
Copyright

by

Emre Arda Sisbot

2015

The Dissertation Committee for Emre Arda Sisbot
certifies that this is the approved version of the following dissertation:

Fluid and Queueing Networks with

Gurvich-type Routing

Committee:

John J. Hasenbein, Supervisor

J. Eric Bickel

Milica Cudina

Dragan Djurdjanovic

Aida Khajavirad

Fluid and Queueing Networks with

Gurvich-type Routing

by

Emre Arda Sisbot, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2015

Dedicated to my family.

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. Hasenbein.

I am deeply grateful to him, not only for his guidance but also for his patience

and kindness over the last few years. He showed me how to have an eye for

detail while keeping the big picture in mind. I also want to thank my commit-

tee members, Professors J. Eric Bickel, Milica Cudina, Dragan Djurdjanovic

and Aida Khajavirad for their insightful suggestions.

I have been fortunate to have made many good friends in Austin. Spe-

cial thanks are due to Tao, for not only being the greatest office-mate but

also for the constant stream of interesting conversations. I am grateful to

the Gomez-Contreras clan for making me feel like a part of their family. My

roommate for years, Gokhan, deserves special thanks for his support on every

bump along the way. Finally, I would like to thank my many friends back

home, especially Sedef, for their genuine support regardless of the distance.

Last but not least, I would like to thank my family for their endless

love and encouragement: my father, Sedat, for motivating me through out this

journey, my mom, Nuket, for her unconditional love and my brother, Akin,

for always being a great example to follow.

To those I have mentioned and the countless others who have supported

and helped me along the way, I offer a heartfelt thank you.

v

Fluid and Queueing Networks with

Gurvich-type Routing

Publication No.

Emre Arda Sisbot, Ph.D.

The University of Texas at Austin, 2015

Supervisor: John J. Hasenbein

Queueing networks have applications in a wide range of domains, from

call center management to telecommunication networks. Motivated by a health-

care application, in this dissertation, we analyze a class of queueing and fluid

networks with an additional routing option that we call Gurvich-type rout-

ing. The networks we consider include parallel buffers, each associated with

a different class of entity, and Gurvich-type routing allows to control the as-

signment of an incoming entity to one of the classes. In addition to routing,

scheduling of entities is also controlled as the classes of entities compete for

service at the same station. A major theme in this work is the investigation of

the interplay of this routing option with the scheduling decisions in networks

with various topologies.

The first part of this work focuses on a queueing network composed

of two parallel buffers. We form a Markov decision process representation of

vi

this system and prove structural results on the optimal routing and schedul-

ing controls. Via these results, we determine a near-optimal discrete policy by

solving the associated fluid model along with perturbation expansions. In the

second part, we analyze a single-station fluid network composed of N parallel

buffers with an arbitrary N . For this network, along with structural proofs

on the optimal scheduling policies, we show that the optimal routing policies

are threshold-based. We then develop a numerical procedure to compute the

optimal policy for any initial state. The final part of this work extends the

analysis of the previous part to tandem fluid networks composed of two sta-

tions. For two different models, we provide results on the optimal scheduling

and routing policies.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 Contributions . 7

Chapter 2. A queueing model with two parallel buffers 10

2.1 Preliminaries and model description 14

2.2 Structural results . 19

2.3 Fluid approximation . 31

2.4 Perturbation expansions . 40

2.5 Asymptotics . 42

2.6 Numerical study . 48

Chapter 3. N-Buffer fluid model with Gurvich-type routing 57

3.1 Overview: Fluid models and the optimal control 58

3.2 Model description . 63

3.3 LP model . 65

3.4 Optimality equations . 68

3.5 The proof of the cµ rule . 69

3.5.1 Preliminaries . 71

3.5.2 The proof . 74

3.6 Other structural results . 78

3.7 Example . 83

3.8 An algorithm to compute the optimal trajectory 91

viii

Chapter 4. Tandem fluid networks with Gurvich-type routing 97

4.1 Tandem fluid network 1-N . 101

4.1.1 LP model . 104

4.1.2 Optimality equations 106

4.1.3 Structural results . 107

4.1.4 Example N2 = 2 . 120

4.1.5 Numerical procedure . 122

4.2 Tandem fluid network N -1 . 125

4.2.1 Optimality equations 127

4.2.2 Structural results . 128

Chapter 5. Conclusion 137

5.1 Future Work . 141

Bibliography 144

ix

List of Tables

2.1 Routing actions for states (i-1, j, C1), (i, j-1, C1), (i+1, j-1, C1) 25

2.2 Routing actions for states (i-1, j, C1), (i, j-1, C1), (i, j, C2) . . . 27

x

List of Figures

1.1 Two-buffer single flexible server model 2

1.2 A single-station network with Gurvich-type routing 3

1.3 Network representation for the Tandem 1-N 7

1.4 Network representation for the Tandem N -1 7

2.1 2-buffer queueing network with Gurvich-type routing 15

2.2 Progression of the optimal fluid policy 38

2.3 Routing policies with increasing slope : c2 = 1, λ = 0.473, µ1 =
0.5264, µ2 = 0.402 . 50

2.4 Routing policies with increasing offset : c1 = 10, c2 = 1, λ =
0.485, µ1 = 0.515 . 51

2.5 Performance of offset settings under different parameter settings 53

2.6 Performance of proposed policy under different parameter settings 54

2.7 Routing controls of ΠD vs. optimal average cost policy for
c1, c2 = {10, 1}, ρ = 0.85 . 56

3.1 N -buffer fluid network with Gurvich-type routing 64

3.2 Example of Lagrange Multipliers for different routing paths . . 84

4.1 MCQN composed of 2 stations in tandem 98

4.2 Network representation for the Tandem 1-N 99

4.3 Network representation for the Tandem N -1 100

4.4 Network representation for the Tandem 1-N 102

4.5 Tandem 1-N Network with N2 = 1 110

4.6 Network representation for the Tandem N -1 126

4.7 Example: The optimal state trajectory for an instance 133

xi

Chapter 1

Introduction

In a simple emergency system patients arrive to the hospital, check-in

at the reception and wait until they are called for an examination. Consider

a system composed of a single doctor and two waiting rooms with only one

room having a stand-by intern/doctor. The stand-by intern collects informa-

tion and makes an initial diagnosis on the patient’s situation. Therefore the

doctor spends less time in the examination compared to patients coming from

other waiting room. Note the trade-off: patients who wait in the room with

the intern are more costly to the hospital yet faster to examine. Hospital man-

agement then faces two decision problems: (1) which room to route a patient

upon arrival, (2) which type of patient is sent to doctor, when she becomes

free.

This example can be stylized as a 2-buffer single flexible server queue-

ing model. Queues correspond to waiting rooms, the server to the doctor and

for consistency with the queueing theory terminology we use the term “job”

instead of “patient.” We refer to jobs that wait in Queue 1(2) as class 1(2)

jobs and both classes of jobs wait in queues for service. The server is flexible

in the sense that it can process jobs of either class. However it can only pro-

1

cess a single job at once. Jobs belonging to the same class i have the same

time-homogeneous holding cost, ci, and the service time in the server is an

exponentially distributed random variable with rate µi. Furthermore, we as-

sume that jobs arrive to the system according to a Poisson process with rate

λ. Figure 1.1 depicts this system.

Queue 1

��

Queue 2

��

Server

��

��

Routing Scheduling

(Allocation)

�

Figure 1.1: Two-buffer single flexible server model

The system manager needs to decide whether to route an incoming job

to Queue 1 or Queue 2 and whether to process a class 1 or class 2 job when the

server becomes available. What is then the optimal policy? We can consider

the simple cases. First, suppose c1 = c2. It is then optimal to route every

incoming job to the queue with faster service. Second, if µ1 = µ2 the optimal

policy is to route any incoming patient to the queue with lower cost. How

about when c1 > c2 and µ1 > µ2? Then, there is a trade-off between waiting

costs and service times and the optimal policy is not obvious. It is intuitive

to think that the actions that minimize the marginal cost may compose the

optimal policy. Denoting the number of jobs in Queue i at time t by Qi(t), such

2

a policy would route the incoming job to the queue with lowest (ciµi(Qi(t)+1)).

As we analyze in this dissertation, this turns out to be suboptimal.

We just introduced a small queueing system but this system can be

generalized to a large number of queues, as shown in Figure 1.2. Corresponding

to the initial example, there may be multiple waiting rooms with stand-by

interns receiving different wages based on their rank. This type of routing

option which we call Gurvich type routing, considers routing to different classes

of jobs competing for service at the same station. In this dissertation, we

focus on various topologies of queueing networks with Gurvich type routing.

The models considered include single and multi-station networks in discrete-

stochastic and continuous-deterministic contexts corresponding to queueing

and fluid models, respectively.

1

2

�

.

.

.

.

.

.

Figure 1.2: A single-station network with Gurvich-type routing

In the single-station case, as given in Figure 1.2, the network is theoret-

ically interesting because of its affinity to two well-known classes of networks:

multiclass queueing networks and inverted-V queueing networks. Without

3

the routing control (assuming each queue has a dedicated arrival stream), a

queueuing network with Gurvich type routing reduces to a multiclass network.

For such a network, Cox and Smith [11] proved that processing priority should

be given to the class of jobs with the highest product of processing rate and

holding cost. This result, the cµ rule, implies that optimal scheduling policy

is a static priority rule. Multiclass networks have many applications from pro-

duction systems to packet processing in wireless networks and there has been

significant work on extending the cµ rule to more general cost functions (see

Van Mieghem [32], Mandelbaum and Stolyar [26], Gurvich and Whitt [17]).

If, instead of a single server every job class had a dedicated server the

resulting network would be an inverted-V network. These networks model call

centers, for example, and determining where to route an incoming job is one

of the most challenging queueing control problems. Consider such a network

with only two queues, each having their own server with one being fast and the

other slow. With the goal of minimizing total number of jobs in system, the

Faster Servers First (FSF) policy makes intuitive sense. This policy suggests

that upon a job arrival or a service completion, a job should be sent to the

fastest server available. Surprisingly, it is sometimes necessary to keep the

customers waiting even if the slow server is idle (Lin and Kumar [24]). Even

in small queueing systems no closed form optimal routing policy is available

(Ahn and Lewis [1]).

Therefore, even in a small-scale queueing network, it is interesting to

investigate the interplay between scheduling and this additional option of rout-

4

ing. In Chapter 2, we focus on the model shown in Figure 1.1. Key questions

include: Does the cµ rule apply for the optimal scheduling policy? What is

the structure of the optimal routing policy? Using the Markov decision pro-

cess formulation of the model, we obtain structural results to answer questions

regarding the structure of the optimal policy. The fact that the cµ rule holds

and the routing policy is of threshold form motivate us to develop a heuristic

based on a continuous (fluid) relaxation of this model. We use the optimal pol-

icy resulting from the fluid relaxation and additionally perform perturbation

expansions for further improvements. Translating the resulting continuous

policy into a discrete one requires particular care as naive translations may

result in instability of the discrete-network (Stolyar [37]). Therefore, we study

the asymptotic behaviour of the fluid based policy and propose a discrete

translation that is asymptotically optimal in the total cost sense.

Although the queueing model analyzed in Chapter 2 gives insight into

the behaviour of larger sized networks, the “curse of dimensionality” limits

the queueing network analysis to moderate sized ones. Approximations are

often used when policies for large-scale queueing systems are desired. Fluid

approximations, as used in Chapter 2 to obtain an approximate policy, have

been popular in the literature due to their tractability and close connections

to their corresponding discrete-stochastic models. In the context of multi-class

queueing networks, Dai [13] established a link between stability of fluid and

discrete models and academic interest has been shifting to the optimization

of these models. In that respect, Chapter 3 is devoted to the fluid model

5

as shown in Figure 1.2. For this model, we again investigate the optimal

scheduling and routing policies. Along with structural proofs on the optimal

scheduling policies, we show that optimal routing policies are threshold-based

and we develop a procedure to explicitly determine the set of policies.

As a natural extension to single-station models, multi-station models

allow a more general modelling framework. A tandem network is a network

in which a station is serially connected to another. Even 2-station tandem

networks can have drastically different stability and optimality properties than

a single-station network. For example, the cµ rule in a single station MCQN

is proven not to hold for a two-station MCQN under particular parameter

settings (Hordjik and Koole [19]). Given that fluid models are useful in giving

insights on their discrete counterparts and the fact that one can translate

a fluid optimal policy to the discrete setting and still get an asymptotically

optimal policy (through the procedure outlined in Maglaras [25]), in Chapter

4 we again focus on fluid models. In that chapter, we analyze two different

tandem models. In the former one, the first station is composed of a single

buffer and server and the second station is a fluid network composed of N

parallel buffers and Gurvich type routing. In the latter model, we again have

a fluid network composed of N parallel buffers and Gurvich type routing, but

this time in station one and the second station is now composed of a single

buffer. Figure 1.3 and Figure 1.4 depict these networks.

6

Server 2

.

.

.

.

.

.

Server 1
1

2

�

Figure 1.3: Network representation for the Tandem 1-N

Server 1

.

.

.

.

.

.

Server 2
1

2

�

Figure 1.4: Network representation for the Tandem N -1

1.1 Contributions

Here, we provide a brief summary of our contributions in this disserta-

tion.

Chapter 2:

• We analyze in detail a novel queueing network.

• We prove that the cµ rule holds for the optimal scheduling control of the

server and that the optimal routing policy is of threshold form.

• We form and solve the associated fluid optimization problem.

• Through perturbation of the optimal fluid quadratic, we approximate

7

an offset term in the routing policy, and based on this offset term we

propose a policy to be implemented in the discrete network.

• Using fluid limits, we prove that the proposed policy is asymptotically

optimal and we analyze its performance through numerical studies.

Chapter 3:

• For a network composed of N -parallel buffers and a single flexible server,

we prove that optimal scheduling policy conforms to the cµ rule.

• We prove that the optimal routing policy is bang-bang and that the class

index that receives the incoming fluid is non-increasing with respect to

time.

• We characterize the full structure of Lagrange multipliers which in turn

lead to a general procedure to compute the optimal routing trajectory

under any initial state.

Chapter 4:

For a Tandem 1-N network:

• We prove that for the second station of the network, the optimal schedul-

ing control is the cµ rule.

• We outline explicitly the parameter regimes where the server in Station 1

never idles or idles until all buffers belonging to Station 2 are empty. We

8

also show that under particular parameter regimes, the optimal routing

policy of Station 2 is not bang-bang.

• We prove that idleness in Station 1 has a special structure: there can

exist at most a single time interval such that the server idles uninter-

ruptedly.

• Following the implications of these proofs, we derive fully the Lagrange

multipliers and then again show how to compute the optimal state tra-

jectory starting from a given initial state.

For Tandem N-1 network:

• For the network with N = 2, we prove that a static index-based priority

rule is optimal for the scheduling control of Station 1 under restricted

parameter settings.

• For the same network, we show that a cycle-type behavior where a buffer

first drains, then builds-up and re-drains is possible. Furthermore we

determine parameter regimes where this phenomena arises.

• Lastly, we derive the Lagrange multipliers for the network with N = 2

which in turn allow us to compute the optimal state trajectory.

9

Chapter 2

A queueing model with two parallel buffers

Queueing theory finds applications in many different areas such as wire-

less telecommunications networks, call center management and semiconductor

manufacturing. Various topologies arise in queuing networks in practice and

often these networks include various operational constraints. Therefore, the

research goals in the area include developing general modelling frameworks

to accomodate these various networks. Yet, general modelling attempts have

been fairly limited due to the trade-off between tractability and model com-

plexity. As a result, research in the area has evolved in two major directions:

exact analysis of small-scale models and approximations to large-scale ones.

The analysis in this chapter fits into the first research direction.

In this chapter, we focus on a single-station queueing network composed

of two parallel buffers and a single flexible server. The decision-maker has to

determine which class of job is pushed into service when the server becomes

idle and to which queue an incoming job is routed. If each of the queues had

their own arrival stream, the network would reduce to a multi-class queueing

network. For a MCQN with any number of parallel buffers and a single flexi-

ble server, the cµ rule gives the optimal allocation sequence when the holding

10

cost is a linear combination of the number of tasks in the competing queues.

Following this rule, the queues are ordered according to the value of the prod-

uct cµ, from largest to smallest, and the server always selects a task from the

first queue (the one with largest cµ value) unless it is empty; in that case, the

server selects the second queue and so on. A striking property of this rule is

that it neither depends on the arrival streams of individual queues nor on the

number of jobs at a queue. The rule is intuitive to grasp and very practical

for applications.

In literature many studies explore the validity of this rule in various

other network topologies and different cost settings. A related model to ours

can be found in Koole [23] in which a system with two parallel queues and

a flexible server is analyzed. Both of the queues receive independent Poisson

arrivals and the server incurs switching costs from moving from one queue to

another. It is shown that in addition to linear holding costs, if one considers

linear switching costs from one queue to another, the cµ rule only holds when

switching costs are in accordance with holding costs. Harrison [18] shows

that the cµ rule can be highly sub-optimal, in fact it can lead to an unstable

system for a network with two servers working in parallel. There has also

been significant effort in extending the cµ rule for more general cost functions.

For example, Mandelbaum and Stolyar [26] prove that, under an asymptotic

(heavy-traffic) regime, a generalized (cost is a convex function of queue length)

cµ rule is optimal for a network composed of multiple job classes and flexible

servers. Further work in the area includes Gurvich and Whitt [17] as well as

11

Tezcan and Dai [38].

In our model, through Gurvich-type routing, the arrival streams of the

two buffers become part of the decisions. Despite the interplay of routing

and scheduling decisions, we show in Section 2.3 that the cµ rule is, in fact,

optimal for server scheduling. When the scheduling policy is fully determined,

the problem reduces to a routing problem where the decision-maker decides

to route an incoming job. When a job is routed to Queue 1 (2), it becomes

a class 1 (2) job, incurring a holding cost c1(c2) and receiving random service

time with rate µ1(µ2). There is a significant amount of literature on routing to

parallel queues. The join the shortest queue (JSQ) policy has been analyzed

thoroughly dating back to the work of Kingman [22]. Winston [41] proved the

optimality of shortest queue under exponential job size distributions. Later

on, Horjik and Koole [20] studied assignment problems in a Markov decision

process (MDP) framework and demonstrated that that an arriving customer

should prefer a faster server and shorter queue. The routing models also attract

significant attention in call-center management. For a thorough review on the

relevant literature, we refer the interested reader to Armony [3] and Aksin et

al. [2].

Through proofs based on the value function, we prove that the op-

timal routing policy is of threshold-form. A natural question is, how can

we determine or approximate this threshold? The answer lies in fluid mod-

els. By capturing the asymptotic behaviour of discrete stochastic queueing

systems, fluid models are useful continuous approximations to their discrete

12

counterparts. Chen and Mandelbaum [9] show that a class of queuing net-

works converges under appropriate time and space scaling to fluid networks.

Moreover, recent results have shown a close connection between stability of

stochastic networks and stability of their associated fluid models (Dai [12],

Stolyar [37]). Corresponding fluid models are easier to solve than stochastic

queueing networks and this greatly motivates the translation of fluid optimal

control to discrete stochastic models. Fluid models for reentrant-lines (multi-

class queueing networks with multiple stations and a single class) are analyzed

in Weiss [39]. Avram et al. [5] provide optimal fluid policies for networks in

which fluid classes compete for service. Furthermore, fluid optimal policies can

better approximate discrete optimal ones through perturbation expansions as

outlined in Avram [4].

Although fluid models are more tractable than their discrete counter-

parts, how to translate a fluid policy into the discrete setting has been an

important question. For example, naive translations in a 2-station tandem

network composed of two classes of jobs, can in fact yield to an unstable

discrete system. Furthermore, when optimal fluid policy is translated into a

discrete setting, a desired condition is that it satisfies an optimality criterion

in the discrete system itself. For that purpose, asymptotic optimality provides

a consistency criterion between fluid and discrete models. Important works

on establishing conditions of asymptotic optimality include Maglaras [25],

Bauerle [6] and Meyn [29]. Our analysis is also based on computing the fluid

optimal policy, improving it through perturbation expansions and studying its

13

asymptotic properties. We show in fact, that the proposed fluid-based policy

is asymptotically optimal under fluid scaling.

This chapter is organized in 7 sections. In Section 2.2, we formally

describe the model. Section 2.3 is devoted to structural results on optimal

policies. There we prove that the optimal scheduling control is given by the cµ

rule and the optimal routing policy is of threshold type. Later on, we define

and solve the associated fluid model in Section 2.4. Further improvements

on the fluid policy are performed in Section 2.5. In Section 2.6, we analyze

the asymptotic behaviour of the fluid policy. After translating fluid policy

to discrete-system, we present the performance of the proposed policy with

respect to the optimal policy in Section 2.7.

2.1 Preliminaries and model description

The network under study has two job classes and one flexible server.

Job classes are labelled by k = 1, 2 and we use the same index to denote

their respective queues. The server can only process a single job at a given

time. The service times are assumed to be i.i.d. exponential random variables

with rates µ1 and µ2 for job classes 1 and 2, respectively. Without loss of

generality we set µ1 > µ2. Jobs arrive to the system according to a Poisson

process with rate λ where λ < µ1 to insure that the system is stabilizable.

The decision-maker determines to which queue to route an incoming job upon

arrival. Routing the job upon arrival defines its class and this decision cannot

be rescinded. Upon service termination, the decision maker also determines

14

which type of job is served next. In addition, if a high priority job arrives we

allow preemption of lower priority jobs (since all service times are exponential,

it does matter if we employ a “preempt-resume” assumption or not). A job

of class k incurs a holding cost ck per unit time with c1 > c2 and the goal

of the decision-maker is to characterize optimal routing and allocation policy

in order to minimize the average total cost rate over the infinite horizon. A

depiction of the system of interest appears in Figure 2.1. We sometimes refer

to the parameter assumptions as falling into the strong cµ case. Notice that

we have c1µ1 > c2µ2, so without routing, the cµ is the optimal scheduling rule

(we prove later that it is still optimal, with routing).

Queue 1

��

Queue 2

��

Server

��

��

Routing Scheduling

(Allocation)

�

Figure 2.1: 2-buffer queueing network with Gurvich-type routing

The decision-maker’s problem can be modelled via a continuous time

Markov decision process (CTMDP). The state definition of the CTMDP then

includes the number of jobs in each class (including any job in service) and

the class of job currently being processed. Explicitly, the state space is S :=

{(i(t), j(t), C(t)) : i(t) ∈ Z+, j(t) ∈ Z+, C(t) ∈ {C0, C1, C2}} where i(t) and

15

j(t) refer to the number of jobs in each class at time t and C(t) denotes the

class of job being served at time t with Ck denoting that a class k job is in

service. C(t) = C0 when no jobs are in service at time t. The current number

of jobs in class k is denoted by Qk(t) and if the dependence on a given policy

π is to be emphasized then we write Qπ
k(t). The routing action, denoted as

UR(t), is employed when there is an arrival to the system at time t. UR(t)

is an element of the set {R1P , R1NP , R2P , R2NP} where R1 and R2 indicate

if jobs are routed to class 1 or class 2. The subscripts P and NP indicate

whether or not preemption is employed. In a similar fashion the scheduling

action, UA(t) is employed when the server finishes processing a job. UA(t) is

an element of the set {Q1, Q2}. Q1 indicates that the system next serves a

class 1 job and Q2 indicates the same for a class 2 job. Given an initial state

of the system (i, j, C) the decision-maker uses a policy π which in the usual

manner indicates the sequence of actions to be taken when there is a change of

state. The objective is to minimize the total average cost rate given as follows:

lim sup
t→∞

1

t
E(i,j,C)

(∫ t

0

[c1Q
π
1 (s) + c2Q

π
2 (s)]ds

)
.

For purposes of deriving structural results we also consider the total

discounted cost version of the objective function given as:

E(i,j,C)

(∫ ∞
0

e−βs [c1Q
π
1 (s) + c2Q

π
2 (s)] ds

)
,

for a discount factor β > 0.

We now define performance processes that describe the evolution of the

CTMDP. For t ≥ 0, let E(t) be the number of exogenous jobs that arrive in

16

[0, t]. Dk(t) indicates the number of service completions of class k customers

in [0, t] if the server devotes all its time to class k in [0, t]. φk(m) is the number

of jobs that are routed to Queue k among the first m arrivals. We use Ak(t)

to denote the number of jobs that arrive to Queue k in [0, t]. Let Tk(t) be

the cumulative time the server has spent processing class k jobs in [0, t]. Y (t)

refers to the cumulative time the server has spent idle in [0, t].

We assume that E(t) and Dk(t) are right-continuous with left lim-

its. Furthermore, in our model E(t) is a Poisson process with rate λ and

Dk(t) is a Poisson process with rate µk. We then define the 5-tuple X(t) =

(Q(t),A(t),D(t),T (t),Y (t)), t ≥ 0 as the queueing network process. Formally

the dynamics of X is then defined via following equations, for t ≥ 0 and

k ∈ {1, 2}:

Qk(t) = Qk(0) + Ak(t)−Dk(Tk(t)) (2.1)

Ak(t) = φk(E(t)) (2.2)

T1(t) + T2(t) + Y (t) = t, (2.3)

where the functions Tk(t), φk(m) are determined by the server assignment and

routing controls, Ur(t) and Ua(t).

As usual, we uniformize the CTMDP and formulate a corresponding

discrete Markov decision process (DTMDP). Let Λ = λ+µ1 be the uniformiza-

tion constant. Without loss of generality assume that Λ = 1 and let δ = Λ
Λ+β

.

Note that the discrete-time equivalent of X is defined by discrete-time equiva-

lents of Q(t), A(t), D(t), T (t), Y (t) and is still defined by (2.1)-(2.3). Dropping

17

the time index t a state is denoted as (i, j, C). In order to present the state

evolution for the discrete-time model, let f be a real-valued function measuring

the value of each state and define a mapping H as follows:

Hδf(i, j, C) =δλmin


f(i+ 1, j, C1)

f(i, j + 1, C1)

f(i+ 1, j, C2)

f(i, j + 1, C2)

+ δmin

{
µ1f((i− 1)+, j, C1) + (Λ− µ1)f(i, j, C)

µ2f(i, (j − 1)+, C2) + (Λ− µ2)f(i, j, C).

