
Copyright

by

Jin Miao

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/322358550?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Jin Miao
certifies that this is the approved version of the following dissertation:

Modeling and Synthesis of Approximate Digital Circuits

Committee:

Michael Orshansky, Supervisor

Andreas Gerstlauer, Co-Supervisor

Adnan Aziz

Robert van de Geijn

Earl Swartzlander

Modeling and Synthesis of Approximate Digital Circuits

by

Jin Miao, B.E., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2014

To my beloved family

Acknowledgments

I would like to express my deepest gratitude to my advisors Professor

Orshansky and Professor Gerstlauer for their continuous support and valuable

guidance over the years. They spent a lot of time with me and helped me

tremendously in my progress. I sincerely appreciate their great patience in

correcting my mistakes. I also admire their ambitious and rigorous academic

spirit which will continue benefiting me in every aspect of my research and

life.

I would like to thank all other committee members for their helpful

comments and suggestions on my research and this dissertation specifically.

In particular, I would like to thank Professor Aziz for many valuable discus-

sions of my research and career development. I would like to thank Professor

Swartzlander and Professor Geijn for their kindness and useful suggestions on

developing this dissertation.

It is my great luck to meet so many talented friends at UT-Austin over

the years. I would like to express my sincere thanks to all of them, including Bei

Yu, Ku He, Boyang Zhang, Song Zhang, Qiaoyang Ye, Ye Wang, Xiaoqing Xu,

Meng Li, Zhuoran Zhao, Xinnian Zheng, Mukund Kalyanaraman, Jaeyoung

Park, Jiwoo Pak, Kareem Ragab, Seogoo Lee, and many others. I sincerely

thank them for all their help and support for my research and life.

v

The last but not the least, I would like to deeply thank my wife, Dorothy

Hu, for her love, for her consistent encouragement. I also would love to give

my heartfelt gratitude to my parents and my beloved grandmother, for their

deepest love and steadiest support.

vi

Modeling and Synthesis of Approximate Digital Circuits

Jin Miao, Ph.D.

The University of Texas at Austin, 2014

Supervisors: Michael Orshansky
Andreas Gerstlauer

Energy minimization has become an ever more important concern in

the design of very large scale integrated circuits (VLSI). In recent years, ap-

proximate computing, which is based on the idea of trading off computational

accuracy for improved energy efficiency, has attracted significant attention.

Applications that are both compute-intensive and error-tolerant are most suit-

able to adopt approximation strategies. This includes digital signal processing,

data mining, machine learning or search algorithms. Such approximations can

be achieved at several design levels, ranging from software, algorithm and ar-

chitecture, down to logic or transistor levels. This dissertation investigates two

research threads for the derivation of approximate digital circuits at the logic

level: 1) modeling and synthesis of fundamental arithmetic building blocks;

2) automated techniques for synthesizing arbitrary approximate logic circuits

under general error specifications.

vii

The first thread investigates elementary arithmetic blocks, such as

adders and multipliers, which are at the core of all data processing and of-

ten consume most of the energy in a circuit. An optimal strategy is devel-

oped to reduce energy consumption in timing-starved adders under voltage

over-scaling. This allows a formal demonstration that, under quadratic error

measures prevalent in signal processing applications, an adder design strategy

that separates the most significant bits (MSBs) from the least significant bits

(LSBs) is optimal. An optimal conditional bounding (CB) logic is further pro-

posed for the LSBs, which selectively compensates for the occurrence of errors

in the MSB part. There is a rich design space of optimal adders defined by

different CB solutions.

The other thread considers the problem of approximate logic synthe-

sis (ALS) in two-level form. ALS is concerned with formally synthesizing a

minimum-cost approximate Boolean function, whose behavior deviates from a

specified exact Boolean function in a well-constrained manner. It is established

that the ALS problem un-constrained by the frequency of errors is isomorphic

to a Boolean relation (BR) minimization problem, and hence can be efficiently

solved by existing BR minimizers. An efficient heuristic is further developed

which iteratively refines the magnitude-constrained solution to arrive at a two-

level representation also satisfying error frequency constraints. To extend the

two-level solution into an approach for multi-level approximate logic synthe-

sis (MALS), Boolean network simplifications allowed by external don’t cares

(EXDCs) are used. The key contribution is in finding non-trivial EXDCs that

viii

can maximally approach the external BR and, when applied to the Boolean

network, solve the MALS problem constrained by magnitude only. The algo-

rithm then ensures compliance to error frequency constraints by recovering the

correct outputs on the sought number of error-producing inputs while aiming

to minimize the network cost increase.

Experiments have demonstrated the effectiveness of the proposed tech-

niques in deriving approximate circuits. The approximate adders can save up

to 60% energy compared to exact adders for a reasonable accuracy. When used

in larger systems implementing image-processing algorithms, energy savings of

40% are possible. The logic synthesis approaches generally can produce ap-

proximate Boolean functions or networks with complexity reductions ranging

from 30% to 50% under small error constraints.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Approximate Computing . 2

1.2 Dissertation Overview . 5

1.2.1 Approximate Arithmetic 5

1.2.2 Approximate Logic Synthesis 8

1.3 Dissertation Outline . 12

Chapter 2. Modeling & Synthesis of Approximate Arithmetic
Units 13

2.1 Timing-Starved Addition: Properties & Optimality 15

2.1.1 Timing-Starved Adder Model 16

2.1.2 Error Frequency-Magnitude Trade-off 18

2.1.3 Optimal Approximate Addition under the PSNR Metric 22

2.2 Synthesis of Conditional Bounding Logic 26

2.2.1 Conditional Bounding Logic Formalization 27

2.2.2 Bounding Logic Synthesis 31

2.3 Extension to Approximate Multiplication 36

2.4 Experimental Results . 37

2.5 Summary . 48

2.6 Appendix: Proof of Fixed Internal Carry 48

x

Chapter 3. Two-level Approximate Logic Synthesis 52

3.1 ALS Constrained by Error Magnitude Only 53

3.1.1 Isomorphism between Frequency-Unconstrained ALS
and Boolean Relations 53

3.1.2 Boolean Relation Solvers 56

3.2 Frequency-Constrained ALS Algorithm 58

3.2.1 Mapping to Min-Cost Increase Problem 58

3.2.2 Formalization of the Frequency-Constrained ALS Algo-
rithm . 59

3.2.3 Function Updates and Cost Calculation 64

3.3 Experimental Results . 74

3.4 Summary . 82

Chapter 4. Multi-level Approximate Logic Synthesis 83

4.1 MALS Formulation . 84

4.2 MALS under Error Magnitude and Frequency Constraints . . . 86

4.2.1 Extracting Lower and Upper Bounds 88

4.2.2 Recovering Magnitude Conflicts 93

4.2.3 Resolving Frequency Violations 99

4.3 Experimental Results . 102

4.4 Summary . 108

Chapter 5. Conclusions 110

5.1 Limitations of the Current Work 110

5.2 Future Work . 111

Bibliography 114

Vita 127

xi

List of Tables

2.1 Row-based function changes and distances for 2-bit CUB logic. 32

2.2 16-bit CLA with h = 9 and varying LSB logic. 42

3.1 Example of DIFF minterms (shaded). 61

3.2 Example of DIFF groups. 64

3.3 Example of DIFF primes. 65

4.1 Boolean relation . 90

4.2 Projections of BR on yi . 90

4.3 MISFR and corresponding O-EXDC 91

4.4 Boolean relation, C-EXDC, and O-EXDC 93

4.5 Error magnitude recovery example 96

4.6 Error frequency recovery example 102

4.7 Circuits used for MALS algorithm 103

xii

List of Figures

2.1 Timing-starved adder model (TSAM) 16

2.2 Error pattern waveforms. 19

2.3 Timing-starved adder with fixed internal carries. 20

2.4 Error frequency vs. maximum error magnitude. 21

2.5 Adders A1 and A2 with locations m and m+ s and magnitudes
2m and 2m+s of maximum errors. 23

2.6 Hierarchical approach for partitioning of LSB logic and recur-
sively applying CB synthesis to each segment. 35

2.7 Synthesized inexact solutions for h = 2 CUB block. 37

2.8 Inexact CUB synthesized hierarchically for 5-bit CUB block
(h = 5). 37

2.9 Dithering approximate adder. 38

2.10 Quality-energy tradeoffs for different 16-bit CLAs. 40

2.11 Quality-energy of 16-bit AFIC adders with h = 9. 41

2.12 Approximate adders in image processing applications. 43

2.13 IDCT quality and energy of a truncated adder (a), and different
dithering schemes (b-d). 44

2.14 Approximate Dadda multipliers with AFIC-CB adder as the
last two-operand addition. 47

2.15 Analysis of possible error patterns using TSAM. 49

3.1 Synthesized 2-bit adder variants. 74

3.2 Effectiveness of GALS for 6-bit adders with a magnitude con-
straint of M = 1. 75

3.3 Synthesis results for 8-bit adders by GALS. 76

3.4 Synthesis results for 10-bit adders by GALS. 77

3.5 Comparison of GALS and Fast-GALS algorithms. 78

3.6 8-bit adders under different error directions by GALS. 80

3.7 Synthesis results for 8-bit truncated multipliers. 81

xiii

4.1 Networks simplified by C-EXDC and RA-EXDC 105

4.2 Logic cone of sum bit 4 in an 8-bit RCA as it changes over
algorithm iterations . 106

4.3 Error magnitude and frequency constrained solutions for 16-bit
adders . 107

4.4 Error magnitude and frequency constrained solutions for 32-bit
ripple carry adder . 107

4.5 Error magnitude and frequency constrained solutions for 8-bit
multipliers . 108

xiv

Chapter 1

Introduction

The explosive growth of portable and wearable computing devices, such

as smart phones, tablets, smart watches, and many other personal multi-media

or communication devices all demand a long battery life while support increas-

ingly complex functionalities. At the same time, battery technology develop-

ment falls far behind the growth of the power consumptions in VLSI systems.

Minimizing power consumption has therefore become the major concern in the

design of VLSI systems.

The power consumption of VLSI circuits can be split into static and

dynamic components, where the former is primarily driven by leakage currents,

which relates to the area and density of the chip, while the latter is a function

of the circuit’s switching activity. Importantly, the supply voltage level is a

primary contributing factor for both static and dynamic power.

There have been many research efforts over the years to minimize VLSI

power consumption, e.g., scaling supply voltages [1, 2], reducing unnecessary

circuit activity through clock-gating and power-gating [3–5], minimizing chip

area through synthesis optimizations [6], or scaling down transistor sizes and

developing novel power-efficient transistors [7, 8].

1

All of these conventional low power approaches are based on guaran-

teeing the correct functionality of a chip. Importantly, however, in many

applications 100% correct functionality is not necessary, and applications that

naturally tolerate errors do not necessarily need high accuracy. For exam-

ple, results of data mining and machine learning algorithms are intrinsically

in probabilistic form and hence can tolerate a certain level of inaccuracies.

Similarly, audio or video processing systems tolerate errors due to the insen-

sitivities of human perception to small or high frequency variations. Further-

more, digital signal processing systems naturally have noise floors due to finite

precision and necessary quantization in any computing system. This provides

an additional design dimension to lower VLSI power consumption: trading

off computation accuracy for improved power efficiency. The key challenge

lies in how to best take advantage of small allowed errors in order to achieve

significant power reductions.

1.1 Approximate Computing

Many recent approaches have studied the possibility of inaccurate or

approximate computing at different levels ranging from softwares [9], algo-

rithms [10, 11] and architectures [12–17] to the logic or transistor levels [18–

20].

At the software level, a novel approximate programming model was

proposed in [9], where programmers are granted the flexibilities to specify ap-

proximate type variables. Systems can automatically map these approximate

2

types to customized low-power approximate hardware components, e.g., low

power approximate computation units or approximate storage elements that

operate under ultra low supply voltage. The proposed model guarantees the

isolation between the approximate computing and exact computing via static

type checking mechanisms.

At the algorithm level, in [10], algorithms and systems are designed or

transformed based on the idea of “incremental refinement,” where less impor-

tant computing steps or iterations can be discarded for energy improvement

while maintaining an acceptable quality level. Similar techniques are also used

in [11]. By taking advantage of DCT algorithm properties, some unnecessary

or less contributing steps are skipped.

At the architectures level, in [12], a novel ISA was proposed to support

approximate programming, which exposes hardware flexibilities for energy sav-

ings at the cost of accuracy losses to the programmer. A dual-voltage micro-

architecture called Truffle is also proposed for demonstrating the effectiveness

of the new ISA. In [13], a novel approximate vector processor ISA and micro-

architecture named QUORA are proposed. This vector processor contains 289

processing elements, which are divided into three categories: approximate,

mixed-accuracy, and completely accurate elements. Depending on the user-

specified accuracy level, operations are decomposed and dispatched to appro-

priate processing units to meet an overall computing accuracy while reducing

the energy consumption. In [14], a fuzzy instruction memoization technique is

proposed in the context of multimedia floating-point computation. Instruction

3

memoization is a technique to memorize each historical input-output pair and

hence saves future re-computations if the same input arises. Taking advan-

tage of the error-tolerant characteristics of multimedia processing applications,

the authors associate similar inputs to the same output to further reduce the

energy consumption.

In the domain of custom architectures for signal processing applications,

the work in [15] employs an error-correction scheme. The system consists of

a main computing block running at a voltage lower than the critical level

and a much simpler error-correcting block running at a higher voltage, where

the latter block selectively corrects errors in order to guarantee an overall

acceptable output quality. In [16], low energy consumption is achieved via

an automatic adaptive precision control mechanism on the arithmetic units.

Finally, in [17], the control and data flow graph of operations in an image

processing application is re-ordered during hardware synthesis. With this,

input patterns that lead to long carry propagations in adders are significantly

reduced, while those patterns that still require long chains are postponed to

the last computation stage in which a longer delay is budgeted via re-timing

and re-scheduling techniques. The overall energy reduction comes from an

over-scaled supply voltage driving the entire system.

At the logic level, a general scheme, which is by redesigning the logic

to reduce complexity and allow for voltage scaling, has been employed for

deriving approximate logic units [18, 19, 21–26]. Finally, at the transistor

level, optimizations of approximate full adder cells are proposed in [20]. With

4

reduced area complexity, those approximate full adder cells are used to build

low-power multi-bit approximate adder designs.

1.2 Dissertation Overview

This dissertation presents two research threads for deriving approxi-

mate digital circuits at the logic level. The first thread addresses the modeling

and synthesis of elementary arithmetic blocks. The second thread discusses

systematic approaches to automatically synthesizing approximate digital cir-

cuits compliant to properly specified error constraints. The following subsec-

tions give brief introductions on these two research threads, including compar-

isons to related work.

1.2.1 Approximate Arithmetic

Arithmetic units, i.e., adders and multipliers, are the most fundamental

building blocks for all computing. Furthermore, such blocks often consume

the majority of energy in a circuit. As such, improving energy efficiency for

arithmetic blocks is crucial in low-power approximate computing. Adders

thereby lie at the heart of all computer arithmetic. Almost all arithmetic

blocks are built out of basic adders, e.g., sequential multipliers consist of an

adder and a shifter, while modern tree multipliers require adders for both

the partial product matrix reduction as well as the last stage two-operand

summation. Therefore, this dissertation primarily investigates the modeling

and synthesis of approximate adders [25], and will also demonstrate application

5

of such approximate adders to the design of approximate multipliers.

It is known that scaling supply voltages is one of the most effective

approaches for lowering the energy consumption of VLSI circuits. This ap-

proach, however, increases gate delays and may cause timing violations or

timing starvation of the circuits. The approximate adder research starts by

studying conventional exact adders operating under timing violations, where

the assumption is that a reduced timing budget is due to the over-scaling of

supply voltages. In adders, the critical path is defined by the carry propaga-

tion chain. As such, errors in a timing-starved adder are due to the failure of

carry propagations. In adders under starvation, some output sum-bits become

timing-inaccessible for a primary carry-in. The typical carry chain length is,

however, much smaller than the maximum one. In fact, the likelihood of a

long carry-chain is quite small. For an N -bit adder, the expected worst-case

carry length is close to logN [27–29], and with extremely high probability is

less than logN + 12 [22]. The lowest likelihood of errors is thus ensured even

under large timing starvation if the sum-bits are each allowed to have their

maximum possible carry-chain. This statistical feature has been employed in

designing approximate adders. The work in [30] proposes approximate adders

that are designed to have simplified logic structures, where the carry-chains

have been significantly reduced. Though with a low probability of producing

erroneous results, possible errors can have very large magnitude. A similar

concept is also used in deriving fast but inaccurate speculative adders [22]. In

addition to the speculative adders, the authors further construct a reliable ver-

6

sion of such adders that can detect and correct errors when they occur. Due to

the low probability of error occurrence, overhead for error correction is small.

There are other related efforts for approximate adder designs as well. In [24],

an accuracy configurable pipelined approximate adder is proposed in which

the accuracy of the result is configurable at runtime. The number of pipeline

stages can thereby be configured to tradeoff accuracy versus performance or

energy. When granted the full number of pipeline stages, the proposed ap-

proximate adder can produce error-free results. In [23], a carry-prediction

mechanism is employed to improve the bit error rate of the proposed approx-

imate adder, which is also equipped with dedicated logic blocks to reduce the

magnitude of possible errors. In [18], various supply voltage levels are applied

to an overclocked ripple carry adder, where overall errors are minimized by

optimally assigning candidate voltage levels to the logic gates while satisfy-

ing an overall energy constraint. In [19, 21], approximate adders are designed

with bounded error magnitude at the cost of area overhead. However, all of

the above approximate adders were designed in an ad-hoc manner. Before the

time of this dissertation, there was no formal answer to the question: given a

fixed amount of timing starvation, what is the optimal design strategy for ap-

proximate adders, specifically, in the context of signal processing applications?

This dissertation develops a formal analysis for designing such energy-optimal

timing-starved approximate adders.

The following contributions are made in the modeling and synthesis of

optimal approximate adders: (1) a formal model to identify a fundamental

7

error frequency-magnitude tradeoff and to prove that under a quadratic er-

ror measure in signal-processing applications, limiting error magnitude rather

than error frequency is the energy-optimal addition strategy; (2) a timing-

starvation model demonstrating that an optimal approximate adder reduces

carry chains for a large fraction of sub-bits to a length significantly below what

is allowed by the timing budget using an aligned, fixed internal-carry (AFIC)

structure for higher significance bits; (3) a formal analysis concluding that

a conditional bounding (CB) logic is the optimal structure for realization of

lower significance bits in conjunction with an AFIC adder for higher signifi-

cance ones; (4) a set of models and algorithms to efficiently find Pareto-optimal

realizations of inexact CB logic; and (5) a dithering approximate adder that

mixes under- and overestimating CB logic to produce a reduced-variance zero-

centered error distribution. Finally, the application of such adders to various

design examples and as building blocks for approximate multiplier designs are

demonstrated.

1.2.2 Approximate Logic Synthesis

Approximate logic synthesis (ALS) seeks to find inexact realizations of

Boolean functionality or Boolean networks result in logic implementations of

reduced complexity, smaller area, delay, and energy. ALS is accomplished by

modifying some of the outputs of a function’s truth table or using don’t cares

(DC) to simplify a Boolean network, all while ensuring that the produced error

is within given constraints. ALS is driven by the need to automatically derive

8

approximate circuits for different functionalities. Designing approximate cir-

cuits in an ad-hoc manner is not a viable option as there exists a large design

space with trade-offs between acceptable accuracy and energy, where accept-

able errors may vary from application to application and function to function.

Importantly, depending on the application, error tolerance is primarily a func-

tion of either the frequency of errors, the magnitude of errors, or both. For

example, in applications that can not directly accept erroneous results, the

frequency of triggering correction mechanisms determines ultimate overhead.

