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Species tree estimation is frequently based on phylogenomic approaches

that use multiple genes from throughout the genome. With the rapid growth

rate of newly sequenced genomes, species tree inference from multiple genes

has become one of the basic and popular tasks in comparative and evolu-

tionary biology. However, combining data on multiple genes is not a trivial

task since genes evolve through biological processes that include deep coales-

cence (also known as incomplete lineage sorting (ILS)), duplication and loss,

horizontal gene transfer etc., so that the individual gene histories can differ

from each other. In this dissertation, we focus on making advances on phy-

logenomic analyses with particular attention to the gene tree discordance. In

addition to gene tree discordance, we consider other challenging conditions

that frequently arise in genome scale data. One of these major challenges is

incomplete gene trees, meaning that not all gene trees have individuals from

x



all the species. We performed an extensive simulation study under the multi-

species coalescent (MSC) model that shows that existing methods have poor

accuracy when gene trees are incomplete. We formalized the optimal com-

pletion problem, which seeks to add the missing taxa (species) into the gene

trees with respect to a species tree such that the distance (in terms of ILS)

between the gene tree and the species tree is minimized. We developed an

algorithm for solving this problem. We formalized optimization problems in

the context of species tree estimation from a set of incomplete gene trees un-

der the multi-species coalescent model, and proposed algorithms for solving

these problems. We formulated different mathematical models for “gene loss”

based on different reasons for incompleteness. Next, we addressed the Mini-

mize Gene Duplication (MGD) problem, that seeks to find a species tree from

a set of gene trees so as to minimize the total number of duplications needed to

explain the evolutionary history. We proposed exact and heuristic algorithms

to solve this NP-hard problem. Next, we showed in a comprehensive experi-

mental study that existing methods are susceptible to poorly estimated gene

trees in the presence of ILS. We proposed a new technique called “binning”

that dramatically improves the performance of species tree estimation meth-

ods when gene trees are poorly estimated. We developed a novel technique

called “naive binning” and subsequently proposed an improved version called

“weighted statistical binning” to address the problem of gene tree estimation

error. Finally, we addressed the computational challenges to reconstruct highly

accurate species tree from large scale genomic data. We developed divide-and-

xi



conquer based meta-methods that can make existing methods scalable to very

large datasets (in terms of the number of species). Overall, this dissertation

contributes to understanding the limitations of the existing methods under re-

alistic model conditions, developing new approaches to handle the challenging

issues that frequently arise in phylogenomics, and improving and scaling the

existing methods to larger datasets.
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9.1 Running time of MP-EST for varying number of taxa.
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Chapter 1

Introduction

Phylogenetic trees (evolutionary trees) provide insights into basic biol-

ogy, including how life evolved, the mechanisms of evolution and how it mod-

ifies function and structure, orthology detection, disease evolution etc. [11, 13,

51, 75]. Evidence from morphological and gene sequence data suggests that

all organisms on earth are genetically related, and the relationships of living

things can be represented by a vast evolutionary tree – the “Tree of Life”.

Constructing the Tree of Life is one of the most ambitious goals and grand

challenges of modern science [49]. Central to assembling this tree of life is

the ability to efficiently analyze the vast amount of genomic data available

these days due to the tremendous advancement in sequencing techniques, and

computer hardware and software.

A species tree represents the evolutionary history of a group of organ-

isms, while a gene tree shows the evolutionary pathways of a particular gene

within a group of organisms. Estimations of species trees are typically based

on multiple genes, in some cases from throughout the whole genome. Inter-

estingly, different genes evolve in different ways, meaning that they do not

necessarily have identical evolutionary histories. This is called gene tree in-
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congruence/discordance, and can arise from incomplete lineage sorting, gene

duplication and loss, horizontal gene transfer, hybridization etc. [84]. This

disparity among the gene trees makes species tree construction complicated.

Species tree estimation from multiple genes is often performed using

concatenation (also called “combined analysis”): alignments are estimated

for each gene and concatenated into a supermatrix, which is then used to

estimate the species tree. When gene trees have identical topologies, con-

catenation can give very accurate results; however, this approach can return

incorrect trees with high confidence when gene trees differ from the species

tree (and hence from each other) [24, 36, 52, 73, 74, 80]. Therefore, phyloge-

nomic analyses where the species tree is constructed by summarizing a set of

gene trees, estimated from individual gene sequence alignments, are becoming

more popular [1, 15, 52, 78, 80, 93, 102, 141]. We call these methods summary

methods.

Summarizing gene trees to get a single and coherent species tree by

considering the reasons for discordance is not an easy task. Many summary

methods have been developed over the last decade. Some of them have the

nice theoretical guarantee that they are proven to reconstruct the true species

tree with arbitrarily high probability, given a sufficiently large number of true

gene trees [52, 73, 80, 93]. Unfortunately, however, we do not know the true

gene histories and the number of genes is limited. Thus techniques that have

nice statistical guarantee might perform poorly on biological datasets.