In the expression above, the minima represent the routing and the scheduling

controls, respectively. The optimality equations for the average cost formula-

tion then satisfy the following set of equations:

g + y(i, j, C) = c1i+ c2j +H1y(i, j, C). (2.4)

where g is the optimal average cost and y is the relative value function. Simi-

larly, the discrete-time finite and infinite discounted horizon formulations are:

vn+1
δ (i, j, C) = c1i+c2j+Hδv

n
δ (i, j, C) and vδ(i, j, C) = c1i+c2j+Hδvδ(i, j, C),

respectively. In Section 3, we derive structural results for the relative value

function y.

A state (i, j, C) is accessible from state (i′, j′, C ′) if there exists a sta-

tionary policy µ and an integer k such that P (xk = (i′, j′, C ′)|x0 = (i, j, C), µ) >

0. The weak accessibility (WA) condition holds if the states can be partitioned

into two subsets St and Sc such that all states in St are transient under every

stationary policy and for every two state pairs (i, j, C) and (i′, j′, C ′) in Sc,

18

(i′, j′, C ′) is accessible from (i, j, C). If the WA condition holds then optimum

average cost is the same for all initial states and there exists an optimal policy

that is unichain [8].

Theorem 2.1.1. The weak accessibility condition holds for the model described

in (2.1)-(2.4).

Proof. Consider the policy that simply routes customers to class 1 with prob-

ability 0.5 and schedules customers by giving preemptive priority to class 1.

Then, it is clear that state (0, 0, C0) is accessible from any state and similarly

any state is accessible from (0, 0, C0) under this policy. Hence, Sc can be taken

to be S in the WA characterization.

2.2 Structural results

In this section, we present structural results for the average-cost rel-

ative value function y(i, j, C) and the corresponding implications for optimal

policies. We first obtain results for the discounted cost finite horizon problem

with value function (vnδ (i, j, C)). Using standard techniques we extend the

results to the infinite horizon average cost case. The first important result of

this section is that the cµ rule holds for optimal scheduling policy. Thus if

c1µ1 > c2µ2, then it is always optimal to process a job from Queue 1 if such

a job is present. In this paper, we assume the parameters fall into the strong

cµ case, and hence the preceding inequality also holds. The second important

result is that the optimal routing policy is of the threshold type. The proof is

19

organized by establishing the following statements for various values of n:

• Statement 1: vnδ (i, j, C1) ≤ vnδ (i, j, C2), ∀i ≥ 1,∀j ≥ 1,

• Statement 2: vnδ (i, j, C1) is non-decreasing in i for each fixed j and is

non-decreasing in j for each fixed i,

• Statement 3: ∆n(i, j) = vnδ (i+1, j, C1)−vnδ (i, j+1, C1) is non-decreasing in

i given fixed j ≥ 1 and non-increasing in j given fixed i ≥ 1,

∀i ≥ 1,∀j ≥ 0,

• Statement 4: µ1v
n
δ (i−1, j, C1) ≤ µ2v

n
δ (i, j−1, C1)+(µ1−µ2)vnδ (i+1, j−1, C1),

∀i ≥ 1, ∀j ≥ 0,

• Statement 5: µ1v
n
δ (i−1, j, C1) ≤ µ2v

n
δ (i, j−1, C1) +(µ1 − µ2)vnδ (i, j, C2),

∀i ≥ 1,∀j ≥ 0.

Theorem 2.2.1. If c1 > c2 and µ1 > µ2, then Statements 1-5 hold for n = 0.

Proof. For n = 0 there is only a one-step cost which leads to the relatively

simple arguments below:

• Statement 1 : Both expressions are equal to c1i+c2j, so the statement

holds.

• Statement 2 : We have v0
δ (i+1, j, C1)−v0

δ (i, j, C1) = c1 ≥ 0 and

v0
δ (i, j+1, C1) −v0

δ (i, j, C1) =c2 ≥ 0. Therefore v0
δ (i, j, C1) is monotonically

non-decreasing in i and j.

20

• Statement 3 : Since ∆0(i, j) = c1−c2, the statement clearly holds.

• Statement 4 : Note that

µ1(c1(i−1)+c2j) ≤ µ2(c1i+c2(j−1))+(µ1−µ2)(c1(i+1)+c2(j−1)),

implies the following:

⇒ 0 ≤ c1µ1−c2µ2+(c1−c2)(µ1−µ2).

Since c1µ1 ≥ c2µ2, c1 ≥ c2 and µ1 ≥ µ2, the inequality holds.

• Statement 5 : Note that 0 ≤ c1µ1−c2µ2 implies that

µ1(c1(i−1)+c2j) ≤ µ2(c1i+c2(j−1)+(µ1−µ2)(c1i+c2j),

which verifies the statement.

Theorem 2.2.2. Suppose c1 > c2 and µ1 > µ2. If Statements 1 to 5 hold for

n then they also hold for n+1.

Proof of Theorem 2.2.2. Note that if Statement 1 holds at time n, then ∀i ≥

1,∀j ≥ 0 and ∀n ≥ 0 we have:

vn+1
δ (i, j, C2)−vn+1

δ (i, j, C1) = δµ2v
n
δ (i, (j−1)+, C1)+δ(µ1−µ2)vnδ (i, j, C2)

−δµ1v
n
δ ((i−1)+, j, C1).

If Statement 1 and 5 holds at time n, vn+1
δ (i, j, C1) ≤ vn+1

δ (i, j, C2) implies

that Statement 1 holds at time (n+1). This result requires that Statements

21

1-4 hold at time (n+1), therefore we characterize each result individually by

Lemmas 2.2.3, 2.2.4, 2.2.5, 2.2.6.

Lemma 2.2.3. Statement 1 at time n, Statement 2 at time n ⇒ Statement 2

at time (n+1).

Proof. Given vnδ (i, j, C1) ≤ vnδ (i, j, C2), the marginal increase vn+1
δ (i+1, j, C1)-

vn+1
δ (i, j, C1) in i, at time (n+1) can be expressed as follows:

= c1+δλ

(
min(vnδ (i+2, j, C1), vnδ (i+1, j+1, C1))

−min(vnδ (i+1, j, C1), vnδ (i, j+1, C1))

)
+ δµ1(vnδ (i, j, C1)−vnδ (i−1, j, C1))

≥ c1+δλ

(
min(vnδ (i+2, j, C1)−vnδ (i+1, j, C1),

vnδ (i+1, j+1, C1)−vnδ (i, j+1, C1)

)
+δµ1(vnδ (i, j, C1)−vnδ (i−1, j, C1)).

The following comes from initial assumption:

min(vnδ (i+2, j, C1)−vnδ (i+1, j, C1), vnδ (i+1, j+1, C1)−vnδ (i, j+1, C1)) ≥ 0.

In addition vnδ (i+1, j, C1)−vnδ (i−1, j, C1) ≥ 0. Thus vnδ (i, j, C1)−vnδ (i−1, j, C1) is

non-negative. Hence the argument holds for time (n+1) as well. A symmetric

argument can be used to prove the monotonicity in j.

Lemma 2.2.4. Statement 1 at time n, Statement 3 at time n ⇒ Statement 3

at time (n+1).

22

Proof. ∆n+1(i, j) can be expressed as follows:

∆n+1(i, j) = (c1−c2) + δλmin(vnδ (i+2, j, C1), vnδ (i+1, j+1, C1))

−δλmin(vnδ (i+2, j, C1), vnδ (i+1, j+2, C1))

+δµ1(vnδ (i, j, C1)− vnδ (i−1, j+1, C1)).

Next, we prove that each term in the RHS above is non-decreasing in

i and non-increasing in j. The first term is constant therefore plays no role

on monotonicity. The second term can be expressed as follows (omitting λ for

clarity):

= min(vnδ (i+2, j, C1), vnδ (i+1, j+1, C1))−min(vnδ (i+1, j+1, C1), vnδ (i, j+2, C1))

= min(vnδ (i+2, j, C1)−vnδ (i+1, j+1, C1), 0)−max(vnδ (i+1, j+1, C1)−vnδ (i, j+2, C1))

= min(∆n(i+1, j), 0)+ max(∆n(i, j+1), 0).

By initial assumption min(∆n(i+1, j), 0)+ max(∆n(i, j+1), 0) is non-decreasing

in i and non-increasing in j. As for the last term, it is equal to µ1∆n(i−1, j)

therefore non-decreasing in i and non-increasing in j following initial assump-

tion.

For the remaining proofs, discount factor δ is multiplied by both sides

of the inequalities therefore we omit it for clarity.

Lemma 2.2.5. Statement 1, 2, 3, 4 at time n ⇒ Statement 4 at time (n+1).

23

Proof. Recall that the value function at time (n+1) of a particular state-pair

combination is composed of step costs, arrivals and departures. In order to

prove that Statement 4 holds for time (n+1), we decompose value functions

into following individual components at time n.

• Step costs :

µ1(c1(i−1)+c2j) ≤ µ2(c1i+c2(j−1))+(µ1−µ2)(c1(i+1)+c2(j−1))

0 ≤ c1µ1−c2µ2+(c1−c2)(µ1−µ2).

• Departures :

By the initial assumption ∀i ≥ 0,∀j ≥ 0, vnδ (i, j, C1) ≤ vnδ (i, j, C2). Thus

a customer from Queue 1 will always be processed over a customer from

Queue 2. Therefore the terms relating to departures would hold by the

initial arguments at time n:

⇒ µ1v
n
δ (i−2, j, C1) ≤ µ1µ2v

n
δ (i−1, j−1, C1)+µ1(µ1−µ2)vnδ (i, j−1, C1).

• Arrivals :

To compare arrival terms all the possible routing combinations should be

taken into account. Table 2.1 shows such possible combinations. Note

that (vnδ (i, j, C1) ≤ vnδ (i, j, C2)) implies that at any state (i, j, C1) pre-

emption is suboptimal therefore are omitted.

24

Case vnδ (i− 1, j, C1) vnδ (i, j − 1, C1) vnδ (i+1, j − 1, C1)
1 R1NP/R2NP R1NP R1NP
2 R1NP/R2NP R2NP R2NP
3 R2NP R2NP R1NP

Table 2.1: Routing actions for states (i-1, j, C1), (i, j-1, C1), (i+1, j-1, C1)

Table 2.1 shows only feasible routing combinations. For example if the

routing action of vnδ (i, j−1, C1) is R1NP then by Statement 3 same ac-

tion should be chosen for vnδ (i+1, j−1, C1). If the routing action for

vnδ (i, j−1, C1) is R2NP and the routing action for vnδ (i+1, j−1, C1) is R1NP

then the routing action for vnδ (i−1, j, C1) should be R2NP .

In Cases 1 and 2, the routing action of (i−1, j, C1) can be either R1NP

or R2NP . Note that this term is on LHS therefore it is sufficient to

prove that the inequality is satisfied either for R1NP or R2NP . For

Case 1 (2) we can prove the inequality for routing action R1NP (R2NP).

Consequently for both of these cases the arrivals simply imply a fixed

increase in one index and multiplication by a constant. Equations (2.5)

and (2.6) correspond to Case 1 and 2 as follows:

λµ1v
n
δ (i, j, C1) ≤ λµ2v

n
δ (i+1, j−1, C1)+λ(µ1−µ2)vnδ (i+2, j−1, C1) (2.5)

λµ1v
n
δ (i−1, j+1, C1) ≤ λµ2v

n
δ (i, j, C1)+λ(µ1−µ2)vnδ (i+1, j, C1). (2.6)

These inequalities hold by the induction assumption. For Case 3, we

have to prove that following inequality holds: λµ1v
n
δ (i−1, j+1, C1) ≤

λµ2v
n
δ (i, j, C1)+λ(µ1−µ2)vnδ (i+2, j, C1).

25

Recall that the routing action of (i−1, j, C1) implies vnδ (i−1, j, C1) ≤

vnδ (i, j, C1) therefore proving λ(µ1−µ2)vnδ (i, j, C1) ≤ λ(µ1−µ2)vnδ (i+1, j, C1)

is sufficient. Recall that Statement 2 implies that vnδ (i+1, j, C1) ≥ vnδ (i, j, C1),

therefore the inequality holds. Having considered all the possible routing

combinations, we proved that at time (n+1):

µ1v
n+1
δ (i−1, j, C1) ≤ µ2v

n+1
δ (i, j−1, C1)+(µ1−µ2)vn+1

δ (i+1, j−1, C1).

Now using Lemmas 2.2.3 to 2.2.5, we prove that Statement 5 holds at

time (n+1).

Lemma 2.2.6. Statement 1, 2, 3, 4, 5 at time n ⇒ Statement 5 at time

(n+1).

Proof. The proof follows the same lines as Lemma 2.2.5. We start by compar-

ing individually step costs, terms corresponding to departures and arrivals.

• Step costs:

µ1(c1(i−1)+c2j) ≤ µ2(c1i+c2(j−1))+(µ1−µ2)(c1i+c2j))

0 ≤ c1µ1−c2µ2.

• Departures:

Terms relating to departures can be expressed as:

⇒ µ1v
n
δ (i−2, j, C1) ≤ µ1µ2v

n
δ (i−1, j−1, C1)+µ1(µ1−µ2)vnδ (i, j−1, C1).

26

Note that this inequality holds via Statement 3.

• Arrivals :

Again we compare possible routing scenarios. Table 2.2 shows possible

routing combinations for states (i−1, j, C1), (i, j−1, C2), (i, j, C2). Note

that now we include preemption cases because of states with a C2 com-

ponent.

Case vnδ (i− 1, j, C1) vnδ (i, j − 1, C1) vnδ (i, j, C2)
1 R1NP/R2NP R1NP R1P
2 R1NP/R2NP R2NP R2P
3 R1NP/R2NP R2NP R1P/R2P
4 R2NP R1NP R2P

Table 2.2: Routing actions for states (i-1, j, C1), (i, j-1, C1), (i, j, C2)

Similar to the ones in Lemma 2.2.5, Cases 1 and 2 imply that arrivals

result in simply a fixed increase in one index and multiplication by a

constant. Case 3 can be expressed as follows:

λµ1v
n
δ (i, j, C1) ≤ λµ2v

n
δ (i, j, C1)+λ(µ1−µ2) min(vnδ (i+2, j, C1), vnδ (i, j+1, C1)),

which holds as min(vnδ (i+1, j, C1), vnδ (i, j+1, C1) ≥ vnδ (i, j, C1) by State-

ment 1. Therefore:

⇒ µ1(vnδ (i, j+1, C1)−vnδ (i, j, C1)) ≥ µ2(vnδ (i, j+1, C1)−vnδ (i+1, j−1, C1)),

proving Case 3. Now we move one to Case 4. Note that from Lemma

2.2.4, vnδ (i+1, j−1, C1) ≥ vnδ (i−1, j+1, C1). Thus following inequality

27

holds:

µ1(vnδ (i, j+1, C1)−vnδ (i−1, j+1, C1)) ≥ µ2(vnδ (i, j+1, C1)−vnδ (i+1, j−1, C1)),

which can be expressed as:

λµ1v
n
δ (i−1, j+1, C1) ≥ λµ2v

n
δ (i+1, j−1, C1)+λ(µ1−µ2)vnδ (i, j+1, C1),

which corresponds to Case 4.

As in Lemma 2.2.5, enumeration of all possible routing scenarios leads

us to prove that at time (n+1) the following inequality holds:

µ1v
n+1
δ (i−1, j, C1) ≤ µ2v

n+1
δ (i, j−1, C1)+(µ1−µ2)vn+1

δ (i, j, C2).

Corollary 2.2.7. If c1 > c2 and µ1 > µ2 then ∀i ≥ 1, j ≥ 1, and n ≥

1, vnδ (i, j, C1) ≤ vnδ (i, j, C2). Thus for the discounted-cost finite horizon model,

under any optimal policy it is optimal to give preemptive priority to class 1

jobs.

Proof. The proof proceeds by induction on n. Theorem 2.2.1 establishes the

result for n = 0. By Theorem 2.2.2 if the statement holds for n, then it must

hold for n+1. Hence this implies that ∀n ≥ 0,∀i ≥ 1, ∀j ≥ 1, vnδ (i, j, C1) ≤

vnδ (i, j, C2). Recall that if there is at least 1 job available in both queues,

28

then the optimal scheduling decision is to select the job from class i∗ =

arg mini∈(1,2) v
n
δ (i, j, Ci). Therefore it is always optimal to give preemptive

priority to class 1 jobs.

Corollary 2.2.8. If c1 > c2 and µ1 > µ2 then the optimal routing policy for

the discounted-cost finite horizon problem has a threshold form.

Proof. For i > 0, when a job arrives to the system, Corollary 2.2.7 implies

that the next job in service will be of class 1 (possibly through preemption).

Therefore, the arrival decision reduces to minimization of vnδ (i+1, j, C1) and

vnδ (i, j+1, C1) for i ≥ 1,∀j ≥ 0,∀n ≥ 1. By Theorem 2.2.2 Statement 3

indicates that vnδ (i+1, j, C1)−vnδ (i, j+1, C1) is non-decreasing in i(j) given fixed

j(i) ∀i ≥ 1, ∀j ≥ 0 and ∀n ≥ 0. Therefore ∆n(i, j) changes sign at most once

when either i or j is fixed, proving the existence of a switching policy.

Theorem 2.2.9. The results of Corollaries 2.2.7 and 2.2.8 hold under the

average cost criterion.

Proof. The initial step of the proof is based on establishing the link between

finite and infinite horizon discounted-cost problems. Note that given the one-

step costs are non-negative, vnδ is increasing in n. By Proposition 4.3.1 in

Sennott [36] vnδ forms a monotonically increasing sequence with limn→∞ v
n
δ :=

vδ. Furthermore, if πnδ is an optimal policy for the finite horizon problem,

then any limit point of the sequence πδ,nn≥1
is discount optimal for the infinite

29

horizon problem. Thus, Theorems 2.2.1 and 2.2.2 then hold with vnδ replaced

by vδ.

The next step is to make the correspondence between discounted cost

and average cost optimal value functions. Conditions under which the average

cost optimal policy is obtained from the limit of the discounted cost optimal

policies are outlined in Sennott [36]. A sufficient condition is that there exists

a policy with finite average cost and that the Markov chain under this policy

is either irreducible or consists of a single recurrent class (the transient states

are absorbed in finite expected time).

For that purpose, we follow the construction in Ahn and Lewis [1].

Consider the stationary policy that routes every incoming job to Queue 1.

It is then clear that every state with a positive number of class 2 jobs is

transient. Thus, under this policy, the system reduces to a positive recurrent

M/M/1 queue. By Little’s law, the average queue length of Queue 1 is given

by L = (λ/(µ1−λ)) and the average cost rate is then Lc1 <∞.

Applying Theorems 7.2.3 and 7.5.6 in Sennott [36] we then have:

1. vδ(i, j, C) = vδ(i, j, C)−vδ(0, 0, C0) converges along a subsequence to a

function on y such that (g, y) satisfy average cost optimality equations,

2. Any limit point of a sequence of discounted cost optimal policies (as

δ → 1) is average cost optimal.

As a consequence, the results of Theorems 2.2.1 and 2.2.2 hold under

average cost criterion with vδ replaced by the relative value function y.

30

2.3 Fluid approximation

There exist various numerical solution approaches to compute optimal

average cost policies for discrete MDP’s. Value iteration, policy iteration and

linear programming are among well−known approaches. It should be noted

that all these approaches suffer from curse of dimensionality as the state−action

space grows large. Continuous approximation schemes to discrete−systems

help overcome these issues and characterize near−optimal policies. Fluid mod-

els give insight on the original discrete model by replacing discrete jobs with

continuous fluids, servers with fluid pumps and queues with buffers. In this

scheme, the randomness in the discrete−stochastic model is simplified as the

arrival and service processes are characterized only via their average rates.

Fluid models are particularly useful in establishing stability results on the

original model. In our context, we employ the fluid approximation to further

characterize a near−optimal routing policy for the discrete model.

First, we note the correspondence between discrete and fluid mod-

els. A fluid model is the deterministic equivalent of the queueing network

X, where the arrival and service rates are replaced by limt→∞
E(t)
t

= λ and

limt→∞
Dk(t)
t

= µk for k = 1, 2.

The routing control vector ur(s) is composed of pair u1
r(s) and u2

r(s)

denoting the proportion of incoming fluid routed to buffers 1 and 2 at time

s. Similarly the server allocation (scheduling) control vector, ua(s) is com-

31

posed of (u0
a(s), u

1
a(s), u

2
a(s)) where u0

a(s) refers to the proportion of server

capacity spent idle and u1
a(s), u

2
a(s) denotes the proportion of server capac-

ity dedicated to processing fluid from buffers 1 and 2 at time s. The control

vectors (ur, ua) are in Û := {(ur, ua) ∈ R2
+ × R3

+ with ‖ur‖1 = 1, ‖ua‖1 = 1}.

If the fluid level in buffer 1 drops to 0, then the maximum rate of alloca-

tion to buffer 1 is bounded by (λ/µ1). A fluid policy ΠF consists of routing

and allocation controls (ur, ua) ∈ Û for each time point t. For all t ≥ 0,

X̂(t) = (Q̂(t), Â(t), D̂(t), T̂ (t), Ŷ (t)) defines the fluid model that evolves ac-

cording to the following dynamics, ∀t ≥ 0, k = 1, 2:

Q̂k(t) = Q̂k(0)+Âk(t)−µkT̂k(t) (2.7)

Âk(t) = Φ̂k(λt) =

∫ t

s=0

ukr(s)λds (2.8)

T̂1(t)+T̂2(t)+Ŷ (t) = t. (2.9)

The effect of controls on fluid dynamics is easier to characterize with time

derivatives. Fluid dynamics can be equivalently defined as:

d

dt
Q̂1(t) = λu1

r(t)−µ1u
1
a(t) (2.10)

d

dt
Q̂2(t) = λu2

r(t)−µ2u
2
a(t). (2.11)

Let x1, x2 denote the initial amount of fluid in buffers 1 and 2 at t = 0. Let Tk

be the first time at which buffer k becomes empty, for k = 1, 2. Once a buffer

becomes empty, the optimal policy will then keep it empty from then on. The

control problem is then choosing actions (ur, ua) for each time s before the

emptying time T = max(T1, T2). The optimal value for the fluid model can

32

then be defined as follows:

V ∗(x1, x2) = min
(ur,ua)∈Û

∫ T

0

[c1Q̂1(s)+c2Q̂2(s)]ds. (2.12)

Our solution approach for minimizing (2.12) with respect to (2.10−2.11)

includes using Pontryagin maximum principle along with solving Hamilton-

Jacobi-Bellman (HJB) equations. The Maximum principle provides necessary

but not sufficient conditions for optimality. On the other hand, the HJB equa-

tions give sufficient conditions for optimality but they require the knowledge

of a value function beforehand. Here we employ a mixed approach. By the

Pontryagin maximum principle, the optimization problem can be solved by

using a Hamiltonian function H for fixed t ≥ 0. Formally, H is defined as

follows:

H(·) = min
(ur,ua)∈Û

{
c1x1+c2x2+p1(λu1

r−µ1u
1
a)+p2(λu2

r−µ2u
2
a)

}
,

where p1(·), p2(·) are Lagrange multipliers. The optimality equation requires

that there exist η1(t), η2(t) ≥ 0 satisfying the following conditions for all t ≥ 0:

ṗ1(t) = −c1+η1(t), ṗ2(t) = −c2+η2(t) and complementary slackness conditions

η1(t)Q̂1(t) = 0, η2(t)Q̂2(t) = 0. The structure of η1(·), η2(·) is to be determined

through the analysis that follows.

Note that these conditions imply that p1(t) = −c1t+p1(0) for t < T1

and p2(t) = −c2t+p2(0) for t < T2 with p1(0), p2(0) constants. The optimality

equation also implies that dH
d(ur)

= λ(p1−p2) and dH
d(ua)

= λ(µ2p2−µ1p1). H(·)

33

can be equivalently expressed as follows:

H(·) = c1x1+c2x2+ min
ur:|ur|1=1

{
u1
rp1+u2

rp2

}
− max
ua:|ua|1=1

{
µ1u

1
ap1+µ2u

2
ap2

}
.

(2.13)

Now by focusing on the allocation problem, we can prove additional

properties of the optimal policy.

Proposition 2.3.1. The optimal allocation controls are non−idling.

Proof. For simplicity, we drop the time index t. Note that given Lagrange

multipliers p1, p2, optimal allocation control is selected such that max

{
µ1u

1
ap1

+µ2u
2
ap2

}
is maximized with respect to constraint u1

a+u2
a ≤ 1, u1

a ≥ 0, u2
a ≥ 0.

Then by LP theory the optimal vector will be an extreme point of the feasible

polyhedral set, implying that the constraint u1
a+u2

a = 1 will always hold for

optimal allocation vector u∗a. Since ua ∈ Û , by definition |ua| ≤ 1 thus u∗0a = 0.

Therefore, the optimal policy is non−idling.

Proposition 2.3.2. Under the optimal policy, T1 ≤ T2.

Proof. We prove by contradiction. Suppose T2 > T1 then Q̂1(T2) > 0, Q̂2(T2) =

0. For t ∈ (T2, T1), the optimal policy would require that the server dedicates

its full capacity to process fluid from buffer 1, as the other buffer is empty.

As a result, p1(T2)µ1 = p2(T2)µ2. Yet for t < T2, ṗ1(t) = −c1 and ṗ2(t) = −c2

with −c1 < −c2. It then follows that p1(t)µ1 > p2(t)µ2 for t < T2 implying

34

that it should be optimal to process fluid from first buffer rather than the sec-

ond for all previous time points. This would pose a contradiction to original

assumption of T2 < T1.

