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Driven by the need to lower capital expenditures and operating costs,

as well as by competitive pressure to increase product quality and consistency,

modern chemical processes have become increasingly complex. These trends

are manifest, on the one hand, in complex equipment configurations and, on

the other hand, in a broad array of sensors (and control systems), which gen-

erate large quantities of operating data.

Of particular interest is the combination of two traditional routes of

chemical processing: batch and continuous. Batch to continuous processes

(B2C), which constitute the topic of this dissertation, comprise of a batch

section, which is responsible for preparing the materials that are then pro-

cessed in the continuous section. In addition to merging the modeling, control

and optimization approaches related to the batch and continuous operating
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paradigms –which are radically different in many aspects– challenges related

to analyzing the operation of such processes arise from the multi-phase flow.

In particular, we will be considering the case where a particulate solid is sus-

pended in a liquid “carrier”, in the batch stage, and the two-phase mixture is

conveyed through the continuous stage.

Our explicit goal is to provide a complete operating solution for such

processes, starting with the development of meaningful and computationally

efficient mathematical models, continuing with a control and fault detection

solution, and finally, a production scheduling concept. Owing to process com-

plexity, we reject out of hand the use of first-principles models, which are

inevitably high dimensional and computationally expensive, and focus on data-

driven approaches instead.

Raw data obtained from chemical industry are subject to noise, equip-

ment malfunction and communication failures and, as such, data recorded

in process historian databases may contain outliers and measurement noise.

Without proper pretreatment, the accuracy and performance of a model de-

rived from such data may be inadequate. In the next chapter of this disser-

tation, we address this issue, and evaluate several data outlier removal tech-

niques and filtering methods using actual production data from an industrial

B2C system. We also address a specific challenge of B2C systems, that is,

synchronizing the timing of the batch data need with the data collected from

the continuous section of the process. Variable-wise unfolded data (a typical

approach for batch processes) exhibit measurement gaps between the batches;
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however, this type of behavior cannot be found in the subsequent continuous

section. These data gaps have an impact on data analysis and, in order to

address this issue, we provide a method for filling in the missing values. The

batch characteristic values are assigned in the gaps to match the data length

with the continuous process, a procedure that preserves meaningful process

correlations.

Data-driven modeling techniques such as principal component analy-

sis (PCA) and partial least squares (PLS) regression are well-established for

modeling batch or continuous processes. In this thesis, we consider them from

the perspective of the B2C systems under consideration. Specific challenges

that arise during modeling of these systems are related to nonlinearity, which,

in turn, is due to multiple operating modes associated with different product

types/product grades. In order to deal with this, we propose partitioning the

gap-filled data set into subsets using k-means clustering. Using the cluster-

ing method, a large data set that reflects multiple operating modes and the

associated nonlinearity can be broken down into subsets in which the system

exhibits a potentially linear behavior. Also, in order to further increase the

model accuracy, the inputs to the model need to be refined. Unrelated vari-

ables may corrupt the resulting model by introducing unnecessary noise and

irrelevant information. By properly eliminating any uninformative variables,

the model performance can be improved along with the interpretability. We

use variable selection methods to investigate the model coefficients or variable

importance in projection (VIP) values to determine the variables to retain in
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the model.

Developing a model to estimate the final product quality poses differ-

ent challenges. Measuring and quantifying the final product quality online

can be limited due to physical and economic constraints. Physically, there are

some quantities that cannot be measured due to sensor sizes or surrounding

environments. Economically, the offline “lab” measurements may lead to de-

stroying the sample used for the testing. These constraints lead to multiple

sampling rates. The process measurements are stored and available continu-

ously in real-time, but the quality measurements have much lower sampling

rate. In order to account for this discrepancy, the online process measurements

are down-sampled to match the sampling frequency of the lab measurements,

and subsequently, soft sensors are can be developed to estimated the final

product quality. With the soft sensor in place, the process needs to be opti-

mized to maximize the plant efficiency. Using the real-time optimization, the

optimal sequence of manipulated inputs that minimizes the off-spec products

are calculated.

In addition, the optimal sequences of setpoints can be calculated by

carrying out the scheduling calculation with the process model. Traditionally,

the scheduling calculation is carried out without taking the process dynamics

into account, which could result in off-spec products if a disturbance is in-

troduced. Incorporating the process dynamics into the scheduling layer poses

many different challenges numerically. The proposed time scale bridging model

(SBM) is able to capture the input-output behavior of the process while greatly
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reducing the computational complexity and time.
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Chapter 1

Introduction

1.1 Batch to Continuous (B2C) Processes

A sequential batch-continuous (B2C) process is a hybrid system where

the raw material is initially processed in a batch fashion upstream, and the

processed material is converted to the final product in a continuous fashion

downstream (Figure 1.1). In order to understand and successfully operate the

process, mathematical modeling, control, and optimization of the process need

to be carried out, in that respective order (Figure 1.2). First, the operating

goal needs to be defined, which comes from the business and organizational

interest. After setting a realistic goal, historical data need to be collected

in order to develop a model. Also, the training data need to have enough

information (rather than just containing noise). Determining the training

data set is important as this data set defines the scope and the range of the

normal operation. The raw data without any treatment can contaminate with

noise and distort the model, and could lead to reduction in model accuracy

[1]. After properly cleaning the data, a proper model form needs to be defined

and its model parameters need to be calculated. The developed model needs

to be validated using a testing data set prior to taking any further steps.

This developed model can be implemented and used for monitoring, which is
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Figure 1.1: Schematic of Sequential Batch-Continuous System

evaluating the current status of the operation. To ensure the safe and profitable

production, the developed model can be used to devise a control strategy.

After having a closed-loop control system in place, the process operation can

be optimized in order to maximize the profit while meeting all the process

constraints and product demands.

1.2 Dissertation Outline

In this dissertation, the mathematical methods and algorithms required

to achieve the road map shown in Figure 1.2 are discussed. It is organized as

follows:

Chapter 2 focuses on the data cleaning and batch data alignment for se-

quential batch-continuous process. The first section primarily focuses on data
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Figure 1.2: Flow Diagram of Data-Driven Modeling, Control, Optimization
and Implementation

cleaning methods. It reviews and compares the existing data cleaning methods

such as outlier removal and filtering. The second section discusses the batch

data alignment to the continuous data for sequential batch-continuous pro-

cess, which is shown in Figure 1.1. Variable-wise unfolded batch data exhibits

gaps between batches and these gaps in data can pose a specific challenge for

sequential batch-continuous process. These gaps cannot be simply discarded

because they contain information for correlating the batch and continuous pro-

cesses. In this section, a novel method to assign batch characteristic variable

to the gaps between batches is introduced in order to establish correlation in

sequential batch-continuous process.

Chapter 3 introduces data-driven modeling techniques. The prevalent

and powerful methods such as PCA and PLS are described in detail. It also

shows how these methods can be applied to sequential batch-continuous pro-

cess for monitoring purposes. In order to deal with multiple operating modes

and process nonlinearity, prior to developing data-driven models, the data set
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is partitioned using clustering method. Lastly, the section gives an overview

of variable selection methods for PLS models. The introduced methods are

compared to determine which method suits the sequential batch-continuous

process.

Chapter 4 shows how to incorporate the developed model to operate

the process optimally. The first section discusses the development of a soft

sensor that computes the real-time evaluation of a quality variable with low

measurement frequency. The second section proposes different real-time opti-

mization formulations to calculate the optimal sequence of inputs in order to

produce in-spec products at a higher rate.

Chapter 5 integrates modeling and control with scheduling. The process

with controller in place needs to have predefined setpoints, but determining

the sequence of setpoints for the plant still remains as an open-ended question.

In order to find the sequence of setpoints that satisfy the product demands and

maximize product profit, a scheduling problem needs to be solved. Different

solution approaches for integrating model under control and scheduling are

introduced alongside with the extensive review of current literatures. In order

to incorporate process dynamics while reducing the computational complexity,

a novel framework called the time scale bridging model is introduced. This

method is compared to other solution approaches.

Lastly, Chapter 6 draws the conclusions and summarizes all the work

presented in this dissertation. Also, some directions for future work are laid

out.
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Figure 1.3: Schematic of Industrial Two-Phase Material Processing System

The methods and algorithms discussed in this thesis have been tested

with the actual plant data from an industrial sequential batch-continuous pro-

cess. This system exhibits two-phase suspension (solid particles in liquid car-

riers) with upstream batch preparation followed by downstream continuous

processing to finalize the product. The schematic of the two-phase material

processing system is shown in Figure 1.3. In this particular system, the ini-

tial raw material (solid) is blended in a batch fashion to a desired property.

Subsequently, this batch material mixed with a liquid carrier. This two-phase

mixture is, subsequently, fed to the continuously operating processing system

in a batch fashion. The continuous processing system pushes the material to

the exit to obtain the desired shape, form and material properties.

5



Chapter 2

Data Cleaning and Batch Data Alignment

2.1 Introduction

Complex chemical processes can involve both batch and continuous

stages. Raw materials and other ingredients are initially processed batch-wise,

prior to being fed to a processing line that operates continuously. This type of

hybrid processes can be found in many different industries such as pharmaceu-

tical, food processing, polymer processing, and semiconductor manufacturing

[16, 85, 107, 6, 18]. The operating conditions and operating performance of

both the batch and the continuous stages have an impact on the final prod-

uct quality. Such sequential batch-continuous processes pose specific analysis

and control challenges. The batch side of the process operation is carried

out periodically at specified time intervals. After each operating instance, the

batch product is fed to the continuous production flux. Empirical evidence

suggests that this mode of operation leads to a deterioration of the causal

relation between the properties of the batch product and the quality of the

product of the continuous process. This is further complicated by the time

delay that is inherently introduced by the continuous stage of the process

between the completion of the batch stage and any quality measurements ob-

tained from the final product. The batch and continuous parts have impact on

6



the final product quality; in order to implement a control strategy to obtain

acceptable final products, it is essential to establish a relationship between

the batch and continuous parts. In this work, a specific industrial sequential

batch-continuous process was used for modeling, testing and implementation;

however, the methods can be applied to many other hybrid processes that rely

on both batch and continuous processing.

The industrial B2C process involves several stages (Figure 1.3). In the

first stage, raw material is blended in batches through sequential steps. Liq-

uids are added to the batch and mixed well before being fed to the continuous

section, which is a distributed parameter system: the material is transported

through a tubular apparatus where it is subject to compression and shear,

then discharged through a die to obtain a product of desired cross-section and

geometry. Temperature and pressure measurements are taken at various loca-

tions along the system. This type of processing is present in many industries;

familiar examples include the production of pasta, aluminum bars with com-

plex profiles used, e.g., in the manufacturing of window and door frames, and

some of the uses of the familiar children’s toy, Play-Doh r[85, 107, 18].

The objective of this process is to maintain the final product quality

within specifications despite variations and disturbances occurring in upstream

process units at unpredictable times. One of the cause of variations is the

change in quality of raw materials. Raw material blend quality may vary over

long periods of time due to seasonality, daily temperature and humidity vari-

ations, storage condition changes or raw material supplier changes [107]. Such

7



shifts in raw materials cause changes in properties of the batch and produce

undesired variability in product quality. A common practice to avoid this is-

sue is to measure some batch properties and make changes in the continuous

part of the process so that the undesired variability can be eliminated. This

approach helps reduce variability caused by upstream disturbances; however,

it may be impossible or difficult to obtain a meaningful quality measurement

of the material as it is transferred between the upstream batch process and the

downstream continuous process. In certain cases, a manual feedback loop, in

which the operators collect samples from the continuous process, takes quality

measurements and makes decisions on changing manipulated variables (which

are discussed later), is implemented. Measurement errors, measurement bias

due to operator shift changes, destructive loss of product for testing and slow

response of the feedback loop are a few disadvantages of the current approach.

In light of the above, some of the salient challenges involved in the

data-driven modeling and analysis of B2C processes are:

1. Gap in Batch Data

Variable-wise unfolded batch data sets contain gaps in measurement be-

tween batches (Figure 2.1). Typically in a sequential batch-continuous

process, the batch cycle is predetermined to avoid any disruption in

continuous process in order to maximize profit and minimize down-

time(Figure 2.2). These gaps in data set pose a challenge in establishing

a relationship between the batch and continuous processes. As shown in
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Figures 2.1 - 2.2, even though there are gaps in measurements between

batches, no such behavior is observed in continuous side. The length of

batch data measurements is significantly lower than the length of the

continuous measurements; however, physically, there is no downtime in

continuous production because a subsequent batch is prepared and gets

fed to the continuous process before the previous batch has completely

exited the continuous process. The treatment of these gaps will likely

have a strong impact on the analysis of the data and the interpretation

of the results. If the data collected from the continuous process during

these “gaps” are simply discarded, meaningful information concerning

the continuous process and the impact of the batch process upstream

(and in particular, the impact of past batches) may be lost. Leaving the

data gaps as-is is bound to be interpreted as a process failure, with un-

desirable consequences on any post-analysis uses of the resulting models.

2. Multiple Steady-states A complex chemical process that produces dif-

ferent grades or types of product by varying operating conditions (and

the corresponding controller setpoints) or inputs, features multiple op-

eration modes [88], each typically having a different operating steady

state. Moreover, processes of practical interest have a nonlinear be-

havior and, as such, it is difficult to capture the characteristics of the

process over the entire operating space using a single linear model. In

an ideal case, a global model can be developed that takes the nonlin-

earity and the complexity of the system dynamics into account, which
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Figure 2.1: Plot of Process Measurement in Batch Process
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Figure 2.2: Plot of Process Measurement in Continuous Process
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can be utilized for all operating conditions; however, this is a difficult

task in practice. Such models are inevitably hard to develop, expensive

to maintain and unwieldy to use for optimization and control. Instead,

multiple linear models can be developed for a subset of operating re-

gions. In this case, there are other challenges, including partitioning

the operating space (and/or the data set) and establishing a meaningful

(and practical) number of models to develop.

3. Nonlinearity and Dynamics Batch processes do not operate at a

steady-state; their operation is inherently dynamic. This characteristic

is also reflected in the behavior of the downstream, continuous section

of the process. Intuitively, the continuous section will exhibit a periodic

nature, with the characteristics of the periodic behavior related to the

timing of the batch operations. Moreover, variations or disturbances in

the upstream batch section are likely to result in shifts in the downstream

continuous process.

Additional modeling challenges arise from the complexity of the material

processed in the system, which is in many cases a two-phase fluid whereby

solid particles are suspended in a liquid carrier.

4. Measurement Noise and Bias “Raw” chemical process measurements

(i.e., a direct recording of a sensor reading) tend to exhibit high noise and

contain many outliers, as shown in Figures 2.1 - 2.2 [1, 22, 25, 117, 38].

These characteristics could have negative impact on model development,
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and need to be addressed properly [63, 80, 129]. Also, lab measurements

such as operator-made offline measurements could be biased due to hu-

man error. Multivariate analysis such as PCA can handle some level of

noise, but can be improved in accuracy and interpretability, if the input

data set is cleaner [26, 111, 108].

5. Lack of Intermediate Quality Measurement In sequential B2C pro-

cess, it is often the case that no measurements or quality testing of the

product conveyed between the batch and continuous sections are taken.

Rather, the focus is on the end-point product quality of the continuous

section. Without securing measurements of a (set of) intermediate qual-

ity variable(s) that can be used to link the evolution of the batch and

continuous sections, the difficulty of establishing a causal relationship

between events occurring at the batch stage, and fluctuations observed

in the continuous stage, increases.

As a separate issue, batch data are three dimensional, with the three

dimensions being the variable list, the sample time, and the batch number.

In order to correlate such data with data obtained from the downstream con-

tinuous process, the data must be “unfolded” into a two-dimensional data

matrix. The usually large number of measurements/sensors used to generate

the data, and high sampling frequencies, cause this matrix to be quite high

dimensional; typical industrial data sets used in the examples presented in this

thesis comprise millions of rows and hundreds of columns. The abundance of
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data does not directly and immediately result in an abundance of process in-

formation, and the size of these data sets may in fact have a deleterious effect

on extracting meaningful and actionable process information. [129, 63, 80].