By contrast, in image and video processing applications, if the produced pixel

values have small error magnitudes, a human will not be able to distinguish

such subtle changes. For a high-quality Peak Signal-to-Noise Ratio (PSNR)

value of 50dB at 8-bit pixel depth, this can, for example, be translated into a

frequency constraint of 7% for error magnitudes smaller than 3, or up to 65%

errors if pixel values are allowed to have error magnitudes of no more than 1.

Thus, overall, there is a need for rigorous automation to perform approximate

logic synthesis (ALS) under both types of constraints.

Existing ALS approaches thus far have focused on single error metrics

only. A two-level approximate logic synthesis algorithm was introduced in [31].

In that work, the objective was to synthesize a minimized circuit under con-

strained error frequency. The algorithm did not consider constraints on error

magnitude. Moreover, it suffers from high runtime complexity, especially, at

large error frequencies. By contrast, in [25] and [32], absolute and relative error

magnitude constraints were set without limiting error frequency. Both tech-

9

niques are built upon an unmodified conventional logic synthesis flow, which

is not as efficient as integrating support for approximation into the logic syn-

thesis engine directly. In [33, 34], the authors consider both error frequency

and relative error metrics. However, distinct solutions are provided and the

two constraints are never explored jointly. Furthermore, due to the nature

of the proposed pattern-driven approach, the optimization space is restricted

to only a small subset of inputs. In contrast, this research aims to address

general ALS problems under arbitrary and simultaneous error magnitude and

frequency constraints.

First, a two-level approximate logic synthesis problem is addressed,

where the goal is to derive minimum-cost approximate Boolean functions in

sum-of-product (SOP) form. An efficient algorithm is developed, which rigor-

ously synthesizes a minimum literal-cost cover of a Boolean function that is

allowed to deviate from an exact Boolean function in a constrained manner.

This work adopts a two-phase approach. The first phase solves the problem

that is constrained by magnitude of error only. In the second phase, this fre-

quency unconstrained problem is iteratively refined to arrive at a solution that

also satisfies the original error frequency constraint.

Two major contributions are made in solving the two-level ALS prob-

lem. The first contribution is the realization that the approximate synthe-

sis problem un-constrained by the frequency of errors is isomorphic with the

problem of minimizing a Boolean relation (BR), which is a generalization of

a Boolean function. The error magnitude constraints can be formulated as

10

constraints on the possible values of Boolean function outputs and thus are

equivalent to Boolean relations. This mapping allows to exploiting recently

developed fast algorithms for BR problems to solve the error magnitude-only

constrained ALS problem.

The second contribution is an efficient heuristic algorithm for itera-

tively refining the magnitude-constrained solution to arrive at a solution also

satisfying the error frequency constraint. The algorithm (a) finds the optimal

set of function minterms on which the exact outputs must be enforced, and

(b) systematically corrects, in a greedy fashion, the erroneous outputs of the

BR solution that lead to the smallest cost increase until the error frequency

constraint is met.

Subsequently, the more comprehensive problem of multi-level approxi-

mate logic synthesis (MALS) is addressed. Although sharing a similar problem

formulation as in two-level ALS, MALS assumes the existence of an opti-

mized exact Boolean network, where the goal is to derive approximate net-

works of minimum gate cost whose logic function is within specified error

deviations. Network simplifications allowed by external don’t cares (EXDCs)

are employed. The key contribution is in finding non-trivial EXDCs that can

maximally approach the external BR. Error frequency-unconstrained MALS

is therefore solved by applying the EXDCs onto the exact Boolean network.

The algorithm then ensures compliance to error frequency constraints by re-

covering the correct outputs on the sought number of error-producing inputs

while aiming to minimize the network cost increase.

11

1.3 Dissertation Outline

This rest of the dissertation is organized as follows: Chapter 2 discusses

details of modeling and synthesis of approximate arithmetic blocks, Chapter 3

addresses the two-level ALS problem while Chapter 4 discusses the MALS

problem. Chapter 5 concludes this dissertation.

12

Chapter 2

Modeling & Synthesis of Approximate

Arithmetic Units

This chapter 1 addresses the modeling and synthesis of approximate

arithmetic blocks. The primarily emphasis is on approximate adders, since

many other arithmetic blocks, such as multipliers, are built on them. A dis-

cussion of how to apply such adders to the design of approximate multipliers

is included at the end of the chapter.

One key question is how to balance error probability and error mag-

nitude in the design of approximate adders. Maximally reducing error prob-

ability for each sum-bit minimizes overall error frequency. Yet, in many sig-

nal processing applications the relevant metric of approximation quality is a

quadratic error measure, e.g., SNR/PSNR, that involves error magnitude as

well as frequency. As is shown in Section 2.1.2, due to possible error patterns,

there is a fundamental trade-off between error frequency and error magnitude

in a timing-starved adder. Different solutions on a frequency-magnitude trade-

off curve are generated by different arrangements of shortened carry segments,

1This Chapter is based on [25]. In the original publication, conceptual ideas were dis-
cussed with co-authors Michael Orshansky and Andreas Gerstlauer. Ku He provided the
IDCT/filter simulation infrastructures.

13

where the PSNR-optimal choice also depends on the statistics of operands.

This drives the first key contribution of this work: a formal proof that for sig-

nal processing applications with quadratic error measures and assuming a uni-

form distribution of operands, reducing bit-wise error frequency is sub-optimal

and a quality-optimal approximate addition is achieved by limiting maximum

error magnitude while accepting a larger error frequency. This is realized by

reducing carry chains significantly below what is allowed by the timing budget

for a large fraction of sum-bits, using an aligned, fixed internal-carry structure

for higher significance bits. Crucially, such a structure also allows for maximal

sharing of logic across all aligned carry segments, thus resulting in an area-

and energy-optimal design. To enable formal analysis and derive these results,

a model of timing-starved addition is introduced, which allows to analyzing

the error patterns and their frequency. The model is general and applies to

ripple-carry as well as prefix/tree-type adders.

It is further shown that while maximum error is minimized by an

aligned fixed internal carry adder for higher significance bits, it is crucial to

further minimize average error. (In other words, just truncating the adder

is a bad idea). This can be achieved by designing the least significant bits

(LSBs) logic to produce an intentionally incorrect result that compensates for

the error due to timing starvation. Logic is introduced that generates LSBs

that saturate their output when an error is generated in the most significant

bits (MSBs), i.e., conditionally. The key insight is that energy cost of such

conditional bounding (CB) logic can be substantially reduced by realizing its

14

logically inexact version. The inexact CB logic synthesis problem is formalized

and the existence of a rich space of Pareto-optimal alternatives with different

area/energy-error behavior is demonstrated. Note that while other instances

of bounding approximate addition have been reported, e.g., [21], [19], they are

introduced heuristically without the proof of optimality or formal synthesis

methods. Finally, it is demonstrated that both under- and overestimating ap-

proximate adders are possible. Further, several implementations of dithering

approximate adders that mix under- and overestimating behavior to produce a

zero-centered error distribution are introduced. The effectiveness of a dithering

adder in reducing accumulation errors in consecutive additions by exploiting

error averaging is demonstrated.

Synthesized approximate adders with energy up to 60% smaller than

that of a conventional timing-starved adder are observed, where a 30% reduc-

tion is due to the superior synthesis of inexact CB logic. When used in a

larger system implementing an image-processing algorithm, energy savings of

40% are possible.

2.1 Timing-Starved Addition: Properties & Optimality

This section develops a timing-starved adder model as a tool for an-

alyzing the key features of approximate addition. It is used to demonstrate

a fundamental trade-off between error frequency and error magnitude in a

timing-starved adder. It is shown that for signal processing applications in

which a quadratic error measure is used, reducing bit-wise error frequency is

15

N

(a) Full-budgeted adder

N

k h

(b) Timing-starved RCA

N

(c) Timing-starved CLA

Figure 2.1: Timing-starved adder model (TSAM)

sub-optimal and limiting maximum error magnitude is paramount.

2.1.1 Timing-Starved Adder Model

In order to formally study the error frequency and magnitude patterns

in approximate addition, a timing-starved adder model is introduced (TSAM)

as defined in Fig. 2.1. The model can represent a variety of actual adder

implementations, including ripple carry and tree adders. For ease of presen-

tation, the ripple carry (RCA) adder is considered first. In the TSAM model,

the top-level blocks represent sum bits, the horizontal blocks represent logic

to compute each sum bit Si, and the rightmost point of each such segment

defines the location of the farthest accessible internal carry under a given tim-

ing budget. Under a full timing budget, (Fig. 2.1(a)), all the sum-bits have

access to the correct carry-in (= 0) at bit 0. Under a reduced timing budget

(Fig. 2.1(b)) equivalent to k < N bits, some sum-bits do not have enough time

16

to be impacted by (do not “have access” to) the correct zero-bit carry-in. The

actual accessible carry, given by the shifted rightmost point of each segment,

depends on the value left on the carry node by the previous computation cycle

and is treated as unknown. This unknownness of the carry in a timing-starved

adder are represented by a diamond, see Fig. 2.1(b). Note that if Fig. 2.1 is

used to model more complex adder structures, e.g., carry look ahead adders

(CLAs) or prefix types, the segments will not be regular due to differences in

paths for each bit. The carry will propagate to higher significance bits via

carry-look-ahead bypass logic, whereas less significant bits may still need a

regular propagation path. This shifts the adder critical path from the MSB

to LSBs. Thus, when timing starvation occurs, the MSBs may, surprisingly,

have an accessible internal carry that is further than even its right neighbor

bits. This is illustrated in Fig. 2.1(c) for the example of a CLA.

The model allows studying the behavior of error frequency and mag-

nitude with onset of timing starvation depending on the pattern of access of

individual sum-bits to internal carries. Specifically, it is shown that depend-

ing on an arrangement of carry segments, a trade-off curve of maximum error

magnitude and error frequency exists. The minimum error frequency solu-

tion is achieved by minimizing bit-wise error probabilities. Because of the low

probabilistic likelihood of long carry chains, it is concluded that to lower the

bit-wise error frequency, the longest possible propagation chain needs to be

allocated for each bit position under the given timing budget. This is rep-

resented by an implementation that mimics the models in Fig. 2.1(b) and

17

Fig. 2.1(c). While such behavior can be achieved by timing starvation directly

in a simple ripple-carry adder, concerns about metastability or timing-closure

may require breaking up the carry chain into over-lapping independent carry

blocks. Furthermore, in tree adders with non-uniform default segment lengths,

an independent implementation of identical blocks allows for capturing the

maximum possible carry length in all sum bits. Several such implementations

have been reported in [22] and [30]. Intriguingly, it is shown below that this

strategy is sub-optimal for many applications because of the nature of the

trade-off between error frequency and maximum magnitude of error under a

quadratic quality measure. Furthermore, implementations with independent

carry blocks carry a larger area and hence energy overhead than what can be

optimally achieved.

2.1.2 Error Frequency-Magnitude Trade-off

The trade-off between error frequency and maximum error magnitude

is caused by patterns of possible errors. For a timing budget below k bits

(see Fig. 2.1), any bit up to the MSB bit can be false. Thus, the largest

possible error is 2N−1. However, the maximum error is reduced if the false bit

is followed by a string of false bits. Thus, surprisingly, forcing a set of bits

to be false reduces the maximum error, and, if this is done for every pattern,

the maximum possible error is reduced. Below, it is shown how to achieve this

effect and that its flip-side is the increased frequency of errors.

Error patterns are represented by their F and T bit positions, which

18

N

T

F (1)

T

F (2)

Figure 2.2: Error pattern waveforms.

indicate whether a bit is incorrect (false) or correct (true), respectively. Bit

sequences are given in the form of regular expressions, where ‘∗’ indicates

consecutive repetitions. Graphically, error patterns can be represented as ar-

bitrary waveforms of correct and incorrect bits (see Fig. 2.2). It can be shown

that a timing-starved adder can produce an N -bit output in which any pat-

tern of F ∗ and T ∗ is possible. Importantly, the maximum error magnitude of

an adder is defined by the location of the first left-most possible occurrence

of an F ∗ pattern; thus, the location of the first possible pair of F ∗T ∗ bounds

the maximum error magnitude of an adder. This is called the FT transition.

Furthermore, an F ∗ pattern with a bitwidth of m, with a right-most bit in the

pattern rooted at bit position r, can result in errors with only two magnitudes:

2m+r − 1 or 2r. In this case, whether the error pattern leads to a large or a

small error depends both on the current adder inputs and the computational

history for the internal carries. The key to the adder analysis is the realization

that if logically all the internal carries are fixed, conditions under which F ∗

would result in a large error (of magnitude 2m+r − 1) cannot occur, i.e., F ∗

can only generate small errors with a magnitude of 2r (See Section 2.6 for

19

N

k h

(a) Hardwired to zero (FIC-TS)

N

k h

(b) Aligned carries (AFIC-TS)

Figure 2.3: Timing-starved adder with fixed internal carries.

details). Notice that internal carries can be fixed to either 0 or 1, leading to

either lower- or upper-bounding of the result. (In what follows, it is assumed

for the time being that the carries are fixed at 0). Such an adder is termed a

fixed internal-carry timing-starved adder (FIC-TS), Fig. 2.3(a).

To reduce the maximum error magnitude, it is desirable to shift the FT

transition to a lower bit position. In a FIC-TS adder, the FT transition can

occur in the highest bit position and the maximum error is defined by the full

length of the adder with a magnitude of 2N−1. Since errors cannot be avoided

in general, the only way to shift the FT transition within an F ∗T ∗ pattern is

to convert as many T bits as possible to F .

A bit j is F when the carry into its segment is incorrect, e.g., the

correct carry is 1 while it is fixed to 0, and every downstream bit which is

20

2.5 3.0 3.5 4.0 4.5 5.0

0

10

20

30

40

50
45.3dB

48.4dB

39.1dB45.6dB
40.9dB

28.9dB31.0dB33.7dB

36.4dB

39.1dB

E
rr

o
r

F
re

q
u

e
n

c
y

 (
%

)

log (Max Error)

 Uniform Inputs

 Small Distance Inputs

45.2dB

42.2dB

Figure 2.4: Error frequency vs. maximum error magnitude.

part of this segment has its propagate condition as true. In order to shift

the FT transition by one bit, it is necessary to ensure that if bit j is F , bit

j − 1 also becomes F , which can be made true if the segment of bit j − 1 also

depends on the same incorrect carry-in. This can be achieved by aligning the

right edges and hence inputs of the segments for bit j and bit j − 1. Now

the correctness/incorrectness of bits j and j − 1 depends only on whether the

accurate carry-in is zero (in which case both j and j − 1 are T) or one (in

which case both j and j − 1 are F).

To shift the FT transition as far right as possible, the above conversion

is repeatedly applied starting at bit j = N . This results in aligning a set of

segments of downstream bits to that of bit N . Clearly, segments of lower bits

are shorter than k (the length of the Nth segment). Hence, it is impossible

21

to shift the FT transition beyond k. The segment length k is limited by the

available timing budget, i.e., by the degree of timing starvation. However,

the alignment of segments also means that the effective carry chains are re-

duced for the sum-bits below the MSB bit, which increases the probability of

individual and thus overall error. Fig. 2.4 shows the trade-off curve between

maximum error and frequency that results from this exploration for an increas-

ing number of aligned segments up to k = 7 in a 16-bit RCA. The exact values

of the Pareto-front depend on the statistics of adder operands, where results

are shown both for an independent, uniform distribution as well as for input

pairs that exhibit a small value distance across a uniformly distributed com-

mon magnitude range. Fig. 2.4 also shows the PSNR values that correspond

to each configuration, which are discussed in the next section.

2.1.3 Optimal Approximate Addition under the PSNR Metric

Minimizing frequency of possible errors is justified in applications rely-

ing on error-correction. For other applications, such as in signal processing, it

is the minimization of error magnitude that is more essential. In these appli-

cations, the quadratic error measure of adder error behavior, i.e., the quality

of produced output, is most relevant. The specific metrics commonly used

are the normalized mean squared error (MSE) and the related, peak signal-

to-noise ratio (PSNR). PSNR depends on both magnitude and frequency of

emerging errors. For adder operands that are uniformly distributed, i.e., where

all the input values are equally likely, PSNR is much more heavily influenced

22

ADD1

ADD2

m

m+s

s

Figure 2.5: Adders A1 and A2 with locations m and m + s and magnitudes
2m and 2m+s of maximum errors.

by the magnitude of the maximum error rather than error frequency. Con-

sider a trade-off between error magnitude and frequency at a fixed PSNR

value. For example, two adders A1 and A2 are compared, shown in Fig. 2.5,

that produce errors of maximum magnitude δ1max and δ2max with a frequency

of f1max and f2max , respectively. The quality loss in adder i is measured as

the sum of squared errors SSi =
∑N

j δ
2
ij

over N additions, which is pro-

portional to the inverse of PSNR. Given maximum error magnitudes and

their frequencies, quality losses can be bounded from below and above as

Nfimaxδ
2
imax

< SSi < Nδ2imax
by assuming, in the best and worst case, that

only maximum errors occur or that all additions lead to a maximum error, re-

spectively. To understand when an adder A1 has better quality than an adder

A2, it is necessary to establish the conditions under which SS1 < SS2. Using

the upper and lower bounds above for SS1 and SS2, respectively, this is the

case if SS1 < Nδ21max
< Nf2maxδ

2
2max

< SS2, i.e., f2max > (δ1max/δ2max)2.

In an adder, the maximum error magnitude is determined by the posi-

tion m of the most significant bit in which an error can occur, and is equal to

23

δmax = 2m. If two adders differ by s bits in their maximum error location (see

Fig. 2.5), the adder A1 with smaller error magnitude will have better quality

than the adder A2 with larger error magnitude if the frequency of maximum

errors in adder A2 is at least f2max > 1/4s. (Note that the inverse is not true,

i.e., f2max being below this bound does not necessarily imply that A2 is better

than A1.) Thus, a larger error magnitude requires an exponential reduction in

the frequency of such errors in order to remain below the quality budget set

by an adder with lower error magnitude. This is confirmed by Fig. 2.4, which

shows empirically collected PSNR values that correspond to each configura-

tion. For the uniform input distribution, the peak PSNR is indeed achieved

for a solution with the smallest maximum error magnitude. This is not the

case, however, for all distributions: if an adder processes input pairs that have

similar values (small distance) then the peak PSNR is achieved at a different

point.

The rest of the section is focused on the analysis of the uniformly dis-

tributed (equally likely) adder inputs. Based on the analysis of the trade-off

curve, the adder with the smallest maximum error is realized by aligning a set

of segments of downstream bits to that of bit N . The resulting approximate

adder structure is called an aligned fixed internal-carry timing-starved (AFIC-

TS) adder. Fig. 2.3(b) shows the AFIC-TS adder, where the FT transition is

shifted to the dotted boundary at bit position N − k. This reduces the maxi-

mum error magnitude by a factor of 1
2k−1 to make the maximum possible error

2N−k. Note that the structure for the higher significant bits (left of the dotted

24

boundary in Fig. 2.3(b)) is logically equivalent to, and can be implemented as,

a regular adder, e.g., a RCA or CLA, that spans the MSB segment length k

with a fixed carry in.

Using this analysis, the conditions under which an AFIC-TS adder has

better error behavior than a FIC-TS one can be determined. The adders differ

in their maximum error magnitudes by k−1 bit positions. Hence, an AFIC-TS

adder will be better if the maximum error frequency of the FIC-TS adder is

greater than 1/4k−1. The maximum error in an FIC-TS adder occurs if an

incorrect carry propagates into its MSB while all other output bits are correct

(T ∗). This is the case if a carry is generated in the k+1st bit from the leftmost

bit (N − k − 1) and all higher significant bits propagate (but not generate)

while all lower significant bits are correct. For uniform inputs, the probability

of a bit to propagate or generate is 1/2 and 1/4, respectively. Furthermore,

the probability for the lower significant bits to be correct is at least 1/2 [30].