For all t ≥ 0 by replacing u2
r(t) = 1−u1

r, u
2
a(t) = 1−u1

a(t), in (2.13)

we can further characterize the optimal controls depending on the values of

Lagrange multipliers. Note that given u1
r(·), u1

a(·) we can completely deter-

mine optimal policy, therefore we only note the conditions on these controls

in the sequel. In order to derive the optimal routing controls, we only need to

compare p∗1(t) to p∗2(t) for all time t ≥ 0 as the comparison is mapped to the

optimal control decision as follows:

u1∗
r (t) =


1 p1(t) < p2(t)

0 p1(t) > p2(t)

? p1(t) = p2(t).

Given Lagrange multipliers at any time t ≥ 0, the optimal routing

decision can be easily determined for the case where p∗1(t) 6= p∗2(t). However,

when p1(t) = p2(t), u1∗
r (t) can take any value in (0, 1). It is important to note

that (p1(·)−p2(·)) can be 0 at most once. This can be proved as follows: let

t ∈ (T1, T2) with p1(t) = p2(t). By the definition of draining times, Q̂1(t) = 0

for t > T1. Also, it is clear that under the optimal policy after time t > T1 the

fluid from buffer 2 must be drained. Consider time t ∈ (T1, T2). If p1(t) = p2(t),

then p1(t)µ1 > p1(t)µ2 and thus all processing priority is given to class 1. If

this is the case, the server can only use up to a capacity of (λ/µ1) which would

contradict with Proposition 2.3.1. Therefore, (p1(·)−p2(·)) can be 0 at most

35

once implying that optimal routing control would change at most once. Next,

the allocation (scheduling) decision can be derived for all time t ≥ 0 as follows:

u1∗
a (t) =


1{Q̂1(t)>0}+

λu1∗a (t)
µ1

1{Q̂1(t)=0} p1(t)µ1 < p2(t)µ2

0 p1(t)µ1 > p2(t)µ2

? p1(t)µ1 = p2(t)µ2.

Following the same lines as previous argument, as −c1µ1 6= −c2µ2 and T1 ≤ T2,

(p1(·)µ1−p2(·)µ2) can only hit 0 once. Note that through the link via Lagrange

multipliers, optimal routing controls have implications on the optimality of

particular allocation controls. For example, if u1∗
r = 0 then (p1(·) > p2(·))

which in turn implies (µ1p1(·) > µ2p2(·)), resulting in u1∗
a = 1. Also note that

since p1(T1)µ1 = p2(T1) it implies that p1(t)µ1 > p2(t)µ2 for t < T1. Therefore,

for any t ≥ 0, if Q̂1(t) > 0 then u2∗
a (t) = 0.

In addition, feasible allocation controls can depend on the current state.

Consider a time point t ≥ 0 where Q̂1(t) = 0, Q̂2(t) > 0. As λ > µ2, selecting

control pairs u1
r(t) = 0, u1

a(t) = 0 would result in d
dt
Q̂(t) ≥ 0 therefore these

pairs can not be selected under the optimal policy. At such a time point, in

order to drain the fluid levels, the controls must be set to u1∗
r = 1, u1∗

a = λ
µ1

in

order to dedicate the capacity of the server to processing fluid from buffer 2.

For any state Q̂(t) the possible control pairs are then given as follows:

I. u1∗
r = 0, u1∗

a = 1 II. u1∗
r = 1, u1∗

a = 1{Q̂1(t)>0}+
λ
µ1
1{Q̂1(t)=0}

d
dt
Q̂1(t) = −µ1; d

dt
Q̂1(t) = −(µ1(1{Q̂1(t)>0}+

λ
µ1
1{Q̂1(t)=0})−λ);

d
dt
Q̂2(t) = λ;. d

dt
Q̂2(t) = µ2(1− λ

µ1
)1{Q̂1(t)=0};

36

Note that action control pair (I.) is only feasible when Q̂1(t) > 0 for t ≥ 0.

Also note that only action control pair (II.) can drain buffer 2. For that reason,

this control must be surely employed given any initial state. As a side note,

this observation sheds light on the structure of η1(·), η2(·). For t ∈ (T1, T2),

η1(t) = c1− c2µ2µ1
and η2(t) = 0.

Also note that it is possible to have a trajectory where the controls in

(II.) follow the ones in (I.). To see this, consider time t < T1 with p1(t) < p∗2(t).

Since ṗ1(t) < ṗ2(t), it is possible that it exists a time t′ < t with p1(t′) = p2(t′)

and for all s < t′, p1(s) > p2(s). As a result, the progression of the optimal

controls are as follows:(
u1∗
r = 0, u1∗

a = 1

)
⇒
(
u1∗
r = 1, u1∗

a = 1

)
⇒
(
u1∗
r = 1, u1∗

a =
λ

µ1

)
.

37

𝑥1 = 𝛼 ∗ 𝑥2

𝑥1

𝑥2

𝑄 1(𝑡)

𝑄 2(𝑡)

Figure 2.2: Progression of the optimal fluid policy

So far we used the maximum principle and Lagrange multipliers to ob-

tain the progression of optimal fluid policy. In order to determine explicitly

the switching policy, one approach would be to solve HJB equations using a

prudent guess of the value function. If the resulting fluid solution satisfies

the HJB equations then the guess of the value function is correct and ob-

tained policy is optimal. Note that the optimal value function V (x1, x2) has a

piecewise quadratic form before the routing switch occurs, and after that it is

purely quadratic. This form of V (·) indicates the presence of a linear optimal

switching policy for routing control where u∗r = 1 if (αQ̂1(t)−Q̂2(t) < 0) and 0

otherwise. Assume that initial fluid levels (x1, x2) satisfy (αx1−x2 < 0) such

that a routing switch does not occur for t ≥ 0. Then for such a pair (x1, x2),

38

the total cost V (x1, x2) is as follows:

V (x1, x2) =
c1x

2
1

2(µ1−λ)
+
c2x1x2

(µ1−λ)
+

c2x
2
2

2µ2(1− λ
µ1

)
. (2.14)

The HJB equation implies the following conditions hold for all time t ≥ 0:

⇒min
u1r,u

1
a

(λu1
r(t)−µ1u

1
a(t))

dV

dx1

+(λ(1−u1
r(t))−µ2(1−u1

a(t)))
dV

dx2

+c1x1+c2x2 = 0

⇒
(

min
u1r

λu1
r(t)(

dV

dx1

− dV
dx2

)
)

+
(

min
u1a

(u1
a(t)(µ2

dV

dx1

−µ1
dV

dx2

))+c1x1+c2x2 = 0.

The optimal controls are bang−bang:
{
dV
dx1

< (>) dV
dx2

}
implies u∗1r =

1(0) and
{
µ2

dV
dx1

< (>)µ1
dV
dx2

}
implies u∗1a = 1(0). For the routing control, the

optimal slope parameter α is then obtained by setting dV
dx1

= dV
dx2

:

(c1−c2)µ2

c2(µ1−µ2)
x1 = x2 ⇒ α =

(c1−c2)µ2

c2(µ1−µ2)
.

For allocation control, note that
{
dV
dx1

< dV
dx2

}
⇒
{
µ2

dV
dx1

< µ1
dV
dx2

}
, given

µ2 < µ1. Therefore it is optimal to dedicate the server to buffer 1, as long as

there is fluid in buffer 1. Note when buffer 1 is drained, optimal control has

to dedicate a portion of the server (λ
µ1

) to buffer 1 in order to keep it empty.

This is coherent with our structural results in Section 2.2 although the fluid

policy is composed without any such enforcement.

To summarize, the fluid optimal controls suggest that it is always opti-

mal to process fluid from buffer 1, as long as the buffer is not empty. And for

routing, it is optimal to route incoming fluid to buffer 2 iff αQ̂1(t) > Q̂2(t). In

terms of the original processes, the optimal fluid policy satisfies the following

39

equations:

Ŷ cannot increase when Q̂1(t)+Q̂2(t) > 0 (2.15)

T̂2(t) cannot increase when Q̂1(t) > 0 (2.16)

Â1(t) cannot increase when αQ̂1(t)−Q̂2(t) > 0 (2.17)

Â2(t) cannot increase when αQ̂1(t)−Q̂2(t) ≤ 0. (2.18)

Any fluid policy ΠF for which X̂ satisfies (2.7)−(2.9) and (2.15) −(2.18) is then

an optimal policy.

2.4 Perturbation expansions

Asymptotic and singular perturbation techniques can be used to gain

more insight into the qualitative structure of a model. In this section, the goal

is to improve our approximation to the discrete stochastic network through

perturbation expansions. Empirical observations of the switching curve (see

Section 2.6) indicate that a purely linear function does represent the optimal

policy as well as an affine function with a positive x1 intercept. This “off-

set” value can be approximated by following the perturbation-based approach

described in Avram [4].

The main idea of our approach here is to perturb the quadratic fluid

value function by adding a term that is linear in x2 and solve the HJB equation

along with the boundary conditions. Given any initial buffer level x = (x1, x2),

the draining time of buffer 2 under ΠF (the optimal policy for the fluid model)

40

is always greater than the draining time of buffer 1. Thus, we focus on the sys-

tem after buffer 1 is drained, with an initial starting condition x1 = 0. Under

ΠF all fluid is routed to buffer 1 while the server allocates λ/µ1 proportion of

its time to class 1 fluid and the remainder to class 2 fluid. The essential idea of

the perturbation approach is scale modification. Let ε−1x̃i = xi, i = 1, 2 and

ṽ(x̃1, x̃2) = ε−2V (x1, x2). As a result, the HJB equation (now given in terms

of time differences) can be expressed as follows:

0 = min
ur,ua

[λur∆a1 ṽ+λ(1−ur)∆a2 ṽ+uaµ1∆d1 ṽ+(1−ua)µ2∆d2 ṽ]+c1x̃1+c2x̃2.

∆a1 ṽ,∆a2 ṽ,∆d1 ṽ,∆d2 ṽ are respectively difference operators associated with

the arrival to buffer 1, arrival to buffer 2, the departure from buffer 1 and

the departure from buffer 2 processes. Formally these operators are defined as

follows: ∆a1 ṽ = ṽ(x̃1+1, x̃2)−ṽ(x̃1, x̃2),∆a2 ṽ = ṽ(x̃1, x̃2+1)−ṽ(x̃1, x̃2),∆d1 ṽ =

ṽ(x̃1, x̃2)−ṽ(x̃1−1, x̃2) and ∆d2 ṽ = ṽ(x̃1, x̃2)−ṽ(x̃1, x̃2−1). Note that we are

interested in the case when x1 = 0, therefore the optimal controls are u∗r = 1

and u∗a = λ/µ1. By expanding the difference operators up to the second order,

the boundary conditions on x1 and the HJB can be equivalently expressed as

follows:

0 = λ

(
∂V

∂x1

ε+
∂2V

∂2x1

ε2

2

)
+λ

(
− ∂V
∂x1

ε+
∂2V

∂2x1

ε2

2

)
+

(
1− λ
µ1

)
µ2

(
− ∂V
∂x2

ε+
∂2V

∂2x2

ε2

2

)
+ε(c1x1+c2x2),

with ∂V
∂x1

= 0. Now the last step is setting V = V1+εV2, where V1 corresponds

to the original fluid quadratic and V2 corresponds to the linear perturbation

41

(lx2). As a result the optimality equations can be expressed as:

−
(

1− λ
µ1

)
µ2
∂V1

∂x2

+c1x1+c2x2 = 0 (2.19)

−µ2
∂V2

∂x2

+2λ
∂V1

∂2x1

+µ2
∂V1

∂2x2

= 0. (2.20)

Note that first equation above is a first-order differential equation. We

obtain ∂V1
∂2x2

from (2.19). Next, we derive ∂V1
∂2x1

from the original fluid quadratic

equation (2.14). We then substitute these into (2.20) to yield the linear cor-

rection term:

c1λ

(µ1−λ)µ2

+
c2µ2

(µ1−λ)
= ∂V2

∂x2
= l.

The fluid correction, l can be interpreted as adding certain constant

corrections throughout the emptying time of x1 (since x1 empties earlier than

x2). As a result V is then (V1+εlx2). Similar to computing the fluid slope,

setting ∂V
∂x1

= ∂V
∂x2

produces the following linear switching policy:

x2 = α(x1−õ),

with α defined as in the previous section, i.e., α = (c1−c2)µ2
(µ1−µ2)c2

. We then obtain

õ = c1(2λ)+c2µ1
2µ2(c1−c2)

as the best offset among the possible linear approximations.

2.5 Asymptotics

Translation of the optimal fluid policy into an implementable discrete

policy requires some care. Naive translations may cause instability (as in the

case of Rybko-Stolyar network, see Maglaras [25]). Therefore it is important

42

to analyze the asymptotic behavior of the proposed policy. We investigate

asymptotics under a fluid scaling in which both the initial condition and time

horizon are scaled up. Fluid-scale asymptotic optimality is used to characterize

the validity of the fluid approximation in the limiting regime.

For a queueing network process X, we define the fluid scaling as X̄ =

r−1X(rt), for r ≥ 0. If the queueing network process depends on r then we

write

X̄r = r−1Xr(rt), (2.21)

where Xr is the process associated with the rth queueing network. If

X̄N → X̄ a.s. u.o.c. (uniformly on compact sets).

as r → ∞, then the process X̄ is then called a fluid limit. Each component

of the fluid limit is absolutely continuous and thus differentiable almost ev-

erywhere in [0,∞). Let X̄(ω) denote the set of fluid limits associated with a

sample path ω. Each fluid limit satisfies fluid model dynamics (2.7) - (2.9),

and furthermore the properties of the fluid limit helps us characterize stability

and asymptotic optimality of the discrete network. The fluid model said to be

stable if there exists a fixed time σ > 0 such that X̄(t) = 0, for all t ≥ σ for

any fluid solution.

Definition 2.5.1. For a given state x ∈ S, let qrk(t;x) = r−1Qk(rt; [rx]) for

k = 1, 2, t ∈ R+ and Vr(x, T) = E[
∫ T

0
(c1q

1
r(t;x)+c2q

2
r(t;x))dt], for T ∈ R+. A

policy is called fluid scale asymptotically optimal, in the total cost sense, if

lim sup
n→∞

Vr(x, T) ≤ V∗(x) for x ∈ S, T ≤ 0

43

where V∗(x) denotes the optimal value function for the fluid model.

In order to verify fluid scale asymptotic optimality for a given policy

Π, one can take the fluid limit of X̄ under the policy and check whether the

optimal fluid dynamics are satisfied. If so, then policy Π is asymptotically

optimal in the total cost sense.

Definition 2.5.2. Let S = {q = (i, j) ∈ Z2
+ : α(i − o′)−j ≤ 0}, with α and

o′ = h(õ) where h is a function h : R → Z and α, õ defined as in Section 4.

Recall a state of the Markov decision process is defined as (i, j, C). Then given

(i, j, C), the stationary policy ΠD is then defined as follows:

• (i, j) 6∈ S ′

– if C = C1 then U r = R2NP , Ua = A1

– if C = C2 then U r = R2P , Ua = A1

• (i, j) ∈ S ′ then

– if C = C1 & i > 0 then U r = R1P , Ua = A1

– if C = C2 & i = 0, j > 0 then U r = R1NP , Ua = A2.

If the system is empty, i.e., C = C0, then ΠD routes the next arrival to

Queue 1.

Proposition 2.5.1. Let stationary policy ΠD be defined as above. Then any

fluid limit X̄(t) satisfies fluid the optimality-feasibility equations with stationary

44

policy ΠD. Therefore ΠD is an asymptotically optimal policy in the total cost

sense.

Proof. By definition the fluid limit X̄(t), satisfies the fluid feasibility equations

(2.7)-(2.9). If the fluid limit satisfies following optimal fluid model equations,

then this implies asymptotic optimality. We prove that the following con-

straints hold at all time t ≥ 0:

Ā1(t) cannot increase when αQ̄1(t)−Q̄2(t) > 0 (2.22)

Ā2(t) cannot increase when αQ̄1(t)−Q̄2(t) ≤ 0 (2.23)

Ȳ (t) cannot increase when Q̄1(t)+Q̄2(t) > 0 (2.24)

T̄2(t) cannot increase when Q̄1(t) > 0. (2.25)

Let t > 0. Assume that αQ̄1(t)−Q̄2(t) > 0. Since Q̄ is a fluid limit,

there exists a sample path ω and a sequence rn →∞ such that:

(Q̄rn(·, ω), Ārn(·, ω))→ (Q̄, Ā) u.o.c.

as n→∞. This suggest that ∃ε > 0 and integerN such that αQ̄rn
1 (t, ω)−Q̄rn

2 (t, ω) ≥

ε for n ≥ N . As a result, αQrn
1 (rnt, ω)−Qrn

2 (rnt, ω) > rnε for n ≥ N . Consider

another integer N2 ≥ N and ε′ ∈ (0, ε) such that rnε ≥ rn(α+1)ε′+αo′ for

n ≥ N2. Hence αQrn
1 (rnt, ω)−Qrn

2 (rnt, ω) > rn(α+1)ε′+αo′ for n ≥ N2. It then

follows that:

α(Qrn
1 (rnt, ω)−rnε′) > Qrn

2 (rnt, ω)+rnε
′+αo′,

45

for n ≥ N2. Now note that each component of X is Lipschitz continuous. This

suggests that under any policy, jumps of the corresponding Markov chain are

bounded. Considering the uniformized Markov chain, we then have:

|Q(t)−Q(t+1)| ≤ 1,

for t ≥ 0. For the fluid limit Q̄, this implies that:

|Q̄(t)−Q̄(t+s)| ≤ |t− s|,

for t, s ≥ 0. It then follows that:

|Qrn
1 (rnt, ω)−Qrn

1 (rn(t+δ), ω)| ≤ rnδ

|Qrn
2 (rnt, ω)−Qrn

2 (rn(t+δ), ω)| ≤ rnδ,

for δ ≥ 0. Now let δ ≤ ε′. We then have:

αQrn
1 (rn(t+δ), ω) > Qrn

2 (rn(t+δ), ω)+αo′,

for n ≥ N2. Therefore, Arn1 (s, ω) is flat for s ∈ (rnt, rn(t+δ)) and n ≥ N2.

Equivalently, Ā1(s, ω) is flat for s ∈ (t, t+δ). Letting n→∞, we have Ā1(s) is

flat for s ∈ (t, t+δ), and thus (2.22) is proved. The proof of (2.23) follows the

same lines.

Now we move on to the proof of (2.24). Similarly, let t ≥ 0 where Q̄1(t)

+Q̄2(t) ≥ 0. By the continuity of Q̄, ∃δ > 0 such that mins∈(t−δ,t+δ) Q̄1(t)+Q̄2(t) >

0. There exists a sample path ω and a sequence rn →∞ such that:

(Q̄rn(·, ω), Ȳ rn(·, ω))→ (Q̄, Ȳ) u.o.c.

46

as n→∞. It then follows that there exists integer N such that:

inf
s∈(t−δ,t+δ)

Q̄rn
1 (s, ω)+Q̄rn

2 (s, ω) ≥ 0,

for n ≥ N . Therefore,Qrn
1 (s, ω)+Qrn

2 (s, ω) ≥ 0 for s ∈ (rn(t−δ), (t+δ)) and

n ≥ N . Given that the service discipline under ΠD is non-idling, Y rn(s, ω) is

flat for s ∈ (rn(t−δ), rn(t+δ)) and n ≥ N . It then implies that Ȳ rn(s, ω) is flat

for s ∈ ((t−δ), rn(t+δ)). Let n → ∞, we have Ȳ (s) is flat for s ∈ (t−δ, t+δ),

proving (2.24).

Finally, we prove (2.24). Following the same steps with the previous

statements, again let t ≥ 0 where Q̄1(t) > 0. Then by the continuity of Q̄1,

∃δ > 0 such that mins∈(t−δ,t+δ) Q̄1(t) > 0. Since any component of X̄ is a fluid

limit, there exists a sample path ω and a sequence rn →∞ such that:

(Q̄rn(·, ω), T̄ rn(·, ω))→ (Q̄, T̄) u.o.c.

as n → ∞. There exists integer N such that infs∈(t−δ,t+δ) Q̄rn
1 (s, ω) ≥ 0 for

n ≥ N . Therefore, Qrn
1 (s, ω) ≥ 0 for s ∈ (rn(t−δ), rn(t+δ)) and n ≥ N . Note

that under ΠD, the server gives priority to class 1 jobs. Hence, when n ≥ N ,

T rn2 (s, ω) is flat for s ∈ (rn(t−δ), rn(t+δ)). It then follows that T̄ rn2 (s, ω) is flat

for s ∈ ((t−δ), (t+δ)). Letting n→∞, we have T̄2(s) is flat for s ∈ (t−δ, t+δ),

proving (2.22) and completing the proof.

In this section we proved that the policy ΠD is asymptotically optimal

only in the total cost sense. Although in our setting our goal is to minimize

47

long-run average cost rate, there is no well-established theory connecting op-

timization of total cost in the fluid model with optimizing average cost in

the discrete queueing network. The average cost optimal policy is in fact an

asymptotically optimal policy in the total cost sense [28], therefore by this con-

struction we aim to obtain a good approximation to this policy. In the next

section, we evaluate the performance of the proposed discrete policy ΠD with

respect to the average cost optimal policy obtained through policy iteration.

2.6 Numerical study

In this section, we provide examine the optimal policy and evaluate

the performance of the asymptotically optional policy ΠD in several sample

networks. The optimal discrete policy is obtained through policy iteration, on

a truncated state space. Specifically, each class can have at most B customers.

For large values of B, computing the optimal policy is increasingly intractable

and this is a primary motivation to examine approximately optimal policies.

The proposed policy ΠD has two advantages. First, it has a simple structure

defined by a linear threshold, and is thus easy to implement. Second, if the

proposed policy performs well then it can be used as an initial policy in policy

iteration (if the decision-maker still requires an optimal solution) resulting in

a lower number of iterations and thus less computational time. Note that the

optimal allocation policy we compute in the truncated network does indeed

conform to the cµ rule, confirming the structural results in Section 2.2.

Before assessing the performance of ΠD, we provide additional motiva-

48

tion behind this policy via visual presentations of selected average-cost optimal

policies. Recall that the state definition includes the class of the job currently

in service. In this section, routing policies are presented for the case when

the system serves a customer of class 1. The case where the current customer

is of class 2 admits similar routing controls. Figure 2.3 presents the optimal

routing policy for different values of c1, which is the holding cost for class 2

customers. The policies depicted indicate that a linear switching curve is a

good approximation to the true switching curve. Also notice that increasing

values of c1 yield steeper slopes, which is consistent with the fluid slope com-

puted in Section 2.3. For this reason, in the discussion below we only focus on

comparison of routing policies.

49

c1=10

x2

c1=5

c1=2 x1

Route to Q2

Figure 2.3: Routing policies with increasing slope : c2 = 1, λ = 0.473, µ1 =
0.5264, µ2 = 0.402

Similar motivation can be found for the presence of an offset on the

x1 axis, corresponding to the number of class 1 jobs. Three different policies

with similar curve but different offsets are presented in Figure 2.4. The offset

computed via a perturbation expansion in Section 2.4 is non-increasing in µ2

which is again consistent with the policies shown in Figure 2.4.

50

m2=0.46

x2

m2=0.41

m2=0.33 x1

Route to Q2

Figure 2.4: Routing policies with increasing offset : c1 = 10, c2 = 1, λ =
0.485, µ1 = 0.515

The performance of ΠD is assessed as follows: For a given set of pa-

rameters (λ, µ1, µ2, c1, c2), the optimal average cost , COpt is obtained through

policy iteration. We then evaluate the average cost of ΠD (CD) and the op-

timality gap of ΠD is defined as:
CD−COpt
COpt

. Both policies are evaluated in the

system with a truncated state space.

Recall that we are interested in parameters that satisfy λ > µ2 and

λ < µ1. We denote γ = µ2/λ and ρ = λ/µ1. For simplicity we fix (λ+µ1 = 1)

and vary ρ, γ, c1, c2. Fixing the truncation parameter at B = 50, instances

51

with the following combinations of parameters are evaluated:

ρ ∈{0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65}

γ ∈{0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65}.

Recall that ΠD requires an integer term for the offset and function h :

R+ → Z+ that maps the offset value obtained through perturbation expansions

(see Section 2.4) to an integer. First we perform an empirical evaluation of

some intuitive mappings with respect to the optimal average cost policy. Three

different settings are evaluated. In Setting 1, õ is rounded up to the nearest

integer (h(õ) = dõe). In Setting 2, õ is rounded down to the nearest integer

(h(õ) = dõe) and in Setting 3, we set h(õ) = 0 to compare policies with and

without an offset term. The instances for this set of experiments are generated

with ρ and γ combinations defined as above and for (c1, c2) = (10, 1). Figure

2.5 provides a comparison on the performance of settings 1, 2 and 3.

52

20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

0.9 0.85 0.8 0.75 0.7 0.65
γ

S
ub

op
tim

al
ity

 %
ρ = 0.9

Setting

1

2

3

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

0.9 0.85 0.8 0.75 0.7 0.65
γ

S
ub

op
tim

al
ity

 %

ρ = 0.85

0%
20%
40%
60%
80%

100%
120%
140%
160%

0.9 0.85 0.8 0.75 0.7 0.65
γ

S
ub

op
tim

al
ity

 %

ρ = 0.8

Setting

1

2

3

0%
20%
40%
60%
80%

100%
120%
140%
160%

0.9 0.85 0.8 0.75 0.7 0.65
γ

S
ub

op
tim

al
ity

 %

ρ = 0.75

0%
20%
40%
60%
80%

100%
120%
140%

0.9 0.85 0.8 0.75 0.7 0.65
γ

S
ub

op
tim

al
ity

 %

ρ = 0.7

Setting

1

2

3

0%
20%
40%
60%
80%

100%
120%
140%

0.9 0.85 0.8 0.75 0.7 0.65
γ

S
ub

op
tim

al
ity

 %
ρ = 0.65

Figure 2.5: Performance of offset settings under different parameter settings

Across all instances, Figure 2.5 shows the significant benefit of using

an offset term, as not doing so results in optimality gaps between 80% to

100%. It is observed that setting 1 outperforms setting 2 for all cases with

the exception of a few with ρ < 0.75. As γ decreases we observe that setting

1 always yields better results than setting 2. These observations indicate that

setting 1should be used in the definition of h(õ). The next set of experiments

evaluate the performance of the corresponding discrete policy ΠD in more

53

detail. In addition to experiments on γ and ρ, this set experiments also aims

to measure the effect of c1 and c2. Choosing c1 ∈ {2, 5, 10}, c2 ∈ {1}, we

perform experiments on various combinations of c1, c2, ρ, γ. Figure 2.6 shows

the performance of ΠD with respect to the average-cost optimal policy.

