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Supervisor:  Chandra R. Bhat 

 

In Multiple discrete-continuous (MDC) choice situations, consumers choose one 

or more alternatives from a set of alternatives jointly with the amount of the chosen 

alternative to consume. The MDC model that has dominated the recent literature is based 

on an utility maximization framework. In the utility functional form, each alternative is 

assumed to have a baseline preference (marginal utility at the point of zero consumption). 

Stochasticity is usually introduced in these baseline preferences as a kernel stochastic 

error term to acknowledge the presence of unobserved factors that may impact the utility 

of each alternative. Researchers have also introduced random structures for the 

coefficients on the exogenous variables that allow heterogeneity (across individuals) in 

the sensitivity to exogenous variables. At the same time as there is more emphasis on 

MDC models today, there is also increasing attention on the analysis of bundle of mixed 

outcomes. The joint modeling of mixed outcomes is challenging because of the absence 

of a convenient multivariate distribution to jointly represent the relationship between 

discrete and continuous outcomes.  
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The primary objective of this dissertation is to advance the econometric modeling 

of MDC choice situations, with an emphasis on two aspects of this modeling. The first is 

to include, in a general way, heterogeneity in the sensitivity to exogenous variables. The 

second is to extend the joint modeling of mixed outcomes to include MDC outcomes. 

These two modeling enhancements are undertaken through three specific objectives:(1) 

formulate and estimate a finite discrete mixture of normals (FDMN) version of the 

MDCP model (hybrid semi-parametric approach that combines a continuous response 

surface for the response coefficients with a latent class approach, allowing market 

segmentation in the MDC context), (2) formulate and estimate a spatial MDC model that 

considers a multivariate skew-normal (MVSN) distribution for the random coefficients 

(the MVSN distribution is tractable, parsimonious, and includes the normal distribution 

as a special interior point case), and (3) propose a new econometric approach for the 

estimation of joint mixed models that include an MDC outcome. The proposed 

enhancements are applied to different empirical contexts to analyze several choice 

processes within the transportation field.  
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CHAPTER 1: Introduction 

1.1 BACKGROUND AND MOTIVATION 

There are several approaches to analyzing the decision process when consumers choose one or 

more alternatives from a set of alternatives jointly with the amount of the chosen alternative to 

consume. Classical discrete-continuous choice models assume that alternatives are mutually 

exclusive and only one alternative can be chosen. Alternatively, multiple discrete-continuous 

(MDC) models expand the decision by allowing consumers to choose multiple alternatives at the 

same time, along with the continuous dimension of the amount of consumption. MDC models 

have been applied in many application contexts, including consumer brand choice and purchase 

quantity, activity participation and time allocation, household vehicle type and usage, 

recreational destination choice and number of trips, land-use type and intensity, and stock 

portfolio selection choice and investment amounts.  

The MDC model that has dominated the recent literature is based on a utility 

maximization framework that assumes a non-linear (but increasing and continuously 

differentiable) utility function to accommodate the relationship between the decreasing marginal 

utility (satiation) and the increasing investment in an alternative. The model also assumes that 

consumers maximize this utility within their budget constraints. In the utility functional form, 

each alternative is assumed to have a baseline preference, which is the marginal utility of each 

alternative at the point of zero consumption. Stochasticity is usually introduced in these baseline 

preferences (for all alternatives) as an additional kernel stochastic error term to acknowledge the 

presence of unobserved factors that may impact the utility of each alternative. One of the most 

common distributions used for the kernel stochastic error term (across alternatives) is the 

multivariate normal distribution, which leads to an MDC probit (MDCP) model structure. 

Researchers have also introduced random structures for the coefficients on the exogenous 

variables (or response coefficients) that allow heterogeneity (across individuals) in the sensitivity 

to exogenous variables in MDC models. The most common assumption in the literature is that 

the random response coefficients are realizations from a multivariate normal distribution. 

However, several studies have underscored the potentially serious mis-specification 

consequences (in terms of theoretical considerations and data fit) of using a multivariate normal 

response distribution when some other non-normal response distribution is at work. 
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At the same time as there is more emphasis on MDC models today, there is also 

increasing attention on the analysis of bundle of mixed outcomes (that is, a mix of continuous 

and non-continuous variables of different types). The joint modeling of non-commensurate or 

mixed outcomes is challenging because of the absence of a convenient multivariate distribution 

to jointly (and directly) represent the relationship between discrete and continuous outcomes. 

This is particularly the case when one of the dependent outcomes is of a MDC nature. The 

jointness between outcomes may arise because of the impact (on the multiple choice outcomes) 

of common underlying exogenous observed variables, or common underlying exogenous 

unobserved variables, or a combination of the two. For example, we can expect that green 

lifestyle propensity (an unobserved variable) may jointly impact decisions such as residential 

location (say represented as a nominal variable in terms of the choice of location in 

neighborhoods of different population density categories), car ownership (a count outcome), and 

time-use in travel/activity patterns (an MDC outcome). 

This chapter is structured as follows. In Section 1.2., the objectives of the dissertation are 

defined. In Section 1.3 the MDCP model structure is presented, including the model formulation 

and estimation. Section 1.4 outlines the dissertation structure. 

1.2 DISSERTATION OBJECTIVE 

The primary objective of this dissertation is to advance the econometric modeling of MDC 

choice situations, with an emphasis on two aspects of this modeling. The first is to include, in a 

general way, heterogeneity in the sensitivity to exogenous variables. The second is to extend the 

joint modeling of mixed outcomes to include MDC outcomes. These two modeling 

enhancements are undertaken through three specific objectives: 

(1) formulate and estimate a finite discrete mixture of normals (FDMN) version of the 

MDCP model (that is, using a hybrid semi-parametric approach that combines a 

continuous response surface for the response coefficients with a latent class approach, 

allowing the introduction of market segmentation in the MDC context),  

(2) formulate and estimate a spatial MDC model that considers a multivariate skew-normal 

(MVSN) distribution for the random coefficients (the MVSN distribution is tractable, 

parsimonious in parameters that regulate the distribution and its skewness, and includes 

the normal distribution as a special interior point case), and  
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(3) propose a new econometric approach for the estimation of joint mixed models that 

include an MDC outcome and a nominal discrete outcome, in addition to count, 

binary/ordinal outcomes, and continuous outcomes.  

The proposed enhancements are applied to different empirical contexts to analyze several 

choice processes within the transportation field.  In the following sections, the basics of the 

MDCP model are explained. 

1.3 THE MULTIPLE-DISCRETE CONTINUOUS PROBIT (MDCP) MODEL 

1.3.1 Utility functional form 

1.3.1.1 Case of only inside goods 

Following Bhat (2008), consider a choice scenario where a consumer q (q = 1, 2, …, Q) 

maximizes his/her utility subject to a binding budget constraint: 


 
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where the utility function )( qqU x  is quasi-concave, increasing and continuously differentiable, 

0qx  is the consumption quantity (vector of dimension K×1 with elements qkx ), and qk , qk , 

and qk  are parameters associated with good k and consumer q. The constraint in Equation (1.1) 

is the linear budget constraint, where qE  is the total expenditure (or income) of consumer q, and 

qkp  is the unit price of good k as experienced by consumer q. The utility function form in 

Equation (1.1) assumes that there is no essential outside good, so that corner solutions (i.e., zero 

consumptions) are allowed for all the goods k (the model formulation in presence of outside 

goods is presented in Section 1.3.1.2). The parameter qk  in Equation (1.1) allows corner 

solutions for good k, but also serves the role of a satiation parameter. The role of qk  is to 

capture satiation effects, with smaller value of qk  implying higher satiation for good k. qk  

represents the stochastic baseline marginal utility (the marginal utility at the point of zero 

consumption).  
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The utility function in Equation (1.1) constitutes a valid utility function if 0qk , 

1qk , and 0qk  for all q and k. In empirical terms, it is not possible to disentangle the two 

effects of the qk  and qk  parameters, which leads to empirical identification issues and 

estimation breakdowns when one attempts to estimate both qk  and qk  parameters for each 

good. Researchers have either constrained qk
 
to zero for all goods (technically, assumed 

qk →0 for all k)  and estimated the parameters, or constrained qk
 
to 1 for all goods and 

estimated the qk  parameters. The first case is usually referred as the γ profile, and the second 

case is known as the α profile, as presented in Equation (1.2).  

  
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                                                                             (1.2) 

Bhat (2008) suggests testing both profiles and selecting the model with the best fit. However, in 

this section, we will retain the general utility form of Equation (1.1) to keep the presentation 

general.  

To complete the model structure, stochasticity is added by parameterizing the baseline 

utility as follows:  

),exp( qkqkqqk   zβ  (1.3) 

where qkz  is a D-dimensional vector of attributes that characterize good k and the consumer q 

(including a dummy variable for each good except one, to capture intrinsic preferences for each 

good except one good that forms the base), qβ  is a consumer-specific vector of coefficients (of 

dimension D×1), and qk  captures the idiosyncratic (unobserved) characteristics that impact the 

baseline utility of good k and consumer q. We assume that the error terms qk  are multivariate 

normally distributed across goods k for a given consumer q: ),(~),...,,( 21 ΛKKqKqqq MVN 0ξ   , 

where ),( ΛKKMVN 0  indicates a K-variate normal distribution with a mean vector of zeros 

denoted by K0  and a covariance matrix .Λ  Further, to allow taste variation due to unobserved 

individual attributes, qβ  is typically considered as a realization from a multivariate normal 
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distribution: ),(~ Ωbβ Dq MVN . As we mentioned earlier, one of the main objectives of this 

dissertation is using more flexible error structures for qβ  and qξ  (see chapters 2 and 3). The 

vectors qβ  and qξ  are assumed to be independent of each other. For future reference, we also 

write
 qq βbβ

~


 
, where ),0(~

~
ΩDDq MVNβ . Note, however, that the parameters (in the 

qβ  

vector) on the dummy variables specific to each alternative have to be fixed parameters, since 

their randomness is already captured in the covariance matrix Λ. 

1.3.1.2 Case of outside and inside goods 

In the presence of both outside goods and inside goods, we label the outside goods as the first K1 

goods, and label the inside goods as the following K2 goods (K1+K2=K). Consequently, the utility 

functional form of Equation (1.1) needs to be modified as follows: 
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Obviously, we need 0qj
 
and 0 qjqjx   for all j=1,2,…,K1. The magnitude of qj  may be 

interpreted as the required lower bound for consumption of the outside good j. Similarly to the 

only inside goods case, qj  and qj  parameters cannot be estimated simultaneously, and analysts 

should choose between the γ profile and the α profile. 

1.3.2 Model estimation 

To find the optimal allocation of goods, the analyst should construct the Lagrangian and derive 

the Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian function for the problem, after 

substituting Equation (1.3) in Equation (1.1) is: 
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(1.5) 

where q  is the Lagrangian multiplier for the expenditure constraint, which represents the 

marginal utility of total expenditure (or income). The KKT first-order conditions for the optimal 

consumption allocations (the *

qkx  values) are: 
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The optimal demand satisfies the conditions above plus the budget constraint. The budget 

constraint implies that only K–1 of the *

qkx  values need to be estimated, since the quantity 

consumed of any one good is automatically determined from the quantities consumed of all the 

other goods. To accommodate this constraint, let qm  be the consumed good with the lowest 

value of k for the qth consumer. For instance, if the choice set has seven goods )7( K  and the 

consumer q chooses goods 2, 3 and 5, then 2qm . The order in which the goods are organized 

does not affect the model formulation or estimation, since the definition of qm  only serves as a 

reference to compare marginal utilities (note also that the consumer q should choose at least one 

good given that 0qE ). For the good qm , the Lagrangian multiplier may then be written as: 
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(1.7) 

Substituting for q  from above into Equation (1.6) for the other goods k ( Kk ,...,2,1 ; qmk  ), 

and taking logarithms, we can rewrite the KKT conditions as:  
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 . Letting qkqkqqkqk Vy  zβ

~
, and 

,*

qq qmqkqkm yyy   the KKT conditions in Equation (1.8) are equivalent to: 

 

0* 
qqkmy , if 0* qkx , Kk ,...,2,1 , qmk 

 
0* 

qqkmy , if 0* qkx , Kk ,...,2,1 , .qmk 
 

(1.9) 
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Three important identification issues need to be noted here because the KKT conditions 

above are based on differences, as reflected in the *

qqkmy  terms. First, a constant cannot be 

identified in the qkzb  term for one of the K goods. Similarly, consumer-specific variables that do 

not vary across goods can be introduced for K–1 goods, with the remaining good being the base. 

Second, only the covariance matrix of the error differences is estimable. Taking the difference 

with respect to the first good, only the elements of the covariance matrix 1Λ  of 

11 qqkqk   , 1k  are estimable. However, the KKT conditions take the difference against the 

first consumed good qm  by consumer q. Thus, in translating the KKT conditions to the 

consumption probability for consumer q, the covariance matrix 
qmΛ  is desired. Since qm  will 

vary across consumers q, 
qmΛ  will also vary across consumers. But all the 

qmΛ  matrices must 

originate in the same covariance matrix Λ  for the original error term vector qξ . To achieve this 

consistency, Λ  is constructed from 1Λ  by adding an additional row on top and an additional 

column to the left. All elements of this additional row and column are filled with values of zeros. 

qmΛ  may then be obtained appropriately for each consumer q based on the same Λ  matrix. 

Third, an additional scale normalization needs to be imposed on Λ  if there is no price variation 

across goods for each consumer q (i.e., if qkpp qqk  and~ ). For instance, one can normalize 

the element of Λ  in the second row and second column to the value of one. But, if there is some 

price variation across goods for even a subset of consumers, there is no need for this scale 

normalization and all the K(K–1)/2 parameters of the full covariance matrix of 1Λ  are estimable 

(see Bhat, 2008 for a discussion of this scale normalization issue). 

The parameters to  be estimated include the qk  parameters (for an α-profile), the qk  

parameters (for a γ-profile), the b vector, and the elements of the covariance matrices Ω  and Λ . 

In the rest of this section, we will use the following key notation: ),;(. ΣμGf  for the multivariate 

normal density function of dimension G with mean vector μ  and covariance matrix Σ , Σω  for 

the diagonal matrix of standard deviations of Σ  (with its rth element being rω ,Σ ), );(. *
ΣG  for 

the multivariate standard normal density function of dimension G and correlation matrix 
*

Σ , 

such that 11  ΣΣ ΣωωΣ
* , ),;(. ΣμGF

 
for the multivariate normal cumulative distribution function 
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of dimension G with mean vector μ  and covariance matrix Σ , and );(. *ΣG  for the multivariate 

standard normal cumulative distribution function of dimension G and correlation matrix .*Σ  

Using the marginal and conditional distribution properties of the multivariate normal 

distribution, the above likelihood function can be written as: 

),;(),;()det( ,,,, ,,,, NCqNCqLLCqCqLLqq NCqNCqCqCq
FfL ΨΨJ


H0

~
H
~

0 

 

   ),),(()),(()det( *

,,

1

,,

1

1

1
, ,,,,

,

,
NCqNCqLCqCqL

L

g
gq

NCqNCqCqCq

Cq

Cq

ΨωΨωJ
ΨΨΨ


H

~
H
~

~
*

~~ 













 





 

 

(1.13) 