Thus, the maximum error frequency of the FIC-TS adder is at least 1/2k+2.

In order to guarantee that the AFIC-TS adder is better, it is necessary to

ensure that 1/2k+2 ≥ 1/4k−1, i.e., k ≥ 4. Since k is a function of the available

timing, this condition holds in almost all practical cases where budgets of at

least 4 bit delays are allowed. Overall, the proof establishes that a AFIC-TS or

equivalent adder (such as ETA [21]) is guaranteed to be better than a FIC-TS

or equivalent adder (such as the approximation adder in [30]), regardless of

the logic for lower significance bits (on the right side of the dotted boundary).

The discussion thus far has focused on proofs of quality optimality.

25

Depending on the implementability of various adder structures, there may be

differences in logic complexity, area and hence energy. As such, a subset of

non-quality-optimal adders can have a better energy than the quality-optimal

structure and, thus, also may be Pareto-optimal in the quality-energy space.

However, importantly, since aligning of segments allows for sharing of their

logic, a maximally-aligned AFIC structure is not only optimal from a quality

perspective, but also minimizes logic complexity.

When designing such optimal AFIC adders, there are remaining choices

in regards to the logic of the lower significant bits and the value to which the

fixed carry-in into the higher significance segment. Fixing the carry-in to

zero or one will result in errors being always negative or positive, respectively.

Depending on the desired behavior, adders therefore can be synthesized that

over- or underestimate the result. This also opens the possibility of creating

structures that dither to produce a zero-centered and reduced-variance errors.

This choice also dictates the synthesis of the desired upper or lower bounding

logic in the lower significance bits, as will be discussed further in the following

sections.

2.2 Synthesis of Conditional Bounding Logic

After the maximum error is minimized with the aligned fixed internal

carry adder for higher significance bits, it is crucial to reduce average error.

This is achieved by using LSB logic to produce an intentionally incorrect result

to compensate the error due to timing starvation. Logic is introduced that

26

generates LSBs that bound its correct output when an error is generated in the

MSBs, i.e., conditionally. The energy cost of such conditional bounding (CB)

logic can be shown to be substantially reduced by realizing its logically inexact

version without substantial extra quality loss. In fact, there exists a range of

Pareto-optimal adder implementations in the quality-energy design space. In

the following, this design space is formulated and a heuristic is developed to

synthesize adder implementations for different application requirements and

target technologies.

The discussion is initially focused on the case when the timing budget

(set by the MSB segment length k) is sufficient for the correct timing evaluation

of the LSBs, i.e., h = N−k ≤ k. When h = N−k > k, the synthesis approach

will be able to trade off optimality for meeting a given timing budget. A

hierarchical strategy is supported that partitions the entire LSB logic into

several smaller segments that each individually meet their timing constraints.

This requires the segments, however, to be isolated from each other with no

carry propagation between them. As a result, this solution may come at a cost

of further degradation in achievable PSNR value.

2.2.1 Conditional Bounding Logic Formalization

As discussed, depending on the value of the fixed (controlled) carry into

the MSBs, an AFIC adder will always over- or underestimate the true result.

An important observation is that a quality-optimal adder implementation can

be achieved by designing matching, conditionally bounding LSB logic that

27

further minimizes remaining errors. Without loss of generality, first assume

the design of an underestimating adder with internal carries fixed to zero for

the following discussion. Let C be the carry out of the LSB and carry into the

MSB logic that is discarded. If C = 0, both MSB and LSB logic are correct. If

C = 1, the MSB logic is incorrect, but an unmodified LSB logic still produces

a correct result. This will always lead to the largest possible, negative error

of −2h. With these observations in mind, the optimal LSB logic should have

the following properties: (a) produce a correct result when C = 0, and (b)

produce the largest possible value (i.e., 11 . . . 1) when C = 1 to compensate

for the large negative error in the MSBs as much as possible. This behavior is

equivalent to the following Boolean equation for the desired LSB logic:

S
′

i = Si ∨ C, (2.1)

where Si is the true sum value for output i, C is the carry-out of the entire

LSB block, and S
′
i is the desired sum value for bit i.

As previously discussed, an alternative overall adder design possibility

is to fix the carry into the MSB logic to one. In this case, the LSB logic should

be reversed. It should produce a correct output when C = 1 and the smallest

possible value (i.e., 00 . . . 0) when C = 0, which is logically described as:

S
′

i = Si ∧ C (2.2)

This allows designing adders that are either over- or underestimating while

minimizing the overall quality loss.

28

A general concern is that in either of these cases, consistent over- or

under-estimation can result in errors that accumulate and grow when chaining

several successive additions, as is the case, for example, in many applications

that use accumulations. For applications that are sensitive to error accumula-

tion, a structure is introduced that alternates between both types of logic in

a dithering-style scheme in which statistical averaging reduces error variance

in accumulation. This solution may come at an increased area cost, but due

to the ability to synthesize reduced-area approximate bounding logic with the

opportunity to share logic between both types, the area penalty is typically

small. Furthermore, since at any given time only one block will be actively

switching, there is very little energy overhead. A dithering adder is realized

by a logic expression:

S
′

i = (D ∧ Si ∧ C) ∨ (D ∧ (Si ∨ C)), (2.3)

where D is an external control signal. This external signal allows dithering to

be controlled by the application, e.g., to exploit knowledge about input data

statistics or required error behavior. Furthermore, simple, general control

schemes can be designed that achieve averaging by driving the signal from a

regularly alternating clock or through a history register that records whether

a mismatch between hardwired and actual carry occurred and, if so, triggers

the opposite bounding logic in the next addition in order to compensate.

As an alternative to external dither control, implementations can be

considered in which the choice between over- and under-estimating, and hence

29

between upper or lower bounding LSB logic, is generated internally based on

other, regular adder inputs. Crucially, it can be observed that an approximate

AFIC adder will always produce a correct result iff the hardwired carry into

the MSB matches the carry-out that would be produced by a regular LSB

logic. Hence, if the LSB carry can be easily predicted from other inputs, and

if the choice between different MSB carries and corresponding LSB bounding

logic can be adapted accordingly, error frequency can be further minimized.

A low-overhead carry prediction can be performed based on adder in-

puts Ah−1 or Bh−1 at the partition boundary bit position h − 1. If both of

these inputs are zero or one, the carry-out of the LSBs will also be zero or

one, respectively, independent of any LSB-internal carry propagation. Hence,

dithering can be controlled via the exclusive-or of those two inputs. In all

unpredictable cases, the aim is to randomly alternate for statistical averaging.

For that, both cases can be combined and simply control the choice of MSB

carry and LSB logic based on the value of one of the two inputs. Thus, the

LSB logic expression for a h− 1-dithering adder can be written as:

S
′

i = (Ah−1 ∧ Si ∧ C) ∨ (Ah−1 ∧ (Si ∨ C)), (2.4)

where Ah−1 is the h− 1 bit of input A.

The logic defined in Eq. (2.1), Eq. (2.2) and Eqs. (2.3)/(2.4), is re-

ferred to as Conditional Upper Bounding (CUB), Conditional Lower Bound-

ing (CLB) and Conditional Dithered Bounding (CDB) logic, respectively. In

30

general, CB logic, where every sum output depends on the carry out of the

complete LSB block, is more complex than that of a correct adder. An impor-

tant part of the synthesis strategy is the idea that it is possible to implement

a logical approximation of S
′
i , given that ultimately the entire adder will still

produce errors even if the CB logic implements S
′
i exactly. By implementing

a logical (Boolean) approximation to S
′
i , significant area and energy reduction

with only slightly worse error behavior can be achieved. There will be a wide

range of possible approximations of S
′
i with different energy and quality values,

from which a Pareto-optimal set can be found.

2.2.2 Bounding Logic Synthesis

The ultimate good is a Pareto-optimal set of solutions in terms of

MSE/PSNR and energy. However, a direct search seeking optimal points in

this space appears intractable at the moment. Instead, a heuristic approach is

proposed that adopts a principle fundamental to logic synthesis: the number

of literals in the logical expression is a proxy for the complexity, and thus area

and energy (ignoring differences in switching activity), of the realization of a

logic function. Formally, the Pareto-optimal set is generated by the solution

to the following approximate logic synthesis problem:

min L(f
′
) s.t.4 (f

′
, f) ≤ 4target (2.5)

where L(f
′
) is the number of literals in function f

′
and4(f

′
, f) is the distance

between the two functions f
′

and f . Notice that setting the distance to zero,

31

Table 2.1: Row-based function changes and distances for 2-bit CUB logic.

Input
A1 B1 A0 B0

0 0 1 0
0 0 1 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 1 0 0
0 0 0 0

CUB
〈S′1S

′
0〉

01
10
11
11
10
11
11
00

D1

〈S′′1 S
′′
0 〉

00,10
01,11

10
10

01,11
10
10
01

D2

〈S′′1 S
′′
0 〉

11
00
01
01
00
01
01
10

4(f
′
, f) = 0, would make the problem equivalent to the traditional (exact)

logic minimization problem.

The problem above introduces a proxy distance metric in lieu of PSNR

allowing a more efficient implementation of the optimization problem. The

distance definition is closely coupled with the heuristic optimization to be

implemented. The algorithm acts directly on a specification of the Boolean

function in terms of the list of its ON-set/OFF-set minterms, i.e., on its truth

table.

Without loss of generality, the following discussion is based on CUB

logic synthesis using Eq. (2.1) as function f to approximate. Synthesis of

CLB and CDB logic is analogous and an identical algorithm can be applied.

Consider the truth table for the CUB logic S
′
i of a 2-bit adder in terms of input

operands Ai and Bi (Table 2.1). The distance measure needs to capture the

difference between the desired exact function and its approximation in a way

that captures the characteristics of the PSNR error metric. Assuming uniform

32

Algorithm 1: Inexact CUB synthesis

for #row flips r = 1 . . . rmax do1

for each row in each subset of rows of size r do2

for Dj = Dmin . . . Dmax do3

for each output 〈S ′i〉 and all 〈S ′′i 〉 = 〈S ′i〉 ±Dj do4

Replace 〈S ′i〉 by 〈S ′′i 〉;5

Run two-level Boolean minimization;6

Record min (literal, TD) pairs;7

input distributions, each row in the truth table is equally likely. Therefore, the

number of rows in which a change in function output is considered captures

the frequency of errors. For a given row, the decimal distance (D) is measured

as the decimal difference in the binary output values between the desired and

inexact CUB logic. By flipping output bits within rows, inexact outputs may

be produced with different decimal distances. Due to the quadratic nature of

PSNR, the total distance (TD) is the sum of squared decimal distances over

all rows in which bits have been changed (r):

TD =
r∑
j

D2
j , (2.6)

where Dj is the decimal distance due to a change in row j. This procedure

is illustrated in Table 2.1, which shows a partial truth table with decimal

distances D1 = 1 and D2 = 2 for each row.

Using the TD metric defined above, the optimization heuristic shown in

Algorithm 1 was implemented to find Pareto-optimal solutions in the literal-

33

TD space. It was empirically verified, as will be shown in the next section,

that the proposed proxy metrics provide good fidelity while allowing tractable

optimization. Solutions were synthesized using Design Compiler to find true

area and used behavioral simulation to extract PSNR values, creating a map-

ping between the literal-TD domain and the area-PSNR domain for a range

of functions.

It is possible to make the above algorithm more efficient by avoiding the

consideration of all possible Dj in each row. The improvement is based on the

conjecture that the Pareto set of total distance (TD) vs. number of literals (L)

solutions of the inexact functions is to be found among solutions produced by

only considering Dmin combinations for a given number of row changes (flips)

r. The conjecture can be justified by the following argument: (1) For any given

TD value at a fixed r, the minimum achievable L is a function of the number

of possible solutions to explore; (2) Due to the smaller number of possible flips

of a row for larger Dj, the number of solutions Num(Dj) decreases with an

increase in individual distances being considered, i.e., Num(Di) > Num(Dj)

for any i < j; (3) It follows that TD vs. L for a fixed r is monotonic and rising

with increasing distance Dj. Hence, the Pareto set is among modifications

formed by Dmin × Dmin . . . Dmin combinations and only these solutions need

to be explored. This conjecture is verified empirically, where experiments for

LSB adder logic of size 2 and 3 both confirmed the trend in (3).

Even with the described simplification, it is not feasible to use the

algorithm for more than about rmax = 8 row flips. Whether this is sufficient

34

depends on the number of rows in the truth table, which is exponential in

the width h of the LSB block. With rmax = 8, a sufficient range of Pareto

points for h ≤ 3 can be explored. To enable synthesis of larger adders, a

hierarchical optimization strategy is adopted that partitions the LSB block

into smaller segments that are synthesized and optimized independently and

separately (Fig. 2.6). Segments are isolated from each other and there is no

carry propagation between them, leading to sub-optimal approximations of

the desired logic. However, by recursively applying the same CB synthesis

approach to each segment with discarded output carry, the accrued errors are

kept bounded, and the results are considered to be acceptable. Also, as alluded

to earlier, the described hierarchical partitioning of the LSB logic can be used

to meet reduced LSB timing budgets. The hierarchical approach reduces the

runtime from O(N · 42N) to O(N) at the cost of reduced solution density. The

actual accuracy loss is limited: the gap is found to be no larger than 3dB in

the worst case.

Hierarchical exploration proceeds by first constructing the L vs. TD

Pareto fronts for LSB logic of bitwidth h = 1 . . . 3. To construct Pareto so-

S0S3 S2 S1

C3 C1

Si’=Si V C3

 (C1=0)

Sj’=Sj V C1

Figure 2.6: Hierarchical approach for partitioning of LSB logic and recursively
applying CB synthesis to each segment.

35

lutions for larger bitwidths, all possible concatenations of smaller adders are

explored and their different design points to find the best overall L vs. TD

solutions.

2.3 Extension to Approximate Multiplication

The previous approximate adders can be extended to approximate mul-

tipliers. In general, multipliers can be classified into two types: sequential and

combinational. Sequential multipliers are based on a sequence of shift-add

operations to achieve the multiplication, which is essentially an accumulation

structure. Therefore, the proposed dithering type adder can be immediately

employed. For modern tree type multipliers, e.g., Wallace or Dadda multipli-

ers, the reductions of partial product matrices are implemented by chaining

full adders in each reduction stage. As such, reductions are formed by ripple

carry adders, and, importantly, the last-stage summation is a conventional

two-operand addition. Since the number of partial product reduction stages

logarithmic in the multiplicand bitwidth and typically small, the majority

of the critical path still lies in the last stage addition, where the last-stage

adder can be replaced with the proposed approximate types. Note that for

most signal processing applications, multipliers are intrinsically designed with

a “truncation” feature due to the bitwidth augmentation after every multipli-

cation. Therefore, most multipliers are already “approximated” by performing

such truncations. Applying the proposed approximate adders on top of those

truncated multipliers can produce further energy reductions while maintaining

36

2 4 6 8 10 12 14

0

2

4

6

8
T
o
ta
l
D
is
ta
n
c
e
 (
T
D
)

Literals (L)

1

2

3

4

(a) TD vs. L

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

3.5

1
0
lo
g
(M
S
E
)

Area (normalized)

1

2

3
4

(b) Area vs. quality

Figure 2.7: Synthesized inexact solutions for h = 2 CUB block.

0.0 0.2 0.4 0.6 0.8 1.0
13

14

15

16

1
0
lo
g
(M
S
E
)

Area (normalized)

Figure 2.8: Inexact CUB synthesized hierarchically for 5-bit CUB block (h =
5).

a similar quality level. The relevant experiments are discussed in Section 2.4.

2.4 Experimental Results

First, the results of approximate LSBs block synthesis using the algo-

rithm are demonstrated with Espresso [35] as the internal two-level Boolean

minimization engine. Fig. 2.7(a) shows both the Pareto-optimal solutions and

selected other design points explored by proposed algorithm for a 2-bit LSB

37

AFIC

CLBCUB

MUX

A[N-1:h]

1-bit

Dither

Control

B[N-1:h] A[h-1:0] B[h-1:0]

S[N:h] S[h-1:0]

Figure 2.9: Dithering approximate adder.

block in the TD vs. L space. The Boolean expressions for each of those so-

lutions were synthesized with Synopsys Design Compiler [36] using the 45nm

FreePDK [37]. Quality was estimated via simulation of the LSB block for

10,000 random, uniformly distributed input samples. The final area and qual-

ity values are shown in Fig. 2.7(b). Overall, good fidelity was observed: the

points that are on the Pareto front in the TD vs. L space are also Pareto-

optimal in the quality-area space. Points at the extreme high and low ends of

the L/area range thereby correspond to exact and minimum-area realizations

of the desired CUB logic, respectively. Furthermore, Fig. 2.8 shows the set

of solutions for the approximate realization of a 5-bit LSB block produced by

the hierarchical synthesis approach. There is a wide range of trade-offs, with

some solutions having 1/5th of the area of the exact CUB logic at a moderate

quality loss.

As discussed previously, adders can be realized that combine over- and

38

underestimating behavior. Fig. 2.9 shows the conceptual design of the pro-

posed dithering approximate adder. Its bounding behavior is controlled by

an additional input signal, which determines both the carry into the MSB as

well as the matching choice between CLB and CUB logic for the LSBs. In

reality, the dithering LSBs can be synthesized as a combined CUB/CLB block

with logic sharing. Overall, the overhead for a dithering-capable structure is

low and its complexity remains well below that of a conventional adder. Note

again that the dithering selection can be externally or internally controlled,

either using more complex, adaptive schemes driven by the application or, sim-

ply, by a purely random signal, an alternating clock, based on carry-history

or as a function of other inputs. After logic synthesis, a 24-bit RCA-based

clock-dithering adder with h = 10 has a 34% area overhead compared to a

standalone, minimum-area AFIC-CUB design. For an internally controlled

h − 1-dithering adder, the area overhead compared to a plain CUB RCA is

around 30%. With increasing base complexity, this relative overhead reduces

to 11% and 7.8% for CLA and Kogge-Stone based designs, respectively.

Fig. 2.10 shows the achievable quality-energy tradeoffs of various 16-

bit approximate CLAs using an AFIC structure with LSB lengths h = 9

& h = 11 under varying minimum-area, optimal-tradeoff, exact CUB and

h − 1-dithering realizations of the LSB block. They are compared against

a conventional timing-starved CLA design. Energy reductions through VDD

scaling are assumed to be proportional to CV 2. For delay scaling, a curve-fitted

model of HSPICE-simulated gate delays at different VDD values is utilized.

39

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
30

35

40

45

50

55

60

65

h=11
ExactOpt.

P
S

N
R

 (
d

B
)

Energy (normalized)

 Dither

 CUB

 TS-CLA

Min.

h=9

Figure 2.10: Quality-energy tradeoffs for different 16-bit CLAs.

Energy of AFIC adders was estimated assuming a timing budget and VDD

value set by each nominal adder delay. Energy results are normalized to the

base energy of the unscaled, original full-width CLA. Quality was measured

by simulating adder results under scaled VDD for 10,000 random inputs.

Results show that the conventional timing-starved adder experiences a

sharp drop in quality once their timing budget is exceeded. For AFIC adders,

the base quality level as well as the timing budget is set by the LSB and

MSB widths h and N − h. Due to its ability for preemptively predicting the

correct error compensation behavior purely from current adder inputs, a h−1-

dithering scheme can in all cases significantly improve quality compared to its

non-dithered counterparts. However, the added complexity comes at the cost

of increased area and hence energy.