0%

1%

2%

3%

0.9 0.85 0.8 0.75 0.7 0.65
g

S
ub

op
tim

al
ity

 %

c1 = 2 , c2 = 1

10%

20%

0.9 0.85 0.8 0.75 0.7 0.65
g

S
ub

op
tim

al
ity

 %

c1 = 5 , c2 = 1

10%

20%

30%

40%

0.9 0.85 0.8 0.75 0.7 0.65
g

S
ub

op
tim

al
ity

 %

c1 = 10 , c2 = 1

r
0.65

0.7

0.75

0.8

0.85

0.9

0%

1%

2%

3%

0.9 0.85 0.8 0.75 0.7 0.65
r

S
ub

op
tim

al
ity

 %

c1 = 2 , c2 = 1

10%

20%

0.9 0.85 0.8 0.75 0.7 0.65
r

S
ub

op
tim

al
ity

 %

c1 = 5 , c2 = 1

10%

20%

30%

40%

0.9 0.85 0.8 0.75 0.7 0.65
r

S
ub

op
tim

al
ity

 %

c1 = 10 , c2 = 1

g
0.65

0.7

0.75

0.8

0.85

0.9

Figure 2.6: Performance of proposed policy under different parameter settings

First, we observe that as c1 approaches c2 the optimality gap of ΠD is

less than 5% under all different settings of ρ and γ. Although different trends

54

seem to be present for c1 = 2, the magnitude of the changes are very small

compared to the cases with c1 ∈ (5, 10). The difference in average cost is

expected to increase when c1 >> c2 since then one suboptimal action has a

significant effect on the cost of the policy. We observe that ΠD has a better

performance when ρ is less than 0.8, and the worst performance is for ρ = 0.9.

Recall that the routing threshold α of ΠD does not depend on λ. Also recall

that the offset is non-decreasing in λ. When all the other parameters are

fixed, increasing λ then results in a greater number of states in which average

cost optimal policy differs from ΠD. Apart from the instances with ρ > 0.8,

decreasing γ results in better performance.

Figure 3.2 depicts the the differences between the optimal policy and

ΠD in more detail. Shaded parts correspond to controls of ΠD, and rectangles

correspond to controls in the average cost optimal policy. Note that we only

show the routing controls as the policies do not differ in allocation control.

The figure indicates that ΠD more closely matches the optimal routing

policy as γ increases, when ρ = 0.85. Class 1 customers are given priority

(due to the cµ rule) therefore system spends more time processing Class 1

customers. Consequently a change in µ2 affects the system less compared to

a change in µ1. This explains why the performance of proposed algorithm is

more sensitive to changes in ρ compared to changes in γ.

55

o~ = 2

α = 29.3

x2

x1

Route to Q2

(a) γ = 0.65, Suboptimality = 21.04%

o~ = 2

α = 15.8

x2

x1

Route to Q2

(b) γ = 0.85, Suboptimality = 10.61%

o~ = 2

α = 11.1

x2

x1

Route to Q2

(c) γ = 0.9, Suboptimality = 7.06%

Figure 2.7: Routing controls of ΠD vs. optimal average cost policy for
c1, c2 = {10, 1}, ρ = 0.85

56

Chapter 3

N-Buffer fluid model with Gurvich-type

routing

The previous chapter is devoted to the analysis of a discrete stochastic

(queueing) network and there the corresponding fluid model is used to get an

approximation to the optimal discrete policy. In this chapter and the next, our

focus is solely on fluid models. Although in Chapter 1 and 2 the motivation

for the fluid models is briefly stated, we start this chapter with a big picture

overview on where these (fluid) models fit in the grand scheme of optimal

control.

The model in this chapter is an N -buffer parallel fluid network with

a single flexible server and Gurvich-type routing. After the overview in Sec-

tion 3.1, in Section 3.2 we describe the model formally. The associated linear

programming model is given in Section 3.3. In Section 3.4, we outline the opti-

mality equations. Next, we prove that the cµ rule is optimal for the scheduling

control of Station 2 in Section 3.5. Further structural proofs are given in Sec-

tion 3.6. To show the implications of the structural results, in Section 3.7 we

explain the idea of how to compute exactly the optimal policy for a network

with N = 3. Lastly, in Section 3.8 we generalize these ideas into a generic

57

procedure that determines the optimal policy for a network with any given

number of parallel buffers.

3.1 Overview: Fluid models and the optimal control

Optimal control theory is concerned with finding a control law for a

dynamic system in order to achieve a performance goal. The evolution of the

dynamic system is tracked through the state information and the decision-

maker takes actions (also called as controls) which in turn affect the future

state trajectory. One major distinction among control problems is on how

the dynamic system evolves with respect to time. Continuous and discrete

systems differ in measurement of states and placement of actions, respectively,

in continuous or discrete-time steps.

From a modelling stand-point, discrete-time models are more realistic

as in reality the system can only be measured and the controls can be put

into effect in discrete time steps. Yet, these models come with more compu-

tational challenges than their continuous equivalents. Both in continuous and

discrete-time systems, optimality equations outline the conditions for a set of

controls to be optimal with use of a functional operator called the value func-

tion. The value function keeps track of the best possible value of the objective

as a function of the state. The relationship between the value function and

optimal controls lead to a recursive update rule which results in well-known

dynamic programming in discrete-time systems. Although dynamic program-

ming exploits the recursive structure of the problem efficiently, it becomes

58

less practical with larger applications. As a consequence, value function ap-

proximations, approximate dynamic programming and Q-learning have been

popular in the research literature. For a through review, we refer the interested

reader to Powell [35] and Bertsekas [8].

Control problems also distinguish between performance goals. Finite-

horizon models are concerned with optimization of a cost/reward objective on

the state trajectory up to a given time horizon whereas infinite horizon models

are concerned with long-run performance measures. Infinite horizon discrete-

time models models are generally easier to solve compared to corresponding

finite horizon ones, as the dependence on time is less explicit. Iterative algo-

rithms as value iteration and policy iteration are popular tools in solving these

problems and their idea is based on updating an estimate of value function un-

til estimates between two consecutive iterations converge. Nevertheless these

computational approaches suffer from the “curse of dimensionality”, which

implies that as the number of state-action pairs grow, the number of optimal-

ity equations to be satisfied become explosive, and one again must resort to

approximations or good guesses of initial policies.

Continuous-time optimal control often suffers from similar computa-

tional challenges. The optimality equation, called the HJB equation, is a

partial differential equation to be satisfied for all time-state pairs. In many

problems, solving the HJB equation is analytically and computationally highly

challenging. Computing an analytical solution may involve a guess of the op-

timal value function or the optimal set of controls and verifying that they are

59

in fact optimal. Although the verification is straight-forward, without a good

guess computing an analytical solution is often difficult. On the other hand

evaluating the gradient of the value function is much easier. The maximum

principle, also known as Pontyragin’s maximum principle, provides necessary

but not sufficient conditions on optimality using the gradient of the value func-

tion. Bertsekas [8] shows that if the controls lie in a polyhedral space, then in

fact the maximum principle provides both sufficient and necessary conditions

on optimality.

A final distinction on control problems is the effect of randomness. In

deterministic control problems, a jump from one state to another only depends

on the previous state trajectory and the sequence of actions. For stochastic

control problems, taking an action might lead to any one of many possible

states. As a result, stochastic problems are often more combinatorial. Con-

trol of queueing networks fit into the class of stochastic discrete-time optimal

control problems.

Deterministic/stochastic, discrete/continuous time control problems arise

in many different contexts and have a variety of applications. Now, we are

going to move on to a class of deterministic continuous-time optimal con-

trol problems, namely fluid models, arising as approximations of discrete-time

stochastic queueing models. Fluid models replace the stochasticity of the

discrete-time control problem by replacing the random processes with their

averages. The resulting control problem becomes both deterministic and con-

tinuous therefore more tractable then its discrete counterpart. A major ques-

60

tion is: What information on the queueing network we can derive by analysing

the far-simpler fluid network? The answer to this question was not clear un-

til 1990’s. In his seminal work Dai [12] shows that, under positive Harris

recurrence, a discrete-network is stable if its fluid model is stable. For two sta-

tion multi-class queueing networks, Dai and Vande Vate [14] outline globally

stabilizing conditions in order to achieve stability.

After the link between stability of discrete and fluid networks became

fairly established, the focus of research literature shifts to the optimality of

networks. Specifically, can we determine the optimal policies for a given dis-

crete network using optimal policies of the associated fluid model? The notion

of asymptotic optimality helps to answer this question. Asymptotic optimal-

ity is essentially a consistency criterion between a fluid optimal policy with

a discrete-policy evaluated in the discrete-stochastic network. It requires ex-

istence of the limit of queue-length vectors under a particular scaling (called

fluid scaling) and consistency of these limits with the fluid optimal policy. For

the total cost minimization objective in the discrete network, a strong form of

solidarity between the discrete optimization problem and a related total-cost

optimal control problem is established (Meyn [27]). It is shown that an opti-

mized network possesses a fluid limit model which is itself optimal with respect

to a total cost criterion. However, there is no such strong link formed with an

average cost minimization problem in discrete network with a corresponding

fluid model. A step toward establishing a link can be found in Meyn [30],

where the author proves that a certain class of policies (MaxWeight) are ap-

61

proximately average cost optimal in heavy traffic, with logarithmic regret.

Consideration of near-optimal control of queueing networks using fluid models

are subject to other papers including Bauerle [7], Meyn [31] and Nazarathy et

al. [34]. However, it must be noted that several classes of fluid models (de-

pending on the structure of the objective) can be very difficult to solve. Hence,

development of efficient solution procedures has attracted the research com-

munity and are studied in a number of papers including Fleischer et al. [15]

and Weiss [40].

Another promising aspect of fluid models, which mainly motivates the

current chapter, is that they provide insights on the optimal policies of the

discrete model. Specifically, even under conditions where no strong tie exists

between a fluid and discrete model, the fluid model can provide hints on the

structure of the optimal policies and may serve as a good approximation to the

discrete optimal policy. This idea is explored in Avram et al. [5], where the

optimal policy of small-scale fluid networks are used in order to derive a general

heuristic designed to solve the much broader class of networks. The paper puts

forth a very interesting conjecture: “A more general principle, where if a static

priority scheme is optimal for the fluid model, the same policy is optimal for

the stochastic model. Furthermore, whenever the fluid model predicts a linear

threshold curve is optimal, the optimal policy for the stochastic model is also

of threshold type, but with a nonlinear threshold curve.” This observation

hints a strong link between fluid and stochastic counterparts, even though the

theoretical foundation has not been fully justified.

62

Note that this conjecture is consistent with the analyzed model in Chap-

ter 2. For the scheduling rule, the cµ rule - being based on static priority - is

proven to be optimal for both the discrete and the fluid model. Furthermore,

the optimal non-linear discrete policy is approximated by the optimal (linear)

fluid policy. These observations motivate us to further investigate the fluid

models on their own, as theoretical analysis of fluid models are simpler than

the discrete networks, the optimal fluid policy can be translated to a discrete

policy that is asymptotically optimal and finally this policy can be very in-

sightful on the structure of the optimal policy of the corresponding discrete

network. Next, we formally describe the fluid model that we focus in this

chapter.

3.2 Model description

In this chapter, we focus on a fluid network composed of N parallel

buffers with Gurvich type routing as presented in Figure 3.1. Fluid in buffer k

is denoted as class k fluid. We assume that the system receives fluid at a time-

constant rate λ and incoming fluid is distributed (or routed) among N buffers.

The set of the indices of fluid classes is denoted by N , i.e, {1, 2, .., N} = N .

The system is composed of a single-station and within the station, there is

a flexible server. The server can allocate its capacity to process any com-

bination of fluid classes available in buffers, however its processing rate is

class-dependent, meaning that the fluid of class k ∈ N can be processed at a

rate µk by the server. Furthermore, we assume that fluid classes are ordered,

63

i.e., for any two fluid classes i, j ∈ N , ci > cj and µi > µj if and only if i < j.

The last assumption, we impose is that µ1 > λ > µ2. The objective of the fluid

optimization model is to choose a set of routing and scheduling controls for

every time unit t ≥ 0 in order to minimize the total holding cost accumulated

in the system until all the buffers are empty.

��

��

��

Server

��

��

��

.

.

.

	�
.

.

.

Figure 3.1: N -buffer fluid network with Gurvich-type routing

The draining time of a buffer refers to a time when the buffer level

hits 0 and does not build up afterwards. This problem can be modelled as

a trajectory control problem. Let Tk be the draining time of fluid k, and

set T = maxk(Tk). Also let xk(t) the quantity of fluid at buffer k at time

t. Let {urk(t), uak(t) ∈ [0, 1]} be the routing and allocation controls, respec-

tively. Given initial fluid levels at the buffers, the decision-maker then chooses

64

(urk(t), u
a
k(t)) which solve the following problem:

min

∫ T

t=0

∑
k∈N

ckxk(t)dt (3.1)

ẋk = λurk(t)− µkuak(t), ∀k ∈ N ,∀t ≥ 0 (3.2)

xk ≥ 0, ∀k ∈ N , ∀t ≥ 0 (3.3)

with x(0) = x. (3.4)

Constraints (3.2) enforce the system dynamics. Constraints (3.3) assure that

fluid levels are non-negative and lastly constraints (3.4) set the starting con-

dition on fluid levels. Before writing down the HJB equations and outlining

the conditions that optimal set of controls must satisfy, we now discuss how

to numerically solve this continuous optimization problem through time dis-

cretization.

3.3 LP model

As an approximation to the original continuous-time control problem,

one can formulate the corresponding linear program. The LP formulation takes

a discretization parameter on time updates, and the premise of the approxi-

mation is that the smaller time intervals become, the better the approximation

gets. Yet, increasing granularity comes with a computational cost as it implies

increasing the size of the LP model. Note that the number of variables depend

on the discretization parameter denoted as ∆.

65

Sets and Indices:

N : set of fluid classes;

i ∈ N : fluid class index;

T = {0, 1, . . . , (∆)T} : set of time points;

t ∈ T : time index;

Parameters:

cj : holding cost rate for fluid class i;

µj : service rate for fluid class i;

Decision Variables:

ri,t : rate of incoming fluid routed to Buffer i at time t;

si,t : service rate of the server dedicated to Buffer i at time t;

xi,t : fluid level in Buffer i at time t.

66

Formulation:

z = min
∑
t∈T

∑
i∈N

xi,tci,t (3.5)

xi,t+1 = xi,t+
1

∆
(ri,t+1 − si,t+1),∀t ∈ T ,∀i ∈ N (3.6)∑

i∈N

ri,t = λ,∀t ∈ T (3.7)∑
i∈N

si,t
µi
≤ 1,∀t ∈ T (3.8)

xi,t ≥ 0,∀i ∈ N ,∀t ∈ T (3.9)

ri,t ≥ 0,∀i ∈ N ,∀t ∈ T (3.10)

si,t ≥ 0,∀i ∈ N ,∀t ∈ T . (3.11)

The objective (3.5) the total accumulated holding cost over the time

horizon. Constraints (3.6) are on how buffer levels change over time. Con-

straints (3.7) specify that incoming fluid with rate λmust be distributed among

buffers. Constraint sets (3.8) make sure that the capacity of server utilization

is not exceeded. Finally, Constraints (3.9), (3.10) and (3.11) are non-negativity

constraints imposed on the variables.

Note that ∆ is a parameter of the model. To determine the value of

∆, one can start with an initial small value and gradually increase it until

the solution value does not change significantly. Through this dynamic search

over the values of ∆, the size of the LP can managed. Nevertheless, it must

be noted that this approach is prone to discretization error and it is hence an

approximation to the original problem. Furthermore, for large sized networks,

the computational effort to solve these problems can be significant. One last

67

disadvantage to any numerical solution method is that unless extensive ex-

perimental analysis is performed it is difficult to derive general conclusions on

the structure of optimal policies. This is the main motivation behind an exact

analysis of the model through HJB equations, as described in the next section.

3.4 Optimality equations

First, we write down the HJB equations. Then through the HJB equa-

tions, we obtain structural results on the optimal policy. With the insights

obtained through the structural results, we then explicitly describe the whole

policy. The Hamiltonian function H is defined as follows:

H(x, ur, ua) = min
urk,u

a
k∈U
{cx+

N∑
k=0

pk(λu
r
k(s)− µkuak(s))},

with pk corresponding to Lagrange multipliers. The function H(·) corresponds

to the value function in the discrete domain and the controls that minimize

the right hand side of the equation are then optimal. Note that this equation

must be satisfied for all t ∈ (0, T) and for clarity the time index t is omitted.

The complementary slackness conditions, pk(t)xk(t) = 0, ∀k ∈ N and the first

order conditions imply: ṗk(s) = −ck for all s ≥ 0 and xk(s) > 0. For s ≥ 0

where xk(s) = 0, the structure of ṗk is not yet known. In the following section,

we derive the full structure of the Lagrange multipliers.

Note that at a given time point t, the Lagrange multipliers indicate the

structure of the optimal policy. This relationship can be easily seen by rear-

ranging H(x, ur, ua) and by expressing Lagrangian multipliers as non-negative

68

weights on controls. The following relationship between the Lagrangian mul-

tipliers and the optimal controls is established as follows:

min
k∈N ,k 6=k′

pk(t) > pk′(t)⇔ urk′(t) = 1

pk′(t)µ
′
k(t) > max

k∈N ,k 6=k′
(pk(t)µk(t))⇔ uak′(t) = 1.

A starting point is investigating the optimality of a static priority rule

for the scheduling control. Recall that in the previous chapter for the network

with N = 2, we proved that the cµ rule holds. Accordingly, the server gives

processing priority to the class of fluid with the largest product of cost and

service rate as long as its corresponding buffer is non-empty. For the optimal

routing control, we observed that for N = 2 a linear threshold policy exists.

Then for N > 2, are the optimal routing policies of threshold-type? If so,

how can we derive them for any given parameter combination and for any N?

To answer these questions, we now move on to proofs on the structure of the

optimal policies.

3.5 The proof of the cµ rule

Static priority rules give the scheduling priority to a class of fluid over

another, regardless of the present fluid levels in the buffers associated with the

classes. Hence, in application of these rules the only information required is

that whether a buffer is empty or not. Furthermore if a static priority rule is

optimal, the initial state or whether the system incurred disruptions does not

matter. For these reasons, systems admitting such rules as optimal policies

69

have received significant attention in the literature.

Essentially, our goal in this section is to assess whether the optimal

scheduling policy for the model is based on a strict priority rule, and if so

derive its complete structure. Researchers have asked this question for different

types of models, and one of the most important studies in that regard is Chen

and Yao [10]. The authors define a very strong notion of optimality, namely

global optimality, that requires optimality at every epoch throughout the entire

time horizon rather than solely on a long-run cost basis. Although a globally

optimal policy may not exist for every model, the authors argue that if one

exists, it can be identified through a sequential procedure. The authors prove

that to compute the optimal server allocation, one only needs to consider a

subset of decision epochs. It is then shown that the globally optimal policy can

be derived sequentially by deriving the optimal server allocation by solving a

linear program and pasting the solutions together.

It is important to note that this procedure requires to solve a sequence

of linear programs and that, under a globally optimal policy, the objective

value of a linear program is no greater than the objective of one that is solved

earlier. This poses the main challenge when one wants to apply this procedure

to our model. Under the Gurvich-type routing option, the output rate of the

server depends on the selected routing policy. The dependence on optimal

routing controls prevents such a procedure from producing a static priority

rule for scheduling control.

The sketch of the proof is as follows: First, we define a performance

70

vector as a descriptive process that measures the performance of the fluid

network. If the set of all performance vectors satisfy a set of conditions,

namely strong conservation laws, then it is shown that the set of all feasible

performance vectors define a polyhedron. Furthermore, the extreme points of

the polyhedron correspond to strict index policies which are the set of policies

that give strict priority to a fluid class over another based on the selected

ordering of class indices. Lastly, if a linear function of the performance vector

is to be minimized, then it is shown that under the optimal policy the fluid

classes are given priority based on their cost rate where the higher the cost

rate of a fluid class, the higher scheduling priority it receives.

For our particular problem, we first express the objective in terms of

remaining work. The Skorohod problem definition and related theorems are

used in proving that strong conservation laws hold for the model. It then

follows that the policy that gives strict priority to fluid classes based on the

product of their holding cost and service rates, is optimal.

Next we start by formal definitions of the processes used in the proofs

as well as useful theorems in the main proof. Subsection 3.5.1 is dedicated to

these preliminaries. The proof of the cµ rule is then outlined in Subsection

3.5.2.

3.5.1 Preliminaries

Let x = (x1, x2, . . . , xN) denote a vector of performance measure of

interest. For example in the fluid context, x can refer to the fluid levels at

71

buffers at a given time or the amount of work left to process for each class of

fluid. To denote the dependence of the performance vector on policy π ∈ Π, we

use the notation xπ. Furthermore, we define a strict priority policy as a policy

that gives scheduling priority to classes according to given permutation of class

indices φ = (φ1, φ2, . . . , φN). For example, the strict priority policy π(φ) gives

highest scheduling priority to fluid class φ1 and the lowest scheduling priority

to fluid class φN . We call an admissable policy, any scheduling policy that

uses the server at full capacity as long as the system is non-empty.

Definition 3.5.1 (Green [16]). Let S be a subset of N . The set of all perfor-

mance vectors {xπ : π ∈ Π} is said to satisfy strong conservation laws if there

exists a set function f : 2N → R+ such that

∑
j∈N

xπj = f(N), ∀π ∈ Π (3.12)∑
j∈S

x
π(π(φ))
j = f(S), ∀φ such that (φ1, φ2, . . . , φS) = S (3.13)∑
j∈S

xπj ≥ f(S), ∀π ∈ Π. (3.14)

If a performance vector satisfies these strong conservation laws then

it implies that the total performance over all classes is invariant under any

admissable scheduling strategy. The total performance over the classes in any

subset S ⊂ N is therefore invariant and furthermore is minimized by any

strict-priority rule giving priority to those jobs over jobs of classes in SC .

72

Theorem 3.5.1 (Green [16]). Given a set of performance vectors {xπ : π ∈ Π}

that satisfies strong conservation laws, an objective of the form

min

{∑
j∈N

cjx
π
j , π ∈ Π

}
,

is optimized by the strict-priority rule that assigns priority to the job classes in

the order of decreasing cost coefficients. Namely, the strict priority rule π(φ),

where

cφ1 ≥ cφ2 ≥ . . . ≥ cφN ,

is optimal over all π ∈ Π.

Although we do not provide the full provide of the proof of Theorem

3.5.1, the main idea is to express the optimization problem as a linear pro-

gram with an objective {min
∑

j∈N cjxj} and the feasible region defined by a

polyhedron P defined as follows:

P =

{
x ∈ R+ :

∑
j∈S

xj ≥ f(S), S ⊂ N ,
∑
j∈N

xj = f(N)

}
.

When the strong conservation laws hold, the set of extreme points of P equals

the set of performance vectors of all strict-priority rules. It then follows that

the optimal policy is in fact based on a strict priority rule. For the details of

the proof, we refer the interested reader to Green [16].

Definition 3.5.2 (The Skorohod Problem (Green [16])). Given T > 0 and

x = {x(t), 0 ≤ t ≤ T} ∈ D([0, T],R)) with x(0) ≥ 0, a regulation of x over

[0,T] is a pair (z, y) ∈ D([0, T],R)×D([0, T],R) such that:

73

1. z(t) = x(t)+y(t), for all t ∈ [0, T]

2. z(t) ≥ 0, for all t ∈ [0, T]

3. y(0) = 0, y(·) is nondecreasing in [0, T],
∫ T

0
z(t)y(t) = 0.

Let D+([0, T], S) denote the subset of functions in D([0, T], S) that are

non-decreasing. Define Y (x) as follows:

Y (x) = {y(·) ∈ D+([0, T],R) : x(t)+y(t) ≥ 0, t ∈ [0, T]}.

Theorem 3.5.2. For each x ∈ D([0, T],R) such that x(0) ≥ 0, there is a

unique minimal y ∈ Y (x), and the pair (z, y) with z = x + y is the unique

regulation of x over [0, T], that is, the unique solution to (i), (ii) and (iii) in

D([0, T],R)×D([0, T],R).

3.5.2 The proof

As stated earlier, the mixed nature of routing and scheduling controls

makes the proof of optimal scheduling control more challenging. In this sub-

section, we show that the cµ rule is optimal regardless of the selected routing

policy. A routing policy is a collection of routing controls ur(t) for all time

t ≥ 0. We denote a routing policy by πr and the set of all admissible routing

policies as Πr. Note that routing controls are not restricted by time or states,

therefore the set Πr stays constant throughout all time points. The proof

requires additional definitions of performance processes.

74

Let Wk(t) denote the class-k workload process corresponding to the

amount of work embodied in class k fluid. The idleness process Y (t) corre-

sponds to the total amount of time the server has been idle in [0, t]. We use

the notation Wk(t, πr) to denote the vectors under routing policy πr ∈ Πr and

the notation W π
k (t, πr) is used to denote the dependence on the scheduling

policy π ∈ Π. The total workload is denoted by W π(t, πr) =
∑

k∈N W
π
k (t, πr).