Existing multivariate statistical techniques can be applied to reduce the

dimensionality of process data sets. In the batch realm, multi-way principal

component analysis (MPCA) [94, 127, 131, 75], dynamic PCA [72, 78, 132], etc.

have been used. PCA and PLS have been successfully applied to continuous

processes [59, 23, 24, 57, 66, 68, 95, 105]. Nevertheless, it is not clear at present

what approach should be taken for the B2C processes, which, as emphasized

above, have some of the characteristics of both batch and continuous systems.

As an additional challenge, the high dimensionality of the data can lead to

numerical issues in the development of latent-variable models, such as over-

fitting and ill-conditioned matrix operations [26, 111, 108].

2.2 Data Preprocessing

A typical chemical process measurement contains measurement noise,

transients, and outliers which need to be dealt with prior to undertaking any

model-building effort [81]. Data “cleaning” techniques must, however, be ap-

plied with care. For example outlier removal methods which use the mean and

standard deviation to establish confidence intervals and thresholds for remov-

ing outlying data points can introduce time delays in the remaining data, an

issue not encountered when applying techniques based on median and median

absolute deviation (MAD). In this section, we discuss available methods for
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outlier removal from time series data such as those collected from chemical pro-

cesses; additionally, we focus on literature developments concerning filtering

high-frequency noise that is inherently present in industrial data.

2.2.1 Outlier Removal

2.2.1.1 Motivation

Outliers are defined as [14]:

“a observation (or subset of observations) which appears to be

inconsistent with the remainder of that set of data.”

In the chemical industries, outliers are associated, e.g., with errors in data

transmission or transcription, contaminated samples, or malfunction in sen-

sors. Outliers must be properly treated and removed prior to moving on to

subsequent steps such as model identification or data analysis, as they can

heavily (and negatively) affect the these steps.

2.2.1.2 Methods

Outlier removal methods fall into two broad categories: univariate,

which consider the variables in a multi-variable data set (and the correspond-

ing outliers) individually, and multivariate, which take into consideration the

interactions between the variables in a data set when performing outlier re-

moval.
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2.2.1.2.1 Univariate Outlier Removal Methods The univariate data-

driven methods rely on defining a confidence interval. A significance level (α),

0 < α < 1 has to be chosen, then the α-confidence interval of the N(µ, σ2)

distribution is defined as follows:

out(α, µ, σ2) =
{
x : |x− µ| > z1−α/2σ

}
(2.1)

zq is the quantile function for the cumulative distribution function, Φ,

where Φ(x) = q. Without knowing the actual distribution Φ(x), the normal

distribution can be used as the target distribution, but this definition is not

limited and can be extended to any unimodal symmetric distribution with

positive probability density function.

1. Extreme Studentized Deviate (ESD) Identifier The ESD identifier

is a frequently-used method; outliers are detected as follows [101]:

CI = µ± σφ(N,α) (2.2)

After calculating the mean and the standard deviation, the confidence

interval can be defined. α is the significance level and φ(N,α) is the prob-

ability density function (PDF) of Gaussian distribution for the given N

and α. After the confidence interval is defined, the outliers are detected

as any points that lie outside the calculated confidence interval. In this

method, the number of samples (N) and significance level (α) serve as
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two degrees of freedom to adjust the aggressiveness of the identifier.

Similar to ESD identifier, a widely known 3σ method can be applied.

Instead of using the PDF of Gaussian distribution, a constant value of 3

is used in Equation 2.2. These methods only apply to independent and

identically distributed (i.i.d.) data sets that follows Gaussian distribu-

tion [14, 100]. Implementing the ESD identifier online is straightforward.

The statistical quantities such as µ and σ need to be predetermined from

a historical data set. Using these values, the incoming data are compared

to the confidence interval shown in Equation 2.2, and the samples that

lie outside are considered outliers and removed.

2. Hampel Identifier The Hampel identifier is similar to the ESD iden-

tifier, but instead of using the mean and standard deviation, it utilizes

the median and median absolute deviation (MAD), which is defined in

Equation 2.4. The confidence intervals are defined as follows [101]:

CI = med±MADφ(N,α) (2.3)

MAD = medi(|Xi −medj(Xj)|) (2.4)

The difference between the identifiers comes from mean and median.

The Hampel identifier is more aggressive and identifies short-lived out-

liers better than ESD identifier because the median is less influenced by
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outliers than the mean. Similarly, the number of samples (N) and signif-

icance level (α) can be used to adjust the aggressiveness of the identifier.

Online implementation of Hampel identifier is similar to ESD identifier.

Once med and MAD are defined, Equation 2.3 can be used to determine

if the incoming sample is an outlier.

3. Quartile-based Identifier Another identifier utilizes interquartile range

(IQR), where [101]

Q = xU − xL (2.5)

xL denotes the lower quartile, x(0.25), and xU denotes the upper quartile,

x(0.75).

Utilizing the IQR, the outlier range for symmetric distribution can be

defined as follows [101]:

CI =
xU + xL

2
± 2Q (2.6)

where, the first term xU+xL
2

is the median. This identifier, however, is

less effective than the Hampel identifier, owing to its confidence interval

being typically wider. The advantage of the Quartile-based identifier

is that unlike the two identifier mentioned above, it can be applied to

asymmetric data distributions simply by using the a modified confidence

interval [101]:
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CIL = xU + 1.5Q = 2.5xU − 1.5xL (2.7)

CIU = xL − 1.5Q = 2.5xL − 1.5xU (2.8)

Also, the quartiles can be used to create a boxplot, which can be a

graphical illustration of the range of the identifier. Similar to the previ-

ous cases, as long as the confidence interval is predefined from historical

data, this method can be easily implemented online using either Equa-

tion 2.6 or Equation 2.7.

2.2.1.2.2 Multivariate Outlier Removal Methods

1. Hotelling’s T 2 and Q-statistics Unlike the methods mentioned above,

the Hotelling’s T 2 and Q-statistics can handle multivariate outliers [86,

67, 28, 103]. PCA utilizes statistical values such as mean and standard

deviation/covariance, which can only be applied to Gaussian distributed

data set. Due to this limitation, a data set that exhibits nonlinearity

cannot be treated using these latent-variable methods. Also, both the

Hotelling’s T 2 and Q-statistics must follow multivariate normal distri-

bution assumption. There have been other variations of PCA developed

such as Dynamic PCA (DPCA) [72, 110, 78] and kernel PCA (KPCA)

[113, 29, 30] in order to handle dynamics and nonlinearity, respectively.

More details about PCA will be discussed in the following chapter, and

a brief overview is presented below in the context of outlier removal.
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First, PCA has to be performed to decompose the data set into linearly

independent principal components.

X = TP T + E (2.9)

In Equation 2.9, X is the original m×n data matrix, having m measure-

ments/observations of n variables, T is the “score” matrix, and P is the

“loading” matrix, and lastly, E is the residual that is not captured by the

projected data. Hotelling’s T 2 statistic is computed as[86, 67, 28, 103]:

T 2
i = tiλ

−1tTi (2.10)

where, ti is the ith row of the score matrix (T ), and λ is a diagonal

containing the eigenvalues. The Q-statistic is defined as follows [86, 67,

28, 103]:

Qi = eie
T
i (2.11)

where, ei is the ith row of the residual matrix (E). In essence, T 2

considers the variations in the principal component subspace (within the

model), and Q-statistic measures the magnitude of the sample projection

on the residual subspace (outside the model).

Using the Hotelling’s T 2 and Q-statistics for (online) outlier detection,

the loading matrix (P ) from the training data set needs to be utilized.
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The new score Tnew for the incoming data set Xnew (or data sample

xnew) can be calculated using the matrix operation shown in Equation

2.12. Similarly, the error matrix Enew for the incoming data set can

be computed using Equation 2.13. Once Tnew and Enew are obtained,

Equations 2.10 and 2.11 can be used for computing the Hotelling’s T 2

and Q-statistics.

Tnew = XnewP (2.12)

Enew = Xnew − TnewP T (2.13)

If the values of the two statistics for the new data sample exceed prede-

fined thresholds, the sample is tagged as an outlier and removed.

Of the portfolio of outlier removal methods reviewed above, we chose

to use the Hampel identifier (in conjunction with the multivariate methods

described ad the end of the section, as we discuss later) for data pre-treatment

and outlier removal. We substantiate our choice with a relevant example in

the subsection below; this example is representative of numerous validation

and comparison runs carried out in the course of elaborating this thesis.

2.2.1.3 Testing on Industrial Data and Discussion

In order to compare ESD and the Hampel identifier, a pressure mea-

surement from the industrial system was selected as the test measurement.
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The pressure measurement contains high levels of noise as well as outliers

from operational changes. For comparison purposes, the window size (N) and

the significance level (α) were chosen to be 20 and 0.05, respectively. As shown

in Figure 2.3, when short-lived outliers occur (such as brief change in produc-

tion), the Hampel identifier (green) quickly detects them as outliers, but the

ESD (red) identifier fails to recognize them. The upper and lower confidence

intervals of the Hampel identifier do not change much by a transient set of

outliers, but those of ESD identifier are greatly affected by them, as shown

in the change in magnitudes of the interval. However, when an unusual event

occurs and persists for a long time (Figure 2.4), both ESD and Hampel iden-

tifiers fail to detect them as outliers. Since Hampel identifier utilizes median

and median absolute deviation, it is not affected by temporary outliers.

2.2.2 Filtering

2.2.2.1 Motivation

Data measurements are collected by sensors which generate electric

signals, which are affected by high frequency noise. Lower frequency noise is

inherent to the evolution of the process itself.

2.2.2.2 Methods

1. Low-Pass Filter A low-pass filter is a filter that passes frequency lower

than a given cutoff frequency, but attenuates frequencies higher than

the cutoff frequency [114, 97]. The cutoff frequency and the order of
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Figure 2.3: Comparison of ESD and Hampel Identifiers (Short-lived Outliers)
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Figure 2.4: Comparison of ESD and Hampel Identifiers (Prolonged Outliers)
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Figure 2.5: Single Sided Power Spectrum of Pressure Measurement

the filter are user defined inputs, which determine the characteristics

of filters. The cutoff frequency can be determined by inspecting the

power spectrum, as shown in Figure 2.5. Once the cutoff frequency is

determined, the incoming data can be treated with the low-pass filter

at the given cutoff frequency. The low-pass filter is a very simple, yet

very powerful tool for noise removal, and has justly gained popularity in

industry.
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2. Median-based Filter The median-based filter is similar to the outlier

removal methods in the previous section. Figure 2.6 shows the flow dia-

gram of the filter. After calculating the median and standard deviation

for a given window size, if a specific observation lies more than a pre-

defined distance (typically one standard deviation) above the mean, it

is replaced with the median value. This filter has two degrees of free-

dom that can be utilized for the smoothing effect: the window size and

the threshold value. Some a priori knowledge regarding the process is

required to properly assign these values. If the window size is too small,

the median value might not be the actual nominal value, but might be

influenced by noise; however, this can be counteracted by choosing small

threshold value. Online implementation for this filter is similar to the

Hampel identifier. Once the statistical parameters such as µ and stan-

dard deviation are determined, the filter can be in place with the moving

window.

3. Savitzky-Golay Filter Lastly, the Savitzky-Golay (S-G) filter smooths

the signal by using convolution with sub-sets of adjacent data points

[112]. Rather than defining the properties in Fourier domain and then

translating back to time domain (low-pass filter), the S-G filter operates

strictly in the time domain. The filter works as follows:

gi =

nR∑
n=−nL

cnfi+n (2.14)
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Figure 2.6: Flow Diagram of Median-based Filter
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The observed value fi is replaced by a linear combination of gi of itself

and the points nearby it. nL and nR determine the number of points used

to the “left” and “right” of the data, respectively. The idea behind S-G

filter is to determine the filter coefficients, cn, such that the tabulated

coefficients yield a good fit. Instead of using constant values, which is

just finding average, the coefficients are determined by a polynomial of

higher order. Using the given data points, least-squares fit of a higher

order polynomial is performed, and the gi is found using the value of

the polynomial at that position. For the S-G filter, the order of the

polynomials, which determines cn, and the window size (nL and nR) are

tuning parameters that can determine how the filter behaves. The choice

of polynomial order and number of coefficients need to be balanced in

order to reduce noise, but not to distort the data. Also, these tuning

parameters need to be assigned with some care. The L data points

are used to approximate cn for Nth order polynomial function, which

means that L points are used to compute N + 1 coefficients. If N + 1 =

L, there is no filtering and smoothing effect resulting from S-G filter.

Generally, N has to be much smaller than L in order to achieve filtering

and numerical stability. If N << L, the filter is much more aggressive

and more smoothing will take place. Unlike the previous cases, the online

implementation of this filter is not as simple as using the predefined

parameters. Because Savitzky-Golay filter incorporates “future” data

points, in order to implement online, nR can be set to 0, which then the
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filter will only depend on the “past” measurements.

2.2.2.3 Testing on Industrial Data and Discussion

Similar to the outlier removing techniques, the filtering methods were

compared using the pressure datum. The cutoff frequency was determined as

12.5% of its maximum frequency (as shown in Figure 2.5). And 6th order

Butterworth filter was used. For the median-based filter, a window size of

200 and a threshold value of 30 were used. For the S-G filter, nL and nR

were set as 100, and a 2nd order polynomial was used. All three filtering

techniques successfully remove high frequency noise and are able to produce

smoothing effect similarly, as shown in Figure 2.7. However, the low-pass filter

and median based filter introduce time delays, as shown in Figure 2.8. Also,

the median-based filter is computationally expensive, as all the values of the

moving windows have to be sorted to find the median value. On the other hand,

the S-G filter does not introduce any time delay, and is not computationally

cumbersome because the coefficients can be found simply by solving –offline–

a set of linear equations.

Based on these studies, we decide to use the S-G filter for processing

all the data used in the analyses presented in the sequel in this thesis.
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Figure 2.7: Comparison of Low-pass Filter, Median-based Filter, and Savitzky-
Golay Filter
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Figure 2.8: Comparison of Low-pass Filter, Median-based Filter, and Savitzky-
Golay Filter (When Change Occurs)
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2.3 Aligning Batch Data to Continuous Data

2.3.1 Motivation

An ongoing research thrust in complex chemical processes concerns

the development and application of data driven regression methods to reduce

the dimensionality of the data, while trying to capture the process behavior.

Techniques such as principal component analysis (PCA) have been applied

and used widely, along with specific modifications [59]. Data-driven modeling

methods for batch processes [96, 85, 94, 95] were developed based on previous

approaches for continuous systems [59, 60, 106, 105, 109, 72]; however, the two

sub-areas have since evolved quite separately. In a different vein, it is worth

mentioning that PCA and PLS have been adapted to address issues such as

dynamics and nonlinearity [113, 132, 115, 110, 78, 77].

However, there has been very little emphasis placed thus far on data-

driven modeling of B2C processes in spite of their relatively widespread use

in industry. Here, we recall the work of Choulak et al., who developed a

dynamic model of a plastic processing system with reaction by considering

a single spatial dimension and modeling each barrel (or section) of the plug

flow reactor as a separate continuously stirred tank reactor (CSTR) [18]. The

authors take advantage of temperature measurements in different barrels to

facilitate parameter estimation [18]. Bahroun et al. utilized a similar model-

ing technique to describe a three-phase catalytic slurry intensified continuous

chemical reactor, and developed control strategy for the system. They de-

vise the optimization and control as a hierarchical control structure where the
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optimization layer computes the setpoints for the controller [6]. These devel-

opments, however, do not consider the batch and continuous sections of the

process in an integrated fashion; rather, they focus on the batch and continuous

section separately [6, 18].