where )()( ,

1

,,,,, CqCqCNCqNCqNCq H
~~~

H
~

H  ΨΨ


, CNCqCqCNCqNCqNCq ,,

1

,,,,, )( ΨΨΨΨΨ   ~~~~
, 

1

,

1

,
,,


CqCq

CqCq ΨΨ
ωΨωΨ ~~

* ~~
, and 1

,

1

,
,,


NCqNCq

NCqNCq ΨΨ
ωΨωΨ 


* . 

The multivariate normal cumulative distribution (MVNCD) function in Equation (1.13) is 

of dimension NCqL , , which can have a dimensionality of up to (K–1). Typical simulation-based 

methods to approximate this MVNCD function can get inaccurate and time-consuming as K 

increases. An alternative is to use the maximum approximate composite marginal likelihood 

(MACML) approach (Bhat, 2011), in which the multiple integrals are evaluated using a fast 

analytic approximation method. The MACML estimator is based solely on univariate and 

bivariate cumulative normal distribution evaluations, regardless of the dimensionality of 

integration, which considerably reduces computation time compared to other simulation 

techniques to evaluate multidimensional integrals (see Bhat and Sidharthan, 2011 for an 

extended simulation analysis of the ability of the MACML method to recover parameters). The 

MACML approach was proposed to estimate mixed multinomial probit models (MNP), but can 

be extended to other modeling frameworks that result in MVNCD function evaluations, such as 

the proposed MDCP modeling framework.  

There is one very important issue that still needs to be dealt with. This concerns the 

positive definiteness of covariance matrices. The positive-definiteness of qΨ
~

 in the likelihood 

function can be ensured by using a Cholesky-decomposition of the matrices Ω
 
and Λ , and 

estimating these Cholesky-decomposed parameters. Note that, to obtain the Cholesky factor for 

Λ , we first obtain the Cholesky factor for 1Λ , and then add a column of zeros as the first 

column and a row of zeros as the first row to the Cholesky factor 1Λ . 
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1.4 DISSERTATION OUTLINE 

The rest of the dissertation is structured as follows. Chapter 2 presents a FDMN version of the 

MDCP model. Chapter 3 provides the formulation of a spatial MDC model with an MVSN 

distribution for the random coefficients and the kernel error term. Chapter 4 describes a new 

econometric approach for the estimation of joint mixed models that include an MDC outcome. 

The last chapter concludes the dissertation by summarizing the findings in the previous chapters, 

discussing limitations of the current work, and suggesting directions for future research. 
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CHAPTER 2: Allowing a General Form for Unobserved Heterogeneity in the 

MDCP Model 

 

The material in this chapter is drawn substantially from the following published 

paper:  

Bhat, C. R., Astroza, S., and Bhat, A. C. (2016). On allowing a general form for 

unobserved heterogeneity in the multiple discrete–continuous probit model: 

Formulation and application to tourism travel. Transportation Research Part B 86, 

223-249. 

 

In this chapter, we propose a new econometric formulation and an associated estimation method 

for a finite discrete mixture of normals (FDMN) version of the MDCP model. In the next section 

the concept of unobserved heterogeneity is discussed in the context of MDC models. In Section 

2.2, a MDCP model is formulated using a general form for the unobserved heterogeneity. In 

Section 2.3, simulation exercises are undertaken to examine the ability of the estimation method 

to recover parameters from finite samples. Section 2.4 describes an empirical application of the 

proposed framework to analyze individual-level decisions regarding recreational destination 

locations and the number of trips to each destination. Section 2.5 summarizes the main findings 

of this chapter. 

2.1 UNOBSERVED HETEROGENEITY IN MDC MODELS 

Researchers have introduced random structures for the coefficients on the exogenous variables 

(or response coefficients) that allow heterogeneity (across individuals) in the sensitivity to 

exogenous variables in discrete choice models. There are three possible approaches to introduce 

randomness in the response coefficients. The first approach uses continuous random structures 

for the coefficients on the exogenous variables. Within this approach, the most common 

assumption is that the random response coefficients are realizations from a multivariate normal 
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distribution.1 But this can lead to a misspecification if some other non-normal distribution 

characterizes the taste heterogeneity for one or more coefficients (see Train, 1998; Amador et al., 

2005; Train and Sonnier, 2005; Hensher et al., 2005; Fosgerau, 2005; Greene et al., 2006; 

Balcombe et al., 2009; and Torres et al., 2011). The second approach uses a discrete distribution 

for the response coefficients. This approach leads to the familiar latent class model with an 

endogenous segmentation that allocates individuals probabilistically to segments as a function of 

exogenous variables (see Bhat, 1997; Greene and Hensher, 2003; Train, 2008; Bastin et al., 

2010; Cherchi et al., 2009; and Sobhani et al., 2013). The problem with this approach, however, 

is that homogeneity in response is assumed within each latent class. The third approach uses a 

hybrid semi-parametric approach that combines a continuous response surface for the 

coefficients with a latent class approach (see, for example, Campbell et al., 2010; Bujosa et al., 

2010; Greene and Hensher, 2013; and Xiong and Mannering, 2013). In this approach, the 

response coefficients are typically assumed to be realizations of a discrete mixture of 

multivariate normal distributions. That is, the relationship between the propensity variable and 

exogenous variables is assumed to belong to one of several latent (discrete) classes. Within each 

of these classes, the coefficients are drawn from a continuous multivariate normal distribution. 

The resulting finite discrete mixture of normal (FDMN) model generalizes the heterogeneity 

form because the normally distributed random parameters approach and the latent class approach 

consist of special cases—the first approach resulting when there is only one latent class and the 

                                                 
1 To put things in context within the broader literature on accommodating non-normal coefficients, note that the 

second latent segmentation approach is equivalent to a non-parametric approach in which all random coefficients are 

assumed to have the same number of nodal points, with the number of nodal points being equal to the number of 

latent segments. The nodal points correspond to the segment-specific values (for each coefficient) in the latent 

segmentation set-up, and the probability masses at these nodal points for each individual correspond to the segment 

membership probabilities for that individual. This latent segmentation set-up is a restrictive version of a more 

general non-parametric specification in which the number of nodal points is allowed to vary across coefficients and 

both the nodal points and probability masses are separately estimated for each coefficient (see, for example, Bastin 

et al., 2010). However, this general non-parametric approach is seldom used because consistency is achieved only in 

very large samples and parameter estimates generally have high variance (Mittelhammer and Judge, 2011).  On the 

other hand, a continuous distribution offers substantial efficiency in the number of mixing parameters. In this regard, 

the paper by Bhat and Sidharthan (2012) is of particular note because it enables a non-normal (skew) continuous 

distribution to be used. However, their approach still enforces a unimodal distribution for the coefficients. The finite 

discrete mixture of normals (FDMN) is a good hybrid semi-parametric approach that combines the flexibility of the 

discrete mixture distribution with the efficiency advantage of the continuous distributions. It is by far the most 

widely used semi-parametric approach in the statistical and econometric literature because of this good balance 

between flexibility and efficiency (see Geweke and Keane, 1999, Frühwirth-Schnatter, 2011, and Ferdous et al., 

2011).  
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second resulting when the multivariate normal distribution becomes degenerate within each 

latent class.  

Several earlier studies have included heterogeneity in the sensitivity to exogenous 

variables in the MDC context. Bhat et al. (2013a) proposed an estimation approach for the 

MDCP model that allows taste variation through the inclusion of random parameters. They 

demonstrated the ability to recover the parameters based on a simulation experiment, using both 

cross-sectional and panel data, and applied the model to analyze recreational long-distance 

travel. On the same topic of recreational travel, Kuriyama et al. (2010) proposed a latent class 

KKT model based on the linear expenditure system with translated constant elasticity of 

substitution utility functions proposed by Hanemman (1978). Sobhani et al. (2013) and Wafa et 

al. (2015) use a latent class approach with the MDCEV kernel structure. In Sobhani et al. (2013), 

the authors propose an estimation approach combining the full information maximum likelihood 

and the expectation maximization approaches. The latent class MDCEV model is applied to 

study non-workers’ daily decisions regarding vehicle type and usage in conjunction with activity 

type and accompaniment choice decisions. Wafa et al. (2015) proposed a latent class MDCEV 

model to study the spatial transferability of activity-travel models. 

In this dissertation, we propose an FDMN version of the MDCP model. To our 

knowledge, this is the first such formulation and application of an MDCP model in the 

econometric literature. We also propose the use of Bhat’s (2011) maximum approximate 

composite marginal likelihood (MACML) inference approach for the estimation. This approach 

is computationally efficient and does not involve quasi-Monte Carlo simulation techniques of the 

type proposed in Bhat (2000) and Bhat (2001). The advantage of the MACML approach relative 

to simulation techniques is that it involves only univariate and bivariate cumulative normal 

distribution function evaluations in the likelihood function, regardless of the number of 

alternatives or segments in the latent classification. Using a 2012 New Zealand Domestic Travel 

Survey data set, the model is applied to analyze individual-level decisions regarding recreational 

destination locations and the number of trips to each destination. The results provide insights into 

the demographic and other factors that influence individuals’ preferences for different 

recreational destinations, and show that the FDMN MDCP model is able to identify different 

discrete segments of the sample, each one of them with different stochastic effects of the 

exogenous variables on destination choice (and the effects varying across the discrete segments). 
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2.2 METHODOLOGY 

2.2.1 Model formulation 

Following the formulation in section 1.4, consider a choice scenario where a consumer q (q = 1, 

2,…, Q) belonging to a segment g (g = 1, 2,…, G) maximizes his/her utility subject to a binding 

constraint, as shown in Equation (2.1): 


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




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



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
x

 (2.1) 

where the utility function )( qqU x , given that consumer q belongs to segment g, is quasi-concave, 

increasing and continuously differentiable; 
qx  is the consumption quantity (vector of dimension 

K×1 with elements qkx  so that 0qkx  for all k; k is an index for good k), and qgk , 
qgk , and 

qgk  are parameters associated with good k and consumer q, given that consumer q belongs to 

segment g.2 In the budget constraint, qE  is the total expenditure (or income) of consumer q, and 

qkp  is the unit price of good k as experienced by consumer q. Assume, for now, that there is no 

essential outside good, so that corner solutions (zero consumptions) are possible for all goods k 

(relaxing this assumption is straightforward and simplifies the analysis considerably). The 

parameter 
qgk  represents the baseline marginal utility for good k, given that the individual q

 

belongs to population segment g (i.e., 
qgk  is the marginal utility of good k at the point of no 

consumption of good k, given that q belongs to segment g). The parameter qgk  allows a corner 

solution for good k and also serves as a translation-based satiation parameter, while qgk  serves 

as an exponential-based satiation parameter. As discussed in detail in Bhat (2008), only one 

parameter of the set qgk  or qgk  will be empirically identified, so the analyst will have to 

estimate a  -profile (in which 0qgk ) or an  -profile (in which the qgk  terms are 

normalized to the value of one). Both these profiles can be estimated, and the one that provides a 

                                                 
2 Though we will refer to the alternatives for consumption as “goods” in this section, it is important to note that the 

consumption alternatives can also refer to consumption of different types of activities or, as in the empirical analysis 

of the current chapter, to “consumption” of different destination regions for leisure trips.  
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better data fit may be selected. Also, for the  -profile, we will need kqgk  0 , and, for the 

 -profile, we will need 1qgk k   . In the current research, we will retain the general utility 

form of Equation (2.1) to keep the presentation general. 

In Equation (2.2) we introduce observed heterogeneity across individuals within segment 

g and stochasticity through the baseline marginal utility function qgk : 

exp( ),qgk qg qk  β z   (2.2) 

where 
qkz  is a D-dimensional vector of attributes that characterizes good k and the consumer q 

(including a constant for each good except one, to capture intrinsic preferences for each good 

relative to a base good); 
qgβ  is a consumer-specific vector of coefficients (of dimension D×1) 

that allows unobserved taste variation across all consumers q in segment g and allows different 

observed responsiveness across all consumers q based on different values of the elements of the 

vector qkz . In the current research, we consider 
qgβ  to be a realization from a multivariate normal 

distribution: ~ ( , )qg D g gf Ωβ b . For future reference, we also write
 qg g qg β b β , where 

~ ( , )qg D D gf 0 Ωβ .  

The optimal consumption vector 
qx  can be solved based on the constrained optimization 

problem of Equation (2.1) by forming the Lagrangian function and applying the KKT conditions, 

conditional on the individual belonging to segment g. The Lagrangian function for the problem is 

provided in Equation (2.3): 
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where 
qg  is a segment g-specific Lagrangian multiplier associated with the expenditure 

constraint. The KKT first-order conditions for the optimal consumption 
*

qkx , given that consumer 

q belongs to segment g, are as shown in Equation (2.4): 
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The optimal demand, conditional on individual q belonging to segment g, satisfies the 

above conditions and the budget constraint .
1

*

q

K

k

qkqk Exp 


 The budget constraint implies that 

only K–1 of the 
*

qkx  values need to be estimated. To accommodate this singularity, let qm  be, 

without loss of generality, the consumed good with the lowest value of k for the qth consumer 

(note that the consumer must consume at least one good given 0qE ). For this 
th

qm  good, 

* 0
qqmx  , which implies Equation (2.5) from the first set of KKT conditions in Equation (2.4): 

1
*exp( )

1 .
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q q q

q q

g qm qg qm qm

qg

qm qgm

x

p








  
  
 
 

b z β z
  (2.5) 

Substituting back in Equation (2.4) for the other goods k ( Kk ,...,2,1 ;
qmk  ), and taking 

logarithms and simplifying, we may write the KKT conditions as Equation (2.6): 

.  ,,...,2,1  ,0 if  ,0

,  ,,...,2,1  ,0 if  ,0
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where *

q qqgkm qgk qgmy y y  ; 
*

qgk qgk qg qky V   β z ; and 

*

( 1) ln 1 ln
qk

qgk g qk qgk qgk

qgk

x
V p



 
      

 

b z . 

The above conditions are conditional on individual q belonging to segment g. Within this 

context, two important identification considerations need to be noted (additional identifications 

considerations due to multiple segments will be noted later). First, a dummy variable (or 

constant) corresponding to one of the K goods should not be introduced, since only differences in 

the 
*

qgky  terms matter (this is similar to a standard discrete choice model). Similarly, consumer-

specific variables that do not vary across goods can be introduced only for (K–1) goods, with the 

remaining alternative being the base. Let the first alternative be the base for the dummy variable 

and for consumer-specific variables that do not vary across goods. That is, let 01 constantqz  (and 

correspondingly, the element in 
gb  corresponding to this first alternative’s constant is fixed at 0 

and the variance element contribution in 
gΩ  corresponding to this alternative’s constant is also 

fixed at 0; in addition, all covariance elements in 
gΩ  corresponding to this first alternative’s 

constant also are set to zero). Also, let 01 lqz  for all consumer-specific variables l that do not 
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vary across goods (and correspondingly, the elements in 
gb  for these variables for the first 

alternative are fixed at zero and so are all variances/covariances in 
gΩ  for these variables for the 

first alternative). 

2.2.2 Consumer role in a finite mixture of segments 

The derivation thus far is based on the notion that consumer q belongs to a single segment g. But 

now consider the case that consumer q belongs to a finite mixture of segments—that is, the 

actual assignment of consumer q to a specific segment is not observed, but we are able to 

attribute different probabilities ( 1,2, , )qg g G   to consumer q belonging to different 

segments. We require that 0 1qg  , and 
1

1
G

qg

g




 . To enforce these restrictions, and 

following Bhat (1997), we use the logit link function shown in Equation (2.7): 
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where 
qw  is a vector of individual exogenous variables, and 01μ  serves as a vector 

identification condition. This probabilistic assignment to segments is tantamount to using a 

mixture of multivariate normal distributions for 
qβ : 




G

g

ggDqgq f
1

),;(,|)( ΩaΩa bbβ  , 

where ( .; , )D g gf Ωb  is the multivariate normal density function with mean vector 
gb  and 

covariance matrix 
gΩ . b  is a vector obtained by stacking the 

gb  vectors vertically, and Ω  is the 

matrix obtained by block-diagonally stacking the 
gΩ  matrices. Specifically, one may write 

),exp( qkqqk zβ which, with the mixture of MVN distributions as above for 
qβ , leads to the 

segment-specific baseline utility functions of the form of Equation (2.2) with a probabilistic 

segment assignment 
qg . The mixture of normal distributions is a semi-parametric distribution 

that relaxes the normal distribution for 
qβ  commonly used in typical MDC models, while 

allowing the distribution itself to be a function of individual-level attributes through the 
qg  

terms. The mixture distribution effectively combines the flexibility of the latent class model with 

the parsimony of the continuous multivariate normal distribution assumption for 
qβ . In 
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particular, if each individual belongs to a single segment that is known a priori (that is, if 
qg = 1 

for a specific segment g and zero for all other segments, and if this is known a priori for each 

individual q) and gqkqgk   and ,gqkqgk   the model collapses to a random-coefficient 

MDCP model (or RC-MDCP in the rest of this chapter) as in Bhat et al. (2013a). On the other 

hand, if the multivariate normal distribution within each segment becomes degenerate (i.e., 

0g Ω  for all g), then the model collapses to a latent class MDCP (LC-MDCP) model. 

The use of latent classes, as in the current research, requires labeling restrictions for 

identifiability. In particular, the parameter space includes !G  subspaces, each associated with a 

different way of labeling the mixture components. To prevent the interchange of the mixture 

components, we impose the labeling restriction that the constants specific to the second 

alternative are increasing across the segments, i.e.: b11<b21<b31<…bG1 (b11 refers to coefficient 

on the dummy variable for the second alternative in the first segment, b21 refers to the coefficient 

on the dummy variable for the second alternative in the second segment, and so on until bG1 

refers to the coefficient on the dummy variable for the second alternative in the Gth segment).3 

To implement the labeling restriction, we parameterize the bg1 values as follows: 

)exp(1,11 ggg bb    for g=2,…,G. Such a labeling restriction is needed because the same model 

specification (and likelihood function value) results simply by interchanging the sequence in 

which the segments are numbered. Technically, therefore, multiple sets of parameters 

(corresponding to a swap of segment values) result in the same likelihood function, creating an 

identification problem. This identification problem is resolved through the imposition of the 

labeling restriction above so that the segments become non-interchangeable.4 Finally, an 

additional scale normalization needs to be imposed on 
gΩ  for one of the g segments if there is 

no price variation across goods for each consumer q (i.e., if qkpp qqk  and~ ). For 

instance, one can normalize the variance of the second alternative’s constant in the first segment 

                                                 
3 As clearly indicated earlier, the constant coefficients for the first alternative are set to zero in every segment g (g = 

1, 2, …, G) for identification. 

4 Of course, the labeling restriction discussed above, which we use in the simulation experiments in the next section, 

is only one of several possible restrictions to identify the model, Thus, in our empirical analysis, where we do not 

use constants in the baseline utilities of the alternatives (for reasons discussed in the empirical section), we 

implement another version of the labeling restriction by requiring that the constant in the first segment in the 

segment membership model has a maintained value of zero, and there is a descending order of magnitudes of the 

constants for the other segments in the segment membership model. 
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( 1g  ) to the value of one. But, if there is price variation across even a subset of goods for a 

subset of consumers, there is no need for this additional scale normalization (see Bhat, 2008). 

2.2.3 Model estimation 

If a  -profile is used, the parameter qgk  may be parameterized as )
~

exp( qkgaθ , where qka  is a 

vector of explanatory variables and gθ
~

 is a corresponding vector of parameters. On the other 

hand, if an  -profile is used, the parameter 
qgk  may be parameterized as )~exp(1 qkgaθ 


 (to 

maintain the restriction that 1qgk ) or as 
)~exp(1

1

qkgaθ



 (to maintain the stronger restrictions 

that 10  qgk ; this stronger restriction often helps create stability in estimation). 

Let )
~

,,
~

,
~

;,,,;,,,;,,,( 21212121
 GGGG θθθμμμbbbθ  ΩΩΩ  if a  -profile is 

estimated and ),,,;,,,;,,,;,,,( 21212121
 GGGG θθθμμμbbbθ





 ΩΩΩ  if an  -profile is 

estimated, with gΩ  representing the row vectorization of the upper diagonal elements of 
gΩ . To 

formulate the estimation procedure, we will use the following notation: ),;(. ΣηSf  for the 

multivariate normal density function of dimension S with mean vector η  and covariance matrix 

Σ ; Σω  for the diagonal matrix of standard deviations of Σ  (with its rth element being 
rω ,Σ
); 

);(. *
ΣS  for the multivariate standard normal density function of dimension S and correlation 

matrix *
Σ —such that 

11  ΣΣ ΣωωΣ
*

, ),;(. ΣηSF  for the multivariate normal cumulative 

distribution function of dimension S with mean vector η  and covariance matrix Σ—and 

);(. *
ΣS  for the multivariate standard normal cumulative distribution function of dimension S 

and correlation matrix .*Σ  

The derivation of the likelihood function is identical to the process presented in Section 

1.4.2. The reader is referred to Appendix A for a detailed explanation. The likelihood function 

can be written as shown in Equation (2.8): 
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where )
~

()
~

(
~~

,

1

,,,,, CqgCqgCNCqgNCqgNCqg HHH  ΨΨ


, 1
~,

1
~

*

,
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ωΨωΨ ,
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
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,

1*

,
,,
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NCqgNCqg
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
, and Ξω  represents 

the diagonal matrix of standard errors corresponding to matrix Ξ . 

Then, the likelihood function for observation q is: 

, )()(
1





G

g

qgqgq LL θθ    (2.9) 

and the likelihood function is then given as: 

. )()( 
q

qLL θθ    (2.10) 

The multivariate normal cumulative distribution (MVNCD) function in Equation (2.10) is 

of dimension NCqL , , which can have a dimensionality of up to (K–1). Typical simulation-based 

methods to approximate this MVNCD function can become inaccurate and time-consuming as K 

increases. An alternative is to use the MACML approach (Bhat, 2011), in which the multiple 

integrals are evaluated using a fast analytic approximation method.5 The MACML estimator is 

based solely on univariate and bivariate cumulative normal distribution evaluations, regardless of 

the dimensionality of integration, which considerably reduces computation time compared to 

other simulation techniques used to evaluate multidimensional integrals (see Bhat et al., 2013a 

for an extended simulation analysis of the ability of the MACML method to recover parameters 

in the simple MDCP model).  

One very important issue still needs to be dealt with: the positive definiteness of 

covariance matrices. The positive-definiteness of qgΨ
~

 in the likelihood function can be ensured 

                                                 
5 Note that in the current case, we use only the analytic approximation for the cumulative standard multivariate 

normal distribution embedded in the MACML; however, we will continue to refer to the approach as MACML for 

ease in presentation and also because the composite marginal likelihood (CML) inference approach subsumes the 

maximum likelihood (ML) inference approach used here as a special case. 
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by applying a Cholesky decomposition to the matrices 
g (g = 1, 2,…, G), and estimating these 

Cholesky-decomposed parameters.6 

2.3 SIMULATION EVALUATION 

The simulation exercises undertaken in this section examine the ability of the MACML estimator 

to recover parameters from finite samples in an FDMN MDCP model by generating simulated 

data sets with known underlying model parameters. To examine the robustness of the MACML 

approach when applied to different numbers of mixtures, we consider both two- and three-

mixture models. In addition, we examine the effects of (a) assuming that coefficients are fixed 

and not stochastic within each segment (that is, using the LC-MDCP model), and (b) assuming 

normality of the response coefficient when non-normality is present and thus using a single 

segment when multiple segments are present (that is, using the RC-MDCP model). 

2.3.1 Experimental design 

In the design, we consider the case with three alternatives. In each of the two- and three-mixture 

cases, we consider two independent variables in the 
qkz  vector in the baseline utility for each 

alternative. That is, consider the following for the 
qkz  vectors: 

      ,,,1,0 and , ,,0,1  , ,,0,0 2,31,332,21,222,11,11 qqqqqqqqq zzzzzz  zzz  (2.11) 

                                                 
6 Previous research in latent segmentation (see, for example, Bhat, 1997 and Sobhani et al., 2013) has highlighted 

several estimation challenges in terms of stability and convergence. Most of these studies recommend the 

Expectation Maximization (EM) method to find good initial values to start the full information likelihood function 

iterations. However, the EM method also leads to long estimation times. In this research, to obtain good start values 

as well as minimize estimation time, we implemented the following steps to estimate a model with S segments, with 

the parameters at the end of each step serving as the initial start values for the iterations associated with the 

subsequent step. In particular, we first estimated an MDCP model with only a single vector of constants in the 

baseline utilities of the alternatives (that is, we estimated a constants-only model as though there were only one 

latent segment). Second, we used the constants from the first step as initial values for the baseline utility constants  

in the first segment, made a random perturbation of these values by increasing or decreasing these values between 

5% to 10% for the baseline utility constants in the remaining S-1 segments, used a constants-only specification for 

the segment membership probabilities with the constant for the first segment constrained to zero, and the other 

constants perturbed from zero in a way that adheres to the labeling restriction as discussed at the top of Section 

2.2.2, and estimated a latent segmentation MDCP model (with only constants and no random parameters). Third, we 

used the results of the previous step as a starting point and added exogenous variables to the segment membership 

model to get a good segment membership specification. Fourth, we introduced exogenous variables in the baseline 

utilities of the MDCP-specific models for each segment to obtain a good latent segmentation model simultaneously 

with a refined segment membership model specification. Finally, we estimated the FDMN version of the model, 

allowing randomness in the parameters. The entire process was also aided and speeded up by the fact that we coded 

our own analytic gradient function.  
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where the last two variables in each 
qkz  (k=1,2,3) correspond to the two independent variables. 

The first variable in 
2qz  is the constant specific to alternative 2, while the second variable in 

3qz   

is the constant specific to alternative 3. The values of the two independent variables for each 

alternative (i.e., 
1,1qz  and 

2,1qz  for the first alternative; 
1,2qz  and 

2,2qz  for the second alternative; 

and 
1,3qz  and 

2,3qz  for the third alternative) are drawn from standard univariate normal 

distributions. In particular, a synthetic sample of 5000 realizations of the exogenous variables is 

generated corresponding to Q=5000 consumers. Additionally, we generate budget amounts qE  

),...,2,1( Qq   from a univariate normal distribution with a mean of 150, and truncated between 

the values of 100 and 200 (the prices of all goods are fixed at the value of one across all 

consumers). Once generated, the independent variable values and the total budget are held fixed 

in the rest of the simulation exercise.  

2.3.1.1 Two-segment case 

For the coefficients on the 
qkz  variables, we assume hybrid coefficients as follows: 

),,;(),;()( 22421141 ΩΩ babaaβ ffq                                                                   (2.12) 

where )5.0,6.0,0.2,0.1()
~

,,,( 1312111
 bbbbb  for segment 1, and 

)5.0,2.0,5.1,0.2()
~

,,,( 2322212
 bbbbb  for segment 2. Note that the dimension of b1 and b2 are 

the same as zq1, zq2, and zq3 (all of these are 4×1 vectors). That is, b11 is the mean constant 

coefficient on the second alternative in segment 1, b12 is the mean constant coefficient on the 

third alternative in segment 1, b13 is the mean coefficient on the first independent variable in the 

first segment, and b
~

 is the mean coefficient on the second independent variable in the first 

segment. b21 through b23 are similar to b11 through b13 but for the second segment, and we 

maintain the same coefficient b
~

 in both segments for the second independent variable. For the 

covariance matrices 1  and 2  of the coefficients we assume:  
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









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








0000.0000.00

0374.0000.00

0519.0866.00

0700.0500.01

0000.0000.00.0

0374.0519.07.0

0000.0866.05.0

0000.0000.01

0000

09.08.07.0

08.015.0

07.05.01

111 ΩΩ LL  
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

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






















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00.00.00.0

03.00.00.0

04.08.00.0

08.06.09.0

00.00.00.0

03.04.08.0
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As indicated earlier, the positive definiteness of the 1  and 2  matrices is ensured in the 

estimations by reparameterizing the likelihood function in terms of the lower Cholesky factor 

matrices 
1Ω

L  and 
2ΩL , and estimating the associated Cholesky matrix parameters. As should be 

obvious from the specification of 1  and 2 , we assume that the coefficient on the second 

independent variable (i.e., b
~

) is fixed in the simulations (note the zero entries in the last row and 

column of 1  and 2 ).7 Then, in the two-mixture case, there are 11 Cholesky parameters to be 

estimated: 5.02,1
Ωl , 866.03,1

Ωl , 7.04,1
Ωl , 519.05,1

Ωl , 374.06,1
Ωl , 9.01,2

Ωl , 

6.02,2
Ωl , 8.03,2

Ωl , 8.04,2
Ωl , 4.05,2

Ωl , and 3.06,2
Ωl . 

The weight mixture values 1  and 2  are set by specifying the vector 
qw  to include a 

constant and an independent variable 1qw  drawn from a standard univariate normal distribution. 

That is,   1,1 qq ww . Also we specify   0,01μ  for normalization and   1.0,6.02μ  for the 

second segment. Finally, we use a  -profile in our estimations, and set the satiations parameters 

for all three alternatives to 1 in both segments. That is, 1131211    for the first segment, 

and 1232221    for the second segment.  

 Overall, the parameters to be estimated in the two-mixture case include the following: 

b11=1, b12=2, b13=0.6, b21=2, b22=1.5, b23=0.2, b
~

=0.5, 5.02,1
Ωl , 866.03,1

Ωl , 7.04,1
Ωl , 

519.05,1
Ωl , 374.06,1

Ωl , 9.01,2
Ωl , 6.02,2

Ωl , 8.03,2
Ωl , 8.04,2

Ωl , 4.05,2
Ωl , and 

3.06,2
Ωl , 6.021  , 1.022  , 111  , 112  , 113  , 121  , 122  , and 123  . 

2.3.1.2 Three-segment case 

In this case, we assume the hybrid coefficients as follows: 

                                                 
7 We use the general presentation convention that the lower Cholesky matrix of a covariance matrix with a 

row/column with all zero values (that is, corresponding to a fixed parameter) is obtained by stripping out that 

row/column from the covariance matrix, obtaining the lower Cholesky matrix for the remaining sub-matrix, and then 

adding a row/column of zero values to the resulting lower Cholesky matrix. 
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ΩΩΩ
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bababaaβ fffq                                     (2.13) 

where 11 bb
*  , 22 bb

*  , and )5.0,0.2,0.1,0.3(3
*

b , 1 

 , 2 

 , and 
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0000
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000.15.0

0000.2

0000

081.11.12.1

01.125.10.1

02.10.10.4

33
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3 ΩΩ LL . 

The mixture weights 
*

1 , 
*

2 , and *

3  are set by specifying 1

*

1 μμ  , 2

*

2 μμ  , and 

  0,4.03μ . Then, the parameters to be estimated in this three-mixture case include: 1*

11 b , 

2*

12 b , 6.0*

13 b , 2*

21 b , 5.1*

22 b , 2.0*

23 b , 2*

31 b , 5.0*

32 b , 1.0*

33 b , 5.0
~* b , 5.02,

*
1
Ωl , 

866.03,
*

1
Ωl , 7.04,

*
1
Ωl , 519.05,

*
1
Ωl , 374.06,

*
1

Ωl , 9.01,
*

2
Ωl , 6.02,

*
2

Ωl , 8.03,
*

2
Ωl , 

8.04,
*

2
Ωl , 4.05,

*
2
Ωl , 3.06,

*
2

Ωl , 21,
*

3
Ωl , 5.02,

*
3

Ωl , 0.13,
*

3
Ωl , 6.04,

*
3

Ωl , 

8.05,
*

3
Ωl ,  9.06,

*
3
Ωl , 6.0*

21  , 1.0*

22  , 4.0*

31  , 0.0*

32   1*

11  , 1*

12  , 1*

13  , 

1*

21  , 1*

22  , 1*

23  , 1*

31  , 1*

32  , 1*

33  . 

2.3.1.3 Data generation 

Using the design presented in the previous sections, we generate the consumption quantity vector 

*xq  for each individual using the forecasting algorithm proposed by Pinjari and Bhat (2011a). 

The above data generation process is undertaken 100 times with different realizations of the qβ  

vector to generate 100 different data sets each for the two- and three-mixture cases.  

We estimate two additional models on each of the 100 generated data sets for each of the 

two- and three-mixture cases. The first model ignores random coefficients on the independent 

variables in each mixture (latent segment), allowing random coefficients only on the constants. 

This corresponds to the Latent Class-MCDP (or LC-MDCP) model. Thus, the only Cholesky 

parameters estimated for the two-mixture case are 5.02,1
Ωl , 866.03,1

Ωl , 9.01,2
Ωl , 

6.02,2
Ωl , and 8.03,2

Ωl . All other Cholesky parameters are effectively held to the value of 

zero. In Table 2b, for the LC-MDCP model, the only Cholesky parameters estimated are 
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5.02,
*

1
Ωl , 866.03,

*
1
Ωl ,  9.01,

*
2
Ωl , 6.02,

*
2

Ωl , 8.03,
*

2
Ωl , 21,

*
3
Ωl , 5.02,

*
3

Ωl , and 

0.13,
*

3
Ωl .  

The second model assumes away non-normality by using a single segment for the entire 

sample (that is, assumes that 21  in the two-mixture case, and 
*

21  and *

31  in the three-segments 

case, all go to the value of ) . This is the traditional normally-distributed random-coefficients 

MDCP (or RC-MDCP) model. Also, in this case 9.01,2
Ωl  in the two-segment case, and 

9.01,
*

2
Ωl  and 21,

*
3
Ωl  in the three-segment case, are not estimable and fixed at 1.0. 

Additionally, in the two segment case, the following constraints are imposed: b11= b21, b12= b22, 

b13= b23, 2,2, 21 ΩΩ ll  , 3,3, 21 ΩΩ ll  , 4,4, 21 ΩΩ ll  , 5,5, 21 ΩΩ ll  , 6,6, 21 ΩΩ ll  , ,2111   , ,2212   and 

.2313    In the three-segment case, the following constraints are imposed: *

31

*

21

*

11 bbb  , 

*

32

*

22

*

12 bbb  , *

33

*

23

*

13 bbb  , ,2,
*

2,
*

2,
*

321 ΩΩΩ lll  ,3,
*

3,
*

3,
*

321 ΩΩΩ lll  ,4,
*

4,
*

4,
*

321 ΩΩΩ lll 

,5,
*

5,
*

5,
*

321 ΩΩΩ lll  ,6,
*

6,
*

6,
*

321 ΩΩΩ lll  ,*

31

*

21

*

11   ,*

32

*

22

*

12    and .*

33

*

23

*

13    

We make the comparison between the proposed FDMN-MDCP model and the two 

restrictive formulations above (that is, the LC-MDCP and the RC-MDCP based on the ability to 

accurately recover model parameters as well as usual nested likelihood ratio tests).  

The analytic approximation embedded in the MACML estimator is applied to two of the 

datasets 10 times with different permutations to obtain the approximation error. The 

approximation error is negligible, so only one set of permutations for computing the 

approximation will be considered in each of the 100 datasets. The performance of the MACML 

inference approach in estimating the parameters of the MDCP model and their standard errors is 

evaluated as follows: 

(1) Estimate the parameters using the analytic approximation in the MACML for each data set s. 

Estimate the standard errors using the Godambe (sandwich) estimator.  

(2) Compute the mean estimate for each model parameter across the data sets to obtain a mean 

estimate. Compute the absolute percentage (finite sample) bias (APB) of the estimator as: 
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.100
 valuetrue

 valuetrue-estimate mean
(%) APB 8 

(3) Compute the standard deviation for each model parameter across the data sets, and label this 

as the finite sample standard error or FSSE (essentially, this is the empirical standard 

error). 

(4) Compute the median standard error for each model parameter across the data sets and label 

this as the asymptotic standard error or ASE (essentially, this is the standard error of the 

distribution of the estimator as the sample size increases). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed using 

the MACML inference approach for the finite sample size used, compute the APB associated 

with the ASE of the estimator as: 

100
FSSE

FSSE-ASE
(%) APBASE  

2.3.2 Simulation results 

2.3.2.1 Recoverability of parameters in the MDCP with the mixture model 

Tables 2.1a and 2.1b present the results for the simulation. Table 2.1a corresponds to the two-

segment case, while Table 2.1b corresponds to the three-segment case. The second column 

presents the true values used in generating the data samples. The third column labeled 

“Parameter Estimates” provides the mean value (across the data sets) of each parameter as well 

as the corresponding APB measure, while the fourth broad column labeled “Standard Error 

Estimates” provides the ASE, FSSE, and the APBASE values for the parameter standard errors.  

 

 

 

 

 

 

                                                 
8 In case a true parameter value is zero, the APB is computed by taking the difference of the mean estimate from the 

true value (= 0), dividing this difference by the value of 1 in the denominator, and multiplying by 100. 
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Table 2.1a. Evaluation of the ability to recover true parameters for the two-segment case 

Parameter 
True 

Value 

MACML Method 

Parameter Estimates Standard Error Estimates 

Mean 

Estimate 

Absolute 

Percentage 

Bias (APB) 

Asymptotic 

Standard Error 

(ASE) 

Finite Sample 

Standard Error 

(FSSE) 

Absolute Percentage 

Bias of Asymptotic 

Standard Error 

(APBASE) 

11b  1.000 1.063 6.3% 0.157 0.136 14.8% 

12b  2.000 1.997 0.2% 0.387 0.438 11.7% 

13b  0.600 0.586 2.4% 0.063 0.061 3.2% 

21b  2.000 1.901 4.9% 0.419 0.407 2.9% 

22b  1.500 1.503 0.2% 0.141 0.136 3.5% 

23b  0.200 0.196 2.2% 0.032 0.035 8.2% 

b
~

 0.500 0.500 0.0% 0.013 0.012 12.4% 

2,1Ω
l  0.500 0.476 4.7% 0.055 0.057 2.5% 

3,1Ω
l  0.866 0.865 0.2% 0.040 0.044 9.6% 

4,1Ω
l  0.700 0.666 4.9% 0.049 0.036 35.6% 

5,1Ω
l  0.519 0.529 2.0% 0.051 0.049 3.0% 

6,1Ω
l  0.374 0.378 1.0% 0.026 0.028 5.9% 

1,2Ωl  0.900 0.898 0.2% 0.023 0.021 10.7% 

2,2Ωl  0.600 0.598 0.4% 0.031 0.032 3.5% 

3,2Ωl  0.800 0.796 0.5% 0.021 0.020 4.0% 

4,2Ωl  0.800 0.795 0.6% 0.025 0.025 0.8% 

5,2Ωl  0.400 0.392 2.1% 0.021 0.018 17.2% 

6,2Ωl  0.300 0.299 0.3% 0.015 0.014 4.5% 

21  0.600 0.505 15.8% 0.206 0.183 12.9% 

22  0.100 0.112 11.9% 0.046 0.050 8.2% 

1  1.000 1.038 3.8% 0.125 0.115 8.4% 

2  1.000 1.008 0.8% 0.146 0.136 7.0% 

3  1.000 1.103 10.3% 0.396 0.395 0.2% 

Overall Mean Value 

Across Parameters 
3.2% (for APB) 0.115 0.113 7.8% 

Mean Time (mins) 18.3 

Std. dev of Time 7.5 

% of Runs Converged 100% 
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Table 2.1b. Evaluation of the ability to recover true parameters for the three-segment case 

Parameter True Value 

MACML Method 

Parameter Estimates Standard Error Estimates 

Mean 

Estimate 

Absolute 

Percentage Bias 

(APB) 

Asymptotic 

Standard Error 

(ASE) 

Finite Sample 

Standard Error 

(FSSE) 

Absolute Percentage Bias of 

Asymptotic Standard Error 

(APBASE) 

*

11b  1.000 1.003 0.3% 0.296 0.285 4.0% 

*

12b  2.000 1.885 5.8% 0.433 0.421 2.7% 

*

13b  0.600 0.547 8.8% 0.215 0.192 11.7% 

*

21b  2.000 1.844 7.8% 0.599 0.566 5.9% 

*

22b  1.500 1.432 4.5% 0.295 0.282 4.5% 

*

23b  0.200 0.206 3.2% 0.093 0.092 1.3% 

*

31b  3.000 3.378 12.6% 0.082 0.080 3.0% 

*

32b  1.300 1.235 5.0% 0.032 0.038 14.1% 

*

33b  0.300 0.346 15.3% 0.175 0.155 12.7% 

*~
b  0.500 0.499 0.3% 0.023 0.024 3.5% 

2,
*

1Ωl  0.500 0.506 1.3% 0.137 0.124 10.1% 

3,
*

1Ωl  0.866 0.863 0.4% 0.109 0.104 4.5% 

4,
*

1Ωl  0.700 0.675 3.5% 0.082 0.072 14.7% 

5,
*

1Ωl  0.519 0.500 3.7% 0.081 0.090 9.6% 

6,
*

1Ωl  0.374 0.383 2.4% 0.056 0.052 7.6% 

1,
*

2Ωl  0.900 0.920 2.3% 0.098 0.093 5.4% 

2,
*

2Ωl  0.600 0.582 3.1% 0.075 0.074 0.4% 

3,
*

2Ωl  0.800 0.790 1.3% 0.047 0.054 13.1% 

4,
*

2Ωl  0.800 0.784 2.0% 0.105 0.084 24.5% 

5,
*

2Ωl  0.400 0.401 0.3% 0.087 0.086 1.4% 

6,
*

2Ωl  0.300 0.304 1.3% 0.058 0.057 0.9% 

1,
*

3Ωl  2.000 2.030 1.5% 0.057 0.061 6.1% 

2,
*

3Ωl  0.500 0.575 14.9% 0.067 0.053 25.8% 

3,
*

3Ωl  1.000 0.986 1.4% 0.070 0.072 3.7% 

4,
*

3Ωl  0.600 0.580 3.3% 0.050 0.067 25.5% 

5,
*

3Ωl  0.800 0.886 10.7% 0.341 0.400 14.7% 

6,
*

3Ωl  0.900 1.060 17.8% 0.060 0.055 8.5% 

*

21  0.600 0.687 14.6% 0.541 0.503 7.6% 

*

22  0.100 0.112 12.3% 0.148 0.149 1.0% 

*

31  0.400 0.342 14.4% 0.225 0.201 11.9% 

*

32  0.000 0.010 10.0% 0.008 0.007 14.2% 

1  1.000 1.041 4.1% 0.267 0.255 4.7% 

2  1.000 1.145 14.5% 0.329 0.308 6.8% 

3  1.000 1.156 15.6% 0.520 0.473 9.8% 

Overall Mean Value  6.4% (for APB) 0.172 0.165 8.7% 

Mean Time (mins) 72.4 

Std. dev of Time 19.6 
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The APB values for the parameter estimates (third column) show that the MACML 

method does very well in recovering the parameters. The overall mean APB value across all 

parameters is 3.2% in the two-segment case (see the last row of the column labeled “APB” in 

Table 2.1a). The APB values are in general higher for the three-segment case (Table 2.1b), with 

an overall mean value of 6.4% across all parameters, probably due to the many additional 

parameters that have to be estimated relative to the two-segment model. In general, across the 

parameters, the APB values are relatively high for the γ satiation parameters in both the two- and 

three-segment cases. The satiation parameters are an important source of non-linearity in the 

overall utility function (see Equation 2.1), and make the likelihood surface more difficult to track 

computationally. The APB values of the µ parameters are also relatively high in both cases (two 

and three segments) relative to the APB values of the rest of the parameters. These µ parameters 

appear in the likelihood function through the mixture (π) probabilities, and it is well established 

in the literature (see, for example, Sobhani et al., 2013) that these mixture probabilities are 

difficult to pin down because the likelihood surface can be relatively flat for a number of 

different combinations of the mixture probabilities near the likelihood optimal point.  

The finite sample standard errors and the asymptotic standard errors (in the fourth broad 

column of Tables 2.1a and 2.1b) are close; the average absolute difference is 0.007 and 0.013 for 

the two- and three-segment cases, respectively. The mean APBASE value across all parameters 

is 7.8% for the two-segment case and 8.7% for the three-segment case. In both the two- and 

three-segment cases, the finite sample standard error estimates are generally higher (as a 

percentage of the mean estimates) for the γ and µ parameters relative to other sets of parameters, 

reinforcing the finding earlier that the γ and µ parameters are more difficult to recover than other 

parameters. Some elements of the Cholesky matrix also are difficult to pin down, again because 

the Cholesky elements enter the likelihood function in a very non-linear fashion as part of the 

evaluation of the cumulative multivariate normal density and distribution functions.  

 Overall, the MACML inference approach does well in accurately and precisely 

recovering parameters in both the two-segment and three-segment FDMN-MDCP model. The 

reported model estimation times are based on scaling to a desktop computer with an Intel(R) 

Pentium(R) D CPU@3.20GHz processor and 4GB of RAM. The statistical software GAUSS 

was used for all the estimations reported in this chapter. 
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2.3.2.2 Comparison between the proposed model and more restrictive MDCP models 

Tables 2.2a and 2.2b present the results for the simulation exercise focusing on the comparison 

between the proposed FDMN MDCP model and two other, more restrictive versions of the 

model: the LC-MDCP and the RC-MDCP models. Table 2.2a corresponds to the two-segment 

case, while Table 2.2b corresponds to the three-segment case. The APB values of the parameters 

are in general higher in both cases (two and three segments) and in both alternative models 

relative to the APB values of the parameters in the original model (Tables 2.1a and 2.1b). In the 

two-segment model, the overall mean APB values across parameters are 28.5% and 26.0% for 

the LC-MDCP and RC-MDCP models, respectively—significantly higher in comparison with 

the mean APB value of 3.2% in the proposed model. The difference is even higher in the three-

segment model with the overall mean APB values across parameters being 30.8% and 82.9% for 

the LC-MDCP and RC-MDCP models, respectively, relative to the overall mean APB value of 

6.4% in the original model. The superior performance of the FDMN-MDCP model is also 

evidenced in the higher log-likelihood value, on average, for the FDMN-MDCP model across the 

100 estimations (on the 100 data sets). In addition, for each of the 100 data sets, a likelihood 

ratio test comparing the FDMN-MDCP model with the two other models clearly rejects the other 

two model in favor of the FDMN-MDCP model (see last row of Tables 2.2a and 2.2b). 
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Table 2.2a. Effects of ignoring continuous heterogeneity and non-normality in the two-segment 

model  

Parameter True Value 

Latent Class MDCP (LC-MDCP) Model Random Coeffs. MDCP (RC-MDCP) Model 

Mean Estimate 
Absolute Percentage 

Bias (APB) 
Mean Estimate 

Absolute Percentage 

Bias (APB) 

11b  1.000 1.203 20.3% 1.349 34.9% 

12b  2.000 1.543 22.9% 1.690 15.5% 

13b  0.600 0.890 48.3% 0.337 43.8% 

21b  2.000 1.293 35.4% 1.349 32.6% 

22b  1.500 1.402 6.5% 1.690 12.7% 

23b  0.200 0.289 44.5% 0.337 68.7% 

b
~

 0.500 0.654 30.8% 0.427 0.4% 

2,1Ω
l  0.500 0.592 18.4% 0.376 24.8% 

3,1Ω
l  0.866 0.965 11.4% 0.572 34.0% 

4,1Ω
l  0.700 --a -- 0.942 34.6% 

5,1Ω
l  0.519 --a -- 0.626 20.6% 

6,1Ω
l  0.374 --a -- 0.407 8.8% 

1,2Ωl  0.900 0.782 13.1% --b -- 

2,2Ωl  0.600 0.329 45.2% 0.376 37.3% 

3,2Ωl  0.800 0.764 4.5% 0.942 17.8% 

4,2Ωl  0.800 --a -- 0.572 28.5% 

5,2Ωl  0.400 --a -- 0.626 56.4% 

6,2Ωl  0.300 --a -- 0.407 35.6% 

21  0.600 0.431 28.2% --c -- 

22  0.100 0.140 40.0% --c -- 

1  1.000 1.209 20.9% 1.030 3.0% 

2  1.000 1.823 82.3% 1.405 40.5% 

3  1.000 1.117 11.7% 1.017 1.7% 

Overall Mean Value Across 

Parameters 
28.5% (for APB) 26.0% (for APB) 

Mean (across 100 data sets) 

log-likelihood value at 

convergence 

-39,517.923 -39,561.115 

Number of times the 

likelihood ratio test statistic 

favors the FDMN-MDCP 

modeld 

All one hundred times when compared 

with  

All one hundred times when compared with 
  

a These parameters are not estimated and are fixed at 0.0. 
b This parameter is fixed to 1.0 for identification. 
c These parameters are implicitly fixed to the value of minus infinity. 
d The mean (across data sets) log-likelihood value at convergence for the FDMN-MDCP model with a two-segment mixture is -38,927.438. 
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Table 2.2b. Effects of ignoring continuous heterogeneity and non-normality in the three-segment 

model  

 

Parameter True Value 

Latent Class MDCP Model Random Coeff. MDCP (RC-MDCP) Model 

Mean Estimate 
Absolute Percentage 

Bias (APB) 
Mean Estimate 

Absolute Percentage 

Bias (APB) 
*

11b  1.000 1.543 54.3% 1.738 73.8% 
*

12b  2.000 1.276 36.2% 1.277 36.1% 
*

13b  0.600 0.320 46.7% 0.246 59.0% 
*

21b  2.000 1.652 17.4% 1.738 13.1% 
*

22b  1.500 1.724 14.9% 1.277 14.9% 
*

23b  0.200 0.102 49.0% 0.246 23.1% 
*

31b  3.000 1.592 46.9% 1.738 42.1% 
*

32b  1.300 1.035 20.4% 1.277 1.8% 
*

33b  0.300 0.472 57.3% 0.246 17.9% 