The capacity of the server dedicated to process fluid-class k at a given time

t under πr is given by ua,πk (t, πr). The total utilization of the server is then

Uπ(t, πr) =
∑

k∈N u
a,π
k (t, πr). The output rate of the server is denoted by

O(t, πr) =
∑

k∈N
λ
µk
urk(t, πr) where urk(t, πr) corresponds to the routing ac-

tions taken under routing policy πr. Furthermore let Qπ(t, πr) denote the

queue length vector under scheduling policy π and routing policy πr and

Qπ(t, πr) =
∑

k∈N Q
π
k(t, πr) the total amount of fluid in buffers at time t ≥ 0.

Recall that the objective of the fluid optimization problem is to min-

imize the total holding cost accumulated in the system until time T ≥ 0.

Furthermore, note that if a policy π∗ is globally optimal then it should mini-

mize accumulated holding cost at every decision epoch compared to any other

policy π ∈ Π. That is:∑
k∈N

ckQ
π∗

k (t, πr) ≤
∑
k∈N

ckQ
π
k(t, πr) for πr ∈ Πr, π ∈ Π, t ≥ 0. (3.15)

Now note that for all πr ∈ Πr, π ∈ Π, t ≥ 0, the queue length vector can be

expressed as a linear function of the workload as follows:

Qπ
k(t, πr) = µkW

π
k (t, πr) for k ∈ N .

75

As a result, the optimality condition (3.15) can be expressed as follows:∑
k∈N

ckµkW
π∗

k (t, πr) ≤
∑
k∈N

ckµkW
π
k (t, πr), for πr ∈ Πr, π ∈ Π, t ≥ 0. (3.16)

Next, we show that the optimal policy π∗ is in fact a strict priority policy. To

do so, we prove that the strong conservation laws hold for the vector W π(t, πr).

Proposition 3.5.3. The vector {W π : π ∈ Π} satisfies strong conservation

laws.

Proof. Note that the server has no incentive to idle at a given time. It is clear

that any policy that does not use the server to the full capacity while there

is fluid in the system is sub-optimal. This implies that the following relation

must hold under any policy π ∈ Π and πr ∈ Πr:∫ t

0

W π(s, πr)dY
π(s, πr) = 0, for all t ≥ 0.

This in fact corresponds to Skorohod condition, with w(t) = x(t)+y(t) where

x(t) corresponds to the the remaining workload process if the server were to

be used at full capacity. As a result of this condition, it then follows that any

policy π ∈ Π that is a candidate to be optimal must satisfy the following:

Uπ(t, πr) =

{
1, for W π(t, πr) > 0

min(1, O(t, πr)), if W π(t, πr) = 0.

Since W π(t, πr) satisfied the Skorohod condition for all π ∈ Π, it then

follows that W π(t, πr) is invariant under π ∈ Π. Therefore we have, ∀t ≥

0, πr ∈ Πr: ∑
k

W π
k (t, πr) = f(N , πr), for all π ∈ Π.

76

Next, consider a subset S ⊂ N . Following Definition 3.5.1, an S-policy

is defined as a policy that gives scheduling priority to S-class fluid rather than

classes in SC . Let Π(S) be the set of all S−policies. it then follows that:

∑
k∈S

W π
k (t, πr) = f(S, πr), for all π ∈ Π(S)∑

k∈S

W π
k (t, πr) ≥ f(S, πr), for all π ∈ Π.

Next, let φ = (φ1, φ2, . . . , φN) a permutation of integers {1, 2, . . . , N}. Defin-

ing Sφ1 = {φ1}, Sφ2 = {φ1, φ2}, . . . , SφN = {φ1, φ2, . . . , φN} = N . The strict-

priority policy π(φ) associated with the permutation φ is the unique pol-

icy π ∈ ∩Nk=0Π(Sφk). That is, π(φ) is simultaneously an Sφk -policy for all

k = 1, 2, . . . , N . With this definition of strict-priority policies the vector

(W π
1 (t, ω),W π

2 (t, πr), . . . ,W
π
N(t, πr)) satisfies the strong conservation laws.

Now that we showed that the strong conservation laws hold for the

workload vector, the next step is to just apply Theorem 3.5.1.

Proposition 3.5.4. Consider the permutation φ = {φ1, φ2, . . . , φN} such that:

cφ1µφ1 ≥ cφ2µφ2 ≥ . . . ≥ cφNµφN .

Then,

∑
k

ckµkW
π(φ)
k (t, πr) ≤

∑
k

ckµkW
π
k (t, πr) for πr ∈ Πr, π ∈ Π, t ≥ 0. (3.17)

77

Proof. If the strong conservation laws hold for a performance vector, it then

follows from Theorem 3.5.1 that the optimal policy is of strict-priority type.

This simply suggests that the fluid class associated with a higher cµ value

would be given higher priority over any other class with a lower value. This

corresponds to the cµ rule, completing the proof.

3.6 Other structural results

Now that the optimal scheduling policy is determined, we consider the

results related to determining the structure of the optimal routing policy. The

main results of this section are as follows:

• The optimal routing control is bang-bang meaning that at a given time

t ≥ 0 the incoming fluid stream is fully routed to a single buffer.

• If at time t ≥ 0 the buffer associated with the fluid class i receives the

fluid stream, then for any time t′ ≥ t, any fluid class j > i does not

receive incoming fluid.

• The full structure of Lagrange multipliers is determined. With this infor-

mation, we can determine the optimal routing policy through a procedure

explained in following sections.

Next, we discuss of the proofs.

Proposition 3.6.1. Consider a time t ≥ 0 at which all the corresponding

buffers to fluid classes 1 through N-1 are empty. For any such t, under the

78

optimal policy, all the incoming fluid is routed to the buffer of class 1 fluid.

Proof. Let time t > 0 such that xk(t) = 0,∀k ∈ N \ {N}. In order to

fully drain the system, fluid of class N must be processed by the server, i.e.

uaN(t) > 0. Note λ > µN therefore if the incoming fluid is fully routed to

the buffer of class N , it would result in buffer build-up which is clearly sub-

optimal. On the other hand, through the cµ rule if any buffer of class k fluid,

with k ∈ N \ {N}, is non-empty then this would surely imply that no fluid

from buffer N is processed at the server. A policy that builds up buffers is

also sub-optimal, as there exists at least one feasible policy under which buffer

N drains (consider the policy that routes all incoming fluid to buffer 1, for

example). As a result, the original optimization problem reduces to selecting

the routing policy so that the fluid from buffer N drains fastest (note that only

the fluid in this buffer incurs holding cost, as it is non-empty) while keeping

the other buffers empty. The optimal routing control can be considered then

as a knapsack problem with an objective of maximizing the rate of processing

fluid class N . Formally the problem can be formulated as follows:

minµN

(
1−

∑
k∈N ,k 6=1

urk(t)λ

µk

)
,

Subject to:

∑
k∈N

urk = 1

urk ∈ [0, 1], ∀k ∈ N .

79

Given urN(t) > 0, the optimal solution would be then ur∗1 (t) = 1 and

ur∗1 (t) = 0,∀k ∈ N , k 6= 1. Therefore, all the incoming fluid is surely routed

to the buffer of class 1 fluid.

Proposition 3.6.2. Lagrange multipliers admit the following structure:

ṗj(t) =


−cj, for t < tj

−
cj′(t)µj′(t)

µj
, if t ≥ tj, if j′(t) = arg minj∈N,t<tj tj

0, otherwise.

Proof. According to the cµ rule, for any given time the server processes fluid of

class j ∈ N if and only for any fluid class i ∈ N with i < j, the corresponding

buffer is empty. However, this does not imply that when the fluid of class j

is in being processed, the processing capacity of the server is solely dedicated

to this class of fluid. On the contrary, the buffer corresponding to the fluid of

class i may be empty but it can receive an incoming stream of fluid through

the routing control. If this happens, the server must dedicate a portion of

its capacity to process fluid of class i in order to prevent the buffer from

building up. In terms of controls, this case would imply uai (t), u
a
j (t) > 0 for

given t > 0. Recall that though HJB equation if the values of Lagrange

multipliers are known at a given time, then one can determine the optimal

controls. Therefore for uai (t), u
a
j (t) > 0 to hold at time t > 0, the Lagrange

multipliers must satisfy: pi(t)µi = pj(t)µj.

Now, consider time t ∈ (tN−1, tN) at which all the corresponding buffers

to fluid classes 1 through N -1 are empty. Through Proposition 3.6.1, the fluid

80

of class 1 receives an incoming stream of fluid and thus it is processed in the

server. This implies that ua1(t) and uaN(t) > 0, therefore p1(t)µ1 = pN(t)µN .

Also by continuity of Lagrange multipliers, p1(tN−1)µ1 = pN−1(tN−1)µN−1. If

ṗN−1 >
ṗNµN
µN−1

, it would imply pN−1(t)µN−1 > pN−1(t) and thus uaN(t) = 0.

On the other hand, if ṗN−1 < ṗNµN
µN−1

, then this implies ∃t′ ∈ (tN−1, tN) for

which pN−1(t′) = 0 and pN(t′) > 0. If this is the case then, pN−1(t′) < p1(t′),

contradicting with optimal routing rule. Therefore ṗN−1(t)µ1 = ṗN(t)µN =

−cNµN , ∀t ∈ (tN−1, tN). Backtracking from class N -1 to 1, this result is

derived.

Now that the full structure of Lagrange multipliers are known, we move

on with the results relating to the optimal routing policy.

Proposition 3.6.3. Under the optimal policy, the routing controls are bang-

bang.

Proof. The proof is by contradiction. Suppose the optimal routing policy for

time t ∈ (t′, t′′), is not bang-bang. This then implies that there exists at least

two classes of fluid, i, j ∈ N with i < j, such that pj(t) = pi(t) for t ∈ (t′, t′′).

As a result, ṗj(t) = ṗi(t) for t ∈ (t′, t′′). Note that this is not possible for t < ti,

since ṗj(t) = −cj 6= −ci = ṗi(t). Similarly, for t > tj Proposition 3.6.2 implies

that ṗj(t) = µi
µj
ṗi(t) 6= ṗi(t). Lastly, consider the time interval (ti, tj). Another

implication is that ṗk(t) is a non-decreasing function in t for t > tk, k ∈ N .

For that reason, for any t ∈ (t′, t′′) with t′ ≥ ti and t′′ ≤ tj if pj(t) = pi(t) then

81

as a consequence pi(tj) > pj(tj) conflicting with the cµ rule. Therefore, the

optimal routing controls are bang-bang.

Proposition 3.6.4. Given that the optimal routing policy is bang-bang, let

E(t) correspond to the index of the fluid class receiving the arrival stream at

time t ≥ 0. If for time t′ > 0, E(t′) = j then for all time t > t′, E(t) ≤ j.

Proof. Let time t′ > 0 and ∃j ∈ N such that E(t′) = j. Suppose that

∃t′′ ∈ (0, t′) such that E(t′′) = i with i < j. This implies that ∃t ∈ (t′′, t′)

such that pi(t) = pj(t). Note that for all i, j ∈ N with i < j, Proposition 3.6.2

indicates that pi(t)µi = pj(t)µj ∀t > ti, therefore pi(t) < pj(t), ∀t > ti. Also,

for t ≤ tj, ṗj(t) < ṗi(t). As ṗj(t) = −cj > ṗi(t) = −ci for t ≤ ti, @t ∈ (t′′, t′)

such that pi(t) = pj(t).

Definition 3.6.1. Routing switch, R(t), is a binary variable defined for every

time t ≥ 0 as follows:

Rt =

{
(j, i), if ∃ε > 0,∃i = E(t+ ε),∃j = E(t), i < j

∅, otherwise.

Furthermore a routing path, P (t) is defined as the set of all the routing switch

variables or events for all time s ∈ (t, T). Hence, P (t) = {R(s)|s ∈ (t, T)}.

In order to evaluate the total cost following a particular routing path,

the corresponding routing controls must be determined at every time step.

Note that if at a given time the incoming fluid is routed to buffer 1 fluid then

for any time later, only buffer 1 receives fluid. Therefore, at time t ≥ 0 and

82

state x(t) = x, if ur1(t) = 1 then the total cost that the system accumulates is

as follows:

v(x) = xT ~Qx,

with

~Q = (2(µ1 − λ))−1


c1 c2 . . . cN
c2 c2

µ1
µ2

. . . cN
µ1
µ2

...
...

. . .
...

cN cN
µ1
µ2

. . . cN
µ1
µ3

 .

Proposition 3.5.4 outline explicitly the structure of the optimal schedul-

ing policy and Propositions 3.6.3 and 3.6.4 give insight on optimal routing

policy. Our next goal is to derive the optimal routing policy: determining how

the incoming fluid is distributed among buffers and the explicit structure of

the routing path. In order to present the idea behind calculation of routing

switches, we now proceed with an example network with N = 3 and afterwards

we generalize the results for all N ≥ 0.

3.7 Example

To determine the optimal routing policy, the optimal routing path and

the associated switching times must be calculated. Through Proposition 3.6.1,

it is clear that under any starting state there exists a time when the incoming

fluid is routed to the buffer of class 1 fluid. Yet, it is possible that the optimal

routing policy can admit no routing switch events. In this section, we show

how to derive the full routing policy for a network composed of 3 parallel

buffers.

83

For N2 = 3, the sample space of the routing path P (t) for any t > 0 is

as follows: {(3, 2), (2, 1)},{(3, 1)},{(2, 1)},∅}. The optimal path could be easily

determined if the draining times tk,∀k ∈ N were known. To see this, Figure

3.2 shows different routing paths under different draining times as follows:

�� �� ��

��

��

��

������

(a) P (0) = {(3, 2), (2, 1)}

�� �� ��

��

��

��

���

(b) P (0) = {(2, 1)}

�� �� ��

��

��

��

���

(c) P (0) = {(3, 1)}
�� �� ��

��

��

��

(d) P (0) = {∅}

Figure 3.2: Example of Lagrange Multipliers for different routing paths

1. P (0) = {(3, 1)}

If P (0) = {(3, 1)}, then there exists a routing switch for some time

84

t31 ≥ 0. The Lagrange multipliers then satisfy p1(t31) = p3(t31). This

relation can be expressed in terms of draining times t1, t2, t3 as follows:

c1(t1 − t31)+
c2µ2

µ1

(t2 − t1)+
c3µ3

µ1

(t3 − t2) = c3(t3 − t31). (3.18)

Note that for all time t ≥ t31 there are no other routing switches and

all the incoming fluid is routed to Buffer 1. Let x′ = x(t31) denote the

state at time t31. The draining times can be expressed as: t1 = t31+
x′1

µ1−λ ,

t2 = t1+
x′2

µ2(1− λ
µ1

)
and t3 = t2+

x′3
µ3(1− λ

µ1
)
. In addition, let function L31(·)

defined as follows:

L31(x′) = (c1 − c3)x′1+(
c2µ2

µ1

− c3)
µ1

µ2

x′2+(
c3µ3

µ1

− c3)
µ1

µ3

x′3 = 0.

With this definition of L31(·), if for a given state x(t), L31(x(t)) = 0

then Equation 3.18 is satisfied. Thus, evaluating L31(x(t)) is sufficient

to determine the routing policy. Formally, this relation can be expressed

in terms of the routing controls for all k ∈ N, t ≥ 0 as follows:

urk(t) =


1, for k = 1 and L31(x(t)) ≥ 0

1, for k = 3 and L31(x(t)) < 0

0, Otherwise.

Let x0 = x and suppose L31(x) < 0. This suggests that ∃t31 > 0 such

that L31(x(t31)) = 0. The idea is then to express x(t31) in terms of x

and t31, then derive t31 as a function of x. Note that for t ∈ (0, t31) the

incoming fluid is routed to Buffer 3. The scheduling policy, through the

85

cµ rule, gives priority to scheduling fluid from Buffer 1 if it is non-empty,

and to scheduling fluid from Buffer 2, otherwise. Hence, we can define

two directions d1
31, d

2
31 to correspond to ẋ as follows: d1

31 = (−µ1, 0, λ),

d2
31 = (0,−µ2, λ). As a result x(t31) can be expressed as:

x(t31) = x+ min(t31,
x1

µ1

)d1
31+ max(0, t31 −

x1

µ1

)d2
21.

Then t31 can be derived by solving:

L31(min(t31,
x1

µ1

)d1
31+ max(0, t31 −

x1

µ1

)d1
21) = −L31(x).

Lastly, under a starting state x and switching time t31, the total cost

accumulated in the system, denoted by C31(x), is given as follows:

C31(x) =−min(t31,
x1

µ1

)
c′d1

31

2
+c′xmin(t31,

x1

µ1

)

+ max(0, t31 −
x1

µ1

)
c′d2

31

2
+c(x−min(t31,

x1

µ1

)d1
31)+v(x(t31)),

where c is the vector associated with cost rates for each class, i.e. c =

(c1, c2, ..., cn)′.

2. P (0) = {(2, 1)}

If there exists a time t21 > 0 when a routing switch from Buffer 2 to Buffer

1 takes place, then Lagrange multipliers should satisfy: p1(t21) = p2(t21).

This relation can also be expressed as follows:

c1(t1 − t21)+
c2µ2

µ1

(t2 − t1)+
c3µ3

µ1

(t3 − t2) = c2(t2 − t21)+
c3µ3

µ2

(t3 − t2),

(3.19)

86

where t1, t2, t3 are again the draining times of buffers. Let x′ = x(t21),

the draining times can be expressed as following: t1 − t21 =
x′1

µ1−λ , t2 =

t1+
x′2

µ2(1− λ
µ1

) and t3 = t2+
x′3

µ3(1− λ
µ1

)
.

A function L21(x) can be then defined as:

L21(x) = (c1 − c2)x1+(
c2µ2

µ1

− c2)
µ1

µ2

x2+c3µ3(
µ2 − µ1

µ2µ3

)x3.

Therefore, under any state x(t), it is sufficient to evaluate L21(·) to de-

termine the routing policy ∀k ∈ N, t ≥ 0:

urk(t)


1, for k = 1 and L21(x(t)) ≥ 0

1, for k = 2 and L21(x(t)) < 0

0, otherwise.

Next, given an initial state x(0) = x with L21(x) < 0, we derive t21 > 0

such that L(x(t21) = 0. Note that for Equation (3.19) to hold, t21 ≤ t1

is requires. Therefore, the direction d21 = (−µ1, λ, 0) corresponds to (ẋ)

for t < t21. Then x(t21) can be expressed as: x(t21) = x+t21d21. It then

follows that t21 is:

t21 = −L21(x)/L21(d21).

Finally, the cost of this path under any starting state x, denoted by

C21(x) is given as follows:

C21(x) = −t21
c′d21

2
+c′xt21+v(x+t21d21).

3. P (0) = {(3, 2), (2, 1)}

87

As opposed to the previous routing paths, the routing path P (0) =

{(3, 2), (2, 1)} involves two routing switches. This implies that there

exists time t32, t21 ≥ 0 such that p2(t32) = p3(t32) and p1(t32+t21) =

p2(t32+t21). These equations can be expressed explicitly as follows:

c1(t1−t32)+
c2µ2

µ1

(t2−t1)+
c3µ3

µ1

(t3−t2) = c3(t3−t32) (3.20)

c1(t1−t21−t32)+
c2µ2

µ1

(t2−t1)+
c3µ3

µ1

(t3−t2) = c2(t2−t21−t32)+
c3µ3

µ2

(t3−t2),

(3.21)

where t1, t2, t3 are given as functions of t21, t32 and x(0) = x as follows:

t1 = t32 + t21+
x1−(t32 + t21)µ1

(µ1−λ)

t2 = t1+
x2+t21λ

µ2(µ1−λ)

t3 = t2+
x3+t32λ

µ3(µ1−λ)
.

We can then define a function L32(·) such that L32(x) = 0 such that the

draining times corresponding to state x satisfy Equation (3.21). L32(·)

is defined as follows:

L32(x) = (c2−c3)x1+(c2−c3)
µ2

µ1

x2+(
c3µ3

µ1

−c3)
µ3

µ1

x3

It then follows that the switching times t21, t32 > 0 should satisfy:

L21(x(t32+t21)) = 0 and L32(x(t32)) = 0. Therefore, it is sufficient to

88

evaluate L21(·), L32(·) to determine the routing policy ∀k ∈ N, t ≥ 0:

urk(t)



1, for k = 1 and L21(x) ≥ 0

1, for k = 2 and L21(x) < 0, L32(x) ≥ 0

1, for k = 3 and L32(x) < 0

0, Otherwise.

For a given inital state x(0) = x, the value of t32 can be found by solving

L32(x(t32)) = 0. Then plugging in t32, L21(x(t32+t21)) = 0 gives the value

for t21. Therefore, the idea is to express x(t32) and x(t32+t21) in terms of

t21, t32 and x.

Note that as a consequence of the cµ rule, p1(t1)µ1 = p2(t1)µ2, therefore

p1(t1) < p2(t1). As a result, t32, t21 > 0 satisfy the following: t21+t32 ≤ t1.

This implies that x(t32) can be expressed as x(t32) = x+t32d32 where

d32 = (−µ1, 0, λ). Consequently, the switching times t32 and t21 are

linear in state x as follows:

t32 = −L32(x)/L32(d32)

t21 = −
(
L21(x)+L21(−L32(x)/L32(d32)

)
/L21(d21).

Finally the cost of the path, C321(x) is given as follows:

C321(x) = −t32
c′d32

2
+c′xt32−t21

c′d21

2
+t21c

′(x+t32d31)+v(x+t32d31+t21d21).

So far we outlined the derivation optimal trajectory under the assump-

tion that the optimal routing path is known. It is important to note that for

89

t > 0 the sample space of routing path P (t) is not conditional on the state

x(t). For a given state, a path may not admit a sequence of non-negative

switching times. Such a path is called infeasible. The optimal path is then the

path resulting in the lowest total cost among the feasible paths.

In order to assess the feasibility of a path, only a function evalu-

ation of the initial state is required. For example, the path {2, 1} is in-

feasible if L21(x(0)) < 0. Similarly for path {3, 2, 1}, feasibility requires

both L21(x(0)) < 0 and L32(x(0)) < 0. It is important to note that un-

der certain parameter settings, infeasibility of one path can imply infeasibil-

ity of another. For example, let x(0) = x with L21(x) > 0. Now suppose

L21(d32) = (c1−c2)µ1 + c3µ2
µ2−µ1
µ2µ3

λ < 0. If this is the case then surely for

any t32 > 0, L21(x+t32d32) < 0. Hence if L21(d32) < 0 then under any initial

state, if path {2, 1} is infeasible then so is path {3, 2, 1}. This suggests that

under restricted parameter settings, the search for the optimal path can follow

special branching rules.

Restricted parameter settings also have implications on the the relation

of the switching times to the initial state x(0) = x. Note that under path

{3, 1}, the switching time t31 is a non-linear function of state x. However, if

c2µ2
µ1

< c3 then Equation (3.18) requires t31 ≤ t1. Then x(t31) can be expressed

as: x(t31) = x+t31d
1
31. As a result, t31 = −L31(x)/L31(d31) hence switching time

is a linear function of state x. This observation also hints that an algorithm

that exploits such special structure could be more efficient than a general one.

However, for the purposes of this chapter, we provide a general algorithm that

90

does not require any further assumptions on the parameters other then the

ones imposed at the beginning of the chapter. Next, we generalize the ideas

of this example into a general procedure that computes the optimal trajectory

for a network composed of N buffers.

3.8 An algorithm to compute the optimal trajectory

In this section, we describe an algorithm to determine the optimal state

trajectory for any given initial state. With the earlier results, the structure

of Lagrange multipliers is fully known under a parameter setting. Therefore

the proposed algorithm employs a procedure that checks whether conditions

on Lagrange multipliers are satisfied by a candidate vector switching times for

each path. This requires additional procedures such as one that projects a

state to a future period, i.e. to x(t+ t′) given x(t) and t′ > 0 while the routing

policy is known for all time in (t, t + t′). Before describing these procedures

in more detail, we introduce the following notation for the purposes of the

proposed algorithm: the state x(t) = x is represented by vector ~x ∈ Rn
+ with

~xi = xi for all i ∈ N . The cost vector is given as ~c = (c1, c2, . . . , cN). Let

~ei ∈ RN correspond to a unit basis vectors for all i ∈ N . The vector of draining

times is denoted by ~T ∈ RN where ~Ti is the draining time of the class i fluid.

Let ~1 ∈ RN , the vector composed of all ones.

The set of feasible routing controls do not depend on the current state,

however the set of feasible scheduling controls do. Through the cµ rule, the

server dedicates its capacity to the fluid class with the lowest index (the highest

91

cµ value). Therefore, whenever the fluid level of a class drops to zero, then the

output rate of the station varies. Therefore even if according to the routing

policy fluid class j receives fluid for a given interval, ẋ(t) can change if a buffer

empties in that interval. Thus ẋ(t) depends on x(t) for time t ≥ 0. Under

fixed routing policy, the following procedure returns ẋ(t) given x(t).

1: procedure getDirection(~x, j)

2: i = arg mini∈N (~xi > 0)

3: return (−µi~ei+λ~ej)

4: end procedure

The next procedure calculates a projection of the current state x(0)

to a future period x(t), under the assumption that class j fluid receives the

arrival stream. Note that this projection must take into account the changes

in ẋ(t) in case a fluid level drops to zero.

1: procedure updateState(~x, t, j)

2: ~d = getDirection(~x, j)

3: if ~x+ t~d ≥ 0 then

4: return ~x+t~d

5: else

6: t′ = min{i|~di<0}(−~xi/~di)

7: return updateState(~x+ t′~d, t− t′, j)

8: end if

9: end procedure

92

Note that given µ1 > λ under the optimal policy the system fully drains.