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

51

54

57

60

63

P
S

N
R

 (
d

B
)

Energy (normalized)

 CLA

 RCA

 CLA

 KS
Min.

Opt.

Exact

Dithering

CUB

Figure 2.11: Quality-energy of 16-bit AFIC adders with h = 9.

Fig. 2.11 compares quality and energy of RCA, CLA and Kogge-Stone

(KS) based designs of AFIC structures with h = 9, where energy is normalized

against the base energy of an unscaled, regular RCA. Overall, even more so

than the base adder structure, the partition boundary h or the timing budget,

the choice of logic in the LSBs has a large effect on the area of the design and

hence on the maximal achievable energy savings. Savings vary by 30% to 40%

depending on the LSB logic style. This confirms the significance of exploring

the CUB/CLB design space when designing families of approximate adders.

Table 2.2 summarizes results for a 16-bit AFIC CLA with h = 9 and

different non-dithering and dithering LSB realizations. For comparison, a

truncating adder with an empty LSB block is included. Results show that a

significant difference in achievable quality between different synthesized CUB

41

Table 2.2: 16-bit CLA with h = 9 and varying LSB logic.

PSNR Rel. Err. Rel. Err. Area VDD

LSB Type (dB) Full Small (µm2) (V) Energy

Original ∞ 0% 0% 413.9 1.00 100%

Truncated 38.9 1.1% 100% 128.1 0.83 21.3%

CUBmin 49.6 0.4% 23.5% 150.6 0.83 25.1%
CUBopt 51.2 0.4% 18.2% 204.6 0.83 34.1%

CUBexact 52.9 0.3% 0% 227.6 0.92 46.5%

h− 1min 57.2 0.2% 23.4% 185.8 0.83 30.8%
h− 1opt 58.6 0.2% 17.8% 232.4 0.83 38.7%
h− 1exact 61.9 0.2% 0% 264.7 0.97 60.2%

designs. Specifically, dithering adders improve PSNR considerably. Some CUB

designs show very poor relative error, which can be an important metric for

realistic DSP systems. Relative errors are shown for two different uniform

distributions of input with a full and a reduced range of magnitudes. For

inputs that are smaller than the partition boundary, the design of the LSB

logic has a large influence. In contrast to other realizations, an exact CUB

realization will be error-free for such inputs. Overall, depending on application

requirements, there exists a non-trivial tradeoff in finding a good compromise

between quality and energy, as realized by the optimal CUBopt instance for

the uniform input case.

42

(a) IDCT w/ AFIC-CUB (h = 8)
PSNR=34.57dB, Energy=0.67

(b) Filter w/ AFIC-CUB (h = 12)
PSNR=23.7dB, Energy=0.60

Figure 2.12: Approximate adders in image processing applications.

To demonstrate feasibility for practical scenarios, adder concepts were

applied to an IDCT image decompression and an image sharpening design,

where the latter realizes a high-pass filter as a 2D convolution operation in the

pixel domain. Fig. 2.12 shows the images and quality-energy tradeoffs under

scaled VDD when replacing a conventional 24-bit RCA in both designs with

the minimal-area AFIC-CUB structure. Results are compared to the original

IDCT and sharpening designs with a normalized energy of 1.0 and a PSNR of

44.6dB and 23.9dB, respectively.

43

(a) IDCT w/ Truncated Adder (h = 10)
PSNR=16.9dB, Energy=0.61

(b) Clock-dithering adder (h = 10)
PSNR=33.15dB, Energy=0.62

(c) History-dithering adder (h = 10)
PSNR=35.52dB, Energy=0.63

(d) h− 1-dithering adder (h = 10)
PSNR=36.92dB, Energy=0.62

Figure 2.13: IDCT quality and energy of a truncated adder (a), and different
dithering schemes (b-d).

While significant energy reductions can be achieved for a commonly

accepted image quality above 30dB in the IDCT, error accumulations in the

44

AFIC-CUB design lead to visual artifacts in the form of horizontal stripe

patterns. By contrast, application of various dithering schemes provides both

a much better PSNR as well as perceived quality. As shown in Fig. 2.13, by

increasing the partition boundary h and hence decreasing the timing budget,

this quality gain can be traded off for further energy savings. The designs are

compared against a traditional approach that works with reduced precision

(i.e., truncation) to achieve similar energy savings. Both from a PSNR and

subjective image quality standpoint, the h − 1-dithering scheme is superior

to truncation and any randomized external control. Dithering also leads

to a reduction in the variance of observed errors. For the IDCT, the error

distributions were measured. For an AFIC-CUB adder it has a mean of -

0.95 and a variance of 5.16. By contrast, the clock-dithering adder produces

errors with a mean of -0.1 and a variance of 0.94. Distribution of errors is

not a concern in the sharpening filter. Here, a simpler AFIC-CUB adder with

h = 12 already achieves similar results (Fig. 2.12(b)). In both cases, around

40% energy savings can be achieved while maintaining good image quality.

Two different approximate multipliers were examined with AFIC-CB

adders as their last-stage two-operand addition in Figure 2.14(a) and Fig-

ure 2.14(b). The CB logic is applied on top of a conventional truncated mul-

tiplier, which is introduced in both figures. Results are shown for both PSNR

and relative error metrics. Points on these curves are acquired for varying the

h values (h = 3, 5, 7 for 16-bit case; h = 3, 7, 11 for 24-bit case), where the left-

most point corresponds to the largest h value. Power*Delay was used as the

45

proxy to energy. From the figures, it is observe that the AFIC-CB structure

for the last-stage addition can save about 10% energy at a similar quality level

compared to a conventional truncated multiplier. When relaxing the quality

level further, an up to 30% energy saving is possible.

46

3.0 3.5 4.0 4.5 5.0

65

70

75

80

85

90

95

100

 PSNR

 Rel. Err.

Power*Delay

P
S

N
R

 (
d

B
)

0.0

0.2

0.4

0.6

0.8

1.0

h=3

h=3

h=5

h=7

Truncated

Multiplier

Truncated

Multiplier

 R
e

l.
 E

rr
.

(%
)

h=7

(a) 16-bit multiplier with h = 3, 5, 7

10 11 12 13 14 15 16 17

80

90

100

110

120

130

140

150

Truncated

Multiplier

 PSNR

 Rel. Err.

Power*Delay

P
S

N
R

 (
d

B
)

Truncated

Multiplier

0.00

0.02

0.04

0.06

0.08

0.10

h=3

h=3

h=7

h=7

h=11

 R
e

l.
 E

rr
.

(%
)

h=11

(b) 24-bit multiplier with h = 3, 7, 11

Figure 2.14: Approximate Dadda multipliers with AFIC-CB adder as the last
two-operand addition.

47

2.5 Summary

This chapter presents a theoretical approach for analysis and synthesis

of approximate adders. The approach is general and the existence of optimal

AFIC adder structures is formally proved in which higher significance bits

are implemented using regular, aligned carry additions. Within the space of

AFIC adders, it is further demonstrated that a rich set of design alternatives

at varying quality-energy tradeoffs can be synthesized. This includes variants

with overestimating, underestimating or dithering approximation behavior for

use within different classes of application requirements. The results show that

energy savings of up to 60% are possible at the individual adder level. Integrat-

ing the developed approximate adders into realistic image processing designs

allows more than 40% total energy savings while maintaining excellent image

quality.

2.6 Appendix: Proof of Fixed Internal Carry

The following presents an argument for the claim that if the internal

carries are logically fixed, conditions under which an F ∗ pattern would result

in a large error (2m+r−1) can not occur, i.e., F ∗ can only generate small errors

with a magnitude of 2r:

48

G/K P P P P P

j j-1 j-2 j-3 j-4 j-5 j-6

Carry j

Carry j-1

Carry j-2

Carry j-3

T F+ F- F-
T F- F+ F+

(0) (1) (1)

X

X

X

X

(a) Case 1

P P P P P

j j-1 j-2 j-3 j-4 j-5 j-6

Carry j

Carry j-1

Carry j-2

Carry j-3

T F- F- F-
T F+ F+ F+

(1) (1) (1)

P

X

X

X

(b) Case 2

Figure 2.15: Analysis of possible error patterns using TSAM.

1. Based on the sign of the error in each bit, two subcategories F+ and F−

of F can be distinguished depending on whether the incorrect value is 1

49

when the correct value is 0 or vice versa.

2. The F ∗+ and F ∗− sequences both produce the largest error magnitude

(2m+r − 1). By contrast, the F−F
∗
+ and F+F

∗
− sequences produce the

smallest error magnitude (2r). Those can be easily seen from their

weighted decimal expressions.

3. The conditions under which a timing starved adder produces a T or F

in a bit position can be clarified as follows. The location of the first T

to the left of a F ∗ sequence is the focus. Using the TFFF sequence as

an example (see Figure 2.15):

• There are only two ways to produce a T in bit j: (1) there is at

least one bit in the segment of bit j (except for the bit j itself) that

generates (G) or kills (K) a carry propagation out of or into the bit

(such as bit j − 1 in Fig. 2.15(a)), or (2) if all the bits within the

segment of bit j are set to propagate (P) their carries, the carry

into the whole segment must be correct (indicated by the tick mark

in the diamond of Fig. 2.15(b)).

• On the other hand, a F in bit j is only triggered when all bits in its

segment (except for bit j itself) propagate and the carry into the

segment is incorrect (such as bits j − 1, bit j − 2 and bit j − 3 in

Fig. 2.15(b)).

• Crucially, if an F in more than one bit is produced, then all the car-

ries into the corresponding segments (such as Carryj−1, Carryj−2,

50

Carryj−3) are guaranteed to have the same value.

4. The relationship between the F bits in an F ∗ sequence produced under

one of the two conditions outlined above is the focus. In case (1) (Fig.

2.15(a)), the leftmost F is produced in the G/K bit. All bits to the

immediate left of this bit position have to be T . In case (2) (Fig. 2.15(b))

the leftmost F is produced by a P bit. In both cases, all lower significant

F bits are produced by bits with a P condition. Importantly, ignoring

carries, all input patterns leading to a P condition (patterns 0 + 1 and

1+0) result in a 0 sum whereas both K and G conditions (0+0 and 1+1)

produce an output of 1. Therefore, if the carry into any such bit position

is incorrect, P and G/K bits will always produce errors of opposite sign.

It follows that in case (1), the leftmost F will have a different error sign

than all the other F bits whereas in case (2), all F bits have the same

error sign.

5. If all internal carries are fixed to an identical value, case (2) can no longer

occur. Hence, only case (1) can produce a TF transition, and the first

F of this F ∗ block must have an opposite sign than the rest of the F

bits in the sequence.

6. Thus, if all the internal carries are set to a fixed value (0 or 1), conditions

under which F ∗ would result in a large error (2m+r − 1) can not occur,

i.e., F ∗ could occur only in the form of a F−F
∗
+ or F+F

∗
− pattern and can

only generate small errors with a magnitude of 2r.

51

Chapter 3

Two-level Approximate Logic Synthesis

The previous chapter covered some preliminary logic synthesis tech-

niques when deriving the approximate CB logic. Those techniques, though

effective for CB logic synthesis, are suboptimal in general. In fact, the interest

is in a much broader question: how to automatically synthesize approximate

circuits once a certain error-tolerant specification is given? This chapter 1 ad-

dresses the problem of approximate logic synthesis (ALS) under arbitrary error

magnitude and error frequency constraints. A two-level logic minimization al-

gorithm is developed which rigorously synthesizes a minimum-cost cover of a

Boolean function that is allowed to deviate from an exact Boolean function

in a constrained manner. A two-phase approach is adopted to solve the min-

imization. The first phase solves the problem that is constrained only by the

magnitude of error. In the second phase, this frequency unconstrained problem

is iteratively refined to arrive at a solution that also satisfies the original er-

ror frequency constraint. Experiments on adders and multipliers demonstrate

literal count reductions of up to 60% under tight magnitude and frequency

constraints.

1This Chapter is based on the previous publication [38]. Conceptual ideas were discussed
with the co-authors Michael Orshansky and Andreas Gerstlauer.

52

3.1 ALS Constrained by Error Magnitude Only

This section discusses the approximate logic synthesis problem when

constraining the magnitude of allowed error only. Only the patterns of allowed

errors that the function may produce are considered, but not how often the

errors occur.

The first contribution is the realization that the approximate synthe-

sis problem un-constrained by the frequency of errors is isomorphic with the

Boolean relations problem.

3.1.1 Isomorphism between Frequency-Unconstrained ALS
and Boolean Relations

The most immediate domain of application of ALS is in synthesizing

approximate arithmetic blocks for error-tolerant computing algorithms and

applications. In applications that involve approximate arithmetic functions,

such as in the signal processing domain, it is typically important to satisfy

constraints on the magnitude of the possible error as well as the frequency of

such errors. Here, frequency is defined as the number of minterms on which

an error occurs as a fraction of the total number of minterms.

Constraining the magnitude of error is the most natural approach to

limiting the outputs of arithmetic circuits, since a clear notion of distance

is available for these functions. Consider a multi-output Boolean function

F : Bn → Bk that defines a combinational network of an arithmetic circuit,

e.g., an adder. Constraining the magnitude of possible errors is first considered.

53

The output of F is the result of binary arithmetic computation. The aim is to

synthesize its magnitude-constrained approximate version Fm, such that the

only constraint is that |F −Fm| ≤M . Here, | · | is the absolute value operator,

and thus the range of possible output values of the approximate function is

constrained to be no greater than M . Note an important implicit aspect of

the definition. The frequency-unconstrained function Fm will have an arbitrary

error frequency. Specifically, there is no implication that it has an error on

every input.

To explicitly account for the error frequency (rate) of an approximate

function, a modified notation is introduced and Fm,r is denoted as an approx-

imate version of F with exactly r minterms in error and with the constraint

on the magnitude of error (no greater than M). Let the error frequency con-

straint be R indicating that no more than R minterms are allowed to be in

error. With that, the full approximate logic synthesis problem is:

min L(Fm,r)

s.t. r ≤ R,

|F (x)− Fm,r(x)| ≤M ∀x ∈ Bn

(3.1)

where L(F) is the number of literals in a sum-of-products representation of

function F .

One possible strategy for solving the above problem is to start with

an exact function F and gradually introduce errors while controlling both the

frequency and magnitude of allowed errors.

54

However, the strategy to pursue in this chapter is based on a two-

phase solution. In the first phase, the frequency unconstrained problem is

solved. In the second phase, the unconstrained solution is iteratively refined

to arrive at the solution that satisfies the original error frequency constraint.

The frequency un-constrained problem is given by:

min L(Fm)

s.t. |F (x)− Fm(x)| ≤M ∀x ∈ Bn
(3.2)

where F and Fm are the exact and approximate functions, respectively.

The key observation is that the above ALS problem constrained only by

error magnitude is isomorphic with minimization of Boolean relations, which is

a known and extensively-studied problem in traditional synthesis. A Boolean

relation can be formally defined as follows [39]:

Definition 3.1.1. Boolean relation. A Boolean relation is a one-to-many,

multi-output Boolean mapping, R : Bn → Bk. A set of multi-output Boolean

functions, fi, each compatible with R, is associated with a relation. A Boolean

relation is specified by defining for each input x ∈ Bn a set of equivalent

outputs, Ix ⊆ Bk.

Thus, Boolean relations are a generalization of Boolean functions, where

each input corresponds to more than one output. An incompletely specified

logic function with don’t care is a special case of a single-output Boolean re-

lation.

55

To establish the equivalence of ALS with the Boolean relation problem,

it is observed that the constraint |F − Fm| ≤ M can be re-written minterm-

wise: for each minterm xi of function F , allow the value of Fm(xi) to take

values in the set F ∪ Ei, where Ei is the specified output error set for xi.

Thus, Ei represents the additional values that the function can take while

satisfying the error magnitude constraint. Now, each input corresponds to

more than one output. The new formulation is given by:

min L(Fm)

s.t. Fm(xi) ∈ F (xi) ∪ Ei(xi) ∀xi ∈ Bn
(3.3)

Example 3.1.1. A simple example of an adder is used to illustrate the con-

cepts being introduced. For a 1-bit half adder, the equivalence is illustrated

via a tabular representation for M = 1:

F
a, b c, s
00 {00}
01 {01}
10 {01}
11 {10}

Fm

a, b c, s
00 {00, 01}
01 {01, 00, 10}
10 {01, 00, 10}
11 {10, 01, 11}

It is clear that the above tabular form sets up a Boolean relation (BR)

representation, according to Def.3.1.1, where each input corresponds to more

than one output.

3.1.2 Boolean Relation Solvers

To this point, the equivalence between the error frequency-unconstrained

approximate logic synthesis problem and the Boolean relation minimization

56

problem has been established. This is advantageous as there exist several ex-

act and heuristic approaches for solving the BR problem. Here gives a brief

overview of the available BR minimization techniques. The exact method re-

ported in [39] employs an approach similar to the Quine-McCluskey procedure

[6]. The minimization is formulated as a binate covering problem and solved

by integer linear programming. Other exact methods are [40] and [41]. As is

common, the exact approaches are limited to solving small and medium-size

BR instances due to the algorithm complexity. Heuristic solutions trade result

optimality for computational tractability. Herb [42] is based on the two-level

minimization algorithm of ESPRESSO [35] and test pattern generation tech-

niques. Gyocro [43] also relies on ESPRESSO. While it improves on some of

the weakness in Herb, it still remains slow.

A recently developed heuristic algorithm BREL [44] is adopted. BREL

is a recursive algorithm that uses a branch-and-bound solution strategy. It first

over-approximates (using the maximum flexibility provided by the relation)

the BR into a multi-output Boolean function where each output is minimized

independently using standard techniques for function minimization. If the

minimized Boolean function is compatible with the original Boolean relation,

then it is accepted as the solution. Otherwise, the algorithm splits the original

Boolean relation R into two sub-BRs R1 and R2. This is done by selecting one

conflict minterm such that each sub-BR operates on one output component

of this minterm. Sub-BRs are then solved independently following the same

procedure recursively. BREL substantially outperforms the earlier tools in

57

terms of runtime and result quality.

3.2 Frequency-Constrained ALS Algorithm

This section describes the second major contribution: the develop-

ment of an effective heuristic logic optimizer that accepts the solution of the

frequency-unconstrained ALS and carries out further optimizations to guar-

antee the solution feasibility with respect to the frequency of errors.

Because the result of solving the Boolean relation minimization for

Fm does not constrain the number of minterms in error, the solution may

not satisfy the constraints on error frequency. Let the result of solving the

Boolean relation be the function FM,k, where k refers to the resulting actual

error frequency. If the error frequency constraint R is smaller than k, then

the number of minterms need to be reduced on which the function is different

from the exact one.

3.2.1 Mapping to Min-Cost Increase Problem

An important property of the solution of the Boolean relations problem

is first clarified. As a solution to the problem of Equation (3.3), the function

FM,k has the minimal cover (in terms of literals) among all functions that

satisfy FM,k ∈ F ∪ Ei. Therefore, the following holds:

Theorem 3.2.1. For any function FM,r

L(FM,r) ≥ L(FM,k), for any r < k.

58

Proof. If there is an r such that L(FM,r) < L(FM,k), then the BR solver reports

FM,r as the BR solution since FM,r also satisfies the specified Boolean relation

and has fewer literals.

