultured astroglial cells, SVGA, release exosomes into the culture 

supernatant. TEM visualization of the exosomal morphology and western blot analysis 

for exosomal protein, CD63 confirm successful isolation of exosomes from JCV infected 

SVGA cells (Figure 7.1). Via end-point stem-loop RT PCR, we are able to detect the JCV 

5p derivative miRNA from exosomes secreted by JCV infected SVGA cells (Figure 7.2). 

However, the end-point stem-loop RT PCR detection method was not as sensitive and 
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specific as anticipated, we therefore turn to the TaqMan-based stem-loop RT PCR using 

commercially designed RT primers for detection of the JCV 5p miRNA derivative from 

the exosomes and indeed able to detect the viral miRNA from both total and exosomal 

RNAs. These assays, however, were performed under the condition of contaminating 

bovine exosomes introduced by the supplemented FBS in the cell culture media, thereby 

potentially reducing the signal-to-noise ratio in the detection of viral miRNAs from 

exosomal RNA. Indeed, we are not able to observe enrichment of viral miRNA signal in 

the exosomal RNA sample over the total RNA sample. 

To circumvent this issue, two alternatives are available. First, exosomes depleted 

FBS can be used in the cell culture media, thereby eliminating the contaminating bovine 

exosomes. Second, a second enrichment step can be perform to selectively harvest 

exosomes of neuronal origin. For the development of a new diagnostic, the former 

alternative is less desirable due to the fact that exosomes are secreted by multiple tissue 

types (Simpson et al., 2012), thus, having contaminating bovine exosomes in the cell 

culture media is a better mimic of human samples. To enrich for exosomes secreted by 

the SVGA cells, we target one of the neuronal specific membrane protein, PLP, for the 

immunaffinity capture of exosomes after pre-concentrating the total exosomes via 

ExoQuick-TC exosomes precipitation solution. However, the lack of signal-to-noise ratio 

improvement indicate an unsuccessful enrichment of SVGA secreted exosomes via 

immunoaffinity capture. The PLP protein is a member of the tetraspanin with only two 

extracellular loop regions found at the extracellular surface (Dhaunchak and Nave, 2007; 

Greer et al., 1996; Krämer-Albers et al., 2007). Therefore, inability for the chosen 
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antibodies to recognize either of the extracellular motifs could explain the lack of 

enrichment of SVGA exosomes. Greer et al. had successfully generated two antibodies, 

3F4 and 3G9, which were raised to specifically recognize each of the two extracellular 

loops (Greer et al., 1996). Therefore, utilizing these two antibodies can be a better option 

over the four antibodies tested in this study. Since JCV specifically establishes lytic 

replication in oligodendrocytes, the myelin producing cells of the central nervous system 

(Krämer-Albers et al., 2007; Major et al., 1992; Zu Rhein, 1969; Zurhein and Chou, 

1965), aside from PLP, other oligodendrocyte membrane proteins that are present in 

oligodendrocytes-derived exosomes, namely CNP, MAG and MOG (Fitzner et al., 2011; 

Krämer-Albers et al., 2007), can also be targeted in immunoaffinity capture of the 

exosomes.  

The isolation of oligodendrocytes-derived exosomes from human body fluid 

samples such as serum and urine hinges on one important factor – crossing of the blood-

brain-barrier. Indeed, a previous report by Skog et al. has clearly demonstrated the 

isolation of exosomes secreted by glioblastoma tumors from the serum of glioblastoma 

patients. Furthermore, mRNA and miRNAs characteristics of glioma were detected in 

those exosomes as well. Therefore, the overall schematic of the non-invasive diagnostic 

for PML proposed in this study will first require routine blood draws and/or collection of 

urine samples from patients undergoing monoclonal antibodies treatment regime. Total 

exosomes will then be harvested from the body fluid via ultracentrifugation or direct 

precipitation using commercial solutions. Exosomes of neuronal origin, or specifically, 

oligodendrocyte-derived, can be enriched via immunoaffinity capture through the 
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targeting of membrane surface protein that are uniquely expressed in oligodendrocytes. 

Finally, TaqMan-based stem-loop RT PCR will be conducted to determine if the JCV 

miRNAs can be detected in the exosomes. 