If Buffer 1 receives the incoming fluid at a given time then it will do so for

all consecutive time points. Therefore, for any time t ≥ 0 and state x(t) = x

the draining times of each fluid can be calculated as given in the following

procedure.

1: procedure getDrainingTimes(~x)

2: ~T1 = ~x1/(µ1 − λ)

3: for i ∈ N \ {1} do

4: ~Ti = ~Ti−1 + ~xiµ1/(µi(µ1 − λ))

5: end for

6: return ~T

7: end procedure

In the previous section, we explained that feasiblity of a path requires

conditions on Lagrange multipliers. For example, for path {3, 1}, there exists

t31 > 0 if and only if p1(t31) = p3(t31). Therefore, a numerical search can be

performed to find the root of (p1(t31)−p3(t31)). Note that in the case of paths

composed m switching events there exists a vector of routing times, denoted as

ts with dim(ts) = m, that must satisfy m equations of Lagrange multipliers.

The following procedure first calculates the projection of the state x

following the routing policy according to a routing path P and a candidate

vector of switching times, ts. From the time of last routing switch and on-

ward, only class 1 receives the incoming fluid therefore the draining times

can be calculated. Let function p(·) : RN → R given by p(t1, t2, . . . , tN) =

93

(p1(t1), p2(t2), . . . , pn(tN)). Thus p(·) can be evaluated to find ts.

1: procedure evaluate(~x, ts, P)

2: ~x′ = ~x; k = 0

3: for (j, i) ∈ P do

4: ~d = getDirection(~x, j)

5: ~x′ = updateState(~x, ts[k], j)

6: k ++

7: end for

8: ~T = getDrainingTimes(~x′)

9: res = 0; k = 0

10: for (j, i) ∈ P do

11: ~T += ts[k]~1

12: res[k] = (−~ei + ~ej)
Tp(~T)

13: k ++

14: end for

15: return res

16: end procedure

Note that if routing path P and the switching times ts are known, then

the states x(t),∀t > 0 can be determined given state x(0) = x and total cost

of the state trajectory can be computed. Next procedure takes into account

changes in ẋ as a result of following the routing path and the scheduling policy,

and returns the total cost accumulated in the system.

1: procedure costTrajectory(~x, ts, P)

94

2: cost = 0; k = 0;

3: t′ = t; ~x′ = ~x

4: for (j, i) ∈ P do

5: t′ = ts[k]

6: while t′ > 0 do

7: ~d = getDirection(~x′, j)

8: if ~x′ + t~d >= 0 then

9: cost += t′~cTx′+t′~cT ~d/2

10: ~x′ = ~x′+t′~d

11: t′ = 0

12: else

13: t′′ = min{i|~di<0}(−~x′i/~di)

14: cost += t′′~cT ~x′+~t′′~cT ~d/2

15: ~x′ = ~x′ + t′′~d

16: t′ −= t′′

17: end if

18: end while

19: k += 1

20: end for

21: cost += ~x′
T ~Q~x′

22: return cost;

23: end procedure

Lastly, the algorithm in its general form is given in Algorithm 1. If a

95

path is feasible then the switching times associated with the path, ts has all

positive components. Algorithm 1 performs a search on the set of the paths in

the sample space, denoted as R, to assess their feasibility and then calculates

their cost to find the optimal path.

Algorithm 1 Finding The Optimal Trajectory

Require: State x; R; Q; p(·); λ; µi, ci, ∀i ∈ N
Ensure: L∗ optimal routing path; ts∗, C∗ the switching times and the cost

under L∗

1: L∗ = ∅, ts∗ = ∅
2: C∗ = costTrajectory(x, 0, ∅)
3: for L ∈ R do
4: Find ts such that: evaluate(x, ts, L) = 0
5: if min ts > 0 then
6: if C∗ > costTrajectory(x, ts, L) then
7: C∗ = costTrajectory(x, ts, L)
8: L∗ = L, ts∗ = ts
9: end if
10: end if
11: end for

It is important to note that this algorithm exploits the information on

the structure of Lagrange multipliers. Furthermore, the procedures described

in this section are easily adaptable to different classes of fluid networks if the

structure of associated Lagrange multipliers is known. In fact, in the next

chapter, we discuss how to adapt this algorithm for a network composed of

two serially connected stations and compute the optimal policy.

96

Chapter 4

Tandem fluid networks with Gurvich-type

routing

As stated in the introduction to Chapter 2, large-scale queueing models

often require approximations due to complexity of the models. Only for some

special classes of networks does the network exhibit a decomposability property

that allows an analysis on a station level to be generalized to the whole system,

as for Jackson or Kelly networks. Yet, attempts to upgrade these results have

been limited due to the fact that explicit exact results are difficult to obtain

(Nazarathy [33]).

For single station multi-class queueing networks, the cµ rule, as ex-

plained in earlier chapters, gives the optimal scheduling policy. However, even

an extension of this network to one composed of two serially connected sta-

tions can admit a very different optimal scheduling policy. Figure 4.1 presents

a 2-station MCQN with two different job classes. Recall that the cµ rule is a

myopic rule that essentially maximizes the rate at which cost is drained from

the system. In the single-station model, this myopic rule is globally optimal

because after being processed in the server, the fluid leaves the system and

no longer accumulates holding cost. Now, it is intuitive to think that the

97

same logic would apply to Station 2 of this network. However, as Hordjik and

Koole [19] proved, there are parameter settings under which the cµ rule is not

optimal. It applies only when the holding and service rates of the fluid classes

competing in Station 2 follow the condition that a class with higher holding

cost also has higher service rate.

��

��

Server

��

��

��

��

��

��

Server

��

��

Station 2Station 1

Figure 4.1: MCQN composed of 2 stations in tandem

For Station 1 of this network, under exponential service times and Pois-

son arrivals, Hordjik and Koole [21] prove that a variant of cµ rule is optimal

in an asymptotic sense. However, for Station 1 of this network the optimal

policy is of more complicated nature. Firstly, the scheduling policy of Station

1 directly affects the future buffer sizes of Station 2. This implies that the

optimal scheduling policy in Station 1 must depend on the buffer lengths in

Station 2 as well as in Station 1. Note that if Station 1 has a higher output

rate than Station 2 then this may cause the buffers in Station 2 to build up

if Station 1 works at full capacity. On the other hand, idling in Station 1

would help drain fluids from the buffers of Station 2 faster. As a result, the

98

balance between service and cost rates of the stations is a strong indicator on

the structure of the resulting policies.

In this chapter, our focus is on two-station tandem fluid networks. We

analyze two different networks and each can be considered as an extension

of the network provided in Chapter 3. The first model, depicted in Figure

4.2, is composed of a station with a single buffer serially connected to another

station composed of N parallel buffers. Both of the stations include a single

flexible server. Note that the last station of this network is the same with the

network in Chapter 3. It is then interesting to investigate whether the results

we obtained in Chapter 3 are valid for this model or not. When does Station 1

idle? What is the structure of the optimal policy in Station 2? Is the optimal

routing policy of Station 2 bang-bang? These are some of the questions that

motivate our analysis.

Server 2

.

.

.

.

.

.

Server 1
1

2

�

Figure 4.2: Network representation for the Tandem 1-N

The second model we consider in this chapter is one where a station

composed of N parallel buffers is serially connected to a station with a single

buffer. This model is presented in Figure 4.3. Note that the scheduling policy

in Station 1 is much harder to determine with the additional option on routing

99

among different buffers. Apart from the possibility of idling, even determining

which class of fluid to process in the server of Station 1 is much more compli-

cated than other networks. It is easy to find a case when the cµ rule is not

optimal in Station 1. Consider a network where the buffer in Station 2 has a

higher holding cost then any of the buffers in Station 1. When this is the case,

processing the class of fluid with the highest service rate in Station 1 would

imply decreasing the output rate of the most costly class of fluid. With these

challenging cases in mind, the implications Gurvich-type routing in a network

where idling is possible motivates us to analyze this network.

Server 1

.

.

.

.

.

.

Server 2
1

2

�

Figure 4.3: Network representation for the Tandem N -1

The tandem models analyzed in this chapter have real-life applications

in various areas. Airports, for example, include intricate network topologies

involving different processes such as security screening, visa application, cus-

toms inspection or flight boarding. Furthermore, the corresponding networks

to these processes can be composed of multiple waiting lines in parallel. When

this is the case, there is often an employee that determines to which line the

next arriving passenger goes, corresponding to a routing decision. In addition,

the waiting lines can have different average processing times. For example, the

100

waiting times of passengers in TSA Pre-check security lines are significantly

lower because of no requirement to remove shoes, belts, etc. Hence, airport

passenger flows constitute a very suitable application domain for the tandem

models we focus on this chapter.

This chapter is organized in two main sections, each focusing in de-

tail on the two tandem network models. Section 4.1 is dedicated the the first

model. After the formal model description, the associated linear program-

ming model is given in Subsection 4.1.1. The optimality equations are given

in Subsection 4.1.2. Next, we provide structural results in Subsection 4.1.3.

An example on the policy computation is given in Subsection 4.1.4. Subsec-

tion 4.1.5 describes the details of an algorithm to compute the optimal policy.

Section 4.2 includes the analysis for the second model. Subsection 4.2.1 in-

cludes the necessary conditions on optimality and Subsection 4.2.2 includes

structural results.

4.1 Tandem fluid network 1-N

In this section, we consider a network of two serially connected (tan-

dem) stations. For reference, this network is shown in Figure 4.4. The first

station is composed of a single buffer and a single server. The output process

of this station is then the input process of the second station which is com-

posed of N parallel buffers and a single flexible server. We assume that the

fluid coming out of Station 1 can be routed among the buffers of Station 2

through Gurvich type routing. Let Ns be the number of buffers in Station s

101

with N1 = 1, N2 = N and s ∈ S = {1, 2}. The sets N1 and N2 are defined

as N1 = {1} and N2 = {1, 2, . . . , N2}. For notational clarity, we denote the

jth buffer (and fluid class) of station s by the index (s, j). Station 1 receives

an external arrival stream with rate λ and the server can process fluid up to

rate µ1,1, with µ1,1 > λ required for stability of the system. For Station 2,

the fluid classes are ordered to satisfy following condition on holding costs

and service rates: µ2,i > µ2,j and c2,i > c2,j if and only if i < j, ∀i, j ∈ N2.

Again for stability the condition λ < µ2,1 is required. For this model, the

decision−maker seeks to minimize the total holding cost accrued in the system

until all the buffers are empty, by determining the scheduling controls of the

servers in both stations as well as the routing controls in Station 2.

��,�

��,�

��,�

Server 2

��,�

��,�

��,�

.

.

.

.

.

.

��,�

Server 1

��,�
	�

Figure 4.4: Network representation for the Tandem 1-N

Next, we formally define this optimization problem. The scheduling

control refers to the extent the capacity of the server in station s is being

utilized. The control uas,j(t) denotes the proportion of the server in Station

s dedicated to processing fluid from buffer (s, j) at time t, with uas,j(t) ∈

(0, 1), ∀t ≥ 0,∀s ∈ S,∀j ∈ Ns and
∑

j∈Ns u
a
s,j ≤ 1, ∀t ≥ 0,∀s ∈ S. The

routing control urs,j(t) refers to the proportion of incoming fluid to Station

102

s being routed to buffer (s, j) at time t. We have then urs,j(t) ∈ (0, 1) and∑
j∈Ns u

r
s,j(t) = 1, ∀t ≥ 0,∀s ∈ S. Note that this implies ur1,1(t) = 1. Let Ts,j

be the draining time of buffer (s, j) and T = maxs∈S,j∈Ns Ts,j. Since λ < µ1,1

and λ < µ2,1 there exists a policy that keeps the fluid levels at zero, once it is

achieved. Hence, the optimization model is only defined up to time horizon T

is given as follows:

min

∫ T

t=0

∑
s∈S,j∈Ns

cs,jxs,j(t)dt (4.1)

ẋ1,1(t) = λur1,1(t)−µ1,1u
a
1,1(t), ∀t ≥ 0 (4.2)

ẋ2,j(t) = µ1,1u
a
1,1(t)ur2,j(t)−µ2,ju

a
2,j(t), ∀j ∈ N2,∀t ≥ 0 (4.3)

xs,j(t) ≥ 0, ∀s ∈ S,∀j ∈ Ns (4.4)

xs,j(0) = xs,j, ∀s ∈ S,∀j ∈ Ns. (4.5)

Constraint sets (4.2) and (4.3) are on the evolution of fluid levels in Stations 1

and 2, respectively. Constraints (4.4) insure that fluid levels are non−negative

and finally Constraints (4.5) impose the starting condition on fluid levels. As

shown in Constraints (4.3) the state is in fact a non−linear function of the

controls, which in turn makes the analysis more complicated. Despite its

non−linear structure, this continuous optimization problem can be approxi-

mated through a linear program formulation. This formulation is given in the

next subsection.

103

4.1.1 LP model

We now present the LP formulation. The approach is based on express-

ing the the continuous problem as a linear program through discretization of

the time interval. With ∆ corresponding to the discretization parameter, we

now outline the indices, parameters, decision variables and the constraints of

this linear program.

Sets and Indices:

i ∈ N1 : class of job in Station1;

j ∈ N2 : class of job in Station2;

k ∈ N1 ∪N2 : job index;

s ∈ 1, 2 : station index;

T = {0, 1, . . . , (∆)T} : set of time points;

t ∈ T : time index;

Parameters:

ci(cj) : holding cost rate for fluid class i(j);

µi(µj) : service rate for fluid class i(j);

Decision Variables:

rs,j,t : rate of incoming fluid routed to Buffer(2, j) at time t;

sj,t : service rate of the server dedicated to Buffer(2, j) at time t;

xj,t : fluid level in Buffer j at time t.

104

Formulation:

z = min
∑
t∈T

∑
i∈N1

xi,tci,t+
∑
t∈T

∑
j∈N2

xj,tcj,t (4.6)

xi,t+1 = xi,t+
1

∆
(ri,t+1−si,t+1),∀t ∈ T ,∀i ∈ N1 ∪N2 (4.7)∑

i∈N1

ri,t = λ,∀t ∈ T (4.8)∑
j∈N2

rj,t =
∑
i∈N1

si,t,∀t ∈ T (4.9)

∑
i∈N1

si,t
µi
≤ 1,∀t ∈ T (4.10)∑

j∈N2

sj,t
µj
≤ 1,∀t ∈ T (4.11)

xk,t ≥ 0,∀k ∈ N1 ∪N2, ∀t ∈ T (4.12)

rk,t ≥ 0,∀k ∈ N1 ∪N2, ∀t ∈ T (4.13)

sk,t ≥ 0,∀k ∈ N1 ∪N2, ∀t ∈ T . (4.14)

The objective (4.6) corresponds to the total accumulated holding cost

from t = 0 to upper bound on draining time T . Constraint set (4.7) describe

how controls affect buffer levels every unit of time. Constraints (4.8) specify

that incoming fluid with rate λ must be distributed among buffers in Station

1. Constraints (4.9) assure that the input to Station 2 is equal to the output

from Station 1. Constraint sets (4.10) and (4.11) make sure that the capacity

of server utilization are not exceeded for Station 1 and 2 respectively. Finally,

Constraints (4.12), (4.13) and (4.14) are non−negativity constraints imposed

on the variables.

105

As stated in Section 3.3, a purely numerical solution does not give de-

sired insights on the optimal policies. For example, a very interesting question

is under which conditions Station 1 idles. Yet to answer this question, an

extensive computational analysis must be performed. Still it must be kept in

mind that this approach is nevertheless an approximation. For that reason,

we provide an exact analytical analysis in the next subsection.

4.1.2 Optimality equations

A first step in the analysis is outlining the HJB conditions and dis-

cussing the implications in terms of optimal sets of controls. Let ps,j(t) be

the Lagrange multiplier associated with constraints on ẋs,j in the original op-

timization model. Hamiltonian function H is then defined as follows:

H(x, p) =
∑

s∈S,j∈Ns

cs,jxs,j+ min
(uas,j ,u

r
s,j)∈Û

{
p1,1(t)(λ−µ1,1u

a
1,1(t))

+
∑
j∈N2

ps,j(t)(µ1u
a
1,1(t)ur2,j(t)−µ2,ju

a
2,j(t))

}
.

Therefore, the optimal controls at time t ≥ 0 are defined as follows:

u∗as,j, u
∗r
s,j ∈ arg min

(uas,j ,u
r
s,j)∈Û

{
ua1,1µ1,1(

∑
j∈N2

(ur2,j(t)p2,j(t))−p1,1(t))

+
∑

j∈N2
p2,j(t)(−µ2,ju

a
2,j(t))

}
,

where ṗs,j(t) = cs,j if xs,j(t) > 0 ∀s ∈ S, j ∈ Ns and ∀t ≥ 0. However, ṗs,j(t)

for t > ts,j is not known in advance and in order to determine these rates we

need insights on the optimal policies.

106

Through the HJB equation defined above, given values of ps,j(t), ∀s ∈ S

and ∀j ∈ Ns, one can fully determine the values of optimal controls (urs,j, u
a
s,j),

∀s ∈ S,∀j ∈ Ns and t ≥ 0. Note that if
∑

j∈N2
(ur2,j(t)p2,j(t))−p1,1(t)) > 0

then the optimal scheduling control of Station 1 is to idle, i.e. u∗a1,1 = 0. For

the optimal routing control at Station 2, u∗r2,j′ = 1 for j′ = arg minj∈N2
p2,j and

u∗r2,j = 0 for all j ∈ N2 such that j 6= j′. Therefore the optimal scheduling

control of Station 1 reduces to u∗a1,1 = 1 if ∃j ∈ N2 such that p2,j(t)) > p1,1(t)

and ua∗1,1 = 0 otherwise. Lastly, the optimal scheduling controls of Station 2

are given as u∗a2,j′ = 1 for j′ ∈ arg maxj∈N2
µ2,jp2,j and ua∗2,j = 0 for all j ∈ N2

such that j 6= j′. Via the propositions in the next subsection, further insights

on the structure of the optimal policies are obtained.

4.1.3 Structural results

In this subsection, we provide proofs on the structure of optimal poli-

cies through arguments on value function and Lagrange multipliers. A brief

summary of the results of this section is as follows:

• The optimal scheduling policy for the server at Station 2 follows the cµ

rule.

• For any initial condition, there can at most be a single time interval

where the server in Station 2 idles uninterruptedly.

• If at any time the server in Station 1 starts idling, the routing policy in

Station 2 changes by the time idling stops.

107

• For some parameter settings, the scheduling policy of Station 1 is fully

determined. For example given c1,1 <
c2,Nµ2,N
µ2,1

and µ1,1 > µ2,1 the server

in Station 1 idles until all buffers in Station 2 are empty. As a result, the

routing policy is essentially unimportant and therefore optimal policies

have a much simpler structure than the model in Chapter 3. In addition

in a network with c1,1 > c2,1, the server in Station 1 never idles.

• Under all parameter settings, the full structure of Lagrange multipliers

are determined. As in Chapter 3, the Lagrange multipliers are used to

characterize optimal trajectories.

Next, we give a formal analysis of these proofs. We start with a proof

on the optimal scheduling policy of the server in Station 2.

Proposition 4.1.1. For Station 2, the optimal scheduling policy follows the

cµ rule.

Proof. The proof of the cµ rule essentially follows the same lines as the proof

of the network in Chapter 3. The goal is again to prove via a global optimality

condition that in fact the optimal scheduling policy of Station 2 is based on the

cµ rule regardless of the input stream to Station 2. As the input to Station 2

is in fact the output from Station 1 and the scheduling policy of Station 1 does

have an immediate effect on the fluid levels of buffers belonging to Station 2.

We prove now that under any scheduling policy of Station 1, the scheduling

policy of Station 2 follows the cµ rule.

108

Using the same notation as in Chapter 1, under any admissible routing

policy πr ∈ Πr of Station 2, a scheduling policy of Station 2, π ∈ Π, is optimal

if the following holds:

∑
k∈N2

c2,kQ
π∗

2,k(t, πr) ≤
∑
k∈N2

c2,kQ
π
2,k(t, πr) for π1 ∈ Π1, πr ∈ Πr, t ≥ 0.

Furthermore, weighted fluid level vector can be expressed in terms of weighted

workload vector as follows:

∑
k∈N2

c2,kQ
π∗

2,k(t, π1) =
∑
k∈N2

c2,kµ2,kW
π
2,k(t, πr) for π ∈ Π, πr ∈ Πr, t ≥ 0.

Since the idleness is clearly suboptimal for the scheduling control of Station 2,

with the same construction in Chapter 3, we have that the optimal scheduling

policy of Station 2 is strictly priority−based with the class of fluid receiving

processing priority based on the value of the product of the associated cost

and service rate at Station 2.

Proposition 4.1.2. Under all parameter settings, for buffer j > 1, the La-

grange multipliers take the following form:

ṗ2,j(t) =


−c2,j, for t < t2,j

− ṗ2,1µ2,1

µ2,j

, otherwise.

Proof. Note that as a result of the cµ rule, there exists an ordering of draining

times as follows: t2,1 < t2,2 < . . . < t2,N . In terms of Lagrange multipliers,

this implies that p2,1(t2,j)µ2,1 = p2,j(t2,j)µ2,j for j > 1, j ∈ N2. Also note that

109

p2,1(T) = p2,j(T) for j > 1, j ∈ N2. If ∃t ∈ (t2,j, t2,j+1) such that p2,j(t)µ2,j >

p2,j+1(t)µ2,j+1 = p2,1(t)µ2,1 then the server is dedicated to processing fluid from

Buffer (2, j) while it is empty thus resulting in a sub−optimal policy. On the

other hand, p2,j(t)µ2,j < p2,j+1(t)µ2,j+1 implies that if Buffer (2, j) receives

the incoming fluid stream, the server would have to give priority to processing

Buffer (2, j+1) at the expense of letting (2, j) grow. This is a contradiction to

the cµ rule, as it implies a strict priority order between class indexes. Hence

the definition of Lagrange multipliers is consistent with the cµ rule under any

routing policy.

Proposition 4.1.3. Given c1,1 < c2,1 and µ1,1 > µ2,1, under the optimal

policy, once Buffer (2, 1) is drained, it remains drained.

Proof. To prove the proposition, we first analyze the network for N2 = 1. This

case reduces to a 2−station tandem network with a single buffer and server at

each station. This network can be seen in Figure 4.5.

Figure 4.5: Tandem 1-N Network with N2 = 1

Consider time t > 0 for which x2,1(t) = 0 and x1,1(t) > 0. Note that

this network has no routing decisions, i.e., ur2,1 = 1. Let µ denote the output of

Station 1 at time t: µ = µ1,1u
a
1,1(t). The scheduling policy in Station 2 is then

110

to process the incoming fluid at the maximum rate: ua2,1 = min(µ
µ2,1

, 1). Note

that given x2,1(t) = 0, Station 1 has no incentive to idle. As a result, µ can

be considered as a variable with µ2,1 ≤ µ ≤ µ1,1. For any µ with µ > µ2,1, the

buffer associated with class (2, 1) builds up. For any µ, the cost rate at which

fluid accumulates at Buffer (2, 1) is then (c2,1µ), as opposed to the (negative)

cost rate of Buffer (1, 1), (−c1,1µ). With c1,1 < c2,1, the optimal µ is then

µ = µ2,1. This network is also analyzed in further detail in Avram [5].

What does this result imply for a network with N2 > 1? One can

see again the decision problem as determining the input to Buffer (2, 1) as

a function of the output of Buffer (1, 1). Let the decision variable µ be

µ = µ1,1u
a
1,1(t)ur2,1(t). Through earlier example, given c1,1 < c2,1, µ > µ2,1

is definitely sub−optimal. Therefore, Buffer (2, 1) never builds up. Note that

this does pose a requirement such as µ = µ2,1, since through Gurvich−type

routing it can in fact be possible that ua2,1(t) = 0 or idling in Station 1 may be

optimal: ua1,1(t) = 0.

Definition 4.1.1. For t > 0, let j∗(t) correspond to the fluid class in process

at Station 2 with a non−empty buffer. Furthermore, let j′(t) denote the class

of fluid with smallest index in Station 2 that receives incoming fluid stream

(via Gurvich type routing). Formally j∗(t) and j′(t) are defined as follows:

j∗(t) = arg minj∈N2,t<t2,j
(t2,j); j

′(t) = arg minj∈N2,j 6=1(p2,j).

Proposition 4.1.4. Given c1,1 <= c2,1, c1,1 >
c2,Nµ2,N
µ2,1

and µ1,1 ≥ µ2,1:

111

ṗ2,1(t) =



−c2,1, for t < t2,1

−c1,1, for t ∈ (t2,1, t1,1), p2,1(t) ≥ p1,1(t)

p2,j′(t)(t), for t ∈ (t2,1, t1,1), p2,1(t) < min(p1,1(t), p2,j′(t))

− c2,j∗(t)µ2,j∗(t)
µ2,1

, for t ∈ (t2,1, t1,1), p2,j′(t)<p2,1(t)<p1,1(t), j∗(t) 6= ∅

− c2,j∗(t)µ2,j∗(t)
µ2,1

, for t > max(t1,1, t2,1), j∗(t) 6= ∅

0, otherwise.

In addition, Lagrange multiplier associated with fluid class (1, 1) is

given as follows:

ṗ1,1(t) =

{ −c1,1, for t < t1,1

ṗ2,1(t), otherwise.

Proof. Note that under this parameter setting, after Buffer (2, 1) drains, it

never builds up. This has specific implications in terms of Lagrange multipliers.

Consider time t ∈ (t2,1, t1,1), for such a time point if Buffer (2, 1) receives full

arrival stream while the server at Station 1 works at full capacity then it would

cause fluid build−up in Buffer (2, 1) (as µ1,1 > µ2,1). Therefore, for that time

interval, the Lagrange multipliers have to take into account the capacity of the

server in Station 1 being utilized as well as the routing policy of Station 2.