The problem to be solved in the second phase is now reformulated. To

solve the problem in Equation (3.1), it is necessary to find the function FM,R

that minimizes the literal increase L(FM,R)− L(FM):

min L(FM,R)− L(FM)

s.t. |FM,R − F | ≤M
(3.4)

An iterative and greedy algorithm is proposed that searches for FM,R by

repeatedly identifying the minterms on which the correctness of the function

should be enforced. The algorithm proceeds by making localized changes to

the function by accepting steps that minimize literal increase while reducing

the maximum number of error-minterms and guaranteeing that the magnitude

constraint remains satisfied.

3.2.2 Formalization of the Frequency-Constrained ALS Algorithm

The algorithm works with a set of minterms on which the function

FM , produced by the frequency-unconstrained minimizer, is in error. First,

all such minterms are formally defined and the types of exhibited errors are

distinguished.

Definition 3.2.1. DIFF minterm and DIFF set. A minterm x on which

F (x) 6= FM(x) is called a difference minterm and is referred to as the DIFF

59

minterm. The difference set for a function, which is called the DIFF set,

contains all DIFF minterms regardless of the type of error.

Definition 3.2.2. Error types. The error type is designated by ET . If for

a given minterm and for a single output bit, F (x) = 0 and FM(x) = 1, the

error is of the 0→ 1 type. It is encoded as a two-bit value ET = 01. If for a

given minterm and for a single output bit, F (x) = 1 and FM(x) = 0, the error

is of the 1 → 0 type. It is encoded as as two-bit value ET = 10. If there is

no error, ET = 00. Let ETi,j be the two-bit encoding of the error type for an

output bit i on the minterm j. Let CETj be the concatenation of ETi,j for

i = 1 to k, where k is the number of outputs. CETj encodes the entire error

pattern for function F on the minterm j.

Example 3.2.1. An example is used to illustrate the definitions. The shaded

minterms x′1x
′
0, x1x

′
0 in Table 3.1 form the DIFF set for the 2-input, 2-output

Boolean function. Minterm x′1x
′
0 has an error on the output bit y0, which is

an ET = 01; while there is no error for y1 on this minterm. Minterm x1x
′
0 has

errors on both y1 and y0 output bits, where y1 has the ET = 01 error and y0

has the ET = 10 error.

The algorithm to be constructed seeks to find FM,R by enforcing correct-

ness on some of the minterms of F that have been modified by the solution

to the Boolean relations problem. The key part of the algorithm is there-

fore the notion of correcting the function on a given minterm. To correct an

ET = 01, the minterm needs to be moved from the ON-set of the function

60

Table 3.1: Example of DIFF minterms (shaded).

F
x1x0 y1y0
00 {00}
01 {01}
10 {01}
11 {10}

FM

x1x0 y1y0
00 {01}
01 {01}
10 {10}
11 {10}

CET
y1y0

{ET = 00, ET = 01}

{ET = 00, ET = 00}

{ET = 01, ET = 10}

{ET = 00, ET = 00}

for this output bit back to the OFF-set. This is called a correct-to-0 change.

To correct an ET = 10, the minterm needs to be moved from the OFF-set of

the function for this output bit to the ON-set, which is called a correct-to-1

change. The result of minterm correction is a change in the literal count in the

cover of the function FM,r. It should be noted that both types of corrections

may result in a literal count increase. Also, note that at an equal literal count

increase, the algorithm will accept both types of corrections equally as long as

the magnitude of error is not increased.

The proposed algorithm is greedy and gradually identifies the best

minterms to correct. One possible approach is to correct one DIFF minterm

at a time by selecting a minterm that causes the least literal cost increase.

However, this is sub-optimal. Instead, the proposed algorithm is based on the

principle that at each step the largest number of DIFF minterms should be

corrected for the minimum available literal increase.

The central challenge of the algorithm is in identifying the optimal

changes to the ON/OFF-sets of the function such that the cover is minimized.

(Note the difference between the conventional logic minimization (LM) and

61

the above problem. Conventional LM is to find the minimum cover for given

ON/OFF-sets. The problem is its dual and seeks to find the optimal change

to the ON/OFF-sets for a minimum cover increase.)

First, consider a single-output function F . The set of possible cor-

rection decisions, which is represented by the DIFF set, can be represented

separately by a pair of correction functions: one for correct-to-1 and one for

correct-to-0, where a correction function is 1 iff the given minterm is a mem-

ber of the corresponding DIFF set and thus a candidate for correction. The

correct-to-1 function CT1 is defined by the set of its minterms, which are the

DIFF set minterms with ET = 10. Correspondingly, the correct-to-0 function

CT0 is defined by the set of its minterms, which are the DIFF set minterms

with ET = 10.

The key aspect of the algorithm is the idea that the identification of

minterms to correct should proceed by first constructing a minimial cover for

the two correction functions (CT0, CT1) and by using the prime implicants

(PIs) of the covers to seek optimal changes to the ON/OFF-sets of the function.

The prime implicants of the minimum cover of a correction function is called

the DIFF primes.

The following notion of cost is used to compare the effectiveness of

correcting a specific DIFF prime j of a function:

costj =
literal increase due to correction of DIFF prime j

number of minterms covered by DIFF prime j
(3.5)

The greedy decision-making is driven by selecting at every iteration the

62

best decision understood as the decision with the least cost, as defined above.

This principle is formalized in the following theorem, which is proven later in

the derivation after the function update strategy is fully explained:

Theorem 3.2.2. For a single-output function F , the optimal set of minterms

to add to the ON/OFF-set at the minimum literal increase in the cover of func-

tion FM,r lies among the prime implicants of the minimum cover of correction

functions CT0 and CT1.

The above results can be extended to multi-output functions and their

corresponding correction functions. An important aspect of the allowed cor-

rections for multi-output functions is that the magnitude of error cannot be

increased. This can be guaranteed only if either the entire function is corrected

on a given minterm or the entire output is not modified at all. This constraint,

combined with the result of Theorem 3.2.2 that directs to seek optimal deci-

sions among the minimum covers, leads to define the correction function for

a multi-output case not by the individual DIFF minterms but by sub-sets of

DIFF minterms. The sub-set, referred to as the DIFF group, is defined as:

Definition 3.2.3. DIFF group A DIFF group is a set of all DIFF minterms

with identical CET .

Example 3.2.2. Table 3.2 shows an example of grouping the DIFF minterms,

where four DIFF minterms are grouped into three DIFF groups.

The correction function for a multi-output case is defined in the same

way as before, i.e., by its constituents DIFF minterms. In this case, the

63

Table 3.2: Example of DIFF groups.

DIFF min. F FM CET Group
x1x0 y1y0 y1y0 y1y0 #
00 {01} {10} {ET = 01, ET = 10} 1
01 {00} {11} {ET = 01, ET = 01} 2
10 {10} {00} {ET = 10, ET = 00} 3
11 {11} {01} {ET = 10, ET = 00} 3

minterms of a correction function belong to the same DIFF group. Each

group contains minterms with identical error behavior on all outputs and thus

logic minimization of each correction function individually allows finding the

least cost ways of carrying out the same change to function FM,r. The result of

the above definition is that for a multi-output function with k outputs, there

may be up to 3n distinct correction functions.

Each correction function is minimized using two-level Boolean mini-

mization. The standard Boolean minimization tool ESPRESSO is used to

generate a minimum cover of all DIFF minterms within each correction func-

tion. Algorithm 2 summarizes the procedure of getting the DIFF groups and

DIFF primes.

Example 3.2.3. See Table 3.3, where the shaded DIFF prime covers the two

shaded DIFF minterms in Table 3.2.

3.2.3 Function Updates and Cost Calculation

The algorithm repeatedly eliminates the best candidate DIFF primes

in the current DIFF set and modifies the function FM,r. The following se-

64

Table 3.3: Example of DIFF primes.

DIFF prime CET Group
x1x0 y1y0 #
00 {ET = 01, ET = 10} 1
01 {ET = 01, ET = 01} 2
1- {ET = 10, ET = 00} 3

Algorithm 2: Correction Function Minimization.

Input: Frequency unconstrained approximate function FM

Output: DIFF primes for every correction function

// identify DIFF minterms and their error structure

foreach minterm in F do1

foreach output bit j do2

compare F and FM ;3

record error type ET at bit j: 00, 01, 10;4

// determine DIFF groups and correction functions they

define

group all DIFF minterms with identical error behavior;5

// determine the DIFF primes

foreach DIFF group do6

call ESPRESSO to minimize the correction function for this7

DIFF group and return DIFF primes;

quence is thus executed repeatedly: (1) the best correction is identified, (2)

the ON/OFF-sets of function FM,r are updated, and (3) all correction func-

tions impacted by the current change are updated. The multi-output FM,r is

algorithmically treated as a union of single-output functions whose ON/OFF-

sets are defined individually. However, the procedure outlined in the previous

section means that when the best DIFF prime is selected for a correction, the

function FM,r needs to be updated on all of its outputs.

65

In the following, a related issue of efficient cost computation is dis-

cussed along with the update strategy. The restriction of the search space to

the primes of correction functions reduces the number of possible solutions.

Despite that, it is still necessary to evaluate candidates based on the specific

increase in the literal count they produce.

The denominator of Equation (3.5) refers to how many DIFF minterms

are simultaneously corrected by correcting the single DIFF prime j. It is easily

computed as 2n−s, where n is the number of input variables in function F and

s is the number of literals in the DIFF prime j.

Unfortunately, evaluating the numerator is difficult. Only after the

Boolean minimization on the updated FM,r is completed can one know the lit-

eral changes exactly, where a function update is the update of the ON/OFF-

sets of FM,r for all outputs that are prescribed by the correction function

currently being evaluated. However, since the cost computation needs to be

done often, running a two-level minimizer for each evaluation is too expensive

in terms of computation time. To address this issue, a proxy metric is pro-

posed for estimating literal changes. One approximation that the proxy metric

adopts is that the literal cost increase is the sum of literal cost increases for

each output individually. In other words, an n-output function is treated as a

collection of n single-output functions. This is a conservative assumption that

ignores the sharing of terms in the covers of multi-output functions.

Before the details of the function update strategy is described, it is

necessary to introduce a basic encoding scheme for performing operations on

66

prime implicants.

Definition 3.2.4. Positional-Cube Notation. The positional-cube nota-

tion is a binary encoding of implicants. The symbols used in the input part

are {0,1,-}. The positional-cube notation encodes each symbol by 2-bit fields

as follows:

Ø 00
0 10
1 01
- 11

where the symbol Ø means none of the allowed symbols, i.e., the presence of

Ø means this implicant is void and should be removed.

The proxy computation to estimate the corresponding literal changes

depends on whether the candidate update is a correct-to-0 or a correct-to-1

update. The correct-to-0 update strategy is first discussed. Consider estimat-

ing the literal changes for a candidate DIFF prime pdifi . First, the subset of

primes in the current cover of FM,r is identified that has a non-zero intersec-

tion (where the intersect operation is defined in Def. 3.2.5) with pdifi . Let

this subset be P f and denote each specific prime in this subset as pfj , where

the uppercase P indicates a set, and lowercase p indicates a single prime. Let

pintrj = pdifi ∩ p
f
j be the result of each intersection.

Definition 3.2.5. Intersection of two implicants. The intersection of two

implicants is the largest cube contained in both. It is computed by the bitwise

product using a positional-cube encoding. If the result contains Ø, i.e., a void

implicant, the two implicants do not intersect.

67

To perform the update, all the primes in P f need to be modified, since

they are modified after the removal of the candidate DIFF prime. For a correct-

to-0 update, it is required to keep all and only those minterms covered by the

pfj and not pintrj . This can be done by performing a sharp operation (defined

in Def. 3.2.6) on pfj and pintrj . The resulting prime(s) replace pfj as the new

prime(s). If the resulting prime is void, i.e., if pfj = pintrj , then pfj is removed

entirely.

Definition 3.2.6. Sharp Operation. The sharp operation, when applied to

two implicants, returns a set of implicants covering all and only those minterms

covered by the first one and not by the second one. The sharp operator is

denoted by #. Let α = a1a2 . . . an, and β = b1b2 . . . bn, where ai, bi, i =

1, 2, . . . , n, represents their fields. The sharp operation can be defined as:

α # β =

a1b
′
1 a2 . . . an

a1 a2b
′
2 . . . an

.

a1 a2 . . . anb
′
n

(3.6)

Given the replacement of primes pfj with the results of the sharp oper-

ation, let N be the number of inputs in function F , dj be the cardinality of pfj

XOR pintrj , and Mj be the number of variables for pfj . Then, the literal change

δL01
j to correct an error of type ET = 01 on a single output is:

δL01
j = (dj − 1)×Mj + dj (3.7)

68

Proof. Let the set of literals corresponding to pfj be X. Then, pintrj must have

the form Xa1a2 . . . ad. (Obviously, pintrj ⊂ pfj , i.e., there are more variables in

pintrj than in pfj). Then the Boolean subtraction of X − Xa1a2 . . . ad reduces

to Xa′1 +Xa′2 + . . .+Xa′d. Equation (3.7) is acquired by counting the literal

changes before and after the Boolean subtraction.

To estimate the total changes in the literal count due to elimination

of the DIFF prime pdifi , individual costs for every output that has an error of

type ET = 01 are summed up. Let h be the number of outputs with error of

type ET = 01 and let the cardinality of P f be l:

∆L01
i =

h∑ l∑
δL01

j (3.8)

The following discusses the update strategy for a correct-to-1 update

and describes a way to efficiently estimate the literal changes after adding a

new prime to FM,r. It starts by finding a subset of primes P f of FM,r that are

adjacent to the DIFF prime pdifi . Adjacency is an important criterion since

it indicates that the selected primes can be merged to a larger prime (i.e., a

prime with fewer literals). The adjacency information is acquired by using an

intersect operator on pdifi and pfj . If the result contains only one empty field

(Ø), then the two implicants are adjacent. If P f is empty, i.e., there are no

primes that are adjacent to the DIFF prime pdifi , then the literal change δL10
j

is equal to the number of literals in pdifi itself. However, the when P f is not

empty two possibilities exist:

69

• pdifi and pfj together form a new single prime, which reduces the current

literal counts;

• pdifi becomes larger (has fewer literals) due to the adjacency with pfj ;

Therefore, it is required to count the literal changes by selecting one

pfj that causes the minimum literal increase out of all primes in this P f . To

compute the literal increase for each pair of pfj and P f , the literals of the con-

sensus of the two primes are evaluated, which are denoted by pconsenj . Because

the two primes intersect, there is only a single implicant for the consensus op-

eration, which is defined in Def. 3.2.7. Then, the literal increase is computed

as:

δL10
j = L(pconsenj) (3.9)

Definition 3.2.7. Consensus Operation. The consensus operation is de-

fined as follows. The consensus returns void when the two implicants have a

distance larger than or equal to 2. The consensus returns a single implicant

when the two implicants are adjacent. The consensus returns more than or

equal to 2 implicants, when the two implicants are intersecting. The consensus

operator is denoted by ∇.

α ∇ β =

a1 + b1 a2b2 . . . anbn

a1b1 a2 + b2 . . . anbn

.

a1b1 a2b2 . . . an + bn

(3.10)

70

The overall literal change due to a correct-to-1 update is the sum of

costs for all output bits with error type ET = 10. Notice that for each of

the output bits, the minimum δL10
j out of all primes in P f is picked. For h

output bits with error type ET = 10, the overall literal increase as a result of

an update due to pdifi is:

∆L10
i =

h∑
min {δL10

j } (3.11)

Once the pconsenj with the minimum literal increase is identified, the

resulting consensus prime is added to the erroneous output bit function of

FM,r. Importantly, if pfj is covered by pconsenj , it is removed. This happens

under the first scenario considered above for the case of P f not being empty.

The overall literal change for a candidate DIFF prime pdifi is the sum

of ∆L01
i and ∆L10

i :

∆Li = ∆L01
i + ∆L10

i (3.12)

So far the proposed proxy metrics has been discussed to estimate the

literal changes due to the DIFF prime corrections. After eliminating a candi-

date DIFF prime, the corresponding primes in FM,r need to be simultaneously

modified. This change affects the cost values of the remaining primes. Thus,

it is necessary to update the cost values of all remaining DIFF primes that

are impacted by the just-modified prime. To achieve this, dependency infor-

mation is stored for each prime of FM,r that records all DIFF primes that use

this prime to compute their cost values. Once a prime of FM,r is modified,

71

a list of the associated DIFF primes is immediately available for which cost

updates are needed.

It is now a proper time to prove the Theorem 3.2.2, which is repeated

here for the ease of reading.

Theorem. For a single-output function F , the optimal set of minterms to add

to ON/OFF-set at the minimum literal increase in the cover of function FM,r

lies among the prime implicants of the minimum cover of correction functions

CT0 and CT1.

Proof. Consider a correction function CT1 and its minimum cover. Let pj be

a prime in that cover. Let Mj = {m1,m2, . . . ,mh} be the set of minterms

covered by pj. The theorem is true if the literal increment of correcting any

subset of Mj is larger than correcting the entire Mj, i.e., the pj. Letting lit(·)

be the literal number in a cube, it is clear that lit(pj) < lit(Mj,i) for any i. For

pj that has error type ET = 10, the literal increment is smaller when adding

pj to ON-set rather than any subset of Mj.

Now consider a correction function CT0 and its minimum cover. Let pj

be a prime in that cover. To correct an error of type ET = 01, the minterms

covered by pj are to be removed from the cover of FM,r. For the prime im-

plicants of FM,r that have non-zero intersection with pj, the following holds:

the larger is the intersection between pj and primes of FM,r, the fewer non-

overlapping variables there are between pj and a prime of FM,r. This results

in smaller dj in Equation (3.7) and hence a smaller literal increment.

72

A complete description of GALS algorithm is in Algorithm 3.

Algorithm 3: Approximate logic synthesis algorithm.

Input: frequency-unconstrained approximate Boolean function
Output: minimized boolean function with constrained error

magnitude and error frequency

// get the DIFF primes

call “Correction Function Minimization” subroutine;1

// initialize the current solution, k is the initial

error frequency by BR solver

FM,r = FM,k;2

// get the initial error count for FM,r

ErrorCount = k;3

if ErrorCount ≤ Error Frequency Constraint then4

return FM,r;5

// initialize the Cost-List

foreach DIFF prime pi do6

compute the cost and push pi to Cost-List;7

foreach prime in FM,r that are associated with pi do8

push pi to association list of this prime;9

sort Cost-List by cost values with ascending order;10

// main loop

while ErrorCount > Error Frequency Constraint do11

pop the DIFF prime with least cost value in Cost-List;12

modify the FM,r after eliminating this DIFF prime;13

update all associated DIFF primes due to modifying the FM,r;14

Sort Cost-List by cost values with ascending order;15

update ErrorCount ;16

return FM,r;17

73

3.3 Experimental Results

The GALS is implemented in a C++ environment using BREL [44]

as the embedded BR solver engine for the first phase of the algorithm. To

evaluate the capability of GALS for significant literal reductions under gen-

eral magnitude and frequency constraints, GALS has been used to generate

a range of approximate solutions of adders and multipliers. All experiments

were performed on an Intel 3.4GHz Core i7 workstation.

F1 =

C = a1b1;

S1 = a1b
′
1 + a′1b1;

S0 = 1;

F1, 2
16

=

C = a1b1;

S1 = a1b
′
1 + a′1b1 + a0b0;

S0 = a1b
′
1b0 + a′1b1b0 + a0b

′
0 + a′0b0;

F1, 1
16

=

C = a0b1b0 + a1b1;

S1 = a′1b1b
′
0 + a′1a

′
0b1 + a0b

′
1b0

+a1a0b0 + a1b
′
1;

S0 = a1b
′
1b0 + a0b

′
0 + a′0b0;

F =

C = a0b1b0 + a1a0b0 + a1b1;

S1 = a′1a0b
′
1b0 + a1a0b1b0 + a1b

′
1b
′
0

+a′1b1b
′
0 + a1a

′
0b
′
1 + a′1a

′
0b1;

S0 = a0b
′
0 + a′0b0;

Figure 3.1: Synthesized 2-bit adder variants.