As we have emphasized above, one of the main difficulties in analyzing

B2C processes comes from the data gaps between the batches, and the need to

align these data to the (uninterrupted) readings obtained from the continuous

section. In order to align the batch data to the continuous data, the gaps

between the batch data need to be filled.

2.3.2 Method

Batch data has three dimensional data structure (variable, time, and

batch). This data structure can be unfolded into a two dimensional repre-

sentation. Batch-wise unfolding consists of preserving the trajectory of each

variable within all the batches, and is typically carried out in conjunction with

time warping - the latter comprising a calculation aimed at representing the

time evolution of the variables over a common, unified time horizon. Batch-

wise unfolding (Figure 2.9) has proven to be a popular approach in the PCA

research community, as it supports analyses of batch process performance and

fault detection [94, 127, 131].

However, our interest in this work lies in correlating the batch and

continuous sections of a B2C process and, as such, we are not concerned

with preserving the batch nature of the data. Rather, we desire to create
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Figure 2.9: Batch-wise Unfolding
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Figure 2.10: Variable-wise Unfolding

a continuous-like representation of the batch section data, which call for a

variable-wise unfolding of the respective data sets (Figure 2.10).

This unfolding exposes the gaps between the batches, which need to

be treated. One simple, yet flawed solution is to simply remove the obser-

vations between the gaps in batches and the corresponding measurements in

continuous data set; however, this reduces the number of observations, which

is undesirable for data analysis, and also leads to information loss. Another

solution is to just use the data without modification, with the potential pit-

falls of, e.g., the “gap” periods being considered as process faults or, alterna-

tively, resulting in a model with a very high tolerance/threshold for process
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faults and failures (note that the data recorded during these “gaps” are typi-

cally not blank database entries; rather, a constant value (such as -1 or 0) is

recorded).Our approach to filling these gaps is based on a physical observation,

namely, that once a batch has been completely fed to the continuous section

(but the subsequent batch is not yet being processed), the values of the pro-

cess variables from the batch section no longer change as far as the continuous

process is concerned. Thus, it is natural to fill the data gaps with “charac-

teristic” (with this notion defined more rigorously below) values of variables,

as determined from the most recent batch being processed in the continuous

section.

In this manner, batch to batch variability is maintained, the sample

count of the batch measurements matches that of continuous counterpart,

and the information needed to correlate the batch to continuous data is not

compromised.

This batch characteristic values can be chosen differently in order to

suit different situations. For example, in case of batch reaction followed by con-

tinuous process, the end concentration and final temperature can be the batch

characteristic variables. Other examples include the particle size or molecular

weight distribution at the end of the batch, assuming that measurements of

these variables are available.

On the other hand, we noted above that such measurements of the

batch output may not be available. In this case, trajectories or time-average

values of the inputs to the batch process may be used as the (characteristic)
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data to represent the batch section of the B2C process.

2.3.3 Testing on Industrial Data and Discussion

In order to demonstrate the method described above, the input prop-

erty measurements of the batch section of the industrial system were utilized.

The current setup lacks the quality variable measurement that accurately por-

trays the condition of the batch output. Instead, a measurement of the feed of

the batch system in the form of a material property distribution is collected.

Figure 2.11 shows a histogram of this distribution, and Figure 2.12 illustrates

the evolution in time of each discrete bin measurement.

In the given example of batch distribution, the average values of all

the bin measurements over steady state region of the batch were calculated

and used as the batch characteristic value to fill the data gaps. The batch

operation in this process tries to maintain the distribution to be consistent

thus the average values were used to reduce the measurement noise. Figure

2.13 shows only two variables of the distribution to facilitate the visualization.

2.4 Summary

In this chapter, some data preprocessing techniques, which include data

cleaning, outlier removal, filtering, and batch data alignment to continuous

data are discussed. These preprocessing steps need to be carried out carefully

as a precursor to the data analysis steps described later in the thesis.

We contributed a method for aligning the batch data to continuous
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Figure 2.11: Distribution of Batch Quality Measurements
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Figure 2.12: Variable-wise Unfolded Batch Distribution Measurement
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Figure 2.13: Aligning Variable-wise Unfolded Batch Measurement by Filling
in the Gaps with Batch Characteristic Variables
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data. In particular, variable-wise unfolded batch data are used and a char-

acteristic value of each variable is used to represent the batch in the “gap”

periods. This value acts as a representative value of an entire batch from the

perspective of the continuous process, and is used until the following batch

starts to get processed. This approach captures batch to batch variability,

and the impact of the batch subsystem on the downstream continuous pro-

cess.
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Chapter 3

Data-Driven Modeling and Variable Selection

3.1 Introduction

With the recent advancement in computer processing power and data

storage, it has become easier and cheaper to store and process data. Gordon

E. Moore observed that the number of transistors in a circuit doubles every

two years, and predicted that this trend will follow in the future [93]. This

trend has led to not only cheap and numerous sensors, which have facilitated

data measurement and storage, but also faster computing power and efficiency,

which have enabled complex algorithms and faster calculations. In chemical

engineering, abundant data have allowed for better understanding in process

and improvement in process operation and safety.

With the plethora of data, data-driven techniques have been utilized

to model and estimate variables and process conditions that are difficult or

expensive to measure. These techniques are referred to as “soft sensors” and

can estimate and predict the current status of the process, and also monitor

and diagnose the operating condition of the process. These methods have been

shown to be useful in many industries [105, 42, 84, 63]. On-going research in

complex chemical processes utilize data driven regression methods to reduce
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the dimensionality of the data.

In this chapter, we first focus on data-driven modeling of B2C pro-

cesses using tools such as PCA and PLS. At first, we use these tools to carry

out performance evaluation for the batch and continuous systems individually.

Thereafter, we develop analysis tools for the entire B2C process based on the

aligned data obtained using the techniques described in the previous chap-

ter. We also incorporate a clustering algorithm to account for the multiple

operating modes of the process.

In the second part of the chapter, we consider variable selection tech-

niques for the latent variable-based PCA/PLS algorithms. We compare and

contrast techniques that fall into the filter and wrapper methods category,

including variable importance in projection (VIP) filtering, beta coefficient fil-

tering, uninformative variable elimination (UVE), stepwise elimination, and

Monte Carlo uninformative variable elimination (MCUVE). These techniques

not only reduce the number of variables that need to be retained for modeling

purpose, but also improve the accuracy of the model.

3.2 Data-Driven Modeling

3.2.1 Motivation

Due to the complexity of the sequential batch-continuous process, it

is difficult to develop a first-principles model to describe the entire system

accurately (see also discussion in Section 2.1). Instead, data-driven modeling

techniques are used. These methods are utilized for process monitoring and
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fault detection [28, 67, 86]. The most prevalent and applicable examples of the

data-driven modeling methods are PCA and PLS. There have been many other

various types that originate from these two methods for specific applications.

Most of these methods focus on batch and continuous processes separately;

however, in sequential batch-continuous process, both the batch and the con-

tinuous portions affect on the final product quality. Therefore, in this study

a new method to find the correlation between the batch and continuous parts

of the process is explored.

In the chemical industries, numerous types of data-driven modeling

techniques are used to capture different types (batch and continuous) and dif-

ferent characteristics (dynamics and steady-state) of process. Lee et al. used

kernel principal component analysis (KPCA) developed by Scholkopf et al. to

model and monitor a wastewater treatment process, which is highly nonlinear

[77, 113]. Nomikos et al. developed multiway principal component analysis

(MPCA), which unfolds the three dimensional batch data to two dimensions in

order to perform PCA on the data matrix [94, 95]. In order to incorporate dy-

namic effects into modeling, Ku et al. developed dynamic principal component

analysis (DPCA), which utilizes time lag shift method to PCA [72]. Zhang

et al. developed a MPCA that incorporates dynamics of the batch by utiliz-

ing exponentially-weighted moving average (EWMA) [133]. Many more tech-

niques, similar to the ones mentioned above, have been developed to supple-

ment and improve the existing methods [23, 24, 57, 76, 75, 109, 127, 131, 132].
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3.2.2 Methods

In the previous chapter, we briefly introduced how PCA is utilized for

outlier removal and process monitoring using Hotelling’s T 2 and Q-statistics.

In this section, we review the method in more detail. Also, partial least squares

(PLS) regression, which exploits the projection of both input and output vari-

ables in a latent-variable space, is introduced.

1. Principal Component Analysis (PCA)

As mentioned in Section 2.2.1.2, PCA is a linear variable transforma-

tion, which projects a large number of variables that might be correlated

into a new coordinate system, obtaining a set of linearly independent

principal components (PCs). In order to reap the dimensionality reduc-

tion benefit of this transformation, the number of PCs retained can be

chosen to be lower than the number of variables in the original data

set. This is done by ordering the components in decreasing order of the

amount of variance captured. In typical high-dimensional data scenarios,

the first few components capture a significant (often disproportionately

large) amount of the total variance of the data set; as a consequence, the

dimensionality of data can be reduced considerably without a significant

loss of information. The resulting coordinate transformation matrix (the

“PCA loadings”) can be used to project any new data samples, and the

statistical information concerning the fit of the model (Hotelling’s T 2

statistic) and the modeling error (the Q-statistic) are available for pro-
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cess performance evaluation and fault detection purposes [59].

While extremely appealing from this point of view, the performance

of such projection methods is vitally dependent on the data that are

used in constructing the initial model. Typically, data from a “golden

period”/reference of “normal” operation are employed [106]. However,

this reference data set is often chosen subjectively based on operator

experience and opinions, and may or may not be fully representative

of the process operations. More importantly, “normal” operation from

the operator perspective does not necessarily mean economically opti-

mal operation and. As a consequence, subsequent analysis and control

decisions made based on such a model may result in perpetual or long

term operation that remains economically mediocre.

Prior to applying PCA decomposition, the original data set X is sub-

jected to two standard preprocessing steps, mean centering and unit vari-

ance scaling. Mean centering re-centers each variable to a mean value of

0 by simply subtracting the mean value from all the observation. Unit

variance scaling entails dividing all the observations by their respective

standard deviations. Mean centering and unit variance scaling result in

all scaled variables with 0 mean value and 1 standard deviation, and

can be applied online to new data samples using the mean and standard

deviation values obtained from the reference data set.

Mean centering and unit variance scaling are collectively referred to as

“auto-scaling.”
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After auto-scaling, PCA can be carried out. Let x ∈ Rm be a set of

observations of m variables. Now, assume that the data is collected

for N number of observations, which will result in X ∈ RN×m. PCA

decomposes X to a score matrix T and a loading matrix P, as shown in

Equation 3.1.

X = TPT + E (3.1)

The covariance matrix can be found using the following equation:

S =
1

N − 1
XTX = PΛPT (3.2)

and Λ = 1
N−1T

TT = diag{λ1, λ2, ..., λm}, where Λ is the diagonal matrix

of the eigenvalues in the PCA decomposition. The number of observa-

tions in PCs is equal to the number of observations in original matrix.

Dimensionality reduction is achieved by retaining a smaller number (p <

m) PCs that capture high variance in the data. To this end, the Λ

matrix is sorted in descending order. The percent of variance retained

as a function of the number of components p retained is determined as:

% variance retained(k) =

∑p
i=1 λi∑m
i=1 λi

(3.3)

Different heuristics are used to determine the number of PCs retained p.

The simplest approach is to use a constant value such, e.g., 0.9, in which
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case enough components are retained to capture 90% of the variance of

the original data set. A more rigorous method involves cross-validation,

an iterative procedure that involves, i) building a PCA model using only

a subset of the available N observations in the reference data set, and, ii)

using the remaining data to check the model prediction (i.e., performing

model validation).

The Q- and Hotelling’s T 2 statistics reviewed in the previous chapter are

used to perform cross-validation. A large value of the Q-statistic means

that the current PCA model is unable to explain the large variance in the

considered data point. Conversely, a data sample is considered normal

if the following condition holds.

Qi ≤ Qα (3.4)

Qα is the control limit at significance level α. Qα is defined as follows

[60]:

Qα = θ1

[
cα
√

2θ2h20
θ1

+ 1 +
θ2h0(h0 − 1)

θ21

]1/h0
(3.5)

cα is the normal deviate corresponding to the upper (1 − α) percentile.

θi and h0 are defined as follows:

θi =
m∑

j=p+1

λij, i = 1, 2, 3 (3.6)
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h0 = 1− 2θ1θ3
3θ22

(3.7)

where p is the number of principal components retained and λj corre-

sponds to the eigenvalue of component j in the PCA.

In order to define Hotelling’s T 2 limits, the following assumptions have to

be made: the data are normal and follow the multivariate Gaussian dis-

tribution. Then, the T 2 statistic follows a F-distribution of the following

form:

N(N − A)

A(N2 − 1)
T 2 ∼ Fα,A,N−A (3.8)

where Fα,A,N−A is a F-distribution with (A,N−A) degrees of freedom, N

is the number of samples, and A is the number of principal components.

Using this the control limit T 2
α can be defined.

T 2 ≤ T 2
α =

A(N2 − 1)

N(N − A)
FA,N−A,α (3.9)

2. Partial Least Squares Regression (PLS)

Partial least squares (PLS) regression relies on the same principles as

PCA, aiming to establish a (linear) input-output relationship between

a predictor vector X and Y, a vector of response/output variables. A

review of PLS approaches is presented in Andersson et al. [5], while

specific chemical industry applications are discussed by Wold et al. and
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Nomikos et al. [95, 127]. Fundamentally, PLS consists of projecting both

the predictor and response variables, and establishing a linear relation-

ship between (a subset of) the projected variables P and Q.

X = TPT + E

Y = UQT + F
(3.10)

where X ∈ Rm×n is the input, Y ∈ Rm×r is the output, T ∈ Rm×p and

U ∈ Rm×p are the score matrices, and P ∈ Rn×p and Q ∈ Rn×p are

the loading matrices. Similar to PCA, each score vector, ti, is a linear

combination of X (however, not necessarily orthogonal) and ui is Y-score

vector that is linearly dependent on T. The number of components in

PLS can be determined similarly to PCA. Many techniques such as using

cross-validation or the Akaike Information Criterion (AIC) are discussed

by Kramer et al. [68].

Y can be calculated linearly using X and β̃ by using Y = Xβ̃. Slight

discrepancies between PLS algorithms are due to the different ways of

estimating the factor and loading matrices T,U,P,Q, which affect β̃. β̃

can be calculated as follows:

β̃ = R(TTY) = RRTXY (3.11)

where R is the weight matrix, which differs in different PLS algorithms.

Similar multivariate statistics from PCA can be applied to PLS as well.
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T 2 = t0
TΛ−1t0 ∼

A(n2 − 1)

n(n− A)
FA,n−A

Q = ‖x0 − t0p0‖2 ∼ gχ2
h

(3.12)

where t0 and p0 are scores and loadings for PLS, respectively, A is the

number of principal components retained for the PLS model, and Λ =

1
n−1T

TT. Given the significance level α, FA,n−A and χ2 can be obtained

from the Fischer and the χ2 distributions for T 2 and Q statistics. Similar

to PCA, Q-statistic measures the model residual of the data, and the

Hotelling’s T 2 statistic measures the mean shifts within the score vectors.

3. Kernel PCA/PLS PCA and PLS are linear analysis methods. While

they can handle mild nonlinearities associated with the underlying phe-

nomena described by the data, dedicated “kernel” reformulations of

these approaches are indicated to deal with systems exhibiting nonlin-

ear behavior. One of the best known such modifications is Kernel PCA

(KPCA) developed by Schölkopf et al [113]. By using integral operator

kernel functions, PCA is carried out in high-dimensional feature spaces,

related to the input by a nonlinear mapping. The method is as follows,

inputs are mapped into a dot product space F called feature space, and

then PCA is performed. Using the covariance matrix in F,

C̄ =
1

M

M∑
j=1

Φ(xj)Φ(xj)
T (3.13)

where Φ(·) is a nonlinear kernel function that transforms x into F.
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Utilizing Equation 3.13, eigenvectors in the feature space can be obtained

by the following equation.