It then follows that for t ∈ (t2,1, t1,1), if p2,1(t) < p1,1(t) (meaning the

server at Station 1 works at full capacity), and if Buffer (2, 1) receives fluid then

it must be the case that p2,1(t) = p2,j′(t)(t), otherwise p2,1(t)µ2,1 = p2,j∗(t)µ2,j∗(t)

following the cµ rule, which results in ṗ2,1(t) = − c2,j∗(t)µ2,j∗(t)
µ2,1

. Lastly, if Buffer

112

(2, 1) receives fluid and p2,1(t) > p1,1(t) this implies that Station 1 idles at time

t ≥ 0. However, this indicates that processing priority in Station 2 is fully

dedicated to Buffer (2, 1) while the same buffer is empty. Hence, idleness can

not be optimal while Buffer (2, 1) receives fluid. In this case setting ṗ2,1 = −c1,1

insures that the server at Station 1 does not idle, in fact it reduces its output

rate to match the output of Station 2 while processing from Buffer (2, 1).

Proposition 4.1.5. Given c1,1 > c2,1, the server in Station 1 never idles under

the optimal policy.

Proof. Consider the original optimization problem, the objective (4.1) can be

re-expressed as follows:

min

∫ T

0

(
c1,1

∫ t

0

ẋ1,1(t)ds+
∑
j∈N2

c2,j

∫ t

0

ẋ2,j(s)ds

)
dt. (4.15)

Note that the variables ẋs,j(t) are given through Constraints (4.2) and

(4.3). Hence the objective (4.15) can be expressed in terms of controls as

following:∫ T

0

(c1,1

∫ t

0

(λ−µ1,1u
a
1,1(s))+

∑
j∈N2

c2,j

∫ t

0

(µ1,1u
a
1,1(s)ur2,j(s)−µ2,ju

a
2,j(s))ds)dt.

(4.16)

Note that the optimization problem then selects a u that minimizes (4.16) and

such that Constraints (4.4), (4.5) are not violated. The optimal scheduling

controls in Station 1 are given by:

u∗a1,1 ∈ arg min

∫ T

0

∫ t

0

ua1,1(s)
∑
j∈N2

(c2,ju
∗r
2,j(s)−c1,1)dsdt.

113

Note that for any s > 0,
∑

j∈N2
u∗r2,j(s) = 1. If c1,1 > c2,1 this implies that

c1,1 >
∑

j∈N2
c2,ju

r
2,j(s) for any s ≥ 0, therefore ua1,1(s) is always to set to its

upper bound (1 if x1,1(s) > 0; otherwise λ
µ1,1

). Therefore, the server at Station

1 never idles.

Proposition 4.1.6. Given c1,1 > c2,1, for j ∈ N2, the Lagrange multipliers

take the following form:

ṗ2,j(t) =


−c2,j, for t < t2,j

−
c2,j∗(t)µ2,j∗(t)

µ2,1

, for t ≥ t2,j, if j∗(t) 6= ∅

0, otherwise.

In addition, Lagrange multiplier associated with fluid class (1, 1) is given as

follows:

ṗ1,1(t) =

{ −c1,1, for t < t1,1

ṗ2,1(t), otherwise.

Proof. First, consider fluid class (2, 1). Through the cµ rule, the server starts

processing fluid j∗(t) at time t > 0. This implies that p2,1(t)µ2,1 = p2,j(t)µ2,j

for t > tj∗(t). Combined with Proposition 4.1.2, for j ∈ N2, ṗ2,j(t) is given as

above.

Through Proposition 4.1.5, it is clear that, @t > 0 such that p1,1(t) <

minj∈N2 p2,j(t) otherwise Station 1 would idle. Note that given p2,1(t) de-

fined as above, ∃t′ > 0 such that p2,1(t′) = minj p2,j(t
′). The Proposition

4.1.5 then holds if p2,1(t) ≤ p1,1(t),∀t > 0. Note that for t < min(t1,1, t2,1),

ṗ1,1(t) = −c1,1 < ṗ2,1(t) = −c2,1. Hence ṗ1,1(t) = ṗ2,1(t) for t ≥ t1,1 satisfies this

condition.

114

Proposition 4.1.7. Given c1,1 <
c2,Nµ2,N
µ2,1

and µ1,1 > µ2,1, the server at Station

1 idles ∀t < t2,N .

Proof. For the proof, it is sufficient to consider a state where only buffer (2, N)

is non−empty. Formally, let time t ≥ 0 where x1,1(t) = 0, x2,N(t) > 0 and

x2,j(t) = 0 for j ∈ N2, j 6= 1. Initially, we make an assumption that for

t ∈ [0, t2,N], the output rate of Station 1, stays constant. We denote this

output rate as µ and solve a quadratic equation to determine the best rate.

In addition, we also make an assumption that µ admits a fixed upper−bound,

however later on we show that this assumption is not required. Depending

on the value of µ, the draining time of Buffer (2, N) changes. The total cost

accumulated in the system starting at time t = 0 and an initial state x can be

expressed as a function v′(µ) as follows:

v′(µ) = c1,1
t22,N

2

(
(λ−µ)2

µ2,1−λ+(λ−µ)

)
+c2,Nx2,N

t2,N
2
.

Given t2,N = x2,N
µ2,1

µ2,N (µ2,1−µ)
, v′(µ) can be expressed as:

v′(µ) =c1,1t2,Nx2,N
µ2,1

2µ2,N

(λ−µ)

µ2,1−λ
+c2,Nx2,N

t2,N
2

v′(µ) =
t2,Nx2,N

2

(
c2,N+

c1,1µ2,1

µ2,N

(λ−µ)

µ2,1−λ

)
v′(µ) =

tx2,N

2

(
c2,N−

c1,1µ2,1

µ2,N

+
c1,1µ2,1(µ2,1−µ)

µ2,N(µ2,1−λ)

)
v′(µ) =

x2
2,N

2

µ2,1

µ2,N(µ2,1−µ)

(
c2,N−

c1,1µ2,1

µ2,N

+
c1,1µ2,1(µ2,1−µ)

µ2,N(µ2,1−λ)

)
v′(µ) =

x2
2,N

2

µ2,1

µ2,N

(c2,N− c1,1µ2,1µ2,N

µ2,1−µ
+

c1,1µ2,1

µ2,N(µ2,1−λ)

)
.

115

As a result, optimal µ is found as follows:

µ∗ ∈ arg min
c2,N− c1,1µ2,1µ2,N

(µ2,1−µ)
.

Since (c2,N− c1,1µ2,1µ2,N
) < 0, it follows that µ∗ = 0 therefore the server in Station 1

idles until t2,N . Note that µ takes the value of its lower bound (0) therefore an

assumption on its upper bound is redundant. Also note that starting at any

state with x1,1(t) > 0 does not make a difference to the optimal µ. Hence, the

result still holds without the assumption of a constant output rate for Station

1.

Proposition 4.1.8. Given c1,1 <
c2,Nµ2,N
µ2,N

, for j ∈ N2, the Lagrange multipliers

take the following form:

ṗ2,j(t) =



−c2,j, for t < t2,j

−
c2,j∗(t)µ2,j∗(t)

µ2,1

, for t ≥ t2,j, if j∗(t) 6= ∅

−c1,1, for t ≥ t2,j, j
∗(t) = ∅ and t < t1,1

0, otherwise.

In addition, the Lagrange multiplier associated with fluid class (1, 1) is as

follows:

ṗ1,1(t) =

{ −c1,1, for t < t1,1

0, otherwise.

Proof. As a result of Proposition 4.1.7, all the buffers in Station 2 empty

before the buffer in Station 1: maxj∈N2 t2,j = t2,N < t1,1. For the server in

Station 1 to idle until time t2,N , the following condition must be satisfied: ∀t ∈

(0, t2,N), p1,1(t) ≤ minj∈N2 p2,j(t). In addition, by the optimality equations

116

the Lagrange multipliers are zero at time T = max (t1,1, t2,N) = t1,1, i.e.,

p1,1(t1,1) = p2,j(t1,1) = 0, ∀j ∈ N2. Note that ṗ1,1(t) = ṗ2,j(t), ∀j ∈ N2 for

t ∈ (t2,N , t1,1) satisfies these requirements, since it implies ∀j ∈ N2, p1,1(t2,N) =

p2,j(t2,N) and p1,1(t) < p2,j(t) for t < t2,1. Combining this with Proposition

4.1.2, yields the given Lagrange multipliers.

Proposition 4.1.9. The function j′(t) is non−increasing in t. Furthermore,

under any starting condition, ∃t′ > 0 such that j′(t) = 1, for t > t′.

Proof. Through Proposition 4.1.2, p2,1(t) ≥ µ2,j
µ2,1

p2,j(t), ∀j ∈ N2 , j > 1 and

t ≥ t2,j−1. Therefore, ∃t′ > 0 such that j′(t) = 1, for t > t′. We prove the

first part of the proposition by contradiction. Consider i, j ∈ N2 with j > i

and a time point t and ε > 0 such that j′(t−ε) = i and j′(t) = j. Note that

t > max(tj, ti) is not possible since p2,1(t) ≤ min(p2,j, p2,i) for t > max(tj, ti).

Also, t < min(tj, ti) is not possible either as ṗ2,j(t) = −c2,j < ṗ2,i(t) =

−c2,i for t < min(tj, ti). Therefore if j′(t) = j then j′(t−ε) 6= i. The last

case to consider is for t ∈ (t2,i, t2,j). For i > 1, ṗ2,i(t) is non−decreasing for

t > t2,i. This then implies that −c2,j < ṗ2,i(t), thus contradicting with the

original assumption.

Proposition 4.1.9 has important implications on the optimal routing

policy of Station 2. The first implication is that if at some point in the pol-

icy Buffer (2, 1) receives incoming fluid stream, then for the remaining time

horizon the buffer keeps receiving incoming flow. Second, once the output

of Station 1 is routed to the buffer of a particular fluid class, for the rest of

117

the trajectory the buffers of higher cost classes never receive fluid. Lastly, in

Proposition 4.1.4 it is clear that the optimal routing policy in Station 2 may

not be bang−bang if c1,1 <= c2,1, c1,1 >
c2,Nµ2,N
µ2,1

and µ1,1 ≥ µ2,1. However for

any other parameter settings the optimal routing policy is in fact bang−bang.

Although we omit the proof, it follows the same arguments of the proof of

Proposition 3.6.3.

Proposition 4.1.10. An idle period is defined as a time interval when the

server in Station 1 works at zero capacity. The optimal scheduling policy of

Station 1 can admit at most one idle period.

Proof. Consider an idle period associated with a time interval (t′, t′′). By

definition there exists an ε > 0 such that p1,1(t′−ε) > minj p2,j(t
′−ε) and that

p1,1(t′) = minj p2,j(t
′). This implies that ṗ1,1(t′) > ˙minj∈N2 p2,j(t

′). On the

other hand, for time t′′ the condition must be reversed for idling to cease:

ṗ1,1(t′′) < ˙minj∈N2 p2,j(t
′′).

Note that by the definition of draining times, the server at Station 1

can only idle before its draining time. As a result t′′ < t1,1 and therefore

ṗ1,1(t) stays constant for t < t′′. This then implies that during the idle pe-

riod, ṗ2,j′(·)(·) does not stay constant. Existence of another idle period would

require that after t′′, ṗ2,j′(·)(·) first decreases and then increases. Yet through

Proposition 4.1.9, there exists a time t̃ > 0 such that class (2, 1) receives in-

coming fluid stream. This implies that ṗ2,j′(t)(t) is non−increasing until time

t̃ and non−decreasing afterwards. Therefore the optimal scheduling policy of

118

Station 1 can only admit at most one idle period.

Proposition 4.1.10 has important implications. For example, consider

a time when the server in Station 1 does not idle and the output of Station 1

is routed to a buffer associated with class (2, j) with j > 1. If the server starts

idling, at the time when idling is stopped, buffer (2, j) will in fact receive

no fluid from the output of Station 1. Another observation is that if at a

given time Buffer (2, 1) receives fluid from that point on Station 1 does not

idle under the optimal policy. These observations show the close relationship

between the optimal scheduling policy of Station 1 and the optimal routing

policy of Station 2. From another perspective, we can also see that if the

optimal scheduling policy of Station 1 is found, the routing policy of Station 2

is highly simplified and not all the possible routing switching times need to be

computed. Although the current models seems at first glance more complex

that the model in Chapter 3, in some cases optimal policies are actually easier

to compute.

Definition 4.1.2. Let E(t) be associated with the value j′(t) for when the

server in Station 1 does not idle and ∅, otherwise. Then a routing switch, R(t),

is a binary variable defined for every time t ≥ 0 as follows:

R(t) =


(i, j), if ∃ε > 0,∃i, j ∈ N2 such that i 6= j, i = E(t−ε), j = E(t)

(i, ∅), if ∃ε > 0,∃i ∈ N2 such that i = E(t−ε) and E(t) = ∅

(∅, j), if ∃ε > 0,∃j ∈ N2 such that E(t) = ∅ and j = E(t).

119

The routing path definition then follows from Definition 3.6.1. Note

that in Chapter 3, the full structure of routing policies are computed through

the use of Lagrange multipliers. Apart from some parameter settings, the opti-

mal scheduling policies of Station 1 and the optimal routing policies of Station

2 are still to be determined. After the structural results, important questions

remain. For example, under any starting state, can we determine whether an

idling periods exists? If one exists, when does it start and end? What is then

the optimal routing policy for Station 2? The answer of these questions again

require a procedure that enumerates possible paths and evaluates them using

the values of Lagrange multipliers. For the model in Chapter 3 it was shown

that the switching times under a given path are linear functions of the starting

state x and that lead to a general procedure in determining the optimal state

trajectory. For the present model, one can again use a similar idea, but there

are additional challenges. For example, as we show in the next subsection, the

dependence of the draining times of Station 1 and 2 imply that the draining

times are no longer linear functions of the starting state, as a consequence the

switching policies are of non−linear form. Next, the idea behind calculation of

optimal policies is presented for a small network.

4.1.4 Example N2 = 2

Let’s consider a network where N2 = 2 and c2,1 > c2,2 > c1,1, µ1,1 >

µ2,1 > µ2,2. The goal is to completely characterize the routing and switching

policies. Note that the sample space of the routing path P (t) for any t > 0

120

and starting state x(t) is following:
{

(2, ∅), (∅, 1)},{(∅, 1)},{(2, 1)},∅
}

As for

the model in Chapter 3, if the draining time ts,j is known for s ∈ S, j ∈ Ns

then optimal path can be determined.

Consider routing path, P (0) = {∅, 1} and initial state x(t) = x. Ac-

cording to the routing path, there exists time t′ > 0 such that for interval (0, t′)

Station 1 idles. Furthermore, there are no routing switches in (t′, T) as the

output of Station 1 is directed to Buffer (2, 1). Then the following condition

must be satisfied:

p2,1(t′) = p1,1(t′),

which implies that,

p2,1(t)(t2,1−t′)+p2,1(t2,1)(t2,2−t2,1) = p1,1(t)(t1,1−t′)+p1,1(t1,1) max(t2,2−t1,1, 0).
(4.17)

Note that since the structure of Lagrange multipliers through earlier results

(Proposition 4.1.4), Equation (4.17) can be expresses in terms of draining times

t1,1, t2,1, t2,2 as follows:

c2,1(t2,1−t′)+
c2,2µ2,2

µ2,1

(t2,2−t2,1) = c1,1(t1−t′)+
c2,2µ2,2

µ2,1

max(0, t2,2−t1,1). (4.18)

Note that since the routing policy includes does not admit any routing

switches after time t′ the draining times t2,1, t2,2 and t1,1 can be expressed as

functions of state x. Yet, it is important to note that due to the connected

nature of stations, the draining times are surely non−linear in x. To see this,

we can express t2,1, t2,2 and t1,1 as follows:

t1,1 =
x1,1+t′λ

µ1,1−λ

121

t2,1 =


x2,1−t′µ2,1

µ2,1−µ1,1

, if x2,1−t′µ2,1
µ2,1−µ1,1 < t1,1

t1,1+
x2,1−t1,1(µ2,1−µ1,1)−t′µ1,1

µ2,1−λ
, otherwise.

t2,1 =



t2,1+
x2,2µ2,1

µ2,2(µ2,1−µ1,1)
if t2,1+ x2,2µ2,1

µ2,2(µ2,1−µ1,1)
< t1,1

t2,1+
x2,2µ2,1

µ2,2(µ2,1−λ)
if t2,1 > t1,1

t1,1+
x2,2−(t1,1−t2,1)µ2,2(1−µ1,1

µ2,1
)

µ2,2(1− λ
µ2,1

)
, otherwise.

Similar to the construction in Section 3.7, the value of t′ can be derived

by solving (4.18). Next, for a general N2 we provide details on a procedure

that computes the optimal policy.

4.1.5 Numerical procedure

In this section, we propose an algorithm to compute the optimal pol-

icy for a given state. The key idea is to perform a numerical search for the

switching times that satisfy conditions on Lagrange multipliers. The algo-

rithm explained in Section 3.8 can be adapted to the current problem and to

avoid repetition, we only explain the modifications required. For consistency

with the notation in Section 3.8, we introduce the following notation: let

vector x(t) represent the state ~x(t) = (x1,1(t), x2,1(t), . . . , x2,n(t)) and p(t) =

(p1,1(t), p2s,1(t), . . . , p2,n(t)). Similarly, let vector µ = (µ1,1(t), . . . , µ2,N2) and

c = (c1,1, . . . , c2,N2). Also, we define the set N to be N = {1, 2, . . . , N1+N2}

and N = N1+N2.

122

A key procedure of the algorithm is on calculating the value of state

x(t+t′) based on the state x(t) and the routing policy in (t, t+t′). Note that this

requires calculating ẋ(s) for s ∈ (t, t+t′). Suppose ur2,j(s) = 1 for s ∈ (t, t+t′)

and j ∈ N2. Under this condition, ẋ(s) can vary with s, as one (or many) of the

buffers can drain and the utilization of servers can change. The next procedure

takes into account these changes, and calculates ẋ(s) for given x(s) = ~x and

index j.

1: procedure getdirection(~x, j)

2: i = arg mini∈N\{1} (~xi > 0)

3: if j = ∅: then

4: return −µi~ei+~e1λ

5: else

6: if ~x1 > 0 : then

7: if µ1 > µ2 & c1 < c2 & ~x2 = 0 then

8: γ = µ2

9: else

10: γ = µ1

11: end if

12: else

13: γ = λ

14: end if

15: return −µi~ei+λ~e1−γ~e1+γ~ej+1

16: end if

123

17: end procedure

Note that after the last routing switch, the policy is clear: the servers at

both stations are utilized at full capacity until there is no fluid at the station,

and the output of Station 1 is routed to Buffer (2, 1). Thus the draining times

can be calculated. Suppose after time t > 0, there are no routing switches.

Then for x(t) = ~x the draining times can be calculated by considering a large

time increment t′ > 0 such that surely x(t+t′) = ~0. While calculating the

value of x(t+t′), one needs to update ẋ(s) for s ∈ (t, t+t′) whenever a fluid

class drains. Therefore, the next procedure uses this idea to calculate draining

times.

1: procedure drainingTimes(~x)

2: t′ = max

(
~x1

µ1−λ ,
∑

i∈N\{1}
~xi

µi(1−µ1µ2)

)
3: ~T ′ = 0

4: ~x′ = ~x

5: t̃ = 0

6: while mini∈N ~x
′
i > 0 do

7: ~d = getdirection(~x,′ 1′)

8: if mini∈N (~x′i+t
′~di) < 0 then

9: t̃+ = ~xi/~di;

10: ~T ′i = t̃

11: t′− = t̃

12: ~x′ = ~x′+t̃~d

13: return ~T ′

124

14: end if

15: end while

16: end procedure

With these modifications on the two procedures, the algorithm in Sec-

tion 3.8 can be used to obtain optimal state trajectory for any initial state.

4.2 Tandem fluid network N-1

In this section, we consider the network shown in Figure 4.6. The

network is composed of two serially connected (tandem) stations. The first

station is composed of N parallel buffers and a single flexible server and the

external arrival stream (with rate λ) is routed among these buffers through

Gurvich type routing. The output of this station is the sole input to Station

2 which is composed of a single buffer and a server. We follow the notation in

Section 4.1 and let Ns be the number of buffers in Station s with N1 = N,N2 =

1 for s ∈ S = {1, 2}. We define sets N1 and N2 to be N1 = {1, 2, . . . , N1} and

N2 = {1} The buffers in Station 1 are ordered as in the previous section, i.e.

µ1,i > µ1,j, c1,i > c1,j if and only if i < j, ∀i, j ∈ N1. For stability purposes,

the conditions µ1,1 > λ and µ2,1 > λ are required. Again we assume that the

decision−maker seeks to minimize the total holding cost accumulated in the

system until all the buffers are empty. To do so, optimal scheduling controls

of the servers in both stations as well as the routing controls in Station 1 are

to be determined.

125

��,�

Server 2

��,�

��,�

��,�

��,�

Server 1

��,�

��,�

��,�

.

.

.

	�

.

.

.

Figure 4.6: Network representation for the Tandem N -1

For the formal definition of the optimization problem we use the same

definition of controls in Section 4.1. For t ≥ 0,∀s ∈ S,∀j ∈ Ns, the routing

and scheduling controls are denoted as urs,j(t) and uas,j(t). Note that Station

2 includes no routing option, i.e., ur2,1(t) = 1. With Ts,j being the draining

time of buffer (s, j) and T = maxs∈S,j∈Ns Ts,j, the model is formally defined as

follows:

min

∫ T

t=0

∑
s∈S,j∈Ns

cs,jxs,j(t)dt (4.19)

ẋ1,j(t) = λur1,j(t)−µ1,ju
a
1,j(t), ∀j ∈ N1,∀t ≥ 0 (4.20)

ẋ2,1(t) =
∑
j∈N1

µ1,ju
a
1,j(t)−µ2,1u

a
2,1(t), ∀t ≥ 0 (4.21)

xs,j(t) ≥ 0, ∀s ∈ S,∀j ∈ Ns (4.22)

xs,j(0) = xs,j, ∀s ∈ S,∀j ∈ Ns. (4.23)

Constraint sets (4.20) and (4.21) are on the evolution of fluid levels

in Stations 1 and 2, respectively. Non−negativity of fluid levels are satisfied

through Constraints (4.22) and the starting condition on fluid levels is imposed

through Constraints (4.23). A linear program formulation of this continuous

126

optimization problem can be formed through time discretization. We omit the

formulation here as it is in fact the same with the one given in Subsection 4.1.1

with N1 : {1, 2, .., N}, N2 : {1}. Next, we discuss the optimality equations.

4.2.1 Optimality equations

Let ps,j(t) be the Lagrange multiplier associated with constraints on ẋs,j

in the above optimization model. Then, the HJB equation may be expressed

as follows:

H(x, p) =
∑

s∈S,j∈Ns

cs,jxs,j + min
(uas,j ,u

r
s,j)∈Û

{∑
j∈N1

p1,j(t)(λu
r
1,j(t)−µ1,ju

a
1,j(t))

+ p2,1(t)(
∑
j∈N1

µ1,ju
a
1,j(t)−µ2,1u

a
2,1(t))

}
,

The equation above implies that the optimal controls at time t ≥ 0 are

defined as follows:

u∗as,j, u
∗r
s,j ∈ arg min

(uas,j ,u
r
s,j)∈Û

{
−µ2,1p2,1(t)ua2,1(t) + λ

∑
j∈N1

ur1,j(t)p1,j(t)

+
∑

j∈N1
(p2,1(t)−p1,j(t))u

a
1,j(t)

}

u∗as,j, u
∗r
s,j ∈ arg min

(uas,j ,u
r
s,j)∈Û

{
λ
∑
j∈N1

ur1,j(t)p1,j(t)+
∑
j∈N1

µ1,j(p2,1(t)−p1,j(t))u
a
1,j(t)

}
where ṗs,j(t) = cs,j if xs,j(t) > 0 ∀s ∈ S, j ∈ Ns and ∀t ≥ 0. However, ṗs,j(t)

for t > ts,j are not known in advance and in order to determine these rates we

again need insights on the optimal policies.

127

The HJB equation has direct implications on the optimal scheduling

and routing controls. For example the server at Station 1 idles for (p2,1(t)-

maxj∈N1(p1,j(t))(t)) > 0, for t ≥ 0. For the optimal routing control at Station

1, u∗r1,j′ = 1 for j′ ∈ arg minj∈N1
p1,j and u∗r1,j = 0 ∀j ∈ N1 such that j 6= j′.

Lastly, for Station 2 there are no routing decisions and the scheduling policy

is trivial: u∗a2,1(t) = 1 if x2,1(t) > 0, u∗a2,1(t) = min(
∑
j∈N1

u∗a1,j(t)

µ2,1
, 1). Insights on

the the structure of the optimal policies are obtained through the results in

the next subsection.

4.2.2 Structural results

Note that in the model in Section 4.1, the scheduling policy of Sta-

tion 1 only requires determination of the allocation of capacity in the server.

Without any fluid classes competing for service in Station 1, we proved that

in fact one can determine the idling periods of the server. However, in this

section, determining the optimal scheduling policy of Station 1 is much more

cumbersome. The complication arises from the fact that the scheduling policy

of Station 1 affects the buffer sizes of Station 2 and a greedy policy at Sta-

tion 1 may not be globally optimal. As we show in the next proposition, the

greedy policy, embodied by the cµ rule, is optimal only for a restricted set of

parameters.

Proposition 4.2.1. For the Tandem N−1 network with N1 = {1, 2}, under

the optimal scheduling policy of Station 1, the cµ rule holds for (c1,i−c2,1)µ1,i >

(c1,i+1−c2,1)µ1,i+1, ∀i ∈ N1.