Apart from gene tree discordance, there are many other significant chal-
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lenges in phylogenomic analyses. Incomplete gene trees and poorly estimated

gene trees are two such major challenges. Incomplete gene trees, where the

gene trees might not contain any individual for some species, are very common

in biological datasets. Incompleteness can arise from various reasons, includ-

ing poor taxon sampling (the gene may be available in the species’ genome,

but it was not sampled), gene extinction etc. Another major challenge in phy-

logenomic analyses arises from the fact that gene trees are very often poorly

estimated. Individual gene sequence alignments can be short. These short

sequences result in poorly estimated gene trees. We showed that species tree

estimation methods are susceptible to gene tree error [8], and hence poorly

estimated gene trees are one of the most challenging and important problems

in phylogenomics.

Finally, large-scale genomic datasets present computational challenges

in species tree construction. Highly accurate methods are typically computa-

tionally intensive and cannot be run on large datasets (in terms of the number

of species and genes) [8]. Therefore, the ever increasing abundance of molecular

data not only opens the opportunity to resolve challenging questions regard-

ing evolution, but also creates the need for highly scalable methods that can

analyze many genes across many species.

1.1 Our contributions

We have addressed several major challenges in estimating species trees

from gene trees in the presence of gene tree discordance. The contributions
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described in this dissertation include:

• A mathematical model for estimating species trees by minimizing gene

duplication and loss (MGD and MGDL) which enables us to design

dynamic programming (DP) algorithms to solve these problems exactly.

We also proposed a constrained version for which we developed an effi-

cient DP-based polynomial time algorithm.

• An investigation on how reconciliation and species tree estimation are af-

fected by different reasons for incompleteness (missing taxa). We propose

different mathematical formulations of gene loss based on the different

reasons for incompleteness.

• A mathematical model for gene tree parsimony under the multi-species

coalescent model, and for the general case where the gene trees and

alignments can be incomplete.

• A novel technique called “binning” to address the problem of gene tree

estimation error.

• A meta-method based on a divide-and-conquer technique to make exist-

ing highly accurate species tree estimation techniques scalable to large-

scale genomic data.

1.2 Organization of the dissertation

The rest of the dissertation is organized as follows.
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Chapter 2 provides necessary background material for the problem of

estimating species tree from gene trees in the presence of gene tree discordance.

In Chapter 3, we describe our work on estimating species trees under

gene duplication and loss model when gene trees are rooted and fully resolved.

Local search heuristics for two NP-hard optimization problems, minimize gene

duplications (MGD) and minimize gene duplications and losses (MGDL), are

popular techniques for estimating species trees in the presence of gene du-

plication and loss [15, 150]. We present a novel alternative approach (rather

than local search heuristics) to solving MGD and MGDL from rooted gene

trees. We show that MGD can be formulated as a max-weight clique problem,

and the MGDL problem can be formulated as a min-weight clique problem

on an associated graph called the “compatibility graph”. We propose efficient

dynamic programming algorithms to find these optimal cliques that run in

polynomial time in the number of vertices of the graph. We also show that

the constrained version of the problem, where the “subtree-bipartitions” (a

concept we introduce) for the species tree are required to be drawn from a

set X, can be computed in time that is polynomial in |X|. With sufficiently

large numbers of gene trees without any missing taxa, it is likely that the

subtree-bipartitions in the true species tree are present in at least one input

gene tree, as it was observed in [141] that clusters (set of leaves present in a

subtree) induced by the true species tree are found in the clusters induced by

the gene trees. In this case, the globally optimal species tree can be obtained

by finding the exact solution for the constrained version, where X is the set of
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subtree-bipartitions in the gene trees.

In Chapter 4, we extend our algorithms for MGD and MGDL (de-

scribed in Chapter 3) so that they can handle unrooted gene trees. In phyloge-

netic analyses of biological data sets, estimated gene trees are often unrooted,

as rooting requires the assumption of “strict molecular clock”, or finding a

suitable “outgroup”. Therefore, in the absence of a molecular clock or appro-

priate outgroup (or for missing data from an outgroup), rooting trees can be

very difficult [9, 56]. We formulate the MGD and MGDL problem for unrooted

gene trees, and provide exact algorithms and heuristics for inferring species

trees for these cases.

In Chapter 5, we provide different formulations of gene tree parsimony

(GTP) for incomplete gene trees based on two different reasons for incom-

pleteness: 1) taxon sampling and 2) true biological loss. We show that the

“standard” calculation for losses in GTP can be incorrect when incomplete-

ness is due to true biological loss. We present exact and heuristic algorithms

to solve GTP when incompleteness results from true biological loss.

In Chapter 6, we consider the problem of estimating species trees from

estimated gene trees when the true gene trees can differ from the true species

trees due to incomplete lineage sorting (ILS), and for the general case where

the gene trees and alignments can be incomplete. We show how to complete

an incomplete gene tree (i.e., adding the missing taxa back into the gene tree)

in an optimal way under the multi-species coalescent model. We formalize

optimization problems and present new theoretical results in the context of
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species tree estimation from incomplete gene trees in the presence of gene tree

discordance due to ILS. We also report on an extensive simulation study that

the existing methods perform poorly when gene trees are incomplete.