 

7.4 Future Directions 

 

Since PML is characterized by a progressive spread of JCV lytic infection of 

oligodendrocytes (Gheuens et al., 2013). Therefore, one might predict that at the earliest 

onset of PML, only a small population of oligodendrocytes will be displaying JCV lytic 

replication. Therefore, the subpopulation of exosomes isolated from the patient serum 

samples that are positive for the JCV miRNAs will be flooded by exosomes of various 

other cellular origin. Therefore, to sample exosomes from the brain, in particular, 

secreted by oligodendrocytes will definitely require an additional enrichment step, via 

immunoaffinity capture. Despite not being able to capture SVGA exosomes using four 

different antibodies against PLP, the idea of immunoaffinityt capture is not without merit. 

Several biotechnology companies such as Systems Biosciences and Life Technologies are 

offering magnetic beads with conjugated antibodies against exosomal membrane protein 

such as CD63. To specifically enrich for exosomes secreted by oligodendrocytes, it is 

necessary to target oligodendrocytes-specific membrane proteins. As discussed, Greer et 

al. has two published antibodies against extracellular loop regions of PLP that can be 

tested in the immunoaffinity capturing of oligodendrocytes-derived exosomes. There are 

also additional oligodendrocytes specific membrane protein such as MAG and MOG, 
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which are also enriched in exosomes (Krämer-Albers et al., 2007), that can serve as target 

for immunoaffinity capturing of the exosomes.   

 

7.5 Materials and methods 

 

7.5.1 Cell culture and preparation of culture medium for exosomes isolation.  

SVGA cells (SV40 transformed astroglial cells, kindly provided by Walter 

Atwood, Brown University, Providence, RI) were maintained in Minimal Essential 

Medium Eagle with Earle’s salts and L-glutamine (MEM, Cellgro, Manassa, VA) 

supplemented with 10% heat inactivated fetal bovine serum (FBS, Sigma-Aldrich, St. 

Louis, MO), penicillin (100IU/mL) and streptomycin (100μg/mL) (Cellgro).  

 

7.5.2 JCV infection of SVGA cells.  

SVGA cells were seeded in T175 tissue culture flasks. The cells were infected 

with JCV (Mad1 strain, kindly provided by Walter Atwood) in MEM containing 2% heat 

inactivated FBS at 37°C for 1 hour. The plates were gently rocked every 15 minutes. The 

virus inoculum was replaced with 30mL of regular MEM containing 10% heat 

inactivated FBS.  
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7.5.3 Ultracentrifugation isolation of exosomes.  

Exosomes were isolated from either mock infected or JCV infected SVGA cell 

culture medium by first centrifugation at 300g for 10 minutes at 4°C (Avanti J-E 

centrifuge with JS 5.3 swinging bucket rotor, Beckman Coulter, Brea, CA). The 

supernatant was collected and centrifuge at 2000g for 20 minutes at 4°C (Avanti J-E 

centrifuge with a JS 5.3 swinging bucket rotor, Beckman Coulter). The supernatant was 

transferred to a 75mL polycarbonate bottles (ThermoFisher Scientific, Asheville, NC). 

The supernatant was centrifuged at 10,000g for 30 minutes at 4°C (Sorvall Ultra Pro 80 

with a T-647.5 fixed angle rotor, ThermoFisher Scientific). The supernatant is transferred 

using a pipet to a fresh 75mL polycarbonate bottle and centrifuged at 100,000g for 2 

hours and 30 minutes at 4°C. The supernatant was discarded by decanting. The pellet was 

washed with phosphate-buffered saline (PBS, Cellgro) and centrifuged at 100,000g for 2 

hours and 30 minutes at 4°C. The supernatant was discarded by decanting. To remove the 

supernatant as completely as possible, the bottle was kept upside down and the remaining 

liquid on the side of the mouth of the bottle was removed with an aspirator. The pellet is 

suspended in 200μL of PBS and divided into 50μL aliquots and stored at -80°C. 