λV = C̄V =
1

M

M∑
j=1

Φ(xj)VΦ(xj)
T (3.14)

The solutions V lie in the span of Φ(x1), . . . ,Φ(xM). Then, there exist

αi (i = 1, . . . ,M) such that

V =
M∑
i=1

αiΦ(xi) (3.15)

Kernel representations are of the form:

Kij = (Φ(xi) · Φ(xj)) = k(xi,xj) (3.16)

By multiplying Φ(xk) on both sides of Equation 3.14, we get

λ
M∑
i=1

αi(Φ(xk) · Φ(xi)) =

1

M

M∑
i=1

αi(Φ(xk) ·
M∑
j=1

Φ(xj))(Φ(xj) · Φ(xi)), k = 1, . . . ,M

(3.17)

And using Equation 3.16,

Mλα = Kα (3.18)
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Table 3.1: Kernel Functions used in KPCA/KPLS
Kernel Functions Function Form
Polynomial k(x,y) = (x · y + 1)d

Radial Basis k(x,y) = exp(−‖x−y‖
2

2σ2 )
Neural Network k(x,y) = tanh((x · y) + b)

This allows the computation of the dot product in F without having to

carry out the map Φ. Table 3 shows the different kernel functions that

can be used for mapping into the feature space.

KPLS is similar to KPCA, in the sense that Y is also mapped into a

nonlinear feature space, and then PLS is applied. The main challenge

of using KPLS or KPCA is the proper choice of the nonlinear kernel.

Ideally, this function is selected based on some knowledge of the un-

derlying physical phenomena of the system under consideration; lack-

ing such knowledge, the selection of the kernel function amounts to a

trial-and-error effort [5]. Also, when mapped into the feature space, the

dimensionality of the input can be infinite, which might not result in

dimensionality reduction, which is the benefit of using PCA and PLS

[113].

4. Multiway PCA/PLS

Multiway PCA/PLS is a special type of numerical analysis tool that

handles 3-dimensional batch data [94, 127, 131]. Batch data are unique

in that they can be regarded as a three dimensional data structure with

variable, time, and batch. Data are unfolded batch-wise or variable-wise
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as was discussed earlier, as shown in Figures 2.9 and 2.10.

After unfolding the 3-dimensional data cube into a 2-dimensional data

matrix, PCA or PLS can be carried out for modeling and monitoring of

the batch process. In this analysis, the residual is the deviation of the

batch trajectory from the average batch trajectories that were used for

training the model. Batch-wise unfolding can naturally handle nonlinear

batch trajectory; however, in order to perform batch-wise unfolding and

carry out MPCA/MPLS, time warping has to be performed (see page

33). This is disadvantageous for online implementations, as one has to

estimate or predict the future values of the batch [94, 96]. There are other

methods, such as hybrid-wise unfolding, which unfolds the data batch-

wise, preprocesses the data, and rearranges the data to the variable-wise

structure to reap benefits of both batch-wise and variable-wise unfolding

[75, 133].

There are other numerous variants of PCA/PLS techniques such as

Dynamic PCA (DPCA) [110, 78] and Dynamic Batch PCA (DBPCA) [132].

They all have different preprocessing techniques or rearranging prior to per-

forming PCA/PLS in order to capture different phenomena (i.e. dynamics);

however, they all utilize the same PCA and PLS methods reviewed in this

section.
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3.2.3 Local Batch Monitoring

In sequential batch-continuous process, the batch side of the process

can be monitored individually/locally. The goal is to monitor and detect any

changes or disturbances that occur in the batch process. In the industrial

system considered in this thesis, the distributional properties of the raw mate-

rial (e.g., molecular size distribution, particle size distribution) are monitored.

Figure 3.1 represents the distributional property of the raw materials that

are fed to the batch process. In this setup, the distribution is measured by

more than 40 discrete bin measurements. In Figure 3.1, each line represents a

distribution measurement of the raw material. Each batch has very similar dis-

tributional profiles with slight variations in two peaks. The figure shows data

from multiple campaigns, each comprising multiple batches. Note that there

are slight differences between data collected in different campaigns as well:

the blue lines represent batches from one campaign and the red lines represent

batches from another campaign. The changes in distribution shape shown in

Figure 3.1 can be attributed, e.g., to ambient disturbances (e.g., changes in

humidity and temperature) or to changes in the raw materials themselves. If

this data set is variable-wise unfolded and plotted, we obtain Figure 3.2.

As discussed in the previous chapter, the gaps in the batch data are

filled and PCA is performed. After PCA is performed, two principal compo-

nents are retained. Figure 3.3 shows that using two principal components out

of 40+ input variables, about 80% of the variability within the data set can

be captured. Also, by examining the loadings of these principal components,
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Figure 3.1: Sample Distribution of Batches on Two Different Production Runs
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Figure 3.2: Variable-wise Unfolded Batch Distribution
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Figure 3.3: % Variance Captured with Principal Components

more insights can be obtained. Figure 3.4 shows the loadings of principal

components 1 and 2. These two components represent how the shape and

the skewness of the distribution change. The loading of the first principal

component indicates that if the score of this principal component is high, the

distribution is much more uniform and flat. Similarly the second principal

component indicates the shift in distribution. If the score of this component

is high, the distribution will shift to the left. This facilitates the monitoring

of the raw material properties.

After PCA is performed and the number of PC retained is determined,

the Hotelling’s T 2 and Q-statistics can be used to diagnose the current status

of the batch distributions. Figure 3.5 shows the Hotelling’s T 2 and the Q-

statistics control charts. The “abnormal” batches are are colored red to show

how they are identified in these two statistical measures. Both Hotelling’s
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Figure 3.4: Loadings of Principal Components

T 2 and Q-statistics can identify faulty batch as it occurs; however, the Q-

statistics indicate many more false alarms compared to the Hotelling’s T 2.

The Q-statistics show more false alarms because retaining only two principal

components only captures about 80% of the variance. If a third principal com-

ponent is retained, the false alarm rate will decrease; however, both Hotelling’s

T 2 and Q-statistics are inspected for batch monitoring, and a faulty batch usu-

ally can be indicated by both control charts.

3.2.4 Local Continuous Monitoring

Similar to the local batch monitoring, PCA can be applied to the vari-

ables in the continuous side of the process in order to reduce the number of

variables and monitor unusual events. Key variables in production such as

pressure and temperature are monitored. This will be discussed more in de-

tail in the next section, when both the batch and the continuous sides of the
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Figure 3.5: Hotelling’s T 2 and Q-Statistics

process are modeled together.

3.2.5 Sequential Batch-Continuous Modeling

Modeling for industrial system follows the diagram shown in Figure 3.6.

First, the goal and the scope of the model has to be defined. Using process

knowledge, the inputs and the outputs of the model have to be determined.

This step is critical, as the resulting PLS model should focus on physically

meaningful ane measurable inputs and outputs. After that, historical data

have to be collected. The inputs need to have proper range of excitations

to improve signal-to-noise ratio. As discussed in the previous chapter, the

data has to be cleaned and filtered in order to obtain accurate models. In

sequential batch-continuous process, the batch data has to be properly aligned

as discussed in the previous chapter. After that the data-driven model can be

developed and the model validation follows.
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Figure 3.6: Flow Diagram of Industrial Process Modeling
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For the industrial system, the goal is to determine the quality of the

product that exits the continuous section using data from both the upstream

batch and the downstream continuous processes. As shown in Figure 3.7, the

upstream batch process has its local monitoring in place that inspects the dis-

tribution of the raw materials, followed by the local monitoring in continuous

process, which examines the status of the continuous system. The pressure

at the exit of the continuous section is chosen to represent the product evo-

lution, while the distribution data from the upstream batch process and the

process variables from the downstream continuous process are used as inputs.

The data set used for modeling includes more than fifteen different produc-

tion runs that took place over three years, and therefore accounts for seasonal

variations in ambient conditions. More than eighty variables are recorded and

the sampling frequency is in the order of seconds. The resulting training data

set has more than one million data samples.

3.2.5.1 Dealing with Multiple Operating Modes

In this industrial system that produces different grades of product by

varying set-points or inputs, there exist multiple steady-state operation modes

[88]. Owing to the inherent nonlinearity of the system, it is unlikely that a

single linear model can be used to capture the system behavior in this entire

operating space.

In this section, we discuss different approaches for taking multiple op-

erating modes into account. Specifically, multiple linear models are devel-
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Figure 3.7: Schematic of Monitoring and Modeling for Sequential Batch-
Continuous Process

oped, each covering a subset of the operating conditions; the data set is par-

titioned accordingly using a clustering approach. We compare the resulting

multi-model framework with a single model obtained from the overall data set,

demonstrating the superior predictive performance of the former. Liu et al.

proposed a similar approach by using a detection scheme called growing struc-

ture multiple model system (GSMMS) to partition the dataset into different

operating regions and developing local linear models to represent the general

nonlinear dynamic systems [82].

3.2.5.1.1 One Global Model We begin by developing one “global” model

using the entire historical data set as the training data set. The obvious

benefit of this approach is that there is only one resulting model. The model

maintenance such as parameter update due to process shift or seasonality is
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much easier. Also, online implementation becomes easier because there is only

one model to choose from. A PLS model was built using the entire data set.

As shown in Figure 3.8, the model fit for the training data set is good with R2

value of 0.947. In this modeling method, the variability from production run to

run or from different operating modes are captured and emphasized. However,

when the model is tested using a validation data set from a different production

run, the fit is poor (Figure 3.9). We believe that the reason for poor fit is the

presence of the multiple operating modes. In this global model, the variability

that is accentuated is the difference among the multiple modes; however, the

variability that occurs within the campaign is not well captured. Variability

within a campaign is small compared to the variability from campaign to

campaign, in which context it amounts to “noise,” which is largely captured

by the latent variables that do not make a significant impact on the amount

of variance captured and are typically discarded from PCA/PLS models.

3.2.5.1.2 One Model per One Production Run The second method

is to build a new model for each campaign, which results in more than fif-

teen different PLS models. The inputs and the output are the same as in

the previous case. Compared to the previous method, in this approach, the

resulting models are numerous, which makes it much more difficult to perform

model maintenance. Additionally, online implementation is difficult because

there are libraries of models to choose from when new data are received. De-

termining which model to use is difficult and has to be carried out in a trial
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Figure 3.8: PLS Model Fit for One Global Model (Training)
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Figure 3.9: PLS Model Fit for One Global Model (Testing)
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and error fashion with all existing models. In this approach, the fits for all

models for training data sets yielded high R2 values over 0.9. One model was

selected for visualization purposes. As shown in Figure 3.10, the model is able

to capture the variability within the model with success and is able to follow

the changes of the process that occur during a normal production. However,

since the nominal values of the multiple operating modes greatly differ from

campaign to campaign, using this current set of models, it is impossible to

predict the nominal value for the testing data set (Figure 3.11). Because one

production campaign is used to build the model, it is not aware of the differ-

ences in the magnitude of output variable from campaign to campaign, thus

yielding a poor prediction.

3.2.5.1.3 One Model per One Cluster Finally, we utilize a cluster-

ing analysis to divide the global data set into smaller subsets that contain

“similar” data. There are many types of clustering methods, which are char-

acterized by how each cluster is defined. For example, k-means clustering,

which is used in this application, relies on centroids to determine each cluster.

k-means clustering aims to partition the N observations into k sets by min-

imizing the Euclidean distance between the centroids and the points [87] in

the m-dimensional space. The partitioning of the data set is carried out using

Equation 3.19.

arg min
S

k∑
i=1

∑
X∈Si

‖X− µi‖2 (3.19)
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Figure 3.10: PLS Model Fit for One Model per One Production Run (Training)
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Figure 3.11: PLS Model Fit for One Model per One Production Run (Testing)
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X is a m-dimensional data set with N observations. The k-means

clustering algorithm selects random k initial means, µi. k clusters are created

by associating all the observation with the nearest mean, and the centroid of

the cluster becomes the new mean. These steps are repeated iteratively until

convergence has been reached. In k-means clustering, the number of clusters,

k, needs to be defined a priori. In this analysis, PCA was performed on X (the

process inputs) to reduce the dimension of the data. After PCA application,

the PCs were used for k-means clustering. After the clusters were determined,

the subsets defined by the cluster analysis were used to build the PLS models.

Determining the number of clusters k is a balance between reaping benefits

from partitioning versus over-fitting.

First, PCA was performed on the global data set and 10 PCs were re-

tained, capturing 87.5% of the variance. This greatly reduces the dimension of

the data set, which relieves the computational difficulty in k-means clustering.

The resulting scores were used to find the clusters. In order to determine the

number of clusters used, the “elbow” method was used. This method focuses

on the sum of all the Euclidean distances from all the data points to their

respective clusters. As number of k increases, the distance should decrease;

however, at some k, the benefit of adding another cluster becomes marginal.

This point is typically determined by visual inspection of a distance vs. num-

ber of clusters plot. In our analysis, k = 8 was used based on the result

in Figure 3.12. Figure 3.13 shows the assignment of the data in the global

data set to the eight identified clusters. The figure shows that the all the data
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Figure 3.12: Distances from Centroid
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Figure 3.13: Clusters vs. Observations (Red line representing separators of
campaigns)

points within each campaign fell into the same cluster (except for one case - see

cluster 7), thereby validating our initial assertion that variation within a cam-

paign (and possibly similarities between campaigns) are best captured using

multiple separate models. Further note that multiple production campaigns

that occurred in similar time frame fell in the same cluster.

Using the results obtained from k-means clustering, eight separate PLS

models were created, each having high R2 values (over 0.9) and fitted output
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Figure 3.14: PLS Model Fit for One Model per One Cluster (Training)

variable well for training data set (Figure 3.14). The model fit is slightly better

than the one global model method as there is no offset in steady-states and

the model has less high frequency oscillation. As shown in Figure 3.15, the

models can predict the nominal value and variability for the validation data set.

Compared to the previous method, determining which cluster and model to

use is straightforward because the centroid can be used. When implementing

online, the Euclidean distances from all the clusters can be calculated in order

to determine which cluster the data falls into.
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Figure 3.15: PLS Model Fit for One Model per One Cluster (Testing)

74



3.3 Variable Selection for Modeling

3.3.1 Motivation

The performance of data-driven models derived using PCA/PLS can

be improved early on by selecting a subset of relevant variables to be used at

the model-building stage. The improvement comes from removal of irrelevant,

noisy or unreliable variables. Intuitively, this may lead to models with better

fit, better predictive ability and more interpretable results [4].

In the chemical industries, several types of variable selection techniques

are used to improve the model accuracy and to choose relevant inputs. The

general idea is to evaluate a model and the variables using variable importance

metrics, rank the variables, and remove variables that are deemed unimpor-

tant. Different ranking metrics, such as Variable Importance in Projection

(VIP) or normalized beta coefficients, have been proposed. Wold et al. used

VIP as the selection metric to determine the subset variables retained [128].

The results of VIP analysis are typically easily understandable and easy to im-

plement. Similar to VIP filtering, normalized beta coefficients from PLS model

can be used to determine the variables retained. Since the data are scaled, if

the normalized coefficient is close to zero, that variable is not contributing to

the PLS model. Fernández et al. utilized backward variable selection (BVS),

where they start out with the whole data set, build a PLS model, eliminate

the worst variable, and repeat this process until no significant improvement

can be obtained. This method can be utilized with any metric (VIP or beta

coefficients) [48]. Lu et al. utilized a moving window concept and VIP into
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variable selection (MW-VIP), which incorporates the time dependency of the

process into selecting relevant variables [85]. Centner et al. developed Unin-

formative Variable Elimination (UVE) which calculates the cut-off threshold

by using the magnitude of noise [20]. Cai et al. built upon this work and

developed Monte Carlo UVE (MCUVE) to eliminate some tuning parameters

which are difficult to determine for UVE [17]. In this study, we will compare

and contrast these different variable selection methods to determine which

can be best suited for the chemical industry data, specifically the B2C process

under consideration.