In Chapter 7, we address the challenge of constructing species trees

from poorly estimated gene trees. First, we perform an extensive experimen-

tal study to evaluate the performance of a wide range of species tree estimation

methods (e.g., combined analyses, *BEAST [52], BUCKy [1], MP-EST [80],

greedy consensus etc.) in the presence of ILS. We show that summary meth-

ods have poor accuracy when the individual gene sequence alignments have

low phylogenetic signal (i.e., short sequence alignments). We present a novel

approach called “naive binning” to overcome the vulnerability of the species

tree methods to poorly estimated gene trees.

In Chapter 8, we present a binning technique called “weighted sta-

tistical binning”, which is an improvement over statistical binning [90]. The

observation that summary methods are affected by poorly estimated gene trees

(presented in Chapter 7) motivated the development of naive binning [8] and

subsequently statistical binning [90]. Although statistical binning is shown to

have good empirical performance [90], the phylogenomic pipeline with statis-

tical binning is not statistically consistent [5]. In this chapter we present an

improved version of the binning technique called “weighted statistical binning”

that enables highly accurate genome-scale species tree estimation, and is also

statistically consistent under the multi-species coalescent (MSC) model.

In Chapter 9, we address the challenge of handling large-scale genomic
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data in phylogenomic analyses. We present divide-and-conquer based tech-

niques that improve the scalability of MP-EST so that it can run efficiently

on large datasets. This technique also improves the accuracy of species trees

estimated by MP-EST, as our study shows on a collection of simulated and

biological datasets.

Finally we conclude in Chapter 10 with discussion of our work and

future research directions.
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Chapter 2

Preliminaries

In this chapter, we introduce the basic definitions and concepts that we

will use throughout this dissertation. We first introduce phylogeny and dis-

cuss different properties of a phylogenetic tree. We then discuss the concepts

of gene tree and species tree, gene tree discordance, and species tree recon-

struction from the evolutionary histories of the genes present in the whole

genome. These are the cornerstones of phylogenomic analysis – the main fo-

cus of this dissertation. Next, we discuss the traditional pipelines for phyloge-

nomic analysis, and discuss the measures of accuracy to evaluate species tree

reconstruction methods. Terminologies that are not included in this section

will be introduced as they are needed.

2.1 Phylogenies

A phylogeny is a representation of the evolutionary relationships of

a set of entities (species, genes, languages, etc.). Phylogenetic entities are

commonly known as taxa. The simplest and the most useful representation

of such evolutionary history is a “tree”, which we call phylogenetic tree. A

tree T is a connected acyclic graph with a set of vertices V and a set of
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edges E. A leaf in a phylogenetic tree represents a taxon that typically exists

in the present day. The internal nodes represent the hypothetical ancestral

taxa from which the descendant taxa evolved. The internal nodes typically

represent extinct species that existed in the past, but do not exist anymore.

An edge e = (u, v) ∈ E represents an evolutionary relationship between the

two taxa at the vertices u and v. We denote the set of vertices of a tree T by

V (T ), the set of internal nodes by Vint(T ), the set of edges by E(T ), and the

set of taxa that appear at the leaves by L(T ).

Figure 2.1 shows an example of a phylogenetic tree that illustrates

the evolutionary history of humans, chimpanzees, gorillas and orangutans. It

shows that humans are more closely related to chimpanzees (they share a

common ancestor) than they are to gorillas and orangutans.

Figure 2.1: Phylogenetic tree. A phylogenetic tree relating four species:
humans, chimpanzees, gorillas and orangutans.

The length of the edges (branches) in an evolutionary tree is known

as branch length. Branch length is a non-negative real number that represent

various quantities measured on a branch. Most often, a branch length represent

the amount of evolutionary change or the amount of time between two nodes.

When trees are not provided with branch lengths, we generally refer to them
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as topologies .

A phylogenetic tree T = (V,E) can be rooted by designating a single

vertex r ∈ V as the root of the tree. Although true evolutionary histories are

often best represented by a rooted tree, locating the root of the tree is usually

hard to achieve. Accurately rooting a phylogenetic tree is a complex problem

requiring specific knowledge of the set of taxa being studied or the assumption

of a “molecular clock”. Phylogenetic trees are often being rooted using the

technique of using an outgroup, which is a taxon known to have branched off

before all other taxa under consideration. Alternatively, one can root a tree

based on the estimated time between speciation only if the molecular data used

to reconstruct a phylogeny are assumed to have evolved at a constant rate over

time, an assumption that is often violated in real datasets. Figure 2.2 shows

examples of rooted and unrooted trees. We denote the root of a tree T by

root(T ).

A C D EB

(b)(a)

A

B

C

D
E

e

Figure 2.2: Unrooted and rooted trees. (a) An unrooted tree, and (b) the
rooted tree resulting from rooting the tree shown in (a) on the edge e.

Phylogenetic trees can be binary or non-binary. A tree is called binary
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(also known as fully-resolved) if all internal nodes have degree at most three.

Otherwise, the tree is non-binary, and has at least one node with degree greater

than three, also known as a polytomy. Figure 2.3 shows examples of binary

and non-binary trees.