*~
b  0.500 0.366 26.8% 0.418 16.4% 

2,
*

1Ωl  0.500 0.411 17.8% 0.063 87.4% 

3,
*

1Ωl  0.866 0.599 30.8% 0.926 6.9% 

4,
*

1Ωl  0.700 --a -- 0.322 54.0% 

5,
*

1Ωl  0.519 -- a -- 0.618 19.1% 

6,
*

1Ωl  0.374 -- a -- 0.546 46.1% 

1,
*

2Ωl  0.900 0.724 19.6% --b -- 

2,
*

2Ωl  0.600 0.326 45.7% 0.063 89.5% 

3,
*

2Ωl  0.800 0.598 25.3% 0.322 59.7% 

4,
*

2Ωl  0.800 -- a -- 0.926 15.7% 

5,
*

2Ωl  0.400 -- a -- 0.618 54.5% 

6,
*

2Ωl  0.300 -- a -- 0.546 82.1% 

1,
*

3Ωl  2.000 1.396 30.2% --b -- 

2,
*

3Ωl  0.500 0.398 20.4% 0.063 87.4% 

3,
*

3Ωl  1.000 0.733 26.7% 0.322 67.8% 

4,
*

3Ωl  0.600 -- a -- 0.926 54.3% 

5,
*

3Ωl  0.800 -- a -- 0.618 22.7% 

6,
*

3Ωl  0.900 -- a -- 0.546 39.3% 
*

21  0.600 0.467 22.2% --c -- 
*

22  0.100 0.156 56.0% --c -- 
*

31  0.400 0.298 25.5% --c -- 
*

32  0.000 0.017 17.0% --c -- 

1  1.000 1.327 32.7% 2.723 172.3% 

2  1.000 1.201 20.1% 2.959 195.9% 

3  1.000 1.102 10.2% 2.871 187.1% 
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Parameter True Value 

Latent Class MDCP Model Random Coeff. MDCP (RC-MDCP) Model 

Mean Estimate 
Absolute Percentage 

Bias (APB) 
Mean Estimate 

Absolute Percentage 

Bias (APB) 

Overall Mean Value Across 

Parameters 
30.8% (for APB) 82.9% (for APB) 

Mean (across 100 data sets) log-

likelihood value at convergence 
-39,599.201 -39,797.634 

Number of times the likelihood 

ratio test favors the FDMN-

MDCP modeld 

All one hundred times when compared 

with  

All one hundred times when compared with 
 

a These parameters are not estimated and are fixed at 0.0 
b This parameter is fixed to 1.0 for identification. 
c These parameters are implicitly fixed to the value of minus infinity. 
d The mean (across data sets) log-likelihood value at convergence for the FDMN-MDCP model with a three-segment mixture is 

-39,001.232. 

 2.4 APPLICATION TO TOURISM TRAVEL 

In this section, we demonstrate an application of the proposed model to analyze individual-level 

decisions regarding recreational destination locations and the number of trips to each destination, 

using data drawn from the 2012 New Zealand Domestic Travel Survey (DTS). 

2.4.1 Empirical context 

Tourism has been an important contributor to New Zealand’s economy, thanks to the natural and 

beautiful landscape of the compact island country that also offers an extensive coastline for 

trekking, swimming, fishing, other water-based activities, and sports. In addition, New Zealand 

also boasts of some excellent vineyards, offers volcanic/geothermal excursion opportunities, and 

its forests and pristine landscape have made it a much sought-after location for mainstream 

Hollywood movies (for example, the Fiordland and Southern Lakes in the southern part of New 

Zealand were the locations for the mythical Middle Earth in the "Lord of the Rings" trilogy). 

Overall, tourism contributes 9% of New Zealand’s gross domestic product and is also an 

important source of employment; 10% of New Zealanders work in the tourism industry (see New 

Zealand Tourism Strategy 2015).  

Although the international popularity of New Zealand has increased enormously in the 

past few years, domestic tourism continues to remain a significant source of income for the 

tourism industry. According to the New Zealand Tourism Industry Association (TIA, 2012), 

domestic travelers (New Zealand residents traveling within New Zealand) accounted for about 

57% of New Zealand’s total tourism industry spend of $23 billion in 2012 (see Statistics New 

Zealand, 2013). The substantial amount of domestic tourism may be attributed to increased 
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marketing efforts of leisure activity opportunities within the island nation and more control of the 

leisure vacation experience through on-line sites. However, it is also a result of a general trend 

across all countries around the globe of an increasingly compact geographic footprint of leisure 

travel, spurred by a shift from the traditional long period vacations undertaken during holidays or 

over the summer to short period leisure travel built around the work weeks (see, for example, 

White, 2011 and LaMondia and Bhat, 2012). This shift itself may be traced to easier schedule 

coordination opportunities for short duration leisure pursuits around work weeks, especially for 

the increasing number of families with multiple working individuals with school-going children.  

The growing amount of short distance leisure trips, mostly undertaken using the personal 

auto mode, has led to increased attention on this leisure travel market among urban 

transportation planners because of the increased weekend day traffic on city streets and between 

cities in close proximity, and the concomitant effects on traffic congestion and air quality. 

Understanding these travel flow patterns can help planning and policy efforts to reduce the 

negative externalities of such travel. At the same time, unraveling the “push and pull’ factors 

associated with individual and household leisure activity decisions helps cities and regions 

position themselves as unique and even exotic destinations, with an eye on generating jobs and 

revenue. This confluence of interest on leisure travel from the transportation and tourism 

domains has led to many studies in this space in the past decade, with a particular emphasis on 

destination choice for leisure pursuits. While the early literature in the area considered leisure 

destination choices as repeated isolated (and independent) decision events for each leisure trip, 

the more recent literature has moved toward the more realistic representation of destination 

choices as inter-related decisions for multiple leisure trips over a longer-term period of a month 

or even a year. Examples of the latter string of multiple discrete-continuous (MDC) studies (with 

the discrete component being the choice of destination region, and the continuous component 

being the number of trips to each chosen destination region) include Kuriyama et al. (2010), 

(2011), Van Nostrand et al. (2013), von Haefen (2007), Whitehead et al. (2010), LaMondia et al. 

(2010), and Bhat et al. (2013a). These studies explicitly accommodate variety-seeking and 

loyalty behavior by considering satiation effects based on Iso-Ahola’s (1983) theory of vacation 

participation in which the individual/family balances needs for familiarity and novelty, within 

long period budget constraints, to provide an “optimally arousing experience” (see LaMondia et 

al., 2008 for a detailed discussion). In this dissertation, we contribute to leisure destination 
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choice modeling using the proposed FDMN MDCP model. To our knowledge, this is the first 

such application in the leisure travel literature.9   

2.4.2 Data description 

The data for this study is derived from three sources. The primary source, as mentioned earlier, is 

the 2012 New Zealand DTS, which asked survey respondents (New Zealand’s residents) to 

provide information on all one-way trips 40 kilometers or longer from home, overnight trips 

from home, and flight or ferry trips from home made up to four weeks prior to the survey date 

(see Ministry of Business, Innovation and Employment, 2013). The survey was targeted at 

individuals and not households in that only one randomly selected individual (over the age of 15 

years) from each sampled household was interviewed.  Telephone interviewing was used for the 

DTS and household telephone numbers were randomly selected from the white pages. Interviews 

were carried out according to pre-specified quotas for age, sex and region of origin. The process 

of data collection took place continuously throughout the year. 

The survey obtained information on the resident city of the respondent, the city of 

destination for each trip, the primary reason of each trip, and the primary mode of transportation 

used to reach the destination. Additionally, the survey also obtained individual and household 

socio-demographic information. A second data source is a network level of service file that 

provided information on land travel distance and highway travel time between each city pair 

within New Zealand (see additional details in the next paragraph). The third data source is a 

disaggregate spatial land-cover characteristics data obtained from the 2012 Land Cover Database 

                                                 
9As with all the earlier MDC leisure studies, this study too focuses on the count of the number of times each leisure 

destination is visited. Thus, the “continuous” quantity used is actually a count variable, as opposed to a truly 

continuous measure as required by the theoretical model. But, as demonstrated by von Haefen and Phaneuf (2003), 

treating the integer count of trips as a continuous variable (within an MDC framework) does not lead to substantial 

bias in the results or the behavioral implications. This forms the basis for the use of the MDC framework in earlier 

studies, as well as in the current study, of leisure destination choices over a period of time. Similarly, as in earlier 

studies, the budget in the MDC formulation is the total number of leisure trips made over a given time period. This 

budget is “allocated” to the different possible discrete leisure destination locations. While a more reasonable 

approach would be to allocate a money budget, the operationalization of this alternative approach is extremely 

difficult because of the many assumptions that need to be made regarding monetary costs of participation per trip. 

Besides, a more practical problem is that expenditure information is rarely obtained in travel surveys. On the other 

hand, the number of trips to each destination is readily available from a sample of individuals in a survey, and the 

total trips (or “budget”) is readily obtained by aggregating across the possible destination locations. A related issue 

in the use of total trips as the “budget” is that the MDC models of leisure destination choice focus on the count of 

trips to each destination, given the total number of leisure trips during a specified period. In forecasting mode, the 

latter “budget quantity” is itself predicted in an earlier “trip generation” step, including the choice of making no 

leisure trips at all.  
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(LCDB) of the Land Resource Information System (LRIS) of New Zealand. The LCDB provides 

land-cover information at a 30 meters by 30 meter resolution. From this data, using a geographic 

information system based procedure, we developed total land area and acreage information for 

each 30x30 meter2 grid and by six broadly defined land-cover categories: urban area (including 

central business districts, commercial and industrial areas, urban parklands, urban dumps, and 

housing and transportation-related land cover), water area (including rivers, land/ponds, 

freshwater, and estuarine open water), wetland area (context-dependent combinations of areas 

such as herbaceous freshwater vegetation, flaxland, and saline vegetation), agricultural area 

(including vineyards and orchards, perennial crops, short rotation cropland, and grasslands), 

bare-land area, and forest area (pine forests, mangroves, deciduous hardwoods and other 

exotic/indigenous forest areas). 

The sample formation comprised several steps. First, we selected only leisure trips to 

primary destinations within New Zealand undertaken by a personal auto (personal auto trips 

comprise around 90% of all leisure domestic trips within New Zealand; see Ministry of Business, 

Innovation and Employment, 2008). Second, the leisure destination cities in New Zealand were 

mapped into one of 16 aggregate destination regions in the current analysis, as identified in 

Figure 2.1. Nine regions are in the North Island, while seven are in the South Island. This 

regional classification scheme is the same as that used by the Department of Tourism of New 

Zealand for its marketing campaigns, and is also the commonly used geo-political partitioning of 

the country. Third, the total number of trips made by each individual to each region was obtained 

by appropriate aggregation across trips to cities within each region, and the individual-level trip 

budget is obtained as the total number of trips of the individual across all regions during the four 

week period. Fourth, we identified a centroidal city for each of the 16 destination regions, based 

on the city that attracted the most travelers within each region, and converted the city-to-city 

land-based travel distance and land-based travel time data to corresponding residence city-to-

destination region skims. But travel from one region in one island to another region in another 

island by auto is possible only through the use of a ferry service (that transports vehicles too) 

across the Cook Strait between Wellington in the North (located in the Wellington region) and 

Picton in the South (located in the Marlborough region). On the other hand, the land-based travel 

time between two regions in different islands from earlier includes only the travel time from the 

origin point to one of the two ferry terminals plus the travel time from the other ferry terminal to 
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the destination region. Thus, the total travel time between two regions in different islands should 

include the 3 hour 15 minute cruise (including ferry terminal times) between the north and south 

islands.  At the end of this step, we obtain the land-based travel distance and the total travel time 

for each residence city-destination region pairing. Fifth, the travel cost skims were computed as a 

function of the respondent’s reported household income, the estimated cost of vehicle fuel on 

land, the ferry cost if a ferry crossing is involved, and the land-based distance and total travel 

time skims (obtained in the previous step) between the respondent’s residence city and the 

centroidal city of each destination region. To calculate the travel cost, we followed the standard 

approach of valuing travel time at a fixed proportion of one-half of the wage rate (see Hanemann 

et al., 2004 for a detailed discussion). Specifically, the travel cost was computed as: 

Cost (in NZ$) = 2 * (one-way land travel distance in miles * fuel cost per mile  + one-way 

total travel time in hours * (0.5 * hourly wage)) + round-trip ferry cost (as applicable).  

The fuel cost per mile is computed at NZ$0.149 per mile based on a fuel cost of NZ$1.75 per 

liter and a rather high vehicle efficiency factor of 5.3 liters for 100 km (5.3 liters for 62.1 miles 

or about 44 miles per gallon), given the long distance nature of trips under consideration. The 

round-trip ferry cost is NZ$145. Sixth, the grid-based land-cover data were translated to a 

destination region-based land-cover data by suitable aggregation over cells within each 

destination region. Seventh, individual and household socio-demographic, as well as land cover 

data by region, were appended to the long distance travel records.  

The final data sample used in the estimation included 3508 individuals. Table 2.3 

provides the distribution of these individuals by the number of leisure trips made during the four 

week period before they were surveyed and by the number of distinct leisure destination regions 

visited. Although a sizeable fraction (72.3%) of the individuals in the sample make only one trip, 

a non-insignificant percentage of individuals (27.7%) make more than one trip. Most of the 

individuals who undertake more than one trip during the survey period prefer to travel to 

multiple destinations (see the second row and beyond in Table 2.3). For example, 53.3% of 

individuals making two trips during the survey period visit more than one distinct destination 

region, while 65% of individuals making three trips visit more than one distinct region. The 

corresponding numbers are 70.2% and 78.6% for individuals who make four and five or more 

trips, respectively, during the survey period. Clearly, this is a case of multiple discreteness for 

individuals who make more than one trip.  
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Source: www.stats.govt.nz 

 

 

Figure 2.1. Boundaries of New Zealand regions  

 

Table 2.4 provides descriptive statistics for each of the 16 destination regions. The third 

broad column presents the mean and standard deviations for the travel impedance skim measures 

of total travel time, travel distance, and travel cost for each destination region (computed from 

the residence city-destination region skims developed as discussed earlier in this section). Not 

Residential center of gravity 

http://www.stats.govt.nz/
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surprisingly, the travel impedance measures are the highest for the Northland region in the North 

Island (the northernmost region) and the Southland region in the South Island (the southernmost 

region). As expected, the impedance measures decrease as one gets closer to the center of the 

country. Interestingly, the impedance measures are lower for the North Island regions compared 

to the South Island regions. This is because of two-interrelated factors. First, the North Island is  

Table 2.3. Recreational travel number of trips 

Number of 

trips 

Number of 

individuals 

Number (%) of individuals visitinga 

1 region 2 regions 3 regions 4 regions 5 regions 

1 2,535 

(72.3%) 

2,535 

(100%) 

0 

 

0 

 

0 

 

0 

 

2 732 

(20.9%) 

342 

(46.7%) 

390 

(53.3%) 

0 

 

0 

 

0 

 

3 180 

(5.0%) 

63 

(35%) 

87 

(48.3%) 

30 

(16.7%) 

0 

 

0 

 

4 47 

(1.3%) 

14 

(29.8%) 

23 

(48.9%) 

7 

(14.9%) 

3 

(6.4%) 

0 

 

5 7 

(0.2%) 

1 

(14.3%) 

2 

(28.6%) 

3 

(42.8%) 

0 

 

1 

(14.3%) 

6 3 

(0.1%) 

2 

(66.7%) 

1 

(33.3%) 

0 

 

0 

 

0 

 

7 2 

(0.1%) 

0 

 

1 

(50%) 

1 

(50%) 

0 

 

0 

 

10 2 

(0.1%) 

0 

 

0 

 

2 

(100%) 

0 

 

0 

 

a Percentages add up to 100% in each row.  
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Table 2.4. Destination region characteristics 

Island Region 

Travel Impedance Measures (Std. Dev.) Land Cover Percentage 

Travel Time 

(hours) 

Travel Distance 

(miles) 
Cost (NZ$) Urban Water Wetland Agricultural Bare-land Forest 

N
O

R
T

H
 I

S
L

A
N

D
 

Northland   8.31 (6.53)  397.6 (303.9) 314.1 (334.2) 0.75 2.44 0.92 47.92 1.18 46.79 

Auckland   6.53 (6.64)  306.4 (295.6) 265.8 (316.4)     10.68 2.85 0.62 49.04 0.92 35.90 

Waikato   5.98 (5.97) 273.9 (257.8) 241.0 (281.3) 1.14 3.57 0.88 53.10 0.70 40.61 

Bay of Plenty   6.74 (5.60) 313.3 (237.2) 276.9 (272.4) 1.32 2.39 0.27 23.17 0.28 72.57 

Gisborne   7.82 (4.95) 366.2 (205.5) 322.1 (260.1) 0.35 0.36 0.41 46.44        1.55 50.89 

Taranaki   6.41 (4.32) 294.5 (169.9) 261.9 (219.1) 0.98 0.39 0.08 53.81 0.43 44.31 

Manawatu-Wanganui   6.07 (3.72) 279.7 (152.5) 249.2 (198.3) 0.67 0.48 0.32 60.22 0.82 37.50 

Hawke´s Bay   6.30 (4.40) 290.5 (175.1) 258.7 (222.5) 0.59 0.92 0.22 53.93 0.64 43.70 

Wellington   6.46 (3.19) 301.5 (151.4) 266.7 (195.5) 2.53 1.34 0.23 47.82 0.72 47.36 

S
O

U
T

H
 I

S
L

A
N

D
 

Tasman   9.70 (3.74) 392.2 (162.5) 386.1 (266.7) 0.34 1.34 1.29 19.58 3.37 74.08 

Nelson   9.58 (3.61) 388.0 (161.0) 381.6 (261.8) 6.48 3.12 0.25 13.72 0.93 75.49 

Marlborough   8.34  (3.43) 337.4 (156.3) 332.1 (237.3) 0.28 0.56 0.20 43.34 9.97 45.65 

West Coast 10.86 (4.83) 474.7 (210.6) 447.2 (322.4) 0.14 1.43 1.35 15.79 9.41 71.88 

Canterbury 10.48 (5.52) 443.6 (241.6) 425.3 (338.6) 0.71 2.09 0.36 65.67      12.12 19.05 

Otago 14.07 (6.56) 629.5 (291.1) 580.0 (425.9) 0.45 2.76 1.50 73.49 4.73 17.07 

Southland 16.40 (6.86) 749.7 (307.3) 680.9 (471.0) 0.24 2.99 0.98 43.97 4.50 47.32 
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more populated relative to the South Island (the North Island’s population is about 3.2 million, 

while that of the South Island is about 1 million), which should result in more leisure trips 

generated from the North Island due to a sheer population size effect. Second, because of the 

compact nature of the North Island, there are more leisure trips generated per capita in the North 

than in the South, and most of these trips are destined to within the compact North Island. The 

net result is that, if one were to draw a horizontal “residential center of gravity” (RCG) line of 

tourists, it would go through the boundary of the Waikato and Manawaku-Wanganul (MW) 

regions in the North Island (see Figure 2.1). This is also evidenced in Table 2.4 in that the 

impedance measures are the smallest for the Waikato and MW regions, and increase as one goes 

farther away from the horizontal RCG line. Additionally, we should also note that, of the 3508 

individuals in the sample, 2588 (73.7%) percent reside in the North Island, and 662 (18.9%) 

reside in the Waikato-MW regions. The fourth broad column in Table 2.4 provides the 

percentage of land in each region in each of the six land cover categories (the sum across all 

columns for each row add up to 100%). Of all the regions, Auckland has the highest percentage 

of urban land-cover, with Nelson and Wellington being the regions with the second and third 

highest urban land cover percentages. As we will see later, the high urban land cover is 

correlated with the intensity of tourist draw. In terms of wetland cover percentages, the highest 

are for Tasman, West Coast, Otago, and Southland. Nelson is the region with the highest forest 

land cover.  

Table 2.5 provides additional descriptive statistics of the area of each region and 

destination region characteristics. The third column of the table presents the area of each region. 

As can be observed from this column and also from Figure 2.1, Canterbury in the south island is 

the largest region by size across all regions, while Waikato and MW are the largest regions in the 

North Island. The fourth column shows the number (and the corresponding percentage) of 

individuals who visited each region at least once. The Waikato region is clearly the one 

patronized by the most number of individuals, but Auckland, Bay of Plenty, and Canterbury also 

draw quite a few individuals. However, to get a better picture of attractiveness, the fifth column 

normalizes the number of people visiting by the area of each region (to accommodate for the fact 

that there are likely to be size effects here; that is, the larger a region, the more likely it is to be a 

destination). This column shows that on a per unit area basis, Auckland is by far the most 

popular destination, followed by Wellington and Nelson. Interestingly, as indicated earlier, these 
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are the three destinations with the highest percentages of urban land cover, and Nelson is the 

region with the highest forest cover. The Auckland region includes the famous urban tourist 

attraction of the City of Auckland as well as such attractions as the Tiritiri Matangi Islands, a 

haven for nature hikers who want to experience the rich flora and fauna of the region up close 

(especially of a host of endangered species of birds, each with a unique bird call pattern). The 

Wellington region, with Wellington City that serves as the capital of the North Island, is well 

known for Mt. Victoria (that provides a nice walk trail and panoramic views of the city and the 

Wellington harbor), massage and waxing boutiques in the Lower Hutt area also overlooking the 

Wellington harbor, and an interactive national museum of New Zealand culture and heritage. 

Finally, the Nelson region in the north of the South Island, the smallest of all the regions but also 

the sunniest in all of New Zealand, includes the city of Nelson. Nelson is renowned for its Maori 

(indigenous Polynesian tribe of New Zealand) arts and craftsmanship, water sports and activities 

(the Nelson region has the second largest amount of land percentage covered by water, and is 

liberally sprinkled with freshwater springs, especially near Takaka), and hiking/biking trails in 

the Abel Tasman National Park and other pristine forest land. Also interesting to note is that 

Tasman, West Coast, Otago, and Southland are some of the regions with the lowest number of 

visiting individuals per unit area, and these regions all have a relatively high wetland cover 

percentage as identified earlier, suggesting an inverse relationship between wetland cover 

percentage and tourist draw (perhaps because there is little to do within wetlands). The sixth 

broad column presents statistics on the number of visits to a destination region among those who 

visited the destination region at least once. The mean and maximum values from this column 

suggest that Auckland, Waikato, Bay of Plenty, Wellington, Canterbury, and Otago have the 

most loyal following.  
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Table 2.5. Recreational travel destination choice and number of trips 

Island Destination Region Area (miles2) 

Total number (%) 

of individuals 

visiting each 

region* 

Number of visiting 

individuals per 

unit area (per 

miles2) 

Number of trips among those who visit each destination 

Mean Min. Max. Std. Dev. 

N
O

R
T

H
 I

S
L

A
N

D
 

Northland   5,383 290 (  8.3%) 0.0539 1.16 1 4 0.44 

Auckland   2,162 575 (16.4%) 0.2660 1.17 1 6 0.49 

Waikato   9,883 788 (22.5%) 0.0798 1.19 1 7 0.53 

Bay of Plenty   4,806 454 (12.9%) 0.0945 1.20 1 8 0.61 

Gisborne   3,224   42 (  1.2%) 0.0129 1.17 1 4 0.53 

Taranaki   2,808 104 (  3.0%) 0.0370 1.12 1 3 0.35 

Manawatu-Wanganui   8,577 288 (  8.2%) 0.0337 1.13 1 4 0.38 

Hawke´s Bay   5,469 185 (  5.3%) 0.0339 1.09 1 3 0.31 

Wellington   3,137 328 (  9.4%) 0.1046 1.18 1 4 0.47 

S
O

U
T

H
 I

S
L

A
N

D
 

Tasman   3,778   70 (  2.0%) 0.0186 1.16 1 3 0.50 

Nelson     172   31 (  0.9%) 0.1805 1.06 1 2 0.25 

Marlborough   4,820   74 (  2.1%) 0.0153 1.07 1 2 0.25 

West Coast   9,010   77 (  2.2%) 0.0085 1.13 1 4 0.47 

Canterbury 17,508 465 (13.3%) 0.0267 1.21 1 6 0.52 

Otago 12,351 260 (  7.4%) 0.0210 1.22 1 6 0.56 

Southland 13,261   80 (  2.3%) 0.0060 1.06 1 2 0.24 

* Total percentage across all rows in this column add up to more than 100% because some travelers visit more than one destination region.  
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2.4.3 Variable specification and model formulation 

The number of destination region alternatives in the MDCP model is 16. Thus, rather than 

including 15 alternative-specific constants in the baseline preference and 16 region-specific 

satiation parameters (in addition to other explanatory variables) in each latent segment, we 

adopted an “unlabeled” MDCP specification in which the baseline preferences and satiations are 

captured through attributes of the individual regions. For identification in this unlabeled 

alternatives context, the constant for the first segment is constrained to zero, and the constants 

for other segments are constrained to be descending from the second segment forward. 

2.4.3.1 Baseline preference specification 

The first independent variable we used in the baseline preference (that is, as part of the 
qkz vector 

in Equation (2.2)) is the logarithm of the area of each region, to proxy for the number of 

elemental destination opportunities within each aggregate region (see Bhat et al., 1998). The 

expectation is that large regions are more likely to be chosen as a recreation destination based on 

a sheer “volume of opportunities” effect. The coefficient on this size variable may be viewed as 

an inclusive value characterizing the presence of common unobserved destination region 

attributes affecting the utility of elemental alternatives within each region. As in traditional 

discrete choice models, we expect this coefficient to be positive and less than one. If less than 

one, the implication is that there are common unobserved region attributes that lead to higher 

sensitivity across elemental alternatives within a region than across different regions. The net 

effect is that there is an inelastic influence of increasing region size on the region’s baseline 

utility. That is, compared to the case when the coefficient is one, the rise in the baseline utility of 

a region due to an increase in the region’s size is much less when the coefficient is estimated to 

be less than one in magnitude (because of more redistribution of leisure trips across elemental 

destinations within the same region rather than across different regions).   

The next set of variables we considered are land-cover effects, captured by interacting the 

land-cover percentage by category in each destination region with the travel time from each 

individual’s residence city to the centroidal city of each destination region. We computed a land-

cover accessibility measure of the Hansen-type (Fotheringham, 1983) for individual q and land-

cover type i as presented by destination region k as ACqki=LCki/[f(TTqk)], where LCki is the 

percentage area in land-cover category i (i = urban, water, wetland, agricultural, bare-land, and 
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forest) in destination region k, TTqk  is the travel time (in hours) from individual q’s residence 

city to the centroid of destination region k, and f(.) is a function.10 The accessibility measures 

proxy the intensity of opportunities for recreational participation specific to each land-use 

category in a destination region normalized by a measure of impedance (function of travel time) 

for individual q to reach those opportunities. In the empirical analysis, a host of functional forms 

can be tested for the travel time measure. In our specifications, we considered both a linear form, 

qkqk TTTTf )( , as well as a logarithmic form, ).ln()( qkqk TTTTf   The logarithmic form 

penalizes destination regions less for being far away from the residential location of the 

individual. In both cases, a positive coefficient on an accessibility measure implies that 

individuals are attracted toward proximal destination regions with a substantial percentage of  

area in the corresponding land use. Our expectation, based on the descriptive statistics, is a 

positive coefficient on the urban land cover accessibility variable, though things are less clear 

from the descriptive analysis regarding the nature of effects of other accessibility variables. 

Based on our specification tests, the linear form is the preferred functional form for )( qkTTf . 

The land cover-based accessibility effects (which are specific to each land cover 

category) capture any preferences individuals have for specific types of activities that may be 

featured in each destination region (as manifested in the land-cover category percentages). 

However, these effects do not capture an overall diversity index for each destination region. That 

is, it is possible that some individuals may be drawn to destination regions that have a good 

diversity of activity participation opportunities as well as are relatively close by. We proxy this 

effect by constructing a diversity index of land-cover types for each destination region, based on 

generalizing a similar index proposed originally by Bhat and Gossen (2004). This land cover 

diversity index is computed as a fraction between 0 and 1 for each destination region. Regions 

with a value closer to one have a richer land-cover mix than regions with a value closer to zero. 

The actual form of the land-cover diversity index for destination region k is: 

                                                 
10 We do not introduce the land-cover percentages themselves directly in the baseline preference because these 

percentages do not vary across individuals in the sample. Thus, destination region land-cover percentages by 

themselves do not provide adequate variation to estimate parameters (because there are only 16 destination regions). 

But, by interacting these land cover percentages with individual-specific travel times to each region, we obtain rich 

variation across individuals in the resulting accessibility measures. 
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where LCki  is the percentage area in land-cover category i in destination region k (as earlier) and 

I=6 (that is, we have six land cover categories) in our empirical context. The functional form 

would assign the value of zero if a region’s land-cover is only in one category, and would assign 

a value of 1 if a region’s land-cover is equally split among the different land-cover categories. 

However, as in the case of the land-cover percentages, there is no variation in the diversity index 

for a region across individuals, and the only variation in the index is across the 16 destination 

regions. This is inadequate to estimate a parameter on the diversity index, and thus we introduce 

the diversity accessibility index by normalizing the diversity index by a function of travel time to 

obtain individual-specific diversity accessibility indices: ).(/ qkkqk TTfDDA  As earlier, we test 

both a linear form and a logarithmic form for the effect of travel time in the denominator of this 

expression. The best data fit results were again obtained consistently with the linear form. 

 Another variable considered in the specifications was the travel cost to each destination 

region, with the expectation that a higher cost would deter visiting the corresponding region. 

Again, both a simple linear form as well as a logarithmic form were tested for this cost effect, 

with the linear form winning out as the preferred one in our empirical tests. In addition, we 

included a dummy variable for the presence of a ferry ride. This accommodates any positive 

leisure/relaxation value of the ferry ride itself, after accounting for the total travel time effect.  

A continuous random coefficient specification is considered on all of the above variables 

in the baseline preference for each discrete mixture (that is, each latent segment). 

Finally, there is one other important issue with regard to the baseline preference 

specification. As discussed earlier, we use an unlabeled system for the alternatives, which 

essentially means that we constrain the mean coefficients on the alternative specific constants to 

be zero in the baseline utility for each destination region alternative. That is, the elements of 

gb (in the notation of Section 2.2) corresponding to the 15 alternative-specific dummy variables 

for each latent segment g in 
qkz  are set to zero. However, we allow random covariance about this 

mean of zero. That is, the 15 elements of qgβ
~

 corresponding to the alternative-specific constants 
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are included with a covariance matrix. Assume that the random coefficients on the alternative-

specific constants (ASCs) are independent of the random coefficients on other independent 

variables. Let ASCg ,

~
β  be a vector that collects the random coefficients corresponding to the 15 

ASCs for each segment g. Then, the simplest specification for the covariance matrix of the 15 

ASCs (for each segment g) obtained as differences of the original 16 ASCs from the first ASC 

(corresponding to the Northland region) would be as below (which originates from a 

specification of independently and identically distributed (IID) random errors with a variance of 

0.5 for each of the original 16 ASCs): 

matrix1515

15,,

15.05.05.0

5.015.05.0

5.05.015.0
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









ΛΛ)(0f~ASCgASCg εβ .                             (2.15) 

However, there is likely to be spatial correlation across the utilities of the different regions 

because of similarity in unobserved attributes across proximally located regions. But, we have to 

assume that one region is not spatially correlated with all the other regions (because only 

differences in the baseline utilities matter). In our analysis, the first region (that is, the Northland 

region) will play this base role. We then accommodate spatial correlation across other regions 

using a spatial autoregressive (SAR) error structure of order one for the random components of 

the ASCs of the other 15 regions as follows: 

),10(,
~~

,,,   ASCgASCgASCg εββ W    (2.16) 

where   is the spatial autoregressive coefficient, W  is a distance-based spatial weight matrix 

with elements 
kk

w


corresponding to regions k and k  (with 0kkw  and 


 
k

kkw 1). With the 

specification above, and defining   ]matrix 1515[
1

15 


WIDENS  , where KIDEN  is the 

identity matrix of size K (K=15 in our case), we may then write: 

),(
~

and,
~

15,,, SSΛ0S  f~ASCgASCgASCg βεβ     (2.17) 

In the above expression, technically, we can allow the distribution of ASCg ,

~
β  to vary across 

segments g by allowing a general specification for Λ  that varies across segments (the only 
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normalization requirement is that the first element for the first segment  be 1) and/or by allowing 

the spatial autoregressive coefficient to vary across segments. However, the first specification 

leads to proliferation in the number of parameters (especially given the number of alternatives), 

while the second one is not intuitive because there is no reason for the intensity of spatial 

correlation in unobserved attributes to vary across segments. Thus, from a pragmatic standpoint, 

we use the same simple covariance matrix across all segments for the ASCg ,

~
β  vector (as in 

Equation (2.15)). Doing so also allows a comparison of the magnitude of the mean of 

coefficients in the baseline preference across segments, as long as there are no substantial 

differences in the variance elements of the coefficients. A point to note in this discussion is that 

the expression in Equation (2.17) collapses to that of Equation (2.15) if there is no spatial 

correlation, as should be the case.  

 This leaves the specification of the weight matrix W. Several weight matrix 

specifications were considered in our empirical analysis to characterize the nature of the 

dynamics of the spatial dependence across regions. These included (1) a contiguity specification 

that generates spatial dependence between the destination region alternatives based on whether 

or not two regions are contiguous (we considered the Marlborough and Wellington regions as 

being contiguous because they are the ferry landing points for travel between the two islands), 

(2) the inverse of a continuous travel time specification where the time between regions is 

obtained from the skims discussed earlier, and (3) the inverse of the square of the continuous 

distance specification. In addition, for all the three specifications above, we also examined a 

specification that confines the spatial correlation to only the regions within each island (with zero 

spatial correlation between regions in different islands). Overall, the best data fit results were 

obtained consistently with the inverse of the continuous distance specification, which is the one 

used in the results discussed in the next section. 

2.4.3.2 Satiation and segmentation specification 

In our estimations, we considered both a  -profile as well as an  -profile for introducing 

satiation. In all cases, the  -profile provided superior results, so we will only discuss the 

specification for the  -profile here. As discussed earlier, the parameter qgk  may be 

parameterized as )exp( qkgaθ , where qka  is a vector of explanatory variables and gθ  is a 

corresponding vector of parameters specific to segment g in the mixture model. It is the 
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specification of the qka  vector that we discuss here. In addition to a constant, we considered all 

the other variables discussed in the previous section. We particularly examined the effect of 

wetland land-cover accessibility on satiation behavior, based on the suggestion from the 

descriptive statistics that a higher wetland cover percentage leads to higher satiation effects (less 

trips).  

All the variables associated with demographics characteristics were considered for 

characterizing different discrete segments (see Equation 2.7 earlier). These demographic 

variables included respondent age, respondent’s household income, respondent’s household size 

by number of adults (>18 years of age) and number of children (18 years or less), respondent’s 

household structure (single person, couple, nuclear family, single parent, multi-family 

household, and non-family household), and respondent gender. Of these, the respondent’s 

household structure provided a very good indication of the travel group, because almost all trips 

were made with family members in couple, nuclear family, single parent, and multi-family 

households. Also, in our specifications, we considered respondent gender only for single person, 

single parent, and non-family households, because the decision in other households is likely to be 

jointly made (and gender simply provides information on which respondent happened to be 

picked in the survey in these households, and should not provide any preference information). 

All the segmentation variables were introduced as alternative-specific variables in the logit link 

function of Equation (2.7) with the first segment being the base. 

2.4.4 Model estimation results 

A number of different specifications were explored, with different sets of variables, different 

functional forms of variables, and different groupings. The final specification was based on 

having adequate observations in each category of categorical independent variables (such as for 

household structure), a systematic process of rejecting statistically insignificant effects, 

combining effects when they made sense and did not degrade fit substantially, and, of course, 

judgment and insights from earlier studies.  To identify the optimal value for the number of 

latent segments (G), we estimated the model for increasing values of G (G =1,2,3,4,...) until we 

reached a point where an additional segment did not significantly improve model fit. The 

evaluation of model fit was based on the Bayesian Information Criterion (BIC): 
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).ln(5.0)(BIC NRL  θ 11 (2.18) 

The first term on the right side is the negative of the log-likelihood value at convergence; 

R is the number of parameters estimated and N is the number of observations (see Allenby, 1990, 

Bhat, 1997). As the number of segments, G, increases, the BIC value keeps declining till a point 

is reached where an increase in G results in an increase in the BIC value. Estimation is 

terminated at this point and the number of segments corresponding to the lowest value of BIC is 

considered the appropriate number for G. In our analysis, based on the Bayesian Information 

Criterion (BIC), the three-segment model was clearly the model with the best performance (the 

log-likelihood value at convergence for this model was -8,499.78 and, with 46 model parameters, 

the BIC was 8,687.52; the corresponding values for the model with one segment (that is, no 

latent segmentation), two segments, and four segments were 8,872.21, 8,711.36, and 8,780.14, 

respectively.   

 The estimation results for the three-segment mixture MDCP model are presented in Table 

2.6. The first panel corresponds to the probabilistic assignment of individuals to each of the three 

segments (the first segment is the base segment). The second presents the parameter estimates on 

the independent variables in the baseline utility specifications of the MDCP model corresponding 

to each segment. The third provides the parameters in the satiation component. Each of these is 

discussed in turn in the next three sections.  

2.4.4.1 Assignment of individuals to discrete (latent) segments 

In the top panel of Table 2.6, the constants in the segmentation model contribute to the size of 

each segment and do not have any substantive interpretation. The other results in the top panel of 

Table 2.6 indicate that the second segment, relative to the other two segments, is more likely to 

consist of individuals with children (that is, the individuals are more likely to belong to nuclear 

                                                 
11 Many measures have been suggested in the literature to evaluate model fit, especially in the context of the number 

of segments in latent segmentation models. These include the Akaike Information Criterion (AIC), the BIC, and 

many variants of both of these (see Fonseca, 2010 for a listing and description of these information criteria). In 

general, the criteria based on the AIC tend to favor complex models with many segments as the sample size 

increases, leading to potential overfit. On the other hand, the criteria based on the BIC tend to favor simpler models, 

with an adjustment for sample size (such as the ln(N) appearing in Equation (2.18)), to avoid overfit. More simply 

speaking, the BIC-based measures demand a higher strength of evidence to add complexity than do the AIC-based 

measures, and thus the BIC-based measures favor more parsimonious models with fewer segments than do the AIC-

based measures (see Neath and Cavanaugh, 2012). In the context of latent segmentation models, where the number 

of parameters explodes as the number of segments increases, parsimony is a much desired property from an 

interpretation and simplicity perspective. Thus, most latent segment models adopt the BIC as the model selection 

criterion, as we also do in the current dissertation. 
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or single parent households) and low-income individuals. This second segment also is less likely 

to comprise single person households relative to the first segment. The third segment comprises 

individuals who tend to be in couple households of middle age (48 years) or older, the least 

likely to be single person households, and less likely to be in the “lower than NZ$50,000” annual 

income range relative to the second segment, but more likely to be in this income range relative 

to the first segment. A more intuitive way to characterize the different segments is to estimate the 

percentages of individuals in each category of the demographic variables in each segment (see 

Bhat, 1997 for the formula to do so). The results are presented in Table 2.7. For example, the 

first numerical value in the table indicates that 60.2% of individuals in the first segment are 

younger than 48 years, while the corresponding percentages are 61.8% and 35.7% in the second 

and third segments, respectively. In the overall sample, 46.4% of individuals are younger than 48 

years.  The figures in Table 2.7 support our previous observations regarding segment 

characteristics. Based on the relative characterizations of the segments, we will refer to the first 

segment as the “high-flyer low family commitments” (HFLFC) segment, the second as the “low 

income parents” (LIP) segment, and the third as the “couple baby-boomer” (CBB) segment 

(most individuals over 48 years of age in the sample were born between 1943 and 1964 and 

represent the post-war baby-boom generation of New Zealand).  In terms of the relative sizes of 

the three segments, this can also be estimated in a straightforward way by aggregating the 

individual segment-level probabilities (Equation 2.7) across all individuals. The sizes are 

estimated to be 11.4%, 57.9% and 30.7% for the HFLFC, LIP, and CBB segments, indicating a 

domination of the LIP segment in the population.   
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Table 2.6. Three segments FDMN-MDCP model estimation results 

Variable 
First Segment Second Segment Third Segment 

Estimate t-stat
+
 Estimate t-stat Estimate t-stat 

Segment Probabilities       

    Alternative specific constant - - 1.020 3.50 0.314 2.33 

    Age: 48 years or older - - - - 0.880 3.40 

    Single person household - - -0.501     -3.69   -0.646  -3.50 

    Couple household - - - - 0.467 2.70 

    Nuclear family household - - 0.542 4.77 - - 

    Single parent household - - 0.229 2.61 - - 

    Income less than NZ $50,000 - - 1.250 2.30 0.604 3.12 

Baseline utilities            

    Logarithm of the area (miles2) – mean   0.797*   4.72*    0.797*   4.72*   0.797*   4.72* 

    Ferry (dummy) – mean 0.102     2.40    0.121      3.20 - - 

    Travel cost ($/100) –mean    -0.700  -15.22   -0.821   -35.04    -0.780   -4.95 

    Travel cost ($/100) – standard deviation 0.501     3.00 0.573      2.89 0.442 3.14 

    Land cover accessibility measure specific to           

         Urban (/104) –mean 0.431     2.43  0.429  2.09 0.457 2.64 

         Urban (/104) – standard deviation 0.119     2.28  0.100 2.23 0.091 2.17 

         Forest (/104) –mean 0.450     5.09  0.360  6.66 0.210 4.44 

         Wetland (/104) –mean    -4.210    -3.23 -4.195 -5.10   -4.030  -2.69 

         Agricultural (/104) –mean    -0.112    -4.91 -0.498 -9.15 0.212 3.59 

    Land-cover diversity accessibility  index  0.270     2.69 -0.443 -2.32   -0.213 -2.16 

Satiation parameters (
gθ

~
 parameters)       

    Constant 1.802   27.20  1.789 25.42  1.672  23.11 

    Land cover accessibility measure specific to       

         Wetland (/104) –mean -2.535    -3.56 -2.367 -4.10    -2.055 2.17 

    Land-cover diversity accessibility index 0.770     2.09 - -    -0.231 -2.04 

Spatial autoregressive coefficient (t-stat) 0.096 (1.56) 

Log-Likelihood at Convergence -8,499.78 

* The size coefficient (coefficient corresponding to the logarithm of the area in miles2) is constrained to be equal across all 

segments. The t-statistic for this coefficient is with respect to the hypothesis that the coefficient is equal to one. 

+ All coefficients are different from zero (or different from one in the case of the size variable) at the 95% confidence 

level or higher (or a p-value of 0.05 or lower). The 95% confidence level corresponds to an absolute t-statistic value of 

1.96. 
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Table 2.7. Quantitative characterization of the three segments 

Segmentation Variable First Segment 
Second 

Segment 

Third 

Segment 

Overall 

Market 

Age 

Younger than 48 60.2% 61.8% 35.7% 46.4% 

48 years or older 39.8% 38.2% 64.3% 53.6% 

Household 

structure 

Single person 15.4% 13.8% 13.7% 14.0% 

Couple 22.9% 18.3% 41.5% 26.0% 

Nuclear family 45.0% 52.1% 31.6% 45.0% 

Single parent 5.1% 7.4% 4.7% 6.3% 

Multi family or non-

family 
11.6% 8.4% 8.5% 8.7% 

Income 

Less than NZ$50,000 22.9% 42.6% 34.5% 37.8% 

NZ$50,000 or more 77.1% 57.4% 65.5% 62.2% 

 

2.4.4.2 Baseline utility parameters 

Referring back to Table 2.6, the effect of size (see the second panel) in the baseline utility 

function is positive and less than one. We specified different size coefficients across the 

segments, but the coefficients were not statistically different and were constrained to be equal. 

This was also our theoretical expectation, because we saw no reason that the size coefficient 

(representing the magnitude of region-specific unobserved factors affecting all elemental 

opportunities within the region) should vary across segments. The coefficient is statistically 

different from one, indicating the inelastic effect of size growth on the baseline utility.  

The effect of the ferry dummy variable in the baseline utility is positive for the HFLFC 

and LIP segments, but not significant for the CBB segment. The absence of effect on the CBB 

segment may be a reflection of the relative lack of families with children in this segment, and the 

possibly intrinsic and positive “adventure” value of a ferry ride for families with children. The 

effect of travel cost on baseline utility is, as expected and on average, negative in all the 

segments. The LIP segment is the most cost-sensitive, followed by the CBB segment, in an 
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inverse relationship of cost sensitivity to household income earnings of families across the 

segments. The results also show statistically significant heterogeneity (across individuals) in the 

responsiveness to cost within each latent segment, as manifested in the standard deviation 