3.3.2 Methods

Prior to discussing the details of the methods introduced above, we

define the ranking metrics. Beta coefficients can be obtained by fitting a PLS

model, which is shown in Equation 3.11. The VIP, which measures the weight

of the variable j compared to the rest of the variables can be calculated as

follows:

V IPj =

√
K

(
∑A

a=1w
2
aSSYcomp,a)

SSYcum
(3.20)

where K is the number of variables, A is the total number of components,

wa is the PLS weight for component a, SSYcomp,a is the sum of squares of Y

explained by component a, and SSYcum is the total output variance.

1. VIP Filtering VIP filtering introduced by Wold et al. calculates VIP
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for each variable and uses this as the decision metric for variable selec-

tion [128]. This method utilizes the fact that the average of VIP is 1

because the sum of squares (SS) of all VIP values is equal to the number

of variables in X. This means that if all the variables had the same con-

tribution to the PLS model, they will all have VIP values of 1. In order

to filter less relevant variables, the VIP values are sorted in descending

order and the cut-off value is determined by using process knowledge

and inspecting the VIPs of the variables. A widespread choice is to use

the “greater than 1” rule, with the underlying statement that variables

with VIP values higher than unity are more relevant than variables with

sub-unitary VIP values. Similarly, practitioners utilize beta coefficients

or a combination of VIP and beta coefficients to eliminate irrelevant

variables. If the data set is auto-scaled, the variables with beta coeffi-

cients close to 0 have small or little impact to the model. Due to its

simplicity and computational efficiency, this method has been the most

popular and preferred method in variable selection. However, in real

process data, determining the cutoff value is less straightforward. De-

pending on the input variables, it might not be easy to determine the cut

off value for VIP without proper process knowledge. Also, the existence

of collinear variables with high correlation lower the VIP value of other

variables.

2. Backward Variable Selection Backward Variable Selection (BVS) is

a method proposed by Fernández et al. [48]. The starting point is the
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full data set, for which the model is refitted once the the least important

variable is eliminated. This iterative process is repeated until the desired

number of variables is reached. The lowest VIP or beta coefficient values

are used to determine the least important variable. In this method, the

final number of variables is a tuning parameter, which is itself difficult

to determine and empirical arguments coupled with process knowledge

are typically used. In addition, this method requires iterative evaluation

of the ranking metrics, which might result in local optimum. In our

comparison, rather than determining the final number of variables, we

use “elbow” visualization of R2 and Q2 and monitor for significant drop-

off in these metrics as a consequence of removing each variable.

3. Uninformative Variable Elimination Uninformative Variable Elimi-

nation (UVE) developed by Centner et al. uses the reliability of the beta

coefficients to determine which variables to retain [20]. The reliability is

calculated as follows:

cj =
βj
s(βj)

j = 1, . . . , p (3.21)

where βj is the beta coefficient of the jth variable, and s(βj) is the

standard deviation of the coefficient. Since the s(βj) cannot be computed

directly, Centner et al. propose a “jackknifing” method, in which they

acquire the vector of n βij. They use the average of βij for βj and

compute the s(βj) as follows:
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s(βj) =

( n∑
i=1

(βij − βj)2

n− 1

)1/2

(3.22)

After computing the reliability, the cutoff rule of abs(cj) < abs(max(cartiff ))

is used to determine the uninformative variables. In order to do this,

Centner et al. inject an artificial random variable to determine the cut-

off value, since the artificial random variable should not be included [20].

This method is simple and does not require any iterations; however, de-

termining the magnitude of the artificial random variable is a tuning

parameter with uncertainty, since in real process data the magnitude of

the noise for the process variables is different.

4. Monte Carlo Uninformative Variable Elimination Cai et al. sup-

plemented existing UVE methods with the use of Monte Carlo sampling

method to remove uncertainties in determining the magnitude of arti-

ficial random variable [17]. In MCUVE, from the total data set with

N observations, a subset with Nt < N observations is used for training

the PLS sub-model. This subset is sampled in a Monte Carlo fashion

L times. The resulting vector of M βij can be used to calculate the

average, mean(βj) and the standard deviation, std(βj). The stability

can be calculated in a similar fashion to the reliability, which is given in

Equation 3.23.

sj = mean(βj)/std(βj) (3.23)
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After calculating stability, the number of variables retained Nj has to be

determined. This is done using an “elbow” analysis based on Root Mean

Squared Error of Prediction (RMSEP) using the following equation:

RMSEP =

[
1

N

N∑
i=1

(yi − ŷi)2
]1/2

(3.24)

where ŷi and yi are the predicted and measured value of the ith obser-

vation and N is the total number of observations. Choosing Nj entails

finding a balance between loss of information and model performance. If

the number of retained variables is too small, the robustness and accu-

racy of the model decrease due to the loss of informative variables. On

the other hand, if the number of retained variables is too large, unin-

formative variables affect and contaminate the model, which results in

poor performance.

In our study, RMSEP of the model is calculated for different sets of

variables to determine the optimal number of variables similar to the

BVS method. There are some tuning parameters that need to be set,

such as Nt, L, and Nj. Nt is choosing what percentage of the original

data set is used for training set, L is the number of sub-models, and

Nj is the number of variables retained. Nt is suggested to be between

40% and 60%, which is setting aside large portion of the training data

for validation. With computational power, L can be chosen to be a

high value. Large number of MC samples yields more stable mean and
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standard deviation values in beta coefficients. Lastly, Nj is determined

using the “elbow” analysis.

Table 3.3.2 summarizes the ranking metrics, tuning parameters, ad-

vantages, and disadvantages of the variable selection methods discussed in

this section.
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Method Ranking Criteria Tuning Parameter Advantage Disadvantage

VIP Filtering
by Wold et al. [128]

VIP
Cut-off value for VIP

(or “greater than 1” rule)
Simple, interpretable

result, widespread
Requires process knowledge,

collinear variables bias the ranking
Beta Coefficient

Filtering
Beta coefficient

Significance level
for beta coefficients

Same as VIP filtering Same as VIP filtering

Backward Variable
Selection (BVS) by

Fernández et al. [48]

VIP or
beta coefficient

Number of retained
variables in the final model

Simple, easily implementable,
interpretable result, variable
elimination based on each

iteration

Tuning parameter greatly affects
the final result, iterative

evaluation or ranking metrics,
could get stuck in local optimum

Uninformative Variable
Elimination (UVE) by

Centner et al. [20]

Reliability of
beta coefficient

Magnitude of artificial
random variable

Simple, does not require iteration,
provides new ranking metric

Determining tuning parameter is
difficult in practice, collinear

variables bias the ranking

Monte Carlo
UVE (MCUVE) by

Cai et al. [17]

Stability of
beta coefficient

Percentage of the original
data set that is used for

training, Number of sub-models,
Number of retained

variables in the final model

Interpretable results, use of RMSEP
can lead to better model fit,

collinear variables can be handled
due to MC sampling

Many tuning parameters,
requires computational power,

requires many model evaluations

Table 3.2: Overview of Variable Selection Methods in Section 3.3
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3.3.3 Comparison of Variable Selection Methods on Industrial Pro-
cess

In order to compare these methods for the industrial system, initially

over forty different variables were included in the whole data set (note that

this data set is slightly different from the one used in section 3.2.5. This is due

to the fact that the data used in this section were used to build the soft sensor

described in the next chapter). These variables were used to build a PLS model

that predicts one product quality variable, which indicates the final product

quality. The original data set was partitioned into three different subsets using

k-means clustering and three different PLS models were built. The goal is to

remove unnecessary variables that might not contribute or even contaminate

the model prediction while maintaining or improving model accuracy. When

applying the VIP filtering method, the cutoff value of VIP was set as one.

When applying the BVS method, VIP was used as the variable ranking metric

and the cutoff value was determined using the “elbow” analysis with R2X

and R2Y values. Similarly when applying the MCUVE method, VIP was

used as the variable ranking metric, the cutoff value was determined using the

“elbow” analysis with RMSEP values, Nt was set as 40%, and M was set as

one thousand.

Prior to discussing the comparison between these selection methods,

the regression parameters to evaluate the model need to be discussed. First

one is the coefficient of determination, known as, R2, which can be obtained

using Equation 3.25. Residual sum of squares (RSS) is the sum of the squared
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difference between the actual observation yi and the model prediction ŷi. Total

sum of squares (TSS) is the total variance that a model can explain which is the

sum of the squared difference between the actual observation and the average

observation. Another parameter is Q2 which signifies the predictive ability of

the PLS model. This was calculated using Equation 3.26. Predictive error sum

of squares (PRESS) is the sum of the squared differences between the actual

observation and the response predicted by the regression model. ŷi/i indicates

the model estimation when the ith sample was left out from the training data

set.

RSS =
n∑
i=1

(yi − ŷi)2

TSS =
n∑
i=1

(yi − ȳ)2

R2 = 1− RSS

TSS

(3.25)

PRESS =
n∑
i=1

(yi − ŷi/i)2

Q2 = 1− PRESS

TSS

(3.26)

Using the VIP filtering method, R2X, R2Y , and Q2 were compared

after the variable selection to determine how much of the model has been

impacted by the change in variables. The results are summarized in Table

3.3.3. The PLS model of cluster 1 eliminated 23 variables but the model fit
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Table 3.3: Model Change after VIP Filtering
Model Fit Metric Cluster 1 Cluster 2 Cluster 3
R2X 0.096 0.322 -0.323
R2Y -0.046 -0.031 -0.168
Q2 -0.001 -0.016 -0.091
k -23 -24 -28

Table 3.4: Model Change after BVS
Model Fit Metric Cluster 1 Cluster 2 Cluster 3
R2X 0.082 0.294 0.077
R2Y -0.013 -0.006 -0.008
Q2 0.016 0.025 0.017
k -17 -22 -12

does not alter too much (R2Y only decreases by about 5%). A similar result

is obtained for the PLS model of cluster 2, but it appears that in the case of

cluster 3, variable elimination may have been too aggressive since model fit is

degraded.

The results obtained using the BVS are summarized in Table 3.3.3.

This method, as mentioned above, requires iteration, which means that in

order to eliminate k variables, k + 1 number of different PLS models had to

be fitted. The “elbow” as shown in Figure 3.16 is used to determine the final

number of variable retained. As discussed earlier, as the number of variables

removed increases, the model accuracy and performance decrease due to loss

of information.

Lastly, using MCUVE requires the most computational power among

all these methods, as it requires randomly creating numerous subsets of the
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Figure 3.16: Model Fit Metrics vs. Number of Variables Eliminated (BVS)
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Table 3.5: Model Change after MCUVE
Model Fit Metric Cluster 1 Cluster 2 Cluster 3
R2Y 0.016 0.010 0.002
k -24 -22 -17

whole data set and building many PLS models to calculate the stability of

each variable. Compared to VIP filtering and BVS, the results after MCUVE

for cluster 1 and 2 are fairly similar. The number of variables eliminated

is similar and the changes in R2 might be negligible. However, the variable

selection method for cluster 3 using VIP filtering was too aggressive and using

BVS might have been too lenient. As shown in Table 3.3.3, using MCUVE, the

PLS model does not lose information and model accuracy yet we can remove 17

variables. In order to determine the number of variables eliminated, MCUVE

utilizes RMSEP to determine the optimal number of variable retained. As

shown in Figure 3.17, as number of variables eliminated increases, the RMSEP

decreases as the uninformative variables that might contaminate the model

with noise are removed. At a certain point the RMSEP starts increasing - this

means that variables with information required to accurately model for Y are

being eliminated.

Figure 3.18 shows the variables were eliminated or retained from the

forty two initial variables. A red box means that the variable was removed and

a blue box means that the variable was retained. Some of the variables such as

variables 27, 28, 32 and 34 were consistently eliminated while some variables

such as variables 13, 24, and 26 were retained in all clusters by all three

87



Figure 3.17: RMSEP vs. Number of Variables Eliminated (MCUVE)
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methods. As can be seen across the figure, different variable selection methods

retain and eliminate variables differently. Moreover, different clusters have

different set of variables retained which imply that these multiple production

modes are impacted differently.

3.4 Summary

In this chapter, data-driven modeling techniques, which include PCA,

PLS are discussed. The multiple operating modes present in complex sequen-

tial batch-continuous process were modeled by partitioning the data set into

different clusters. Various variable selection methods for PLS are compared.

In order to model and monitor the status of the batch process and con-

tinuous process, data-driven modeling techniques such as PCA and PLS are

used to capture the variance within the data set while reducing the dimen-

sionality of the data, which facilitates the monitoring. PCA is applied to the

distribution data of the batch process and using two principal components,

the physical change in the distribution was represented. Faulty batches were

successfully identified using the Hotelling’s T 2 and Q-statistics. In order to

handle multiple operating modes of the industrial B2C system, three different

modeling techniques are introduced. Using one global model, the PLS model

fit for the training data set yields a good fit, but for the testing data set, the

model prediction is poor due to different nominal values associated with mul-

tiple operating conditions. By contrast, applying clustering analysis and using

ne model per one cluster yields very good results, and online implementation
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Figure 3.18: Variables Eliminated Using Different Variable Selection Methods
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is simplified by using the centroids of the clusters to select the operating region

of the process and the corresponding model.

In addition to the modeling methods, different variable selection meth-

ods were compared to eliminate irrelevant variables that might contaminate

the PLS model with noise. All the variable selection techniques use some

ranking metrics such as the magnitude of the beta coefficients of VIP. Various

methods have different tuning parameters, which may be difficult to select

without process expertise. VIP filtering is the most prevalent method with

simple and interpretable result using VIP. VIP filtering, however, could be too

aggressive or lenient depending on the cutoff value. Usually, “greater than 1”

rule is used, which is a good starting point, but might not be sufficient for real

industrial data. BVS is easy to implement and yields similar result to VIP

filtering, but could get be affected by local optima. MCUVE improves UVE

by using Monte Carlo sampling to remove uncertainties in setting some tuning

parameters which might be difficult in real process data. The “elbow” empir-

ical evaluation is used to determine the number of variables retained which

balances between the model accuracy and the loss of information. For the in-

dustrial system, MCUVE results in the largest number of variables eliminated

while maintaining model accuracy and performance. Reducing the number of

variables makes the model more robust, as measurements could be jeopardized

by malfunctioning sensor or contaminated measurement.
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Chapter 4

Real-Time Optimization of Sequential

Batch-Continuous Process

4.1 Introduction

In this chapter, we focus on developing a soft sensor model for a quality

variable that is expensive to measure and improving the process operation

using RTO. In the first section, a simple method to correlate the product

quality variable with low measurement frequency to continuously measured

process variables. Because each measurement is costly (in the sense that a

sample taken from the production line is analyzed by a technician and is

destroyed in the process), it is often impractical to measure the final quality

variable continuously or even frequently. We discuss a way to down-sample

the process variables that are measured at higher frequency and develop a soft

sensor model which can be used to estimate the ware quality. We use the

term “soft sensor” to denote a model-based computation that is used to infer

the values of the quality variable at time instants when measurements are not

available; the reader is referred to, e.g., [105, 42, 84, 63] for more information

concerning soft sensing in the process industries.

In the second section, the soft sensor is used to identify the optimal pro-
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cess operating conditions in a real-time optimization (RTO) calculation [114].

The goal is to maintain the product quality within the acceptable boundary

while process changes occur.

4.2 Selection of Product Quality Variable

4.2.1 Motivation

In a complex chemical process with many operational steps, it becomes

quite difficult and expensive to measure the product quality at intermediate

steps. As an example, the cost of a composition analyzer is an order of mag-

nitude (or more) higher than the cost of a temperature or pressure probe.