 

7.5.4 Pre-enrichment of exosomes from cell culture media.  

Prior to isolation of the neuronal exosomes via proteolipid protein (PLP) specific 

immunoaffinity capture, supernatant from SVGA cell cultures (mock or JCV Mad1 strain 

infected) were subjected to ExoQuick-TC Exosome Precipitation (System Biosciences, 
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Mountain View, CA), according to the manufacturer’s protocol. Briefly, SVGA cell 

culture supernatant was centrifuged at 3000g for 15 minutes at 4°C. 10mL of the 

centrifuged SVGA cell culture supernatant was then mixed with 2mL of ExoQuick-TC 

Exosome Precipitation Solution. The mixture was placed at 4°C for overnight. After 

overnight incubation, the mixture was centrifuged at 1500g for 30 minutes at 4°C. The 

resulting supernatant was aspirated. Another centrifugation step of 1500g at 4°C was 

done for an additional 5 minutes. The remaining trace of supernatant was aspirated. The 

exosomes pellet was dissolved in 200μL of PBS and stored at -80°C. For subsequent 

Western blot analysis, the exosomes pellet was resuspended in RIPA lysis buffer. For 

subsequent Northern blot analysis, the exosomes pellet was resuspended in PIG-B 

solution.  

 

7.5.5 RNA isolation and end-point stem-loop Reverse Transcription (RT) PCR 

detection of JCV 5p derivative miRNA.  

Total RNA from mock or JCV infected SVGA cells were harvested using an in-

house PIG-B solution (2M guanidinium thiocyanate [EMD, Billerica, MA], 20mM citrate 

buffer, pH4.5, 5mM EDTA [Fisher Scientific, Pittsburg, PA], 0.25% Sarkosyl [Sigma 

Aldrich], 48% saturated phenol, pH4.5 [Amresco, Solon, OH], 2.1% isoamyl alcohol 

[Fisher Scientific], 0.5% β-mercaptoethanol [Sigma Aldrich], 0.1% 8-hydroxyquinoline 

[EMD], and 0.0025% Coomassie blue [EMD]) as described previously (1, 2, 3). RNA 

from mock infected or JCV infected SVGA exosomes were isolated using the same 

protocol as above. Prior to reverse transcription, total RNA was either left untreated or 
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treated with TURBO DNase (Ambion, Austin, TX) according to the manufacturer’s 

protocols. Reverse transcription was done using SuperScript III reverse transcriptase 

(Invitrogen, Grand Island, NY) using the stem-loop RT parameters of 16°C for 30 

minutes followed by 60 cycles of 30°C for 30 seconds, 42°C for 30 seconds and 50°C for 

1 second, ending with 85°C for 5 minutes. PCR was done on the reverse transcription 

product using Taq DNA polymerase (New England BioLabs, Ipswich, MA). The primers 

used were as follows: JCV 5p miRNA stem-loop RT primer, 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATGCTTTTC

, JCV 5p miRNA PCR forward, GGCCTCGTTCTGAGACCTGG, and stem-loop PCR 

reverse, GTGCAGGGTCCGAGGT. The PCR program used was a touchdown PCR 

protocol with the annealing temperature starting at 62°C for 30 seconds, decreasing by 

0.5°C every cycles for 20 cycles. PCR was continued for another 25 cycles at an 

annealing temperature of 52°C. The extension step was performed at 68°C for 30 seconds 

for each cycle. The PCR product was analyzed in a 3% agarose Lithium Borate gel 

(BioExpress, Kaysville, UT). The agarose gel was stained by ethidium bromide (Fisher 

Scientific) and visualized using a Bio-Rad Universal Hood II gel imager (Bio-Rad, 

Hercules, CA). 

 

7.5.6 TaqMan-based stem-loop RT PCR for detection of JCV 5p derivative miRNA. 

Total or exosomal RNA was subjected to RT using the RT mix provided by the TaqMan 

MicroRNA Assay (Life Technologies, Grand Island, NY), using the parameters as 

described in for the end-point RT PCR. Quantitative PCR was performed using the 
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primer mix provide by the TaqMan MicroRNA Assay and the TaqMan Universal PCR 

Master Mix, No AmpErase UNG (Life Technologies) on a ViiA 7 Real-Time PCR 

system under the default settings for TaqMan-based real time PCR.  

