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High frequency microrheology with optical tweezers
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This thesis presents a method to measure the linear viscoelastic re-

sponse of fluids by tracking and analyzing the thermal, Brownian motion of

suspended tracer particles, known as passive microrheology. The particle is

confined in a harmonic optical trap and its one dimensional trajectory is ob-

tained by a home-built split beam detection system, which works similar but

responds faster than position detection with commercial quadrant photodi-

odes. The theory which is necessary to convert the particle trajectory into the

complex shear modulus is derived in detail, pointing out that the commonly

used Mason-Weitz method needs to be modified in order to obtain correct re-

sults at high frequencies due to hydrodynamic effects of the fluid. It follows a

detailed explanation of the data analysis procedure which is verified for water

up to angular frequencies of 107 rad/s in very good agreement with the theory.

Finally, there is an outlook how to apply the method to actual complex fluids.
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Chapter 1

Introduction

Rheology, as an interdisciplinary subject, is the study of the flow of

matter and its response to external forces, especially in the liquid phase. Sim-

ple Newtonian fluids, such as water, can be well approximated as purely vis-

cous and simple solids can be described with Hooke’s law as purely elastic.

However, many materials such as polymer solutions, gels and various bio ma-

terials, referred as non Newtonian, complex or viscoelastic fluids contain both,

viscous and elastic elements. The linear response of the fluid can be described

by means of the complex shear modulus G∗(ω) which is the ratio of stress

σ(ω) and strain γ(ω), no matter which has been imposed and which has been

measured [1]

σ(ω) = G∗(ω)γ(ω). (1.1)

The real part of the complex shear modulus corresponds to the elasticity of

the fluid whereas the imaginary part contains information about its viscous

behavior. Its determination is the main goal of microrheology.

In traditional bulk rheometry, one usually applies a controlled stress or

strain to measure the response of the fluid [2]. Passive microrheology, on the

other side, is based on observing the thermally driven Brownian motion of a
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tracer particle, usually a micron sized sphere, in a fluid and inferring viscoelas-

tic properties from the particle’s trajectory. There are numerous advantages

of microrheology compared to traditional rheology. First of all, microrheology

can be performed in microscopic, complex environments, requiring very small

sample volumes in the order of microliters, where conventional rheometry pro-

vides only a macroscopic average [3]. Also it is less invasive which makes it

attractive to biological applications. Moreover, microrheology is capable of

accessing a much broader range of frequencies. A downside is, that it requires

certain optical properties, such as at least partial light transparency of the

fluid and low laser absorption of the tracer particle [4]. Microrheology has

found applications in e.g. studying the viscoelasticity of living cells [5, 6] or

biopolymers in pharmaceutical applications [7]. Viscoelastic moduli at high

frequencies are also of interest in industrial applications, for example ink-jet

printing [8].

In order to perform microrheology, one has to determine the mean

square displacement 〈∆x2(t)〉 = 〈[x(t)−x(0)]2〉 of the tracer particle. Over the

years many techniques to measure a particles trajectory have been developed,

for example video-particle tracking, diffusing wave spectroscopy or confining

the particle in an optical trap and obtaining its displacement with a quadrant

photo diode [9]. Here, an optical tweezer setup has been applied, but instead

of a commonly used quadrant photo diode, the particle position is measured

with a home-built split beam detection system, which responds faster than
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commercially available quadrant photodiodes. The experimental setup and

data acquisition procedure is explained in Chapter 2.

The most common way to obtain the complex shear modulus form ob-

servation of Brownian motion was proposed by Mason and Weitz in 1995,

relating it to the Laplace transform of the mean square displacement with a

generalized Stokes-Einstein relation [10]. However, their formula is not accu-

rate at high frequencies, where hydrodynamic effects such as an effective mass

of the bead and hydrodynamic memory of the fluid become important, as it

was already pointed out by Felderhof in 2009 [11, 12] and more recently by

Indei et al. [13]. Chapter 3 presents a detailed derivation of the theory of

Brownian motion in complex fluids, leading to the exact equation to compute

the complex shear modulus with the Laplace transform of the mean square

displacement.

Chapter 4 deals with the data analysis procedure, including an op-

timization of the numerical algorithm and dealing with noise. The method

is verified with water, yielding correct results up to an angular frequency of

107 rad/s and with acetone up to ω = 5 × 106 rad/s. Finally, it is outlined

how to apply the method to actual complex fluids.
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Chapter 2

Experimental setup

This chapter explains the experimental setup, which is capable of record-

ing position trajectories of Brownian particles at very short times, which is

necessary to reach high frequencies in microrheology. The main idea is to hold

a microsphere in an optical trap in order to record a one dimensional trajectory

over a long time to obtain a good statistical time average. The displacement

of the particle is measured with a home-built split beam detection system in

which the trapping beam also serves as the detection beam. The first section

summarizes the physical principle of optical tweezers. The following section

explains the method of split beam detection and the data acquisition process.

The last section contains technical details about the setup.

2.1 Physical principle of optical tweezers

The physical principle of optical tweezers is based on radiation pres-

sure which was first deduced by James Clerk Maxwell from the electromagnetic

theory in 1873 [14] and experimentally verified in 1901 [15, 16]. The result-

ing force on a particle caused by a light source with a power of 1 W can be

estimated by the force on a full reflecting mirror which is approximately 7 nN
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[17]. This is very weak in absolute terms, the development of lasers in the 20th

century, however, makes it possible to focus high power radiation on micron

sized particles and due to their small masses, the radiation force can be five

orders of magnitude higher than the gravitational force. Ashkin was the first

person to observe the acceleration and trapping of transparent micron sized

particles with focused laser beams in 1970 [18]. In 1986, Ashkin et al. reported

the first successful, stable trapping of dielectric particles by a single, focused

laser beam with the gradient force [19]. This technique was further developed

over the years, for example to manipulate viruses and bacteria [20] and has

become a standard tool in biophysics known as the optical tweezer [17].

A relatively simple physical explanation for the optical trapping of a

sphere with diameter d can be found in the ray optics limit d � λ and the

Rayleigh approximation d� λ where the particle is treated as a point dipole

[19]. In most experiments, nevertheless, the diameter is comparable to the

laser wavelength λ and one has to apply the electromagnetic theory which is

very complex. T. Nieminen et al. have developed a computational toolbox to

obtain numerical results with generalized Lorentz-Mie theory in that regime

[21] which will, however, not be further discussed in this thesis.

2.1.1 Ray optics approximation

When the bead diameter is much larger than the laser wavelength,

the trapping can be explained by ray optics [19, 22]. As a ray of photons is

refracted, it leaves the dielectric sphere in a different angle than it entered and
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Figure 2.1: Neglecting reflection, this figure illustrates, that any displacement of the

dielectric sphere from the laser focus leads to a net force back to the trap center due

to momentum transfer of photons to the bead by regarding two typical rays. If the

bead is in the focus, there is no resulting force on it and the rays are perpendicular

to the surface (b). If the bead is displaced axially in direction of the laser beam,

the beam converges compared to the equilibrium and the resulting recoil points in

opposite direction of the beam propagation (a). For displacement of the bead axially

in the other direction, the rays spread out behind the bead and the net force points

again to the center of the trap. If the bead is displaced laterally, the net force also

leads back to the equilibrium position (c).

thus has changed its momentum which is transferred to the bead as recoil.

The total momentum change is obtained by summing over all rays. Figure 2.1

illustrates, neglecting reflection from the sphere, that any displacement of the

bead out of the laser focus results in a net force which drags it back into

the focus. Consequently a single, focused laser beam can create a stable 3D

trap. Since the total number of photons refracted is proportional to the laser

intensity, the trapping strength is proportional to the laser power. In reality,

there is also reflection from the bead surface which leads to an additional force

6



in direction of the beam propagation. If this force is stronger than the restoring

force due to refraction (Figure 2.1 (a)), the trap potential has no minimum,

the bead is pushed backwards and a stable trap doesn’t exist.

2.1.2 Rayleigh approximation

A quantitative, analytical description with Rayleigh scattering theory

can be done in the limit d� λ where the trapped particle is treated as a point

dipole [19, 23]. The following sums up the results given in [23] yielding two

different forces on the particle and comments on the stability of the trap.

The intensity of a Gaussian laser beam with fundamental mode TEM00

and linear polarization of the electric field in x-direction, propagating in z-

direction, with focus spot at z = 0 in paraxial approximation is given by [23]

I(r, z) =
2P

πw2(z)
exp

(
− 2r2

w2(z)

)
ẑ. (2.1)

w(z) is the radius where the intensity drops to 1/e2 of its centered value

w(z) = w0

√
1 +

(
zλ0

πw2
0nf

)2

(2.2)

with vacuum laser wavelength λ0, index of refraction nf of the surrounding

fluid and beam waist radius w0 at the focus z = 0. Because of the oscillating

electric field, the induced point dipole radiates and scatters light and the

consequent change of the energy flux resulting in momentum transfer leads to

the scattering force [23]

Fscat(r, z) =
128π5

3

n5
f

cλ40
α2I(r, z). (2.3)

7



α is the polarizability of a dielectric sphere with radius R and ratio m = np/nf

between the index of refraction of the particle and the fluid

α = R3m
2 − 1

m2 + 2
. (2.4)

The gradient force is due to the Lorentz force on the induced dipole [23]

Fgrad(r, z) =
2πnf
c

α∇|I(r, z)|. (2.5)

Similar to the effect of refraction in the ray optics picture, it forms a trapping

potential, pushing the bead to the focus where the laser intensity has its max-

imum. The scattering force, however, corresponding to the reflection in the

ray optics picture, acts in direction of the laser propagation and pushes the

bead out of the trap. With Fnet = Fgrad + Fscat, it requires |Fz,grad| > |Fz,scat|

in order to form a stable trap. Since Fgrad ∝ R3 and Fscat ∝ R6 it is easier too

fulfill this condition for smaller beads. However, since the trapping potential

decreases for smaller radii, but the thermal energy is independent of the radius

by the Equipartition theorem, beads which are too small cannot be trapped

stably either. Comparing the two forces with regard to the index of refraction

ratio yields, that the scattering force increases faster then the gradient force

for higher m. The ratio between gradient force and scattering force can be

increased by reducing the beam waist w0, which requires a high numerical

aperture.