estimates on the cost coefficient. The normal distribution assumption implies that some 

individuals do have a positive utility for cost, but the vast majority have a negative cost 

sensitivity. In particular, the mean and standard deviation estimates indicate that cost has a 

negative impact for 92% of individuals in the first and second segments, and for 96.5% of 

individuals in the final segment.  

The land cover accessibility measures reinforce the findings from our descriptive 

analysis. Specifically, regions with high urban land cover “pull” leisure trips with about equal 

intensity from all three segments, though there is heterogeneity in the magnitude of the “pull” 

within each segment (as indicated by the statistically significant standard deviations on the urban 

land cover variable in Table 2.6). Cities clearly offer a much higher density of tourism 

opportunities from regional events and festivals during the year to gastronomic indulgence 

opportunities, art galleries, museums, theaters and shopping centers. The effect of forest land-

cover on baseline utility is also positive, suggesting a preference for destination regions with 

high forest land cover. This preference varies across the three discrete segments, with the 

HFLFC segment having the highest preference for forest-oriented leisure pursuits and the CBB 

having the lowest. The high preference of the first segment for regions with forest land cover is 

presumably a reflection of young, single individuals (with relatively little familial commitments) 

seeking adventurous hiking and bicycling trails through New Zealand’s rough and rugged forest 

terrain. On the other hand, the relatively older CBB segment group may not prefer such 

physically-intensive leisure pursuits to the extent that their younger counterparts do. Also, there 

is a clear and generic tendency across all segments to stay away from regions with high wetland 

land cover. This is not surprising, given that wetlands offer little attraction for tourism and, in 

New Zealand, are typically associated with negative externalities such as pollution, drainage 

problems, and presence of invasive plant species (see Peters and Clarkson, 2010). The effect of 

the agricultural land-cover accessibility varies across segments; while the individuals in the third 

segment are attracted to agricultural areas, the individuals in the first and second segments tend 

to avoid agricultural areas. This is perhaps an indication of couple baby-boomers (CBB) being 

drawn to activities such as visiting vineyards for a relaxed wine-tasting escapade, activities that 
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may not interest individuals with children (the LIP segment) or may be considered too “docile” 

by young individuals with little family commitments (the HFLFC segment).   

The effects of the land-cover diversity accessibility index on the baseline function 

indicate that high-flying young individuals prefer regions with a good diversity of activities, 

while those in the LIP and CBB segments prefer regions with focused activities. Another 

interpretation is that those in the LIP and CBB segments are inclined  to pursue very specific 

types of leisure activities (such as perhaps park entertainment for the LIP segment and wine 

tasting trips for CBBs), and then select regions that are heavily invested in opportunities of that 

specific leisure type.  

Finally, the covariance estimate (not shown in Table 2.6) between the travel cost and 

urban accessibility random coefficients was 0.040 (t-statistic of 2.21), 0.035 (t-statistic of 2.28), 

and 0.042 (t-statistic of 2.03) for segments one, two and three respectively. This suggests that 

individuals who are less sensitive (more sensitive) to travel costs also prefer (dislike) urban 

destination zones. That is, individuals who prefer recreation pursuits based on man-made urban 

settings (amusement parks or leisure shopping complexes) appear not to mind spending 

additional time to get to their destinations, while those who prefer natural and pristine settings 

are the ones who would rather travel to close destinations to pursue their recreational interests. 

2.4.4.3 Satiation effects 

These effects are presented toward the bottom panel of Table 2.6. As indicated earlier, the 

satiation parameter is parameterized as qgk = )
~

exp( qkgaθ , and the satiation coefficients in Table 

2.6 are the gθ
~

 parameters for each segment g. A positive parameter on a variable implies that an 

increase in the variable has the effect of increasing the 
qgk  parameter and decreasing satiation 

(that is, increasing repeat trips of the individual to a destination region), while a negative 

parameter has the effect of decreasing the 
qgk  parameter and increasing satiation (that is, 

decreasing repeat trips of the same individual to a destination region).  

Everything else being equal, the constants indicate that satiation in the context of a 

destination region sets in fastest for the third CBB segment and slowest for the first HFLFC 

segment. That is, in general, individuals in the HFLFC segment are more willing to make repeat 

trips to a destination region than individuals in the LIP segment, and individuals in the LIP 
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segment are more willing to make repeat trips to the same destination region than individuals in 

the CBB segment. The wetland land-cover accessibility measure has a negative effect in all 

segments, i.e., destinations with higher wetland land cover lead to a higher satiation effect (less 

repeat visits to such regions by the same individual) than destinations regions with a lower 

wetland land cover. This is not surprising, given the negative characteristics associated with 

wetland areas in New Zealand, Finally, among the satiation parameters, the effect of the land-

cover diversity accessibility index variable indicates that individuals in the first HFLFC segment 

get less satiated with (willing to make more repeat visits to) destination regions with a high 

diversity in activity type opportunities (as proxied by land cover percentages), while individuals 

in the third CBB segment get satiated very quickly with (are unlikely to make repeat visits to) 

destination regions with a high diversity.  

2.4.4.4 Spatial dependence 

The spatial autoregressive coefficient, as expected, is positive, of the order of 0.10, and is 

different from zero at about the 7% level of significance for a one-tailed test.   

2.4.4.5 Summary and implications for increasing destination competitiveness 

A number of summary observations may be made from the model. First, the presence of a ferry 

leg appears to increase the attractiveness of a destination region for young single individuals and 

young parents (individuals in the HFLFC and LIP segments), but has relatively little attractive 

value for older baby-boomers. Of course, this is after controlling for the total cost of travel, 

which itself does have a very significant negative impact on destination region choice (especially 

for the LIP segment). Second, regions with high urban land cover are in general very attractive as 

a leisure trip destination. This is also true of regions with good forest cover; such regions have 

the highest attractive value for individuals in the first HFLFC segment and the least attractive 

value for individuals in the CBB segment.  Third, regions with high wetland land cover lowers 

attractive value across the board, while regions with high agricultural land cover appeal 

substantially to middle-aged couples (individuals in the CBB segment) but “push away” young 

individuals in general and young parents in particular, presumably because agricultural lands in 

New Zealand correspond quite a bit to vineyards. Finally, the combined effects of the land-cover 

diversity index on the baseline and satiation function, as well as the constant coefficients in the 

satiation function, imply that individuals in the HFLFC segment place a premium on diversity of 
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opportunities in terms of the types of activities offered by a destination region, and are much 

more willing to be loyal to a destination region that offers that diversity (if they make multiple 

leisure trips). On the other hand, the LIP and CBB segments are much less interested in diversity 

of activity type opportunities within a destination region, though they also look more for 

diversity in terms of destination regions visited in general. The individuals in the CBB group in 

particular are averse to repeat-visiting regions with high diversity of activity opportunities.  

The kinds of insights above offered by our proposed model can be valuable in branding 

and marketing campaigns. As a simple illustration, consider two of the most popular destination 

regions: Auckland and Nelson. Auckland has a higher diversity in activity opportunities as 

proxied by land-cover percentages (a diversity index of 0.38) than does Nelson (a diversity index 

of 0.29) which is heavily invested in forest land cover. Our results suggest that these two regions 

should use different strategies in their marketing and branding, as we discuss below.  

Auckland should emphasize its “diversity uniqueness” when targeting the HFFLC group, 

perhaps by broadcasting customized media advertisements in high income neighborhoods all 

over New Zealand and having promotional flyers at bars and clubs where young singles spend 

quite a bit of time. This will serve Auckland well given that individuals in the HFFLC segment 

desire diversity and can be very loyal to regions that offer that diversity. While doing so, 

Auckland should also highlight its forest and urban land cover very specifically, because these 

will make the region more attractive in the perception map of individuals in the HFFLC group. 

At the same time, given the LIP and CBB segments are much larger in size, Auckland has to also 

target these segments appropriately. For the LIP and CBB groups, the strategy would be similar 

to the HFLFC group in its emphasis on urban and forest-related tourism opportunities. However, 

unlike promotions targeted at the HFLFC group, the Auckland promotion campaigns toward 

these two groups would do well not to speak about the diversity of types of activity 

opportunities, and retain a high intensity of coverage of the urban and forest-related tourism 

opportunities. For the CBB group, it would behoove Auckland campaigns to play up the 

vineyards and orchards for wine-tasting and consuming tours (Auckland, in addition to its 

diversity, has a large percentage of its land area invested in agricultural land-use).  

Nelson is mainly invested in forest land-cover, with substantial opportunities for 

adventurous pursuits in rough and rugged forest terrain. This should be the main focus of 

promotional campaigns in all three segments as opposed to any diversity campaigns. In the CBB 
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segment, Nelson can play up its vineyards and wine-tasting tourism outlets. Another important 

marketing strategy for Nelson is to highlight its geographic proximity to the ferry landing in 

Picton, which is only a two-hour drive on the Queen Charlotte Drive that also happens to be one 

of the most picturesque drives in all of New Zealand. When promoting the region to the first 

HFLFC segment and the second LIP segment, Nelson should play up the ferry crossing 

experience, given that the ferry experience has a positive influence on destination region choice 

for the first two segments. Playing up the scenic experience also can temper negative travel time 

effects in general.  

Of course, in addition to targeting appropriate individuals for promoting current 

destination attributes, each region can also consider enhancing the accessibility to opportunities 

located within the region. For instance, take the case of Waikato, and consider ways that Waikato 

can make itself more competitive. But before investing in changing the number and type of 

offerings, Waikato needs to undertake a cost-benefit analysis including an estimation of the 

additional tourism share that may be “pulled” to Waikato in response to such an investment. The 

proposed model can be used to provide information for such a cost-benefit analysis. Specifically, 

consider the case where Waikato realizes that it is not very much invested in urban activity 

opportunities, which, based on our model results, is a significant determinant of tourist “pull”.  

The model can then be used to evaluate the increase that may be expected in total tourist trip 

share to Waikato (including repeat trips) due to a 20% increase in its urban land cover (through 

additional urban activity opportunities). To do so, for each individual in the sample, we predict 

the number of trips attracted to Waikato in the base case and in the case of an increased urban 

land cover in the following steps: (1) for the base case, draw 500 realizations for all the 

stochastic terms in the utility function of Equation (2.1), (2) predict the number of trips to 

Waikato for each of the realizations using the prediction method of Pinjari and  Bhat (2011), (3) 

average the predicted trips across the 500 realizations to obtain the individual prediction of the 

number of trips to Waikato, and (4) for the scenario case, increase the urban land cover 

percentage by 20%, drawing away an equivalent amount from agricultural land-use, (5) redo 

steps (1), (2), and (3) using the scenario sample, keeping the same 500 realizations for all the 

stochastic terms as in the base case.  Then, from the individual-level predictions for the base and 

scenario cases, obtain the total Waikato trips in the two cases by aggregating across all 

individuals in the sample. Finally, we can obtain a pseudo-elasticity effect by taking the change 
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in total trips to Waikato between the scenario and base cases as a percentage of the total trips to 

Waikato in the base case. This percentage turns out to be 16.1% (standard error of 1.7%) from 

the proposed model. As a point of reference, the corresponding percentage is estimated to be 

13.3% (standard error of 1.2%) in the LC-MDCP model and 11.5% (standard error of 1.5%) in 

the RC-MDCP model.12 Clearly, there are important differences among the models in the policy 

predictions, with the LC-MDCP and RC-MDCP models under-predicting the effectiveness of an 

increase in urban opportunities relative to the proposed FDMN-MDCP model. As we will see 

next, given that the proposed model fits the data much better than the other two models, the 

implication is that tourism policies to increase urban opportunities may be inappropriately 

discarded if the simpler LC-MDCP and RC-MDCP models were to be used. 

2.4.5 Data fit comparisons with the LC-MDCP and the RC-MDCP models 

The difference in policy sensitivity results between the FDMN-MDCP, LC-MDCP, and RC-

MDCP models suggests the need to apply formal statistical tests to determine the structure that is 

most consistent with the data. In this section, we provide measures of fit for these models.  For 

the RC-MDCP model, as we already indicated in a footnote earlier, we consider both observed 

and unobserved heterogeneity in the “strawman” specification  

The LC-MDCP and the proposed model can be compared using the familiar likelihood 

ratio test, since the former is a restricted version of the latter with no continuous random 

heterogeneity in coefficients within each segment. For the test between the RC-MDCP and the 

proposed model, one can compute the adjusted likelihood ratio index with respect to the log-

likelihood at equal shares: 

)(

)ˆ(
12

c

M

 L

 L 


θ
 , (2.19) 

where )ˆ(θ L  is the log-likelihood function at convergence, )(c L  is the log-likelihood for the 

naïve unsegmented model with only the size measure in the baseline function, only the constant 

in the satiation function, no spatial dependence, and IID errors across regions as in Equation 

(2.15), and M is the number of parameters estimated in the model minus two (that is, minus the 

                                                 
12 To be sure, in this part of the analysis, we did not just consider random coefficients on the variables in the 

baseline utility function, but also tested demographic variable interactions with the variables to obtain a RC-MDCP 

model that accommodates systematic heterogeneity (when found statistically significant) in the coefficients. This 

RC-MDCP specification is a much more appropriate “strawman” to compare with the proposed FDMN-MDCP 

model than a pure random coefficients specification that does not consider these interactions.  



 

59 

 

single size coefficient in the baseline utility and the single satiation constant estimated in the 

naïve unsegmented model). To test the performance of the two non-nested models (i.e. the 

proposed FDMN-MDCP and RC-MDCP models) statistically, the non-nested adjusted likelihood 

ratio test may be used. This test determines if the adjusted likelihood ratio indices of two non-

nested models are significantly different. In particular, if the difference in the indices is 

  )( 2

1

2

2  , then the probability that this difference could have occurred by chance is no 

larger than  5.0

12 )]()(2[ MMc  L   in the asymptotic limit. A small value of the 

probability of chance occurrence indicates that the difference is statistically significant and that 

the model with the higher value of adjusted likelihood ratio index is to be preferred. 

The likelihood ratio test (for the comparison of the LC-MDCP and FDMN-MDCP 

models) and non-nested adjusted likelihood ratio test (for the comparison of the RC-MDCP and 

FDMN-MDCP models) constitute disaggregate measures of fit that consider performance at the 

multivariate and disaggregate level of all combinations of regions, While the best data fit 

measures, these are not very intuitive. So, we also evaluate the performance of the three models 

intuitively and informally at an aggregate level. However, since there are too many multivariate 

combinations possible of leisure trip-making to the destination regions and it is impossible to 

provide fit statistics for all these combinations, we compare the aggregate marginal bivariate 

predictions (with the true sample values) for combinations of two of the most visited regions – 

Waikato and Auckland. Specifically, we focus on the percentage of individuals who, during the 

four-week survey period, visit Waikato but not Auckland, Auckland but not Waikato, both 

Auckland and Waikato, and neither of the two.  The prediction procedure is similar to the one 

used for undertaking the sensitivity analysis in the previous section, except that, for each 

individual, we compute the probability of visiting each of the four combinations of regions as the 

percentage of times in the 500 realizations that each of the combinations has a non-zero number 

of visits. The probabilities for each combination are added up across individuals to obtain the 

predicted number of individuals falling into each combination category and compared with the 

actual percentages using the mean absolute percentage error (MAPE) statistic.   

The results of the data fit comparisons are presented in Table 2.8. The first row provides 

the log-likelihood for the naïve unsegmented model (that is, the )(c L  value), which is, of 

course, the same across the three models. The second row indicates the superior performance of 

the proposed FDMN-MDCP model in terms of the convergent log-likelihood value, as does the 



 

60 

 

adjusted likelihood ratio index in the fifth row (note that the small magnitude of this index is not 

surprising, given the multitude of different possible multivariate combinations). The sixth row 

formally shows the likelihood ratio test result of the comparison of the FDMN-MDCP model 

with the LC-MDCP model, indicating the clear dominance of the FDMN-MDCP data fit. The 

same result is obtained in the next row through a non-nested adjusted likelihood ratio test 

comparing the FDMN-MDCP model with the RC-MDCP model; the probability that the adjusted 

likelihood ratio index difference between these models could have occurred by chance is literally 

zero. Finally, the last panel of the table first shows the actual percentages of individuals falling in 

each combination of visiting/not visiting the Waikato and Auckland regions, followed by the 

predicted percentages from the three different models. The MAPE values from the three models 

are provided in the last row of the table. The LC-MDCP models has a MAPE value that is about 

three times that of the FDMN-MDCP, while the RC-MDCP model has a MAPE that is about 3.5 

times that of the FDMN-MDCP.  

All the fit measures discussed thus far are based on model fit on the overall sample used 

in estimation. While taken together, these fit measures reveal the superiority of the proposed 

FDMN-MDCP model, there is still a small possibility that the better performance of our model is 

simply an artifact of overfitting and may not translate to predictive accuracy in other samples. To 

accommodate for this, we also evaluated the performance of the three models on various market 

segments of the estimation sample (such predictive fit tests are sometimes referred to as market 

segment prediction tests). The intent of using such predictive tests is to examine the performance 

of different models on sub-samples that do not correspond to the overall sample used in 

estimation. Effectively, the sub-samples serve a similar role as an out-of-sample for validation. 

The advantage of using the sub-sample approach rather than an out-of-sample approach to 

validation is that there is no reduction in the size of the sample for estimation. This is particularly 

an issue in models of the type estimated in this chapter because of the need to use as much 

information as possible given the number of parameters to be estimated. If a model shows 

superior performance in the subsamples in addition to the overall estimation sample, it is 

indication that the model indeed provides a better data fit. 
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Table 2.8. Measures of fit   

Summary Statistic 
Estimation Sample 

FDMN-MDCP LC-MDCP RC-MDCP 

Log-likelihood of the naïve unsegmented model  -15,783.21 

Log-likelihood at convergence -8,499.78 -8,550.03   -8,648.46 

Number of parameters 49 40 15 

Number of observations 3,508 

Adjusted likelihood ratio index  0.458 0.455 0.451 

Predictive likelihood ratio test between FDMN-MDCP and 

LC-MDCP models 

Test statistic [-2*(LLLC-MDCP-LLFDMN-MDCP)]=102 > Chi-Squared statistics with 9 

degrees of freedom at any reasonable level of significance 

Non-nested adjusted likelihood ratio test between the FDMN-

MDCP and RC-MDCP models 
  0001.022.16   

Percentage of individuals (trips) 

predicted to visit…. 

Actual percentage Predicted percentage 

Individuals  Trips Individuals Trips Individuals Trips Individuals Trips 

Waikato but not Auckland  16.9 17.9 17.6  18.4   20.0 20.5 21.4 22.3 

Auckland but not Waikato 10.8   8.1 12.3   9.5 14.0 11.8 14.5 12.4 

Both Auckland and Waikato   5.6   6.4   6.7   7.7   8.6   9.4  9.3   9.7 

Neither Auckland nor Waikato 66.7 67.6 63.4 64.4 57.4 58.3 54.8 55.6 

Mean Absolute Percentage Error   10.7%   11.3%     28.9% 30.2%     36.2%   36.7% 
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To do so, we computed the mean absolute percentage error (MAPE) for the percentage of 

individuals predicted to visit the same four combinations of the two destinations as in Table 2.8 

and for three segmentations of demographic variables: (1) income less than NZ$50,000 and 

income greater than NZ$50,000, (2) nuclear and non-nuclear households, and (3) age less than 

48 years and age more than 48 years. The overall MAPE values for percentage of individuals 

predicted to visit the four destination combinations in the two income segments were 10.4% and 

10.8% from the FDMN-MDCP model, 28.7% and 28.8% from the LC-MDCP model, and 36.1% 

and 36.3% from the RC-MDCP model. The corresponding values for the household structure 

segmentation were 10.7% and 10.6% from the FDMN-MDCP model, 29.0% and 28.7% from the 

LC-MDCP model, and 36.2% and 35.3% from the RC-MDCP model, and for the age 

segmentation were 9.8% and 9.5% from the FDMN-MDCP model, 28.3% and 27.9% from the 

LC-MDCP model, and 36.0% and 35.1% from the RC-MDCP model. All in all, the FDMN-

MDCP model clearly outperforms the other two models even in such a predictive exercise. 

2.5 CONCLUSIONS 

This chapter has proposed a new econometric formulation and a complete blueprint of an 

associated estimation method for a finite discrete mixture of normals version of the multiple 

discrete-continuous probit (or FDMN-MDCP) model. The model allows consumers to choose 

multiple alternatives at the same time, along with the continuous dimension of the amount of 

consumption, and captures heterogeneity in the response coefficients of the baseline utility 

function. This is a very general way of including heterogeneity in the sensitivity to exogenous 

variables in the multiple discrete-continuous context, with the normally distributed random 

parameters approach and the latent class approach constituting special cases. 

A simulation exercise is undertaken to evaluate the ability of the proposed approach to 

recover parameters from simulated datasets. The results from the experiments show that the 

proposed inference approach, which is computationally fast and straightforward to implement, 

does very well in recovering the true parameters used in the data generation. Also, the simulation 

results show that ignoring the continuous component of the mixing (as reflected in the LC-

MDCP model) or ignoring the discrete component of the mixing (as in the RC-MDCP model) 

when the true data is generated using an FDMN MDCP structure leads to substantial parameter 

bias. The average absolute percentage bias (APB) for the LC-MDCP model is about 28.5%, and 

for the RC-MDCP model is 26%, relative to the APB for the correct FDMN-MDCP model which 
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is of the order of 3%. Clearly, the repercussion of imposing incorrect restrictions is very severe 

on parameter bias.   

This chapter demonstrates the application of the proposed approach through a study of 

individuals’ recreational (i.e., long distance leisure trips of over 25 miles one-way) choice among 

alternative destination locations and the number of trips to each recreational destination location, 

using data drawn from the 2012 New Zealand Domestic Travel Survey (DTS). The Bayesian 

Information Criterion indicates that the preferred specification is a three-segment solution, with 

one segment loading on high flying low family commitment (HFLFC) individuals, the second on 

low income parents (LIP), and the third on couple baby-boomers (CBB). In a comparative 

empirical assessment of the FDMN-MDCP with the simpler LC-MDCP and RC-MDCP models, 

the FDMN-MDCP came out clearly as the winner in terms of data fit.  

The results of the preferred three-segment solution showed heterogeneity (in the form of 

a continuous normal distribution) in sensitivity to cost and urban land cover within each latent 

segment, and differences (across the three latent segments) in the response to the presence of a 

ferry ride, travel cost, land cover accessibility measures, and the land cover diversity 

accessibility index. These differences, in combination with the socio-demographic characteristics 

of individuals in each segment, provide important information for effective targeting and 

strategic positioning to increase destination competitiveness. More generally, the FDMN-MDCP 

formulation appears to be a valuable methodology for marketing and positioning in markets that 

are characterized by multiple discreteness. Future research should focus on applying the FDMN-

MDCP formulation to other multiple discrete contexts. Also, while the application to recreational 

destination choice demonstrates the value of the formulation, future work should consider a 

much richer set of destination region attributes.  
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CHAPTER 3: Multivariate Skew-Normal Distribution for Unobserved 

Heterogeneity in the Spatial MDC Model 

 

This chapter proposes a new spatial MDC model with skew-normal kernel error terms and skew-

normal distributed random response coefficients. To our knowledge, this is the first time a 

flexible and parametric skew-normal distribution for the kernel error term and/or random 

response coefficients has been used in both spatial- and aspatial-MDC models. The next section 

provides an overview of the multivariate skew-normal distribution (MVSN) and the properties of 

the distribution that are most helpful in the context of spatial MDC models. The third section 

presents the modeling methodology of the aspatial and spatial skew normal MDC models, along 

with the proposed estimation method. The fourth section offers an overview of the simulation 

exercises and the fifth section presents the empirical application (including a data description and 

model estimation results).  The sixth and final section provides a discussion of the main findings 

together with concluding thoughts. 

3.1 THE MULTIVARIATE SKEW-NORMAL DISTRIBUTION 

In this section, we provide an overview of the multivariate skew-normal distribution, and briefly 

present the properties of the distribution that are most relevant in the context of application for 

MDC models. Most of the notation used in this section is extracted from Bhat and Sidharthan 

(2012). 

In this study, we use the MVSN version originally proposed by Azzalini and Dalla Valle 

(1996).13 The MVSN version used here is efficient in the number of additional parameters to be 

estimated and is closed under any affine transformation of the skew-normally distributed vector. 

At the same time, the cumulative distribution function of an L-variate skew normally distributed 

variable of the Azzalini and Dalla Valle type requires only the evaluation of an )1( L -

dimensional multivariate cumulative normal distribution function. 

 Consider an MVSN distributed random variable vector )',,,,( 321 L η  with an 

)1( L -location parameter vector 
L0  (that is, an )1( L  vector with all elements being zero) and 

                                                 
13 This version is also referred to by Lee and McLachlan, 2013 as the restricted multivariate skew normal 

distribution 
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an )( LL  -symmetric positive-definite correlation matrix * . Then, the MVSN distribution for 

η  implies that η  is obtained through a latent conditioning mechanism on an )1( L -variate 

normally distributed vector ,),( 1

*

0
*

CC where 
*

0C  is a latent )11(  -vector and *
C



1  is an )1( L -

vector: 

*

* *

1

1

10
~  ,   , where  .

o

L

C
MVN   

      
       

     
*

ρ
Ω Ω

0 ρ*C 
         

(3.1) 

ρ  is an )1( L -vector, each of whose elements may lie between –1 and +1. The matrix 
*

Ω  is 

also a positive-definite correlation matrix. Then, )0(| *

01 


C*Cη  has the standard multivariate 

skew-normal (SMVSN) density function shown below: 

 

1
* *

1/2
1

( )
( ;  ) 2 ( ; ) ( ), where

1 ( )
L L 






   


*

*

ρ
η z Ω z Ω α z α

ρ ρ




,        (3.2) 

where (.)L  and (.)  represent the standard multivariate normal density function of L 

dimensions and the standard univariate cumulative distribution function, respectively. We write 

).(SMVSN~ *

Ωη  To obtain the density function of the non-standardized multivariate skew-

normal distribution, consider the distribution of  .ωηY  ζ  This MVSN distribution for Y  

implies that Y  is obtained through a latent conditioning mechanism on an )1( L -variate 

normally distributed vector ,),( 10
CC where 0C  is a latent )11(  -vector and 1C  is an )1( L -

vector: 

0

1

1

0 1
~  ,   , where  ,  , andL

C
MVN   

      
        

     

*Ω Ω ωρ ω ω
σ

σ
ζ σC

 


.                    

(3.3) 

Specifically, we write ),,,(MVSN~ *
ΩωY ζ  and the conditioning-type stochastic representation 

of Y  is obtained as )0(| 01  CCY . The probability density function of the random variable Y 

may be written in terms of the SMVSN density function above as (see Bhat and Sidharthan, 

2012): 
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),(where),;(
~

),,;(

1

1

ζζ 












 







  yωzΩzΩωyY
1**

L

L

j

jLf                                             (3.4) 

and j  is the jth diagonal element of the matrix ω .   

The cumulative distribution function for η  may be obtained as: 

. 
1

);,,(2);(
~

)(
*

**

1

*


















 

Ωρ

ρ
ΩΩz0Ωzzη LLP                     (3.5) 

The corresponding cumulative distribution function for Y is: 

   . ,,2;
~

)( *

1

*







  Ω)(yω0Ω)(yωyY
11

ζζ LLP                     (3.6) 

 

 It is important to notice that the notation ),,(MVSN~ *
ΩωY ζ  is convenient because all 

the components needed to express the cumulative distribution and density functions are 

distinguishable as the function arguments. Alternatively, we could also write 

),,(MVSN~ ΩρY ζ , where Ω  is the )( DD -symmetric positive-definite covariance matrix. 

Let ω  be a )( DD -diagonal matrix formed by the standard deviations of Ω  ( j  is the jth 

diagonal element of the matrix ω ). Then, we can write: 11* ΩωωΩ  . Finally, we can 

construct 
*

Ω  as   
1

* 











 

Ωρ

ρ
. 

A couple of properties of the MVSN distribution are provided next. The proof for the first 

property is available in Arellano-Valle and Azzalini (2006) and Bhat and Sidharthan (2012). The 

proof for the second property is based on the marginal and conditional distribution properties of 

the multivariate normal distribution. Both properties will be useful in the development of the 

spatial skew-normal MDC model. 

 

Property 1: The affine transformation of the MVSN distributed vector Y (dimension 1L ) 

)] , ,(MVSN~[ *
ΩωY ζ  as BYa  , where B is a )( Lh   matrix, is also an MVSN distributed 

vector of dimension 1h : 

)],
~

 ,~ , (MVSN~ *
ΩωBaBYa  ζ  where ,

~
,~~~~

,~~

~
~

BBΩΩ)ω(Ω)ω(Ω
Ωρ

ρ1
Ω

11*

*

* 












 
 

  
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, ~~ ρBω)ω(ρ
1  and ω~  is the diagonal matrix of standard deviations of Ω

~
. 

 

Property 2:   

If )],,(MVSN~[ *
ΩωξG   is partitioned into two-subvectors 1G  and ,2G  with corresponding 

partitions of the other vectors as follows: 

,
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



 


Ωρ
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1
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2

22222 
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



 


Ωρ

ρ
ΩΩωξG **  

That is, the rMSN distribution is closed under marginalization, which can be shown by 

straightforward integration (Azzalini, 2005).  

 

3.2 MODELING FRAMEWORK 

3.2.1 The aspatial Skew Normal MDC (or ASN-MDC) model 

Let )..., ,2 ,1( Qqq   be the index for individuals (or observation units in general) and let 

)..., ,2 ,1( Kkk   be the index for the alternatives. Following Bhat (2008), consider a vector qx  

of dimension 1K  with elements qkx  )0( qxqk  , where qkx  is a specific consumption of 

good k by individual q. Consider the following utility-maximizing function subject to the binding 

budget constraint: 

 qKqK

K

k k

qk

qkkq x
x

U ln1ln)(max
1

1




 
















 





qx   (3.7) 





K

k

qqkqk Exps.t. 
1

, 

where the utility function )( qqU x  is quasi-concave, increasing and continuously differentiable, 

0qx  is the consumption quantity (vector of dimension K×1 with elements qkx ), and qk  and 

qk  are parameters associated with good k and consumer q. The constraint in Equation (3.7) is 
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the linear budget constraint, where qE  is the total expenditure (or income) of consumer q, and 

qkp  is the unit price of good k as experienced by consumer q. The utility function form in 

Equation (3.7) assumes that there is one essential outside good (all the individuals consume the 

Kth good), so that corner solutions (i.e., zero consumptions) are allowed for all goods k ≠ K. The 

parameter qk  in Equation (3.7) serves the role of a satiation parameter. qk  represents the 

stochastic baseline marginal utility (the marginal utility at the point of zero consumption).  

To complete the model structure, the baseline utility qk , which has to be non-negative, 

is parameterized as follows for each alternative: 

 ,~)ln(or)~exp()~exp( *

qkqqkqqk zβzβz  qkqkqk                                      (3.8) 

where qkz~  is a D-dimensional vector of attributes that characterizes good k and individual q 

(including a dummy variable for each alternative except the last outside alternative, to capture 

intrinsic preferences for each alternative relative to the last alternative), and qβ  is a individual-

specific vector of coefficients (of dimension 1D ), In order to allow heterogeneity in 

responsiveness to exogenous variables across individuals, qβ  is assumed to be multivariate 

skew-normally distributed: ),,,(MVSN~ Ωρbβq where ρ  is the vector of skew parameters and 

Ω  is the covariance matrix of size (D×D). As we discussed in Section 3.1, we alternatively can 

write ),,,(MVSN~ *

Ωωbβq  where ω  is the diagonal matrix formed by the standard deviations 

of Ω ,  












 
 *

*
1

Ωρ

ρ
Ω , and 

*
Ω  is the correlation matrix associated to Ω .  It is not necessary 

that all elements of qβ  be random; that is, the analyst may specify fixed coefficients on some 

exogenous variables in the model, though it will be convenient in presentation to assume that all 

elements of qβ  are random. For future reference, we also write 
qq βbβ

~
 , where 

),(MVSN~
~ *

ΩωSqβ . Note that the randomness of the parameters (in the qβ  vector) on the 

dummy variables specific to each alternative (except the last) represents the kernel error term and 

captures the idiosyncratic (unobserved) characteristics that impact the baseline utility of good k 

and individual q.  
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There is one important identification issue that still needs to be dealt with. We need to 

ensure the positive definiteness of the matrix *
Ω (note that the positive definiteness of *

Ω  

ensures the positive definiteness of *Ω  and therefore Ω ; this holds because of the property that 

any principal square sub-matrix of a positive definite matrix is also positive definite). To 

guarantee the positive definiteness of the correlation matrix ,*Ω we use the approach of Bhat 

and Srinivasan (2005). Specifically, let L be the Cholesky decomposition matrix for .*
Ω  We 

need to guarantee that the parameters embedded within L are such that *
Ω  is a correlation 

matrix. This is done by parameterizing the diagonal terms of L as follows: 
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



L                  (3.9) 

In the estimation, the Cholesky elements in the matrix L are estimated, guaranteeing that *
Ω is 

indeed a correlation matrix. 

As in the multinomial probit model, only differences in the logarithm of the baseline 

utilities matter, not the actual logarithm of the baseline utility values (see Bhat, 2008). Thus, it 

will be easier to work with the logarithm of the baseline utilities of the first 1K  alternatives, 

and normalize the logarithm of the baseline utility for the last alternative to zero. That is, we 

write: 
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zzzzβ

zzβ

                                                  (3.10) 

The optimal consumption vector 
qx  can be solved based on the constrained optimization 

problem of Equation (3.7) by forming the Lagrangian function and applying the KKT conditions. 

The Lagrangian function for the problem (substituting )exp( qkqk    in Equation (3.7)) is 

provided in Equation (3.11): 

 
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where 
q  is the Lagrangian multiplier associated with the expenditure constraint. The KKT first-

order conditions for the optimal consumption 
*

qkx  are as shown in Equation (3.12): 

01 )
~

exp(

1
*


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zβzb  , if 0* qkx , 1 ..., ,2 ,1  Kk  (3.12) 
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zβzb , if 0* qkx , 1 ..., ,2 ,1  Kk . 

Substituting   1* 


 qKq x into the above Equation, and taking logarithms, we can rewrite the KKT 

conditions as:  

0
~

)(*  qkq zβqKqkqk VVy , if 0* qkx , 1 ..., ,2 ,1  Kk   (3.13) 

0
~

)(*  qkq zβqKqkqk VVy , if 0* qkx , 1 ..., ,2 ,1  Kk , 

where 













 1ln

*

k

qk

qk

x
V


qkzb  for 1 ..., ,2 ,1  Kk , and  *ln qKqK xV  .  

3.2.2 The Spatial Skew Normal MDC (or SSN-MDC) model 

The derivation thus far is based on the assumption that individuals are spatially independent. In 

this section, we include spatial dependency between observations. We begin the formulation of 

the spatial model from Equation (3.10), and write the logarithm of the baseline utilities (taken as 

the difference from the logarithm of the baseline utility of the last alternative) for the alternatives 

as follows: 

 

.for0

1 ..., ,2 ,1for,
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Kkw
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kqqqkqk



 
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

 qkq zβ

           (3.14) 

where 
qq

w


is a distance-based spatial weight corresponding to individuals q and q’  (with 

0qqw  and 


 
q

qqw 1) for every q, and k )10(  k  is the spatial lag autoregressive 

parameter specific to good k )1 ..., ,2 ,1(  Kk . This formulation takes the typical spatial lag 

specification used extensively in spatial econometrics, and causes the logarithm of the baseline 

utilities to be spatially interdependent across individuals based on the spatial proximity (for 
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another example of an MDC model with a spatial lag formulation see Bhat et al., 2015). The 

weight 
qq

w


 are assumed to converge to zero as the spatial distance between individuals q and q’ 

tends to infinity. 

We now set out additional notation to write the baseline utility in a compact form. Define 

the following: 

 vector]1)1[(,),...,,( 1,21   KKqqqq ψ  

] vector1)1([     ,...,,  KQ,)ψψψ(ψ Q21  

]matrix )1([) ,..., ,(],matrix )1[() ,..., ,( , DKQDK  QKqqqq zzzzzzz 211-21 z , and 
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~

,
~

(
~

 QDQ21 ββββ . 

Let KIDEN be the identity matrix of size K . Also, define the following matrices: 
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 matrix])1()1[(

000

000

000

000

1

3

2

1





























KK

K

















δ .                                   (3.16)                                 

Let W
~

 be the )( QQ  weight matrix with weight 
qq

w


as its elements, and let QQ1  be a 

)( QQ matrix with each element taking the value of one. Next, define 

)
~

(*.)( 1-KQQ IDENW1  δW , where “ ” is the kronecker product and “ *. ” stands for the 

element-by-element multiplication of two matrices. Let 

  ]matrix )1()1([
1

)1( 


 KQKQKQ WIDENS . Then, we can write Equation (3.14) for all 

goods )1 ...., ,2 ,1(  Kkk and all individuals Qq ..., ,2 ,1 in matrix notation as: 

   vector]1)1([
~~

 KQβbβb zSSzzzSψ


.              (3.17) 
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Let e].[ indicate the 
the  element of the column vector ].[ , and let kKqd qk  )1( . Equation 

(3.17) can be equivalently written as: 

     .1..., ,2 ,1,
~

 Kk
qkqk ddqk βb zSSz


              (3.18)    

Using the same approach as for the aspatial case, the KKT conditions take the same form for *

qky  

as in Equation (3.13): 

  0
~

)(* 
qkdqKqkqk VVy βzS


, if 0* qkx , 1 ..., ,2 ,1  Kk   (3.19) 

  0
~

)(* 
qkdqKqkqk VVy βzS


, if 0* qkx , 1 ..., ,2 ,1  Kk , 

where  













 1ln

*

k

qk

dqk

x
V

qk 
bSz   for 1 ..., ,2 ,1  Kk , and  *ln qKqK xV  .  

Now, stack the elements )1..., ,2 ,1(*  Kkyqk  in the following order: 

  vector,1)1( a,),...,,( 1,21   Kyyy Kqqqq

*y and                                  (3.20)                                 

 vector1))1( ( a,),...,,( *

1 


 KQ*

Q

*

2

* yyyy . 

Define the following additional matrices:  

 ],vector1)1[(),...,,( 1,21   KVVVVVV qKKqqKqqKqqB
                       (3.21)                   

    

vector]1)1([),...,,(  KQQBBBB 21 . 

It is easy to see that *y has a mean vector of B. To determine the covariance matrix of 
*y , define 

the following additional matrices: 

 ]matrix )1()1([ 
~

 KQKQzΩ)(IDENzΩ Q


,14 and                             

(3.22)                     

]matrix )1()1([ 
~

 KQKQSΩSΣ . 

Based on property 2 earlier in Section 3.1, we can derive the location and other 

parameters of the vector 
*y , which is also skew-normally distributed. Specifically, by successive 

applications of property 2, we obtain the following important result:  

                                                 
14 This way to construct the correlation matrix imposes restrictions for the ρ that can substantially constrain the 

values of its components in order to ensure the positive semidefiniteness of the matrix. 
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).,,(MVSN~ Σρzy
* 

B                                                 (3.23)      

where ρ


 is the stacked vector  vector]1[),...,,(  QDρρρρ


. 

 

3.2.3 Model Estimation 

Part of the notation used in this section has been extracted from Bhat et al.’s (2015) formulation. 

The parameter vector to be estimated in the model is denoted . )Vech(,Vech(,,,(  Ω)δρθ γb  

where )(Vech Ω  represent the column vector of upper triangle elements and )(Vech δ represents 

the column vector of diagonal elements of δ .  Several restrictive models are obtained from the 

spatial model formulation developed here. If ,0δ  but ,0ρ   the result is the aspatial skew-

normal MDC (ASN-MDC) model. If ,0δ  but ,0ρ   the result is the spatial MDCP (S-

MDCP) model that has been proposed by Bhat et al. (2015). If both 0δ  and ,0ρ   the result 

is the aspatial MDCP (A-MDCP) model. 

3.2.3.1. Development of the Maximum Likelihood Estimator 

Let )',...,,( 121  Kγ . The parameters to estimate in the spatial skew-normal MDC model 

include the γ  parameter vector, the b vector, the elements of the spatial lag parameter matrix δ, 

the skew parameter vector ρ, and the covariance matrix Ω . The data provide information on the 

vector of exogenous variables qz  for each individual q, the spatial weight matrix W
~

, and the 

observed goods consumption vector across the alternatives for each individual q: 

)( ,21

*  *

Kq

*

q

*

qq ,...x,xxx . Note that a specific individual may not consume some alternatives, in 

which case the corresponding *

qkx  values take a value of zero.  

Next, partition the vector *y  into a sub-vector 
*yNC

~  of length NCL ×1 

)])1(0([  KQLNC  corresponding to the individual and good type combinations in which 

there is no consumption, and another sub-vector 
*yC

~  of length CL ×1 ( )]1(0[  KQLC ) for 

the individual and good type combinations in which there is consumption 

( )]1([  KQLL CNC ). In forming the sub-vector *yC
~  , the outside alternative is not included. 

Let    









 
 ***

yyy CNC
~,~~ , which may be obtained from *

y  as *Ry*y~ , where R is a re-
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arrangement matrix of dimension )1()1(  KQKQ with zeroes and ones. For example, 

consider the case of three individuals and five goods. The last alternative is the outside 

alternative. Among the remaining four alternatives, let individual 1 be consuming alternatives 1 

and 4 (not consuming =alternatives 2 and 3), let individual 2 be consuming alternatives 2 and 3 

(not consuming alternatives 1 and 4), and let individual 3 be consuming alternative 1 (not 

consuming alternatives 2, 3, and 4). In this case, .5and7  CNC LL   Then, the re-arrangement 

matrix R is: 

 ,

000100000000

000001000000

000000100000

000000001000

000000000001

100000000000

010000000000

001000000000

000010000000

000000010000

000000000100

000000000010































































C

NC

R

R

R                           (3.24) 

where the upper sub-matrix NCR  corresponds to the individual and good alternative 

combinations with no consumption (of dimension )1(  KQLNC ) and the lower sub-matrix CR  

corresponds to the individual and good alternative combinations (excluding the outside 

alternative for each individual) with positive consumption (of dimension )1(  KQLC ). Note 

also that ** yR~
NCNC y  and ** yR~

CC y .15 

                                                 
15 RNC has as many rows and columns as the number of individual and good alternative combinations with no 

consumption (each column corresponds to an alternative except the Kth alternative). Then, for each row, RNC has a 

value of “1” in one of the columns corresponding to a individual- alternative combination that is not consumed 

(starting from the first alternative that is not consumed for the first individual and working down to the last 

alternative that is not consumed for the last individual). Each row has strictly one column with a value of “1” and the 

value of “0” everywhere else. A similar construction is involved in creating the RC matrix. 
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      Consistent with the above re-arrangement, define BH R
~
 , BH NC NCR

~
, 

BHC CR
~

 , and RΣRΣ 
~

.  Define       .,...,*










 
 *

Q

*

2

*

1 xxxx  Then, the maximum likelihood 

function may be obtained as: 

   ,
~

,
~

|,)det()(Prob)( )1(

*





NCL

C

0

LNC Σ0hJθ

NCh

NCdh Hx KQML fL                           (3.25) 

  

   ,)
~

;()
~

);
~

(~(2~)det()(Prob)( NCNCNC

1

1

*

 


























NCL0

**1
hΣhαΣhωJθ

NCh

Hx dL
Q

q

jML   

where ,~~

~1~












 


Σρ

ρ
Σ

*

  2/11*

1*

~)
~

(~1

~)
~

(

ρΩρ

ρΩ
α






  and ρ Szρ  The likelihood function in Equation 

(3.25) involves integration of dimension NCL . This is of very high dimensionality in the typical 

case of sample sizes of 500 observations or more. The lower bound of  NCL  is equal to zero, 

corresponding to the case when each individual consumes each good alternative. The upper 

bound is equal to QK *)1(  , corresponding to the case when each individual consumes only the 

outside alternative. Of course, in practice, the situation will be somewhere between these two 

extreme values for NCL , but the value for NCL will be sufficient to render maximization of the 

likelihood function using traditional simulation methods almost impractical.  In particular, 

existing estimation methods, including the Maximum Simulated Likelihood (MSL) method and 

the Bayesian Inference method, become cumbersome and encounter convergence problems even 

for moderately sized Q (Bhat et al., 2010). In this research, we instead use Bhat’s Maximum 

Approximate Composite Marginal Likelihood (MACML) inference approach for estimation.  

To write the pairwise CML function, let NCqNCqNCqq LLL ,,,    and ., CqqCCqq LLL    

Define a vector *y qq   of size  1)1(2 K  as follows: 

    









 
 

*

q

*

q yy ,*

qqy .          (3.26)                  

Let qq Δ  be a selection matrix of size .2 Q  This matrix has the value of “1” in the top row and 

the column q , and the value of “1” in the bottom row and column q . All other cells of this 



 

76 

matrix are filled with values of zero. Then, ),,(~ )1(2 qqqq

*
By  ΣKqq MVN  where 

BB qqqq )1  KIDEN(Δ , and .)) 11
  KK IDEN(ΔΣIDEN(ΔΣ qqqqqq  Next, define the 

re-arrangement matrices qq R  (of dimension )1(2)1(2  KK ), NCqq ,R  (of dimension 

)),1(2  KL NCqq ,  and Cqq ,R  (of dimension ))1(2  KL Cqq ,  similar to the corresponding re-

arrangement matrices defined on the entire sample for the maximum likelihood approach. Also, 

define  ,
~

, qqNC,qq BB   NCqqR ,
~

, qqC,qq BB   CqqR  and 






 








CqqCNCqq

CNCqqNCqq

qqqqqqqq

,,,

,,,
~~

~~
~

ΣΣ

ΣΣ
RΣRΣ , 

where NCqqqqNCqqNCqq ,,,

~


 RΣRΣ , CqqqqCqqCqq ,,,

~


 RΣRΣ , and CqqqqNCqqCNCqq ,,,,

~


 RΣRΣ . Let 

,
~~~~