A

B

C

D
E F

u

A

B

C

D

E F

u

v

(a) (b)

Figure 2.3: (a) A binary tree representing the evolutionary history of 6 species:
{A,B,C,D,E, F}, and (b) a non-binary tree on the same set of taxa, where
node u is a polytomy.

Each vertex in a rooted tree defines a group of taxa that are more

closely related to each other than they are to any other taxon in the tree;

such a group is called a clade. Formally, a clade in a phylogenetic tree T is a

rooted subtree of T , which can be identified by a node v in T rooting the clade

(represented by cladeT (v)). The set of leaves of a clade cladeT (v) is called

a cluster . We denote the cluster at v by cT (v); however, when the tree T is

understood, we may also write c(v). The set of all clades in a tree T is denoted

by C(T ).

The analogous relationships in unrooted trees are bipartitions of the

taxon set, and are defined by edges rather than vertices. Every edge e in a

phylogenetic tree T defines a bipartition πe. Deleting the edge e from T creates

two subtrees T1 and T2, resulting into a bipartition of leaves L(T1)|L(T2). The
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bipartitions corresponding to the edges incident on the leaves are called trivial

bipartitions since they do not provide any information about the topology

of the tree; whereas bipartitions corresponding to internal edges are called

non-trivial bipartitions.

Given two trees T and T ′ on the same leaf set, we call T a refinement

of T ′ if T ′ can be obtained from T by contracting some edges in T . There-

fore, T refines T ′ if and only if C(T ′) ⊆ C(T ). Alternatively, T ′ is called

the contraction of T . Figure 2.4 demonstrates the concept of refinement and

contraction.

A

B

C

D
E F

u

A

B

C

D

E F

u

v
contraction

refinement

TT ′

Figure 2.4: Refinement and contraction. T is a refinement of T ′; alterna-
tively, T ′ is a contraction of T . Here T ′ can be obtained from T by contracting
the edge incident on u and v.

We now define the phylogeny problem as follows.

Problem Phylogeny
Input A set S of n taxa.
Output A phylogenetic tree T with n leaves bijectively leaf-

labeled by the taxa in S.
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2.2 Gene tree and species tree

Most often, the goal of a phylogenetic reconstruction is to infer an evo-

lutionary tree depicting the history of speciation events that lead to a currently

extant set of taxa. A species tree can be defined as the pattern of branching

of species lineages via the process of speciation. A gene tree represents the

evolution of a particular “gene” (we interpret gene as a particular part of the

whole genome) within a group of species. When species are split by speci-

ation, the gene copies within species are also split into separate lineages of

descent. Thus, gene trees are contained within species trees [84]. However,

due to various biological processes, different genes (i.e., different parts of the

whole genome) may have discordant evolutionary histories. Figure 2.5 shows

an example of discordance between a species tree and a gene tree. Here, species

C and species B are “sister” species in the species history, whereas C is closer

to D than B in the gene history.

We now briefly describe various biological reasons for gene tree discor-

dance.

Gene duplication and loss Gene duplication is the process of generat-

ing multiple gene lineages in coexisting in a species lineage [106]. A gene

duplication event causes a second “locus”, and these duplicated loci evolve

independent of each other – resulting in incongruence between gene tree and

the containing species tree [43]. Moreover, some of the gene lineages could go

extinct if it decayed into a “pseudo-gene”, or if it evolved a new function and
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Figure 2.5: Gene tree-species tree incongruence. A species tree (given in
blue) and a gene tree (given in red) on the same set {A,B,C,D} of taxa with
different topologies.

diverged [84]. This phenomenon is knows as gene loss (also known as gene

extinction) which may result in gene tree discordance. Figure 2.6 shows how

gene duplication and loss can cause gene tree discordance. Alternatively, this

figure shows how to explain the discordance between a gene tree and a species

tree using gene duplication and loss events. Such embedding of a gene tree

inside a species tree is called “reconciliation” (see Section 2.2.1). Two gene

copies are called orthologous if their most recent common ancestor is a spe-

ciation event, whereas they are called paralogous if the most recent common

ancestor is traced back to a duplication event.

Incomplete lineage sorting Incomplete lineage sorting (ILS), also known

as deep coalescence, is best understood under the coalescent model [27, 29, 54,

98, 99, 121, 139, 140]. The coalescent model describes the evolutionary process

15



Figure 2.6: Reconciliation under gene duplication and loss model.
We show a reconciliation of the discordant gene tree-species tree pair shown
in Fig. 2.5 using gene duplication and loss. We embed the reconciled tree
inside the species boundaries. Duplicated gene copes (dashed and solid red
lines) evolve independently and can go extinct. This reconciliation requires
one duplication and three gene losses.

as if it operates backwards in time, and connects gene lineages to a common

ancestor through a process of “coalescence” of lineage pairs. This model treats

a species as a population of individuals, having a pair of alleles for each gene.