A stable trap can be approximated harmonically for |x| � w0 by ex-

panding the intensity to the second order around the equilibrium position

8



x = 0. The resulting trap constants, neglecting the scattering force, are

kx,y =
8nfαP

cw4
0

(2.6)

kz =
4λ20αP

π2cn2
fw

6
0

. (2.7)

2.2 Split beam detection

Observing Brownian motion at short timescales requires a detector with

very high spacial and temporal resolution. For trapped Brownian motion,

position detection with a quadrant photodiode has become a standard tool,

achieving subnanometer resolution [24–27].

The laser is focused in order to create an optical trap and then re-

collimated by a second objective with focal point at the trap focus and the

intensity profile is detected in the back focal plane. When the particle is

displaced in the plane normal to the optical axis with respect to the trapping

center, it changes the angular intensity distribution of the outgoing beam. In

a quadrant photodiode, the photosensitive area is split into four quadrants

(±x and ±y relative to the optical axis) of which each photo current can

be amplified separately. For small displacements of the bead, the horizontal

deflection is proportional to the total power difference of the left and right

halves and the vertical displacement is proportional to the difference of the top

and bottom halves. A theoretical one dimensional description of the detection

method was given by Gittes and Schmidt, describing the intensity changes by

interference effects of scattered and transmitted light in the Rayleigh regime

9



[24]. Under certain approximations, the result is [25]

I+ − I−
I+ + I−

≈ 32
√
π
nfα

λ0w2
0

x

w0

e−(x/w0)2 . (2.8)

which is linear for x � w0, where I+,− is the integrated intensity on the +x

(-x) side. The displacement of the bead from the trapping center in Brownian

motion can be estimated with the root mean square by the Equipartition

theorem xrms ≡
√
〈x2〉 =

√
kBT/k with k being the trapping strength, which

is of the order of tens of nanometers and in the linear regime of the detector.

The main limitation in bandwidth of quadrant photodiodes to around

150 kHz is their capacitance. A single photodiode can achieve a higher band-

width, because the beam can be focused to a much smaller photosensitive area

leading to a lower capacitance of the diode and a faster response. This was

exploited to develop a faster detection system in the Raizen group. The main

idea is to physically split the laser beam and focus both halves of the beam

on a fast, balanced photodetector which amplifies the intensity difference of

the inputs. The first generation of the detection system used a fiber bundle to

split the beam [28]. More effectively, as in the current setup, the beam is split

by a mirror with a sharp edge (D-shaped mirror) which is easier and causes

less noise [29]. This setup only allows one dimensional detection, but could

simply be extended to two dimensions by adding another D-shaped mirror.

However, this is not necessary for the purpose of this thesis, since the equa-

tions of motion in the theory of Brownian motion have no coupling between

the Cartesian coordinates which makes a one dimensional trajectory sufficient.

10



Figure 2.2: Schematic of the split beam detection system. A 1064nm infrared laser

beam is focused and re-collimated by two identical objectives, forming an optical

trap. In between is a fluid chamber in which the trapped Brownian motion takes

place. The detection beam is then split into two equal halves by a D-shaped mirror

(CM) and detected by a fast balanced detector, amplifying the intensity difference

of the input beams. A second, counter propagating laser beam can be introduced

with two dichroic mirrors (DM) to cancel the scattering force if it is necessary in

order to form a stable trap. Graphic from Jianyong Mo [30].

In order to obtain a clean signal, the D-shaped mirror has to be aligned

carefully. If it doesn’t split the beam in two equal halves, it effectively adds

a constant displacement of the bead and also increases laser intensity noise.

The limiting noise at high frequencies is photon shot noise which is due to the

quantization of light. The arrival rate of photons is a Poisson process with

variance 〈∆N2〉 = N [31]. Consequently the signal to noise ratio is [29]

SNR ∝
√
N ∝

√
P . (2.9)

At short timescales, one simply “runs out of photons”. Consequently, the noise

level can be reduced by increasing the detection power.

The detection setup contains two different balanced photodetectors. A

DC-coupled commercial detector (Thorlabs model:PDB110C) with a damage

11



(𝑎)

(𝑏)

Figure 2.3: (a): CCD image of the beam profile before splitting at the the
D-shaped mirror. (b) CCD image of a trapped silica bead in water with
R ≈ 1.5µm.

threshold of 5 mW per photodiode and a home built AC-coupled balanced

detector. The AC-detector has been optimized for high frequencies, allowing

a power of up to 100 mW per photodiode, which is much more than most

commercially available detectors [29], to reduce shot noise. In order to keep

the peak to peak voltage within the limits of the op-amp and the digitizer at

such high input power, a high pass filter has been added to the electronics

of the detector to suppress low frequency noise. Since the signal is strongly

modified at low frequencies by the filter, it has to be deconvoluted by dividing

12



Figure 2.4: Transfer function of the AC-detector and its fit. Graphic from
Simon Kheifets [29].

the power spectral density (PSD) of the signal by the response function of the

detector. To do so, the transfer function has been measured and fitted [29].

The output of both detectors is digitized using an ultra low noise ADC

board (GaGe model: Razor 1622 Express CompuScope) with a maximum

sampling rate of 200MSa/s and 128 million consecutive samples. The data ac-

quisition is controlled by a LabVIEW program which has mostly been written

by Akarsh Simha. The resulting data is an array of voltages, equally spaced in

time, which are proportional to the displacement of the bead. The AC detec-

tor cannot give low frequency information because of the high pass filter, but

by combination of both detectors, the whole frequency range can be accessed.
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2.3 Technical details

This section provides technical details about the lasers, trapping optics

and the control of the experiment. It also gives a tutorial how to build flow

cells in which the Brownian motion takes place. A more detailed description

can be found in the dissertation of Simon Kheifets [29] who mainly designed

the experimental setup.

2.3.1 Lasers and optics

The laser used for trapping and detection is a 1064 nm YAG (Inno-

light, model: Mephisto) with a maximum power of 1.2 W and the beam is

fiber coupled into a polarization maintaining single mode fiber (Thorlabs, P3-

1064 PM-FC-5) in order to reduce pointing noise. The laser power can be set

to the desired level with a waveplate and a polarization beam-splitter, con-

trolled by the LabVIEW program. The maximum achievable trapping power

is about 300 mW and the maximum detection power about 150 mW due to ab-

sorption in the objectives. The setup includes a second, fiber coupled, counter

propagating laser (Coherent, model: Verdi V-10, 512 nm) which can be used if

trapping is not possible with a single beam because of the scattering force. Its

power is controlled with an acousto optic modulator. The 1/e2 waist of both

collimated beams after the fibers is about 1.5 mm. The beams are focused and

recollimated using two identical finite-conjugate water-immersion microscope

objective lenses (LOMO, model: OM-25). The nominal numerical aperture is

1.23 with a focal length of 2.5 mm and a working distance of distance 140µm.
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Figure 2.5: Detailed schematic of the experimental setup. The red line is the
optical path of the 1064 nm laser, the green line is the optical path of the
532 nm laser. PBS: polarization beam splitter, PD: photodiode, L: lens, OBJ:
objective, DM: dichroic mirror, CCD: CCD camera, CM: D-shaped mirror.
Graphic from Simon Kheifets [29].
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A CCD camera provides images of the trap region with an 100 mW

red LED as light source. The imaging helps to find and trap beads, provides

information about the bead size, possible contaminants and is useful for the

laser alignment process.

The D-shaped mirror used to split the beam is from Thorlabs, model

BBD05-E03. The power to the detector is controlled with a waveplate and po-

larization beam splitter. The beam profile at the D-shaped mirror is monitored

with a CCD camera.

2.3.2 Flow cells

Since the working distance of the objectives is only 140µm, the flow

cell in which the Brownian motion takes place must be extremely narrow

(∼ 280µm). To achieve that, it is constructed with a layer of Nescofilm (Bando

Chemical Ind. LTD., thickness ∼ 80µm) and two No. 0 microscope cover-

slips (Gold Seal model: 24X60-0-002, 24mm× 60mm, thickness: ∼ 100µm).

To create an outflow and inflow, holes (d ∼ 1mm) are drilled in a stack of

coverslips with a diamond drill with very high speed.

The desired shape of the chamber is cut into the Nescofilm with a

scalpel. Then, it is sandwiched between a drilled an undrilled coverslip and

put on a lab hot plate under pressure at 130◦C for around 6 minutes. This

way the Nescofilm melts and creates a sealed volume. The flowcell is then

mounted on an aluminium bracket with holes aligned to the in- and outflow of

the cell. To connect it, silicone tubing is inserted into drilled nylon setscrews
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Figure 2.6: Illustration of a flow cell mounted on the aluminium bracket.
Graphic by Simon Kheifets [29].

and screwed into the aluminium bracket, sealing the holes of the coverslip by

pressure. The silicone tubing is connected to PTFE tubing and finally to a

syringe to fill the chamber with the desired microsphere suspension with a

pump. The aluminium bracket is placed on a 3-axis translation stage, so that

the chamber position can be changed without affecting the optics.

As it turns out, a clean flowcell is essential to minimize low frequency

noise which is mostly caused by mechanical vibration of the optics resulting

in relative motion of the laser beam to the D-shaped mirror, leading to noise

peaks of the PSD at the resonance frequencies. This effect is especially mag-

nified, if dirt in the chamber is trapped additionally to be bead, or if there

is contamination on the chamber walls which modifies the laser beam pro-

file. Low frequency noise can be transferred through the ground or air flow
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e.g. through air conditioning. There is no easy way to eliminate it but to

further minimize it, the whole setup is built on an air-floated optical table

with maximum damping (TMC, Steel honeycomb core, model number: 78-

676-02). To make flowcells as clean as possible, coverslips are cleaned in an

ultrasonic cleaner with isopropanol and acetone to remove dust and remains

from the drilling. It is also important to fix the tubing with tape on the way to

the pump because it is otherwise also sensitive to vibration and can affect the

Brownian motion in the chamber. Figure 2.7 compares the PSD and trajectory

of a Brownian particle for a noisy and a clean measurement.

In order to avoid boundary effects the bead has to be trapped in the

center of the flowcell. This way the distance to the nearest boundary is about

40µm which is much larger than the radius of the bead, so that boundary

effects are negligible.
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(𝑎)

(𝑏)

Figure 2.7: This figure shows the PSD and the position trajectory (in volts) of a

trapped Brownian particle, as it is produced in real time by the LabVIEW program.