,,, )()Σ(Σ 1

C,qqNC,qq BBB 


  CqqCNCqq,NCqq


 CNCqqCqqCNCqqNCqqNCqq ,,,,,,,

~~~~





 Σ)Σ(ΣΣΣ

1


, 

 C,qq

*

C,qq BB 



 


~~
,

~
1

Σ
ω

Cqq
,  ,

,
NC,qq

* BB 


 



1
Σ

ω
NCqq

,NCqq  1

Σ

1

Σ

* ωΣωΣ 








NCqqNCqq
NCqqNCqq

,,
,, 


, and 

1

Σ
~

,

1

Σ
~,

*

,,

ωΣ
~

ωΣ
~ 









CqqCqq
CqqCqq  where 

NCqq ,Σ
ω  is the diagonal matrix of standard deviations of NCqq ,Σ


 

and 
Cqq ,

~
Σ

ω is the diagonal matrix of standard deviations of Cqq ,

~
Σ . Let 

Cqq ,

~
Σ

ω be the product of the 

diagonal elements of 
Cqq ,

~
Σ

ω , and write the determinant of the Jacobian corresponding to 

individuals q and q  as 














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


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





1

1
)det(

*

*
,

J . Then, using the 

marginal and conditional distribution properties of the multivariate normal distribution, the 

pairwise CML function for the SSN-MDC model can be written as: 

    . )
~

;
~

()
~

;
~~(2 )det(
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,,

1
~

1

1 1
,
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

 












**1

Σ
ΣαΣωωJ

θ

BB

xx


                   (3.27) 

The CML function above requires the computation of the multivariate normal cumulative 

distribution (MVNCD) function that is utmost of dimension 2*)1( K integrals (instead of 

QK *)1(   in the full maximum likelihood case). Such integrals may be computed easily using 

the MVNCD approximation method embedded in the MACML method (the MVNCD function 

approximates the pairwise probabilities in Equation (3.27) using only univariate and bivariate 

cumulative normal distribution functions; see Bhat, 2011 and Bhat and Sidharthan, 2012).  
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The MACML estimator is obtained by maximizing the logarithm of the function in 

Equation (3.27) after evaluating the MVNCD function using the analytic approximation. Since 

the MACML estimator entails only the computation of univariate and bivariate cumulative 

normal distribution functions, it is extremely quick to evaluate. The covariance matrix is given 

by the inverse of Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005). Bhat 

(2011) exploits the fading spatial dependence pattern implied by the spatial lag structure (due to 

the decaying nature of the distance weight matrix, combined with the spatial lag parameter being 

less than 1) to propose a specific implementation of Heagerty and Lumley’s (2000) windows 

sampling procedure to estimate this sandwich information matrix. 

The pairwise CML function of Equation (3.27) comprises 2/)1( QQ  individual pairs of 

probability computations. To further accelerate the estimation, one can reduce the number of 

individual pairs because spatial dependency drops quickly with inter-observations distance. In 

fact, as demonstrated by Bhat et al. (2010) and Varin and Czado (2010), retaining all pairs not 

only increases computational costs, but may also reduce estimator efficiency. We examine this 

issue by creating different distance bands and, for each specified distance band, we consider only 

those pairings in the CML function that are within the spatial distance band. Then, we develop 

the asymptotic variance matrix )ˆ(θVCML  for each distance band and select the threshold distance 

value that minimizes the total variance across all parameters as given by )]ˆ([ θVCMLtr   (i.e., the 

trace of the matrix )]ˆ([ θVCML ).    

A final issue regarding estimation. To ensure the constraints on the 

)1 ..., ,2 ,1(  Kkk autoregressive terms, we parameterize these as )]
~

exp(1/[1 kk   . Once 

estimated, the  
~

k estimates can be translated back to estimates of .k  

3.3 SIMULATION STUDY 

The simulation exercises undertaken in this section examine the ability of the MACML estimator 

to recover parameters from finite samples in a SSN-MDC model by generating simulated data 

sets with known underlying model parameters. We also examine the effects of (a) assuming 

normality in the random coefficients and kernel error term when they are distributed skew-

normally, and (b) ignoring spatial dependence. 
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3.3.1 Experimental Design 

In the design, we generate 750 observations (i.e., Q = 750) using pre-specified values for the θ  

vector. We consider the case with three alternatives (K=3). The last alternative is assumed to be 

the outside alternative. We allow for two independent variables in the zqk vector in the baseline 

utility for each alternative. The values of the two independent variables for each alternative are 

drawn from standard univariate normal distributions. Additionally, we generate budget amounts 

qE  ),...,2,1( Qq   from a univariate normal distribution with a mean of 150, and truncated 

between the values of 100 and 200. The prices of all goods are fixed at the value of one across all 

consumers. In the simulations, the 750 individuals are located on a rectangular grid with the 

longer side containing 50 locations spaced 1 unit apart and the shorter side containing 15 

locations spaced 1 unit apart. The spatial weight matrix W (of size 750×750) is created using the 

inverse of the distance on the coordinate plane between observational units. Once generated, the 

independent variable values, the spatial configuration and weights, and the total budget are held 

fixed in the rest of the simulation exercise. 

The first two components of the coefficient vector qβ  correspond to the alternative 

specific constants for alternatives 1 and 2 (the inside goods).16 In order to represent the kernel 

error terms, we will allow these two constants to be random. The third and fourth components of 

vector qβ  correspond to the coefficients associated to the two independent variables. We 

consider the third coefficient random, but the last one is fixed. In summary, qβ  is allowed to be 

random according to a trivariate skew-normal distribution for the first three coefficients, but set 

to be fixed for the fourth coefficient. The mean vector for qβ  is assumed to be b = (0.5, 1.0, –

1.0, 0.8).  

In the simulations, we set the k parameters for the first two alternatives to the value of 

one. Finally, to examine the potential impact of different levels of spatial dependence and 

skewness on the ability of the MACML approach to recover model parameters, we consider two 

sets of values of the spatial autoregressive coefficients corresponding to low dependence 

)2.0,1.0( 21    and high dependence )8.0,7.0( 21   , as well as two sets of values for 

the skew parameters corresponding to low rightward skew )3.0,3.0,3.0( 321    and 

                                                 
16 Readers should remember that the constant of the last alternative is normalized to 0. 
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high rightward skew )7.0,7.0,7.0( 321   . Thus, in total, there are four possible 

combinations of the spatial lag and  skew coefficients considered in the simulations. 

The correlation matrix *

Ω  (and the corresponding ω  matrix)for the three random 

coefficients are specified as follows: 

,
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
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Ω  for the high skew case and 
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Ω  for the low skew case. 

The correlation matrix *

Ω  above is constructed in a specific manner so that the off-diagonal 

elements of the corresponding Cholesky matrix are all zero, except for the first column which 

now contains the skew parameters as its elements. The Cholesky matrix of *

Ω  for the high skew 

case is 

 


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


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and for the low skew case is 
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The set-up above is used to develop the ]1)1([ KQ  vector Szb  and the covariance 

matrix Σ. Since ),(~ Σψ SzbMVSN , a specific realization of the  ]1)1([ KQ  vector for ψ  is 

drawn from the multivariate skew-normal distribution.  The method to generate realizations from 
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the MVSN distribution is based on first drawing a multivariate standard normal vector in the 

usual way. This constitutes a draw for the latent underlying 4 -variate normally distributed vector 

,)
~

,
~

(
~

21
 MM M  where 1

~
M  is a latent )11(  -vector and 2

~
M  is a )13(  -vector. From this 

multivariate standard normal draw, a 3-variate vector from the multivariate standard skew 

normal distribution is generated as follows: 













.0
~

if
~

0
~

if
~

12

12

M

M

M

M
Z            (3.28) 

Then, using subsets of this ψ  vector corresponding to each individual, and the specified   

vector, we generate the investment quantity vector *xq
, using the forecasting algorithm proposed 

by Pinjari and Bhat (2011). The above data generation process is undertaken 30 times with 

different realizations of the ψ
 
vector to generate 30 different data sets each for the four possible 

combinations of spatial dependence and skewness.  

The MACML estimator is applied to each data set to estimate data specific values of 

. )Vech(,Vech(,,,,(  Ω)ρθ γδb  A single random permutation is generated for each 

individual (the random permutation varies across individuals, but is the same across iterations for 

a given individual) to decompose the multivariate normal cumulative distribution (MVNCD) 

function into a product sequence of marginal and conditional probabilities (see Section 2.1 of 

Bhat, 2011).17 All the 2/)1( QQ  pairings of individuals are considered in the MACML 

estimator. The estimator is applied to each dataset 10 times with different permutations to obtain 

the approximation error, computed as the standard deviation of estimated parameters among the 

10 different estimates on the same data set. 

3.3.2 Performance Evaluation 

The MACML estimation procedure is applied to each data set to estimate data-specific values. 

The Godambe information-based covariance matrix and the corresponding standard errors are 

also computed. For each combination of spatial and skew parameters, the performance of the 

MACML estimation procedure is assessed based on the following performance characteristics: 

                                                 
17 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 

approach. However, when we investigated the effect of different numbers of random permutations per individual, 

we noticed little difference in the estimation results between using a single permutation and higher numbers of 

permutations, and hence we settled with a single permutation per individual. 
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(1) First, estimate the MACML parameters for each data set and for each of 10 independent 

sets of permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) 

estimator. 

(2) Second, the mean estimate for each model parameter across the 10 random permutations 

is obtained and labeled as MED. Then take the mean of the MED values across the 30 

data sets to obtain a mean estimate. The parameter-specific mean absolute percentage 

(finite sample) bias or APB value (relative to the “true” value of the parameter) is 

computed as 100
 valuetrue

 valuetrue-estimatemean 
APB .  

(3) Third, the mean standard error for each model parameter is computed across the 10 

permutations. This is labeled as MSED, and then the mean of the MSED values across 

the 30 data sets is computed. This is labeled as the asymptotic standard error (ASE) for 

the parameter (essentially this is the standard error of the distribution of the estimator as 

the sample size gets large). Also, the standard deviation of the MED values across the 30 

datasets is computed, and labeled as the finite sample standard error or FSEE (essentially, 

this is the empirical standard error). Then, to evaluate the accuracy of the asymptotic 

standard error formula as computed using the MACML inference approach for the finite 

sample size used, we the relative efficiency (RE) of the estimator is computed as follows: 

FSEE

ASE
RE  . Relative efficiency values in the range of 0.75-1.25 indicate that the ASE, 

as computed using the Godambe matrix in the MACML method, does provide a good 

approximation of the FSSE.  

(4) Fourth, a Monte Carlo estimate of the coverage probability or COVP (that is, the 

probability that the true estimate lies within the 95% confidence interval) is obtained by 

determining the percentage of times (across the 30 data sets and the corresponding 10 

permutations for each data set) that the true parameter lies within the 95% coverage 

bound of the CML estimator (see Koehler et al., 2009). That is, for each data set and for 

each parameter, an indicator value of ‘1’ is assigned if the true value is within a range of 

96.1 times the ASE value of the estimated parameter on that data set. If not, an 

indicator value of ‘0’ is assigned. Then, for each parameter, the percentage of ‘1’ values 

across the 300 (30x10) draws is designated as the COVP value.  
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3.3.3 Comparison with More Restrictive Models 

The main purpose of our proposed model is to accommodate spatial dynamics and skewed 

random distributions. Therefore, to examine the potential problems that could arise from 

ignoring spatial dynamics and skewness, we estimate three additional models on the 30 data sets 

generated for each combination of spatial and skew levels. The first model ignores the spatial 

autocorrelation coefficients  k (that is, assumes δ = 0, leading to the ASN-MDC model), the 

second model assumes away any skewness (that is, assumes that ρ = 0, leading to the S-MDCP 

model), and the third model ignores both the spatial coefficients and the skew parameters (that is, 

assumes δ = 0 and ρ = 0, leading to the A-MDCP model). We compare these three restrictive 

formulations with the general SSN-MDC model based on the mean APB measure across all 

parameters and the adjusted composite log-likelihood ratio test (ADCLRT) value (see Pace et al., 

2011 and Bhat, 2011 for more details on the ADCLRT statistic, which is the equivalent of the 

log-likelihood ratio test statistic when a composite marginal likelihood inference approach is 

used; this statistic has an approximate chi-squared asymptotic distribution). The ADCLRT 

statistic needs to be computed for each data set separately, and compared with the chi-squared 

table value with the appropriate degrees of freedom. Here we identify the number of times (out 

of the 30 model runs, one run for each of the 30 data sets) that the ADCLRT value rejects the 

restrictive models in favor of the proposed SSN-MDC model.   

3.3.4 Simulation Results 

3.3.4.1 Recoverability of Parameters in the SSN-MDC Model 

Tables 3.1a, 3.1b, 3.1c and 3.1d present the results of the simulation exercises. Table 3.1a 

corresponds to the low spatial dependency and low skewness case, Table 3.1b corresponds to the 

low spatial dependency and high skewness case, Table 3.1c corresponds to the high spatial 

dependency and low skewness case, and Table 3.1d corresponds to the high spatial dependency 

and high skewness case. The first column indicates the notation of each parameter based on the 

simulation design presented in Section 3.3.1. The second column presents the true values used in 

generating the data samples. The third broad column labeled “Parameter Estimates” provides the 

mean value (across the data sets) of each parameter as well as the corresponding absolute bias, 

APB measure, and Monte-Carlo coverage probability, while the fourth broad column labeled 
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“Standard Error Estimates” provides the FSSE, ASE, and the relative efficiency values for the 

parameter standard errors.  

Overall, the MACML inference approach does well in accurately and precisely 

recovering parameters in the four cases. The overall mean APB value across all parameters is 

smaller than a 4% in all cases. The APB values are in general higher for higher spatial 

dependency. For example, within the low skewness cases, the mean APB of the low spatial 

dependency case is 3.63%, which is smaller than the mean APB in the case of high spatial 

dependency (3.69%). The same happens with the high skewness cases, where the low spatial 

dependency case and high spatial dependency case have a mean APB value of 3.62% and 3.79% 

respectively. Another way to corroborate this is the COVP, which is smaller for the high spatial 

dependency case (in comparison with the low spatial dependency case) within the low skewness 

cases. We witness the same phenomenon within the high skewness cases.  In general, across the 

parameters, the APB values are relatively high for the skew parameters in all four cases. 

Previous studies (see, for example, Bhat et al., 2016c) have also shown that the skew parameters 

are difficult to pin down. The finite sample standard errors and the asymptotic standard errors are 

close; the relative efficiency is always between 0.75 and 1.25 in all four cases and for any 

parameter.  

3.3.4.2 Comparison between the Proposed Model and More Restrictive MDC Models 

Table 3.2 presents the results for the simulation exercise focusing on the comparison between the 

proposed SSN-MDC model and three other, more restrictive versions of the model: the ASN-

MDC, the S-MDCP, and the A-MDCP models. For the sake of brevity, only the high spatial 

dependency and high skewness case is presented. The APB values of the parameters are in 

general higher relative to the APB values of the parameters in the original model. The overall 

mean APB values across parameters are 5.5%, 7.1%. and 18.4% for the ASN-MDC, S-MDCP, 

and A-MDCP models, respectively—significantly higher in comparison with the mean APB 

value of 3.8% in the proposed model. The superior performance of the SSN-MDC model is also 

evidenced in the higher log-likelihood value, on average, for the SSN-MDC model across the 30 

estimations (on the 30 data sets). In addition, for each of the 30 data sets, a likelihood ratio test 

comparing the SSN-MDC model with the three other models clearly rejects the alternative 

models in favor of the SSN-MDC model.  
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Table 3.1a: Simulation results for the four-alternative case with 30 datasets for low spatial 

dependency and low skewness (based on a total of 30×10 runs/dataset=300 runs) 

 

 

 

Parameter 

 

 

True Value 

Parameter Estimates Standard Error Estimates 

Mean Est. Abs. Bias 

Absolute 

Percentage 

Bias (APB) 

Coverage 

Probability 

(COVP) 

Finite 

Sample St. 

Err. (FSSE) 

Asymptotic 

St. Err. 

(ASE) 

Relative 

Efficiency 

1b  0.50 0.480 0.020 4.00% 99.34% 0.021 0.022 1.07 

2b  1.00 1.020 0.020 2.00% 99.00% 0.018 0.018 1.00 

3b      -1.00 -0.980 0.020 -2.00% 98.67% 0.021 0.025 1.19 

4b  0.80 0.790 0.010 1.25% 99.67% 0.009 0.009 0.96 

1γ  1.00 0.970 0.030 3.00% 100.00% 0.031 0.036 1.19 

2γ  1.00 0.980 0.020 2.00% 99.34% 0.019 0.017 0.89 

1  1.00 0.980 0.020 2.00% 99.67% 0.018 0.020 1.07 

2  1.00 0.950 0.050 5.00% 99.00% 0.054 0.055 1.01 

3  1.25 1.210 0.040 3.20% 98.67% 0.039 0.045 1.18 

1δ  0.10 0.106 0.006 6.00% 100.00% 0.006 0.006 0.95 

2δ  0.20 0.202 0.002 1.00% 99.77% 0.002 0.002 1.08 

1  0.30 0.280 0.020 6.67% 99.34% 0.018 0.017 0.94 

2  0.30 0.270 0.030 10.00% 99.00% 0.027 0.024 0.87 

3  0.30 0.280 0.020 6.67% 98.67% 0.019 0.020 1.04 
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Overall mean value across parameters 0.025 3.63% 99.30% 0.022 0.023 1.03 
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Table 3.1b: Simulation results for the four-alternative case with 30 datasets for low spatial 

dependency and high skewness (based on a total of 30×10 runs/dataset=300 runs) 

 

 

 

Parameter 

 

 

True Value 

Parameter Estimates Standard Error Estimates 

Mean Est. Abs. Bias 

Absolute 

Percentage 

Bias (APB) 

Coverage 

Probability 

(COVP) 

Finite 

Sample St. 

Err. (FSSE) 

Asymptotic 

St. Err. 

(ASE) 

Relative 

Efficiency 

1b  0.50 0.478 0.022 4.40% 99.67% 0.022 0.023 1.04 

2b  1.00 1.025 0.025 2.50% 100.00% 0.025 0.021 0.84 

3b      -1.00 -0.978 0.022 -2.20% 98.34% 0.024 0.021 0.85 

4b  0.80 0.786 0.014 1.75% 99.34% 0.015 0.017 1.15 

1γ  1.00 0.967 0.033 3.30% 99.67% 0.035 0.032 0.90 

2γ  1.00 0.979 0.021 2.10% 99.67% 0.019 0.019 0.96 

1  1.00 0.970 0.030 3.00% 99.34% 0.030 0.033 1.08 

2  1.00 0.947 0.053 5.30% 98.67% 0.053 0.060 1.13 

3  1.25 1.200 0.050 4.00% 100.00% 0.053 0.057 1.07 

1δ  0.10 0.107 0.007 7.00% 98.67% 0.007 0.008 1.10 

2δ  0.20 0.204 0.004 2.00% 99.00% 0.004 0.003 0.94 

1  0.70 0.751 0.051 7.29% 100.00% 0.051 0.051 1.00 

2  0.70 0.748 0.048 6.86% 99.34% 0.045 0.046 1.02 

3  0.70 0.676 0.024 3.43% 98.67% 0.022 0.026 1.20 

Overall mean value across parameters 0.029 3.62% 99.31% 0.029 0.030 1.02 
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Table 3.1c: Simulation results for the four-alternative case with 30 datasets for high spatial 

dependency and low skewness (based on a total of 30×10 runs/dataset=300 runs) 

 

 

 

Parameter 

 

 

True Value 

Parameter Estimates Standard Error Estimates 

Mean Est. Abs. Bias 

Absolute 

Percentage 

Bias (APB) 

Coverage 

Probability 

(COVP) 

Finite 

Sample St. 

Err. (FSSE) 

Asymptotic 

St. Err. 

(ASE) 

Relative 

Efficiency 

1b  0.50 0.477 0.023 4.60% 98.67% 0.021 0.024 1.15 

2b  1.00 1.032 0.032 3.20% 99.34% 0.031 0.028 0.91 

3b      -1.00 -0.969 0.031 -3.10% 98.00% 0.033 0.030 0.91 

4b  0.80 0.778 0.022 2.75% 99.00% 0.023 0.023 1.03 

1γ  1.00 0.962 0.038 3.80% 99.34% 0.039 0.036 0.93 

2γ  1.00 0.972 0.028 2.80% 99.34% 0.027 0.029 1.08 

1  1.00 1.037 0.037 3.70% 99.00% 0.040 0.042 1.04 

2  1.00 0.951 0.049 4.90% 98.34% 0.050 0.059 1.18 

3  1.25 1.198 0.052 4.16% 99.67% 0.049 0.046 0.94 

1δ  0.70 0.680 0.020 2.86% 98.34% 0.021 0.022 1.05 

2δ  0.80 0.781 0.019 2.38% 98.67% 0.019 0.021 1.11 

1  0.30 0.326 0.026 8.67% 100.00% 0.026 0.028 1.08 

2  0.30 0.287 0.013 4.33% 99.67% 0.012 0.011 0.88 

3  0.30 0.320 0.020 6.67% 98.67% 0.021 0.023 1.09 

Overall mean value across parameters 0.029 3.69% 99.00% 0.029 0.030 1.03 
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Table 3.1d: Simulation results for the four-alternative case with 30 datasets for high spatial 

dependency and high skewness (based on a total of 30×10 runs/dataset=300 runs) 

 

 

 

Parameter 

 

 

True Value 

Parameter Estimates Standard Error Estimates 

Mean Est. Abs. Bias 

Absolute 

Percentage 

Bias (APB) 

Coverage 

Probability 

(COVP) 

Finite 

Sample St. 

Err. (FSSE) 

Asymptotic 

St. Err. 

(ASE) 

Relative 

Efficiency 

1b  0.50 0.470 0.030 6.00% 98.00% 0.032 0.038 1.20 

2b  1.00 1.039 0.039 3.90% 99.67% 0.040 0.039 0.98 

3b      -1.00 -0.960 0.040 -4.00% 97.67% 0.041 0.039 0.94 

4b  0.80 0.768 0.032 4.00% 99.00% 0.033 0.038 1.16 

1γ  1.00 0.959 0.041 4.10% 99.00% 0.038 0.042 1.11 

2γ  1.00 0.964 0.036 3.60% 99.67% 0.039 0.037 0.95 

1  1.00 1.041 0.041 4.10% 98.34% 0.044 0.036 0.82 

2  1.00 0.951 0.049 4.90% 98.00% 0.049 0.056 1.14 

3  1.25 1.188 0.062 4.96% 99.34% 0.059 0.049 0.83 

1δ  0.70 0.676 0.024 3.43% 98.00% 0.022 0.022 1.04 

2δ  0.80 0.774 0.026 3.25% 97.67% 0.024 0.024 0.99 

1  0.70 0.669 0.031 4.43% 99.67% 0.028 0.030 1.07 

2  0.70 0.732 0.032 4.57% 99.34% 0.030 0.024 0.80 

3  0.70 0.741 0.041 5.86% 98.34% 0.043 0.048 1.12 

Overall mean value across parameters 0.037 3.79% 98.69% 0.037 0.037 1.01 

 

 

 

 

 

 

 

 



 

89 

Table 3.2: Effects of ignoring spatial autocorrelation and skewness when present (for the high 

spatial dependence and high skewness case) 

 

Parameters 
True 

Value 

ASN-MDC2 S-MDCP3 A-MDCP4 

Mean              

Est. 

Absolute 

Percentage Bias               

(APB) 

Mean              

Est. 

Absolute 

Percentage Bias               

(APB) 

Mean              

Est. 

Absolute 

Percentage Bias               

(APB) 

1b  0.50 0.515 2.94% 0.452 9.66% 0.451 19.48% 

2b  1.00 0.991 0.90% 1.093 9.28% 1.003 0.62% 

3b  -1.00 -0.997 0.34% -0.866 13.40% -0.912 17.64% 

4b  0.80 0.756 5.56% 0.816 1.95% 0.703 24.31% 

1γ  1.00 0.893 10.70% 0.911 8.85% 0.974 5.18% 

2γ  1.00 1.001 0.10% 1.016 1.56% 0.999 0.23% 

1  1.00 1.123 12.29% 0.993 0.72% 1.200 40.05% 

2  1.00 0.991 0.91% 0.885 11.51% 0.799 40.29% 

3  1.25 1.173 6.18% 1.121 10.30% 1.142 17.34% 

1δ  0.70   –– a –– 0.731 4.43% –– –– 

2δ  0.80 –– –– 0.851 6.35% –– –– 

1  0.70 0.636 9.18% –– –– –– –– 

2  0.70 0.718 2.61% –– –– –– –– 

3  0.70 0.800 14.22% –– –– –– –– 

Overall mean value across 

parameters 
0.717 5.49% 0.727 7.09% 0.707 18.35% 

Mean composite log-

likelihood value at 

convergence 
-94,724.15 -97,001.22 -99,574.42 

Number of times the 

adjusted composite 

likelihood ratio test 

(ADCLRT) statistic favors 

the SSN-MDC1 modelb 

All thirty times when 

compared with 

21.92

99.0,2    value (mean 

ADCLRT statistic is 18.3) 

All thirty times when 

compared with 

34.112

99.0,3    value 

(mean ADCLRT statistic is 

38.6) 

All thirty times when 

compared with 

09.152

99.0,5    value 

(mean ADCLRT statistic is 

41.7) 
1 SSN-MDC: Spatial skew-normal MDC model 
2ASN-MDC: Aspatial skew-normal MDC model                                                                                                             
3 S-MDCP: Spatial MDCP model                                                                                                    
4 A-MDCP: Aspatial MDCP model                                                                                                                                      
a  A “––”entry in a cell indicates that the corresponding parameter is not estimated and is fixed to the value  

mentioned in Section 4.3 
b  The mean composite log-likelihood value for the SSN-MDC model at converged parameters is -93,618.63. 
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3.4 APPLICATION DEMONSTRATION 

In our empirical application, we study land-use over an entire urban region of Austin, Texas. The 

units of analysis are quarter-of-a-mile square grid cells. Our MDC variable corresponds to land-

use type and intensity.  

3.4.1 Background 

Transportation and land-use are mutually dependent and inseparable. Transportation supply has 

affected land-use patterns, particularly how people choose to locate their homes and businesses. 

Conversely, spread out land-use patterns further increase the demand for transportation because 

of greater travel distances, and this has become an eternal cycle. Land-use change models have 

been used to meet land management needs, and to better understand the role of land-use change 

in the functioning of the land-use system. Land-use change models offer the possibility to test the 

sensitivity of land-use patterns to changes in selected variables and therefore, they can also be 

helpful for exploring future land-use changes under different scenario conditions. Land-use 

change models have not only been applied in transportation (or urban) planning, but also in many 

other fields, such as ecological science, climate science, environmental science, geography, 

watershed hydrology, and political science. 

There are many types of land-use models. The reader is referred to Verburg et al. (2004), 

Irwin (2010), and Bhat et al. (2015) for comprehensive reviews on the characterization and 

classification of land-use change models. In our analysis, we borrow elements from three 

different types of models: pattern-based models, process-based models, and spatial-based 

models. A detailed explanation of these three model types can be found in Bhat et al. (2015). The 

important thing is that we use an aggregate spatial unit of analysis of a quarter-of-a-mile square 

grid cell, and we decide to model each grid as they have the “option” of investing (and 

converting) from one package of land-uses to another alternative package of land-uses. The grid-

level land-use is obtained by aggregating underlying parcel-level land-use information. 

Additionally, we consider a rich set of population demographics of the citizenry of each 

aggregate grid to approximate a collective decision-making process for that grid. By using a grid 

size that is not too aggregate, we retain some of the process-based model characteristics of 

having a connection between the spatial unit of analysis and human decision-makers. The hybrid 
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model just discussed is further enhanced by considering spatial analysis aspects considered in 

spatial-based models, specifically, we consider spatial dependency between decisions makers.  

3.4.2 Data and Sample Formation 

A detailed description of the study area and the data preparation process can be found in Bhat et 

al. (2015). Not only the source data set, but also the estimation sample used in our application is 

the same as that in Bhat et al. (2015). In this section, we briefly summarizes the  characteristics 

of the sample that are most relevant for our current analysis. 

The data used in the empirical application of this study is drawn from parcel-level land-

use inventory data for the year 2010, from Austin, Texas. The land-use type for each parcel is 

aggregated into the following four mutually exclusive land-use categories: (1) commercial land-

use (including commercial, office, hospitals, government services, educational services, cultural 

services, and parking), (2) industrial land-use (including manufacturing, warehousing, resource 

extraction (mining), landfills, and miscellaneous industrial uses), (3) residential land-use 

(including single family, duplexes, three/four-plexes, apartments, condominiums, mobile homes, 

group quarters, and retirement housing), and (4) undeveloped land-use (including open and 

undeveloped spaces, preserves, parks, golf courses, and agricultural open spaces). The last 

among these alternatives serves as an “essential outside good” in that all grid cells inevitably will 

have at least some of their land area that remains undeveloped. In this case, there is no price 

variation (all the prices are equal to 1). 

For the current analysis, an area measuring 145.94 mi2 covering the central business 

district (CBD) and important surrounding areas is considered. The study area is divided into 

2,383 square grids, each of size 0.25 mi × 0.25 mi. Figure 3.1 depicts the main elements of our 

area of study. The two major highways in Austin are the Interstate Highway 35 and Loop-1 

MoPac. These two highways are “parallel” to each other. The other major thoroughfares in the 

Austin area that can be seen in the picture are: (1) Ben White Blvd (State Highway 71) that 

forms the southern boundary of the study region, (2) US-290, (3) US-183 that runs diagonally 

from the northwest to the southeast at the north end of the study area and then directly south at 

the south end of the study area, (4) Loop 360, and (5) FM-2222. In addition, several major 

arterials are also shown in the figure, including Lamar Blvd (roughly parallel to IH-35 and 

MoPac, and between these two highways), Parmer Lane (toward the north), Cesar Chavez Street 
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(just south of the downtown area), Martin Luther King Jr (MLK) Blvd (just north of the 

downtown area), Congress Avenue, and Dessau Road.  

 

 

 

Figure 3.1 Highways, thoroughfares, and CBD location in the analysis area 
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The label “major thoroughfares” is used in the rest of this chapter to refer to both the major 

thoroughfares as well as the major arterials identified above. Finally, the Austin Central Business 

District (CBD) zone is defined as the “square” bounded by Lamar Blvd to the west, MLK Blvd 

to the north, IH-35 to the east, and Cesar Chavez to the south. 

3.4.3 Model Specification  

The variables that characterize the land-use intensity of each grid are: (1) road access measures 

(distance to main highways, and distance to other nearest major thoroughfares), (2) distance to 

nearest school, (3) distance to the nearest hospital, (4) fraction of grid area that is under a 

floodplain (area susceptible to flooding), (5) an interaction term of proximity to road access with 

proximity to the floodplain (distance to nearest road divided by distance to the nearest 

floodplain), (6) average elevation of the grid, and (7) whether the grid is in the Austin CBD zone 

or not. These are the variables that are used to define the baseline utilities (β vector), in addition 

to the alternative specific constants (the constant for the undeveloped alternative is fixed to 0). 

All the components of β  are considered random (and skew-normally distributed), but only a few 

of them result in random parameters based on the estimation results (see next section). 

The different weight matrix specifications that were tested include (1) a contiguity 

specification that generates spatial dependence based on whether or not two grids are contiguous, 

(2) another contiguity specification but based on shared boundary length, (3) the inverse of a 

continuous distance specification where the distance is measured as the Euclidean distance (crow 

fly distance) from the centroids of each grid, (4) the inverse of the square of the continuous 

distance specification, and (5) the inverse of the root of the continuous distance specification. For 

the last three continuous distance-based specifications, we also explored alternative distance 

bands to select the pairs of observations for inclusion in the composite marginal likelihood 

(CML) estimation. This distance band determination may be based on minimizing the trace of 

the variance matrix of parameters given by )]ˆ([ θVCMLtr . Our results did not show substantial 

variations in the trace value for different distance bands (regardless of the specific continuous 

functional form used to represent the distance separation and the variable specification used), 

though the best estimator efficiency was obtained at about 0.25 miles for all the three continuous 

distance specifications formulations and all variable specifications we attempted. Further, the 

results indicated that for all variable specifications, the best spatial weight matrix specification 
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was consistently the inverse of the continuous distance specification with the 0.25 mile distance 

band. This determination was based on the composite likelihood information criterion (CLIC) 

statistic, which may be used to compare the data fit of non-nested formulations (see Varin and 

Vidoni, 2005). This CLIC statistic takes the form shown below: 

 1)ˆ(ˆ)ˆ(ˆ)ˆ(logCLIC  θHθJθ trLCML ,                                                                          (3.29)            

 where θ̂  is the estimated model parameter vector, and )ˆ(ˆ θJ  and )ˆ(ˆ θH  are the “vegetable” and 

“bread” matrices used in the estimation of the asymptotic variance matrix )ˆ(θVCML  (see Bhat, 

2011 for details of how these matrices may be estimated in a spatial context). In the current 

context, the weight specification that provides the highest value of the CLIC statistic is preferred 

over the other competing weight specifications.  

 As we discussed earlier, the covariance matrix of the random coefficients (and kernel 

error term, which are represented as the randomness of the alternative specific constants) must be 

parameterized during the estimation. However, only the unparamaterized coefficients are 

reported in the result analysis. 

3.4.4 Estimation Results 

Estimation results corresponding to our proposed SSN-MDC model can be found in Table 3.3a. 

We have listed as “columns” the three land-use categories (“undeveloped” is the base) and each 

row represents the effect of one explanatory variable. For those coefficients that are found to be 

random, we have included also the corresponding skew parameter. The first row of variables in 

Table 3.3a corresponds to the alternative specific constants for each land-use alternative. These 

constant terms do not have any substantive interpretations, and simply represent adjustments to 

the baseline utilities of alternatives after accommodating the other variables in the model. The 

results in Table 3.3a show that grids in the proximity of MoPac are more likely to be invested in 

commercial and residential land uses and less likely to be invested in industrial land use relative 

to being in an undeveloped state On the other hand, grids that are close to IH-35 have, on 

average, a higher propensity of being invested in commercial and industrial land use than 

residential land use. The rest of the baseline utility parameters can be interpreted following the 

same logic. The detailed explanation of the effects of each explanatory variables can be found in 

Bhat et al. (2015).                 
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 The satiation parameter corresponding to residential land-use is notably larger than the 

satiation parameters corresponding to commercial and industrial land-use. This indicates that 

there is investment in each of the commercial, industrial, and residential land uses, but the 

residential land-use investment intensity in a grid generally exceed that of the commercial and 

industrial land use intensities.  

The spatial dependency parameters are considerable in magnitude and highly statistically 

significant, supporting the hypothesis that land-use investments in grids located in close 

proximity of each other are indeed positively correlated.  

The skew parameters came out to be statistically significant, except for the coefficient 

associated to the high elevation indicator (specific to Commercial) and the coefficients 

associated to the distance to nearest thoroughfare/ distance to floodplain (specific to Industrial 

and Residential). It is important to notice that the skew parameters related to all the alternative 

specific constants are significant. Thus, the hypothesis of the kernel error term being normal (as 

has been the norm in all previous studies) is soundly rejected. The difference in shape between 

the implied skew-normal distribution and the normal distribution make substantial differences in 

the impacts of specific policy actions, as we study in detail in the next section. In particular, 

using the normal distribution when the skew-normal is the appropriate distribution leads to an 

underestimation in the land-use changes due to different scenarios. This is particularly so when 

the skew-normal distribution is combined with spatial dependence effects, because consideration 

of spatial dependence leads to a “spillover” or “multiplier” effect.  

The estimated variance-covariance structure among the random parameters (the Ω 

matrix) is presented in Table 3.3b. The variance term (i.e., the diagonal element) indicates a high 

variance in the baseline utility of industrial land-use. There is also a significant and high 

covariance between the baseline utilities for commercial and industrial land use, indicating the 

presence of common unobserved grid-specific factors that increase (or decrease) the propensity 

of a grid to be invested in these two land-uses. A similar positive and significant covariance 

exists in the investments in residential and commercial land-uses, and between industrial and 

residential baseline utilities. 
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Table 3.3a. Estimation results of the SSN-MDC model 

Variables 

Land-use alternatives (base is Undeveloped) 

Commercial Industrial Residential 

Estimate t-stat Estimate t-stat Estimate t-stat 

Baseline utility parameters 
      

  Alternative specific constant -0.390 -1.08 1.275 2.41 -1.816 -1.82 

      Skew parameter -0.124 -6.12 -0.182 -5.53 -0.450 -4.18 

        

  Distance to MoPac (miles) -0.072 -4.23 0.165 2.76 -0.068 -4.03 

        

  Distance to IH-35 (miles) -0.120 -4.16 -0.374 -4.99 0.085 3.74 

      Skew parameter     -0.239 -6.24 

        

  Distance to US-183 (miles) ––+ –– -0.257 -6.15 –– –– 

        

 Distance to nearest thoroughfare (miles) -0.398 -2.31 -1.276 -2.96 0.276 4.15 

      Skew parameter   0.167 8.10   

        

 Distance to school (miles) -0.215 -3.78 0.540 3.14 -0.462 -6.81 

        

 Distance to hospital (miles) -0.261 -5.80 0.198 2.84 0.041 1.78 

        

 Fraction of grid area under floodplain -0.018 -8.16 -0.025 -4.76 -0.012 -8.64 

        

 Distance to nearest thoroughfare/Distance to floodplain -0.411 -7.99 -0.396 -3.35 0.107 4.63 

      Skew parameter 0.281 5.32 0.0 (fixed*) 0.0 (fixed*) 

        

 High elevation indicator -0.272 -5.16 -1.326 -6.09 0.217 3.55 

      Skew parameter 0.0 (fixed*)     

        

 CBD indicator –– –– -0.968 -2.73 -0.813 -5.00 

        

Satiation parameters 8.751 17.43 3.495 9.63 39.64 12.39 

        

Spatial lag parameters 0.298 2.15 0.614 2.03 0.458 3.41 
+ A “––”entry in the table indicate that the variable is not statistically significant 
* Fixed because the parameter was not significantly different from zero at not even a 20% level of confidence 

Note: The covariance matrix is presented in the next table 
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Table 3.3b: Variance-covariance matrix (Ω) estimates (t-statistics in parenthesis) 

 