The coalescent process traces the present day variants of a gene (known as

alleles) back in time across successive generations by following the ancestral

alleles in the previous generation from which this given alleles evolved. Even-

tually we reach a point where two alleles coalesce (i.e., they find a common

ancestor). The multi-species coalescent (MSC) model is the extension of this

general coalescent framework where multiple randomly mating populations

corresponding to multiple species are present. Thus, multi-species coalescent

represents a gene tree inside a species tree.
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Incomplete lineage sorting or deep coalescence refers to the case in

which two lineages fail to coalesce at their speciation point. Under the coa-

lescent model, deep coalescence can be a source of discordance, because the

common ancestry of gene copies at a single locus can extend deeper than spe-

ciation events. Figure 2.7 shows an example of discordance due to ILS. Going

back in time, the gene copies within species B and C first meet at their cor-

responding speciation point (i.e, the most recent common ancestor of species

B and C), but fail to coalesce at the speciation point. Both of these copies go

further back in time, and hence we have two gene lineages (dashed and solid

black lines in Fig. 2.7) on deeper ancestral branch. Then the gene from C

first coalesces with the gene from species D, and subsequently with the gene

from B. Note that this deep coalescence results in one extra lineage (two gene

lineages instead of one on a branch of the tree) for this particular example. In

Fig. 2.8, we show the impact of population size and branch length on incom-

plete lineage sorting. As we have already mentioned, the coalescent process

traces the ancestry of alleles (shown by small filled circles in Fig. 2.8) back

in time (upward in a branch) across successive generations. Since the mating

process is random, all the alleles in generation t are equally likely to be the

ancestor of an allele in generation t + 1. Therefore, deep coalescence is more

likely to happen when the population size is large and the branch length (in

terms of the number of generations) is short [84, 110].
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Figure 2.7: Reconciliation under incomplete lineage sorting. We show
a reconciliation of the discordant gene tree-species tree pair shown in Fig. 2.5
using incomplete lineage sorting. We embed the reconciled tree inside the
species boundaries. Going back in time, the gene copies within species B
and C first meet at their corresponding speciation point (i.e, the most recent
common ancestor of species B and C), but fail to coalesce at the speciation
point. Both of these copies go further back in time, and hence we have two gene
lineages (dashed and solid black lines) on deeper ancestral branch. Therefore
we have one extra lineage on the ancestral branch. The gene from C first
coalesces with the gene from species D, and subsequently with the gene from
B.
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Figure 2.8: Effect of effective population size and branch length on
incomplete lineage sorting under the multi-species coalescent model.
(a) Long branch (larger number of generations) and small population size
increase the chance that two gene lineages will coalesce with each other; (b)
Larger population size and smaller branch increase the possibility that gene
lineages will fail to coalesce before reaching the deeper speciation event.

Horizontal gene transfer In many organisms (bacteria for an example),

a significant level of genetic exchange occurs between lineages, and lineages

can combine to produce new independent lineages. Horizontal gene transfer

(HGT), also known as lateral gene transfer , is the process that causes the

genes to be transferred across species. These exchanges and combinations

result in discordance between gene trees and species trees, and the accurate

representation of evolutionary history requires a phylogenetic network instead

of a tree. Figure 2.9 shows how HGT transforms a tree into a network, which

results in gene tree-species tree discordance.
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Figure 2.9: Reconciliation under horizontal gene transfer. We show a
reconciliation of the discordant gene tree-species tree pair shown in Fig. 2.5
using horizontal gene transfer. Here, the gene lineage from species D moves
horizontally across species boundaries and enters into the species boundary
of C. This “foreign” gene lineage is maintained and spread into the receiving
species population. If the receiving lineage (C) goes extinct or is not sampled,
then there will be discordance between the species tree and the gene tree.
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2.2.1 Gene tree reconciliation

With the abundance of molecular data available, species tree recon-

struction from genes sampled from throughout the whole genome has drawn

significant attention from systematists. However, species tree reconstruction

from a set of gene trees, in the presence of different biological processes causing

gene tree discordance, is not an easy task. One of the most important and

difficult challenges in reconstructing the Tree of Life is to reliably address gene

tree-species tree incongruence in the presence of such confounding evolution-

ary events. Central to addressing this challenge is to develop mathematical

models to explain (or reconcile) gene tree-species tree incongruence assuming

specific reasons for discordance. For example, how can we explain the differ-

ence between a gene tree and a species tree assuming that the discordance is

due to gene duplication and loss? This requires us to embed/map the gene tree

inside the species tree using a number of gene duplication and loss events. This

concept of reconciling gene trees inside a species tree dates from Goodman et

al.’s [43] attempt to find the most parsimonious reconciliation of a gene tree

within a species tree under duplication and loss events. Later on this concept

of reconciliation was explored quite extensively [44, 47, 95, 103–105, 158].

Fundamental to this reconciliation problem is to find an optimal embed-

ding (i.e., most parsimonious embedding in terms of the number of confound-

ing evolutionary events – duplication/loss, ILS etc.) of the gene tree inside a

species tree. We now describe how to embed a gene tree inside a species tree.

Given a gene tree gt and a species tree ST , where L(gt) ⊆ L(ST ), we
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define M : V (gt) → V (ST ) by M(v) = MRCAST (cgt(v))). In other words, M

associates each node u of gt to the MRCA (most recent common ancestor) in

ST of the cluster below u. Let gt and ST be rooted binary gene and species

trees, respectively, on the same set X of taxa. Then the optimal embedding

(also known as optimal reconciliation) of gt to ST under each of the three

criteria (duplication, duplication-loss, or deep coalescence) is obtained using

the M mapping [84, 141, 158].