The basic operation of the algorithm is first demonstrated on a simple

2-bit adder example with 4 inputs (a1, a0 and b1, b0) and 3 outputs (sum bits

74

0 2 4 6 8 10

500

1,000

1,500

2,000

2,500

3,000

L
it

e
ra

ls

Error Frequency (%)

 Single-GALS

 GALS

Figure 3.2: Effectiveness of GALS for 6-bit adders with a magnitude constraint
of M = 1.

S0 and S1 and the carry C). Figure 3.1 shows the resulting logic equations

for the exact adder (F), the frequency unconstrained solution (FM), and both

frequency and magnitude-constrained (FM,R) approximate adder variants. In

all cases, a magnitude constraint of M = 1 is applied. Error frequency con-

straints of one or two erroneous outputs out of the 24 = 16 total minterms

are also applied, i.e., R = 1/16 = 6.25% or R = 2/16 = 12.5%. As expected,

the frequency unconstrained solution (F1) has the smallest literal count. The

expression complexity increases with a decreasing frequency constraint. It

is interesting to point out that the evolution of the logic does not follow an

obvious pattern.

To further evaluate the effectiveness of the second-phase of GALS based

75

0 20 40 60 80 100

2,000

4,000

6,000

8,000

10,000

12,000

Error Frequency (%)

L
it

e
ra

ls

 M=1

 M=3

Figure 3.3: Synthesis results for 8-bit adders by GALS.

on Theorem 3.2.2, which operates with the primes of the correction functions,

the performance of GALS is compared against an alternative implementation

that greedily corrects only the single best minterm in each iteration. This

alternative implementation is referred to as Single-GALS. Figure 3.2 plots the

literal reductions achieved by both algorithms when applied to a 6-bit adder

with a magnitude constraint of M = 1 and varying frequency constraints. Re-

sults validate the effectiveness of the proposed strategy: the GALS algorithm

substantially outperforms the naive approach. On average, it produces 20%

fewer literals while also being 37x faster.

Next, GALS is used to synthesize 8-bit and 10-bit approximate adders

under magnitude constraints of M = 1 and M = 3 (Figures 3.3 and 3.4).

Independent of the adder size, the frequency unconstrained solution at the

76

0 5 10 15 20

10,000

20,000

30,000

40,000

50,000

60,000

Error Frequency (%)

L
it

e
ra

ls

 M=1

 M=3

Figure 3.4: Synthesis results for 10-bit adders by GALS.

output of the first phase BR solver results in an error frequency of 50% and

100% at literal reductions of around 55% and 80% for M = 1 and M = 3,

respectively. Results after further constraining error frequencies using GALS

show that similar literal reductions can be maintained all the way down to

error rates as low as 1-2%. Note that at extremely tight frequency constraints,

literal counts of synthesized solutions for M = 3 grow faster than those for

M = 1. The conjecture is that this is caused by the use of proxy cost metric

in the second phase of GALS and the resulting sub-optimality of the greedy

decision-making. Note that this effect is limited to only very small frequencies

(below 0.6% for the 10-bit adder).

77

0 1 2 3 4 5

20,000

40,000

60,000

80,000

100,000

120,000

140,000

Error Frequency (%)

L
it

e
ra

ls

 Fast-GALS

 GALS

(a) Literals for 10-bit adders with M = 1.

0 5 10 15 20

100

1,000

10,000

Error Frequency (%)

R
u

n
ti

m
e

 (
s

)

 GALS, M=1

 Fast-GALS, M=1

 GALS, M=3

 Fast-GALS, M=3

(b) Runtime for 10-bit adders.

Figure 3.5: Comparison of GALS and Fast-GALS algorithms.

78

Runtimes for the first-phase BR solver range between 1s and 5s for 8-

bits and between 50s and 2.5m for the 10-bit adder. Runtimes of the second-

phase of GALS range between 2s and less than 5m for 8-bit adders, and be-

tween 30s and more than 3h for 10-bit designs. To further reduce runtime,

a speed-up technique is investigated. One of the computationally expensive

steps in GALS is the cost-updating routine that is repeatedly executed in the

main loop of the algorithm (lines 14 - 15 in Algorithm 3). It is observed

that using the Cost-List that is initialized once but is not updated on every

iteration leads, in most cases, to a relatively small loss of optimality in the

choice of a DIFF prime to be removed. Yet the runtime of the second-phase

of the algorithm can be reduced significantly. Such a Fast-GALS algorithm is

developed. Results of the comparison between GALS and Fast-GALS for the

10-bit adder are shown in Figure 3.5. It is observe that in most cases, resulting

literal counts are very close while the runtime of Fast-GALS is one order of

magnitude lower than GALS (Figure 3.5b). At tight frequency constraints,

however, the cost updating mechanism plays a vital role. As a result, at very

low frequencies, Fast-GALS produces solutions substantially worse than those

of GALS, and in some cases even worse than the exact solution.

79

0 2 4 6 8 10

5,000

7,500

10,000

12,500

15,000

Error Frequency (%)

L
it

e
ra

ls

 MD = + 1

 MD = - 1

 MD = +/- 1

Figure 3.6: 8-bit adders under different error directions by GALS.

Depending on the application, not only error magnitude but also the

error direction can be of importance. GALS supports setting different output

relations during the first BR solving phase. Experiments were constructed on

8-bit adders in which the direction of error is further constrained to be only

positive or negative. Results are shown in Figure 3.6, where MD is the value

of the allowed adder error. It can be observed that for addition logic, allowing

negative errors (exclusively or combined in both directions) results in circuits

that are synthesized to have smaller literals.

80

0 10 20 30 40 50 60 70 80

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000
 GALS, M=1

 Fast-GALS, M=1

 GALS, M=3

 Fast-GALS, M=3

Error Frequency (%)

L
it

e
ra

ls

Figure 3.7: Synthesis results for 8-bit truncated multipliers.

Finally, GALS and Fast-GALS algorithms were applied to the larger

test-case: an 8-bit truncated multiplier (Figure 3.7). Runtimes for the first-

phase BR solver range between 4m and 5m. Runtimes for the two algorithms

range between 20m and 3.3h for GALS and between 5m and 13m for Fast-

GALS. Fast-GALS produces solutions that can be up to 20% worse in terms

of literal count to the ones obtained with the slower GALS algorithm. Note

that in the case of the multiplier, there is a significant dependence of literal

count on error frequency over nearly entire range of frequencies. This further

motivates the need for an application-specific synthesis solution.

81

3.4 Summary

This chapter presents a heuristic approach for solving a general two-

level approximate logic synthesis problem. The error magnitude-only con-

strained problem is first addressed by casting it to a Boolean relation minimiza-

tion, which is solved using recently proposed fast algorithms. The frequency-

constrained problem is further solved by a novel greedy algorithm that finds

the optimal set of function minterms on which the exact outputs must be

enforced, and systematically corrects erroneous outputs until a given error fre-

quency constraint is met. The proposed algorithm is capable of synthesizing

approximate circuits for arbitrarily specified error deviations, and is most im-

mediately applicable to arithmetic blocks, for which experiments demonstrate

the effectiveness in achieving significantly reduced literal counts across a wide

range of flexible error frequency and magnitude constraints.

82

Chapter 4

Multi-level Approximate Logic Synthesis

Chapter 3 demonstrated a strategy for two-level synthesis of approxi-

mate logic circuits under both magnitude and frequency types of constraints.

However, an optimal two-level solution will not necessarily lead to an optimal

multi-level Boolean implementation. This is especially important for complex

logic blocks, such as arithmetic units, that are typically realized through care-

fully tuned macro libraries instead of being synthesized from their original

Boolean function.

This chapter 1 addresses the problem of multi-level approximate logic

synthesis (MALS) under arbitrary error magnitude and error frequency con-

straints. A heuristic is developed which effectively synthesizes approximate

Boolean networks with reduced gate count whose errors deviate from an exact

network in a constrained way. The magnitude constrained MALS is formu-

lated using Boolean relations to capture the allowed error behavior. This

formulation is more general than relying on incompletely specified functions

and leads to better solutions. The proposed strategy uses network simplifica-

tions allowed by EXDCs. The core contribution is an algorithm that identifies

1This Chapter is based on the previous publication [45]. Conceptual ideas were discussed
with the co-authors Michael Orshansky and Andreas Gerstlauer.

83

an EXDC set that maximally approaches the Boolean relation. It starts with

an EXDC set that is overly relaxed and iteratively, and in a greedy fashion,

identifies an optimal EXDC set by solving a series of conventional EXDC-

based network optimizations. The algorithm then ensures compliance to error

frequency constraints by recovering the correct outputs on the sought number

of error-producing inputs while aiming to minimize the network cost increase.

A novel network cost minimization principle is introduced for dealing with the

multi-output case. It is based on the observation that in many networks there

is a variation in the degree to which network outputs are dependent on the

rest of the network. It is reasonable to expect that enforcing correctness on

outputs with lower embeddedness leads to a lower network cost increase as it

requires modifications to a smaller region of the network.

The algorithm is applied to several well-known adder and multiplier de-

signs of varying bit-width. Even for small error magnitudes, the algorithm pro-

duces networks with gate count reduced by 30-50%, when the error frequency

constraint is loose. This is up to 20% fewer gates than a naive EXDC-based

approach.

4.1 MALS Formulation

Consider an n-input, k-output combinational logic network G realizing

a Boolean function F : Bn → {0, 1,−}k, where − refers to a don’t care. A

multi-level approximate logic synthesis problem is concerned with formally

synthesizing a minimum-cost (gate count) network whose behavior deviates

84

in a controlled manner from the specified exact Boolean function F . The

deviations can be specified in terms of error magnitude and error frequency.

The error magnitude constraint specifies the outputs that the approximate

circuit is allowed to produce for each input xi ∈ Bn. The total number of

inputs that produce approximate outputs is described by the error frequency

constraint. Gm,r is denoted to be an approximate version of G with r inputs in

error and with the largest magnitude of error being m. Let R be the maximum

number of inputs allowed to be in error and let M be the maximum allowed

deviation for a given output. It is assumed that a circuit produces a multi-bit

output for which an arithmetic distance metric can be used to establish the

degree of difference between the outputs. The notation |Gm,r(xi) − G(xi)| is

used to represent the absolute value of the arithmetic difference of the outputs

produced by an exact and an approximate network. With this, the full multi-

level approximate logic synthesis problem is:

min C(Gm,r)

s.t. |Gm,r(xi)−G(xi)| ≤M, ∀xi ∈ Bn

r ≤ R

(4.1)

where C(Gm,r) is the cost function, taken to be the gate count of Gm,r.

The problem defined in (4.1) captures the general constraints of both

error types. The primary goal in problem (4.1) is to utilize the alternative

outputs to simplify the circuit complexity when the outputs are constrained

to take on specific patterns.

85

4.2 MALS under Error Magnitude and Frequency Con-
straints

Solving the problem of (4.1) when the error frequency constraint is

not imposed will be first discussed. As shown in [38], the error magnitude

constraint in (4.1) can be viewed as implicitly defining a Boolean relation (BR),

where each input can be mapped to multiple outputs. A Boolean relation is

a generalization of an incompletely specified Boolean function (ISF). It allows

capturing a wider class of constraints on the outputs and thus allows for better

solutions. Boolean relation minimization has been previously studied in the

context of two-level optimization with the goal of identifying the minimum-cost

two-level realization of a Boolean function compatible with a given Boolean

relation [39, 43, 46]. This work focuses on simplifying an initial multi-level

Boolean network by exploiting the flexibility captured by the Boolean relation.

Such optimizations on an existing Boolean network are especially important

for arithmetic blocks, which are often available directly in canonical form (e.g.,

various prefix adders).

There are currently no effective techniques to directly synthesize a

Boolean network that satisfies a given Boolean relation. Therefore, the well-

known principle of using external don’t cares to simplify Boolean networks

is adopted. In the context of approximate synthesis, such an approach has

been proposed in [32]. In [32], the external don’t care (EXDC) sets are based

on conventional single output don’t care extraction. However, a single-output

approach does not exploit the full flexibility that may be permitted by the

86

error specification. For instance, a function that allows two outputs {11, 00}

on some input can never be captured via single-output don’t cares.

The contribution is in demonstrating that it is possible to find non-

trivial better sets of external don’t cares to drive multi-level optimization.

The essence of the algorithm is that it identifies an EXDC set that maximally

approaches the Boolean relation. Specifically, the algorithm starts with an

EXDC set that is overly relaxed and iteratively, and in a greedy fashion, iden-

tifies an optimal EXDC set by solving a series of conventional EXDC-based

network optimizations. The original Boolean network is ultimately minimized

by using the optimal EXDC. To drive the algorithm, the multi-level synthesis

tool is used as a black box. It is relied on the tool’s ability to exploit the

flexibility offered by EXDC. (As detailed later, SIS [47] is used for network

optimization.)

The central challenge is to identify an EXDC set that maximally ap-

proaches the Boolean relation. Such a set has the following properties. First,

it maximally shares the flexibility for network simplification described by the

Boolean relation. Because the sought EXDC set is based on single-output

don’t cares, the difference between a relaxation of a BR into a multi-output

ISF and a candidate EXDC as a measure of such flexibility is used. Second,

it defines a function compatible with BR. This EXDC set is called a Relation-

Aware EXDC (RA-EXDC) set.

An outline of the algorithm is as follows. The algorithm to find RA-

EXDC is based on a relax-and-recover strategy: the error constraints of the

87

original problem are first relaxed, captured via a BR, to produce an EXDC set

that permits more than the original deviations specified by BR. This EXDC

is an upper bound for RA-EXDC. Because the network simplified by this

EXDC violates the original error constraints, an iterative recovery procedure

is employed to minimally refine EXDC until violations are removed. Along

with the upper bound, it is shown that a lower bound on the sought EXDC is

available and can also be extracted from BR. Both bounds are used during the

recovery phase. Next, the strategy to compute both bounds will be discussed.

4.2.1 Extracting Lower and Upper Bounds

The interest lies in finding the least upper bound and the greatest lower

bound. The least upper bound EXDC is the minimum superset of BR that can

be expressed using ISFs. As the lower bound for the extraction of the optimum

EXDC, the maximum subset of BR that can be expressed as an ISF and that

contains the original function is utilized. In doing this, it is assumed that

such an ISF provides the largest flexibility for network simplification among

all possible ISFs. Note that the stated principle for finding the “best” ISF was

used earlier in [39]. The choice of this ISF as a useful bound is justified via

an assumption of a monotonic relation between the size of the EXDC and the

potential complexity reduction of a network under this EXDC.

Some preliminary definitions are first provided. Hereafter, it is in-

distinctly to use the terms of incompletely specified function (ISF) and the

corresponding don’t care set described by this ISF.

88

A Boolean relation can also be specified by a characteristic function

R : Bn × Bm → B, such that (x, y) ∈ R ⇐⇒ R(x, y) = 1. Here, the Bn

and Bm are the input and output sets of R, respectively. The characteristic

function R is used for the following discussion.

Definition 4.2.1. MISF. A multi-output ISF (MISF) is a function

f : Bn → (B ∪ {−})m, which is a vector of ISFs f = (f1, f2, ..., fm).

Definition 4.2.2. Natural join [46]. The natural join over the input set

X between two relations R and S is defined as

R(X,Y) ./X S(X,Z) = {(x, y, z)|(x, y) ∈ R ∧ (x, z) ∈ S} (4.2)

where X = (x1, x2, . . . , xn) is used to denote the set of inputs and Y =

(y1, y2, . . . , ym) and Z = (z1, z2, . . . , zm) for outputs of two relations, respec-

tively.

Definition 4.2.3. Projection of a Boolean relation [46]. The projection

of a relation R(X, Y) onto an output yi is another function (R ↓ yi) such that

(R ↓ yi) ={(X, z)|∃y1, . . . , yi−1, yi+1, . . . , ym

such that (X, y1, . . . , yi−1, z, yi+1, . . . , ym) ∈ R}.
(4.3)

The projection of a relation R onto an output yi defines an ISF for that

output.

Definition 4.2.4. MISF covering a Boolean Relation [46]. For a given

Boolean relation R, an MISF covering R can be obtained as follows:

MISFR(X,Y) = ./X
i∈{1,...,m}

(R ↓ yi) (4.4)

89

It can be proved [46] that the MISFR is the minimum superset of

Boolean relation R that can be expressed by ISFs, i.e., an MISF. Hence,

the least upper bound EXDC is MISFR. MISFR is referred to as an over-

approximated EXDC (O-EXDC).

A simple example is given to illustrate the extraction of O-EXDC from

the Boolean relation table. Consider a 2-input, 3-output multi-level Boolean

network with error magnitudes as specified in Table 4.1. The first output in

each row refers to the correct output of the network.

Table 4.1: Boolean relation

Inputs Outputs
x1, x0 y2, y1, y0

00 {000, 001}
01 {010, 011, 100}
10 {100, 101, 010}
11 {110, 100, 101}

It takes two steps to derive O-EXDC.

1) Project the Boolean relation onto each output yi, i = 0, 1, 2. (see Table 4.2).

Table 4.2: Projections of BR on yi

x1, x0 R ↓ y2 R ↓ y1 R ↓ y0
00 {0} {0} {0,1}
01 {0,1} {0,1} {0,1}
10 {0,1} {0,1} {0,1}
11 {1} {0,1} {0,1}

90

2) Perform a natural join on each projection of (R ↓ yi) to form MISFR. The

{-} implies a don’t care condition. The don’t care condition is encoded

by a “1” and a care condition by a “0” to form O-EXDC, as shown in

Table 4.3. For example, O-EXDC for y2 is {x′1x0, x1x
′
0}, O-EXDC for y1 is

{x1x0, x
′
1x0, x1x

′
0}, and O-EXDC for y0 is the full set of inputs.

Table 4.3: MISFR and corresponding O-EXDC

Inputs MISFR O-EXDC
x1, x0 R ↓ y2 R ↓ y1 R ↓ y0 y2 y1 y0

00 0 0 - 0 0 1
01 - - - 1 1 1
10 - - - 1 1 1
11 1 - - 0 1 1

Note that O-EXDC allows greater flexibility than BR. In Table 4.3,

since all output bits are insensitive to input 01, the output of, for instance,

111 is also allowed by O-EXDC but not by Boolean relation in Table 4.1.

The greatest lower-bound EXDC that can be extracted from BR is

discussed as follows. As stated above, the maximum subset of BR that can be

expressed by an ISF and that contains the original exact function is used. It

can be acquired by the following procedure:

1) For an input x, there is an output set Y : (x, Y) ∈ R. Identify the maximum

prime implicant px of set Y that contains the original output. For instance,

consider an input x and Y={001, 011, 111}: px={0-1}. The prime px

provides the maximum number of output bits insensitive to x.

91

2) Repeat the above step for all x ∈ Bn. Hence, a set of independent ISFs is

acquired, each for one output bit. These ISFs together form an MISF f .

Theorem 4.2.1. f is a maximum subset of BR that can be expressed as an

MISF.

Proof. First, f is contained by BR needs to be proved. Since px ⊆ Y, ∀x ∈ Bn,

then R(x, px) = 1,∀x ∈ Bn. By definition, the MISF f : x → px,∀x ∈ Bn,

therefore R(X, f) = 1.

Next, f is the maximum subset of BR is proved by contradiction. As-

sume there is another MISF h with a larger cardinality than f , i.e., |f | < |h|.