128

Proof. For Station 1, if the optimal scheduling policy follows the cµ rule then

at any time point when Station 1 does not idle, the fluid class (1, 1) has

processing priority over class (1, 2). Then the fluid of class (1, 2) can only be

processed if there is no class (1, 1) fluid in the system and when Station 1

does not idle. In tems of Lagrange multipliers, this implies that there exists

time point t′ > 0 such that µ1,1(p1,1(t′)−p2,1(t′)) ≥ µ1,2(p1,2(t′)−p2,1(t′)) then

for all time t ≤ t′, µ1,1(p1,1(t)−p2,1(t)) ≥ µ1,2(p1,2(t)−p2,1(t)). In other words,

µ1,1(ṗ1,1−ṗ1,2)+ṗ2,1(−µ1,1+µ1,2) ≤ 0, for t ≤ t′.

It is easy to see that such a time point t′ ≥ 0 exists, because otherwise

Buffer (1, 1) never drains. This then implies that ∃t′ < t1,1 which gives ṗ1,1(t) =

−c1,1 for t ≤ t′. On the other hand, by the sufficient conditions on optimality

condition, we have ṗt ≥ −c, where ps,j(t) are differentiable for all s ∈ S, j ∈ Ns.

This then suggests that ṗ1,2(t) ≥ −c1,2 and ṗ2,1(t) ≥ −c2,1 for t ≤ t′. Given

the initial assumption on parameters, ṗ2,1(t) ≥ c1,1µ1,1−c1,2µ1,2
µ1,2−µ1,1 . Combining the

above observations, we have, µ1,1(ṗ1,1(t)−ṗ1,2(t))+ṗ2,1(t)(−µ1,1+µ1,2) ≤ 0, for

t ≤ t′. As a result, fluid from Buffer (1, 2) is processed after Buffer (1, 1)

drains.

The interplay of the policies of Station 1 and Station 2 not only poses

challenges in examining static priority rules, but it also has surprising effects

on the fluid levels of the buffer in Station 2. Reflecting back on the model in

Chapter 3 or the Tandem 1−N model, the only case where the fluid level of a

buffer increases is when it receives fluid through Gurvich−type routing. This

is not surprising, since it seems intuitive that under an optimal policy, a buffer

129

should not build up once it has drained. However, as we explain next, this

intuition fails in the current model.

Remark 4.2.1. When a station is not in a idling state, it is desired to fully use

its capacity. However, under some parameter settings this can require that

Buffer (2, 1) drains first, remains empty and then builds up once more. What

is even more surprising is that this phenomena even arises for networks where

the holding cost of the buffer in Station 2 is the largest in the system. To

provide insights on what causes this phenomena, for the rest of the section, we

focus on the case where N1 = 2. For the same network, we then prove results

for all the possible parameter cases. We leave the analysis for general N1 to

future work.

Proposition 4.2.2. For Tandem N−1 network with N1 = 2, the Lagrange

multiplier associated with class (2, 1) takes the following form for all t ≥ 0:

ṗ1,1(t) =


−c1,1, for t < t1,1

ṗ1,2(t)µ1,2+ṗ2,1(µ1,1−µ1,2)

µ1,1

, otherwise.

Furthermore, there exists a time t′ > 0, after which all routing is to

Buffer (1, 1).

Proof. The first part of the proposition directly comes from the cµ rule. Es-

sentially once the buffer of class (2, 1) is empty, fluid from buffer (2, 2) must be

processed in the server, provided that idling is not optimal. Correspondingly

for time t ∈ (t1,1, t2,1) we have µ1,1(p1,1(t)−p2,1(t)) = µ1,2(p1,2(t)−p2,1(t)) which

leads to the Lagrange multiplier definition above.

130

For the second part of the proposition, consider a time point t′ > 0 for

which x1,2(t′) > 0 and x1,1(t′) = 0. If the incoming fluid to Station 1 is routed

to Buffer (2, 1) while the server processes from the same buffer, the rate at

which the buffer drains is at most (µ1,2−λ). Whereas if the routing is to Buffer

(1, 1) then the rate at which Buffer (1, 2) drains is be at most (µ1,1(1− λ
µ1,2

),

which is greater than (µ1,2−λ). As a result there exists a time t, after which

all routing is to Buffer (1, 1).

Proposition 4.2.3. Given c1,1 < c2,1 and µ1,1 > µ2,1, µ2,1 > λ+µ1,2(1−λ/µ1,1),

the Buffer (2, 1) can build up once drained.

Proof. From Proposition 4.2.2, there exists a time t′ < t1,1 such that the

optimal control is to route all incoming fluid to Buffer (1, 1) from t′ and after.

Now consider a time t ≥ t′ and t ≤ t1,1 such that x2,1(t) = 0 and x1,1(t) ≥

0, x1,2(t) > 0.

One obvious candidate optimal policy is one that keeps the fluid level of

Buffer (2, 1) empty while initially draining the Buffer (1, 1) and later on Buffer

(1, 2). For this policy, denoted as π1, the total holding cost accumulated until

the system fully empties can be expressed through the quadratic function

below:

vπ1(x, t) =
c1,1

2
x1,1t

π1
1,1+c1,2x1,2t

π1
1,1+

c1,2

2
x1,2(tπ11,2−tπ11,1)

where tπ11,1 and tπ11,2 correspond to the draining times of Buffers (1, 1) and (1, 2)

respectively under policy π1. These draining times are in fact functions of

131

x1,1(t) and x1,2(t) and they can be expressed as follows:

tπ11,1 =
x1,1(t)

µ2,1−λ

tπ11,2 = tπ11,1+
x1,2(t)

µ1,2(1− λ
µ2,1

)
.

Now consider an alternative policy, denoted as π2, where instead of keeping

Buffer (2, 1) empty the policy builds up the buffer by processing fluid from

Buffer (1, 1) at a higher rate. Note that this is only possible for µ1,1 > µ2,1.

When Buffer (1, 1) empties, the output rate of Station 1 decreases. As a

result, Buffer (2, 1) empties again. Policy π2 is associated with the quadratic

cost defined as follows:

vπ2(x, t) =
c1,1

2
x1,1t

π2
1,1+c1,2x1,2t

π2
1,1+

c1,2

2
x1,2(tπ21,2−tπ21,1)

+
c2,1

2
(µ1,1−µ2,1)(tπ21,1)2+

c2,1

2

((µ1,1−µ2,1)tπ21,1)2

µ2,1−(µ1,2(1− λ
µ1,1

))
,

where tπ21,1, t
π2
1,2 are given as:

tπ21,1 =
x1,1(t)

µ1,1−λ

tπ21,2 = tπ11,1+
x1,2(t)

µ1,2(1− λ
µ1,1

)
.

It is clear to see that the condition vπ2 (x, t) < vπ1 (x, t) implies that the policy

π1 is not optimal. Note that for this condition to be satisfied c2,1 > c1,2 and

µ1,1 > µ2,1 > λ+µ1,2(1−λ/µ1,1) are required. For a network with parameters

c1,1 = 80, c1,2 = 40, c2,1 = 89, µ1,1 = 6, µ1,2 = 1.5, µ2,1 = 4, λ = 4 and initial

state x1,1(0) = 30, x1,2(0) = 1, x2,1(0) = 30 Figure 4.7 shows the optimal state

trajectory resulting from the LP solution.

132

Figure 4.7: Example: The optimal state trajectory for an instance

The reason why it is optimal to build up the buffer of the class with

highest cost lies in the relation between service rates. Note that in Policy

π1, in order to keep Buffer (2, 1) empty, Station 1 has to work at a reduced

capacity. It is only after Buffer (1, 1) drains that the server at Station 1 is

fully utilized. The trade−off comes from the fact that using the capacity of

Station 1 at a higher rate accumulated less cost even though additional cost

is incurred through letting Buffer (2, 1) grow. Also, note that this result does

not imply that idling in Station 1 is never optimal. In fact, for a fluid level x2,1

133

high enough it can be optimal to idle the server at Station 1. Nevertheless,

fluid build−up in Buffer (2, 1) occurs if the condition c2,1 > c1,2 and µ1,1 >

µ2,1 > λ+µ1,2(1−λ/µ1,1) is met regardless of whether previously the server at

Station 1 had previously idled or not.

Corollary 4.2.4. Given c1,1 < c2,1 and µ1,1 > µ2,1,µ2,1 > λ+µ1,2(1−λ/µ1,1),

the Lagrange multiplier associated with class (2, 1) takes the following form:

ṗ2,1(t) =

{ −c2,1, for t < t2,1

0, otherwise.

Proof. Lagrange multipliers should be in accordance with the phenomena de-

scribed in Proposition 4.2.3. As a result, the definition of p2,1 follows directly

the proposition.

Proposition 4.2.5. Given c2,1 > c1,1, λ+µ1,2(1− λ
µ1,1

), Station 1 idles until t2,1

and the Buffer (2, 1) never builds up.

Proof. According to Proposition 4.2.3, Buffer (2, 1) can build up only if c2,1 >

c1,2 and µ1,1 > µ2,1 > λ+µ1,2(1−λ/µ1,1). It is then clear that the server at

Station 1 never works at full capacity since it would result in the input rate

of Station 2 exceeding its output rate. In terms of Lagrange multipliers this

implies that p2,1(t) ≥ max(p1,1(t), p1,2(t)), ∀t ≥ 0.

Consider time t = t2,1, it then follows that p2,1(t2,1) ≥ max(p1,1(t2,1),

p1,2(t2,1)). For t ≤ t2,1, the fact that ṗ2,1(t) = −c2,1 < max ṗ1,1(t), ṗ1,2(t)

implies that p2,1(t) > max p1,1(t), p1,2(t) and therefore the server at Station 1

idles until t2,1.

134

Corollary 4.2.6. Given c2,1 > c1,1, λ+µ2(1− λ
µ1

) > µ2,j > λ, the Lagrange

multiplier associated with class (2, 1) takes the following form:

ṗ2,1(t) =



−c2,1, for t < t2,1

−c1,1, for t ≥ t2,1, t < t1,1

−c1,2, for t ≥ t1,1, t < t1,2

0, otherwise.

Proof. The proof directly follows from Proposition 4.2.5.

Proposition 4.2.7. Given c1,1 > c2,1 > c1,2, µ1,1 > µ2,1 > λ+µ2(1− λ
µ1

), idling

at the server of Station 1 is only possible after Buffer (1, 1) drains.

Proof. This result follows from the fact that given c1,1 > c2,1, idling in Station

1 (while there is fluid in Buffer (1, 1)) would incur holding cost at a greater

rate in Station 1 than it drains at Station 2. However, this does not imply

that idling in Station 1 is never optimal. In fact, after Buffer (1, 1) drains if

under the policy that routes the incoming fluid to Buffer (1, 2) the station may

idle.

Corollary 4.2.8. Given c1,1 > c2,1 > c1,2, µ1,1 > µ2,1 > λ+µ2(1− λ
µ1

), the

Lagrange multiplier associated with class (1, 1) takes the following form:

ṗ1,1(t) =



−c1,1, for t < t1,1

−c2,1, for t > t1,1, p1,1(t) > p1,2(t)

−c1,2µ1,2

µ1,1

+
ṗ2,1(µ1,1−µ1,2)

µ1,1

, for t > t1,1, t < t1,2, p1,1(t) ≤ p1,2(t)

0, otherwise.

135

Proof. This result follows from Proposition 4.2.7.

With Corollary 4.2.8 the structure of Lagrange multipliers is determined

for the network under the assumption of (c1,i−c2,1)µ1,i > (c1,i+1−c2,1)µ1,i+1,

∀i ∈ 1, 2. For the model with N1 = 2 our analysis showed interesting phenom-

ena on the buffer of Station 2 draining and building−up. Furthermore, the

fact that under general parameter settings, the optimal scheduling policy of

Station 1 can be of dynamic nature. Therefore, a numerical procedure must

evaluate a routing policy while considering the changes in scheduling priority.

We hope to address these challenges in the future work.

136

Chapter 5

Conclusion

Complex networks have applications in many different domains such as

biology, communications, production or service systems. Efficient control of

such networks requires developing an accurate model of the actual system and

efficient solution techniques for the associated control problem. Depending on

the modeling assumptions, solving control problems can be highly challenging

for large networks. In addition to determining the optimal policy, from a

decision-maker’s perspective, it is also important to obtain insights on why a

policy is in fact optimal. For that reason, analytical results are more insightful

than numerical ones and these insights become an important part in designing

better systems in the future.

In that vein, a major focus of this dissertation is on obtaining analytical

results on the optimal policies of particular classes of networks. Considering

both queueing and fluid networks, we analyze networks composed of multiple

classes of entities competing for service at the same station. Across all the

models, the fraction of time that the flexible server spends on processing a

particular class of entity is to be determined and the service rates depend on

the particular class of entity in process. In addition, through a routing option

137

that we call Gurvich-type routing, the class of an entity is also controlled.

Without such a routing control, the networks we analyze in this dissertation

correspond to multi-class queueing or fluid networks with flexible servers. For

such networks, the optimal scheduling control can admit interesting properties.

For example, in the single station case, the optimal scheduling control is based

on a static priority-rule policy. Therefore one of the major themes in this

dissertation is investigating whether similar results hold under Gurvich-type

routing or not.

In Chapter 2, a queueing model composed of two parallel buffers and a

flexible server is analyzed. The jobs arrive to the system according to a Poisson

process and the decision-maker determines which queue to route a job upon

arrival. The flexible server can process a single job at a time and the service

time is assumed to be an exponential distributed random variable with a rate

depending on class of job in service. It is assumed that jobs accumulate time-

homogeneous class-dependent holding cost. The decision-maker is interested

in minimizing the long-run average cost of the system through selecting routing

and scheduling actions at each decision epoch. Through proofs based on the

associated value function, structural results are obtained. The first such result

is that the optimal scheduling policy follows a static priority rule, namely

the cµ rule. Furthermore, it is shown that the optimal routing policy is of

threshold-type. To approximate the threshold, the associated fluid network

is considered. By solving the corresponding fluid optimization model and

through perturbation analysis on the fluid model, we develop a threshold-

138

policy to be implemented in the queueing model. Numerical studies show that

the proposed policy is close to optimal in most of the parameter settings.

From a modeling stand-point, there is often a clear trade-off between a

model’s complexity and the computational effort required. Motivated by the

performance of the fluid-based policy for the discrete model in Chapter 2, in

Chapter 3 we consider a larger model than in Chapter 2 but only in the fluid

context. The network under consideration is composed of a flexible server and

N -parallel buffers with a general N . Again it is assumed that incoming fluid

can be routed among N buffers, through Gurvich-type routing. Through an

argument based on weighted workload, we first prove that a fluid equivalent

of the cµ rule holds for the optimal scheduling control of the server. Via

further proofs, insights on the structure of the optimal routing control policy

is obtained. First, the optimal routing control is bang-bang. Second, the fluid

classes that receive incoming fluid follow a strict order. For example, if at a

given time the buffer corresponding to a class of fluid receives the incoming

stream then at any time later a buffer associated with a higher holding cost can

not receive any fluid. Through these insights, a procedure that computes the

optimal controls and the state trajectory given an initial state is developed.

In contrast to single-station networks, in tandem networks the policy at

a station has an immediate effect on downstream stations. The computation of

the optimal policy then requires determining under which conditions stations

idle. As a natural extension to the model in Chapter 3, in Chapter 4 we

consider networks composed of two stations connected in tandem. The chapter

139

is divided in two sections each dedicated to a different network model.

The first network we consider in Chapter 4 is composed of two stations

where a flexible server is present for each station. The first station is composed

of a single buffer whereas the second station is composed of N buffers in

parallel. The output of Station 1 becomes the input to Station 2 and we

assume that this stream of fluid is again to be routed among N buffers through

Gurvich-type routing. For this model, the first important result we show is

that the cµ rule is optimal for the scheduling control of Station 2. We then

provide results regarding the optimal scheduling policy of Station 1 or the

routing policy of Station 2. We prove that in some parameter regimes, the

server at Station 1 idles until all buffers in Station 2 empty. Note that in that

case no routing control decision affects the optimal state trajectory. Therefore,

computing the full state trajectory can be computed easily through the static-

priority policy. Also, it is shown that the server in Station 1 never idles

under some parameter regimes. Except these cases, we prove that the optimal

scheduling control of the server in Station 1 has a special structure. Under

the optimal policy Station 1 can only admit at most one idle period that

corresponds to a time interval where the server in Station 1 idles. With these

results, we develop a procedure to compute the optimal control policies for

both stations given any arbitrary initial state.

We then consider another class of tandem networks composed of two

stations. The first station of this network is composed of two buffers in parallel

and the second station is composed of a single buffer. Although this network is

140

smaller than other fluid networks considered, it admits interesting properties.

For example, under some parameter regimes, it is possible that the buffer in

Station 2 first drains, then builds up and re-drains. More interestingly, this

phenomena arises even in cases where the cost rate of the buffer in Station 2 is

greater than the cost rates of the buffers in Station 1. Also for this network, the

processing priority in Station 1 not only depends on terms related to station

1, but also on Station 2. We prove that a static priority rule holds for the

optimal scheduling of the server in Station 1 under some restricted parameter

settings. We again outline cases where the server of Station 1 idles and show

how to derive the optimal policies. We conclude that chapter with a discussion

of the same network with N -buffers in Station 1.

5.1 Future Work

A major focus of this dissertation is to provide theoretical proofs and

insights on the structure of optimal policies for different classes of networks.

Naturally, extending our results to larger classes of networks, or to networks

under different topologies are future research directions. However, it must be

noted that the structure of optimal policies get more complicated with con-

sideration of multiple stations, as a result the proofs may be very challenging.

For the second network considered in Chapter 4, we proved that un-

der restricted parameter regimes a strict index-based priority policy is in fact

optimal for the scheduling control of the server in Station 1. Yet, under dif-

ferent parameter settings, the optimal scheduling control is indeed different.

141

For example, consider a case where the buffer in Station 2 is empty and it

is associated with a larger service rate than the classes at Station 1. In this

case, regardless of the scheduling rule of Station 1 - the buffer in Station 2

remains empty. Hence, the holding cost of the buffer in Station 2 plays no role

in the scheduling control of Station 1. However, if the buffer in Station 2 is

non-empty and for example, it is associated with a much higher holding cost

than the ones in Station 1, surely the scheduling control of Station 1 must be

affected. This simple case shows that in fact the optimal scheduling policy of

Station 1 can be non-static. If that is the case, it is interesting to investigate

how that affects the optimal routing policy of Station 1.

Another extension of our work is consideration of another class of two-

station tandem networks where each station contains more than one buffer.

This class of networks can be thought of a mixture of the networks considered

in Chapter 4. For this class of network, the input to each station is routed

among buffers via Gurvich-type routing. Therefore, the optimal scheduling

and routing policies of each station might be highly dependent. Yet, we expect

that under some parameter settings, the optimal policies might be easier to

compute. For example, consider a case where the buffers in Station 1 have

a higher cost rate than all of the buffers in Station 2. If that is the case,

it is natural to expect that the server at Station 1 never idles. Similarly, if

all the buffers have much smaller rate than the ones in Station 2 as well as

high service rates, in that case, it is expected that the server at Station 1

idles until the buffers in Station 2 empty. Apart from these cases, we expect

142

that the optimal policy might be harder to derive especially under parameter

settings where the optimal scheduling rule of Station 1 is not based on a static

priority rule. Investigating the interplay of policies of Station 1 and Station 2

is therefore a potential topic for future work.

143

Bibliography

[1] H. S. Ahn and M. E. Lewis. Flexible server allocation and customer

routing policies for two parallel queues when service rates are not additive.

Operations Research, 61(2):344–358, 2013.

[2] Z. Aksin, M. Armony, and V. Mehrotra. The modern call center: A multi-

disciplinary perspective on operations management research. Production

and Operations Management, 16(6):665–688, 2007.

[3] M. Armony. Dynamic routing in large-scale service systems with hetero-

geneous servers. Queueing Systems, 51(3-4):287–329, 2005.

[4] F. Avram. Optimal control of fluid limits of queuing networks and

stochasticity corrections. In Mathematics of Stochastic Manufacturing

Systems, volume 33, pages 1–37, 1997.

[5] F. Avram, D. Bertsimas, and M. Ricard. Fluid models of sequencing

problems in open queueing networks; an optimal control approach. In-

stitute for Mathematics and its Applications, 71:199, 1995.

[6] N. Bäuerle. Asymptotic optimality of tracking policies in stochastic net-

works. Annals of Applied Probability, pages 1065–1083, 2000.

[7] N. Bäuerle. Optimal control of queueing networks: an approach via fluid

models. Advances in Applied Probability, 34(2):313–328, 2002.

144

[8] D. P. Bertsekas. Dynamic programming and optimal control, volume 1.

Athena Scientific Belmont, MA, 1995.

[9] H. Chen and A. Mandelbaum. Hierarchical modeling of stochastic net-

works, part ii: Strong approximations. In Stochastic Modeling and Anal-

ysis of Manufacturing Systems, pages 107–131. Springer, 1994.

[10] H. Chen and D. D. Yao. Dynamic scheduling of a multiclass fluid network.

Operations Research, 41(6):1104–1115, 1993.

[11] D. R. Cox and W. Smith. Queues, volume 2. CRC Press, 1991.

[12] J. G. Dai. On positive Harris recurrence of multiclass queueing net-

works: A unified approach via fluid limit models. The Annals of Applied

Probability, 5(1):49–77, 1995.

[13] J. G. Dai. Stability of fluid and stochastic processing networks. Centre

for Mathematical Physics and Stochastics, University of Aarhus, 1999.

[14] J. G. Dai and J. H. Vande Vate. The stability of two-station multitype

fluid networks. Operations Research, 48(5):721–744, 2000.

[15] L. Fleischer and J. Sethuraman. Efficient algorithms for separated con-

tinuous linear programs: the multicommodity flow problem with holding

costs and extensions. Mathematics of Operations Research, 30(4):916–

938, 2005.

145

[16] T. C. Green and S. Stidham. Sample-path conservation laws, with ap-

plications to scheduling queues and fluid systems. Queueing Systems,

36(1-3):175–199, 2000.

[17] I. Gurvich and W. Whitt. Scheduling flexible servers with convex delay

costs in many-server service systems. Manufacturing & Service Opera-

tions Management, 11(2):237–253, 2009.

[18] J. M. Harrison. Heavy traffic analysis of a system with parallel servers:

asymptotic optimality of discrete-review policies. Annals of applied prob-

ability, pages 822–848, 1998.

[19] A. Hordijk and G. Koole. The µc-rule is not optimal in the second node

of the tandem queue: a counterexample. Advances in applied probability,

pages 234–237, 1992.

[20] A. Hordijk and G. Koole. On the assignment of customers to paral-

lel queues. Probability in the Engineering and Informational Sciences,

6(04):495–511, 1992.

[21] A. Hordijk and G. Koole. On suboptimal policies in multiclass tan-

dem models. Probability in the Engineering and Informational Sciences,

10(01):29–39, 1996.

[22] J. Kingman. Two similar queues in parallel. The Annals of Mathematical

Statistics, 32(4):1314–1323, 1961.

146

[23] G. Koole. Assigning a single server to inhomogeneous queues with switch-

ing costs. Theoretical Computer Science, 182(1):203–216, 1997.

[24] W. Lin and P. R. Kumar. Optimal control of a queueing system with

two heterogeneous servers. Automatic Control, IEEE Transactions on,

29(8):696–703, 1984.

[25] C. Maglaras. Discrete-review policies for scheduling stochastic networks:

Trajectory tracking and fluid-scale asymptotic optimality. Annals of

Applied Probability, pages 897–929, 2000.

[26] A. Mandelbaum and A. L. Stolyar. Scheduling flexible servers with

convex delay costs: Heavy traffic optimality of the generalized cµ-rule.

52:836–855, 2004.

[27] S. Meyn. Sequencing and routing in multiclass queueing networks part

i: Feedback regulation. SIAM Journal on Control and Optimization,

40(3):741–776, 2001.

[28] S. Meyn. Sequencing and routing in multiclass queueing networks. Part

II: Workload relaxations. SIAM Journal on Control and Optimization,

42(1):178–217, 2003.

[29] S. Meyn. Dynamic safety-stocks for asymptotic optimality in stochastic

networks. Queueing Systems, 50(2-3):255–297, 2005.

147

[30] S. Meyn. Stability and asymptotic optimality of generalized maxweight

policies. SIAM Journal on Control and Optimization, 47(6):3259–3294,

2009.

[31] S. P. Meyn. Stability and optimization of queueing networks and their

fluid models. Lectures in applied mathematics-American Mathematical

Society, 33:175–200, 1997.

[32] J. A. Van Mieghem. Dynamic scheduling with convex delay costs: The

generalized cµ rule. The Annals of Applied Probability, pages 809–833,

1995.

[33] Y. Nazarathy. On control of queueing networks and the asymptotic vari-

ance rate of outputs. PhD thesis, University of Haifa, 2008.

[34] Y. Nazarathy and G. Weiss. A fluid approach to large volume job shop

scheduling. Journal of Scheduling, 13(5):509–529, 2010.

[35] W. B. Powell. Approximate Dynamic Programming: Solving the curses

of dimensionality, volume 703. John Wiley & Sons, 2007.

[36] L. I. Sennott. Stochastic dynamic programming and the control of queue-

ing systems. Wiley Series in Probability and Statistics. John Wiley &

Sons, Inc., New York, New York, 1999.

[37] A. Stolyar. On the stability of multiclass queueing networks. In Proceed-

ing of the 2nd International Conference on Telecommunication Systems–

148

Modeling and Analysis, pages 23–35, Nashville, Tennessee, March 24–27

1994.

[38] T. Tezcan and J. G. Dai. Dynamic control of n-systems with many

servers: Asymptotic optimality of a static priority policy in heavy traffic.

Operations Research, 58(1):94–110, 2010.

[39] G. Weiss. On optimal draining of re-entrant fluid lines. IMA volumes in

mathematics and its applications, 71:91–91, 1995.

[40] G. Weiss. A simplex based algorithm to solve separated continuous linear

programs. Mathematical Programming, 115(1):151–198, 2008.

[41] W. Winston. Optimality of the shortest line discipline. Journal of

Applied Probability, pages 181–189, 1977.

149