(a) is the result of a dirty and (b) the result of a clean chamber. As one can see in

the red circled area, both measurement have a noise peak at 120 Hz, but it is much

stronger in measurement (a). The position trajectory in (a) looks very periodic

due to the high peak, while it appears much more random in (b) as it should for

Brownian motion.
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Chapter 3

Theories on Brownian motion

Brownian motion is the random movement of particles dispersed in a

fluid which results from the collisions with surrounding atoms or molecules.

It is named after Robert Brown who initially observed the transport phe-

nomenon with pollen in water under a microscope in 1827 [32]. To understand

how a complex fluid affects the motion of a tracer particle in order to perform

microrheology, one first has to study Brownian motion in Newtonian fluids.

The first section of this chapter presents principles of statistical mechanics

of stationary processes which are true in general but required to understand

Brownian motion. Afterwards the first theory which was suggested by Ein-

stein is summarized and the more extensive Ornstein-Uhlenbeck theory on

Brownian motion based on a Langevin equation is explained. To make this

theory applicable for liquids, hydrodynamic effects have to be taken into ac-

count, which is done in section three. Subsequently, the hydrodynamic theory

is further modified to include complex fluids. Predictions of the theory are

illustrated with a simple model of a complex fluid. Finally, section five de-

rives the equations to obtain linear viscoelastic moduli from the observation

of Brownian motion.
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3.1 Statistical mechanics of correlation functions

In this section, it will be illustrated how the most important quan-

tities to characterize Brownian motion which are correlation functions and

power spectral densities are related. Moreover, the reader will learn about the

fluctuation-dissipation theorem, which was published by Kubo in 1966.

3.1.1 Correlation functions of stationary processes

Since Brownian motion involves collisions with trillions of surrounding

molecules, the trajectory of a single particle is chaotic and cannot be pre-

dicted. Consequently, theories aim on statistical quantities which are in the

following denoted with brackets 〈...〉. These formally represent the ensemble

average which is the average over many independent systems with the same

initial conditions or equivalently a statistical average over a certain probability

distribution. Since Brownian motion is a stationary process and we assume

it to be ergodic, however, the ensemble average can be replaced by the time

average [33]

〈ξ〉 =

∫
p(ξ)ξdξ = lim

T→∞

1

T

∫ T/2

−T/2
ξ(t)dt (3.1)

for any stochastic process ξ where p(ξ) is the belonging probability density

and T is the recording time. Accordingly, the correlation function of a random

variable is defined by

Cξ(t) ≡ 〈ξ(t)ξ(0)〉 = lim
T→∞

1

T

∫ T/2

−T/2
ξ(t+ τ)ξ(τ)dτ. (3.2)
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For stationary processes, correlation functions are symmetric in time

〈ξ(t)ξ(0)〉 = 〈ξ(t+ τ)ξ(τ)〉 ⇐⇒︸︷︷︸
τ=−t

〈ξ(t)ξ(0)〉 = 〈ξ(−t)ξ(0)〉. (3.3)

Note, that the random variable ξ in Brownian motion it typically the position

x or the velocity v of the particle.

3.1.2 The Wiener-Khinchin theorem

Besides correlation functions, power spectral densities are of great im-

portance in characterizing Brownian motion. The power spectral density

(PSD) of a variable ξ is defined as the absolute square of its Fourier transform

[34]

Sξ(ω) ≡ |Ft {ξ(t)}|2 = lim
T→∞

1

T

∣∣∣∣∣
∫ T/2

−T/2
eiωtξ(t)dt

∣∣∣∣∣
2

. (3.4)

Descriptive, the PSD illustrates how much intensity of the signal ξ(t) can be

decomposed by an infinitesimal frequency window around ω. The Wiener-

Khinchin theorem relates the correlation function to the according PSD with

Fourier transformation [33, 35, 36]

Sξ(ω) =

∫ ∞
−∞

eiωt〈ξ(t)ξ(0)〉dt. (3.5)

A proof can be found in Appendix A.1. With the time symmetry of correlation

functions follows

Sξ(ω) = Sξ(−ω) = 2

∫ ∞
0

cos (ωt) 〈ξ(t)ξ(0)〉dt (3.6)

and with inverse Fourier transform

〈ξ(t)ξ(0)〉 =
1

2π

∫ ∞
−∞

e−iωtSξ(ω)dω =
1

π

∫ ∞
0

cos (ωt)Sξ(ω)dω. (3.7)
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Further one finds [33]

Sξ̇ = ω2Sξ(ω)⇒ Sv = ω2Sx(ω) (3.8)

which can be directly shown with Eq. (3.7):

〈ξ(t)ξ(t′)〉 = 〈ξ(t− t′)ξ(0)〉 =
1

2π

∫ ∞
−∞

e−iω(t−t
′)Sξ(ω)dω,

applying ∂
∂t

∂
∂t′

∣∣
t′=0

on both sids leads to

〈ξ̇(t)ξ̇(0)〉 =
1

2π

∫ ∞
−∞

ω2e−iωtSξ(ω)dω.

Comparing to Eq. (3.7) with ξ → ξ̇ yields Eq. (3.8).

3.1.3 The fluctuation-dissipation theorem

In 1966, R. Kubo published a relation between response functions and

correlation functions with linear response theory. This work plays a major

role in the theory of Brownian motion, but can also be applied to many other

systems. The admittance, also called mobility µ(ω) is related to the velocity

autocorrelation function by [37]

µ(ω) =
1

kBT

∫ ∞
0

eiωt〈v(t)v(0)〉dt (3.9)

which is often called the first fluctuation-dissipation theorem. The admittance

µ(ω) is the response function of the velocity to an external force [33]

〈ṽ(ω)〉 ≡ µ(ω)F̃ext(ω). (3.10)
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Kubo’s theory also provides a relation between the friction kernel γ[ω] and the

random, thermal force Fth(t) which will be introduced in the next section [37]

γ[ω] =
1

kBT

∫ ∞
0

eiωt〈Fth(t)Fth(0)〉dt (3.11)

Additionally applying Eq. (3.6) yields

SFth(ω) = 2kBTRe {γ[ω]} . (3.12)

3.2 Brownian motion without hydrodynamic effects

This section contains theories on Brownian motion without hydrody-

namic effects and will be generalized subsequently, following the historical de-

velopment. Since the equations of motion have no coupling between the coordi-

nates, it is sufficient to regard Brownian motion as a one dimensional problem

which is true for all three Cartesian coordinates. Consequently, throughout

the whole thesis x(t) denotes without loss of generality the one dimensional

trajectory of a Brownian particle.

3.2.1 Einstein’s theory

The first theory on Brownian motion was proposed by Albert Einstein

with the Diffusion equation in 1905 [38], predicting that the mean square

displacement (MSD) of a Brownian particle follows the the equation

〈∆x2(t)〉 ≡
〈
[x(t)− x(0)]2

〉
= 2Dt. (3.13)
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It characterizes how fast the particle diffuses away from its initial position.

The diffusion constant is given by

D =
kBT

γs
(3.14)

with the Boltzmann constant kB, temperature T and Stokes drag coefficient

γs = 6πηR (3.15)

which is known as Stokes-Einstein relation. In Eq. (3.15), η is the viscosity of

the surrounding fluid and R is the radius of the spherical Brownian particle.

With Eq. (3.13) one finds the rms velocity

vrms ≡
√
〈∆x2(t)〉
t

=

√
2D√
t

(3.16)

which diverges as t to goes to zero. Consequently Einstein’s theory breaks

down at short timescales.

3.2.2 Ornstein-Uhlenbeck theory of Brownian motion

In 1908, Paul Langevin suggested an alternative approach based on

Newtons second law and was able to reproduce Einstein’s result [39]. On

the basis of such a Langevin Equation, Ornstein and Uhlenbeck developed

a theory which has the same result for long times but includes a different

behavior for short times which does not diverge as t→ 0 [40]. Their theory is

yet sufficient to describe Brownian motion under certain circumstances, e.g. if

the fluid is air. For a full description in a liquid, however, the theory is missing

hydrodynamic effects.
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For a free, spherical Brownian particle with mass m, the Langevin

equation is given by [40]

mẍ(t) + γsẋ(t) = Fth(t). (3.17)

γs is the Stokes drag coefficient which leads to deceleration of the Brownian

particle. If the drag force was the only force exerted by the fluid, however,

the particle would simply lose all its kinetic energy during a characteristic

time, which contradicts experimental observations. Consequently, a second

force which constantly drives the Brownian motion is required. It is the ran-

dom thermal force Fth(t) which is caused by collisions with surrounding fluid

molecules. The total force on the bead exerted by the fluid in Langevin equa-

tions is the sum of the drag force and the thermal force. As it is intuitively

clear, these two forces cannot be totally independent, indeed, they are related

with the fluctuation-dissipation theorem Eq. (3.12). Consequently, the ther-

mal force can be further specified. Because of the symmetry of the problem,

the average value should be zero at all times. Moreover the thermal force is

expected to be only correlated if |t − t′| is very small [40], in this case it is

delta-correlated

Fth(t) =
√

2kBTγsζ(t) (3.18)

〈ζ(t)〉 = 0 (3.19)

〈ζ(t)ζ(t′)〉 = δ(t− t′). (3.20)

The PSD of the thermal force can be be calculated with Eq. (3.5)

SFth
(ω) =

∫ ∞
−∞

eiωt〈Fth(t)Fth(0)〉dt = 2kBTγs (3.21)
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and is often referred as white noise because it doesn’t depend on ω. Note

that the PSD satisfies the fluctuation-dissipation theorem. Eq. (3.17) can be

rewritten in terms of the velocity

v̇(t) = − 1

τp
v(t) +

Fth(t)

m
(3.22)

where

τp =
m

γs
(3.23)

is the so called momentum relaxation time of the particle. Integrating yields

v(t) = v0e
−t/τp + e−t/τp

∫ t

0

et
′/τp

Fth(t
′)

m
dt′. (3.24)

With Eq. (3.18) it is trivial to find the velocity autocorrelation function (VACF)

Cv(t) = v20e
−t/τp =

kBT

m
e−t/τp (3.25)

where v0 has been determined by the Equipartition theorem

m

2
v20 =

1

2
kBT. (3.26)

Alternatively, the VACF can be calculated with the PSD. Eq. (3.22) after

Fourier transformation reads

− iωṽ(ω) = − 1

τp
ṽ(ω) +

F̃th(ω)

m
(3.27)

and yields

Sv(ω) = |ṽ(ω)|2 =
1

m2

2kBTγs
ω2 + τ−2p

. (3.28)
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The Wiener-Khinchin Theorem Eq. (3.7) allows to conclude to the VACF

Cv(t) =
2kBTγs
2πm2

∫ ∞
−∞

e−iωt

ω2 + τ−2p

dω =
kBT

m
e−t/τp (3.29)

where the integral can be evaluated with the Residue theorem. The fact that

Eq. (3.29) reproduces the result of Eq. (3.25) shows that the thermal force

defined in Eq. (3.18) is, as it should, consistent with the Equipartition theorem.