Here, the cardinality refers to the number of don’t cares contained by the

MISF h. Denote qx as the prime implicant of set Y that contains the original

output for h. By definition, |px| ≥ |qx|, ∀x ∈ Bn. Hence,
∏

x∈Bn

|px| ≥
∏

x∈Bn

|qx|.

Consider |f | =
∏

x∈Bn

|px| and |h| =
∏

x∈Bn

|qx|, there is a contradiction against the

assumption. Therefore, f is the maximum subset of BR.

The DC-set of f is denoted as a conservative EXDC (C-EXDC). The

relation between C-EXDC, RA-EXDC, and O-EXDC is summarized as follows:

C-EXDC ⊆ RA-EXDC ⊆ O-EXDC (4.5)

Note that there is no obvious containment relation between RA-EXDC and the

original Boolean relation. Table 4.4 illustrates the relation between C-EXDC,

RA-EXDC, and O-EXDC through an example.

92

Table 4.4: Boolean relation, C-EXDC, and O-EXDC

Inputs Boolean Relation C-EXDC O-EXDC
x1, x0 y2, y1, y0 y2, y1, y0 y2, y1, y0

00 {000, 001} 001 001
01 {010, 011, 100} 001 111
10 {100, 101, 010} 001 111
11 {110, 100, 101} 010 011

4.2.2 Recovering Magnitude Conflicts

Optimizing the initial network with O-EXDC results in a minimal com-

plexity network for the magnitude-only constrained MALS problem. However,

the resulting network may produce outputs not allowed by the original Boolean

relation. Inputs for which the error constraint is violated are referred to as

conflict inputs. Notice that the network simplified by C-EXDC is guaranteed

to be free of conflicts. This indicates that all conflicts fall in the complement of

C-EXDC in O-EXDC, i.e., O-EXDC\C-EXDC. A notion of candidate inputs

is introduced to denote those inputs that can potentially cause conflicts.

Definition 4.2.5. Candidate inputs. A candidate input x is defined as

{x|x ∈ O-EXDC \ C-EXDC}.

Each candidate input x may correspond to more than one output with

possible conflicts. These outputs together form the candidate outputs for input

x. For example, in Table 4.4, y1, y2 are candidate outputs for input 10.

It is important to see that not every candidate input is a conflict input.

In other words, a network simplified with an EXDC set that contains a candi-

date input will not necessarily produce a conflict on this input. That happens

93

for two reasons. First, not every allowed flexibility is actually utilized for sim-

plifying the network. Whether a flexibility is eventually utilized depends on

the network structure. Second, even if the changes are made, the simplified

network may produce outputs compatible with the Boolean relation and thus

remain conflict-free. For example, in Table 4.4, candidate input 10 may be

used to simplify the network and result in output 010 which is compatible

with the original Boolean relation.

94

Algorithm 4: MALS under general error constraints

Input: NL: Original Boolean network, BR: Error magnitude
constraint, R: Error frequency constraint, N : input bit #

Output: Minimized Boolean network under constrained errors
EXDCn = EXDC o = MISFR(BR); EXDCc = ISF(BR);1

NLn = Optimize(NL,EXDCo);2

Conf = {xi|NLn(xi) /∈ BR(xi), xi ∈ Bn};3

r = |{xi |NLn(xi) 6= NL(xi), xi ∈ Bn}|/2n; j = 0;4

while (Conf 6= Φ) or (r > R) do5

while Conf 6= Φ do6

yapprox = NLn(xi);7

foreach xi : NLn(xi) /∈ BR(xi) do8

a = BR(xi);9

do10

yallow = argmina Hamming(yapprox, a);11

yremov =12

(yallow ⊕ yapprox) ∧ Candidate(EXDC o,EXDC c);
a = a− yallow ;13

while yremov 6= 0 ;14

foreach non-zero bit b of yremov do15

EXDCn ← Remove input xi from output b;16

NLn = Optimize(NL,EXDCn);17

Conf = {xi|NLn(xi) /∈ BR(xi)};18

r = |{xi |NLn(xi) 6= NL(xi)}|/2n;19

k = Difference inputs # for output bit j;20

while r > R do21

c = 0; Flag = True;22

foreach xi : (NLn(xi)[j] 6= NL(xi)[j]) do23

EXDCn ← Remove input xi from the jth bit;24

c = c+ 1;25

if c > αk then26

Flag = Flase; Break;27

if Flag then28

j = j + 1;29

NLn = Optimize(NL,EXDCn);30

Conf = {xi|NLn(xi) /∈ BR(xi)};31

if Conf 6= Φ then32

Break;33

r = |{xi |NLn(xi) 6= NL(xi)}|/2n;34

return NLn ;35

95

Table 4.5: Error magnitude recovery example

Inputs Outputs C-EXDC O-EXDC
Approx.
Outputs

Candidate
Outputs

Updated
EXDC

x1, x0 y2, y1, y0 y2, y1, y0 y2, y1, y0 y2, y1, y0 y2, y1, y0 y2, y1, y0
00 {000, 001} 001 001 001 000 001
01 {010, 011, 100} 001 111 101 110 001
10 {110, 101, 010} 100 111 101 011 111
11 {011, 111, 110} 100 111 101 011 101

The following discusses how O-EXDC is modified to remove conflicts.

First consider the example in Table 4.5. Suppose that after simplifying the

original Boolean network using O-EXDC, the shaded two inputs produce out-

puts beyond the error magnitude constraint. In order to remove these conflicts,

it is necessary to remove the flexibility currently given to the candidate out-

puts of the shaded inputs; for brevity, this operation is denoted as removing

these candidate inputs from their candidate outputs. For instance, input 11

produces output 101, which conflicts with the error specification. It is observed

that O-EXDC and C-EXDC differ for y1 and y0. Therefore, outputs y1 and

y0 (but not y2) are the candidate outputs for this input. Input 11 is, in turn,

considered for removal from the EXDC of each of these outputs (y1 and y0).

However, it may not be necessary to remove 11 from don’t care sets of

both y1 and y0. It is assumed that the gate count of the simplified network

increases monotonically with a decrease in EXDC. The goal of the algorithm

is to ensure that some allowed output is produced while removing the least

flexibility from EXDC, e.g., by reducing EXDC minimally in each iteration.

That means it is required to change as few don’t cares in EXDC for a candi-

96

date input as possible. This is achieved by aiming to match an allowed output

that is least distinct from the output produced by the current network. The

example of Table 4.5 illustrates this by showing that the number of conflicting

outputs for a given input, say input 11, depends on the allowed output be-

ing considered. The current approximate output 101 has a difference in only

one output when compared with 111 but it has two erroneous outputs when

compared with 011 or 110.

Hamming distance provides the appropriate metric. Only the don’t

cares from the candidate input of those erroneous outputs that intersect with

the candidate outputs are disallowed (removed). This guarantees the search

space is restricted to lie within the given lower and upper bound, i.e., C-

EXDC and O-EXDC. Since C-EXDC contains the original network outputs,

there is always at least one allowed output, i.e., the correct output, that has a

non-empty intersection with candidate outputs (in this case, the intersection

contains all candidate outputs).

The strategy for selecting the candidates for removal from EXDC is

summarized. For each input with conflicting outputs:

1) Find the Hamming distance between the approximate output and each

allowed output.

2) Identify as target output the output with the minimum Hamming distance

for which at least one output bit is contained in the output candidate list

97

(this is the output whose bitwise XOR difference from the approximate

output also intersects with the candidate output set.)

3) Change all the output bits that are in the intersection from 2) to be sensitive

to the input, i.e., remove the current input from the EXDC of each such

output. Repeat this process for all inputs that produce conflicts.

Note that there can be multiple allowed outputs satisfying the strategy

described in 2) and 3). The selected output is the one that is first found

among the allowed outputs which are listed in an arithmetic ascending order.

In Table 4.5, by comparing the approximate output 101 for input 01 with

all allowed outputs {010, 011, 100}, it can be found that output 100 has the

minimum Hamming distance with a difference only on y0. However, y0 is not

a candidate output for this input. Therefore, 011 is selected as the targeted

allowed output: it has the next minimal Hamming distance but it has outputs

that are candidate outputs. In this case, the allowed output 011 differs from

the current approximated output 101 in y1 and y2 both of which are in the

candidate list. Therefore, y1 and y2 are modified to be sensitive to input 01,

i.e., input 01 is removed from O-EXDC of y1 and y2. Similarly, input 11 is

removed from O-EXDC of y1. The non-shaded elements of EXDC remain the

same as there are no other conflicts in this iteration.

Applying the updated EXDC set to the original Boolean network pro-

duces another version of the approximate Boolean network. However, while

the conflict outputs found in the previous iteration have been removed, new

98

conflict outputs may be produced. Those conflicts are iteratively corrected

by following the above steps. The algorithm clearly implements a greedy ap-

proach: in every iteration, all conflicts manifest at this iteration are corrected

by making the minimum possible changes to EXDC. This heuristic solution

strategy is observed to behave reasonably well. On the benchmarks that are

utilized, it is observed that the number of iterations is typically small (3 to 4).

Besides, the behavior is monotonic: with each iteration, as the number of con-

flict inputs is reduced, the network gate count monotonically increases. The

algorithm stops when no conflict output exists. In the theoretical worst case, it

stops when there are no candidate outputs left, i.e., O-EXDC is reduced to C-

EXDC. On the benchmarks, it is observed that the algorithm stops earlier and

produces a substantial improvement over using C-EXDC. Section4.3 provides

more details of experiments and results. The above algorithm is summarized

in Algorithm 4 up to Line 6.

An approximate network produced by the above algorithm is compat-

ible with the original Boolean relation and satisfies the error magnitude con-

straint. Next subsection shows how to extend the above algorithm to solve

the general MALS problem (4.1) that jointly considers error magnitude and

frequency constraints.

4.2.3 Resolving Frequency Violations

The approximate Boolean network resulting from the above algorithm

has an arbitrary error frequency (often close to 100%), and thus, typically,

99

violates the constraint. A recovery procedure is developed to produce a feasible

solution with respect to error frequency.

Consider an input x for which the simplified Boolean network produces

an output different from the exact output.Such an input is called a difference

input and the corresponding output a difference output. The error frequency

reduction is based on recovering the correct outputs on some or all of the differ-

ence inputs while aiming to minimize the network cost increase. Corrections

are achieved by updating EXDC to enforce the correct outputs on selected

inputs.

The strategy to deal with a single-output case is discussed as follows.

Suppose that the number of difference inputs is N and the target error fre-

quency is R. The goal is to identify at least k = N − R difference inputs to

correct out of the set of N possible inputs. The fact that N is typically very

large and R is small makes identifying a good set of k inputs to correct very

difficult. It is infeasible to try all possible sub-sets. A heuristic strategy is

adopted that minimizes the dependence on the choice of a sub-set by picking

an arbitrary smaller sub-set of αk inputs, where α is, typically, 0.2 to 0.5.

Notice that aiming to correct k inputs does not mean that the resulting net-

work has exactly R−k difference outputs since new errors may appear. Thus,

depending on the error frequency constraint R, the procedure requires several,

typically 6 to 10 iterations to remove all difference inputs.

The network cost minimization principle is further extended to handle

multiple outputs. This is crucial, since an input remains a difference input as

100

long as one or more outputs are in error. In dealing with the multi-output case,

it is observed that in some cases, forcing correctness on different outputs may

predictably lead to different network cost increases. This is based on the fact

that in many networks, there is a variation in the degree to which network

outputs are dependent on the rest of the network. In other words, there is

variation in the degree of embeddedness of an output in the network. This can

be quantified by finding the ratio of the gates that are in the fan-in cone of an

output over the overall network gate count. A higher ratio indicates a higher

value of embeddedness. It is reasonable to expect that enforcing correctness

on outputs with lower embeddedness leads to a lower network cost increase

as it requires modifications to a smaller region of the network. This work is

primarily concerned with arithmetic circuits where the degree of embedded-

ness is easily ascertained from basic arguments and therefore does not require

explicit extraction. In arithmetic circuits, the outputs corresponding to the

LSBs naturally have a lower degree of embeddedness. Therefore, the correct-

ness is prioritized enforcing on network outputs corresponding to LSBs, which

should lead to the smallest gate increase. The algorithm iteratively corrects

difference inputs on outputs moving from LSB to MSB until the entire network

satisfies the error frequency constraint. The error frequency recovery strategy

is summarized:

1) For an output i, identify all of its ki difference inputs;

2) Remove αki fraction of difference inputs from the EXDC;

101

3) Repeat 2) until error frequency is satisfied or ki = 0;

4) Repeat for output i = i + 1 from LSB to MSB until error frequency con-

straint is met.

See the example in Table 4.6 for an illustration of a single iteration of

the algorithm. It is observed that altogether there are two difference inputs

(00 and 10). Suppose the error frequency constraint is 25%. Therefore, in this

iteration the aim would be to correct one input. Because the difference output

for 00 is the LSB, this input is chosen to be corrected and y0 is modified to be

sensitive to input 00.

The complete approach is summarized in Algorithm 4.

Table 4.6: Error frequency recovery example

Inputs
Exact

Output
Old

EXDC
Approx.
Outputs

Updated
EXDC

x1, x0 y2, y1, y0 y2, y1, y0 y2, y1, y0 y2, y1, y0
00 {000} 001 001 000
01 {010} 100 010 100
10 {110} 110 010 010
11 {011} 101 011 101

4.3 Experimental Results

The MALS algorithm is implemented in a C++ environment using

ABC [48], SIS [47] and Design Compiler as the synthesis tools. To evaluate

the capability of the proposed algorithm for significant gate count reduction

under general error magnitude and frequency constraints, MALS is used to

102

generate a range of approximate solutions of different types of adders and

multipliers with different bitwidth. All experiments were performed on an

Intel 3.4 GHz workstation. Table 4.7 shows the circuit-specific information for

the adders and multipliers that are used.

Table 4.7: Circuits used for MALS algorithm

Name Function I/O Gates
RCA8 8-bit Ripple Carry Adder 16/9 323
RCA16 16-bit Ripple Carry Adder 32/17 411
CLA16 16-bit Carry Lookahead Adder 32/17 412
KS16 16-bit Kogge Stone Adder 32/17 465

RCA32 32-bit Ripple Carry Adder 64/33 834
Wallace8 8-bit Wallace Multiplier 16/16 1259
Dadda8 8-bit Dadda Multiplier 16/16 1128

The MALS algorithm is applied to several types of adders and multi-

pliers with different bitwidths (Table 4.7). For the 32-bit RCA, the algorithm

is applied to the lower 18 bits. The runtime varies from a few seconds for a

small adder to more than 20 hours for large adders and multipliers.

First, the effectiveness of the proposed MALS algorithm is demon-

strated by comparing to networks synthesized using lower bound C-EXDC

when only the magnitude of error is constrained. Figure 4.1(a) shows two

types of 16-bit adders and an 8-bit Wallace multiplier synthesized by both

the C-EXDC and RA-EXDC identified by the algorithm for several magni-

tudes of allowed error. The error magnitude is shown as the percentage of the

maximum output value (since circuits have different bitwidths, errors of the

103

same absolute magnitude indicate varying relative significance). It is observed

that the network simplified by the proposed RA-EXDC outperforms the ap-

proach using C-EXDC by up to 20% in terms of achieved gate count reduction.

Figure 4.1(b) shows the gate count and conflict inputs changes over each iter-

ations. Each curve refers to the iteration history of one network, where each

point refers to one iteration. All iterations start from the O-EXDC (the point

with the largest conflicts number) and monotonically reduce to zero conflicts.

For the given benchmark circuits, the algorithm converged within 4 iterations

in all cases. The solution identified by C-EXDC is also marked in this figure.

104

0.0 0.5 1.0 1.5

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

li
z
e

d
 G

a
te

 C
o

u
n

t

Error Magnitude (%)

 Wallace8_C-EXDC

 CLA16_C-EXDC

 RCA16_C-EXDC

 Wallace8_RA-EXDC

 CLA16_RA-EXDC

 RCA16_RA-EXDC

(a) Error magnitude sweep

0 10 20 30 40 50 60 70

0.65

0.70

0.75

0.80

0.85

0.90

0.95

N
or

m
al

iz
ed

 G
at

e
C

ou
nt

Conflict Count (%)

 CLA16,M=300 (0.2%)
 RCA16,M=300 (0.2%)
 Wallace8, M=130 (0.2%)
 CLA16 by C-EXDC
 RCA16 by C-EXDC
 Wallace8 by C-EXDC

(b) Gate count and conflicts over iterations

Figure 4.1: Networks simplified by C-EXDC and RA-EXDC

105

In order to give an intuition of how the network evolves over iterations,

the successive optimizations performed on the fan-in cone of the sum bit 4 of

a simple 8-bit RCA adder is shown in Figure 4.2. The process converges in

iteration 3. Compared to an C-EXDC based approach, 4 gates are saved by

using RA-EXDC.

Figure 4.2: Logic cone of sum bit 4 in an 8-bit RCA as it changes over algorithm
iterations

Figure 4.3, 4.4, and 4.5 show the results of synthesizing approximate

networks jointly under both types of constraints. First each network is synthe-

sized with error magnitude constraints equal to 300 and 1000 (corresponding

to different relative error magnitudes). An error frequency sweep is further

performed by running the algorithm and recording every possible frequency

achieved during the error frequency recovery phase. Results show that de-

pending on the error magnitude and circuit, gate count reductions ranging

from 5% to 50% can be achieved if frequency is unconstrained. Achievable

gate count reductions decrease with stricter error frequency constraints. The

results indicate that in some cases, the space of solutions is sparse in terms

of achievable error frequencies. Note that this sparsity reduces with increased

106

flexibility offered by larger error magnitude constraints.

0 20 40 60 80 100

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 G
at

e
C

ou
nt

Error Frequency (%)

 CLA16, M=300(0.2%)
 CLA16, M=1000(0.76%)
 KS16, M=300(0.2%)
 KS16, M=1000(0.76%)
 KS16, M=4000(3.0%)

Figure 4.3: Error magnitude and frequency constrained solutions for 16-bit
adders

0 20 40 60 80 100
0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 G
at

e
C

ou
nt

Error Frequency (%)

 RCA32, M=300(0.0000035%)
 RCA32, M=1000(0.000012%)

Figure 4.4: Error magnitude and frequency constrained solutions for 32-bit
ripple carry adder

107

0 20 40 60 80 100

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 G
at

e
C

ou
nt

Error Frequency (%)

 Dadda8, M=300(0.45%)
 Dadda8, M=1000(1.5%)
 Wallace8, M=300(0.45%)
 Wallace8, M=1000(1.5%)

Figure 4.5: Error magnitude and frequency constrained solutions for 8-bit
multipliers

4.4 Summary

This chapter addresses the multi-level approximate logic synthesis (MALS)

problem under general error constraints. The error magnitude constrained

MALS is formulated using Boolean relations to capture the allowed error be-

haviors. This formulation is more general, grants better flexibilities on error

constraints and hence leads to better solutions than approaches based on in-

completely specified functions. An algorithm is further presented to solve

the MALS problem under general error magnitude and frequency constraints.

The algorithm starts with a solution that is overly relaxed. In an iterative and

greedy fashion, it then first identifies a solution satisfying the magnitude con-

straint by successively applying a series of less and less relaxed conventional

108

multi-level network optimizations. The algorithm further ensures compliance

to the error frequency constraint by recovering the correct outputs on error-

producing inputs to minimize the network cost increase until the frequency

constraint is met. Experiments on a range of arithmetic circuit blocks demon-

strated the effectiveness in achieving large gate count reductions across flexible

error magnitude and frequency constraints.