Figure 2.10 demonstrates the M mapping between the nodes in a gene

tree to the nodes in a species tree. Figures 2.11 and 2.12 show examples of the

optimal and non-optimal reconciliation of a rooted, binary gene tree gt with

a rooted, binary species tree ST under the duplication-loss and multi-species

coalescent models, respectively.

f

STgt

a b e c d a c b d e f g hhg

Figure 2.10: Illustration of the M mapping of the nodes in a gene tree
gt with respect to a species tree ST .
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(b) (a) (c)

C D

Figure 2.11: Optimal and non-optimal reconciliations under the gene
duplication and loss model. (a) A rooted, binary gene tree gt, (b) an
optimal reconciliation of gt with a rooted, binary species tree that yields 1
duplication and 3 losses, and (c) a non-optimal reconciliation of gt using 1
duplication and 4 losses.

(c)(a)(b)

B C DAA B A BC

reconcilereconcile

DC D

Figure 2.12: Optimal and non-optimal reconciliations under the deep
coalescence model. (a) A rooted, binary gene tree gt, (b) an optimal rec-
onciliation of gt with a rooted, binary species tree that yields 1 extra lineage,
and (c) a non-optimal reconciliation of gt using 2 extra lineages.

23



2.2.2 Duplication, loss and deep coalescent events: mathematical
formulation

Because of the relevance to this dissertation, we now provide mathe-

matical formulations for gene duplication and loss, and extra lineage (resulting

from deep coalescence).

2.2.2.1 Duplication and loss

For a rooted gene tree gt and a rooted species tree ST , where L(gt) ⊆

L(ST ), an internal node v in gt is called a duplication node if M(v) = M(v′),

for some child v′ of v, and otherwise v is a speciation node [44, 47, 82, 158]. We

denote by Dup(gt, ST ) the number of duplications needed to reconcile gt with

ST . For a set G of rooted, binary gene trees, the notation Dup(G, ST ) extends

in the obvious way as follows.

Dup(G, ST ) =
∑

gt∈G

Dup(gt, ST )

.

We now describe how to compute the number of loss events associated

with an optimal reconciliation of a gene tree within a species tree. For two

nodes x and y in T , x < y if y is on the path between x and the root of

T . Let RST (L(gt)) be the restriction of ST to gt, that is, L(RST (L(gt))) =

L(ST ) ∩ L(gt). In other words, RST (L(gt)) is the subtree of ST induced by

L(gt). The homeomorphic subtree ST (gt) of ST induced by L(gt) is a tree

obtained from RST (L(gt)) by suppressing all nodes of RST (L(gt)) with in-
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degree and out-degree 1. Let M be the MRCA mapping from gt to ST (gt).

Then the number of loss events required to explain the discordance between gt

and ST , denoted by loss(gt, ST ), can be calculated as follows [44, 47, 82, 158].

Using notation from [44, 158], we let loss(gt, ST ) be defined by

loss(gt, ST ) =
∑

v∈V (gt)

lossv, (2.1)

where lossv is the number of losses associated to the internal node v. In turn,

lossv is defined by the two children a and b of v, as follows:

lossv =























d(M(a),M(v)) + 1 if M(a) < M(v) &
M(v) = M(b),

d(M(a),M(v)) + d(M(b),M(v)) if M(a) < M(v) &
M(b) < M(v),

0 otherwise.

(2.2)

Here d(s, s′) is the number of nodes on the path in ST (gt) from s to s′ excluding

s and s′.

For a set G of rooted, binary gene trees, the number of losses is given

by loss(G, ST ) =
∑

gt∈G

loss(gt, ST ). The number of duplications and losses,

denoted by Duploss(G, ST ), is the sum of the number of duplication and

losses, i.e., Duploss(G, ST ) = Dup(G, ST ) + loss(G, ST ).
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2.2.2.2 Extra lineages

We denote the number of extra lineages on an edge e ∈ E(ST ) by

XL(gt, e), and note that this is one less than the number of lineages on e in an

optimal reconciliation of gt within ST under deep coalescence. We denote by

XL(gt, ST ) the total number of extra lineages within an optimal reconciliation

of gt and ST . Thus, XL(gt, ST ) =
∑

e∈E(ST )XL(gt, e).

For any cluster A in gt and a cluster B in ST , we say that A is B-

maximal if (1) A ⊆ B, and (2) for any cluster A′ in gt, if A ⊆ A′, then

A′ 6⊆ B. We define kB(gt) to be the number of B-maximal clusters within

gt, and in a rooted tree T with cluster G, the unique edge e that separates

G from the rest of the leaves in T is called the parent edge of the cluster G.

Then kB(gt) is equal to the number of lineages on the parent edge e of B in

an optimal reconciliation of gt within ST [141, 155].