The MSD can be determined by once more integrating Eq. (3.24) [40]

〈∆x2(t)〉 =
2kBTτ

2
p

m

(
t

τp
− 1 + e−t/τp

)
. (3.30)

With a series expansion of Eq. (3.30), one finds

〈∆x2(t)〉 =
kBT

m
t2 t� τp ballistic (3.31)

〈∆x2(t)〉 = 2Dt t� τp diffusive (3.32)

which solves the earlier discussed problem of diverging velocity as t→ 0. the

long time behavior of Brownian motion where Einsteins theory holds is called

diffusive regime. The short time behavior where the inertia of the particle

becomes important is referred as ballistic regime.

The Langevin equation can be further modified by adding a harmonic

trap of strength k as it is realistic, if a Brownian particle is confined by an

optical tweezer as discussed in subsection 2.1.2.

mẍ(t) + γsẋ(t) + kx(t) = Fth(t) (3.33)

The MSD can be found to be [41]

〈∆x2(t)〉 =
2kBT

mω2
0

[
1− e−t/2τp

(
cos(Ωt) +

sin(Ωt)

2Ωτp

)]
(3.34)
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where

ω0 =

√
k

m
(3.35)

Ω2 = ω2
0 − (2τp)

−2 . (3.36)

Note that Eq. (3.34) contains an underdamped and overdamped case, depend-

ing on whether Ω is real or imaginary. Trapped Brownian motion in a liquid

is typically overdamped.

3.3 Hydrodynamic Brownian motion

To correctly describe Brownian motion in liquids, one has to solve a

more general Langevin equation which can be approximated by Ornstein and

Uhlenbeck’s theory under certain conditions. The main differences to the

previous theory are contributions of hydrodynamic memory which means that

the present movement of the bead depends on its previous trajectory, and the

occurrence of an effective mass due to the inertia of the surrounding fluid.

3.3.1 The generalized Langevin equation

When constructing Langevin equations, there is only one term directly

determined by hydrodynamics, which is the drag force. For the theory by

Ornstein and Uhlenbeck [40, 41], it was simply given by Stokes famous drag

formula Fdrag = −γsv [42] which is only true for a constant velocity v. It is

derived as a special solution of the incompressible Navier-Stokes equation

∂v(t)

∂t
+ v(t) · ∇v(t) =

1

ρ

(
∇p+ η∇2v(t)

)
(3.37)
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neglecting the nonlinear term and assuming a stationary velocity field of the

fluid (∂v(t)/∂t = 0). Dropping v(t) · ∇v(t) can be justified for systems with

low Reynolds numbers

Re =
ρf lv

η
(3.38)

where l is a characteristic length and v a characteristic velocity of the system.

The density of the fluid is denoted by ρf and η represents its dynamic viscosity.

The Reynolds number for Brownian motion in water can be estimated with

the diameter of the sphere as characteristic length and determining v with

the Equipartition theorem. In a typical measurement with a micron sized

bead at 20◦C, one finds Re ≈ 10−5 which is indeed very low and justifies the

above assumption. However, it turns out that the dynamic of the velocity

field cannot be neglected for Brownian motion in a liquid, so that the time

derivative has to be kept in order to derive a sufficient drag force which is then

true for an arbitrary motion of the bead. It is preferably derived in frequency

domain. A detailed derivation can be e.g be found in [43], a more advanced

approach is performed Landau in and Lifshitz [44], yielding

F̃drag(ω) = −6πηRṽ(ω)− 6πR2
√
−iωρfηṽ(ω) + iω

2

3
πR3ρf ṽ(ω). (3.39)

The drag force can be written in the time domain by inverse Laplace transfor-

mation, assuming that the bead is at rest for t ≤ 0 (see Appendix A.2). The

resulting force is often called Basset force, to give credit to Basset’s work in

1888 [45], however Boussinesq already addressed the problem in 1885 [46]

Fdrag(t) = −6πηRv(t)− 6R2√πρfη
∫ t

0

1√
t− t′

v̇(t′)dt′ − 2

3
πR3ρf v̇(t). (3.40)
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The first term in the drag force is the the well known steady state Stokes

friction. The second term implies “hydrodynamic memory” of the fluid because

of the time integral. As the bead moves, it changes the flow behavior of the

fluid around it which will influence the movement of the particle for all future

times. Since the memory term is proportional to
√
ρfη, it can be neglected

under certain circumstances such as Brownian motion in air, but certainly

not for Brownian motion in water. The last term leads to an added mass

in the equations of motion. Descriptive this means, that the effective inertia

of the bead is increased because the surrounding fluid has to be displaced

too, once the bead is accelerated. Eq. (3.39) can be rewritten as a friction

kernel γ[ω] = −Fdrag(ω)/v(ω), introducing a characteristic timescale τf which

determines when the hydrodynamic effects become important. It reduces to

the steady state Stokes friction as ω → 0

γ[ω] = γs

(
1 +

√
−iωτf

)
− iω2

3
πR3ρf (3.41)

τf =
ρfR

2

η
. (3.42)

Now, one can construct a generalized Langevin equation, replacing the Stokes

friction in Eq. (3.33) by the Basset force, assuming that v(t ≤ 0) = 0 [47]

m∗ẍ(t) + 6πηRẋ(t) + 6R2√πρfη
∫ t

0

1√
t− t′

ẍ(t′)dt′ + kx(t) = Fth(t) (3.43)

where m∗ is the effective mass of the bead

m∗ =
4

3
πR3ρp +

2

3
πR3ρf (3.44)
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with particle density ρp and fluid density ρf . With the added mass, also the

Equipartition theorem has to be modified [30, 48]

1

2
m∗〈v2〉 =

1

2
kBT. (3.45)

3.3.2 Compressibility effects

Since the incompressible Navier-Stokes equation is the basis for this

theory, it does not include compressibility effects. It is expected, that at

timescales where the compressibility becomes important, the Equipartition

theorem with the bare mass of the particle holds again [48]. This timescale

can be estimated by the time which a sound wave needs to propagate by the

radius of the bead τc = R/c ≈ 1ns which is so small that it cannot be accessed

in usual experiments because of the shot noise. Consequently compressibility

can be neglected for the purpose of this thesis.

3.3.3 Solving the generalized Langevin equation

The generalized Langevin equation is preferably solved in the frequency

domain

− iωmṽ(ω) + γsṽ(ω) + γs
√
−iωτf ṽ(ω)− iω2

3
πR3ρf ṽ(ω) +

k

−iω
ṽ(ω) = F̃th(ω).

(3.46)

According to Eq. (3.10), the admittance is the linear velocity response to an

external force in the frequency domain. It can be found with Eq. (3.46) and
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Parameters τc = R
c

τp = m
6πRη

τf =
ρfR

2

η
τk = 6πRη

k

Silica in water

1.1ns 1µs 2.25µs
0.28ms

ρp = 2 g/cm3, ρf = 1 g/cm3

R = 1.5µm, η = 10−3 Pa s
2.8ms

kmax = 100µN/m, kmin = 10µN/m

Table 3.1: This table provides an overview over the four characteristic
timescales determining Brownian motion in a Newtonian fluid. The timescale
of the trap τk was computed with the maximum in the experiment accessible
trapping strength k and for a weaker strength.

expressed by means of the characteristic timescales and the mass of the particle

µ(ω) =
τp
m

1

1− iωτp − iωτf/9 + 1/(−iωτk) +
√
−iωτf

. (3.47)

τk is yet another characteristic timescale which represents the onset of the

trap

τk =
γs
k
. (3.48)

The fluctuation-dissipation theorem Eq. (3.9) connects the admittance to the

VACF

C̃v(ω) ≡
∫ ∞
0

eiωt〈v(t)v(0)〉dt = kBTµ(ω). (3.49)

Taking the real part on both sides and applying the Wiener-Khinchin theorem

Eq. (3.6), yields the velocity PSD

Sv(ω) = 2kBTRe {µ(ω)} (3.50)

and with Eq. (3.8) the position PSD

Sx(ω) =
2kBT

ω2
Re {µ(ω)} . (3.51)
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Figure 3.1: All plots of this figure are created with realistic input parameters of silica in

water which are listed in Table 3.1 for the weaker trap. (a) and (b) show the VACF in a

double- and semi logarithmic plot. In (a), one can see that the VACF is negative (anti-

correlated) in a certain time range. This is because of the trap which forces the particle

to propagate in opposite direction compared to its initial velocity in order to get back to

the trapping center. (c) shows the position power spectral density which flattens for small

frequencies because of the trap. (d) shows the velocity power spectral density.
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Moreover, the VACF and XACF can be calculated with Eq. (3.7)

Cx/v(t) =
1

2π

∫ ∞
−∞

e−iωtSx/v(ω)dω. (3.52)

Additionally applying the Equipartition theorem leads to the MSD. The rela-

tion between the MSD and the XACF is

〈∆x2(t)〉 = 〈x2(t) + x2(0)− 2x(t)x(0)〉 = 2〈x2〉 − 2Cx(t) (3.53)

with

1

2
kBT =

1

2
k〈x2〉 (3.54)

and consequently, one finds

〈∆x2(t)〉 =
2kBT

k
− 2

π

∫ ∞
0

cos(ωt)Sx(ω)dω. (3.55)

An analytical solution for the PSD can easily be found with the admittance

given in Eq. (3.47). The transformation back to the time domain to obtain

the VACF and MSD according to Eq. (3.52), however, is nontrivial. Analytic

solutions were found by Clercx and Schram and are listed in Appendix A.4.