 Alternative specific constant Distance to 

IH-35 

Distance to 

nearest 

thoroughfare 

Distance to nearest 

thoroughfare/Distance to floodplain 

High 

elevation 

indicator 

Commercial Industrial Residential Residential Industrial Commercial Industrial Residential Commercial 

Alternative specific 

constant 

Commercial 
1.00 

(fixed) 

1.426 

(4.12) 

0.267 

(2.53) 
0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 

Industrial  
4.176 

(4.95) 

0.228 

(3.06) 
0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 

Residential   
0.625 

(5.02) 
0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 

Distance to IH-35 Residential    
0.278 

(4.27) 
0.00* 0.00* 0.00* 0.00* 0.00* 

Distance to nearest 

thoroughfare 
Industrial     

2.169 

(3.10) 
0.00* 0.00* 0.00* 0.00* 

Distance to nearest 

thoroughfare/Distance 

to floodplain 

Commercial      
0.253 

(2.88) 
0.00* 0.00* 0.00* 

Industrial       
0.307 

(2.76) 
0.00* 0.00* 

Residential        
0.188 

(4.11) 
0.00* 

High elevation 

indicator 
Commercial         

1.108 

(5.29) 

 
* Fixed because the parameter was not significantly different from zero at not even a 20% level of confidence 

‘ 
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3.4.5 Measures of Data Fit 

In this section, we examine the data fit of the proposed spatial skew-normal MDC (SSN-MDC) 

model with its more restricted versions: (1) the simple aspatial MDCP (A-MDCP) model, (2) the 

spatial MDCP (S-MDCP) model, and (3) the aspatial skew-normal MDC (ASN-MDC) model. 

As discussed in Section 3.4.2, all of these four models are restrictive versions of the SSN-MDC 

model, and may be tested against the SSN-MDC model using the adjusted composite likelihood 

ratio test (ADCLRT) statistic, which is asymptotically chi-squared distributed similar to the 

likelihood ratio test statistic for the maximum likelihood approach. The reader is referred to Bhat 

(2011) for details regarding the ADCLRT test statistic. Table 3.4a shows the  ADLCRT results. 

The fifth row compares the SSN-MDC model with its restrictive versions using ADCLRT tests, 

and indicates the clear superior performance of the SSN-MDC model relative to other models. 

In addition to testing the models using the ADCLRT statistic, we also predict the 

percentage of grids that invest in the different land-use alternatives (Table 3.4b). For these 

predictions, we use procedure discussed in Bhat et al. (2015). We can predict the shares for each 

land-use category with each model and compare the predicted shares with the actual sample 

shares using the Mean Absolute Percentage Error (MAPE) measure. Shares incorporate both the 

discrete and continuous elements of the MDC framework, because the share of a specific land-

use type in a grid can decrease because that land-use type is not invested in anymore or because 

of a decrease in the intensity of investment in that land-use type even if it is still invested in. 

MAPE computations confirm that the SSN-MDC model is superior to its restrictive versions. 

3.4.6 Policy Implications 

Bhat et al. (2015) proved that the S-MDCP model could be used to compute the elasticity effects 

of explanatory variables (indicating the magnitude and direction of variable effects on acreage in 

each land use category). Due to positive spatial autocorrelation parameters, the S-MDCP model 

is able to capture how a change in a variable for one grid directly influences the land use of that 

grid, as well as the land use of neighboring grids. Bhat et al. (2015) used a prediction procedure 

to test this hypothesis and noticed that the A-MDCP model underestimates several of the 

elasticities. Our proposed SSN-MDC model can also be used to compute elasticities, in fact, the 

procedure is similar to Bhat et al.’s, with the only difference is that we draw ψ   from a SMVN 

distribution instead of MVN.  
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The elasticity computations are summarized in Table 3.5. Results show the difference in terms of 

prediction of the different models. For example, the second numerical row of Table 3.5 shows 

that a 25% increase in distance to IH35 (for a random grid) induces an elasticity for the 

residential land-use alternative of 3.79 when the A-MDCP model is applied, but the same 

elasticity corresponds to 13.02 when the S-MDCP model is used. Using our proposed SSN-MDC 

model for the computations, the elasticity of the distance to IH35 variable on residential land-use 

investment is 17.15. That is, the A-MDCP predicts an elasticity of only 22% (=100*3.79/17.15) 

of the corrected elasticity. The remaining 78% is attributable to two factors: spatial dependency 

and presence of skewness. 69% (=100*(13.02-3.79)/(17.15-3.79)) of the remaining is attributable 

to spatial dependency and 31% is attributable to the skewness. If square-footage prices data were 

available, we would be able to compute the marginal willingness to pay for being one mile closer 

to IH-35. With a traditional A-MDCP model we would be estimating only 22% of the actual 

willingness to pay. The same analysis can be made to study the changes of the land-use 

investments due to changes in any of the independent variables. Another important application of 

our model would be an urban growth analysis (see for example Deng and Srinivasan, 2016, Cao 

and Chatman, 2016, and Liu et al., 2017). All the inside alternatives in our specification can be 

aggregated in the “developed area” of each grid. Therefore, the urban development of the study 

area can also be described by our model specification.  
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Table 3.4a. Measures of fit   

Summary Statistic 
Model 

SSN-MDC1 ASN-MDC2 S-MDCP3 A-MDCP4 

Number of observations 2,383 

Composite log-likelihood at convergence of 

the naïve model 
-138,587.10 

Predictive log-likelihood at convergence -76,239.87 -76,243.32 -76,255.11 -76,280.08 

Number of parameters 49 46 43 40 

Adjusted composite likelihood ratio test 

(ADCLRT) between SSN-MDC model and 

the corresponding model (at any reasonable 

level of significance) 

Not applicable 

 [-2*(LLSSN-MDC – 

LLASN-MDC)]=6.9> 

Chi-Squared 

statistics with 3 

degrees of 

freedom  

[-2*(LLSSN-MDC – 

LLS-MDCP)]=30.5 > 

Chi-Squared 

statistics with 6 

degrees of 

freedom  

[-2*(LLSSN-MDC – 

LLA-MDCP)]=80.4 > 

Chi-Squared 

statistics with 9 

degrees of 

freedom  

Spatial lag parameters (t-stat)     

   Commercial land-use 0.298 (2.15) 0.0 (fixed) 0.300 (2.36) 0.0 (fixed) 

   Industrial land-use 0.614 (2.03) 0.0 (fixed) 0.623 (2.09) 0.0 (fixed) 

   Residential land-use 0.458 (3.41) 0.0 (fixed) 0.477 (4.95) 0.0 (fixed) 

Skew parameters (t-stat)     

   Commercial land-use specific constant -0.124 (-6.12) -0.148 (-7.18) 0.0 (fixed) 0.0 (fixed) 

   Industrial land-use specific constant -0.182 (-5.53) -0.251 (-5.76) 0.0 (fixed) 0.0 (fixed) 

   Residential land-use specific constant -0.450 (-4.18) -0.477 (-4.87) 0.0 (fixed) 0.0 (fixed) 

   Distance to IH-35 specific to Residential -0.239 (-6.24) -0.272 (-6.17) 0.0 (fixed) 0.0 (fixed) 

   Distance to nearest thoroughfare specific to  

       Industrial 
0.167 (8.10) 0.192 (7.53) 0.0 (fixed) 0.0 (fixed) 

   Distance to nearest thoroughfare/ distance   

       to floodplain specific to Commercial 
0.281 (5.32) 0.253 (5.14) 0.0 (fixed) 0.0 (fixed) 

   Distance to nearest thoroughfare/ distance  

       to floodplain specific to Industrial 
0.0 (fixed*) 0.0 (fixed*) 0.0 (fixed) 0.0 (fixed) 

   Distance to nearest thoroughfare/ distance  

        to floodplain specific to Residential 
0.0 (fixed*) 0.0 (fixed*) 0.0 (fixed) 0.0 (fixed) 

   High elevation indicator specific to  

        Commercial 
0.0 (fixed*) 0.0 (fixed*) 0.0 (fixed) 0.0 (fixed) 

 
*: Fixed because the parameter was not significantly different from zero at not even a 20% level of confidence 
1 SSN-MDC: Spatial skew-normal MDC model 
2 ASN-MDC: Aspatial skew-normal MDC model                                                                                                             
3 S-MDCP: Spatial MDCP model                                                                                                    
4 A-MDCP: Aspatial MDCP model                                                                                                                                      
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Table 3.4b. Measures of fit – Predicted shares   

 

Summary Statistic 
Model 

SSN-MDC1 ASN-MDC2 S-MDCP3 A-MDCP4 

Percentage of grids predicted to invest 

in… 

Actual sample 

Predicted 

% 

Predicted 

average 

Investment 

Predicted 

% 

Predicted 

average 

Investment 

Predicted 

% 

Predicted 

average 

Investment 

Predicted 

% 

Predicted 

average 

Investment 
Grids 

(%) 

Average 

investment 

(sq mi) 

   Commercial 54.7 0.0136 58.5 0.0144 59.8 0.0154 60.1 0.0157 62.8 0.0160 

   Industrial 24.3 0.0134 28.1 0.0148 29.1 0.0161 29.5 0.0163 31.3 0.0169 

   Residential 82.0 0.0267 78.2 0.0235 76.8 0.0223 76.3 0.0219 75.6 0.0215 

Mean absolute percentage error (MAPE) 9.1 9.4 11.8 16.6 12.7 18.4 17.1 21.1 

Percentage of grids predicted to invest 

in… 

Actual sample 
Predicted percentage  Predicted percentage Predicted percentage Predicted percentage 

Grids (%) 

   Commercial but not Residential 8.2 8.1 8.0 7.9 7.9 

   Residential but not Commercial 37.7 36.3 36.0 35.9 35.6 

   Both Commercial and Residential 51.7 51.4 51.2 51.0 50.8 

   Neither Commercial nor Residential 2.4 4.2 4.8 5.2 5.7 

Mean absolute percentage error (MAPE) 20.1 27.0 31.6 37.1 

 
1 SSN-MDC: Spatial skew-normal MDC model 
2 ASN-MDC: Aspatial skew-normal MDC model                                                                                                             
3 S-MDCP: Spatial MDCP model                                                                                                    
4 A-MDCP: Aspatial MDCP model                                                                                                                                      
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Table 3.5. Aggregate level elasticity effects of the A-MDCP, S-MDCP and SSN-MDC models (standard-error in parenthesis)  

Scenario 
Commercial Industrial Residential Undeveloped 

A-MDCP S-MDCP SSN-MDC A-MDCP S-MDCP SSN-MDC A-MDCP S-MDCP SSN-MDC A-MDCP S-MDCP SSN-MDC 

A 25% increase in distance to 

MoPac 

-4.92 

(1.82) 

-9.87  

(1.68) 

-12.34 

(2.75) 

6.95 

(1.28) 

19.86  

(5.24) 

20.16 

(5.41) 

-5.91 

(2.09) 

-8.34  

(2.36) 

-9.17 

(2.74) 

-0.11  

(0.38) 

0.08 

(0.32) 

0.05 

(0.16) 

A 25% increase in distance to 

IH35 

-6.80 

(4.17) 

-0.15  

(5.47) 

-0.78 

(3.79) 

-7.26   

(1.37) 

-15.40 

(5.23) 

-18.13 

(6.12) 

3.79  

(2.76) 

13.02  

(2.79) 

17.15 

(2.75) 

0.65  

(0.58) 

0.14 

(1.10) 

0.19 

(0.23) 

A 25% increase in distance to 

US-183 

 2.86  

(1.15) 

6.13 

(3.21) 

7.45 

(4.68) 

-5.78  

(1.75) 

-16.47 

(4.11) 

-19.89 

(3.75) 

2.40  

(0.83) 

3.29    

(1.81) 

3.75 

(1.63) 

0.42  

(0.32) 

0.01 

(0.59) 

0.06 

(0.16) 

A 25% increase in distance to 

nearest thoroughfare 

-2.15 

(0.38) 

-3.09  

(5.44) 

-3.18 

(5.12) 

5.64   

(1.19) 

-7.84 

(6.80) 

-5.12 

(5.38) 

4.37  

(1.03) 

9.05    

(1.29) 

10.12 

(1.35) 

1.03  

(0.86) 

0.07 

(0.64) 

0.08 

(0.53) 

A 25% increase in distance to 

nearest school 

-1.69 

(1.04) 

-9.57  

(1.58) 

-10.17 

(1.86) 

5.67   

(2.16) 

8.61    

(2.15) 

10.15 

(2.48) 

-3.64 

(1.68) 

-15.12 

(3.24) 

-16.38 

(3.11) 

0.30  

(0.23) 

0.34 

(0.61) 

0.39 

(0.27) 

A 25% increase in distance to 

nearest hospital 

-9.19   

(1.84) 

-11.30                                     

(1.80) 

-12.89 

(2.11) 

9.68 

(3.14) 

23.45  

(5.44) 

27.18 

(6.31) 

4.64  

(3.22) 

0.79    

(0.89) 

1.13 

(0.67) 

-0.56  

(0.47) 

-0.05 

(0.21) 

-0.10 

(0.24) 

A 25% increase in fraction of 

grid area under floodplain 

-2.73 

(1.06) 

-3.20  

(1.11) 

-3.48 

(1.07) 

-1.79  

(0.93) 

-2.76  

(1.16) 

-2.85 

(0.96) 

-1.13 

(0.61) 

-5.66  

(1.83) 

-7.38 

(2.00) 

0.61  

(0.07) 

0.57 

(0.82) 

0.52 

(0.08) 

A 25% increase in distance to 

nearest thoroughfare and a 25% 

decrease in distance to floodplain 

-4.31 

(1.43) 

-6.81  

(3.50) 

-6.92 

(2.87) 

-1.56  

(0.49) 

-6.05   

(3.32) 

-6.86 

(2.11) 

6.27  

(0.99) 

12.41  

(1.35) 

15.32 

(1.57) 

-0.34 

(0.86) 

-1.34 

(1.11) 

-1.59 

(0.82) 

A switch of the grid location 

from lower elevation to higher 

elevation 

32.44 

(4.46) 

46.93 

(21.34) 

51.73 

(19.25) 

-49.26 

(2.65) 

-43.21 

(13.04) 

-40.12 

(9.53) 

41.77 

(3.78) 

41.80 

(22.78) 

41.09 

(6.32) 

0.36  

(0.52) 

0.39 

(1.73) 

0.47 

(0.62) 

A switch of the grid location 

from non CBD zone to CBD 

zone 

13.40 

(2.78) 

28.16 

(22.78) 

33.41 

(24.63) 

-53.39 

(3.55) 

-70.84 

(18.45) 

-75.08 

(16.24) 

-42.91 

(3.09) 

-47.88 

(27.85) 

-52.84 

(19.17) 

1.56  

(1.27) 

7.06 

(2.97) 

9.16 

(1.70) 
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3.5 CONCLUSIONS 

This chapter proposes a new spatial skew-normal multiple discrete-continuous (or SSN-MDC) 

model and an associated estimation method. While the use of an incorrect kernel distribution in 

aspatial models will, in general, lead to inconsistent estimates of the choice probabilities as well 

as the effects of exogenous variables, the situation gets exacerbated in spatial models because of 

the multiplier effect. To our knowledge, this is the first time a flexible and parametric skew-

normal distribution for the kernel error term and/or random response coefficients has been used 

in both spatial- and aspatial-MDC models. The resulting model is estimated by using Bhat’s 

(2011) maximum approximate composite marginal likelihood (MACML) inference approach. 

Simulation exercises are undertaken to examine the ability of this estimation method to recover 

parameters from finite samples.  

Our sophisticated modeling framework can be applied to any MDC context that needs to 

consider spatial issues and a-not-so-restrictive distribution for unobserved heterogeneity. As an 

empirical demonstration, the proposed approach is applied to land-use-change decisions using 

the city of Austin’s parcel-level land-use data. The results highlight the importance of 

introducing social dependence effects and non-normal kernel error terms from a policy 

standpoint. The empirical results of our empirical application provide important insights 

regarding land-use investment in multiple types of land-uses simultaneously. The variables that 

characterize the land-use intensity of each grid are: (1) road access measures (distance to main 

highways, and distance to other nearest major thoroughfares), (2) distance to nearest school, (3) 

distance to the nearest hospital, (4) fraction of grid area that is under a floodplain (area 

susceptible to flooding), (5) an interaction term of proximity to road access with proximity to the 

floodplain (distance to nearest road divided by distance to the nearest floodplain), (6) average 

elevation of the grid, and (7) whether the grid is in the Austin CBD zone or not. 

 Due to positive spatial autocorrelation parameters, our model is able to capture how a 

change in a variable for one grid directly influences the land use of that grid, as well as the land 

use of neighboring grids. We also compare the results of our proposed model with other more 

restrictive specifications that ignore the spatial dependency and/or unobserved heterogeneity. 

The results should indicate the superiority, in terms of data fit, of the spatial skew-normal MDC 

model relative to its restrictive variants. 
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CHAPTER 4: Incorporating a MDC Outcome in the Estimation of Joint 

Mixed Models 

 

The material in this chapter is drawn substantially from the following published 

paper:  

Bhat, C.R., Astroza, S., Bhat, A.C., and Nagel, K. (2016). Incorporating a multiple 

discrete-continuous outcome in the generalized heterogeneous data model: 

Application to residential self-selection effects analysis in an activity-time use 

behavior model. Transportation Research Part B 91, 52-76. 

 

The purpose of this chapter is to propose a new econometric approach for the estimation of joint 

mixed models that include an MDC outcome. Section 4.1 motivates the need for an integrated 

model system capable to include an MDC outcome. Section 4.2 presents the methodological 

framework to formulate and estimate a joint mixed model with an MDC outcome and a nominal 

discrete outcome, in addition to count, binary/ordinal outcomes and continuous outcomes. 

Section 4.3 describes an empirical application of the proposed model in which we analyze 

residential location choice, household vehicle ownership choice, as well as time-use choices, and 

investigate the extent of association versus causality in the effects of residential density on 

activity participation and mobility choices. Finally, Section 4.4 summarizes the main findings of 

this chapter. 

4.1 JOINT MIXED MODELS 

The joint modeling of multiple outcomes is of substantial interest in several fields. In 

econometric terminology, this jointness may arise because of the impact (on the multiple choice 

outcomes) of common underlying exogenous observed variables, or common underlying 

exogenous unobserved variables, or a combination of the two. For instance, consider the choice 

of residential location, motorized vehicle ownership (or simply auto ownership from hereon), 

and activity time-use in recreational pursuits (such as going to the movies/opera, going to the 

gym, playing sports, and camping). In this setting, it is possible (if not very likely) that 

individuals from households who have a high green lifestyle propensity (an unobserved variable) 
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may search for locations that are relatively dense (with good non-motorized and public 

transportation facilities and high accessibility to activity locations), may own fewer cars, may 

travel less and so pursue more in-home (IH) activities, and pursue less of what they may perceive 

as activities that correlate with  extravagant living and indulgence such as out-of-home (OH) 

personal care/grooming, shopping, and dining out. In this case, when one or more unobserved 

factors (for example, green lifestyle) affect(s) the multiple outcomes, independently modeling 

the outcomes results in the inefficient estimation of covariate effects for each outcome (because 

such an approach fails to borrow information on other outcomes; see Teixeira-Pinto and 

Harezlak, 2013). But, more importantly, if some of the endogenous outcomes are used to explain 

other endogenous outcomes (such as examining the effect of density of residence on auto 

ownership, or the effect of density of residence on OH activity time-use, or the effect of auto 

ownership on time-use in activities), and if the outcomes are not modeled jointly in the presence 

of unobserved exogenous variable effects, the result is inconsistent estimation of the effects of 

one endogenous outcome on another (see Bhat and Guo, 2007, and Mokhtarian and Cao, 2008). 

In the next section, we position the current research within this broader methodological context 

of modeling multiple outcomes jointly. 

The joint modeling of multiple outcomes has been a subject of interest for many years, 

dominated by the joint modeling of multiple continuous outcomes (see de Leon and Chough, 

2013). However, in many cases, the outcomes of interest are not all continuous, and will be non-

commensurate (that is, a mix of continuous, count, and discrete variables). The joint modeling of 

non-commensurate outcomes makes things more difficult because of the absence of a convenient 

multivariate distribution to jointly (and directly) represent the relationship between discrete and 

continuous outcomes. This is particularly the case when one of the dependent outcomes is of a 

multiple discrete-continuous (MDC) nature. An outcome is said to be of the MDC type if it 

exists in multiple states that can be jointly consumed to different continuous amounts. In the 

example presented in the earlier paragraph, activity time-use is an MDC variable, assuming a 

daily or weekly or monthly period of observation. Thus, in a given day, an individual may 

participate in multiple types of non-work activities (shopping, personal business, child-care, 

recreation, and so on) and invest different amounts of time in each activity types (see Bhat et al., 

2009 and Pinjari and Bhat, 2014 for detailed reviews of MDC contexts).   

In this chapter, we introduce a joint mixed model that includes an MDC outcome and a 
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nominal discrete outcome, in addition to count, ordinal, and continuous outcomes. Each non-

continuous outcome is cast in the form of a latent underlying variable regression, wherein the 

latent “dependent” stochastic variable is assumed to manifest itself through an a priori 

transformation rule in the observed non-continuous outcomes. Next, the continuous observed 

outcome and the latent continuous manifestations of the non-continuous dependent outcomes 

themselves are tied together using a second layer of common latent underlying unobserved 

decision-maker variables (such as individual lifestyle, personality, and attitudinal factors) that 

impact the outcomes. The presence of this second layer of latent “independent” is what generates 

jointness among the outcomes. Reported subjective ordinal attitudinal indicators for the latent 

“independent” variables help provide additional information and stability to the model system. In 

this manner, we build on Bhat’s (2015) Generalized Heterogeneous Data Model (GHDM) that 

expressly acknowledges the presence of latent “independent” variables (or sometimes referred to 

as latent psychological constructs in the social sciences and in this research as well) affecting 

choice, and assumes that these latent “independent” variables get manifested in observed 

psychological indicators as well as the observed dependent outcomes. In particular, we develop a 

powerful and parsimonious way of jointly analyzing mixed outcomes including an MDC 

outcome. In addition, we formulate and implement a practical estimation approach for the 

resulting GHDM (GHDM including an MDC outcome) model using Bhat’s (2011) maximum 

approximate composite marginal likelihood (MACML) inference approach. This approach is not 

simulation-based (see Bhat, 2000 and Bhat, 2001 for such simulation approaches, but which can 

lead to convergence issues as well as be computationally intensive). Rather, the MACML 

approach requires only the evaluation of bivariate or univariate cumulative normal distribution 

functions regardless of the number of latent variables or the number and type of dependent 

variable outcomes. Many structural equation models (SEMs) and similar models in the past, on 

the other hand, are estimated using  simulation-based methods or, alternatively, sequential 

estimation methods (see Temme et al., 2008 and Katsikatsou et al., 2012 for discussions of these 

sequential methods). The problem with the latter sequential methods is that they do not account 

for sampling variability induced in earlier steps in the later steps, leading to inefficient 

estimation. In addition, the use of such sequential methods will, in general, also lead to 

inconsistent estimation (see Daziano and Bolduc, 2013 for discussions of the reasons). The 

MACML approach is a practical way to obtain consistent estimators even in high dimensional 
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mixed multivariate model systems.  

 To our knowledge, this is the first formulation and application of such an integrated 

model system in the econometric and statistical literature. The model should be applicable in a 

wide variety of fields where MDC variables appear as elements of package choices of different 

types of outcomes of interest. For example, in the health field, in addition to binary, count, and 

continuous variables related to the occurrence, frequency, and intensity, respectively, of specific 

health problems, it is not uncommon to obtain ordinal information on quality of life 

outcomes/perceptions and there may be interest in associating these variables with an MDC 

variable representing the type and intensity of participation in different types of physical 

activities and the durations in each participated physical activity. Other fields where the proposed 

model should be of interest include biology, developmental toxicology, finance, economics, 

epidemiology, and social science (see a good synthesis of potential applications of mixed models 

in De Leon and Chough, 2013). However, to make clear the application potential of the 

methodology presented here, we will further motivate the methodology with a specific 

application context originating in the land use-trasnportation domain, as we discuss in Section 

4.3.  

4.2 METHODOLOGY 

For ease in notation, consider a cross-sectional model. As appropriate and convenient, we will 

suppress the index q for decision-makers (q=1,2,…,Q) in parts of the presentation.  

4.2.1. Latent variable structural equation model 

In the usual structural equation model set-up, we specify the latent “independent” variable or 

latent construct 
*

lz  (l=1,2,…,L) as a linear function of covariates: 

,~*

lllz  wα       (4.1) 

where w is a )1
~

( D  vector of observed covariates (not including a constant), lα
~  is a 

corresponding )1
~

( D  vector of coefficients, and l  is a random error term assumed to be 

standard normally distributed for identification purposes (see Stapleton, 1978). Next, define the 

)
~

( DL  matrix )~,...~,~(~
21

 Lαααα , and the )1( L  vectors ),...,,( **

2

*

1
 Lzzz*

z  and 
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)'.,,,,( 321 L η  Let ],[~ Γ0η LLMVN , where L0  is an )1( L  column vector of zeros, and 

Γ  is an )( LL correlation matrix. In matrix form, we may write Equation (4.1) as: 

η wαz* ~
.          (4.2) 

4.2.2. Latent variable measurement equation model components 

Consider a combination of continuous, ordinal, count, nominal, and MDC outcomes of the 

underlying latent variable vector 
*z . Note that, in the GHMD, the actual mixed outcomes of 

interest (“endogenous” variables, including continuous, count, nominal, and MDC outcomes) as 

well as any subjective indicators (all ordinal in the current research) of the latent vector 
*z  are 

together (and simultaneously) used to estimate the structural Equation (4.2) that relates the latent 

constructs with exogenous covariates (through a reduced form of the measurement equation 

system; see Appendix B). That is, the fact that we have additional ordinal indicators of the latent 

constructs helps provide stability to the estimation of Equation (4.2) in the model system, but 

does not play a central role in identifying the latent constructs per se. In other words, there is no 

distinction between the traditional subjective indicators (usually ordinal) and other actual 

endogenous variables of interest in the GHDM. All of these indicators/outcomes together are 

treated identically as marker manifestations of the underlying latent construct vector 
*z . Thus, in 

the GHDM, there is even no need for any subjective indicators, since the actual endogenous 

outcomes themselves serve as indicators of the latent constructs. The latent constructs are 

identified based on theory and earlier studies, as in all earlier land use-transportation studies that 

incorporate latent psychological constructs in the modeling framework (please see Section 4.3.4 

for a more complete discussion of this point). Once estimated, the relationship between the latent 

constructs and the subjective indicators can be discarded (these purely help in efficiently 

estimating Equation (4.2), and in identifying Equation (4.2) if the number of endogenous 

outcomes present are not adequate). The focus is on (a) the measurement relationship between 

the actual endogenous outcomes with (i) exogenous covariates, (ii) other actual endogenous 

outcomes, and (iii) the latent constructs, and (b) the structural equation system of Equation (4.2). 

In the former relationship, the inter-relationships among the endogenous variables are 

“uncorrupted causal” influences after controlling for error correlations across the many 
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dimensions (engendered by the latent effects). These endogenous effects correspond to recursive 

influences among the dependent variable outcomes.18  

In the following presentation, we will use the term “outcome” to refer to both the actual 

endogenous outcomes of interest as well as subjective ordinal indicators of the latent constructs. 

We also allow more than one outcome for the continuous and ordinal variable types, but confine 

attention to only one outcome each for the count, nominal and MDC variable types. This is 

purely for ease in presentation, and is by no means methodologically restrictive. Indeed, the 

extension to more than one count, and/or one nominal and/or one MDC outcome is 

straightforward.  

Let there be H continuous outcomes ) ,..., ,( 21 Hyyy  with an associated index h 

) ,...,2 ,1( Hh  . Let hhhhy  *
zdxγ

 
in the usual linear regression fashion, where x  is an 

)1( A -vector of exogenous variables (including a constant) as well as the observed values of 

other endogenous outcomes. hγ  is the corresponding compatible coefficient vector. hd  is an 

)1( L  vector of latent variable loadings on the hth continuous outcome, and h  is a normally 

distributed measurement error term. Define the following two )1( H  vectors: 

) ,..., ,( 21
 Hyyyy  and ) ,..., ,( 21

 Hε , with ),( Σ0HHMVN~ε  (that is, the vector ε  is 

assumed to be H-variate normally distributed with zero means for all its elements and a 

covariance matrix Σ ). Σ  is restricted to be diagonal to aid in identification because the latent 

variable vector 
*z  already serves as a vehicle to generate covariance between the outcome 

variables. Define the )( AH   matrix ),...,,( 21
 Hγγγγ  and the )( LH   matrix of latent variable 

loadings   .,...,, 21


 Hdddd  Then, one may write the following vector measurement equation for 

the continuous outcomes: 

εdzγxy
*  .                               (4.3) 

Next, let there be N  ordinal outcomes (indicator variables in this research) for the 

individual, and let n be the index for the ordinal outcomes ) ..., ,2 ,1( Nn  . Also, let nJ
 
be the 

                                                 
18

 In joint limited-dependent variables systems in which one or more dependent variables are not observed on a 

continuous scale, such as the joint system considered in this current research that has discrete dependent, count, and 

MDC variables, the structural effects of one limited-dependent variable on another can only be in a single direction. 

See Maddala, (1983) and Bhat (2015) for a more detailed explanation.  
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number of categories for the nth ordinal outcome )2( nJ
 
and let the corresponding index 

be nj ) ..., ,2 ,1( nn Jj  . Let 
*~
ny  be the latent underlying variable whose horizontal partitioning 

leads to the observed outcome for the nth ordinal variable. Assume that the individual under 

consideration chooses the 
th

na  ordinal category. Then, in the usual ordered response formulation, 

we may write: 

,~~~and,~~~~
,

*

1,

*

nn annannnnn yy   

*zdxγ

 

 (4.4) 

where x  is as defined earlier, nγ
~

 
is a corresponding vector of coefficients to be estimated, nd

~
 is 

an )1( L vector of latent variable loadings on the nth continuous outcome, the ~  terms represent 

thresholds (for each n,   nnn JnnnJnJnnnn ,1,0,,1,2,1,0,
~and,0~ ,~  ;~~...~~~  ), 

and n
~  is the standard normal random error for the nth ordinal outcome. For later use, let 

)~,...,~,~(~and)~,...,~,~(~
211,3,2,

  NJnnnn n
ψψψψψ  . Stack the N underlying continuous variables 

*~
ny  into an )1( N  vector 

*
y~ , and the N error terms n

~  into another )1( N  vector ε~ . Define 

)~,...,~,~(~
21

 Hγγγγ  [ )( AN   matrix]  and  Ndddd
~

,...,
~

,
~~

21
 
[ )( LN   matrix], and let NIDEN  be 

the identity matrix of dimension N representing the correlation matrix of ε~ ; 

 NNNMVN IDEN0 ,~~ε . Finally, stack the lower thresholds for the decision-maker 

 Nn
nan  ..., ,2 ,1~

1, 
 
into an )1( N  vector lowψ~

 
and the upper thresholds  Nn

nan  ..., ,2 ,1~
,   

into another vector upψ~ . Then, in matrix form, the measurement equation for the ordinal 

outcomes (indicators) for the decision-maker may be written as: 

uplow ψyψ εzdxγy *** ~~~,~~~~  .                (4.5) 

For the count variable, let the index be g for the count categories ),...,2 ,1 ,0( g  and let 

r be the actual observed count value for the household. Then, a generalized version of the 

negative binomial count model may be written as (see Castro, Paleti, and Bhat, or CPB, 2012b 

and Bhat et al., 2013b):  

,, *

1

*

rr yy 


 

*zd  (4.6) 
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
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
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xγ 


e .  (4.7) 
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In the above equation, 
*y


 is a latent continuous stochastic propensity variable that maps into the 

observed count r through the ψ


 vector (which is a vertically stacked column vector of 

thresholds .),... ,,,( 2101


 


 d


 is an )1( L  vector of latent variable loadings on the count 

outcome, and 


 is a standard normal random error term. γ


 is a column vector corresponding to 

the vector x  (including a constant) of exogenous observable covariates and endogenous 

outcomes. 1  in the threshold function of Equation (4.7) is the inverse function of the 

univariate cumulative standard normal.   is a parameter that provides flexibility to the count 

formulation, and is related to the dispersion parameter in a traditional negative binomial model 

;0(  if , the general negative binomial structure collapses to a general Poisson 

structure). )(Γ  is the traditional gamma function; 







0
~

~1 ~~
)(

t

t tdetΓ


 . The threshold terms in 

the ψ


 vector satisfy the ordering condition (i.e., )....2101  


 as long as  

.....2101    The presence of the 
 
terms in the thresholds provides substantial 

flexibility to accommodate high or low probability masses for specific count outcomes (see CPB, 

2012b for a detailed discussion). For identification, set 1  and 00  . In addition, we 

identify a count value 
*e  ......}),2 ,1 ,0{( * e  above which ......}),2 ,1{( gg is held fixed at 

*e
 ; that is, *eg    if ,*eg   where the value of 

*e  can be based on empirical testing. Doing 

so is the key to allowing the count model to predict beyond the count range available in the 

estimation sample. For later use, let ),,( *21


e
   ( 1* e  vector) (assuming )0* e .  

Next, consider the nominal (unordered-response) outcome for the individual, and let i be 

the corresponding index ( i  = 1, 2, 3,…, I). Let the individual under consideration choose the 

alternative m . Also, assume the usual random utility structure for each alternative i.  

,~)(
~

iiiii ςU  *zβxb                          (4.8) 

where x  is the same fixed vector of exogenous variables as earlier, ib
~

 is an )1( A  column 

vector of corresponding coefficients, and iς
~  is a normal random error term. iβ  is a 

)( LN i  matrix of variables interacting with latent variables to influence the utility of alternative 
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i, and i  is an )1( iN  column vector of coefficients capturing the effects of latent variables and 

their interaction effects with other exogenous variables. If each of the latent variables impacts the 

utility of the alternatives for each nominal variable purely through a constant shift in the utility 

function, iβ  will be an identity matrix of size L , and each element of i  will capture the effect 

of a latent variable on the constant specific to alternative i (see Bhat and Dubey, 2014). To move 

forward, let )~,...,~,~(~
21

 I  ( 1I  vector), and ),(~~ Λ0IIMVN . Taking the difference with 

respect to the first alternative, only the elements of the covariance matrix Λ


of the covariance 

matrix of the error differences, ),...,,( 32 I


  (where 1
~~   ii


, 1i ), is estimable.19  

Further, the variance term at the top left diagonal of Λ


 is set to one to account for scale 

invariance. Λ  is constructed from Λ


 by adding an additional row on top and an additional 

column to the left. All elements of this additional row and column are filled with values of zeros.  

Next, define ),...,,( 21
 IUUUU  1( I  vector), )

~
,...,

~
,

~
,

~
(

~
321

 Ibbbbb  AI (  matrix), and 

),...,, 21
 Iββββ  












LN
I

i

i

1

 matrix. Also, define the 
















I

i

iNI
1

 matrix   which is 

initially filled with all zero values. Then, position the )1( 1N  row vector in the first row to 

occupy columns 1 to 1N  , position the )1( 2N  row vector in the second row to occupy columns 

1N +1 to ,21 NN   and so on until the )1( IN  row vector  is appropriately positioned.  Further, 

define )(~ β  LI (  matrix). Then, in matrix form, we may write: 

.~~~
  *

zxbU               (4.9) 

Next, note that, under the utility maximization paradigm, miim UUu   must be less than zero 

for all mi  , since the individual chose alternative m. Stack the latent utility differentials into a 

vector  









 miuuu Immm ;,...,, 21u .  To write this utility differential vector compactly in terms 

of the original utilities, define a matrix M of size    II 1 . Insert an identity matrix of size 

                                                 
19

 Also, in MNP models, identification is tenuous when only individual-specific covariates are used in the vector x 

(see Keane, 1992 and Munkin and Trivedi, 2008). In particular, exclusion restrictions are needed in the form of at 

least one individual characteristic being excluded from each alternative’s utility in addition to being excluded from a 

base alternative (but appearing in some other utilities). But these exclusion restrictions are not needed when there 

are alternative-specific variables. 
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)1( 1 I  after supplementing with a column of ‘-1’ values in the column corresponding to the 

chosen alternative m. Then, we may write the following: 

,~~~
  **

zbxzxbUu MMMM  with .~and,~,
~

 MMM   bb  

 Finally, consider the MDC outcome. Following Bhat (2005) and Bhat (2008), consider a 

choice scenario where the decision maker maximizes his/her time utility subject to a binding 

time budget constraint: 

K

k
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t   (4.10) 





K

k

k Ttts
1

 .. , 

where the utility function )(
~

tU  is quasi-concave, increasing and continuously differentiable, t is 

the time investment vector of dimension K×1 with elements )0( kk tt , k , k , and k  are 

parameters associated with activity purpose k, and T represents the time budget to be allocated 

among the K activity purposes. The utility function form in Equation (4.10) allows corner 

solutions (i.e., zero consumptions) for activity purposes 1 through 1K  through the parameters 

k , which allow corner solutions for these alternatives while also serving the role of satiation 

parameters     ( : 0k 1..., ,2 ,1  Kk ). On the other hand, the functional form for the final 

activity purpose ensures that some time is invested in activity purpose K (for example, activity 

purpose K may refer to in-home activities such as eating, watching TV, and relaxing; activity 

purpose K is usually referred to as an essential outside good in the microeconomics literature; 

see Bhat, 2008). The role of k  is to capture satiation effects, with a smaller value of k  

implying higher satiation for activity purpose k. k  represents the stochastic baseline marginal 

utility; that is, it is the marginal utility at the point of zero time investment for alternative k. 

As we indicated in Section 1.4, the utility function in Equation (4.10) constitutes a valid 

utility function if, in addition to the constraints on the k  parameters as discussed above, 1k , 

and 0k  for all k. Also, as indicated earlier, k  
and k  influence satiation, though in quite 

different ways: k  controls satiation by translating consumption quantity, while k  controls 

satiation by exponentiating consumption quantity. Empirically speaking, it is difficult to 
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disentangle the effects of k  and k  separately. We suggested earlier to estimate a  - and an  -

profile, and choose the profile that provides a better statistical fit.20 However, we will retain the 

utility form of Equation (4.10) to keep the presentation general. Next, to complete the model 

structure, the baseline utility is specified to be a function of the latent variable vector, the A-

dimensional exogenous variable vector x, and a random error term as follows:  

,
~~~