Consequently, product quality measurements are often collected only at the

outlet of the process and reflect the final product quality. Further still, and

depending on the nature of the process, measuring the final product quality di-

rectly is itself challenging (both technically and economically), involving offline

“lab” measurements and analyses performed operators or specialized techni-

cians. Incorporating this type of variables into modeling becomes particularly

difficult due to inherently low sampling rate and to time delays associated with

the intervention and work of operators.

Low sampling rates (typically of the order of hours) make it impossible

to correctly reconstruct the process dynamics in soft sensor formulation, and

confine the operation of the soft sensor to predicting steady-state values of

the quality variable. An associated challenge is the selection of appropriate

data for calibrating the sensor against process measurements. Specifically, as
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Figure 4.1: Schematic Representation of Soft Sensor

shown in Figure 4.1, one must choose the time interval prior to the quality

variable measurement, from which data are used as the sensor input. This

window must be, i) sufficiently long to capture the operation of the process at

steady-state, yet, ii) short enough to ensure that the quality variable reading

is correctly associated with the recent evolution of the process rather than

reflect long-term trends.

4.2.2 Methods

As shown in Figure 4.1, the online process variables are measured con-

tinuously as indicated by blue and red lines while the offline quality variables,

shown as blue circles, are measured offline intermittently (sampling frequency

of 1/t2). t1 is used to determine the current state of the process. Because
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the real process data contains high measurement noise, it is difficult to ob-

tain clean a variable trajectory even after data preprocessing such as outlier

removal and filtering, thus it is suggested to use the average or median value

in window t1 rather than using a single point. t1 acts as a tuning parameter

as large window size (high t1 value) would cover process change while small

window size might still be influenced heavily by process noise. In case of de-

veloping a steady-state model such as a PCA or PLS model, the model fit can

be improved by removing observations in process transients or in dynamics.

The standard deviation of the process variables in window t1 may be used as

a metric to determine whether the process is in a transient state or at steady-

state. As shown in Figure 4.2, when at steady-state, the standard deviation

value should only capture the measurement noise; on the other hand, when

in transition, the standard deviation value is affected by dynamics of the pro-

cess. Choosing a proper value for t1 becomes crucial and requires some process

knowledge in order to differentiate process dynamics from measurement noise.

In order to develop a steady-state model, the observations in transition and

dynamics need to be discarded as they may contaminate the model.

In the industrial system, the operators collect samples from the line

and measure the quality properties of the samples. Measurement errors, mea-

surement bias due to shift changes, destructive loss of product for testing are

a few disadvantages of the current approach. In order to model the system

output, we follow the concepts outlined above, by down-sampling the vari-

ables for which continuous/frequent measurements are available to a sampling
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Figure 4.2: Schematic Representation of Soft Sensor
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frequency on par to that at which measurements of the quality variable are

collected, i.e., once every few hours.

In order to develop a soft sensor for the industrial process, a linear PLS

model was developed using data which span over twenty separate production

runs. Within the data set, twenty eight different inputs were used as inputs

to the model to fit the output quality variable. Prior to fitting a model, t1

was determined to be sixty. Figure 4.3 shows the actual measurement taken

offline by the operators and the PLS model estimation. Note that the number

of observations is low compared to that of Figure 3.14. The general trend and

different steady-state nominal values exhibit good fit, but the actual measure-

ment contains high frequency noise. This could be due to lack of information

from inputs and higher noise level of process measurements compared to that

of offline quality measurement. In the following section, we utilize the soft

sensor developed for RTO calculation in order to find the optimal sequence of

manipulated input to operate the process more efficiently.

4.3 Real Time Optimization (RTO)

4.3.1 Problem Formulation

The goal of the industrial system is to maintain the final product qual-

ity within specifications in the face of upstream disturbances. The final prod-

uct qualities such as shape, hardness, stiffness are affected by many different

factors such as raw materials distribution, amount of liquid agent added to

the batches, pressure, temperature, and torque in the system. The system
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Figure 4.3: Schematic Representation of Soft Sensor
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is currently operated under manual control, whereby operators take quality

measurements and determine empirically the appropriate amount of liquid

that needs to be added to the process.

The availability of the steady-state PLS model described above opens

the possibility of performing this calculation in an automated fashion and in

closed-loop. This entails carrying out two steps: first, the quality variable

is estimated using immediate past historic measurements, then, ii) the RTO

calculation is performed to determine the flow rate of liquid to be added to the

process for the period leading to the next estimation and RTO calculation.

This approach amounts to a control vector parameterization, whereby

the manipulated variable (liquid carrier flow rate) is approximated via a piece-

wise constant function; equivalently, the liquid carrier flow rate remains con-

stant between two RTO calculations, with the time interval between these

calculations being a tuning parameter.

The objective of the RTO calculation is to find optimal amount of

liquid added to the process that maintains the quality of the final product

within specification in the face of disturbances and process changes. It is

important to note that the steady-state PLS models developed (Figure 4.3) are

subject to model uncertainties, which need to be accounted for in the following

optimization. The problem 4.1 represents the optimization formulation that

drives the process to the setpoint.
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minimize
u

(ySP − y)2

subject to y = Xβ′ + uβ′u

lb ≤ u ≤ ub

(4.1)

y is the product quality estimation from the model, ySP is the prede-

termined setpoint for the product, β and βu are the PLS model coefficients, X

is the PLS model input, u is the manipulated variable (amount of liquid agent

added to the system), and lastly, lb and ub are the lower and upper bounds

for the manipulated input, respectively. It is a quadratic program (QP) that

calculates the optimal amount of liquid added to the process while closely fol-

lowing the predetermined setpoint. Alternatively, formulation 4.2 can be used

for less aggressive approach. Formulation 4.1 might set aggressive movements

for u due to the objective function penalizing any moment that y does not

match ySP . On the other hand, formulation 4.2 has the in-spec parameter

pthreshold which acts as a buffer. The magnitude of pthreshold is a tuning pa-

rameter that can be utilized for tighter operation versus relaxed burden on

the manipulated input. In order to choose a proper value for pthreshold, some

process knowledge on the bounds for the acceptable products is required.
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minimize
u,p

p

subject to y = Xβ′ + uβ′u

lb ≤ u ≤ ub

ySP − y ≤ p

y − ySP ≤ p

y ≥ 0

p ≥ pthreshold

(4.2)

Unlike (4.1), problem 4.2 is a linear program (LP), which can be solved

very efficiently. This problem formulation aims to ensure that the product

quality remains within a range pthreshold of its desired setpoint/value, with last

constraint allowing for deviations from this threshold if it cannot be achieved.

4.3.2 Results

The overall goal of modeling and optimizing the industrial system is to

maintain the product quality within specifications in the presence of distur-

bances, consisting either of changes in feedstock quality or changes in product

type. The information from the actual production data with the product

quality measurement data are used to emulate the operation of the industrial

system, and the operator heuristics are used to determine the setpoint and the

in-spec buffer parameter pthreshold. Here, ySP is 0 (note that we use deviation

variables to camouflage the physical values of the variables), and pthreshold is

chosen to be 0.1. Lower and upper bounds for the manipulated inputs were
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chosen to be the minimum and maximum values from the production data.

Industrial data were used to emulate the inputs X.

First, we present the results of using the RTO formulation 4.1. Fig-

ure 4.4 (top) compares the actual measurement from production (red) to the

simulated results obtained from implementing the RTO (blue). Figure 4.4

(bottom) indicates that implementing the RTO strategy maintains the pro-

cess output relatively close to the setpoint except from observations 1 to 50,

where the system cannot be driven to the setpoint because the manipulated

input is hitting the lower bound. The manipulated input does not make any

drastic movements but does hit the upper bound around observation 250.

We also present the result from the RTO formulation 4.2. This formu-

lation utilizes the buffer variable to avoid large changes that might occur in

the manipulated input which might wear out or damage actuators. Figure 4.5

presents the simulation results. Compared to the previous case (using (4.1)),

the quality variable fluctuates within the in-spec band of ySP ,±pthreshold. The

changes in manipulated input are far less pronounced, with the upper bound

on the flow rate never becoming active. Qualitatively, these results repro-

duce more closely the data secured from the plant, and suggest that operator

preferences and decisions tend to be conservative and relatively accepting of

slight deviations from quality prescriptions. We conjecture, however, that

the closed-loop implementation of an automatic control/optimization system

based on (4.1), rather than the “milder” formulation (4.2), will lead to im-

proved economic benefits due to more consistent product quality, and we are
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Figure 4.4: RTO Result from Problem Formulation 4.1. The actual mea-
surement from production are shown in red, and the real-time optimization
calculations are shown in blue.
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Figure 4.5: RTO Result from Problem Formulation 4.2. The actual mea-
surement from production are shown in green, and the real-time optimization
calculations are shown in blue.

hopeful that this conjecture can be validated in real-life plant operations in

the near future.

The product specification variable p is shown in Figure 4.6. The RTO

result only violates the given specification a few times around observation 1,

50, 110 and 150, compared to constant violation of product specification before

the RTO calculation was carried out. Also, the instances that RTO produces

out-of spec products can be alleviated by changing the lower bound of the
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Figure 4.6: Product Specification from Problem Formulation 4.2

manipulated input.

4.4 Summary

In this chapter, the development of a soft sensor for a product quality

variable which is determined via infrequent lab sampling is discussed. The

sensor is presented in the form of a steady-state PLS model, correlating the

product quality variable to a set of variables that are measured online and in

real time. The soft sensor is used to develop a real-time optimization formu-
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lation, aimed at maintaining product quality within specification by altering

a manipulated input of the process within given bounds.

The chapter presents two main contributions: a down-sampling tech-

nique for synchronizing the data collected in real time with the lab-sampled

measurements, and a “buffered” formulation of the real time optimization

problem, which is expressed in terms of an easy to solve linear program.

Validation on data collected from an industrial system proves that these

concepts can be beneficial for industrial operations, and are encouraging for

pursuing practical implementation.
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Chapter 5

Integration of Scheduling and Control

5.1 Introduction

Scheduling and control are two essential functions in the decision-making

of the chemical supply chain, dealing with the common goal of maximizing

profit from operations by setting production targets based on demand and

ensuring that the targets are met in the presence of process disturbances and

operational uncertainty.

Over the past decades, the importance of production scheduling and

capacity planning has been emphasized as a necessity towards maximizing

economic benefits at the enterprise level [52]. Significant advances have been

made in process control, particularly as far as advanced, supervisory control

techniques are concerned [8]. It is anticipated that further economic benefits

can be derived from a tighter coordination of all levels of decision-making in a

chemical enterprise and, in particular, from a closer integration of production

scheduling and process control [11].

At the fundamental level, production scheduling and supervisory pro-

cess control utilize the same framework: solving an optimization problem con-

strained, amongst other, by the equations of a process model; intuitively, an
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integrated formulation of these two activities should be quite natural.

Nevertheless, the integration of scheduling and control faces several

challenges, both human [116] and technical. Elaborating on the latter, we

note that scheduling and control systems make and implement their decisions

in different time scales [55]. Scheduling horizons range from several days to

weeks, while control systems compute their decisions with minute frequencies

and considering time horizons that are typically a few hours long (Figure 5.1).

Moreover, scheduling calculations are carried out under the (often im-

plicit) assumption that the process operates (mostly) at steady state, and that

the transitions between products and/or operating states i) are short, com-

pared to the periods of steady-state operation, and, ii) can be characterized

in terms of the tabulated transition times, typically a set of time-invariant pa-

rameters. Under these circumstances, scheduling problems are formulated as

mixed-integer linear programs (MILPs) that are agnostic to process dynamics

beyond capturing the tabulated transition times.

On the other hand, control calculations must account for the process

dynamics, and, fundamentally consist of solving a dynamic optimization prob-

lem (which is typically formulated in a discretized form to facilitate numerical

solutions).

The integration of scheduling and control must merge the aforemen-

tioned process representations; the resulting (integrated) problem is thus most

likely a mixed-integer dynamic optimization (MIDO) that becomes extremely
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difficult to solve in a practical amount of time. Several factors contribute

to this: first, detailed dynamic process models are often nonlinear, high di-

mensional and stiff. Second, the general problem formulation is infinite-

dimensional and must be discretized in time. In turn, the discretization (typi-

cally, a MINLP) must consider a long time horizon (to account for scheduling

needs) with a small time step (that takes into consideration the dynamic evo-

lution of the process). Third, the problem is mixed-integer in nature, with in-

teger variables used to reflect scheduling decisions (e.g., production sequence,

product assignment to slots) and continuous variables corresponding, e.g., to

the states of the dynamic process model.

The need to address these challenges has prompted developments in

two main directions. On the one hand, a top-down approach advocates incor-

porating control considerations into a scheduling framework, while bottom-up

approaches aim at extending formulation of supervisory control to account for

scheduling considerations [11].

1. “Top-Down” Approach These studies have focused on improving the

link between control and scheduling by relating the transition times used

in (otherwise static) scheduling calculations to the process dynamics in

order to optimize control performance [89, 32]. Some researchers for-

mulated the scheduling and control problem as a large mixed-integer

dynamic optimization (MIDO) over the entire production cycle [2, 21,

50, 51, 92, 104].
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Figure 5.1: Hierarchy of Decision Making in the Chemical Supply Chain [114]
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2. “Bottom-Up” Approach

In this case, the scheduling objective and constraints are considered in

the level of supervisory controller, which leads to the extension of eco-

nomic model predictive control (EMPC) [46, 47, 56, 62, 3].

It is also worth mentioning the important strides made in numerical

methods aimed at solving this class of problems [124, 123, 15].

In this chapter, we introduce a new approach of the top-down cate-

gory; namely, we investigate the use of a time scale bridging model (SBM)

for integrating short-term scheduling and supervisory control. The SBM is

a low-dimensional dynamic model that captures the closed-loop input-output

behavior of the plant [41, 99, 13], that is, the dynamics of the process and

its controller. More specifically, the SBM provides an explicit description of

the transient evolution of scheduling-relevant process outputs (e.g., product

quality, production rate) as a function of changes in the corresponding set-

points/targets, as computed by the scheduling layer.

The SBM is then embedded in the scheduling calculation, thereby pro-

viding information on the closed-loop dynamics of the process without the need

to consider the entire process model.

Our approach is grounded in past research concerning the dynamics

of process systems [11, 8, 7, 121, 122, 33, 61, 10, 12, 9], where it was shown

that the plant-wide, scheduling relevant dynamics of the aforementioned type
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evolve over a longer time horizon that typically far exceeds the response time

of individual unit operations in a process flowsheet.

5.2 Problem Definition

We concentrate on a continuous process capable of producing multiple

products from the same raw materials by altering processing conditions. The

production schedule is assumed to be cyclical, and that any product can be

produced only once in a production cycle. Once one cycle is ended, the identi-

cal cycle follows. Lastly, it is assumed that the product price, inventory cost,

and the demand for each product is deterministic and known a priori.

The process dynamics can be represented as follows:

0 = f(ẋ, x, z, u)

0 = g(x, z, u)
(5.1)

where x represent state variables, u represent input variables, and z represent

algebraic variable, making this set of differential algebraic equations (DAE).

Each product is defined in terms of a state x of the system, and all the products

are produced at different and unique steady-states. We also assume that any

steady state can be reached from any other steady state, i.e., that there are

no “banned transitions” in the operation of the process.
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5.2.1 Scheduling

From a scheduling perspective,the objective is to identify the optimal

production schedule (in terms of the order in which products are produced,

and the amount of time expended on producing each product) that meets the

product demands while reducing the inventory cost. The problem is set in a

continuous time framework, where the production makespan TC is divided into

a number of “slots” of duration Tj. The decision variables include the pro-

duction sequence (i.e., the allocation of products to each production slot), the

length of these slots, and the makespan. The objective function incorporates

profit and inventory cost, and is written as follows:

max
TC ,Tj ,bi

(
J =

NP∑
i=1

CP,iPi −
NP∑
i=1

CI,iWi

)
(5.2)

under the following constraints:

• Timing Constraints

TC =

NS∑
j=1

Tj

TS,LB ≤Tj ≤ TS,UB

TC,LB ≤TC ≤ TC,UB

(5.3)

The first constraint simply defines the production makespan, which is

the lengths of all the time slots. Index j represents the time slots and

NS is the total number of time slots. The next two constraints set the
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lower and upper bounds for the production length and the makespan,

respectively.