 

7.5.7 Northern blot analysis.  

Briefly, 10 micrograms of total RNA was or equal volume of exosomal RNA was 

separated on a Tris-borate-EDTA-Urea-15% denaturing polyacrylamided gel. The RNA 

was transferred onto a Hybond N+ membrane (GE Healthcare, Pittsburgh, PA) as 

previously described (Sullivan et al., 2005). The sequence of the probe to detect the JCV 

5p derivative miRNA was: CAATCACAATGCTTTTCCCAGGTCTCAGAAGCCTCT. 

 

7.5.8 Protein isolation and western blot analysis.  

Mock or JCV infected SVGA cells were lysed in RIPA buffer (150mM sodium 

chloride [Avantor Performance Materials, Center Valley, PA], 10mM Tris, pH 7.2 

[Fisher Scientific], 0.1% sodium dodecyl sulfate [Avantor Performance Materials], 1% 

Triton X-100 [Fisher Scientific], 1% sodium deoxycholate [Alfa Aesar, Ward Hill, MA], 

5mM EDTA [Fisher Scientific] and 1 tablet of complete mini, EDTA-free protease 

inhibitor (Roche, Indianapolis, IN) per 10mL of RIPA buffer. 1μg of exosomes samples 

and 50μg of mock or JCV infected SVGA total protein were heated at 70°C for 10 

minutes in SDS sample buffer without β-mercaptoethanol (375mM Tris-HCL, pH6.8 

[Fisher Scientific], 6% (w/v) sodium dodecyl sulfate [Avantor Performance Materials], 
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48% (v/v) glycerol [Sigma-Aldrich], and 0.03% (w/v) bromophenol blue [Fisher 

Scientific]) and subjected to electrophoresis using a 10% denaturing acrylamide gel (Bio-

Rad). Proteins were transferred onto Immobilon-FL PVDF membrane (Millipore, 

Billerica, MA) using the Bio-Rad Mini Trans-Blot electrophoretic transfer cell (Bio-Rad).  

The membrane was blocked in 5% (w/v) skim milk powder (HEB, San Antonio, TX) in 

Tris-buffered saline with 0.1% (v/v) Tween-20 (TBST, Fisher Scientific) for 1 hours at 

room temperature. Membrane was probed using a mouse monoclonal antibody against 

CD63 (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA), a rabbit monoclonal 

antibody against Tsg101 (1:1000, EMD Millipore, Billerica, MA) or a rabbit monoclonal 

antibody against Calnexin (1:1000, Cell Signaling Technology, Danvers, MA), overnight 

at 4°C. After overnight incubation, the membrane was washed with TBST, 4 times, 15 

minutes each, followed by incubation with anti-mouse secondary antibody IgG 

conjugated to HRP (1:5000, Invitrogen) for 1 hour at room temperature. The membrane 

was washed 4 times with TBST, 15 minutes each. The West Dura chemiluminescent 

substrate (Thermo Scientific) was used to generate the light signal for visualization on the 

Blue Ultra Autorad film (BioExpress).  

 

7.5.9 Transmission Electron Microscopy (TEM).  

Transmission electron microscopy imaging of exosomes preparations was 

performed as described (4), with slight modifications. Briefly, 10μL of the exosomes 

preparation was mixed with 10μL of 4% paraformaldehyde (PFA) solution in PBS (USB 

Corporation, Cleveland, OH) to achieve a final concentration of 2% PFA. A drop of the 
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sample was spotted on a piece of parafilm (Pechiney Plastic Packaging, Menasha, WI) 

and a Formvar Carbon Film on 300 square mesh Nickel Grid (Electron Microscopy 

Sciences, Hatfield, PA) was floated on top of the sample. The excess liquid was blotted 

off and allowed to dry for 20 minutes at room temperature. The grids were washed 8 

times with deionized water prior to staining, using the floating method as described 

above. To stain the samples, a drop of uranyl-acetate solution, pH4.2 – 4.5 (kindly 

provided by the Institute of Cellular and Molecular Biology Microscopy Facility, The 

University of Texas at Austin, Austin, TX) was spotted onto a piece of parafilm and the 

grid was floated on the drop for 5 minutes, followed by blotting off the excess uranyl-

acetate solution. The grids were washed one time as described above. Imaging was 

performed using a Tecnai Spirit BioTwin transmission electron microscope (FEI, 

Hillsboro, OR) at 80kV. 