109

Chapter 5

Conclusions

This dissertation presents the results of research on several distinct

topics in approximate digital circuit design. The investigated topics include

a formal analysis of timing-starved addition and novel techniques for inexact

logic synthesis in two-level and multi-level forms. The dissertation has demon-

strated the existence of a rich trade-off space for design of approximate circuits

across different axis of quality metrics (error magnitude and error frequency)

and conventional optimization objectives (e.g., energy or logic complexity).

5.1 Limitations of the Current Work

Although results of the dissertation show that trading off accuracy

grants new opportunities in design optimizations, several limitations remain.

For one, the synthesis of inexact CB logic in exploring the LSBs for approxi-

mate adders (Chapter 2) is based on a brute force search and is sub-optimal in

both the synthesis quality and runtime. This also motivates the more general

approximate logic synthesis research presented in Chapter 3 and Chapter 4.

With some major improvements, the proposed approximate logic syn-

thesis (ALS) algorithms, however, still have some sub-optimality and scala-

110

bility limitations. One source of sub-optimality lies in the adoption of the

two-phase strategy, in which the error frequency constraint is resolved on top

of the error magnitude constraint only solution. Since, an optimal solution in

the first phase does not necessarily lead to optimality in the error frequency

recovery phase, no guarantees on the overall optimality can be made. Besides,

the proposed algorithms are intrinsically heuristic. Nevertheless, the algo-

rithms still demonstrate to be effective with large logic complexity reductions

at reasonable error levels.

The scalability of the proposed ALS algorithms is limited by the use

of Boolean relations. Runtime and space complexities are both exponential in

the network bitwidth due to the necessity of exhaustive examinations for the

relation construction. Several potential solutions exist for applying the ALS

algorithms onto large bitwidth networks. When error magnitude constraints

are small, the ALS algorithms can be applied only to the logic cones of the LSB

network at the cost of some optimality loss. Otherwise, when error magnitudes

are large, the bitwidth and error magnitude can be first proportionally scaled

down to a smaller range before applying the algorithm.

5.2 Future Work

In this dissertation, hardware-level approximations have been studied

in the context of design-time optimizations for application-specific systems.

This relied on the assumption that target systems are intrinsically able to

tolerate errors, and crucially, the error-tolerance level is fixed in the design

111

phase. As such, the proposed approaches are investigated under worst-case

constraints and representative inputs (typically assumed to be uniformly dis-

tributed throughout this dissertation). In reality, requirements or inputs may

vary dynamically at run-time, often significantly deviating from worst- or

average-case assumptions made at design time. This can lead to overdesign,

leaving optimization potentials untapped, as well as narrowing the applica-

tion scope. Therefore, future work should investigate approximate computing

techniques capable of run-time error-level adjustment that depends on the

accuracy and energy requirements of a varying workload.

General-purpose processors are natural candidates for such systems.

Run-time accuracy-adaptive computing blocks has been investigated and em-

ployed for design of approximate datapaths. Alternatively, the processor can

be designed to switch and dispatch instructions among different fixed-accuracy

computing blocks, where the blocks delivering different accuracy levels can

be generated through logic-level approximate design/synthesis techniques dis-

cussed in this dissertation. For control logic, on the other hand, it is often

believed that approximations can not be applied. However, this is not neces-

sarily true. Broadly speaking, there have been studies on the approximation of

control operations, e.g., techniques for branch predictors [49, 50] and approx-

imate replacement policies for cache designs [51]. These techniques enable

approximation of control logic. However, as a common feature, they are all

equipped with some sort of error correction mechanism (e.g., pipeline rollback)

to guarantee ultimate error-free operation. This is distinct from datapath or

112

other intrinsically error-tolerance approximations. For example, while the fo-

cus of error-tolerant applications is typically on minimizing error magnitude, in

the presence of correction mechanisms, error frequency becomes most impor-

tant. This further motivates the need for flexible synthesis approaches under

general error constraints as presented in this dissertation. It is also worth men-

tioning, however, that the objectives in such control approximations often aim

at high performance (through reductions of critical paths or cycle numbers)

rather than low energy. As such, there is a need for approximate logic design

and synthesis techniques under a wider array of simultaneous and competing

objectives.

Ultimately, future research should focus on investigating a complete sys-

tems approach with support for approximations spanning from the higher lev-

els (software and algorithms) down to hardware-, architecture- and logic-level

approximations. In such a setup, the programmer should be able to declare

some application outputs as approximate and allow the compiler to use the ap-

propriate approximate instructions or computing blocks. This system-wide ap-

proach to approximate computing should be aimed at overall energy/accuracy

optimality during the runtime of a program. As is in other power-optimization

contexts, software- and algorithm-level techniques may thereby offer addi-

tional, and often more significant opportunities for approximation.

113

Bibliography

[1] R. Gonzalez, B. Gordon, and M. Horowitz, “Supply and threshold volt-

age scaling for low power CMOS,” IEEE Journal of Solid-State Circuits,

vol. 32, pp. 1210–1216, 1997.

[2] P. Pillai and K. Shin, “Real-time dynamic voltage scaling for low-power

embedded operating systems,” ACM SIGOPS Operating Systems Review,

vol. 35, pp. 89–102, 2001.

[3] G. Téllez, A. Farrahi, and M. Sarrafzadeh, “Activity-driven clock design

for low power circuits,” in Proceedings of the International Conference on

Computer-Aided Design (ICCAD), San Jose, CA, pp. 62–65, November

1995.

[4] Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low

power design of sequential circuits,” IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, vol. 47, pp. 415–420,

2000.

[5] D.-S. Chiou, S.-H. Chen, S.-C. Chang, and C. Yeh, “Timing driven power

gating,” in Proceedings of the Design Automation Conference (DAC), San

Francisco, CA, pp. 121–124, July 2006.

114

[6] G. D. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-

Hill Higher Education, New York: McGraw-Hill Higher Education, 1994.

[7] D. Hisamoto, W. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo,

E. Anderson, T. King, J. Bokor, and C. Hu, “FinFET: a self-aligned

double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron

Devices, vol. 47, pp. 2320–2325, 2000.

[8] J. Kao, A. Chandrakasan, and D. Antoniadis, “Transistor sizing issues

and tool for multi-threshold CMOS technology,” in Proceedings of the

Design Automation Conference (DAC), Anaheim, CA, pp. 409–414, June

1997.

[9] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and

D. Grossman, “EnerJ: Approximate data types for safe and general low-

power computation,” ACM SIGPLAN Notices, vol. 46, pp. 164–174, 2011.

[10] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,

and J. T. Ludwig, “Approximate signal processing,” Journal of VLSI

Signal Processing, vol. 15, pp. 177–200, 1997.

[11] T. Xanthopoulos and A. Chandrakasan, “A low-power DCT core using

adaptive bitwidth and arithmetic activity exploiting signal correlations

and quantization,” IEEE Journal on Solid-State Circuits, vol. 35, pp. 740–

750, 2000.

115

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture

support for disciplined approximate programming,” ACM SIGPLAN No-

tices, vol. 47, pp. 301–312, 2012.

[13] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-

nathan, “Quality programmable vector processors for approximate com-

puting,” in Proceedings of the Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO), Davis, CA, pp. 1–12, December

2013.

[14] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-

point multimedia applications,” IEEE Transactions on Computers, vol. 54,

pp. 922–927, 2005.

[15] R. Hegde and N. Shanbhag, “Soft digital signal processing,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 9, pp. 813–

823, 2001.

[16] A. Sinha and A. P. Chandrakasan, “Energy efficient filtering using adap-

tive precision and variable voltage,” in Proceedings of the International

ASIC/SOC Conference, Washington, DC, pp. 327–331, September 1999.

[17] K. He, A. Gerstlauer, and M. Orshansky, “Controlled timing-error accep-

tance for low energy IDCT design,” in Proceedings of the Design, Automa-

tion and Test in Europe Conference (DATE), Grenoble, France, pp. 1–6,

March 2011.

116

[18] Z. Kedem, V. Mooney, K. Muntimadugu, and K. Palem, “An approach to

energy-error tradeoffs in approximate ripple carry adders,” in Proceedings

of the International Symposium on Low Power Electronics and Design

(ISLPED), Fukuoka, Japan, pp. 211–216, August 2011.

[19] N. Zhu, W. L. Goh, G. Wang, and K. S. Yeo, “Enhanced low-power high-

speed adder for error-tolerant application,” in Proceedings of the Inter-

national SoC Design Conference (ISOCC), Incheon, Korea, pp. 323–327,

November 2010.

[20] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy, “IM-

PACT: imprecise adders for low-power approximate computing,” in Pro-

ceedings of the International Symposium on Low Power Electronics and

Design (ISLPED), Fukuoka, Japan, pp. 409–414, August 2011.

[21] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, “Design

of low-power high-speed truncation-error-tolerant adder and its applica-

tion in digital signal processing,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 18, pp. 1225–1229, 2010.

[22] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative ad-

dition: a new paradigm for arithmetic circuit design,” in Proceedings of

the Design, Automation and Test in Europe Conference (DATE), Munich,

Germany, pp. 1250–1255, March 2008.

[23] Y. Kim, Y. Zhang, and P. Li, “An energy efficient approximate adder

117

with carry skip for error resilient neuromorphic VLSI systems,” in Pro-

ceedings of the International Conference on Computer-Aided Design (IC-

CAD), San Jose, CA, pp. 130–137, November 2013.

[24] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate

arithmetic designs,” in Proceedings of the Design Automation Conference

(DAC), San Francisco, CA, pp. 820–825, June 2012.

[25] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and syn-

thesis of quality-energy optimal approximate adders,” in Proceedings of

the International Conference on Computer-Aided Design (ICCAD), San

Jose, CA, pp. 728–735, November 2012.

[26] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-

oriented approximate adder design and its application,” in Proceedings of

the International Conference on Computer-Aided Design (ICCAD), San

Jose, CA, pp. 48–54, November 2013.

[27] A. Burks, H. Goldstine, and J. Von Neumann, Preliminary Discussion

of the Logical Design of an Electronic Computing Instrument, Princeton,

NJ: Inst. for Advanced Study, 1946.

[28] B. Gilchrist, J. H. Pomerene, and S. Y. Wong, “Fast carry logic for dig-

ital computers,” IRE Transactions on Electronic Computers, vol. EC-4,

pp. 133–136, 1955.

118

[29] D. R. Kelly and B. J. Phillips, “Arithmetic data value speculation,” in

Proceedings of the Asia-Pacific conference on Advances in Computer Sys-

tems Architecture (ACSAC), Singapore, pp. 353–366, October 2005.

[30] S.-L. Lu, “Speeding up processing with approximation circuits,” IEEE

Transactions on Computers, vol. 37, pp. 67–73, 2004.

[31] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant

applications,” in Proceedings of the Design, Automation Test in Europe

Conference (DATE), Dresden, Germany, pp. 957–960, March 2010.

[32] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-

nathan, “SALSA: systematic logic synthesis of approximate circuits,” in

Proceedings of the Design Automation Conference (DAC), San Francisco,

CA, pp. 796–801, June 2012.

[33] L. Chakrapani and K. Palem, “A probabilistic Boolean logic for en-

ergy efficient circuit and system design,” in Proceedings of the Asia and

South Pacific Design Automation Conference (ASP-DAC), Taipei, Tai-

wan, pp. 628–635, January 2010.

[34] A. Lingamneni, C. Enz, J. L. Nagel, K. Palem, and C. Piguet, “Energy

parsimonious circuit design through probabilistic pruning,” in Proceedings

of the Design, Automation Test in Europe Conference (DATE), Grenoble,

France, pp. 1–6, March 2011.

119

[35] P. McGeer, J. Sanghavi, R. Brayton, and A. Vincentelli, “ESPRESSO-

SIGNATURE: A new exact minimizer for logic functions,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 1, pp. 432–440,

1993.

[36] Design Compiler, www.synopsys.com.

[37] FreePDK, http://vlsiarch.ecen.okstate.edu/flows/FreePDK_SRC/.

[38] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis

under general error magnitude and frequency constraints,” in Proceedings

of the International Conference on Computer-Aided Design (ICCAD),

San Jose, CA, pp. 779–786, November 2013.

[39] R. Brayton and F. Somenzi, “An exact minimizer for Boolean relations,”

in Proceedings of the International Conference on Computer-Aided Design

(ICCAD), Santa Clara, CA, pp. 316–319, November 1989.

[40] B. Lin and F. Somenzi, “Minimization of symbolic relations,” in Pro-

ceedings of the International Conference on Computer-Aided Design (IC-

CAD), Santa Clara, CA, pp. 88–91, November 1990.

[41] S.-W. Jeong and F. Somenzi, “A new algorithm for the binate covering

problem and its application to the minimization of Boolean relations,” in

Proceedings of the International Conference on Computer-Aided Design

(ICCAD), Santa Clara, CA, pp. 417–420, November 1992.

120

[42] A. Ghosh, S. Devadas, and A. Newton, “Heuristic minimization of Boolean

relations using testing techniques,” in Proceedings of the International

Conference on Computer Design (ICCD), Cambridge, MA, pp. 277–281,

September 1990.

[43] Y. Watanabe and R. Brayton, “Heuristic minimization of multiple-valued

relations,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 12, pp. 1458–1472, 1993.

[44] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive paradigm to

solve Boolean relations,” in Proceedings of the Design Automation Con-

ference (DAC), San Diego, CA, pp. 416–421, June 2004.

[45] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate logic

synthesis under general error constraints,” in Proceedings of the Interna-

tional Conference on Computer-Aided Design (ICCAD), San Jose, CA,

pp. 504–510, November 2014.

[46] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive paradigm

to solve Boolean relations,” IEEE Transactions on Computers, vol. 58,

pp. 512–527, 2009.

[47] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-

danha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-

Vincentelli, SIS: A System for Sequential Circuit Analysis, Tech. Report

No. UCB/ERL M92, 1992.

121

[48] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength

verification tool,” in Proceedings of the International Conference on Com-

puter Aided Verification (CAV), Edinburgh, UK, pp. 24–40, July 2010.

[49] J. E. Smith, “A study of branch prediction strategies,” in Proceedings

of the Annual Symposium on Computer Architecture, Los Alamitos, CA,

pp. 135–148, 1981.

[50] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch predic-

tion,” in Proceedings of the Annual International Symposium on Microar-

chitecture, New York, NY, pp. 51–61, 1991.

[51] J. Handy, The Cache Memory Book, San Diego: Morgan Kaufmann, 1998.

[52] A. A. Del Barrio, R. Hermida, and S. O. Memik, “Exploring the energy

efficiency of multispeculative adders,” in Proceedings of the International

Conference on Computer Design (ICCD), Asheville, NC, pp. 309–315,

October 2013.

[53] D. Shin and S. Gupta, “A new circuit simplification method for error

tolerant applications,” in Proceedings of the Design, Automation Test in

Europe Conference (DATE), Grenoble, France, pp. 1–6, March 2011.

[54] P. Albicocco, G. C. Cardarilli, A. Nannarelli, M. Petricca, and M. Re,

“Imprecise arithmetic for low power image processing,” in Proceedings of

the Asilomar Conference on Signals, Systems and Computers (ACSSC),

Pacific Grove, CA, pp. 983–987, November 2012.

122

[55] I. S. Chong and A. Ortega, “Hardware testing for error tolerant multi-

media compression based on linear transforms,” in Proceedings of the In-

ternational Symposium on Defect and Fault Tolerance in VLSI Systems

(DFT), Monterey, CA, pp. 523–531, October 2005.

[56] M. R. Choudhury and K. Mohanram, “Approximate logic circuits for low

overhead, non-intrusive concurrent error detection,” in Proceedings of the

Design, Automation and Test in Europe Conference (DATE), Munich,

Germany, pp. 903–908, March 2008.

[57] A. Burg, F. Girkaynak, H. Kaeslin, and W. Fichtner, “Variable delay

ripple carry adder with carry chain interrupt detection,” in Proceedings of

the International Symposium on Circuits and Systems (ISCAS), Bangkok,

Thailand, pp. 113–116, May 2003.

[58] J. Huang and J. Lach, “Exploring the fidelity-efficiency design space us-

ing imprecise arithmetic,” in Proceedings of the Asia and South Pacific

Design Automation Conference (ASP-DAC), Yokohama, Japan, pp. 579–

584, January 2011.

[59] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance ap-

proximate multiplier with configurable partial error recovery,” in Proceed-

ings of the conference on Design, Automation & Test in Europe (DATE),

Dresden, Germany, pp. 1–4, March 2014.

[60] J. T. Ludwig, S. H. Nawab, and A. P. Chandrakasan, “Low-power digi-

tal filtering using approximate processing,” IEEE Journal of Solid-State

123

Circuits, vol. 31, pp. 395–400, 1996.

[61] J. Park, S. Kwon, and K. Roy, “Low power reconfigurable DCT design

based on sharing multiplication,” in Proceedings of the International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), Orlando,

FL, pp. 3116–3119, May 2002.

[62] G. Karakonstantis, D. Mohapatra, and K. Roy, “System level DSP syn-

thesis using voltage overscaling, unequal error protection and adaptive

quality tuning,” in Proceedings of the IEEE Workshop on Signal Process-

ing Systems (SiPS), Tampere, Finland, pp. 133–138, October 2009.

[63] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and

challenges for better than worst-case design,” in Proceedings of the Asia

and South Pacific Design Automation Conference (ASP-DAC), Shanghai,

China, pp. 2–7, January 2005.

[64] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,

D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power

pipeline based on circuit-level timing speculation,” in Proceedings of the

International Symposium on Microarchitecture (MICRO), San Diego, CA,

pp. 7–18, December 2003.

[65] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, and Y. Yamashita, “A

100-MHz 2-D discrete cosine transform core processor,” IEICE Transac-

tions on Electronics, vol. 75, pp. 390–397, 1992.

124

[66] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T. Chakrad-

har, “Scalable effort hardware design: Exploiting algorithmic resilience for

energy efficiency,” in Proceedings of the Design Automation Conference

(DAC), Anaheim, CA, pp. 555–560, July 2010.

[67] V. Chippa, A. Raghunathan, K. Roy, and S. Chakradhar, “Dynamic effort

scaling: Managing the quality-efficiency tradeoff,” in Proceedings of the

Design Automation Conference (DAC), San Diego, CA, pp. 603–608, June

2011.

[68] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: From error visibility to structural similarity,” IEEE Trans-

actions on Image Processing, vol. 13, pp. 600–612, 2004.

[69] F. J. Kurdahi, A. Eltawil, K. Yi, S. Cheng, and A. Khajeh, “Low-power

multimedia system design by aggressive voltage scaling,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 852–

856, 2010.

[70] W. Chen, C. Smith, and S. Fralick, “A fast computational algorithm for

the discrete cosine transforms,” IEEE Transactions on Communications,

vol. 25, pp. 1004–1009, 1977.

[71] V. Dimitrov and K. Wahid, “Multiplierless DCT algorithm for image com-

pression applications,” Information Theories and Applications, vol. 11,

pp. 162–169, 2004.

125

[72] L. Wang and N. R. Shanbhag, “Low-power filtering via adaptive error-

cancellation,” IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 51, pp. 575–583, 2003.

[73] E. L. Lawler, “An approach to multilevel boolean minimization,” Journal

of the ACM, vol. 11, pp. 283–295, 1964.

126

Vita

Jin Miao was born in Luoyang, one of the Four Great Ancient Capitals

of China. He received his Bachelor degree in Engineering from Zhejiang Uni-

versity, China, in 2010. In the same year, he joined in The University of Texas

at Austin (UT-Austin), and was enrolled in the Ph.D. program in Electrical

and Computer Engineering Department. In 2012, he received the Master of

Science degree in Engineering from UT-Austin, and continued his Ph.D. study

afterwards.

Address: jinmiao@utexas.edu

This dissertation was typed by the author.

127