• Sequence Constraints

NP∑
i=1

bi = 1 bi ∈ [0, 1]

NP = NS

(5.4)

The first constraint states that only one product can be manufactured

within one time slot. Index i denotes the product number and NP rep-

resents the total number of products. The number of slots NS is set to

be equal to NP , which ensures that each product is manufactured only

once during the cycle. Finally, the binary variable, bi, denotes that the

product assignment is a discrete decision.

• Demand Satisfaction

Pi =

∫ TC

0

Fdt if x = xi

Wi =

∫ TC

0

Pidt

DLB,i ≤ Pi ≤ DUB,i

(5.5)

Pi is the amount of on-spec product i manufactured, and Wi is the

amount of on-spec product i stored by the end of the production cycle.

The product is considered on-spec, if the concentration of the product

(or the state of the process) is within the specified condition of the prod-

uct (xi). The amount of product manufactured has to be within demand
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lower and upper bounds, DLB,i and, respectively, DUB,i, which are as-

sumed to be known a priori.

5.2.2 Control

From a control perspective, the goal is to maintain the process at the

desired steady-states, and to transition between these states quickly and safely.

In the process, the manipulated inputs u are utilized to change the states x,

which correspond to products Pi
1. In order to shift between the products

quickly, the system has to be under tight control, which reduces the total

makespan.

We define the (state feedback) control law as:

u = K(x, xSP , θ) (5.6)

where xSP represent the setpoints (corresponding to different products) and θ

are a set of controller tuning parameters.

The process dynamic model (5.1) together with the control law (5.6)

can be used to represent the closed-loop dynamics of the process. Note that

choosing this representation of the dynamics to embed in the scheduling calcu-

lation provides no dimensionality reduction benefit. However, the control law

can be chosen such that it provides a well-defined closed-loop behavior, that

can be explicitly characterized using a low-order dynamic model. One of the

1For simplicity, we rely on the assumption that full state information is available for the
process under consideration; a discussion in terms of process outputs was provided in [41]
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controller design approaches that satisfy this need is input-output lineariza-

tion (see, e.g., the works of Kravaris and Kantor [69, 70] for a comprehensive

review). Under certain conditions on the structure and dynamics of the sys-

tem (which typically involve it being “square” - the work by Kolavennu et

al. [65] and having stable zero dynamics), input-output linearizing controllers

imposed a linear closed-loop input-output behavior of the form:

r∑
j=0

βj
djy

dtj
= ySP (5.7)

where y is a system output (which in our case is chosen to be one of the states

x), and r is the relative order of the system (roughly speaking, r represents the

number of times the input is integrated before it affects the desired output).

Equation 5.7 thus constitutes precisely the scale-bridging model that

we are after: it provides information regarding the dynamic evolution of y

(x in our case) as a function of the forcing function ySP , the setpoint, is

low(er)-dimensional than the original model (note that r is at most equal to

the dimension of the state space of the system) and, more importantly, linear;

these features make this class of models highly appealing for formulating and

solving integrated scheduling and control problems.

5.2.3 Integrating Scheduling and Control

Traditionally, scheduling calculations provide the targets for the super-

visory control system. The scheduling calculation is carried out separately by
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utilizing the predetermined information about transitions between the prod-

uct.

Here, three solution methods for the scheduling and control problems

are contrasted: first, a static one, which is aligned with the sequential paradigm

above (i.e., it is assumed that transition times are known a priori). Second, we

consider the full dynamic problem that incorporates the entire process model

as an additional set of constraints in the scheduling formulation. Third, we

validate the approach proposed above, whereby the full dynamic model is

replaced by the scale-bridging model.

5.2.3.1 Static Scheduling

Static scheduling can be simply represented as shown in Equation 5.8.

Constraints 5.5 are redefined, in the sense that the transition times between

the steady-states are tabulated and assumed to be time-invariant. In this

case, the scheduling problem becomes a mixed integer program (MIP). This

approach does not truly represent the integration of scheduling and control.

max
TC ,Tj ,bi

JScheduling

subject to Scheduling Constraints

Predefined Timing Constraints

y ∈ Dy

(5.8)
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5.2.3.2 Scheduling using the Full Dynamic Model of the Process

In this solution approach, the full-order process model is incorporated

into the scheduling problem as an additional set of constraints, thus solving

the scheduling and control problem simultaneously, as shown in Equation 5.9.

As opposed to static scheduling, this approach does not approximate the tran-

sition time, rather it is determined by the process model.

In this case, it is required to include the inputs u as decision variables

in the optimization problem, and the solution will thus also provide the op-

timal (open-loop) trajectory of the process inputs, in addition to the optimal

makespan TC , the optimal production time of each slot Tj, and the optimal

sequence of products x. This scheduling problem is a mixed integer dynamic

optimization (MIDO), because of all the process model, which is significantly

more difficult to solve compared to the static MIP approach.

max
TC ,Tj ,bi

JScheduling

subject to Scheduling Constraints

Dynamic Process Model

x, y, u ∈ Dx,y,u

(5.9)

We note here that this approach presents a major disadvantage from

a control perspective, that is, the process input sequence is calculated at the

start of the production period for the entire makespan. While this sequence is

(locally) optimal in the ideal case (i.e., the model is perfect and there are no

operational disturbances), it is unlikely to stay so in practical cases whereby
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plant-model mismatch and outside disturbances are inevitable. Furthermore,

this can have deleterious effects in the case where the process itself may become

open-loop unstable.

5.2.3.3 Scheduling with Scale-Bridging Models

Here, instead of using the (highly nonlinear, high-dimensional, stiff)

full-order process model as a constraint, a the SBM (e.g., Equation (5.7)) is

used to provide a low order representation of the scheduling-relevant closed-

loop input-output behavior of the process:

max
TC ,Tj ,bi

JScheduling

subject to Scheduling Constraints

Scale-Bridging Model

y ∈ Dy

(5.10)

This model will be referred to as time scale bridging model (SBM). We

define the model as the explicit function relating the supervisory controller

setpoint to the measured process outputs that are of interest to scheduling of

the form shown in Equation 5.7.

Time scale bridging approach therefore proceeds similar to full dynamic

scheduling, with the exception that the full process model is replaced with

the time scale bridging model, and the decision variables that are related to

process manipulated variables are replaced by the setpoints of the supervisory

controller. The solution thus consists of the optimal setpoint sequence that

119



imposes, via the supervisory controller,

ySP (t) =

NP∑
i=1

ySSi bi(t) (5.11)

where ySP (t) represents the setpoint to be tracked by the process output y

over the makespan. ySSi is the desired product operating condition of product

i. The optimal production sequence depends on the binary decision variable,

bi(t), which indicates the choice of products i over the makespan.

The use of SBM significantly reduces the numerical complexity of the

scheduling calculation, as highly nonlinear process model is replaced with a lin-

ear (system of) ordinary differential equation(s). The resulting MIDO is thus

likely less demanding form a computational point of view than the problem

(5.9).

5.3 Numerical Solution Approach

Two different approaches can be taken in order to solve the integrated

scheduling and control problem. These methods include the simultaneous

approach and the sequential approach. The simultaneous approach requires

discretization of the state and the control profile in time, which in essence re-

formulates MIDO into a large scale mixed integer nonlinear program (MINLP).

This approach fully discretizes the differential algebraic equations (DAEs)

and does not rely on any DAE solvers. Instead, they are handled with the

NLP solver. This, however, means that it requires an efficient efficient NLP
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solver that can handle a large system and also requires first and second order

derivatives in order to carry out optimization. Flores-Tlacuahuac et al. intro-

duced the simultaneous approach to solving a cyclic scheduling problem for a

multi-product CSTR [50, 51]. Terrazas-Moreno et al. used the simultaneous

approach to find optimal sequence of a polymerization reactor [119]. These

aforementioned approaches calculate the entire schedule and control action

off-line and implement the calculated setpoint, and thus are disadvantageous

in disturbance rejection [92].

In the sequential approach, three different components (the (MI)NLP

solver, the DAE solver, and sensitivity calculations) are required. In each

iteration of the optimization, decision variables are defined by the (MI)NLP

solver. These decision variables are used to solve the DAEs over the speci-

fied time horizon, and then sensitivities are integrated together with the DAE

system to obtain the gradients of the objective function and the constraints

with respect to the decision variables, which are then used by the (MI)NLP

solver in the subsequent iteration in order to update the (MI)NLP solver. The

sequential approach requires less function and gradient evaluations compared

to the simultaneous approach; however, the performance and computational

efficiency of the sequential approach depend on the DAE solver and the sensi-

tivity calculations. Allgor et al. proposed a generalized decomposition method

for MIDO problems [2]. Chatzidoukas et al. decomposed a MIDO into a mas-

ter problem and a dynamic optimization dual problem to obtain the optimal

production schedule and the optimal grade transition profile between steady
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states [21]. Prata et al. combined disjunctions and logical constraints with

differential algebraic model for a continuous polymerization process, and solve

a MIDO to generate the optimal production policy [104].

We demonstrate through two case studies - 1. a multi-product contin-

uously stirred tank reactor (CSTR) and 2. a process network consisting of a

multi-product CSTR with external heat exchanger, which makes extensive use

of energy recovery in order to decrease utility costs. These process models are

stiff and highly nonlinear especially the second case study.

5.4 Case Studies

5.4.1 Multi-product CSTR

We consider a non-isothermal multi-product CSTR with four products

manufactured at different operating conditions. The developments presented

in this subsection follow very closely the results reported in the paper [99]. Our

goal is to maximize overall production profit while meeting the manufacturing

demand for each product. The scheduling problem thus consists of deter-

mining the total production time, the optimal production sequence and the

processing times for each product. We solve this problem following the three

approaches described above, i.e., static scheduling, full dynamic scheduling,

and dynamic scheduling using an internal coupling model. The full dynamic

scheduling problem for this system has been formulated and solved by Flores-

Tlacuahuac et al. and we follow closely their developments in that direction,

as well as using the same model parameters as in their paper [50]. The static
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scheduling problem is solved assuming a constant transition time τ = 10hr for

all transitions.

Let us now focus on the development of the SBM for this process. The

process model is given in Equation 5.12 and 5.13, where y1 is the dimensionless

concentration, and y2 stands for the dimensionless temperature.

dy1
dt

=
1− y1
τ
− k10e−N/y2y1 (5.12)

dy2
dt

=
yf − y2
τ

+ k10e
−N/y2y1 − αu(y2 − yc) (5.13)

In Equation 5.12, τ represents reactor residence time, k10 is the pre-

exponential factor, and N is the activation energy. In Equation 5.13, yf de-

notes the dimensionless feed temperature, yc is the dimensionless coolant tem-

perature, α is the dimensionless heat transfer area. The coolant flow rate u is

the manipulated variable available for changing the output of interest, which

in this case is the composition y1. The relative order of this system is r = 2.

We design a nonlinear input-output linearizing controller with integral action

to impose a critically damped second-order input-output behavior:

τ 2CM
dy1
dt

+ 2τCM
dy1
dt

+ y1 = ySP1 (5.14)

with τCM = 2hr (note that this value was chosen so that the step response of

the closed-loop system reaches steady state in about 10hr, which is comparable

to the transition time used for static scheduling. The SBM-based scheduling is
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Table 5.1: Optimal Solutions to Three Different Scheduling Formulation Prob-
lems

Case Profit Production Sequence Total Production Time
SBM 36.559 3 → 1 → 2 → 4 119.749hr
Static 36.615 2 → 1 → 3 → 4 119.585hr
Full 35.455 4 → 2 → 1 → 3 122.785hr

Table 5.2: Optimal Solution for SBM-based Scheduling
k 1 2 3 4
τk 10.06 10 10 10.104
i 1 2 3 4
Wi 35.100 21.525 20.330 27.526
tpi,k (i = 3, k = 1)

18.35
(i = 1, k = 2)
16.064

(i = 2, k = 3)
15.171

(i = 4, k = 4)
30

thus formulated using the above equation as a constraint, aiming to determine

the optimal setpoint profile.

5.4.1.1 Optimal Solutions to Scheduling Problem Formulations

The static, full dynamic and SBM-based scheduling problems were

solved using GAMS/CPLEX [34]. The dynamic optimization problems were

reformulated as MINLPs using a full-discretization approach as described in

the work by Flores-Tlacuahuac et al. [50]. The optimal solutions are shown

in Tables 5.1-5.4. The optimal solution for SBM-based scheduling was vali-

dated via simulation on the closed-loop system using the derived input-output

linearizing controller.
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Table 5.3: Optimal Solution for Static Scheduling
k 1 2 3 4
τk 10 10 10 10
i 1 2 3 4
Wi 35.100 21.525 20.330 27.526
tpi,k (i = 2, k = 1)

16.064
(i = 1, k = 2)
15.171

(i = 3, k = 3)
18.350

(i = 4, k = 4)
30

Table 5.4: Optimal Solution for Full Dynamic Scheduling
k 1 2 3 4
τk 10.937 10 10 11.06
i 1 2 3 4
Wi 35.100 22.323 21.083 27.594
tpi,k (i = 4, k = 1)

16.659
(i = 2, k = 2)
30

(i = 1, k = 3)
15.733

(i = 3, k = 4)
18.396

5.4.1.2 Performance in the Presence of Model Uncertainty

The aforementioned results were obtained assuming no plant-model

mismatch, i.e., that the dynamic model used is perfect. Here, we assume

that the reaction rate constant has been overestimated in the model by 10%

compared to the plant. The control actions computed using full dynamic

scheduling were imposed on the mismatched plant. Clearly, in the absence of

feedback control, most of the products are off-spec (Figure 5.2, left). This oc-

curs because this formulation does not incorporate a feedback control system.

Additionally, the process becomes unstable owing to a runaway reaction be-

cause product 3 and 4 are manufactured in an open-loop unstable region [50].

Then, we imposed the setpoint sequence computed from SBM-based schedul-

ing on the closed-loop system using the input-output linearizing controller.
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Figure 5.2: Process response using full dynamic (left) and SBM-based (right)
scheduling in the presence of plant-model mismatch. Dashed lines represent
the target values of the variables.

While each of the products is initially off-spec, feedback control with inte-

gral action compensates for plant-model mismatch and helps recover product

purity (Figure 5.2, right).

5.4.2 Multi-product CSTR with External Heat Exchanger

We consider a more complex process network, comprising of a reactor

and a heat exchanger shown in Figure 5.3. The dynamic process model and

control problems have been formulated and solved in the work by Baldea et

al. [7]. We rely on their modeling and control formulation, as well as model

parameters from that paper.

5.4.2.1 Modeling of Process Network

The feed stream F contains the reactant A and its concentration is

assumed to be constant. Two highly exothermic first-order reactions take
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Figure 5.3: Schematic Diagram of a Process Network with External Heat
Exchanger [7]

place, which produce products B and C (A
k1−→ B

k2−→ C). The large magnitudes

of heat of reaction mean that the thermal effects of the reactions dominate,

thus the adiabatic operation is not possible. In order to mitigate such highly

exothermic reactions, the reaction mass is recycled at a higher rate compared

to the feed through the external heat exchanger.

The following assumptions are made regarding the process:

• The flowrate, composition, and temperature of the feed remain constant.

• The inlet temperature of coolant remains constant.

• The reactions only occur inside the reactor.