2.2.3 Gene tree parsimony

We are now ready to define gene tree parsimony (GTP) which was first

introduced by W. P. Maddison in 1997 [84]. Let C(gt, ST ) be the cost (i.e.,

the number of duplication and loss events, the number of extra lineages etc.)

associated with reconciling gt within ST . Then we define gene tree parsimony

as follows.
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Problem Gene Tree Parsimony
Input A set G = {gt1, gt2, . . . , gtk} of gene trees, and a

reason for discordance (duplication-loss or ILS etc.).
Output A species tree ST that minimizes

∑

gt∈G C(gt, ST )
assuming the presence of the given reason for dis-
cordance.

2.2.4 Statistical consistency

A species tree reconstruction method is called statistically consistent

under a particular model of evolution if the probability of returning the true

species tree converges to one as the amount of data increases (we usually as-

sume both the number of sites and the number of loci increase). Let G =

{g1, g2, . . . , gk} be a set of genes, and let si be the number of sites in gi

(1 ≤ i ≤ k). A species tree estimation method is said to be statistically

consistent if the estimated species tree, which is considered as a random vari-

able, converges in probability to the true species tree as k → ∞, si
1≤i≤k

→ ∞.

Statistically consistent methods are typically preferred over the methods that

are not statistically consistent [24, 33, 36, 73, 74, 80]. Many statistically consis-

tent methods have been developed in the last decade to estimate species tree

from a set of gene trees in the presence of gene tree discordance. *BEAST [52],

BUCKy-pop [73], MP-EST [80] and ASTRAL [93, 94] are among the leading

statistically consistent methods under the multi-species coalescent model.
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2.3 Phylogenomic analysis pipeline

Two of the most popular approaches for estimating species trees from a

collection of gene trees are concatenation (also known as “combined analysis”)

and summary methods.

Concatenation Concatenation (also known as combined analyses) is the

most basic and simple pipeline for phylogenomic analysis where alignments are

estimated for each gene and concatenated into a supermatrix, which is then

used to estimate the species tree. Concatenation does not consider gene tree

discordance as it combines all the gene alignments into a supermatrix. Implicit

in this analyses is the assumption that all the genes have the same evolutionary

history. However, a partitioned analysis allows the branch lengths and other

model parameters except the tree topology to be estimated separately for each

gene. But an unpartitioned analysis estimates a single set of model parameters,

including tree topology, branch lengths etc. Recently it has been proved that

concatenation using an unpartitioned maximum likelihood analysis can be

statistically inconsistent under the multi-species coalescent model [26, 119].

Empirical studies also suggest that it can return incorrect trees with high

confidence [24, 36, 52, 73, 74, 80]. The statistical consistency of concatenation

using partitioned analyses is unknown.

Summary methods Summary methods refer to a broad class of phyloge-

nomic methods that construct a species tree by summarizing a collection of
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gene trees. Gene tree parsimony methods such as estimating species trees

by minimizing deep coalescence (MDC) and minimizing duplication and loss

(MGDL) are examples of summary methods. Unlike concatenation, summary

methods are not necessarily agnostic about the reason for discordance and can

be statistically consistent. Therefore, summary methods are becoming more

popular and gaining much attention from systematists [1, 15, 52, 78, 80, 93, 102,

141].

2.3.1 Existing methods

Here we provide a list of the leading methods for estimating species

trees under the multi-species coalescent and gene duplication and loss models.

• ILS-based methods: Many summary methods have been developed to es-

timate species trees from gene trees by considering ILS as the reason for

discordance. *BEAST [52], BUCKy-pop [73], GLASS [96], STEM [68],

STAR [81], NJst [79], MP-EST [80] and ASTRAL [93, 94] are well known

statistically consistent methods. There are some other methods (greedy

consensus, minimize deep coalescence (MDC) [84], matrix representa-

tion with parsimony (MRP) [3], matrix representation with likelihood

(MRL) [102] etc.), which do not have the statistical guarantee, but per-

form well in practice. Phylonet [143] is a software package, which has the

functionality for estimating species trees by solving the MDC problem

using the algorithm described in [141, 155] (we call this Phylonet-MDC).
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• Gene duplication and loss based methods: iGTP [15] and duptree [150]

are the leading methods for constructing species trees by minimizing

gene duplications and losses.

2.4 Evaluation of species tree estimation methods

We use extensive experimental studies to evaluate various species tree

estimation methods. Throughout this dissertation, we use both simulated and

real biological datasets for evaluation.

2.4.1 Evaluation on simulated datasets

A typical simulation protocol for evaluating species tree estimation

techniques is modelled as follows. Figure 2.13 illustrates different steps in

this simulation protocol.

• Step 1: A simulation study begins with a model species tree (also known

as true species tree). A model species tree can be generated (typically

using a birth-death process), or a biologically-based species tree (a tree

estimated on real biological datasets) from existing literature can be

chosen as a model tree.

• Step 2: A set of gene trees are simulated down the model species tree un-

der a particular model (e.g., gene duplication and loss, ILS etc.). These

are known as true gene trees.

• Step 3: A set of gene sequences are simulated by evolving nucleotide
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sequence down the true gene trees under a particular sequence evolution

model.

• Step 4: Gene trees are estimated from the gene sequence alignments.

These are called estimated gene trees.

• Step 5: Finally, we estimate a species tree from the set of estimated gene

trees using the method of our consideration, and compare this estimated

species tree to the model species tree using an appropriate error metric

described below.