3.3.4 Colored thermal force

The thermal force which corresponds to the generalized Langevin equa-

tion is colored which means that it is not delta-correlated any more. The

thermal force PSD can be calculated with the fluctuation-dissipation theorem

Eq. (3.12)

SFth
(ω) = 2kBTγs

(
1 +

√
|ω|τf

2

)
(3.56)
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Figure 3.2: Mean square displacement for silica in water with input param-
eters of Table 3.1 for the weaker trap. The graphic shows the differencecs
between the Ornstein-Uhlenbeck theory and the hydrodynamic theory which
are severest around t ≈ τf . For t � τp the motion is in the ballistic regime,
where the theories don’t match because the hydrodynamic theory is propor-
tional to kBT

m∗
t2 rather than kBT

m
t2. For the hydrodynamic theory, the diffusive,

long time regime is barely reached because of the trap.
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The thermal force correlation is then obtained with the Wiener-Khinchin the-

orem Eq. (3.7)

CFth
(t) = 2kBTγs

(
δ(t)− 1

4

√
τf
π
|t|−3/2

)
. (3.57)

The thermal force has compared to the Ornstein-Uhlenbeck theory a long

time |t|−3/2 correlation, which corresponds to the hydrodynamic memory of

the fluid.

3.4 Brownian motion in complex fluids

The dynamic viscosity η as it is found in the Navier Stokes equation

can be defined with Couette flow. A layer of fluid is trapped between two large

plates where one of them is at rest and the other is moving with a constant

speed v. The velocity of the fluid field decays linearly in a laminar flow form

v at the moving plate to zero at the steady plate. Because of the viscosity of

the fluid, there is a force on the plate in opposite direction of its movement

F = η
A

d
v. (3.58)

This definition goes back to Newton in 1687. Eq. (3.58) can be rewritten in

terms of the stress σ = F/A and strain rate γ̇ = v/d, where A is the area of

each plate and d is their distance [49]

σ(t) = ηγ̇(t). (3.59)

The Newtonian fluid responds instantaneously to shear with an irreversible
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Viscous fluid

Figure 3.3: Illustration of stress and strain for an elastic solid and a viscous
fluid. For Couette flow, the strain rate is constant. In general, however, it is
time dependent.

deformation. An elastic solid is usually modeled with Hooke’s Law (1678)

where the stress is proportional to the strain γ = x/d. The constant of pro-

portionality is called shear modulus G [49]

σ(t) = Gγ(t). (3.60)

In this case, the solid also responds instantaneously to shear, but the defor-

mation is fully reversible. In reality, there is no such thing as a purely viscous

fluid. All fluids contain elastic elements which lead to a delayed response, it

just depends on the timescale where these become important. For water e.g.

this timescale is τw ≈ 10−12 s, and so it acts as a Newtonian fluid in usual

experiments [49]. The viscoelastic impact is likely to become more important

for fluids composed of larger molecules such as polymers.
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Linear viscoelasticity can be expressed with the complex shear modu-

lus G∗(ω) which is the response function between stress to and strain in the

frequency domain.

σ(ω) = G∗(ω)γ(ω) (3.61)

with

G∗(ω) = G′(ω)− iG′′(ω). (3.62)

G′(ω) is called storage modulus because it represents the elastic part which

stores potential energy andG′′(ω) as loss modulus takes the viscous, dissipating

part into account. Equivalently one can define a complex viscosity relating

stress and strain rate in frequency domain

σ(ω) = η(ω)γ̇(ω). (3.63)

Since γ̇(ω) = −iωγ(ω), the complex shear modulus G∗(ω) and the complex

viscosity η(ω) are related with

η(ω) =
G∗(ω)

−iω
. (3.64)

For a purely viscous fluid, such as water, except at very short timescales, the

complex viscosity is purely real and constant. For an ideal, elastic solid, the

complex viscosity is purely imaginary and constant.
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3.4.1 Extension of the hydrodynamic theory

In order to study Brownian motion in complex fluids, the previous the-

ory is still applicable, when replacing the constant viscosity η by the frequency

dependent complex viscosity η(ω) [12, 50]. In this case it is convenient to ex-

press the complex viscosity with a dimensionless function

ψ(ω) =
η(ω)

η(0)
. (3.65)

The characteristic timescales are then defined with the steady state viscosity

τp ≡
m

6πη(0)R
(3.66)

τf ≡
ρfR

2

η(0)
. (3.67)

In this case, the admittance is given by

µ(ω) =
τp
m

1

ψ(ω)− iωτp − iωτf/9 + 1/(−iωτk) +
√
ψ(ω)

√
−iωτf

. (3.68)

3.4.2 The Maxwell model

A very simple model for a complex fluid was proposed by Maxwell in

1867 [50]. It consists of a viscous element with steady state viscosity η0 =

η(ω = 0) and an infinite frequency shear modulus G∞ = G∗(ω = ∞), such

that their strains add γ(t) = γG∞(t) + γη0(t). Consequently, one finds

γ̇(t) =
1

G∞
σ̇(t) +

1

η0
σ(t). (3.69)
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η0𝐺∞

γ𝑡𝑜𝑡 = γ𝐺∞ + γη0 𝜎𝑡𝑜𝑡 = 𝜎𝐺∞= 𝜎η0

Figure 3.4: The Maxwell model consists of a purely elastic spring and a purely
viscous dashpot which are connected in series. While the stress is the same in
the whole element, strains of the elastic and viscous parts add.

Fourier transform yields the complex shear modulus

G∗(ω) =
ω2τ 2mG∞
1 + ω2τ 2m

− i ωτmG∞
1 + ω2τ 2m

(3.70)

where τm = η0/G∞ is called Maxwell time and characterizes the timescale

where elasticity becomes important. The PSD of Brownian motion in a Maxwell

fluid can be obtained analytically. The transformation back to time domain,

however, is done numerically with a Filon algorithm [51]. To make complex

fluid models more realistic, additional parameters can be introduced. One can

for example add a background viscosity η∞ to the complex viscosity in order to

prevent the behavior of vanishing viscosity as ω → ∞ in the Maxwell model.

A more thorough discussion of Brownian motion in a Maxwell fluid has been

done by Grimm et al. [50].
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Figure 3.5: Both plots have been calculated with the parameters of Table 3.1,
except η0 = 10 ηwater and τm = 10−4 s. The MSD (a) has a plateau around
the resonance time t = τm which hinders the particle propagation because of
the elastic component of the fluid, similarly to the optical trap. The position
PSD (b) has a plateau along with the MSD.
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Figure 3.6: Both plots have been calculated with the parameters of Table 3.1,

except η0 = 10 ηwater and τm = 10−4 s. The real part of the viscosity (a) decreases for

increasing angular frequency which is called shear thinning and is indeed observed in

many complex fluids. The elastic part of the viscosity has its maximum at ω = 1/τm
and can be understood as a resonance frequency of the complex fluid. The VACF (b)

has additional zero crossings which can be understood as an effect of the elasticity

which makes the velocity change its direction at certain timescales.
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3.5 Estimating viscoelastic moduli from the observation
of Brownian motion

This section explains how to calculate the complex viscosity from mea-

surable quantities of Brownian motion. The standard method to do that was

proposed by Mason and Weitz in 1995 [10], which is however not accurate at

high frequencies. The following deduces the exact formula, relating the com-

plex viscosity to the MSD and discusses the limitations of the method, con-

cluding that the choice of an appropriate Laplace transformation algorithm is

substantial to obtain correct results at high frequencies.

3.5.1 Accounting for hydrodynamic effects

The formula which Mason and Weitz initially proposed to calculate the

complex viscosity from the MSD is [10, 52–54]

η(s) =
kBT

πRs2〈∆x̃2(s)〉
− ms

6πR
(3.71)

where 〈∆x̃2(s)〉 denotes the Laplace transform of the MSD

〈∆x̃2(s)〉 =

∫ ∞
0

e−st〈∆x2(t)〉dt (3.72)

with s = −iω in the convention of this thesis. Eq. (3.71) can easily be extended

to trapped Brownian motion [55]

η(s) =
kBT

πRs2〈∆x̃2(s)〉
− ms

6πR
− k

6πRs
. (3.73)

This theory is based on the friction kernel γ[ω] = 6πRη(ω) which corresponds

to the Ornstein-Uhlenbeck theory of Brownian motion. Consequently it is
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only valid when hydrodynamic effects which mostly affect the high frequency

behavior are negligible. In order to get the hydrodynamic counterpart, one

has solve Eq. (3.49) with the admittance given in Eq. (3.68) for η(ω) which

has been done by Felderhof in 2011 [12]

η(ω) = η0

[√
kBT

m

τp

C̃v(ω)
+

1

iωτk
+ iω

(
τp −

5

36
τf

)
− 1

2

√
−iωτf

]2
. (3.74)

Eq. (3.74) can be rewritten in terms of the MSD, using [53]

〈∆x̃2(ω)〉 = − 2

ω2
C̃v(ω) for ω 6= 0 (3.75)

which is proven in Appendix A.3, resulting in

η(ω) = η0

[√
−2kBT

m

τp
ω2〈∆x̃2(ω)〉

+
1

iωτk
+ iω

(
τp −

5

36
τf

)
− 1

2

√
−iωτf

]2
.

(3.76)

Taking the limit ωτf → 0, Eq. (3.76) reduces to Eq. (3.73) which confirms the

compatibility with the Mason-Weitz method if hydrodynamic effects are negli-

gible or frequencies are sufficiently low. Note, that the MSD varies by a factor

of three, because Mason’s theory is based on a three dimensional trajectory

and the theory in this thesis is one dimensional 〈∆x2(t)〉3D = 3〈∆x2(t)〉1D.

Figure 3.7 shows, that the Mason-Weitz formula with theoretical water data

and realistic input parameters is sufficient to ω ≈ 104 rad/s. This limit, how-

ever, depends highly on the input parameters and shifts especially for smaller

bead radii and higher fluid viscosities to higher angular frequencies. Conse-

quently, Eq. (3.73) may still be valid for many complex fluids up to even higher

frequencies.
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Figure 3.7: This figure shows the results of the complex viscosity calculated from

the hydrodynamic MSD (Eq. (A.24)). The input parameters are the same as in

Figure 3.2 and Figure 3.5 except this time the stronger trap k = 10−4N/m is

assumed. (a) shows the result for water, (b) and (c) show the results for the Maxwell

model. The exact formula Eq. (3.76) is capable of giving the correct result over the

whole frequency window. Neglecting inertia or hydrodynamics causes deviations at

high frequencies.
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3.5.2 Limitations of the method

The main limitation to reach high frequencies is the sampling frequency

of the MSD data or the time window where the MSD is known. The Nyquist-

Shannon sampling theorem states [56]:

“If a function f(t) contains no frequencies higher than W cps, it is

completely determined by giving its ordinates at a series of points

spaced 1/2W seconds apart.”