• The heat capacity of the materials remain constant.
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Under these assumptions, the material and energy balance equations

for this system can be written as:

dCA
dt

=
F

M
(CA0 − CA)− k10e

−Ea1
RT CA (5.15)

dCB
dt

= − F
M
CB + k10e

−Ea1
RT CA − k20e

−Ea2
RT CB (5.16)

dCC
dt

= − F
M
CC + k20e

−Ea2
RT CB (5.17)

dT

dt
=

F

M
(T0 − T ) +

RC

M
(TR − T )

− ∆H1

cp
k10e

−Ea1
RT CA −

∆H2

cp
k20e

−Ea2
RT CB (5.18)

dTR
dt

=
RC

MR

(T − TR)− UA

cpMR

(TR − TC) (5.19)

dTC
dt

=
FC
MC

(TC0 − TC) +
UA

cpcMC

(TC − TR) (5.20)

where CA, CB, and CC are concentrations of A, B, and C. T is the temperature

of the reactor, TR is the temperature of reaction mass in the tube side of the

heat exchanger, and TC is the outlet temperature of the coolant. All the

process parameters can be found in [7] and are reproduced in Table 5.5 for

completeness.

In this continuous reactor, a number of product grades are specified

in terms of concentrations. These products are produced from the same raw

materials but at different operating conditions. As the reactor operates con-

tinuously, the switch from different products involves a dynamic transition,

which is carried out by changing the composition setpoint.
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Table 5.5: CSTR Model Parameters
Parameters Values
F 20l/min
M 1200l
MR 22.93l
MC 68.8l
CA0 2mol/l
U 1987.5W/m2-K
A 11.14m2

∆H1 −791.2kJ/mol
∆H2 −527.5kJ/mol
Ea1 75.36kJ/mol
Ea2 150.72kJ/mol
k10 5.35× 1010min−1

k20 4.61× 1018min−1

cp 4138.2J/l-K
cpc 4138.2J/l-K
T0 311.1K
TC0 294.4K
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5.4.2.2 Control Strategy

Due to the differences in the magnitude of RC and F , the model is stiff

featuring a two-time scale behavior. The concentrations of the output stream

takes a long time to evolve, while the temperatures of the system reach new

steady state values quickly [7]. This two-time scale behavior poses challenges

for controller design, and should be dealt with by deriving a low-order, non-

stiff model of the slow system dynamics for model-based control purposes (see,

e.g., the discussions in Kokotovic et al. and Baldea and Daoutidis) [64, 8].

Using singular perturbation arguments, separate models for the fast

and slow components of the system dynamics can be defined [7]. A cascade

control structure is used, in which the reactor temperature (fast dynamics)

is controlled by a proportional-integral (PI) controller. The setpoint of the

controllers in the fast time scale are available as manipulated inputs in the

slow time scale. In order to track and control the purity of the product, a

nonlinear controller is implemented. This drives the system so that CB follows

a first order linear dynamics, and relies on the setpoint of the temperature

controller as a manipulated variable. The controllers are shown below [7].

FC = FCS

(
1 +KC

(
T − TSP +

1

τI

∫ t

0

(T − TSP )dt
))

(5.21)

CB,SP = CB + γ1
dCB
dt

(5.22)

(5.23)
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In Equation 5.22, the first term corresponds to requesting a first order

response in CB when using a standard input-output linearizing controller. The

controller parameters KC , τI , and γ1 are chosen to be 0.15K−1, 2.8min and

30min, respectively [7]. However, this would lead to closed-loop instability

due to non-minimum phase behavior which comes from the increased second

reaction rate, thus the auxiliary term is designed to cancel the influence of the

second reaction [7].

5.4.2.3 Scheduling

In this continuous stirred reactor tank (CSTR), three different prod-

ucts are manufactured at three different operating conditions with the same

raw materials. Since the reactor operates continuously, this requires the set-

point changes by adjusting the manipulated variable (MV), FC . The detailed

operating conditions for the products are shown in the Table below. The man-

ufacturing of the products occurs in a production cycle, which consists of two

different periods: the transition period and the production period. The tran-

sition period represents the dynamic transition between the products. The

transition from one product to the other is considered complete when the con-

trolled variable (CV), CB, is within the tolerance (1.0×10−3) of its new steady

state setpoint. The production period represents the desired steady state op-

erating condition. The operating conditions for all the products are shown in

Table 5.6, which can be found in [7]. The production cycle is assumed to be

cyclical.
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Table 5.6: Operating Conditions of Each Product
Product CA CB CC T TR TC FC
1 0.0194 1.550 0.434 375.02 346.24 323.18 257.16
2 0.0145 1.323 0.663 379.57 349.31 324.66 261.45
3 0.0103 0.995 0.995 385.14 353.26 326.28 271.77

Table 5.7: Product Information
Product CP ($/L) CI($/L-hr) DLB(L) DUB(L)
1 0.9 0.066 10,000 40,000
2 1.0 0.060 10,000 40,000
3 1.1 0.054 10,000 40,000

The objective is to identify the optimal operating sequence that meets

the product demands while reducing the inventory cost. The decision vari-

ables include the production sequence (discrete), the total cycle time, and the

production time of each product. It was assumed that the product price, in-

ventory cost, and the demand for each product is deterministic and known a

priori. Also, it was assumed that only one product is produced in each time

slot, and it is produced only once during the entire production cycle. All the

product pricing information is included in Table 5.7.

In this case, we approach the scheduling problem using the full-order

process model from a slightly different perspective, in the sense that the con-

troller of the process is also included. That is, Equations 5.15-5.20 and the con-

troller equations (Equations 5.21-5.22), are included as constraints, as shown

in Equation 5.24.
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max
TC ,Tj ,bi

( NP∑
i=1

CP,iPi −
NP∑
i=1

CI,iWi

)

subject to TC =

NS∑
j=1

Tj

TS,LB ≤ Tj ≤ TS,UB

TC,LB ≤ TC ≤ TC,UB
NP∑
i=1

bi = 1 bi ∈ [0, 1]

NP = NS

Pi =

∫ TC

0

Fdt if CB = CB,i

Wi =

∫ TC

0

Pidt

DLB,i ≤ Pi ≤ DUB,i

CB,SP =

NP∑
i=1

CB,ibi

Dynamic Process Model

Control Law

(5.24)

Conversely, the SBM-based scheduling problem is formulated as:
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max
TC ,Tj ,bi

( NP∑
i=1

CP,iPi −
NP∑
i=1

CI,iWi

)

subject to TC =

NS∑
j=1

Tj

TS,LB ≤ Tj ≤ TS,UB

TC,LB ≤ TC ≤ TC,UB
NP∑
i=1

bi = 1 bi ∈ [0, 1]

NP = NS

Pi =

∫ TC

0

Fdt if CB = CB,i

Wi =

∫ TC

0

Pidt

DLB,i ≤ Pi ≤ DUB,i

CB,SP =

NP∑
i=1

CB,ibi

τ
dCB
dt

+ CB = CB,SP

(5.25)

in which, the DAE of the process model and the nonlinear control

equations are replaced by a linear ordinary differential equation, as shown in

Equation ??.

5.5 Simulation Results

The optimal solutions for the full MIDO approach and the SBM MIDO

approach are shown in Tables 5.8 - 5.9 and Figure 5.4. The results obtained

using the two different methods are similar. The production times of all three
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Table 5.8: Optimal Schedule Comparison
Method Full MIDO SBM MIDO
TC 1800.28 1800
T1 600.28 600
T2 600 600
T3 600 600
Sequence 1 → 3 → 2 → 1 1 → 3 → 2 → 1
Solution Time (s) 606 68

Table 5.9: Optimization Result
Method Full MIDO SBM MIDO
P1 1.021× 104 1.109× 104

P2 1.036× 104 1.120× 104

P3 1.000× 104 1.071× 104

W1 2.612× 106 3.076× 106

W2 8.954× 106 9.895× 106

W3 1.441× 107 1.567× 107

Profit 3.198361 3.104565

time slots are similar, and reflect the fact that the optimal solution corresponds

to meeting the minimum product demand. Also, the production sequences of

both methods are the same, where the process is initialized at the states of

product 1. However, the comparison of the simulation times emphasizes the

benefit of using the SBM formulation. It only takes about 60 seconds to solve

the scheduling problem, while the full MIDO takes about 10 minutes to solve.

The trajectories of the states and the manipulated variables are shown in the

following Figure 5.4. The result was calculated using gPROMS [79]. The

following values (Table 5.10) were used for the optimization.
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Figure 5.4: Optimal Dynamic Profile of Full MIDO

Table 5.10: Optimization Parameters
Parameters Values
TS,LB 400
TS,UB 3,000
TC,LB 1,200
TC,UB 9,000
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5.6 Summary

In this chapter, integration of scheduling and control is discussed. Ex-

isting solution approaches such as static scheduling and scheduling under full

process constraints and their shortcomings are summarized. The key contri-

bution of this chapter is the introduction of the scale bridging model (SBM)

concept, as a low-order representation of the closed-loop dynamics of the pro-

cess, which are relevant for scheduling calculations. We rely on concept from

input-output linearization to derive such models for a class of square nonlinear

processes with stable zero dynamics.

Two case studies, the short term scheduling problem of a multi-product

CSTR and a multi-product process with an external heat exchanger, were

used to demonstrate the superiority of our approach (in terms of significant

reduction in computational burden) compared to conventional formulations of

the integrated scheduling and control problem.
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Chapter 6

Summary and Future Directions

6.1 Summary of Contributions

This dissertation focused on a specific class of processes, that combine

both batch and continuous processing of materials. We refer to these sys-

tems as batch to continuous (B2C) processes. High dimensionality, physical

complexity and the need to make real-time model-based decisions preclude

(in many cases) the development of first-principles models for such processes.

Motivated by this, we aimed to develop a data-driven framework for extract-

ing useful analysis and control-relevant information from data collected during

B2C process operations.

Specifically, we developed data pretreatment, modeling and optimiza-

tion methods, and demonstrated applications on an industrial system. We

note that the methods are described generally and can be extended to many

other sequential batch-continuous processes in the food, plastics and ceramic

manufacturing industries.

In Chapter 2, data cleaning methods such as outlier detection and

filtering are discussed. There are several techniques to detect and remove

outliers used in chemical industry. The most prevalent technique is to use the
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3σ to determine the upper and lower bounds of an “acceptable” region. We

compare this to the Hampel Identifier, which has superior performance. For

noise filtering, we compare median-based and low-pass filters, as well as the

Savitzky-Golay filter. We conclude that for the class of systems considered,

the Hampel Identifier and Savitzky-Golay filter yield the best performance.

Chapter 2 also introduces a novel approach to correlate the variable-

wise unfolded batch data to the subsequent continuous data. Most of the

recent studies in modeling and analysis have focused solely on investigating

batch and continuous process separately; however, sequential batch-continuous

process is a hybrid system in which both of these modes of process coexist

and affect the final product quality. In order to correlate these processes, a

characteristic value of the batch is obtained and assigned until the following

batch is introduced to the system. In this way, the variable-wise unfolded

batch data has the same data length as the continuous data, the batch-to-

batch variability is maintained, and it can be used for further analysis without

any loss in information.

Chapter 3 focuses on the data-driven modeling aspect. Widespread

data-driven modeling methods such as PCA and PLS are discussed in de-

tail in this Chapter. Also, special variations of these methods such as kernel

PCA/PLS which accounts for the nonlinearity and multiway PCA/PLS which

focuses on the batch trajectory are addressed.

We first treat the batch and continuous sections of the process sepa-

rately: i) PCA is applied to the upstream batch process, where distribution
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of the raw materials is measured to represent the status of the batches. The

Q-statistics and Hotelling’s T 2 identify the variability within the captured

principal components and errors outside the retained principal components,

respectively. ii) Similar techniques are applied to the continuous process for

data reduction and process monitoring. Finally, we consider the global mon-

itoring of the B2C process. Here, in order to account for different operating

modes, a clustering method such as k-means clustering is used to partition

the original dataset into numerous similar subsets, which can also act as a ref-

erence point when implemented online to determine which mode the current

operation belongs to. Chapter 3 also investigates variable selection methods

for PLS in order to improve the accuracy of the model.

Chapter 4 introduces a method to align the offline quality variable

to the online continuous process measurement. After the alignment, the soft

sensor is developed to represent the product quality. This developed soft sensor

can monitor and assess the current state of the production; however, a real

benefit is achieved by optimizing the production. Chapter 4 uses real-time

optimization (RTO) to calculate the optimal sequence of manipulated input

that minimizes any deviation from the predefined set-point. Two different

formulations (tight set-point tracking and tracking with a buffer) show that

tight product quality control can be accomplished while reducing the toll on

valve movements.

Lastly, Chapter 5 focuses on a broader topic, the integration of pro-

duction scheduling and process control decisions, motivated by the need to
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improve operating economic under, e.g., fast-changing market conditions. In

order to alleviate the computational burden of embedding a (high-dimensional,

nonlinear) dynamic model in a scheduling calculation, we propose a new ap-

proach based on scale-bridging models (SBMs). An SBM is the low-order

representation of the scheduling-relevant closed-loop dynamics of a process.

We demonstrate that one possible embodiment of the SBM concept is the use

of input-output linearizing controllers, whose explicitly defined, linear input-

output behavior can be used as an SBM for scheduling calculations. Two case

studies, a simple multi-product CSTR and a more complex process network

demonstrate that this approach is computationally favorable compared to us-

ing full-order, detailed process models in scheduling calculations, while leading

to the same economic performance.

6.2 Potential Directions for Future Work

In this dissertation, a foundation for modeling sequential batch-continuous

process has been established; however, there still remain a number of issues

that need to be addressed. We have, in particular, focused on developing lin-

ear steady-state models for monitoring and product quality; however, in order

to ensure stability and obtain higher economic and operational benefit, the

model needs to include process dynamics (which is not only limited to the

relationship between the manipulated variables and the controlled variables,

but also extended to the relationship between the disturbance variables and

the controlled variables). This task raises interesting issues in estimating time
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delays in sequential batch-continuous process. Estimating time delays between

the variables is not a simple task and remains an open research topic [129].

Also, different model forms can be considered. Data-driven modeling

methods such as autoregressive with exogenous input or first-principles mod-

eling methods have advantages and disadvantages. Data-driven modeling can

be carried out to identify the order and the model parameters; however, the

industrial system exhibits multiple operating modes, which need to be taken

into account. This may lead to developing numerous models which will be dif-

ficult to implement and maintain. On the other hand, first-principles modeling

methods may be able to handle multiple operating modes; however, identifying

and fitting the model form to the given data may be too difficult.

The development of dynamic models can support the analysis and im-

plementation of a feedforward/feedback controller. Given that each of the

multiple operating modes may require a specific control law, a stability anal-

ysis must be carried out.

On the topic of integrating scheduling and control, the proposed SBM

method should be expanded to incorporate the dynamics of batch and con-

tinuous processes of sequential batch-continuous process. The SBM has been

shown to work with multi-input multi-output (MIMO) system, process with

model predictive control (MPC), and autoregressive with exogenous terms

(ARX) model [41, 13, 120]. These developments can be used to expand the

application of the SBM to batch processes. The low(er)-order dynamic model

can be used to represent the batch output, which can be used to schedule
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batch cycles. This idea can be extended to incorporating both batch and con-

tinuous processes of the sequential batch-continuous process in the scheduling

framework. Two sets of SBMs can be used in series to represent the process

dynamics of the batch and continuous processes. Also, rescheduling scenarios

can be considered, based, e.g., on the effect of process disturbances in the

upstream batch process and the effect of process constraint changes in the

downstream continuous process.

Lastly, in this dissertation, we focused on an industrial material pro-

cessing system that deals with a two-phase suspension. In this particular in-

dustrial case study, our focus was on operating the system efficiently in terms

of driving the system to manufacture on-spec products. More broad operating

objectives (especially economic ones) should be considered. In particular, the

output of a B2C process becomes the feed of an oftentimes energy intensive

downstream process (e.g., kiln drying, furnace firing). The quality parameters

of the B2C product will impact the energy use of the downstream process, and

carrying out an “overall” optimization of the entire system, with the purpose

of minimizing overall energy consumption is a likely worthwhile goal.
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