 

7.5.10 Immunoaffinity capture of exosomes from ExoQuick-TC enriched exosomes. 

200μL of either EcoMagTM Protein L Magnetic Beads (Bioclone Inc., San Diego, CA) or 

Dynabeads® Protein G beads (Invitrogen, Grand Island, NY) were washed twice with 

PBS+0.1% Tween 20 (ThermoFisher Scientific, Asheville, NC). 10mg of the following 

PLP antibodies were added to 200μL of the beads in a total volume of 400μL of 

PBS+0.1% Tween 20 for conjugations to the beads, overnight, at 4°C, with rotation on a 

Labquake Shaker Rotisserie (ThermoFisher Scientific). The following antibodies against 

PLP were used: Monoclonal Mouse IgM Clone#O10 Human PLP Antibody (R&D 

Systems, Inc., Minneapolis, MN). Monoclonal Mouse IgG2a kappa Myelin PLP 
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Antibody (2D7) (Novus Biologicals, Littleton, CO). Polyclonal Goat PLP Antibody (G-

17) (Santa Cruz Biotechnology). Monoclonal Rat Myelin PLP (Human, #9001) Antibody 

(ImmunoDiagnostics, Inc., Woburn, MA). After overnight antibody conjugation onto the 

magnetic beads, the beads were washed twice with PBS+0.1%BSA (Sigma-Aldrich, St. 

Louis, MO). 50μL of the ExoQuick-TC enriched exosomes and 50μL of PBS+0.1%BSA 

were added to the antibody-conjugated magnetic beads. Immunoaffinity capturing of the 

neuronal exosomes was done overnight, at 4°C, with rotation as above. After overnight 

capturing of the neuronal exosomes, the magnetic beads were washed three times with 

PBS+0.1%BSA. The exosomes-captured magnetic beads are subjected to RNA isolation 

for stem-loop RT PCR detection of JCV microRNA or western blot analysis. 



 265 

CHAPTER 8  Thesis Significance and Future Work 

 

 Polyomaviruses are a fascinating family of DNA viruses. Ever since the discovery 

of the first polyomavirus in 1953, our understanding of fundamental molecular biology 

and tumor biology has grown by leaps and bounds. However, we have not yet fully 

uncover everything about these viruses, best demonstrated by the discovery of the 

polyomaviral miRNAs, first described in 2005. More importantly, several members of the 

polyomaviruses are associated with human pathologies – MCV is the first human 

polyomavirus known to cause cancer, Merkel cell carcinoma; JCV is the causative agent 

of PML, a rare neurodegenerative disease that has recently received more attention since 

the introduction of immunomodulatory therapies; BKV causes nephropathy is transplant 

patient and is one of the leading cause of organ rejection; TSV is the etiological agent of 

a skin disease known as trichodysplasia spinulosa. With the recent boom in discovery of 

new human polyomaviruses comes a need to better understand these viruses and how 

they contribute to human pathologies, to the ultimate goal of preventing or even treating 

polyomavirus-associated diseases. This work is a small piece of this puzzle, addressing 

the functions of polyomaviral miRNAs. 

 There are currently more than fifty polyomaviruses, yet only a small subset has 

been inspected for the capacity to encode miRNAs. It is therefore a worthwhile endeavor 

to screen all known polyomaviruses and differentiate the miRNA-positive from the 

miRNA-null members. This will perhaps allow us to draw important correlation between 
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the polyomaviral miRNAs, their natural host cell types and the pathologies that they 

cause. One conserved function of the polyomaviral miRNAs is the autoregulation of the 

early transcripts and the biological relevance to polyomavirus biology is one of the main 

theme covered in this work. However, it is of the utmost importance to extend this work 

beyond tissue culture. The fact that SV40 undergoes lytic infection in the laboratory 

setting calls for the need to better understand the relevance of miRNA-mediated 

autoregulation during natural polyomavirus infection. For SV40, the next step is to study 

the miRNAs in the more relevant host type, the Rhesus macaques. A good starting point 

would be to determine the effect of the SV40 miRNAs between the wild type virus and 

the miRNA-null mutant in primary rhesus macaque kidney epithelial cells.  