Consequently one cannot obtain any frequency information from a time signal

for f > fs where

fs =
1

2∆t
(3.77)

is the Nyquist frequency and ∆t is the time increment between two points

of an equally spaced signal. The Laplace transform above that frequency is

artificial and unfortunately these artefacts almost surely also affect the desired

region below the Nyquist frequency due to interpolation errors [1]. This effect

can be minimized by oversampling and optimizing the interpolation scheme of

the Laplace transform algorithm.

For Brownian motion, the smallest time where the MSD can be mea-

sured is determined through shot noise. For the detection system described in

section 2.2, it is tmin ≈ 100ns which yields the Nyquist freqnency fs ≈ 5MHz.

The fastest possible acquisition rate is 200 MHz. Figure 3.8 shows the results

of the viscosity calculated with the exact formula for theoretical predictions of

the MSD with realistic water input parameters for different algorithms. The
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algorithm proposed by Evans et al. [57] extrapolates the input function lin-

early between each two points and analytically solves these integrals to obtain

the Laplace transform. Moreover, the input function is extrapolated to zero

and infinity. The parabolic analytic algorithm does the same, except interpo-

lating each three points as a parabola rather than linear interpolating. The

parabolic algorithm comes closest to the Nyquist limit and is discussed in

detail in Appendix C.

Further sources of error are random deviations and noise, which always

occur since the statistical quantities are defined for an average over infinite time

which is of course impossible in practice. One can reduce this effect, by data

binning, which means averaging over a set of points and replace them by its

mean value which is also desirable in regards of computation time. Figure 3.9

shows the result for the calculated viscosity where the number of data points of

the input MSD has been reduced from around two million to 1000 by binning.

The outcome for the parabolic algorithm is almost unchanged while the linear

algorithm fails at a much lower frequency compared to Figure 3.8.
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Figure 3.8: This figure shows the viscosity calculated from the theoretical hydro-

dynamic MSD (Eq. (A.24)). The input parameters are realistic for what can be

achieved in the experiment to give theoretical predictions for the data analysis. The

time window in which the input MSD is given, is 100ns < t < 0.01 s. The data

points are equally spaced in time with the oversampled maximum achievable sam-

pling rate of 200 MSa/s to minimize interpolation errors. The Laplace transform

of the MSD is calculated with different algorithms, pointing out that the parabolic

algorithm produces the best results.
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Figure 3.9: The input parameters of this plot are the same as in Figure 3.8.
However, the number of input data points of the MSD has been reduced from
around two million to one thousand by data bining. By doing this, one can
reduce the noise in real data and achieve a much shorter computation time.
While the linear algorithm fails at much lower frequency, the results of the
parabolic algorithm are almost the same as before binning which makes it
favorable for real data.
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Chapter 4

Data analysis and results

This chapter explains how to analyze Brownian motion data in order

to obtain the complex viscosity. It contains an optimization of the algorithm,

data fitting and dealing with noise. Afterwards, the results for water and

acetone will be presented in very good agreement with the theory. Finally

there is an outlook how to apply the method to complex fluids.

4.1 Optimizing the algorithm

The experimental data input in order to obtain the complex viscosity is

the Laplace transform of the VACF or MSD. Figure 4.1 shows that the VACF

is very sensitive to noise and it is consequently advantageous to use the MSD

and Eq. (3.76) to obtain the complex viscosity. However, it turns out that the

data analysis can be further improved by applying the following decomposition

instead of calculating the Laplace transform of the MSD directly.

〈∆x̃2(s)〉 =

∫ ∞
0

e−st
(

2kBT

k
− 2Cx(t)

)
dt =

2kBT

ks
− 2

∫ ∞
0

e−stCx(t)dt (4.1)
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Figure 4.1: The VACF of a Brownian particle is much more noisy than the
MSD and thus disadvantageous to use in data analysis.

〈∆x̃2(ω)〉 =
i

ω

2kBT

k
− 2

∫ ∞
0

cos (ωt)Cx(t)dt− Im {Lt {2Cx(t)}}

=
i

ω

2kBT

k
− Sx(ω)− Im {Lt {2Cx(t)}} .

(4.2)

Eq. (4.2) improves the quality of the real part of 〈∆x̃2(ω)〉 because the PSD

can be determined with less numerical effort and error propagation then the

Laplace transform of the XACF which is relevant at high frequencies as con-

firmed in Figure 4.2 for real data.
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Figure 4.2: The imaginary part seems to fit very well to the theory. This is
because the high frequency behavior is mostly determined by the extrapola-
tion of the XACF to t = 0 which is incorporated in the Laplace transform
algorithm. It consequently is highly dependent on the fitting parameters. As
one can see, the real part can be determined much more accurately with the
position PSD because it produces less numerical errors.

4.2 Parameter fitting

Since the output of the split beam detection system is a voltage V (t) =

x(t)CV/m, the calibration constant CV/m is determined by least squares fitting

to the hydrodynamic theory. Another fitting parameter is the radius of the

bead. The trapping constant k, however, is not an independent fitting pa-

rameter since it is related to the volts to meter calibration constant by the
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Maxwell Boltzmann distribution [58]

P (x) ∝ e−kx
2/kBT (4.3)

and the Equipartition theorem

1

2
k〈x2〉 =

1

2
kBT ⇔ CV/m =

√
k〈V 2〉
kBT

. (4.4)

For the fit, the number of data points has been reduced to around 200 by data

binning.

4.3 Detection noise

The accessible frequency range of the signal is limited by photon shot

noise at high frequencies. The low frequency behavior is disturbed by physical

vibration of the optics and the resulting noise. This section explains how to

minimize these effects in terms of data analysis.

4.3.1 Shot noise

The measured displacement is a sum of the real position of the particle

plus detection noise xmsr(t) = xp(t) + xn(t). The measured MSD is [59]

〈∆x2(t)〉msr = 〈[xmsr(t)− xmsr(0)]2〉

= 〈[xp(t)− xp(0)]2〉 − 〈[xn(t)− xn(0)]2〉

+ 2〈[xp(t)− xp(0)] [xn(t)− xn(0)]〉

≈ 〈∆x2(t)〉p − 〈∆x2(t)〉n.

(4.5)
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The correlation between the particle position and the detection noise can be

neglected at short times where the uncorrelated photon shot noise is domi-

nant. Consequently the particle MSD can be obtained by subtracting a noise

measurement without a bead from the measured data. The same is true for

the particle PSD. The shot noise in the PSD is flat (independent of ω), which

also leads to a flat noise for the MSD at short times since

〈∆x2(t)〉n = 2〈x2n〉 − 2〈xn(t)xn(0)〉 ≈ 2〈x2n〉 −
1

π

∫ ∞
−∞

e−iωtSShotdω

= 2〈x2n〉 − 2SShotδ(t) = const. for t 6= 0.

(4.6)

More accurate then using a noise measurement is to implement the shot noise

as an additional fitting parameter to subtract it from the signal afterwards

Sx,fit(ω) = Sx,theory(ω) + SShot (4.7)

Sx,p(ω) = Sx,msr − SShot (4.8)

〈∆x2(t)〉fit = 〈∆x2(t)〉theory + 〈x2〉Shot (4.9)

〈∆x2(t)〉p = 〈∆x2(t)〉msr − 〈x2〉Shot. (4.10)

4.3.2 Low frequency noise

Low frequency noise cannot be eliminated in the same way as shot noise,

because it is correlated to the motion. Instead, the vibration noise peaks can

be artificially flattened since the low frequency PSD is known to be constant

because of the trap. Low frequency noise also affects the root mean square
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〈x2〉 which is why the MSD is determined with the following calibration:

〈[V (t)− V (0)]2〉msr = 2〈V 2〉msr − 2〈V (t)V (0)〉msr

=
1

π

∫ ∞
−∞

[
e−iω0 − e−iωt

]
PV (ω)dω

(4.11)

Since the mechanical vibration noise is only dominant at low frequencies (f .

500Hz), Eq. (4.11) produces correct results for sufficiently small times because

the low frequency behavior mostly cancels out. In order to obtain the full MSD,

it is first computed at an sufficiently small calibration point tc. Afterwards,

the PSD is artificially flattened at f = fflat and the XACF is calculated with

CV (t) =
1

2π

∫ ∞
−∞

e−iωtPV,flat(ω)dω (4.12)

The root mean square can then be determined with the calibrated MSD

〈V 2〉 =
1

2
〈∆V 2(tc)〉msr + CV (tc) (4.13)

and one can conclude to the full MSD

〈∆V 2(t)〉 = 2〈V 2〉 − 2CV (t). (4.14)

This procedure of course leads to a systematical error at large times and doesn’t

contain real information for t & 1/fflat.

4.4 Results

This section presents the microrheological results for water and acetone.

These Newtonian fluids have been chosen in order to verify the theory and

data analysis procedure because their viscosity is known to be constant with
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vanishing imaginary part. The experiment was performed using silica beads

(Bangs Labratories, n=1.46, ρ=2.0 g/cm3) at T = 22 ± 1◦C in HPLC-grade

water (n=1.33, ρ=0.998 g/cm3, η0=9.55×10−4 Pa s) and HPLC-grade acetone

(n=1.35, ρ=0.789 g/cm3, η0 = 3.17 × 10−4 Pa s). The DC-detector data was

collected with a sampling rate of 25 MSa/s whereas the AC-detector data was

acquired with the maximum available sampling rate of 200 MSa/s. A single

data set contains 227 points which yields a recording time of around 5.3 s for

the DC-detector and 0.67 s for the AC-detector.

The data analysis has been done with MATLAB. The Fourier transfor-

mation to obtain the PSD has been computed with the in-built Fast Fourier

Transform algorithm and Laplace transformations were calculated with the

algorithm derived in Appendix C.

4.4.1 DC-detector results

Table 4.1 lists mean values of the fitting parameters determined from

many independent data sets of the same bead respectively. For the DC-data,

the trapping power has been doubled after each measurement cycle. The fitted

trapping strength k also doubles with the laser power, which confirms the

correctness of the fit. The third trapping strength corresponds to the maximum

available laser power which is approximately 300mW at the trapping center.

With increasing trapping power, the detection power could also be increased

to a maximum of P ≈ 2mW because the mobility of the bead is reduced and
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the maximum peak to peak voltage is reached at a higher detection power.

Accordingly, the shot noise level decreases.