)ln(or  )
~~~

exp()
~

,,exp( *

kkkkkkkkkk   *** zμxδzμxδzx   (4.11) 

where kδ
~

 and kμ
~

 are A-dimensional and L-dimensional column vectors, respectively, and k
~

 

captures the idiosyncratic characteristics that impact the baseline utility of activity purpose k. We 

assume that the error terms k
~

 are multivariate normally distributed across alternatives: 

)
~

,(~)
~

,...,
~

,
~

(
~

21 Ω0KKK MVN ξ . But only differences in the logarithm of the baseline utilities 

matter, not the actual logarithm of the baseline utility values (see section 1.4). Thus, it will be 

easier to work with the logarithm of the baseline utilities of the first 1K  alternatives, and 

normalize the logarithm of the baseline utility for the last alternative to zero. That is, we write: 

.for0
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*

*

     (4.12) 

It should be clear from above that only the covariance matrix, say Ω  of the error differences 

)
~~

( Kkk   is estimable, and not the covariance matrix Ω
~

 of the original error terms. Further, 

with the formulation as in Equation (4.10), where the sum of the time investments across activity 

purposes is equal to the total time budget, an additional scale normalization needs to be imposed 

(see Section 1.4). A convenient normalization is to set the first element of Ω  (that is, 11Ω to 

one). Further, for ease in interpretation of the covariance matrix Ω , we assume that the error 

term of the “outside” alternative K  is independent of the error terms of the “inside” alternatives 

).1 ,...,2 ,1(  Kkk  With this assumption, each covariance matrix element of Ω  can then 
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immediately be interpreted as a direct indicator of the extent of variance and covariance in the 

utilities of the inside alternatives.21 

The analyst can solve for the optimal consumption allocations corresponding to Equation 

(4.10) by forming the Lagrangian and applying the Karush-Kuhn-Tucker (KKT) conditions. The 

Lagrangian function for the problem, after substituting )exp( kk    (equal to 

1 ,...,2 ,1for)exp(  Kkkkk *
zμxδ  and equal to Kk  for1)0exp( ) in Equation (4.10) 
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where 
~

 is the Lagrangian multiplier associated with the time budget constraint (that is, it can be 

viewed as the marginal utility of total time). The KKT first-order condition for the “optimal” 

investment 
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0~  kkkk Vu *
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may write, in matrix form, the following equation: 

ξzμVu
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with the elements of u~  adhering to the conditions in Equation (4.15). Also, for later use, let CF  

be the set of consumed alternatives not including the last alternative (with cardinality CF
~

), and 

NCF  be the set of non-consumed alternatives (with cardinality NCF
~

). 

The parameter vector to be estimated is 
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, where 

vech(Δ ) implies a row vector of all the unique and non-fixed elements of matrix Δ . The 

maximum likelihood estimation of the model involves the evaluation of an )
~

( NCFIN  -

dimensional rectangular integral for each decision-maker, which can be computationally 

expensive. So, we use the Maximum Approximate Composite Marginal Likelihood (MACML) 

approach of Bhat (2011). The estimation approach is very notation-intensive, and so we relegate 

the details of the approach to Appendix B. Also, in Appendix C, we provide a diagrammatic 

representation of the entire model system, including the notations used in this section for easy 

association.   

4.3 APPLICATION TO RESIDENTIAL SELF-SELECTION EFFECT ANALYSIS 

In this section, we apply the proposed model to examine households’ residential location 

(characterized by commute distance and the density or number of households per square mile in 

the Census block group of the household’s residence, as obtained from the 2010 decennial 
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Census data), auto ownership level, and time spent on a typical weekday on (a) in-home (IH) 

non-work, non-educational, and non-sleep activities and (b) out-of-home (OH) non-work non-

educational pursuits. In the analysis, the OH activities are classified into one of six types: 

personal business (including family or personal obligations, going to day care, and medical 

appointments), shopping (including buying food and goods), eating out, social activities 

(including visiting friends or relatives and attending parties), recreation (including visiting 

cultural/arts centers, going to the movies, attending sports events, going to the gym, pursuing 

physical activities such as running, walking, swimming, and playing sports), and “other” 

activities (including picking up or dropping off someone, and “other” non-work, non-education, 

and non-sleep activities. A further investigation of this “other” activity category indicated that it 

was dominated by serve passenger activity. Specifically, 80% of the “other” activities 

corresponded to serve passenger activity. Hence, to make our labeling easy and comprehensible, 

we will refer to the “other” category as the “serve passenger” category in the rest of this section.  

4.3.1 Empirical context 

An issue that has received particular attention within the broad land use-transportation literature 

is whether any effect of the BE on travel demand is causal or merely associative (or some 

combination of the two; see Bhat and Guo, 2007, Mokhtarian and Cao, 2008, Pinjari et al., 2008, 

Bohte et al., 2009, Van Wee, 2009, and Van Acker et al., 2014). Commonly labeled as the 

residential self-selection problem, the underlying problem is that the data available to assess the 

potential effects of land-use on activity-travel (AT) patterns is typically of a cross-sectional 

nature. In such observational data, the residential location of households and the activity-travel 

patterns of household members are jointly observed at a given point in time. Thus, the data 

reflects household residential location preferences co-mingled with the AT preferences of the 

households. On the other hand, from a policy perspective, the emphasis is on analyzing whether 

(and how much) a neo-urbanist design (compact BE design, high bicycle lane and roadway street 

density, good land-use mix, and good transit and non-motorized mode accessibility/facilities) 

would help in reducing motorized travel. To do so, the conceptual experiment that reveals the 

“true” effect of the BE features of the residential location on AT patterns is the one that 

randomly locates households in residential locations. The problem then, econometrically 

speaking, is that the analyst has to extract out the “true” BE effect from a potentially non-

randomly assigned (to residential locations) observed cross-sectional sample. If the non-random 
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assignment can be completely captured by observed non-travel characteristics of households and 

the BE (such as, say, poor households locating in areas with low housing cost), then a 

conventional travel model accommodating the observed non-AT characteristics of households 

and the BE characteristics would suffice to extract the “true” BE effect on AT patterns. 

However, it is quite possible (if not likely) that there are some antecedent personality, attitude, 

and lifestyle characteristics of households that are unobserved to the analyst and that impact both 

residential location choice and activity-travel behavior, as discussed earlier. Ignoring such self-

selection effects in residence choices can lead to a “spurious” causal effect of neighborhood 

attributes on activity-travel behavior, and potentially lead to misinformed BE design policies. 

 Many different approaches may be used to account for residential self-selection effects, a 

detailed review of which is beyond the scope of this dissertation (the reader is referred to Bhat 

and Guo, 2007, Bhat and Eluru, 2009, Mokhtarian and Cao, 2008, and Bhat, 2015). But, within 

the context of cross-sectional data, one broad direction is to more explicitly capture what is 

traditionally “unobserved” (latent) in typical travel survey data sets, and include these as 

“independent” variables. It is here that our proposed GHDM model comes into play.   

Another important point of departure of the current empirical study from most earlier 

studies in the land use-transportation domain is that we examine residential self-selection (and 

more generally integrated land use-transportation modeling) in the context of an activity-based 

modeling (ABM) paradigm (see, for example, Bhat and Koppelman, 1993). As pointed out by 

Pinjari et al. (2009) and more recently by Chen et al. (2014), despite the fact that the ABM 

paradigm is increasingly now accepted even in practice as the approach of choice for travel 

analysis, there has been little consideration of residential self-selection issues within the ABM 

modeling paradigm. The central basis of the ABM paradigm is that individuals' activity-travel 

patterns are a result of their time-use decisions; individuals have 24 hours in a day (or multiples 

of 24 hours for longer periods of time) and decide how to use that time among activities and 

travel (and with whom) subject to their sociodemographic, spatial, temporal, transportation 

system, and other contextual constraints; see Bhat et al. (2004) and Pinjari and Bhat (2011b). In 

the activity-based approach, the impact of land-use and demand management policies on time-

use behavior is an important precursor step to assessing the impact of such polices on individual 

travel behavior. Accordingly, in this research, we jointly model residential location-related 

choices along with auto ownership and activity time-use in different activities.  
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4.3.2 Data source and sample formation 

The data source used in this study is the Puget Sound household travel survey conducted by the 

Puget Sound Regional Council (PSRC) in the spring (April–June) of 2014 in the four county 

PSRC planning region (the four counties are King, Kitsap, Pierce, and Snohomish) in the State of 

Washington. Households were randomly sampled, with the intent of obtaining a representative 

sample of households from the region for analyzing activity-travel patterns. The survey was 

administered by recruiting households using a stratified address-based sampling method based 

on the US Post Office’s Computerized Delivery Sequence File (CDSF) that is a compilation of 

all mailing addresses in the US, providing coverage for approximately 97% of all households. 

Households were initially contacted using a “recruit survey” through which information on 

household-level socio-demographics (including motorized vehicle ownership by type, and home 

location address, housing type, and tenure status) and person-level information (including work 

and student status) was obtained.  Only one adult household member (age 18 or older) was asked 

to complete the “recruit survey”, and the corresponding household respondent was designated as 

the household reference person. The “recruit survey” also elicited information from the 

household reference person on the factors that influenced the current residential choice. This 

included the importance of the following six factors: (1) having a walkable neighborhood and 

being near local activities, (2) being close to public transit, (3) being within a 30-minute 

commute to work, (4) quality of schools in the neighborhood, (5) having space and separation 

from others, and (6) being close to the highway. Another part of the survey was a “retrieval 

survey” that comprised a comprehensive travel diary for a pre-defined household-specific mid-

weekday (Tuesday, Wednesday, or Thursday) that each individual in the household (5 years or 

older) was asked to fill in at a “dashboard” web site generated for the household. Following the 

24-hour diary portion of the retrieval survey, respondents were asked a series of questions about 

their typical transportation behaviors (to provide additional information beyond a single day’s 

travel). Additional details of the survey recruitment and administration procedures are available 

in RSG (2014).  

The survey collected information from a total of 6,036 households, of which 4,631 

households had at least one worker employed in the household and with a work location outside 

the residential dwelling unit. The focus of the current analysis is on these 1+-worker households, 

to acknowledge the rather substantial differences in household residence and activity-travel 
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patterns between zero-worker households (retired couples, unemployed individual households, 

and student households) and 1+-worker households (see, for example, Rajagopalan et al., 2009). 

After further screening to remove households with incomplete residence, travel, attitude, or 

demographic information, the final sample used in the current analysis included 3,637 

households. In Appendix D, we provide descriptive characteristics of the socioeconomic 

characteristics of the sample. 

4.3.3 Dependent variable characteristics 

The dependent variables in our model system include a combination of a continuous variable, 

multiple ordinal indicators, a count variable, a nominal variable, and an MDC variable. The 

construction of each of these variables is discussed in turn in the subsequent paragraphs. Table 

4.1 provides descriptive statistics of the dependent variables. 

Commute distance, the continuous variable, was not reported directly by members of the 

household; it was derived by the Puget Sound Regional Council from shortest-path distance 

skims based on the home and primary work locations of each individual. We then computed a 

household average commute distance (miles) as the average one-way distance in miles between 

the home and the primary workplace across those individuals working outside the home (for 

brevity, from here on, we will refer to this variable as household commute distance). As may be 

observed from Table 4.1, the minimum and maximum household commute distances in the 

sample are 0.05 miles and 99.95 miles, respectively. The 95th percentile value for the household 

commute distance is 41.7 miles. In our estimation, we used the natural logarithm of household 

commute distance as the continuous dependent variable.  

As indicated in the previous section, the household reference person was asked a series of 

questions to elicit preferences regarding residential choices. The responses to these questions 

were all collected on a five-point ordinal Likert scale. These questions and the distribution of the 

corresponding responses are shown in the second panel of Table 4.1. The statistics reveal, not 

surprisingly, that being within 30 minutes of work and proximity/walkability to local activities 

are “important” or “very important” considerations to more than 75% of the respondents when 

making residential choices.22  

                                                 
22 “Quality of schools” is rated quite low in the overall. To examine if there is a substantial difference between 

households with children and without children, we examined the ratings on this question by presence or absence of 

children. The percentage of households that rated this attribute as being important or very important in the segment 
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The number of motorized personal vehicles in the household (that is, auto ownership), as 

reported in the survey by the household reference person, is a count dependent variable. The 

distribution of this variable (see the third panel of Table 4.1) indicates that most households have 

one or two cars (75.0%) and the average number of autos per household is 1.69.  

Each household’s residential location was assigned to one of the following nominal 

density categories: (a) 0–749 households per square mile, (b) 750–1,999 households per square 

mile, (c) 2,000–2,999 households per square mile, and (d) ≥ 3,000 households per square mile. 

The descriptive statistics in Table 4.1 for this nominal variable indicate that half of the 

households in the sample are located in high density areas, while about 13.2% are located in the 

lowest density areas. In the estimation, the highest density category is considered the base 

category. The use of density, along with commute distance, to characterize residential choice 

makes the definition of the residential choice alternatives clear and manageable. It also provides 

a convenient way to capture land-use/BE effects on auto ownership levels and activity time-use 

patterns, particularly because of the strong association between density and other BE elements. 

Indeed, there is a long and strong precedent for using residential density as a proxy for land-

use/BE elements in the transportation literature (see, for example, Bhat and Singh, 2000, Chen et 

al., 2008, Kim and Brownstone, 2013, Paleti et al., 2013, and Cao and Fan, 2012). 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                             
of households with children was 72.1%, relative to 22.0% in the segment without children. Clearly, as expected, 

there is a difference in the quality of school ratings based on the presence of children. This effect is captured in our 

analysis, as discussed later.  
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Table 4.1. Sample characteristics of dependent variables 

Dependent variable: Continuous variable 

Variable Mean Std. Dev. Min. Max. 

Household commute distance 14.47 13.78 0.05 99.95 

Indicator variable: Ordinal variables 

Attitudinal Question 

Response rate 

Very 

Unimportant 

1 2 3 4 

Very 

Important 

5 

How important when choosing current home: 

  

   Having a walkable neighborhood and being 

near to local activities 
 5.5% 7.6% 11.1% 32.3% 43.5% 

   Being close to public transit 15.4% 12.0% 17.0% 24.8% 30.8% 

   Being within a 30-minute commute to work  6.6% 6.5% 10.0% 24.4% 52.5% 

   Quality of schools (K-12) 31.2% 7.5% 26.7% 14.6% 20.0% 

   Having space and separation from others  9.2% 13.7% 21.8% 34.3% 21.0% 

   Being close to the highway 12.7% 16.0% 21.4% 38.0% 11.9% 

Dependent variable: Count variable 

Motorized Vehicle 

Count 

Frequency 

0 1 2 3 4 5 >6 

Number 304 1,378 1,354 413 135 36 17 

% 8.4 37.8 37.2 11.4 3.7 1.0 0.5 

Dependent variable: MNP variable 

Residential Density 

(households per sq. mile) 
Number of observations (%) 

<750   478 (13.2) 

750-2,000   866 (23.8) 

2,000-3,000   525 (14.4) 

>3,000 1,768 (48.6) 

Dependent variable: MDC variables 

Activity Participation (%) Mean* fraction 

Number of households (% of total 

number) spent time… 

Only in activity 

type**  

In other activity 

types too** 

In home (IH)  3,637 (100.0) 0.780 533 (14.7) 3,104 (85.3) 

Personal Business 1,607 ( 44.2) 0.202 216 (13.4) 1,391 (86.6) 

Shopping 1,664 ( 45.8) 0.060 355 (21.3) 1,309 (78.7) 

Recreation 1,011 ( 27.8) 0.131 148 (14.6)   863 (85.4) 

Dining Out 1,092 ( 30.0) 0.081 203 (18.6)   889 (81.4) 

Social   659 ( 18.1) 0.180   82 (12.4)   557 (87.6) 

Serve Passenger   751 ( 20.6) 0.047 26 (  3.5)   725 (96.5) 

*: The mean duration of activities reported in the table are for only those who participated. 

**: For the IH activity, the splits refer to participation only in IH activity and participation in IH activity and at least one OH 

activity purpose. For each OH activity purpose, the splits refer to participation in that OH activity purpose as well as another OH 

activity purpose (in addition to IH activity)     
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The MDC alternatives include in-home (IH) activity and six purposes of out-of-home 

(OH) activity: personal business, shopping, eating out, social activities, recreation, and serve 

passenger. The discrete component corresponds to household-level participation in these 

different activity purposes, while the continuous component corresponds to the amount of 

household time invested in these activity purposes. The following two step process was used to 

obtain the time spent on different activities by each household: (1) The activity episodes 

undertaken by each individual during the survey day were collected together by each of the 

seven activity purposes, and the total individual daily time-investment in each activity purpose 

was computed across all episodes of the activity purpose, (2) The activity times by purpose were 

aggregated across all individuals in each household to obtain household-level participations and 

time investments in IH activity and the six OH activity purposes. The total household time 

budget in the MDC model corresponds to the sum across the seven activity purposes (that is, this 

corresponds to total household time, or 24 hours times the number of individuals in the 

household, minus the time (across all individuals) spent on work, education, and sleep). In our 

analysis, for convenience, we use the household-level participations and fractions of time 

investments in each activity purpose as the dependent variables (that is, we effectively are 

normalizing the household time investments in each purpose by the total household budget, so 

that the continuous components correspond to fractions, and the total budget is 1 for each 

household).23  

The final panel of Table 4.1 provides descriptive statistics of the time-use of households 

in the sample. All households participate in IH activity, which constitutes the outside good in the 

MDC model. Among the OH activity purposes, there is a relatively high participation level in 

personal business activity (44.2% of households) and shopping activity (45.8% of households), 

suggesting relatively high intrinsic baseline preferences for these two activity purposes. The 

social activity purpose and the serve passenger activity purpose, on the other hand, have the least 

participation rates, suggesting relatively low intrinsic baseline preferences for these two activity 

purposes. The third column indicates the fraction of time spent on each activity purpose, as 

averaged across households that participate in the corresponding activity purpose. For example, 

the first entry for IH activity shows that, on average, 78.0% of the total household time budget is 

                                                 
23 The determination of how the OH participations and times are allocated across individuals in the household can 

be determined in a downstream allocation model, as in Gliebe and Koppelman, 2002.  
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spent on IH activity, while the entry for personal business activity reveals that, on average across 

the 44.2% of households who actually participate in personal business activity, 20.2% of the total 

household budget is spent on personal business activity. The implication from this third column 

is that, if participated in, the shopping, dining out, and serve passenger activity purpose are the 

ones on which the least time is spent, suggesting high satiation rates for these activity purposes.24 

The final two columns highlight the multiple-discrete nature of activity participations. The first 

row for IH activity shows that 14.7% of households participate in only IH activity (and no OH 

activity), while 85.3% of households participate in IH activity as well as one or more OH activity 

purposes. The second row for personal business reveals that 13.4% of households partake in 

personal business as the only OH activity (in addition to IH activity, which all households 

participate in), while 86.6% of households pursue personal business and at least one other OH 

activity purpose.   

The discussions above are helpful to get a general idea of the patterns of preferences and 

satiation. However, the final baseline preference and satiation parameters for the activity 

purposes in the MDC model are based on a combination of participation rates, conditional-upon-

participation durations, and the split between sole participations and participations with other 

activity purposes.  

4.3.4 Latent constructs 

In developing the latent variables to characterize attitudes and lifestyles, we examined earlier 

studies investigating (directly or indirectly) lifestyle-related characteristics affecting residential 

choice decisions, auto ownership choice, and activity time-use decisions (see, for example, 

Schwanen and Mokhtarian, 2007, Walker and Li, 2007, Van Acker et al., 2014, Bohte et al., 

2009, de Abreu e Silva et al., 2012, and Bhat et al., 2014 for reviews of this literature). Some of 

these studies are based on intensive qualitative focus group interviews and/or ethnographic 

studies that tease out underlying psycho-social factors. These earlier studies, while labeling the 

factors sometimes differently, converge to two basic lifestyle-related factors: (1) Green lifestyle 

propensity and (2) luxury lifestyle propensity. The first latent variable drives the overall attitude 

                                                 
24 Note that the mean fractions in this third column sum to greater than one across all activity purposes because the 

means are computed for each activity purpose conditional on households participating in that activity purpose. But 

the reader will note that the participation-weighted fractions in this third columns sum to 1: that is, 

1*0.78+0.442*0.202+0.458*0.06+0.278*0.131+0.300*0.081+0.181*0.18+0.206*0.047=1 (after accounting for 

rounding). 
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and concern toward the environment, while the second reflects a penchant for consuming more, 

marked by a desire for privacy, spaciousness, and exclusivity. From a residential choice 

standpoint, the first latent variable has sometimes been referred to as “urban living propensity”, 

while the second has been associated with “suburban/rural living propensity” and better quality 

public schools. From an auto ownership/modal standpoint, the first is sometimes referred to as 

“pro-public transportation” attitude, while the second has been associated with “pro-driving” 

attitude. From an activity time-use standpoint, the first latent variable has typically been 

associated with active recreation and non-motorized mode use, while the second has been 

associated with increased time investments in shopping and dining out activity participations. 

While one can justifiably argue that the latent variables above specific to each of the residential 

choice, modal/car ownership, and activity time-use dimensions are not perfectly correlated in the 

way suggested above, there are clearly very strong associations to the two basic lifestyle factors 

of green lifestyle propensity and luxury lifestyle propensity. So, from the standpoint of 

parsimony, as well as from the viewpoint of mapping the six ordinal attitudinal indicators and 

other dependent variable outcomes (see previous section) with the latent variable constructs, we 

decided to work with the two factors of (1) green lifestyle propensity (GLP) and (2) luxury 

lifestyle propensity (LLP). The first latent variable is a measure of the overall attitude and 

concern toward the environment, while the second reflects a penchant for consuming more, 

marked by a desire for privacy, spaciousness, and exclusivity. Our expectation is that households 

with a GLP disposition will prefer to reside in high density neighborhoods close to their 

workplace, own few or no vehicles, and engage more in IH activities and OH social and active 

recreation activities, while those with an LLP disposition will be inclined to locate in low to 

medium density neighborhoods, own many vehicles, and potentially be engaged in more OH 

shopping and dining out activities. However, these will be tested empirically in the measurement 

equation model during the specification and statistical testing process, as discussed later.  

The reader will note that, as discussed above, we use earlier ethnographic and qualitative 

studies investigating (directly or indirectly) general lifestyle-related characteristics that affect 

residential choice, auto ownership, and activity time-use decisions as the basis to identify our 

latent variables (or constructs).  As stated by Golob (2003), “Theory and good sense must guide 

model specification”. The fact that we have additional ordinal indicators related to residential 

choice preferences helps provide stability to the model system, but does not play a central role in 
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identifying the latent constructs per se. This is different from studies in psychology that collect a 

battery of tens (and sometimes hundreds) of indicators, and use exploratory factor analysis to 

identify a much fewer number of factors (or latent constructs) through analytic variance 

minimization. In our case, we identify plausible latent constructs first based on intuition and the 

findings from previous studies, and then use both the ordinal indicators as well as the actual 

endogenous variable outcomes together to help relate observed covariates to the latent constructs 

in the structural equation system. Once the latent constructs are identified, the final specification 

in the structural equation system and the measurement equation system (for the loadings of the 

latent constructs, and the effects of observed covariates, on the ordinal indicators and the 

dependent outcomes) is based on statistical testing using nested predictive likelihood ratio tests 

and non-nested adjusted predictive likelihood ratio tests.25 For additional details, please see how 

the structural and measurement equation systems in Equation (B.1) of the Appendix B are 

converted to the joint reduced form system of Equation (B.2) for estimation.  

4.3.5 Model estimation results 

The final variable specification was obtained based on a systematic process of eliminating 

statistically insignificant variables, supplemented with a healthy dose of judgment and results 

from earlier studies. In the MDC activity time-use model, the  -profile came out to be 

consistently superior to the  -profile for all variable specifications, and so is the one used.   

4.3.5.1 Latent variable structural equation model results 

The results of the structural equation model that relate the two latent psycho-social constructs of 

GLP and LLP as a function of demographic attributes are presented in Table 4.2.  

The results suggest that lower income households have a higher GLP relative to higher 

income households (note that the highest income category is the base category in Table 4.2, and 

the coefficients for the other income categories are all positive with the magnitude being the 

highest for the lowest income category and decreasing thereafter). Table 4.2 also indicates that 

                                                 
25 Indeed, almost all applications in the transportation literature that collect a handful of indicators use a 

combination of intuitiveness, judgment, and earlier studies to identify the latent constructs, rather than undertake a 

factor analysis of any kind to identify the latent factors (see, for example, Daly et al., 2012, Bolduc et al., 2005, de 

Abreu e Silva et al., 2014, La Paix et al., 2013, Temme et al., 2008). But we acknowledge that there is some level of 

subjectivity in the number and “labels” of the latent variables, and these constructs can be questioned. But model 

building will always retain that element of judgment and subjectivity. The important point is that we have provided a 

conceptual basis for our selection of latent variables. 
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households with a high fraction of young adults (less than the age of 34 years) have a higher 

GLP relative to those with a low fraction of young adults. This latter effect is consistent with the 

environmental sociology literature (see, for example, Liu et al., 2014), which attributes this 

effect to young adults (especially the millennials) being increasingly exposed to environmental 

issues in the past decade through both school curricula and social media. Interestingly, age 

appears to have a U-shaped effect on GLP, with households with a high fraction of senior adults 

(65 years or older) having a higher GLP than households with a high fraction of middle-aged 

adults. Overall, households with a high fraction of adults in the 35-54 years age group seem to be 

the least “green”. During the late 1990s, the Puget Sound Region succeeded in attracting young, 

well-educated workers into their region’s workforce (Council, 2005). These young and highly-

skilled “creative class” workers played a key role in the development of new technologies and 

industries, the creation of startup firms, and associated job growth during the technology boom 

of the late 90s. This creative class should be aged 35-54 years now and their past context of 

economic growth may explain their relatively low environmental consciousness (for an analysis 

of the inverse relationship between green life-style tendency and economic growth in the late 

1990s, see Diekmann and Franzen, 1999).  

The results also suggest a higher GLP associated with households with a high fraction of 

women (relative to a low fraction of women) and a high fraction of well-educated individuals in 

the household (relative to a low fraction of well-educated individuals).   

The Table 4.2 results corresponding to LLP show that LLP increases with household 

income, the number of children in the household, and the age of household members in the 

household. The effect of income is very intuitive, because higher incomes provide not only the 

financial wherewithal to indulge, but an explicit show of indulgence may be viewed as a socio-

cultural vehicle to signal wealth, power and status, and privileged access to limited resources.  

The effect of children on LLP may be attributed to the desire for more privacy and 

separation from others to “protect” children from perceived unsafe levels of traffic and social 

environments (including safety from crime), a felt need to provide spacious indoor and outdoor 

play room for children, a desire for good quality schools (as observed in the descriptive statistics 

section), and an increase in motorized access to chauffeur children to activities, all of which are 

indicators of LLP (see next section).  
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Finally, the association between age and LLP may be related to the decrease in familial 

responsibilities with age, an increasing awareness of one’s decreasing lifespan in which to 

expend any accumulated wealth, and a desire to experience the “unexperienced” (see Cleaver 

and Muller, 2001, and Twitchell, 2013). In earlier studies, age has been linked to luxury fashion 

consumption (see for example Li et al., 2012), luxury cars purchases (Rosecky and King 1996), 

and luxury trips, such as cruises or exotic destinations (Hwang and Han, 2014).   

The correlation coefficient between the GLP and LLP latent constructs is statistically 

significant at any reasonable level of significance, with a value of -0.16 and a t-statistic of -5.4. 

This negative correlation is reasonable, since a green lifestyle is associated with careful and 

conservative consumption of resources, while a luxury lifestyle correlates with extravagant living 

and indulgence beyond an indispensable minimum.  
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Table 4.2. Estimation results of structural equation 

Variable Coefficient T-stat 

Green Lifestyle Propensity (GLP) 

Household income (base: 75,000 or more)    

    Less than 25,000 0.702 12.001 

    25,000 – 34,999 0.523 7.234 

    35,000 – 49,999 0.401 6.944 

    50,000 – 74,999 0.198 7.104 

Age (base: fraction of adults in the age group 18-34)   

    Fraction of adults in the age group 35-54 -0.478 -9.623 

    Fraction of adults in the age group 55-64 -0.331 -4.978 

    Fraction of adults in the age group 65 or more -0.132 -1.941 

Gender (base: fraction of female adults in the household)    

    Fraction of male adults in the household -0.029 -1.850 

Education status (base: fraction of adults with less than a bachelor’s degree)   

    Fraction of adults with a bachelor’s degree 0.160 4.101 

    Fraction of adults with an MS or PhD degree  0.203 2.103 

Luxury Lifestyle Propensity (LLP) 

Household income (base: 75,000 or more)    

    Less than 25,000 -0.201 -11.933 

    25,000 – 34,999 -0.322 -8.000 

    35,000 – 49,999 -0.431 -7.924 

    50,000 – 74,999 -0.472 -6.424 

Number of children (less than 18 years old) in the household 0.473 11.926 

Age (base: fraction of adults in the age group 18-34)   

    Fraction of adults in the age group 35-54 0.130 3.553 

    Fraction of adults in the age group 55-64 0.412 3.567 

    Fraction of adults in the age group 65 or more 0.450 2.210 

Correlation coefficient between ‘active living/pro-environment attitude’ and 

‘travel affinity/privacy desire’ latent constructs 
-0.168 -5.421 
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4.3.5.2 Measurement equation results for non-nominal variables 

The results for the non-nominal variables are presented in Table 4.3. The dependent variables are 

organized column-wise and the independent variables are arranged row-wise.  

The standard error corresponding to the natural logarithm of the household commute 

distance is 1.333 with a t-statistic of 3.28. The constants in the many equations, as well as the 

thresholds (note that in the model formulation, the first threshold ( 1,
~

nψ ) and the first flexibility 

parameter ( 00  ) for the ordinal and count variable have been fixed to zero), do not have any 

substantive interpretations. For the auto ownership variable, the dispersion parameter ( ) 

became quite large during the estimation and was fixed at the value of 5.0 for estimation 

stability. The resulting specification is effectively the same as a flexible Poisson-based 

specification. The flexibility arises because we estimated two flexibility parameters for the auto 

ownership count to accommodate spikes in ownership of one car and two cars (see Table 4.2). 

These came out to be very statistically significant as follows: 832.01   (t-statistic of 10.22) and 

710.12   (t-statistic of 11.09), and are not reported in Table 4.3.  

The “number of children” effects in Table 4.3 (corresponding to elements of the 

coefficient vectors d
~

 and d


 in Section 4.2 and in Appendix B) suggest that the presence of a 

child leads to a shorter household commute distance compared to the case without a child. 

Further, as the number of children increases, there is a continued linear reduction effect on 

household commute distance.  In contrast to the negative relationship between number of 

children and household commute distance, there is a positive relationship between number of 

children and auto ownership propensity, presumably due to additional mobility needs placed 

upon the household to chauffeur children from one activity to another (see also Potoglou and 

Susilo, 2008 and Ma and Srinivasan, 2010 for a similar result).  

The latent construct effects in Table 4.3 indicate, not surprisingly, that “green” 

households have a lower household commute distance relative to their peers, as such households 

are likely to consciously locate themselves closer to work locations to enable the use of non-

motorized forms of transportation. The loadings of the latent constructs on the ordinal indicator 

variables are intuitive, and indicate that “green” households are likely to value, in terms of 

importance in residential choice decisions, being in a walkable neighborhood in proximal reach 

of activity opportunities, and being close to public transit and the work place. On the other hand, 



 

131 

households with a high LLP propensity value prefer neighborhoods with good quality of schools 

perhaps as a means to signal exclusivity as neighborhoods with good quality schools are 

typically synonymous with relatively wealthy neighborhoods with a good tax base (note also that 

the number of children does affect LLP propensity). Households with high LLP propensity also 

value space and privacy, have a preference to be in close proximity of highways (presumably as 

a means to retain the ability to reach activities quickly even while maintaining a very private, 

spacious, and exclusive living quarter), and have a penchant for owning more cars. 

The endogenous effects in Table 4.3 are discussed together with the endogenous effects 

in Table 4.4 in Section 4.3.5.4.  



 

132 

Table 4.3. Estimation results for non-nominal variables of measurement equation 

Independent variables 

Continuous 

variable 
Ordinal variables Count variable 

Natural 

logarithm of 

household 

commute 

distance* 

Having a 

walkable 

neighborhood 

and being near 

local activities 

Being close to 

public transit 

Being within 

a 30-minute 

commute to 

work 

Having space 

and 

separation 

from others 

Quality of 

schools 

Being close 

to the 

highway 

Auto ownership 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Constants  1.881 11.78 1.461 4.49 0.910 4.10 1.382 8.67 1.071 7.12 0.333 7.21 0.865 6.30  0.899  6.34 

Thresholds for ordinal indicators                 

Somewhat unimportant & not 

important 
  0.462 15.65 0.418 13.00 0.375 20.00 0.591 15.56 0.732 18.26 0.573 14.52   

Not important & somewhat 

important 
  0.822 15.10 0.873 20.01 0.717 14.61 1.184 18.32 3.640 19.33 1.110 15.68   

Somewhat important and very 

important 
  1.678 14.10 1.513 11.89 1.374 13.20 2.142 14.22 5.722 19.69 2.295 17.21   

Household characteristics                 

Number of children in the 

household 
-0.334 -6.23 ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------  0.070  2.190 

Latent constructs                 

Green Lifestyle Propensity (GLP) -0.761 -12.12 0.203 13.72 0.262 11.81 0.297 14.71 ------ ------ ------ ------ ------ ------ -0.292 -11.41 

Luxury Lifestyle Propensity (LLP) ------ ------ ------ ------ ------ ------ ------ ------ 0.251 4.66 3.800 17.82 0.201 5.08  0.110  2.19 

Endogenous Effects                 

Residential density (base: >3000 

hh/sq-mile) 
                

Less than 750 hh/sq-mile ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ 0.511 6.145 

750-1999 hh/sq-mile ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ 0.438 5.793 

2000-3000 hh/sq-mile ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ 0.311 5.454 

------: Not significant in the case of the effect of residential density on commute distance, and not applicable in the case of the effects of residential density on the 

ordinal indicators (note that these ordinal indicators serve purely the purpose of better pinning down the latent constructs and the relationship between the 

latent constructs and exogenous covariates in the structural equation system).   

*: Estimated variance of commute distance is 1.333 and the associated t-stat is 3.281. 
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4.3.5.3 Residential density choice model and activity time-use results 

The estimation results for residential density and activity time use are presented in Table 4.4. 

The constant parameters do not have any substantive interpretation because of the presence of 

the continuous latent variables.  

The effects of the family structure variables indicate that single person households are 

most likely to stay away from the lowest density neighborhoods, while households with children 

(in particular, nuclear and single parent families) are most likely to live in the lowest density 

neighborhoods. Earlier research (see Kim and Chung, 2011) does suggest that single person 

households tend to locate themselves in denser neighborhoods, enabling easy access to social and 

related activity opportunities. Interestingly, single person households also appear to prefer 

medium-high density (2000-2,999 households per square mile) neighborhoods relative to the 

highest density neighborhoods, perhaps as a way of balancing space/privacy with activity 

accessibility and social networking opportunities in the immediate vicinity. The effects of the 

family structure variables on activity time-use indicate that single person households have the 

highest preference for in-home activities, while nuclear families and single-parent families, 

relative to other household types, have a clear higher baseline preference for OH shopping and 

serve passenger activities. On the other hand, there is an indication that single parent households, 

relative to nuclear families, are time poor (lack of time for leisure, sports, and relaxation 

activities) and have the danger of social exclusion (broadly defined as the “inability to participate 

fully in society”, one aspect of which is not being able to participate in the “normal activities of 

daily life”; see Farber et al., 2011).  
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Table 4.4. Estimation results for nominal variables of measurement equation 

Independent 

Variables 

Residential location (base: >3000 hh/sq-mile) Fraction of time spent on various activities by household  (base: In-home) 

Less than 750 

hh/sq-mile 

750-1999  

hh/sq-mile 

2000-3000 

hh/sq-mile 

Personal 

Business 
Shopping Recreation Dining Out Social 

Serve 

Passenger 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Constant -0.680 -6.73 -0.393 -4.88 -0.636 -9.53 -0.143 -3.64 -0.43 -7.70 -0.69 -12.66 -0.567 -14.05 -1.344 -17.48 -1.549 -19.99 

Family structurea                    

  Single person HH -0.180 -3.21 ------ ------  0.088 2.10 ------ ------ -0.596 -6.94 -0.565 -5.89 -0.144 -1.86 -0.405 -3.50 -1.411 -7.87 

  Nuclear family  0.355 10.23 ------ ------ ------ ------ ------ ------  1.611 23.13  0.446 5.49 ------ ------ 0.312 3.13 1.923 22.29 

  Single parent family  0.619  7.43 ------ ------  0.312 9.08 ------ ------  2.472 13.58 ------ ------ ------ ------ ------ ------ 1.392 5.61 

Fraction of adults by 

work status in HHb 
                  

  Part-time workers  0.256  2.19  0.282 2.26  0.110 2.00  0.365   3.06  0.679 5.73 ------ ------ ------ ------ 0.493 2.88 0.492 3.07 

  Self-employed 

  Workers 
 0.320  3.04  0.284 4.82  0.132 2.16 ------ ------  0.274 1.98 ------ ------ ------ ------ 0.394 2.06 ------ ------ 

  Non-workers  0.410  2.87  0.290 3.32  0.187 3.21  0.762   5.85  1.167 8.80  0.391 2.51 ------ ------ 0.771 4.09 1.122 6.56 

Latent constructs                   

  Green Lifestyle 

  Propensity (GLP) 
-0.051 -2.22 -0.152 -6.09 -0.098 -3.62 -0.720 -2.42 -0.681 -5.72  0.089 4.68 -1.030 -8.39 0.124 2.26 ------ ------ 

  Luxury Lifestyle 

  Propensity (LLP) 
-0.190 -2.17  0.073 2.90  0.051 2.82 ------ ------  0.265 2.29 ------ ------  0.125 2.20 ------ ------ ------ ------ 

Satiation parameters        0.029 24.23  0.075 20.62  0.092 18.33 0.038 19.22 0.168 14.26 0.017 15.98 

Endogenous Effects                   

Commute distance ------ ------ ------ ------ ------ ------ ------ ------  0.203 7.67 0.152 5.42 0.268 3.28 ------ ------ ------ ------ 

Residential density 

(base: >3000 hh/sq-

mile) 

                  

Less than 750 hh/sq-

mile 
------ ------ ------ ------ ------ ------ ------ ------ -0.681 -7.90 -0.203 -2.38 -0.456 -4.15 0.269 2.33 0.971 8.81 

750-1999  hh/sq- 

mile 
------ ------ ------ ------ ------ ------ 0.177  2.66 -0.517 -7.16 ------ ------ -0.423 -4.88 ------ ------ 0.614 6.19 

2000-3000 hh/sq-

mile 
------ ------ ------ ------ ------ ------ ------ ------ -0.234 -2.72 -0.245 -2.41 -0.493 -4.76 ------ ------ 0.510 4.42 

------: Not significant 
a: base is couple family and multi-adult households  
b: base is full-time workers 
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The next set of variables relate to the fraction of part-time, self-employed, and non-

workers in the household, with the fraction of full-time workers in the household constituting the 

base category. Overall, these coefficients indicate a pattern where households with a high 

fraction of full-time workers have a clear preference to reside in the highest density areas, with a 

generally increasing tendency of households with higher fractions of part-time, self-employed, 

and non-workers to locate in progressively lower density areas. This result may be a reflection of 

the benefits of knowledge spillovers through networking opportunities in highly dense urban 

regions, which enable full time workers to retain (and enhance) their competitive edge in the 

market place (see Autant-Bernard and LeSage, 2011).  

In terms of the latent constructs, “green” households tend to locate themselves in the 

highest density neighborhoods (>3000 households per square mile) and shy away from the 

medium density categories (750–1,999 or 2,000-2,999 households per square mile), while 

households with a high LLP tend to locate themselves in the medium density categories. The 

latter effect may be attributed to seeking a good balance between less dense, exclusive 

neighborhoods and good auto-based accessibility to OH activity opportunities. In addition, the 

effects of the latent constructs in the activity time-use model suggest that households with a high 

GLP, relative to their peers with a low GLP, spend more time at home, are less likely to pursue 

the more money-consuming (and potentially viewed as less “green”) personal business, 

shopping, and dining out activities, and are more likely to seek social networking opportunities 

as well as pursue active recreation and other recreation activities (such as going to sports events, 

theaters, cinemas or art galleries). Finally, in terms of the latent construct effects, households 

with a high LLP spend more time than their peers with a low LLP on shopping and dining out. 

This is reasonable, because such individuals not only have the financial wherewithal to consume 

goods and services, but may also use shopping and dining activities at fancy places as a way to 

seek social differentiation and signal power and wealth.  

The satiation parameters in Table 4.4, along with the baseline preference constants and 

baseline parameters, are estimated for each activity purpose (except the IH activity purpose) to 

best replicate the combination of participation rates, conditional-upon-participation durations, 

and the split between sole and joint participations with other activity purposes. The satiation 

parameters in Table 4.4 correspond to the  -profile. Satiation increases for purpose k as k  goes 

closer to zero ( 0k  for the IH activity in the  -profile by construction, because the IH 
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activity is always participated in and has a high baseline constant that has to be compensated by 

the high satiation). As expected initially from the descriptive statistics, the shopping, dining out, 

and serve passenger activity purposes have high satiation rates (low values of k ) among the OH 

activity purposes. The social activity purpose has a low participation rate, but a high duration 

conditional on participation, which leads to the low satiation (high value of k ) for this purpose 

given its high negative baseline constant. For the personal business purpose, while it has both a 

high participation rate and a high duration conditional on participation, it has the lowest 

participation all by itself as an OH activity purpose excepting for the social and serve passenger 

purposes (see Table 4.1). The result is that the satiation parameter has to accommodate this high 

tendency for non-solo personal business participations, which leads to a relatively high satiation 

(low value of k ) parameter for the personal business purpose.  

In each of the residential density and activity time use models, we also allowed a general 

error covariance matrix but we could not reject the hypothesis that the error covariance matrix 

was different from an independent and identically distributed error structure.  

4.3.5.4 Endogenous effects 

Tables 4.3 and 4.4 also present the endogenous effects. The final directions of the recursive 

endogenous effects were obtained in the current research after extensive testing of various model 

specifications, and choosing the specification that provided the best data fit in terms of the 

composite marginal log-likelihood value (note, however, that regardless of the presence or 

absence of recursive effects, the model is a joint model because of the presence of latent 

variables that impact the many dependent variables).  

Figure 4.1 presents the overall directions of the endogenous relationships, while also 

including the effects of the GLP and LLP latent constructs on the endogenous outcomes, as 

discussed in the previous two sections. Further, the figure presents the sign of the effects of the 

GLP and LLP constructs on the residential density, commute distance, and auto ownership 

endogenous outcomes (but not on the activity time-use variable, because this is a multiple 

discrete variable with differing effects of the latent constructs on different activity purposes). All 

of the latent constructs and the endogenous outcomes in Figure 4.1 are affected by demographic 

factors, which we do not show in Figure 4.1 to focus on the endogenous effects. Our results (see 

Figure 4.1 as well as Tables 4.3 and 4.4) of the endogenous effects indicate that, after 
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accommodating the jointness among the dependent variables caused by the latent (and 

stochastic) GLP and LLP latent constructs, the choice of residential density impacts both auto 

ownership and activity time-use.  In particular, residing in lower (higher) density neighborhoods 

leads to a higher (lower) auto ownership level, as has been well established in much of the earlier 

literature (see, for example, Bhat and Guo, 2007; Bhat et al., 2009; Aditjandra et al., 2012, Bhat 

et al., 2014, and Brownstone and Fang, 2014). Also, lower (higher) density tends to result in 

lower (higher) baseline preferences for (i.e., participations and time investments in) OH 

recreational activities, shopping, and dining out. These impacts may be attributed to higher 

densities being strongly correlated with more walk and bicycle infrastructure, better public 

transit services, and more opportunities for OH activities, and are consistent with earlier studies 

on time-use and physical activity. For example, Forsyth et al. (2009) and McCormack et al. 

(2014) indicate that higher density and mixed land-use increase time spent in neighborhood 

physical activity (primarily walking), while Wendel-Vos et al. (2007) and Ding et al. (2013) 

identify proximity to recreational activities (such as parks and exercise facilities) and even 

shopping locations as promoters of leisure time and overall physical activity. Also, Bhat et al. 

(2013b) and Born et al. (2014) find, consistent with our findings, that households in urban areas 

and high OH activity accessibility areas participate more in recreation, shopping, and dining out 

than peer households residing in other areas. On the other hand, the increased preference for OH 

social activities in the most sparsely populated neighborhoods is presumably because social 

activities are the easiest to pursue in locations with few to no activity centers (shopping places, 

restaurants, gyms, etc.). Further, as discussed in earlier studies (see Coleman, 2009, Romans et 

al., 2011, and Bernardo et al., 2015), this result is suggestive of a business-like culture in urban 

areas that is moving away from the relatively close-knit, informal, and social networks, but that 

still exists in non-urban areas for visiting and social get-togethers. Finally, in terms of residential 

location effects on time-use, time investment in serve passenger activity increases as one moves 

from the highest density neighborhoods to progressively lower density neighborhoods. 

Interestingly, we did not find any statistically significant evidence of a direct causal 

relationship between residential (household) density and commute distance, or auto ownership 

and commute distance. The former result suggests that simply building compact cities will not 

necessarily translate to more sustainable travel in terms of shorter commute distance, contrary to 

some other studies that suggest there are commuting-based sustainability benefits of compact 
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cities (see, for example, Boussauw et al., 2012). That is, while building compact neighborhoods 

may lead to shorter commutes for households who choose to reside in these compact 

neighborhoods, our results suggest that this is because households with a green lifestyle 

propensity self-select to live in such neighborhoods while those who are not green move out of 

such neighborhoods and have long commute distances. Thus, in the population as a whole, 

compact developments may not lead to shorter commute distances. The results in Figure 4.1 also 

indicate that auto ownership, by itself, has no impact on activity time-use. The implication, as in 

Bhat and Steed (2002) and Grigolon et al. (2013), is that lifestyles, demographics, and activity 

opportunities are the main drivers of activity-travel patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Effects of latent constructs and endogenous effects 

Commute distance, causally speaking, impacts only time use (Figure 4.1 and Table 4.4); 

households with longer commute distances spend more time on shopping, recreation, and dining 

out. This may the result of two reinforcing effects. First, as household commute distance 

increases, the number of opportunities for shopping, recreation, and dining out increases. 

Second, as household commute distance increases, it puts more time pressure on the household, 

which may be released by shopping more for easy-to-prepare meals and dining out. Some earlier 
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studies, including Wang et al. (2013) and Castro et al. (2011), have suggested the reverse -- that 

households with shorter commute distances participate more in non-work activities because of 

denser non-work activity locations and less time pressure. However, these earlier studies do not 

consider residential self-selection effects as we do. But this subject of the relationship between 

commute distances and non-work activity participation certainly deserves more exploration and 

the disentangling of multiple push-pull effects, as also acknowledged by the earlier studies just 

identified.  

4.3.5.5 Model data fit comparisons 

To assess the importance of considering jointness across choice dimensions, we also estimated 

an Independent Heterogeneous Data Model (IHDM) that does not consider such jointness (that 

is, the covariances engendered by the stochastic latent constructs in the GHDM model are 

ignored). In this IHDM model, we introduce the exogenous variables (sociodemographic 

variables) used to explain the latent constructs as exogenous variables in the choice dimension 

equations. This way, the contribution to the observed part of the utility due to sociodemographic 

variables is still maintained (and is allowed to vary relative to the GHDM to absorb, to the extent 

possible, the GHDM covariances due to unobserved effects). The resulting IHDM may be 

compared to the GHDM using the composite likelihood information criterion (CLIC) introduced 

by Varin and Vidoni (2005). The CLIC takes the following form (after replacing the composite 

marginal likelihood (CML) with the maximum approximate CML (MACML)): 





 1* )

ˆ
(ˆ)

ˆ
(ˆ)

ˆ
(log)

ˆ
(log θHθJθθ


trLL MACMLMACML

 (4.17) 

The model that provides a higher value of CLIC is preferred. The )
ˆ

(log θ


MACMLL  values for the 

GHDM and IHDM models were estimated to be -227,321.0 and -253,231.1, respectively, with 

the corresponding CLIC statistic values of -227,504.0 and -253,432.0. These CLIC statistics 

clearly favor the GHDM over the IHDM.  

All the ordinal variables used in the measurement equation are included solely for the 

purpose of model identification and do not serve any purpose in predicting the choice bundle 

once the model is estimated. Therefore, we can also use the familiar non-nested likelihood ratio 

test to compare the two models. To do so, we evaluate a predictive log-likelihood value of both 

the GHDM and IHDM models using the parameter values at the MACML convergent values by 

excluding the six ordinal variables. The same is also done to obtain to the constants-only log-
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likelihood value. Then, one can compute the adjusted likelihood ratio index of each model with 

respect to the log-likelihood with only the constants as follows: 

)(

)
ˆ

(
12
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M
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 L 


θ


 ,                       (4.18) 

where )
ˆ

(θ


 L  and )(c L  are the predictive log-likelihood functions at convergence and at 

constants, respectively, and M is the number of parameters (not including the constant(s) for each 

dimension and not including the ordinal indicators) estimated in the model. This test determines 

if the adjusted likelihood ratio indices of two non-nested models are significantly different. In 

particular, if the difference in the indices is   )( 2

1

2

2 , then the probability that this 

difference could have occurred by chance is no larger than  5.0

12 )]()(2[ MMc  L  in 

the asymptotic limit. A small value for the probability of chance occurrence indicates that the 

difference is statistically significant and that the model with the higher value for the adjusted 

likelihood ratio index is to be preferred. The )
ˆ

(θ


 L  values (number of parameters) for the 

GHDM and IHDM models were computed to be -21,322.1 (number of parameters = 89) and       

-32,028.1 (number of parameters = 152), respectively. The )(c L  value was -44,402.1, with the 

corresponding predictive 
2  values of 0.518 and 0.275 for the GHDM and IHDM models, 

respectively.  The non-nested adjusted likelihood ratio test returns a value of )147( , which is 

literally zero, clearly rejecting the IHDM model in favor of the GHDM model and underscoring 

the importance of considering the stochastic latent constructs that engender covariation among 

the choice dimensions. 

4.3.6 Examining “true” effects of neo-urbanist densification efforts 

To demonstrate the value of the proposed model, consider the GLP-caused associations among 

the many dimensions and, for now, ignore the LLP-caused associations. Also, we confine our 

attention to residential density, auto ownership, and OH recreational activity. According to our 

GHDM results, households with a high GLP have a generic preference (due to unobserved 

factors) to reside in the highest density neighborhoods, have low auto ownership levels, and are 

likely to pursue more OH recreational pursuits. Thus, because of GLP, households who happen 

to reside in the highest density neighborhoods tend to be there already because they are 

generically auto-disinclined and like to pursue recreational activities. But, even after capturing 
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these pre-dispositions (or associations) due to residential self-selection caused by unobserved 

factors, the GHDM indicates, through the endogenous effects, that the higher density “truly 

causes” households to own fewer cars and partake more in recreation pursuits. But if the 

residential self-selection effects were ignored (as is done by the IHDM model), the effect of 

moving a random household from a low density neighborhood to a high density neighborhood 

(or, equivalently, densifying an existing low density neighborhood) would be magnified in terms 

of auto ownership reduction (because the low auto ownership predisposition of the people living 

in the highest density neighborhoods would get tagged on to the “true” negative causal effect). 

Similarly, the positive effect of residential density on OH recreational pursuits would also be 

magnified (because the high OH recreational participation of the people living in the highest 

density neighborhood would again get tagged on to the “true” positive causal effect. In both 

these cases, there would be an overestimation of auto ownership reduction and OH recreational 

activity participation increase attributable to densification. Of course, how these impact 

motorized travel and traffic patterns will have to be determined through downstream models in 

an activity-based modeling system. The important point is that ignoring residential self-selection 

could lead to incorrect conclusions on the effects on auto ownership and activity time-use.  

 The intuitive explanation above does not consider the LLP-caused associations. Also, in 

the IHDM model, we allow explanatory demographic variables to impact the many choice 

dimensions directly. Thus, the final “net” effect of not accommodating residential self-selection 

cannot be gleaned as easily as described above. But to show a cumulative effect of capturing 

versus not capturing residential self-selection effects, we compute average treatment effects 

(ATEs) from the GHDM and IHDM models. The ATE measure for a variable provides the 

expected difference in that variable for a random household if it were located in a specific 

density configuration i as opposed to another density configuration ii  . We compute this 

measure for auto ownership and activity time-use as discussed in Appendix E. 

The analyst can compute the ATE measures for all the pairwise combinations of 

residential density category relocations. Here, we focus on the case when a household in the 

lowest density neighborhood (<750 households per square mile) is transplanted to the highest 

density neighborhood (>3000 households per square mile). For ease in discussion, in the rest of 

this section, we will refer to the former neighborhood type as a low density neighborhood, and 

the latter neighborhood type as a high density neighborhood. Table 4.5 presents the estimated 
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ATE values (and standard errors) for auto ownership and out-of-home activities for both the 

GHDM and IHDM models. The first row under the “GHDM model” heading indicates that a 

random household that is shifted from the low density category location to the high density 

category location is, on an average, likely to reduce its auto ownership level by 0.143 vehicles 

(standard error of 0.011). Equivalently, if 100 random households are relocated from the low 

density neighborhood to the high density neighborhood, the point estimate indicates a reduction 

in auto ownership by about 14 vehicles. On the other hand, the IHDM model estimate predicts a 

reduction of 0.340 vehicles (standard error of 0.021). That is, if 100 random households are 

relocated from the low density neighborhood to the high density neighborhood, the independent 

model point estimate projects a reduction in motorized vehicle ownership by about 34 vehicles. 

The exaggeration in the reduction in auto ownership based on the IHDM model (because of the 

change in residence from the low density to the high density neighborhood) is readily apparent, 

and is a reflection of unobserved residential self-selection effects not being controlled for. The t-

statistic value for the hypothesis of equality in the ATE estimates is 9.4, much higher than the 

table value even at the 0.005 level of significance, strongly rejecting equality between the two 

models. 

The other rows of the table provide the ATE values with respect to each of the OH 

activity purposes. For example, the ATE for the GHDM corresponding to personal business 

indicates that a random household that is shifted from the low density category location to the 

high density category location is, on average, likely to reduce its participation probability in 

personal business activity by 0.037. Equivalently, if 100 random households are relocated from 

the low density neighborhood to the high density neighborhood, the point estimate indicates a 

reduction in personal business activity by 3.7 participations during the course of the day. Other 

values may be similarly interpreted. The results show that the IHDM model exaggerates the ATE 

for every OH purpose, whether positive or negative. The ATEs for all OH activity purposes and 

both models are statistically significant at least at the 0.1 level of significance, and generally at a 

much lower level of significance. The t-statistics for testing the differences in the ATE estimates 

between the two models are in the range of 1.0-2.3 for the shopping, recreation, dining out, and 

social activities, though there is literally  no   statistically   significant  difference  the  personal  

business  and serve passenger purposes. Overall, the results show that, if self-selection effects are 

ignored, the result is exaggerated effects of densification.  
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Table 4.5. Treatment effects corresponding to transplanting a random household from a lowest 

density neighborhood (<750 hh/sq. mile) to highest density neighborhood (>3000 

hh/sq. mile) (standard error in parenthesis) 

 

Variable ATE from GHDM ATE from IHDM 

% Difference Attributable to 

“True” Effect 
Self-Selection 

Effect 

Vehicle ownership 0.143 (0.011)    0.340 (0.021) 42 58 

Participation on 

Personal business -0.037 (0.013)  -0.041 (0.013)  90 10 

Shopping 0.011 (0.004)   0.019 (0.007) 65 35  

Recreation 0.134 (0.021)   0.190 (0.014) 71 29  

Dining out 0.094 (0.020)   0.119 (0.021) 79 21  

Social -0.056 (0.014)  -0.078 (0.017) 72 28  

Serve Passenger -0.156 (0.033)  -0.162 (0.025) 96 4  

 

One can also quantify the magnitude of the “true” effect and the spurious residential self-

selection effect because the IHDM model comingles these effects, while the joint model 

estimates the “true” effect. Because the IHDM model consistently exaggerates the ATE, the 

“true” effect may be computed as a percentage of the GHDM ATE relative to the IHDM ATE, 

while the self-selection effect may be computed as the difference of the ATE of the two models 

as a percentage of the IHDM ATE. The last two columns of Table 4.5 indicate that unobserved 

self-selection effects are estimated, based on the point estimates, to constitute about 58% of the 

difference in the number of autos between low density and high density households, while “true” 

built environment effects constitute the remaining 42% of the difference. Clearly, the self-

selection effect is larger than the “true” effect, showing that ignoring self-selection will 

substantially overestimate the benefits of densification from an auto ownership reduction 

standpoint. Among the OH activity purposes, the self-selection effect is highest for the shopping, 

recreation, and social purposes, and the lowest for the serve passenger and personal business 

purposes. While the self-selection effect is lower than the “true density effect” for the OH 

activity purposes, it is still of the order of 30% for the shopping, recreation, and social purposes.  
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4.4 CONCLUSIONS 

In this chapter, we introduce a joint mixed model that includes an MDC outcome and a nominal 

discrete outcome, in addition to count, binary/ordinal outcomes, and continuous outcomes. The 

outcomes are modeled jointly in a parsimonious fashion by specifying latent underlying 

unobserved individual lifestyle, personality, and attitudinal factors. Reported subjective 

attitudinal indicators for the latent variables help provide additional information and stability to 

the model system. In addition, we formulate and implement a practical estimation approach for 

the resulting model using Bhat’s (2011) maximum approximate composite marginal likelihood 

(MACML) inference approach.  

From an empirical standpoint, we focus on examining residential self-selection in the 

context of an activity-based modeling (ABM) paradigm. In the activity-based approach, the 

impact of land-use and demand management policies on time-use behavior is an important 

precursor step to assessing the impact of such polices on travel behavior. Accordingly, in this 

research, we jointly model residential location-related choices (density of residential location and 

commute distance), along with auto ownership and activity time-use, in a way that has a social-

psychological underpinning through latent variables while also explicitly considering residential 

self-selection issues.  

The empirical application uses data from the 2014 Puget Sound Household Travel 

Survey. Two basic lifestyle-related factors; Green lifestyle propensity and luxury lifestyle 

propensity; are used to explain the multiple mixed dependent variables. These two latent and 

stochastic psycho-social constructs impact the dependent variables and engender covariation 

among them. The proposed generalized heterogeneous data model (GHDM) model with an MDC 

variable clearly rejects a simpler independent heterogeneous data model (IHDM) that ignores the 

effects of the latent constructs. Effectively, this implies the presence of self-selection effects 

(endogeneity), and suggests that modeling the choice processes independently will not capture 

true relationships that exist across the choice dimensions. This is also evidenced in the ATE 

measures, which emphasize that accounting for residential self-selection effects are not simply 

esoteric econometric pursuits, but can have important implications for land-use policy measures 

that focus on neo-urbanist design.  

 To summarize, this research proposes and applies an integrated framework to model 

multiple types of variables, including continuous, ordinal, count, nominal, and multiple discrete-
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continuous (MDC) variables. This research also contributes to disentangling residential self-

selection effects from “true” density effects on activity pursuits and auto ownership. We hope 

that the elegant way of tying the mixed types of dependent variables, including an MDC 

variable, through a parsimonious latent structure approach will open new doors in the exploration 

of the nexus between land use and activity-based travel modeling, as well as contribute to 

empirical research in many other fields where MDC variables occur frequently.  
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Chapter 5: Conclusions and Directions for Future Research 

5.1 DISSERTATION CONTRIBUTIONS 

The primary objective of this dissertation is to advance the econometric modeling of MDC 

choice situations, with an emphasis on two aspects of this modeling. The first is to include, in a 

general way, heterogeneity in the sensitivity to exogenous variables. The second is to extend the 

joint modeling of mixed outcomes to include MDC outcomes. Specific contributions of the 

dissertation include the following. 

5.1.1 Finite discrete mixture of normal (FDMN) version of the MDCP model 

Chapter 2 has proposed a new econometric formulation and a complete blueprint of an associated 

estimation method for a finite discrete mixture of normals version of the multiple discrete-

continuous probit (or FDMN-MDCP) model. The model allows consumers to choose multiple 

alternatives at the same time, along with the continuous dimension of the amount of 

consumption, and captures heterogeneity in the response coefficients of the baseline utility 

function. This is a very general way of including heterogeneity in the sensitivity to exogenous 

variables in the multiple discrete-continuous context, with the normally distributed random 

parameters approach and the latent class approach constituting special cases. The proposed 

approach is applied to model individuals’ recreational (long distance leisure trips) choice among 

alternative destination locations and the number of trips to each recreational destination location, 

using data drawn from the 2012 New Zealand Domestic Travel Survey (DTS). The Bayesian 

Information Criterion indicates that the preferred specification is a three-segment solution, with 

one segment loading on high flying low family commitment (HFLFC) individuals, the second on 

low income parents (LIP), and the third on couple baby-boomers (CBB). In a comparative 

empirical assessment of the FDMN-MDCP with the simpler LC-MDCP and RC-MDCP models, 

the FDMN-MDCP came out clearly as the winner in terms of data fit. More importantly, the 

FDMN-MDCP formulation appears to be a valuable methodology for marketing and positioning 

in markets that are characterized by multiple discreteness. 
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5.1.2 Multivariate skew-normal (MVSN) distribution for unobserved heterogeneity in the 

spatial MDC model 

In the third chapter, the MVSN distribution is used to include non-normality in the unobserved 

heterogeneity and kernel error structure. The MVSN distribution is tractable, parsimonious in 

parameters that regulate the distribution and its skewness, and includes the normal distribution as 

a special interior point case. To our knowledge, this is the first time a flexible and parametric 

skew-normal distribution for the kernel error term and/or random response coefficients has been 

used in both spatial- and aspatial-MDC models. The resulting model is estimated by using Bhat’s 

(2011) maximum approximate composite marginal likelihood (MACML) inference approach. 

Simulation exercises are undertaken to examine the ability of this estimation method to recover 

parameters from finite samples. As an empirical demonstration, the proposed approach is applied 

to land-use-change decisions using the city of Austin’s parcel-level land-use data. The results 

highlight the importance of introducing social dependence effects and non-normal kernel error 

terms from a policy standpoint. 

5.1.3 Incorporating a MDC outcome in the estimation of joint mixed models 

A joint mixed model that includes an MDC outcome and a nominal discrete outcome, in addition 

to count, binary/ordinal outcomes, and continuous outcomes was presented in Chapter 4. The 

outcomes are modeled jointly in a parsimonious fashion by specifying latent underlying 

unobserved individual lifestyle, personality, and attitudinal factors. Reported subjective 

attitudinal indicators for the latent variables help provide additional information and stability to 

the model system. In addition, a practical estimation approach for the resulting model using was 

implemented. From an empirical standpoint, residential self-selection in the context of an 

activity-based modeling (ABM) paradigm was examined. Residential location-related choices 

(density of residential location and commute distance) were modeled jointly, along with auto 

ownership and activity time-use, in a way that has a social-psychological underpinning through 

latent variables while also explicitly considering residential self-selection issues.  

5.2 LIMITATIONS OF THE CURRENT RESEARCH AND DIRECTIONS FOR FUTURE WORK 

This dissertation makes several contributions, as we discussed in the previous section. However, 

there are limitations of the current research that need to be explored in the future. Moreover, 

there are research areas that can expand the scope of the current study. A few of these 

ideas/thoughts are discussed below. 
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1. The FDMN framework allow us to implement an extremely flexible error structure for 

the MDCP model. On the other hand, the multivariate skew distribution is a more simple 

(fewer parameters) way to introduce non-normality in the MDCP model. A way to 

compare (or possibly combine) both frameworks is still in discussion. 

2. The empirical application of the FDMN-MDCP model is only one limited example. 

Future research should focus on applying the FDMN-MDCP formulation to other 

multiple discrete contexts. Also, while the application to recreational destination choice 

demonstrates the value of the formulation, future work should consider a much richer set 

of destination region attributes. 

3. Only one empirical application is presented for the SSN-MDC model. It is still under 

question the advantages of implementing such sophisticated model (skewness and spatial 

dependency modeled together) in other empirical contexts. 

4. The empirical application of the SSN-MDC model needs to be validated with future year 

data of urban development and land-use changes. Also, the link between our proposed 

land-use change model and an economic analysis (from the different stakeholders’ point 

of view, including environmental impacts) is still needed.  

5. Alternative ways to include non-normality are available and their interaction with spatial 

dependency need to be explored within the MDC framework. 

6. We hope that the elegant way of tying the mixed types of dependent variables, including 

an MDC variable, through a parsimonious latent structure approach will open new doors 

in the exploration of the nexus between land use and activity-based travel modeling, as 

well as contribute to empirical research in many other fields where MDC variables occur 

frequently. 

7. The MDC model that was included in the mixed modeling framework is simple and 

customized to the particular case of time allocation and activity participation. Further 

studies exploring incorporating individual-specific satiation parameters may improve the 

model framework. In addition, a model with goods (and price variation) instead of times 

can be applied to many other different MDC contexts. 
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Appendixes 

APPENDIX A: DEVELOPMENT OF THE LIKELIHOOD FUNCTION FOR THE FDMN MDCP MODEL 

To develop the likelihood function, define 
qM  as an identity matrix of size K–1 with an extra 

column of “–1” values added at the 
th

qm  column. Also, stack 
qgky  and 

qgkV  into K×1 

vectors )',...,,( 21 qgKqgqgqg yyyy  and )',...,,( 21 qgKqgqgqg VVVV  respectively, and let 

),...,,( 21
 qKqqq zzzz  be a K×D matrix of variable attributes. Then, we may write, in matrix 

notation, qgqqgqg βVy
~

z  and )(~ ,1

*

qgqgKqgqqg MVN ΨHM  yy , where qgqqg VMH   

and qqgqqqg MzΩzMΨ  . Next, partition the vector 
*

qgy  into a sub-vector 
*

,
~

NCqgy  of length 

NCqL , ×1 10( ,  KL NCq ) for the non-consumed goods, and another sub-vector 
*

,
~

Cqgy  of length 

CqL , ×1 10( ,  KL Cq ) for the consumed goods ( 1,,  KLL CqNCq ). Let 

   









 
 *

,

*

,

* ~,~~
CqgNCqgqg yyy , which may be obtained from 

*

qgy  as 
**~
qgqqg yy R , where 

qR  is a re-

arrangement matrix of dimension (K–1)×(K–1) with zeros and ones. For example, consider a 

consumer q who chooses among five goods (K=5), and selects goods 2, 3, and 5 for 

consumption. Thus, 2qm , 2, NCqL  (corresponding to the non-consumed goods 1 and 4), and 

2, CqL  (corresponding to the consumed goods 3 and 5, with good 2 serving as the base good 

needed to take utility differentials). Then, the re-arrangement matrix 
qR  (for goods 1, 3, 4, and 

5) is provided in Equation (A.1): 

,

1000

0010

0100

0001

,

,







































Cq

NCq

q

R

R

R    (A.1) 

where the upper sub-matrix 
NCq ,R  corresponds to the non-consumed goods (of dimension 

)1(,  KL NCq ) and the lower sub-matrix 
Cq ,R  corresponds to the consumed goods (of 

dimension )1(,  KL Cq ). Note also that 
*

,

*

,
~

qgNCqNCqg yy R  and 
*

,

*

,
~

qgCqCqg yy R . 
NCq ,R  has as 

many rows as the number of non-consumed alternatives and as many columns as the number of 

alternatives minus one (each column corresponds to an alternative, except the 
th

qm  alternative). 
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Then, for each row, 
NCq ,R  has a value of “1” in one of the columns corresponding to an 

alternative that is not consumed, and the value of “0” everywhere else. A similar construction is 

involved in creating the 
Cq ,R  matrix. 

Consistent with the above re-arrangement, define qgqqg HRH 
~

 , qgNCqNCqg HRH ,,

~
 , 

qgCqCqg HRH ,,

~
 , and 











 


CqgCNCqg

CNCqgNCqg

qqgqqg

,,,

,,,
~~

~~
~

ΨΨ

ΨΨ
RΨRΨ , where 

NCqqgNCqNCqg ,,,

~
RΨRΨ  , CqqgCqCqg ,,,

~
RΨRΨ  , and CqqgNCqCNCqg ,,,,

~
RΨRΨ  . Then, the 

likelihood function corresponding to the consumption quantity vector 
*

xq  for consumer q may be 

obtained from the KKT conditions in Equation (2.6), provided as Equation (A.2): 

  ,
~

,
~

|,)det(

,

, ,,1




0

h

ΨH0J

NCq

Cq NCqqgqgLNCqKqgqg fL dhh   (A.2) 

where )det( qgJ  is the determinant of the Jacobian of the transformation from 
*

qgy  to the 

consumption quantities 
*

xq  (see Bhat, 2008), as Equation (A.3) indicates: 

,
1

1
)det(

*

*
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



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


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
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
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
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
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


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


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






 

 q qq k qm

qk

qgk

qgkqk

k qgkqk

qgk

qg
p

px

x CC 






J   (A.3) 

where 
qC  is the set of goods consumed by consumer q (including good 

qm ). 
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APPENDIX B: GHDM ESTIMATION INCLUDING MDC VARIABLES 

Let )1(  NHE . Define     ],vector1[,~, ** 










 
 Ey


yyy  

 ],matrix[),~,( AE  A0γγγ


matrix],[),
~

,( LE  dddd


 and 

),~,(  


εεε  vector),1( E  where A0  is a vector of zeros of dimension 1A . We will assume 

that the error vectors η , ε


, ξ , and ς  are independent of each other. While not strictly necessary 

(and can be relaxed in a very straightforward manner within the estimation framework of our 

model system as long as the resulting model is identified), the assumption aids in developing 

general sufficiency conditions for identification of parameters in a mixed model when the latent 

variable vector 
*z  already provides a mechanism to generate covariance among the mixed 

outcomes. Further, define the following: 

,)~,,(  uuyyu


,,,(,],)(,)[(
~

)μdπVbxxγV  


and .),,(  ε


  Then, we may write 

the continuous (observed or latent) components of the structural and the measurement equations 

of the model system compactly as: 

η αwz*
              (B.1) 

κπzVyu * 
~

, 

matrix)2()2(1)(Var with 

























 KIEKIE

Ω0000

0MΛM000

0000

000IDEN0

0000Σ

Σ

N
κ   

To develop the reduced form equations, replace the right side for 
*z  in the second part of 

Equation (B.1) to obtain the following system: 

 πηwπVκηwπVκπzVyu
*

αα
~

)(
~~

. (B.2) 

Then ),,(2 ΘBMVN ~yu K-IE    where ,
~

wπVB α  and Θ = ΣΓ


ππ .                                   

The question of identification relates to whether all the elements in the model system are 

estimable from the elements of B  and Θ . One may analyze this by starting from Stapleton’s 

(1978) sufficiency conditions for multiple-indicator multiple-cause (MIMIC) models. 

Conforming with the set-up of Stapleton and earlier MIMIC models, we will assume that the 
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number of measurement equations without the nominal and non-MDC variables exceeds the 

number of latent factors. Then, sufficiency conditions may be developed for the GHDM-MDC 

model following the same line of argument as in Bhat et al. (2014) for the GHDM. In particular, 

all parameters are estimable under the following conditions: (1) diagonality is maintained across 

the elements of the error term vector ε


 (that is, Σ


 is diagonal), (2) Γ  in the structural equation 

is specified to be a correlation matrix, (3) for each latent variable, there is at least one outcome 

variable that loads only on that latent variable and no other latent variable (that is, there is at least 

one factor complexity one outcome variable for each latent variable) (see also Reilly and 

O’Brien, 1996), (4) the element corresponding to the effect of each variable is zero in either the 

γ


 vector or the α  vector or both vectors, (5)  if an element of ib
~

corresponding to a specific 

variable in the vector x  is non-zero, a sufficient condition for identification is that the utility of 

alternative i  in the nominal variable model not depend on any latent variable that contains that 

specific variable as a covariate in the structural equation system, (6) endogenous variable effects 

can be specified only in a single direction and when a continuous observed endogenous variable 

appears as a right side variable in the regression for another continuous observed endogenous 

variable, or as a right side variable in the latent regression underlying another count or ordinal 

endogenous variable, each latent variable appearing in the regression/latent regression for the 

other endogenous continuous/count/ordinal variable (say variable A) should have two factor 

complexity one outcome variables after excluding the equation for variable A, and (7) If an 

element of kδ  corresponding to a specific variable in the vector x  is non-zero, a sufficient 

condition for identification is that the utility of alternative k in the MDC model not depend on 

any latent variable that contains that specific variable as a covariate in the structural equation 

system. Of course, there may be much less restrictive situations under which the parameters are 

all still identified, but the number of such specific situations is too numerous to list here.   

To estimate the model, one can use a maximum simulated likelihood approach by writing 

the multivariate normal density function for the vector yu  as the product of the marginal 

distribution of the continuous components in yu  (corresponding to the H continuous outcomes 

and the consumed alternatives from among the K–1 MDC inside alternatives) and the conditional 

distribution of the remaining components in yu  given the continuous components. Then, the 

conditional density function can be integrated appropriately. Specifically, define a EE
~~

  matrix 
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M
~

 )]2(
~

[  KIEE , and fill it with all zeros. Then, place an identity matrix of size H in the 

first H rows and first H columns. Then, in the next CF
~

 rows, place an element of ‘1’ in the  

thH )1(   row and the 
th

CFIE ])1[1(   column, an element of ‘1’ in the  
thH )2(   row and 

the 
th

CFIE ])2[1(  column, and so on until an element of ‘1’ in the  
th

CFH )
~

(   row and the 

th

CC FFIE ])
~

[1(   column. Also, in the 
th

CFH )1
~

(   row through the 

th

C EFH )1
~

(  row, place an identity matrix of size ,1E starting from the 
thH )1(   column 

and ending at the 
thIE )1(   column. Finally, in the last NCF

~
 rows, place an element of ‘1’ in 

the  
th

C IFE )
~

(   row and the 
th

NCFIE ])1[1(   column, an element of ‘1’ in the  

th

C IFE )1
~

(   row and the 
th

NCFIE ])2[1(  column, and so on until an element of ‘1’ in 

the  
thKIE )2(   row and the 

th

CC FFIE ]
~

[1(   column. Define ),(
~~ yuuy M  

,
~~

BB M  and MΘMΘ 
~~~