 The biggest mystery in the polyomavirus field, however, is the establishment of 

polyomaviral persistent infections in their natural hosts. By fully characterizing the 

laboratory persistent infection systems established in this work, we can perhaps better 

understand the underlying mechanism of polyomaviral persistent infections. The 

evidence described in this work points to the large T antigen as the most important player 

in persistent infections, yet, we cannot formally rule that the miRNAs are not involved at 

any point. Therefore, one of the first step would be to establish the same laboratory 

infection system using a miRNA-expressing virus (for example, protoarchetype-WT) and 

determine if additional expression of the SV40 miRNAs would alter the establishment of 

laboratory persistent infections. 

 It can be speculated that the polyomaviral-miRNA mediated autoregulation of the 

early transcripts is a way for the polyomaviruses to evade the immune response. Without 
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high levels of large T antigen, active lytic replication cannot be supported. We speculate 

that the polyomaviral miRNAs to play an important role in the establishment of persistent 

infections, by preventing the expression of the T antigens. Yet, may not be the only 

requirement. Additional contributions may come from alterations of the functionalities of 

the large T antigen or even targeting of other cellular transcripts by the polyomaviral 

miRNAs, both suggested by this work.  

 The field of polyomaviral miRNAs is going to marvel us with how a small virus 

such as the polyomavirus with limited genomic space had evolved to tap into the power 

of miRNAs. Yet at the same time, it is baffling as to why not all polyomaviruses encode 

miRNAs. Understanding how these miRNA-null polyomaviruses cope with the 

challenges faced by the miRNA-positive polyomaviruses will definitely amaze us even 

more. 
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CHAPTER 9  Conclusions 

 

 The field of viral miRNAs is relatively young, despite the discovery of more than 

300 known viral miRNAs, from both DNA and RNA viruses, only a few of them have 

well-defined functions. From a virus standpoint, miRNAs can be the difference between 

elimination and survival. The relatively small genome sizes have put extreme constraints 

on many virus families and the gene repertoire that they can have. Since miRNAs are 

small molecules that do not occupy significant genomic space, they are the perfect genes 

that can still fit within the limitations imparted upon these viruses by their small genome 

sizes. Unlike viral proteins, the fact that miRNAs are non-immuogenic makes them the 

perfect viral regulatory gene. In addition, miRNAs are capable of targeting a wide array 

of targets. Since a single seed sequence (nucleotide position 2 to 8) can potentially target 

16384 unique transcripts, the plasticity offered by miRNAs again, alleviates the genomic 

limitations that most viruses suffer from.  

 My work focuses on the discovery and determining the functions of polyomaviral 

miRNAs. At the start of this dissertation work, only SV40, muPyV, JCV and BKV have 

been shown to encode miRNAs. Since then, I have shown that several other non-human 

polyomaviruses also encode miRNA. More importantly, through a collaborative effort 

with Dr. Gil Ju Seo, we have demonstrated that MCV, the first human polyomavirus 

known to cause cancer, encodes miRNAs as well. All known polyomaviral miRNAs are 

located antisense to the early transcripts and can be further categorized into two groups 
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based on their genomic locations, at the C-terminus or closer to the N-terminus of large T 

antigen. Despite the differences in their genomic locations, previous studies and my work 

have demonstrated that all polyomaviruses that are known to encode miRNAs also 

preserved the function of autoregulating the early transcripts. The fact that miRNAs are 

highly conserved among different strains of the same virus, in particular, SV40, JCV and 

BKV, further emphasizes the importance of miRNA-mediated autoregulation of the early 

transcripts. In addition, through this work, I have also demonstrated that this mode of 

autoregulation is conserved in a diverse virus family, the Bandicoot Papillomatosis 

Carcinomatosis Viruses (BPCV). Despite not located directly antisense to the early 

transcripts, the BPCV miRNAs can still autoregulate the early transcripts, further 

emphasizing the importance of miRNA-mediated autoregulation of the early transcripts.  