Figure 4.3 shows the fit of the MSD and PSD for a data set with

maximum trapping power. The PSD was typically flattened at 140Hz to

avoid the strong 120Hz noise peak. For lower trapping power, the noise

effects were less severe and flattening was not necessary or shifted to lower

frequencies. Figure 4.4 shows the result for the complex viscosity which is

in very good agreement with the expected constant real part and vanishing

imaginary part for a Newtonian fluid. The frequency range where the method

produces correct results is mainly determined by the time window where the

MSD is know and yields ωmax ≈ 106 rad/s for the DC-detector.

CV/m ktrap
√
SShot R

Silica in water DC-detector

12.5± 0.3mV/nm 25± 1µN/m 90.4± 1.6 fm/
√
Hz

1.53± 0.04µm24.9± 0.4mV/nm 49± 2µN/m 59.8± 2.0 fm/
√
Hz

48.5± 1.1mV/nm 100± 9µN/m 40.0± 0.5 fm/
√
Hz

Silica in water AC-detector

16.2± 0.4mV/nm 103± 11µN/m 3.2± 0.1 fm/
√
Hz 1.40± 0.02µm

Silica in acetone AC-detector

6.3± 0.2mV/nm 43± 4µN/m 8.8± 0.3 fm/
√
Hz 1.97± 0.03µm

Table 4.1: Mean value and standard deviation of fitting parameters, deter-
mined through least squares fits of several independent data sets (The trap-
ping strength ktrap is not an independent fitting parameter but is listed for
completeness).
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Figure 4.3: MSD and PSD for silica in water. The noise measurement of the
PSD (green) has several resonance peaks due to vibration of the optics whose
effect is bypassed by artificially flattening the PSD. The shot noise level has
been fitted and subtracted from the signal.
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Figure 4.4: Complex viscosity and loss modulus of water from DC-detector
data determined as mean value of 125 independent data sets. The smallest
MSD input time for the calculation is 1µs and the determined viscosity is
correct up to angular frequencies very close to the according Nyquist limit.
For small ω, the impact of low frequency noise is noticable.
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4.4.2 AC-detector results

Data analysis for the AC-detector data is similar, however, the artificial

flattening has to be done at a higher frequency because of the in-built high

pass filter, typically at 200Hz. The design of the detector allows a detection

power of around 150mW and accordingly the photon shot noise is smaller

than for the DC-detector. It allows to determine the MSD at a smallest time

of t ≈ 70ns compared to 1µs for the DC-detector and makes it possible to

access higher frequencies. A typical fit is shown in Figure 4.5.

The downside is that the data doesn’t fit as good to the theory as the

DC-data. Flattening at too high frequencies leads to an overestimation of the

trapping constant since it is∫ ∞
−∞

Sx(ω)dω = 2π〈x2〉 = 2π
kBT

k
(4.15)

and early flattening reduces the total area under the PSD. Flattening at too

low frequencies introduces a systematical error because of the high pass filter.

Flattening at 200Hz yields the same trapping strength at the same trapping

power as the analysis of DC-detector data as shown in Table 4.1, which con-

firms the general validity of the fit. However the fitted radius deviates from the

obtained radius of DC-detector data with the same bead trapped. Because of

these fitting uncertainties, the calculated complex viscosity doesn’t fit as per-

fectly as the one obtained from DC-data, but reaches one decade higher in

angular frequency as shown in Figure 4.6. Plots of the acetone analysis can

be found in Appendix B.
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Figure 4.5: The AC-detector makes it possible to access approximately one
decade higher in frequency than the DC-detector due to lower shot noise.
However, the fit has a higher uncertainty because it has to be flattened at a
higher frequency.
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Figure 4.6: Complex viscosity and loss modulus of water from AC-detector
data determined as mean value of 430 independent data sets. The smallest
MSD input time for the calculation is 70ns.
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4.5 Conclusion and outlook

The previous chapters gave a detailed derivation of the theory of Brow-

nian motion in complex fluids and the data analysis procedure to perform high

frequency miorheology. The method was applied to data of Newtonian fluids

where the rheological properties are known in order to verify it. The results

show a very good agreement with the expected complex viscosity which is

not only a verification of the microrheology data analysis procedure but also

a strong validation of the hydrodynamic theory of Brownian motion in New-

tonian fluids. To actually perform microrheology in complex fluids, however,

introduces another difficulty.

In the previous data analysis, the volts to meter calibration, the trap-

ping strength and the bead radius have been obtained by least squares fitting

to the hydrodynamic theory, which is not possible for an unknown fluid. In

order perform microrheology with Eq. (3.76), these parameters have to be

obtained by another way. Moreover the steady state viscosity η0 has to be

known, which can be measured with a usual rherometer.

The easiest way to estimate unknown parameters is to perform a cali-

bration experiment in a Newtonian fluid [3, 60, 61]. To do so, one first traps

a bead in the Newtonian fluid and analyzes the data in order to obtain the

volts to meter calibration constant CV/m, the trapping strength k and the bead

radius R as explained earlier. Then a sufficient amount of the desired complex

fluid is pumped into the chamber with a low pumping speed, in order to keep

the same bead trapped and to make the concentration of the calibration fluid
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negligible, which of course only works for appropriate fluids. Afterwards, the

complex fluid data is taken without changing the alignment of the optics or

the laser power. To obtain a good estimation, the index of refraction of the

calibration fluid and the complex fluid should be as close as possible since the

trapping strength and and the volts to meter calibration depend on the index

of refraction mismatch of the trapped bead and the surrounding fluid.

Other approaches for calibration are to move the sample with a known

amplitude and frequency by means of a piezoactuated translation stage [62], or

to measure the particle relaxation to a discontinuously changing trap position

[63].
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Appendix A

Additional theory

A.1 Proof of the Wiener-Khinchin theorem

The Wiener-Khinchin theorem states, that the correlation function of a

random variable is given by the Fourier transform of its power spectral density.

Starting with the definition of the correlation function in Eq. (3.2), one can

write

〈ξ(t)ξ(0)〉 = 〈ξ(t)ξ∗(0)〉 = lim
T→∞

1

T

∫ T/2

−T/2
ξ(t+ τ)ξ∗(τ)dτ

since the signal ξ(t) is real valued, where the star denotes the complex conju-

gate. Now the following Fourier transformation convention for a time window

T is applied,

ξ̃k =
1√
T

∫ T/2

−T/2
eiωktξ(t)dt (A.1)

ξ(t) =
1√
T

+∞∑
k=−∞

e−iωktξ̃k (A.2)

where the angular frequency

ωk =
2π

T
k k ∈ Z (A.3)

is discrete for a finite time window T . Consequently it is

〈ξ(t)ξ(0)〉 = lim
T→∞

1

T 2

∫ T/2

−T/2

∑
k,k′

ξ̃kξ̃
∗
k′e
−iωk(t+τ)eiωk′τdτ.
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Taking the limit T →∞, ω becomes continuous

ωk → ω∑
k,k′

→
∫

dωdω′

(2π/T )2
.

〈ξ(t)ξ(0)〉 =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

eiτ(ω
′−ω)e−iωtξ̃(ω)ξ̃∗(ω′)dωdω′dτ

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

δ(ω − ω′)e−iωtξ̃(ω)ξ̃∗(ω′)dωdω′

=
1

2π

∫ ∞
−∞

e−iωtSξ(ω)dω

Inverse Fourier transform yields

Sξ(ω) =

∫ ∞
−∞

eiωt〈ξ(t)ξ(0)〉dt. (A.4)

A.2 Laplace transformation of the Basset force

The Laplace transform of a function f(t) is given by

Lt {f(t)} = f̃(s) =

∫ ∞
0

e−stf(t)dt (A.5)

with the inverse

L−1t

{
f̃(s)

}
= f(t) =

1

2πi

∫ c+i∞

c−i∞
estf̃(s)ds. (A.6)

In order to write the Basset force in time domain by inverse Laplace transfor-

mation, the following identities are required [51]

Lt

{
ḟ(t)

}
= sf̃(s)− f(0) (A.7)

Lt

{
1√
t

}
=

√
π

s
. (A.8)
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One also needs to apply the convolution theorem for Laplace transformations

which states, that a convolution in time domain is a simple product in the

Laplace domain [51]

Lt {f(t) ∗ g(t)} = Lt

{∫ t

0

(f(t− τ) g(τ)dτ

}
= Lt {f(t)}Lt {g(t)} . (A.9)

Now, the inverse Laplace transformation of the Basset force is to be found

with s = −iω

L−1t

{
F̃drag(s)

}
= L−1t

{
−6πηRṽ(s)− 6πR2√sρfηṽ(s)− s2

3
πR3ρf ṽ(s)

}
.

The first and the last term are trivially found with Eq. (A.7) and the causality

assumption v(t ≤ 0) = 0. For the square root term, it is

L−1t
{√

sṽ(s)
}

= L−1t

{
1√
s
sṽ(s)

}
(A.10)

= L−1t

{
Lt

{
1√
πt

}
Lt {v̇(t)}

}
(A.11)

=
1√
π
L−1t

{
Lt

{
1√
t
∗ v̇(t)

}}
(A.12)

=
1√
π

∫ t

0

1√
t− t′

v̇(t′)dt′. (A.13)

Consequently, it is

L−1t

{
F̃drag(s)

}
= −6πηRv(t)− 6R2√πρfη

∫ t

0

1√
t− t′

v̇(t′)dt′ − 2

3
πR3ρf v̇(t).

(A.14)
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A.3 Relation between the MSD and the VACF

The means square displacement of a Brownian particle is defined by

〈∆x2(t)〉 = 〈[x(t)− x(0)]2〉. (A.15)

The displacement can be written as

x(t)− x(0) =

∫ t

0

v(t′)dt′. (A.16)

and consequently it is

〈∆x2(t)〉 =

∫ t

0

dt′
∫ t

0

〈v(t′)v(t′′)〉dt′′ =
∫ t

0

dt′
∫ t

0

Cv(t
′ − t′′)dt′′. (A.17)

Substituting τ = t′ − t′′ yields

〈∆x2(t)〉 =

∫ t

0

dt′
∫ t′

t′−t
Cv(τ)dτ. (A.18)

Figure A.3 illustrates, that the area of integration of Eq. (A.18) is a rhombus.

Alternatively one can split the integral and integrate over two triangles which

leads to

〈∆x2(t)〉 =

∫ 0

−t
Cv(τ)dτ

∫ t+τ

0

dt′︸ ︷︷ ︸
I

+

∫ t

0

Cv(τ)dτ

∫ t

τ

dt′︸ ︷︷ ︸
II

. (A.19)

Substituting τ → −τ in the first term and using C(τ) = C(−τ) yields [64]

〈∆x2(t)〉 = 2

∫ t

0

(t− τ)Cv(τ)dτ. (A.20)
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Figure A.1: The left side illustrates the integration area in Eq. (A.17). The
right side shows the integration area after substituting to Eq. (A.18) and how it
can be split into to integrations with triangular shape according to Eq. (A.19).