. Next, partition the vector uy~  into two components: 

]
~

:1[~~
1 CFH  uyuy  and ],

~
:1

~
[~~

2 EFH C  uyuy  where ]
~

:1[~
CFH uy is the sub-vector of  

uy~  corresponding to the first through the 
th

CFH )
~

(   element, and ]
~

:1
~

[~ EFH C uy  is the 

sub-vector of uy~  corresponding to the 
th

CFH )1
~

(   element through the last element E
~

.  

Next, partition the vector B
~

 into two components: ]
~

:1[ 
~~

1 CFH  BB  and 

]
~

:1
~

[ 
~~

2 EFH C  BB . Correspondingly partition Θ
~

: ]
~

:1,
~

:1[
~

 
~

1 CC FHFH ΘΘ , 

]
~

:1
~

,
~

:1
~

[
~

 
~

2 EFHEFH CC ΘΘ , and ]
~

:1,
~

:1
~

[
~

 
~

12 CC FHEFH ΘΘ . 

Then, we may write: 

,~

~
~

2

1











uy

uy
uy and,~

~
~
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
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


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B 










2

12

12

1
~

~

~

~
~

Θ

Θ

Θ

Θ
Θ  vector,       (B.3) 

Further, define  1111222

~~~~~
BuyBB  ΘΘ


, .

~~~~
1211222 ΘΘΘΘΘ 


 

  ])1)
~

([(,,~
~

1








 


 NCFIlowlowlow FIN

NC

ψψψ


 vector) and 

  ])1)
~

([(,,~
~

1








 


 NCFIupupup FIN

NC

0ψψψ


 

vector), where  
NCFI

~
1

  is a 1)
~

1(  NCFI -
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column vector of negative infinities, and NCFI
~

1
0  is another 1)

~
1(  NCFI -column vector of 

zeros. Then, the likelihood function may be written as: 

  ,~ Pr)
~

 ,
~

) ,(()det()( 211~~ uplowFFH CC

fL ψuyψB|yθ





Θ0J                                         (B.4)   

rdff
NCCC FIN

D

FFH
),|()

~
 ,

~
) ,(()det(  22~11~~ ΩΘ0J


BrB|y

r

 

     

 

where )det(J  is the determinant of the Jacobian given by  

,
1

1
)det(
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

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
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


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

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






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 CC k k

kk

k kk

k t

t 






J C  is the set of activity purposes invested in by the 

individual (including activity purpose K), and

 

the integration domain }:{ uplowrD ψrψr


  is 

simply the multivariate region of the elements of the 2
~uy  vector. )

~
,

~
) ,( 11~~ Θ0 B|y

CC FFH
f


 is the 

multivariate normal density function of dimension CFH
~

  with a mean of 1

~
B  and a covariance 

of 1

~
Θ , and evaluated at ) ,( ~

CF
0y . The likelihood function for a sample of Q decision-makers is 

obtained as the product of the individual-level likelihood functions. 

 The likelihood function in Equation (B.4) involves the evaluation of an )
~

( NCFIN  -

dimensional rectangular integral for each decision-maker, which can be computationally 

expensive. So, the Maximum Approximate Composite Marginal Likelihood (MACML) approach 

of Bhat (2011) is used.  

The joint mixed model system and the MACML estimation approach 

Consider the following (pairwise) composite marginal likelihood function formed by taking the 

products (across the N ordinal variables, the count variable, and  the nominal variable) of the 

joint pairwise probability of the chosen alternatives for a decision-maker, and computed using 

the analytic approximation of the multivariate normal cumulative distribution (MVNCD) 

function. 
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 (B.5) 

In the above CML approach, the multivariate normal cumulative distribution (MVNCD) function 

appearing in the CML function is of dimension equal to (1) two for the second component 

(corresponding to the probability of each pair of observed ordinal outcomes), (2) two for the 

third component (corresponding to the probability of each pair of an observed ordinal outcome 

and the observed count outcome), (3) I for the fourth component (corresponding to the 

probability of each combination of the observed nominal outcome with an observed ordinal 

outcome), (5) I for the fifth component (corresponding to the probability of the observed nominal 

outcome and the observed count outcome), (6) 1
~

NCF  for the sixth component (corresponding 

to a the probability of each combination of the observed MDC outcome of the observed time 

investment vector *t  and an observed ordinal outcome), and (7) 1
~

NCF  for the seventh 

component (corresponding to the combination of the MDC outcome and the count outcome), and 

(8) 1
~

 IFNC  for the eighth component (corresponding to the probability of the observed MDC 

and observed nominal outcome).  

To explicitly write out the CML function, define ω  as the diagonal matrix of standard 

deviations of matrix Δ , h  as the hth diagonal element of ω , );(. **
ΔR  for the multivariate 

standard normal density function of dimension R and correlation matrix *
Δ  (

11* 





 ωΔωΔ ), and 

);(. *ΔR  for the multivariate standard normal cumulative distribution function of dimension R 

and correlation matrix 
*

Δ . Define two selection matrices as follows: (1) vD  is an 

)
~~

( CFHEI   selection matrix with an entry of ‘1’ in the first row and the thv column, and an 

identity matrix of size 1I  occupying the last 1I  rows and the 
thN )2(  through 

thIN ][  columns, and entries of ‘0’ everywhere else, (3) vA  is a )
~

()1
~

( CNC FHEF   
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selection matrix, with an entry of ‘1’ in the first row and the 
thv  column; in the next NCF

~
 rows, 

place an identity matrix of size NCF
~

 occupying columns 
thIN )1(   through 

th

NCFIN )
~

(  column; all other elements of vA  take a value of zero, and (4) C  is a 

)
~

()1
~

( CNC FHEIF   selection matrix as follows: Position an identity matrix of size 

( 1I ) occupying the first ( 1I ) rows and the 
thN )2(   through 

thIN )(   columns, and 

another identity matrix of size NCF
~

 occupying columns  
thIN )1(   through 

th

NCFIN )
~

(   

column; all other elements of C take a value of zero.  
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where  
vupψ


 represents the 

thv  element of  upψ


 (and similarly for other vectors), and 
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In the MACML approach, all MVNVD function evaluation greater than two dimensions are 

evaluated using an analytic approximation method rather than a simulation method. This 

combination of the CML with an analytic approximation for the MVNCD function is effective 

because the analytic approximation involves only univariate and bivariate cumulative normal 
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distribution function evaluations. The MVNCD analytic approximation method used here is 

based on linearization with binary variables (see Bhat, 2011). Write the resulting equivalent of 

Equation (B.6) computed using the analytic approximation for the MVNCD function as 

)(, θ


qMACMLL , after introducing the index q for individuals. The MACML estimator is then 

obtained by maximizing the following function:  

log 



Q

q

qMACMLMACML LL
1

, )(log)( θθ


.           (B.7) 

The covariance matrix of the parameters θ


 may be estimated by the inverse of 

Godambe’s (1960) sandwich information matrix (see Zhao and Joe, 2005, and Bhat, 2015).  
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Positive definiteness 

The )( LL  correlation matrix Γ , the  )1()1(  II  covariance matrix, and the )( KK   

covariance matrix have to be all  positive definite. An easy way to ensure the positive-

definiteness of these matrices is to use a Cholesky-decomposition and parameterize the CML 

function in terms of the Cholesky parameters. Further, because the matrix Γ  is a correlation 

matrix, we write each diagonal element (say the aath element) of the lower triangular Cholesky 

matrix of Γ  as 





1

1

21
a

j

ajp , where the ajp  elements are the Cholesky factors that are to be 

estimated.  
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APPENDIX C: DIAGRAMMATIC REPRESENTATION OF THE MDCP GHDM SYSTEM 
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APPENDIX D: DESCRIPTIVE CHARACTERISTICS OF THE PSRC SAMPLE 

Table D.1 provides descriptive statistics of the socioeconomic characteristics of the sample and 

that of the PSRC four-county region population as a whole from the 2010 Census. Of course, the 

comparison is not really appropriate (because we are unable to obtain, from the Census data, 

statistics solely on 1+-worker households with at least one person employed outside the home). 

But we provide the population statistics just for informational purposes.  

According to the statistics provided in Table D.1, a majority of the households are couple 

families (34.2%) or single person (27.8%), though there are also a sizeable number of nuclear 

families (20.2) and multi-adult households (the term “multi-adult is used here to represent more 

than two adults in the household; this category includes extended families and room-mates). The 

percentage of single parent families in our sample of 1+worker households is very low relative to 

the general population. The fractions of male and female adults within the household, when 

averaged across all sample households, are close to the 50% split observed in the population. Not 

surprisingly, the sample households in general are much more educated than the households in 

the population. This is also reflected in the high percentage of households with an annual income 

of over 75,000, though we do not have the income information for the PSRC region from the 

2010 Census data. The distribution of the number of children shows a high percentage of 

childless households, consistent with the high percentage of single person, couple, and multi-

adult households (though multi-adult households contribute to 3.3% of the 74.9% of childless 

households). The percentage of childless households is of the same order in the sample and the 

Census data, though the Census does not provide the breakdown by number of children for 

households with children. The fraction of adults by age in the sample, when averaged across all 

sample household, is highly loaded on the 35-54 year category relative to the entire population, 

with much smaller representation of individuals in the 65 years and beyond category. This is 

again not surprising given the focus on 1+-worker households in our sample. The work status 

distribution is not available from the Census, but the sample statistics on the fraction of adults in 

the household in each of four categories; full-time workers, part-time workers, self-employed 

workers, and non-workers; clearly indicates a high fraction of full-time workers, with the 

fraction of adults in the other three categories being of the same order and range from 0.066 to 

0.128.  
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Table D.1. Sample characteristics of independent variables 

Socio 

demographic 
Categories 

Sample 

Distribution 

Census 

Distribution 

Family 

structure 

Single person household 27.8% 31.0% 

Single parent family 1.6% 9.0% 

Couple family 34.2% 29.7% 

Nuclear family  20.2% 23.0% 

Multi-person household 16.2% 7.3% 

Gender 
Fraction of male adults in household (mean) 0.468 0.50 

Fraction of female adults in household (mean) 0.532 0.50 

Educational 

attainment 

Fraction of adults with High school or less in household (mean) 0.097 0.303 

Fraction of adults with Some college in household (mean) 0.233 0.327 

Fraction of adults with a Bachelor’s degree in household (mean) 0.382 0.239 

Fraction of adults with Graduate degree in household (mean) 0.288 0.131 

Household 

income 

$0 to below $25,000 5.9% NA 

$25,000 to below $35,000 7.0% NA 

$35,000 to below $50,000 10.7% NA 

$50,000 to below $75,000 18.3% NA 

$75,000 and above 558.1% NA 

Number of 

children 

No kids 74.9% 70.1% 

One kid 12.6% NA 

Two kids 10.0% NA 

Three or more kids 2.5% NA 

Age 

Fraction of adults aged 18 to 34 in household (mean) 0.341 0.349 

Fraction of adults aged 35 to 54 in household (mean) 0.421 0.369 

Fraction of adults aged 55 to 64 in household (mean) 0.185 0.147 

Fraction of adults 65 years old or older in household (mean) 0.053 0.135 

Adult work 

status 

Fraction of full-time working adults in the household (mean) 0.700 NA 

Fraction of part-time working adults in the household (mean) 0.106 NA 

Fraction of self-employed working adults in the household (mean) 0.066 NA 

Fraction of non-working adults in the household (mean) 0.128 NA 

*NA: Not available 
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APPENDIX E: COMPUTATION OF THE AVERAGE TREATMENT EFFECTS 

For auto ownership, the measure is estimated as follows for each model: 

  
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where qia  is the dummy variable for the density category i for the household q. Although the 

summation in the equation above extends until infinity, we consider counts only up to g=10, 

which is the maximum vehicle ownership level observed in the data set. The standard error of the 

measure is computed using bootstraps from the sampling distributions of the estimated 

parameters. 

For the activity time use variables (MDC variable), we focus only on the participation 

dimension here and compute the ATE measure for the out-of-home activity k (k=1,2,…,K–1) as 

follows: 
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where qkt  is the time spent by individual q on the out-of-home activity k. To compute the 

probability that 0qkt , we drew, for each individual, 100 sets of 1000 realizations from a 

multivariate normal sampling distribution of estimated parameters and the distribution of the 

error terms involved. For each individual, each set, and each realization, we used the forecasting 

algorithm of Pinjari and Bhat (2014) to predict time allocations and, then, for each individual and 

each set, evaluated the share of the 1000 realizations that predicted 0qkt  for each of the two 

density categories involved (that is, i  and ).i The treatment effect is then computed as in 

Equation (E.1) for each set, and the mean across all the 100 sets was computed as the final ATE 

effect and the standard deviation across the 100 sets was computed as the standard error estimate.  

 

 