What is the biological significance of this conserved miRNA-mediated 

autoregulation of the early transcripts? Several research groups, including our own, have 

implicated a role for the miRNA-autoregulation of the early transcripts in immune 

evasion and establishment of persistent infections. This implication should not come as a 

surprise to anyone since polyomaviruses establish persistent infections in their natural 

hosts, and polyomaviral miRNAs can control the expression of the T antigens, which are 

required at multiple stages of the virus life cycle. However, from my work, there was no 

significant difference in lytic replication between K661 and K661-776miR, suggesting 

that at least in the laboratory setting, the SV40 miRNAs play a minimal role. A major 

drawback from my work is the fact that the studies were performed in African green 

monkey cells, in which SV40 will undergo lytic replication, an obvious deviation from 
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persistent infection of its natural host, the Rhesus macaque. Therefore, one ongoing work 

in our lab revolves around studying the potential effects that the SV40 miRNAs will have 

on infections of primary Rhesus macaque kidney epithelial cells. 

This work, together with other works from our lab, has indicated that not all 

polyomaviruses encode miRNA. This raises two very interesting questions – First, are 

there more miRNA-encoding polymaviruses than miRNA-null polyomaviruses, or it is 

vice versa? Second, if the autoregulation of T antigen is indeed important, how do 

miRNA-null polyomaviruses achieve the same regulatory goal? To address this question, 

future experiments will require us to inspect all polyomaviruses for their potential to 

encode miRNAs. The result should offer insights as to why some polyomaviruses do not 

encode miRNAs and how that can be related to the host cell types that those 

polyomaviruses naturally infect.  

Even though the autoregulation of the early transcripts is one conserved function 

of the polyomaviral miRNAs, it is highly unlikely for these viral miRNAs to not target 

host transcripts as well. In fact, ULPB3, a natural killer cell activating ligand, has been 

implicated as a host target for the JCV 3p derivative miRNA. Therefore, besides 

autoregulation of the early transcripts, our lab is also aiming to determine the possible 

host targets for polyomaviral miRNAs. We have preliminary work to suggest that the 

MCV 5p miRNA shares the same minimal seed sequence as the cellular miR-7 

(nucleotide position 2 to 7), potentially allowing the MCV 5p miRNA to target a selected 

set of host transcripts. Since an oncogenic role has been implicated for miR-7, we are 
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currently focusing on determining the possible cellular targets of the MCV 5p miRNA 

and how these targets are related to the MCV biology and Merkel cell carcinoma.  

One of the most intriguing question in polyomavirus biology is how these viruses 

establish persistent infections. In this work, I have only just begun to address this 

important question through the establishment of two different laboratory SV40 persistent 

infection systems. However, this work is only at its infant stage, and more efforts are 

necessary to fully characterize these persistently infected cell lines before we can even 

begin to unravel the biggest mystery of polyomavirus biology – persistence. Since one of 

the major differences between these two persistently infected cell lines is the presence of 

the SV40 miRNAs, it is possible for the SV40 viral miRNAs to play an important role in 

the establishment of persistent infections.  

Finally, how can we translate our scientific advancement from beyond the 

laboratory to potentially helping this world? I have started this endeavor by first 

demonstrating that the detection of JCV miRNAs in exosomes can serve as a non-

invasive alternative diagnostic of PML. This idea, at this point however, has only been 

demonstrated under the cell culture setting. The next step will require the actual 

enrichment of neuronal exosomes from biological fluid samples and the subsequent 

detection of the JCV 5p miRNA. If this diagnostic does indeed work in the clinical 

setting, it can potentially benefit a lot of patients who are undergoing immunomodulatory 

treatment regime and at risk of developing PML. 
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This work was aimed at the discovery of polyomaviral miRNAs and determining 

their functions. But for every miRNA discovered, more questions were raised. 

Polyomaviruses have been well studied, especially for SV40 and muPyV; yet, we are 

only scrapping the tip of an iceberg. I hope that the work that I have done has contributed 

to not just a better fundamental understanding of this virus family, but also towards the 

ultimate goal of treating the pathologies associated as well. 
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