Eq. (A.20) can be further used to relate the MSD to the VACF in the Laplace

domain. Applying the convolution theorem Eq. (A.9), one finds

Lt

{
〈∆x2(t)〉

}
= 〈∆x̃2(s)〉 = 2Lt {t}Lt {Cv(t)} =

2

s2
C̃v(s). (A.21)

With analytic continuation s→ −iω one finds

〈∆x̃2(ω)〉 = − 2

ω2
C̃v(ω). (A.22)
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A.4 Solutions of the generalized Langevin Equation

This appendix lists analytic solutions of Eq. (3.43). The position PSD

reads [34, 65]

Sx(ω) =
2kBT

γsω2

1 +
√
|ω|τf/2(

1/(|ω|τk)−
√
|ω|τf/2− |ω|τp − |ω|τf/9

)2
+
(

1 +
√
|ω|τf/2

)2 .
(A.23)

The mean square displacement is [47, 65]

〈
[
∆x2(t)

]
〉 =

2kBT

k
+

2kBT

m∗

[
ez

2
1t erfc(z1

√
t)

z1(z1 − z2)(z1 − z3)(z1 − z4)

+
ez

2
2t erfc(z2

√
t)

z2(z2 − z1)(z2 − z3)(z2 − z4)

+
ez

2
3t erfc(z3

√
t)

z3(z3 − z1)(z3 − z2)(z3 − z4)

+
ez

2
4t erfc(z4

√
t)

z4(z4 − z1)(z4 − z2)(z4 − z3)

]
.

(A.24)

Finally the velocity autocorrelation function is found to be [47, 65]

Cv(t) =
kBT

m∗

[
z31e

z21t erfc(z1
√
t)

(z1 − z2)(z1 − z3)(z1 − z4)
+

z32e
z22t erfc(z2

√
t)

(z2 − z1)(z2 − z3)(z2 − z4)

+
z33e

z23t erfc(z3
√
t)

(z3 − z1)(z3 − z2)(z3 − z4)
+

z34e
z24t erfc(z4

√
t)

(z4 − z1)(z4 − z2)(z4 − z3)

]
. (A.25)

The coefficients z1, z2, z3 and z4 are the four roots of the equation [65](
τp +

1

9
τf

)
z4 −√τfz3 + z2 +

1

τk
= 0. (A.26)
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Appendix B

Microrheological results for acetone
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Figure B.1: MSD and PSD for silica in acetone. The shot noise level is higher
compared to the measurements in water.
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Figure B.2: Complex viscosity and loss modulus of acetone from AC-detector
data determined as mean value of 41 independent data sets. The smallest
MSD input time for the calculation is 200ns. The peaks at ω > 106 rad/s are
due to laser intensity noise and misalignment of the D-shaped mirror.
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Appendix C

Numerical Laplace transformation

In order to perform high frequency microrheology, a very decent Laplace

transform algorithm is required to obtain accuracy. Evans et al. introduced

a strong algorithm in 2009, which interpolates a data set with N points as a

piecewise linear function and then analytically calculates the Laplace trans-

form [55, 57]

f̃(ω) = Lt {f(t)}
∣∣∣
s=−iω

=
i

ω
f(0)

+
1

ω2

[
f(t1)− f(0)

t1
(
eiωt1 − 1

)
− ḟ∞eiωtN +

N∑
k=2

f(tk)− f(tk−1)

tk − tk−1
(
eiωtk − eiωtk−1

)]
.

(C.1)

It includes an extrapolation f(0) to t = 0 and an extrapolation to infinity with

ḟ∞ being the gradient of f extrapolated to infinity.

This algorithm can be further improved by applying a quadratic inter-

polation between each three points instead of a linear interpolation, which is

relevant for high frequencies. A parabola

P (t) = at2 + bt+ c (C.2)

is uniquely determined by a set of three points {tn/f(tn)} , {tn+1/f(tn+1)} and

{tn+2/f(tn+2)} with tn 6= tn+1 6= tn+2. The coefficients an, bn and cn of the

75



parabola between tn and tn+2 can be determined by solving the linear system t2n tn 1
t2n+1 tn+1 1
t2n+2 tn+2 1

anbn
cn

 =

 f(tn)
f(tn+1)
f(tn+2)

 . (C.3)

Now, the total Laplace integral is decomposed into a sum of Laplace integrals

over parabolas:∫ ∞
0

eiωtf(t) ≈
∑
even n

∫ tn+2

tn

eiωt
(
ant

2 + bnt+ cn
)
dt

=
∑
even n

−
[
i

ω
eiωt

(
ant

2 + bnt+ cn
)]∣∣∣∣∣

tn+2

tn

+

[
1

ω2
eiωt (2ant+ bn)

]∣∣∣∣∣
tn+2

tn

+

[
i

ω3
eiωt2an

]∣∣∣∣∣
tn+2

tn

(C.4)

Since the parabola segments are continuous at the transitions, it is

eiωt
(
ant

2 + bnt+ cn
) ∣∣∣

t=tn+2

= eiωt
(
an+2t

2 + bn+2t+ cn+2

) ∣∣∣
t=tn+2

. (C.5)

Consequently, the first term in Eq. (C.4) mostly vanishes by performing the

sum. The only terms left is for n = 0 and n = N − 2 because there exists no

according summand to cancel with. The last term is negligible, assuming that

f → 0 as t → ∞. In other cases one can design an extrapolation to infinity

similarly as done in Eq. (C.1). The first n = 0 term needs to be kept and is

used to do an extrapolation to t = 0.

Consequently one finds for the Laplace transformation of a data set

{tn/f(tn)} of even size, starting at n = 1 with extrapolation to zero {t0 = 0/f(t0 = 0)},
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where the time array must not be equally spaced:

f̃(ω) = Lt {f(t)}
∣∣∣
s=−iω

=
i

ω
c0+

1

ω2

[
eiωt2 (2a0t2 + b0)− b0

]
+
i

ω3

2a0
(
eiωt2 − 1

)
+

N−2∑
even n=2

1

ω2

[
eiωtn+2 (2antn+2 + bn)− eiωtn (2antn + bn)

]
+
i

ω3
2an

(
eiωtn+2 − eiωtn

)
,

(C.6)

the coefficients have to be determined for each interval respectively. Solving

Eq. (C.3) yields with the abbreviation f(tn) ≡ fn

an =
(−fn + fn+1)tn+2 + (fn − fn+2)tn+1 + (−fn+1 + fn+2)tn

(tn − tn+1) (tn − tn+2) (tn+1 − tn+2)
(C.7)

bn =
(fn − fn+1)t

2
n+2 + (−fn + fn+2)t

2
n+1 + (fn+1 − fn+2)t

2
n

(tn − tn+1) (tn − tn+2) (tn+1 − tn+2)
(C.8)

cn =
(−fntn+1 + fn+1tn)t2n+2 + (fntn+2 − fn+2tn)t2n+1 + (−fn+1tn+2 + fn+2tn+1)t

2
n

(tn − tn+1) (tn − tn+2) (tn+1 − tn+2)
.

(C.9)
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gor Knöner, Agata M. Braczyk, Norman R. Heckenberg, and Halina

Rubinsztein-Dunlop. Optical tweezers computational toolbox. Journal

of Optics A: Pure and Applied Optics, 9(8):196–203, 2007.

[22] A Ashkin. Forces of a single-beam gradient laser trap on a dielectric

sphere in the ray optics regime. Biophys. J., 61:569–582, 1992.

80



[23] Yasuhiro Harada and Toshimitsu Asakura. Radiation forces on a dielectric

sphere in the Rayleigh scattering regime. Optics Communications, 124:

529–541, 1996.

[24] F. Gittes and C. F. Schmidt. Interference model for back-focal-plane

displacement detection in optical tweezers. Optics letters, 23(1):7–9, 1998.

[25] M. W. Allersma, F. Gittes, M. J. DeCastro, R. J. Stewart, and C. F.

Schmidt. Two-dimensional tracking of ncd motility by back focal plane

interferometry. Biophysical journal, 74:1074–1085, 1998.

[26] K. Visscher, S.P. Gross, and S.M. Block. Construction of multiple-beam

optical traps with nnanometer-resolution position sensing. IEEE Journal

of Selected Topics in Quantum Electronics, 2(4):1066–1076, 1996.

[27] A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H.

Hörber. Three-dimensional position tracking for optical tweezers by for-

ward scattered light. Microscopy Research and Technique, 44:378–386,

1999.

[28] Isaac Chavez, Rongxin Huang, Kevin Henderson, Ernst Ludwig Florin,

and Mark G. Raizen. Development of a fast position-sensitive laser beam

detector. Review of Scientific Instruments, 79(10):3–5, 2008.

[29] Simon Kheifets. High-sensitivity tracking of optically trapped particles in

gasses and liquids : observation of Brownian motion in velocity space.

PhD thesis, 2014.

81



[30] Jianyong Mo, Akarsh Simha, Simon Kheifets, and Mark G Raizen. Testing

the Maxwell-Boltzmann distribution using Brownian particles. Optics

Express, 23(2):1888–1893, 2015.

[31] Frederick Gittes and Christoph F. Schmidt. Signals and Noise in Mi-

cromechanical Measurements. Methods in cell biology, 55:129–156, 1998.

[32] Robert Brown. A brief account of microscopical observations on the par-

ticles contained in the pollen of plants. Philosophical Magazine Series 2,

4(21):161–173, 1828.

[33] V. Balakrishnan. Elements of Nonequilibrium Statistical Mechanics. Ane

Books India, 2008.

[34] Kirstine Berg-Sørensen and Henrik Flyvbjerg. Power spectrum analy-

sis for optical tweezers. Review of Scientific Instruments, 75(3):594–612,

2004.

[35] Eric W. Weisstein. ’Wiener-Khinchin Theorem’ From MathWorld -

A Wolfram web resource. URL http://mathworld.wolfram.com/

Wiener-KhinchinTheorem.html.

[36] A. Khintchine. Korrelationstheorie der stationären stochastischen
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[60] P. Domı́nguez-Garćıa, Frédéric Cardinaux, Elena Bertseva, László Forró,
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