2.4.2 Error metrics

In simulation studies, since the ground truth (which we call the model

tree or true tree) is known, we compare the species trees estimated by the

methods of consideration with the true tree. There are various standard ways

of measuring estimation error. We now describe the error metrics that are

widely used to quantify the reconstruction error.

False negative (FN) rate The false negative (FN) rate (also known as

missing branch rate) is the proportion of the edges present in the true tree

but not present in the estimated tree. Figure 2.14 shows an example of a true

tree and an estimated tree where one true branch is not reconstructed in the

estimated tree.
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Figure 2.13: Illustration of a simulation protocol for evaluating species
tree estimation techniques. We start with a model species tree. Next, a
collection of true gene trees are evolved down this model species tree, and
gene sequences are evolved down the collection of true gene trees. Next, we
estimate gene trees from the gene sequence alignments. Finally, a species tree
is estimated from the estimated gene trees, and compared to the true species
tree.

u

v

w
x

y

u

v

w
x

y

FN

True tree Estimated tree

Figure 2.14: Missing branch rate. The branch separating {u, v, w} and
{x, y} is not reconstructed in the estimated tree.
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False positive (FP) rate The FP rate is the proportion of the edges present

in the estimated tree but not in the true tree. Note that the FN rate is identical

to the FP rate for binary trees. However, for non-binary trees, the FN rate

and the FP rate are not necessarily identical, and the FP rate is not a good

measure of accuracy in this case. For example, let Tr be a true binary species

tree and Te be an estimated tree, which is a star (a tree with one internal

node). In this case, the FP rate is zero even though the estimated tree failed

to reconstruct the internal edges.

Robinson-Foulds (RF) rate The Robinson-Foulds (RF) rate is the ratio of

the total number of false positive and false negative edges to the total number

of internal edges in the two trees. When true and estimated trees are binary,

the RF rate is simply the average of the FN rate and the FP rate, and in this

case the FN rate, the FP rate and the RF rate are all equal. The RF rate is

the most commonly used error metric. However, because of the same reason

as described for the FP rate, this metric is not appropriate when the trees are

not binary.

All the trees reported in this dissertation are binary and hence the FN

rate and the FP rate are identical, and both are also equal to the RF rate.

Therefore, throughout this dissertation, we refer to the FN rate as the measure

of topological error.
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2.4.3 Evaluation on real biological datasets

In real biological datasets, the ground truth is not known; and hence

we cannot use the error metrics described above. In this case, we have to rely

on the existing literature and biological beliefs/evidence regarding the evolu-

tionary history of the species of our consideration. For example, humans are

believed to be more closely related to chimpanzees than they are to gorillas

or orangutans; and therefore we expect a method to reconstruct this relation-

ship (clade) using genome-scale data from humans, chimpanzees, gorillas and

orangutans.

2.5 New data structures

To address the problem of estimating species trees from a collection of

gene trees by minimizing gene duplication and loss, we have introduced new

data structures that enable us to develop efficient dynamic programming (DP)

based algorithms. We now describe these new data structures.

Subtree-bipartitions: Let T be a rooted binary tree and u an internal node

in T . The subtree-bipartition of u, denoted by SBPT (u), is the unordered pair

(cT (l)|cT (r)), where l and r are the two children of u. Note that subtree-

bipartitions are not defined for leaf nodes. The set of subtree-bipartitions of

a tree T is denoted by SBPT = {SBPT (u) : u ∈ Vint(T )}.

Domination, containment, disjointness, and compatibility: Let

BPi = (Pi1 |Pi2) and BPj = (Pj1|Pj2) be two subtree-bipartitions. We say that
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BPi is dominated by BPj (and conversely that BPj dominates BPi) if either

of the following two conditions holds: (1) Pi1 ⊆ Pj1 and Pi2 ⊆ Pj2, or (2)

Pi1 ⊆ Pj2 and Pi2 ⊆ Pj1. We say that BPi contains BPj if Pj1 ∪ Pj2 ⊆ Pi1 or

Pj1∪Pj2 ⊆ Pi2 , and that BPi and BPj are disjoint if [Pi1∪Pi2 ]∩ [Pj1∪Pj2 ] = ∅.

We say that two subtree bipartitions are compatible if one contains the other,

or they are disjoint.

The compatibility graph CG(G): Let G be a set of rooted binary gene

trees on the set X of n taxa. The compatibility graph CG(G) has one vertex for

each possible subtree-bipartition defined on X, and there is an edge between

two vertices if and only if the associated subtree-bipartitions are compatible.

Note that if two subtree-bipartitions are compatible, then their associ-

ated clusters (produced by unioning the two parts of the bipartition) are also

either disjoint or one contains the other.
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Chapter 3

Inferring Optimal Species Trees under Gene

Duplication and Loss

Species tree estimation from multiple markers is complicated by the

fact that gene trees can differ from each other (and from the true species tree)

due to several biological processes, one of which is gene duplication and loss.

Local search heuristics for two NP-hard optimization problems – minimize

gene duplications (MGD) and minimize gene duplications and losses (MGDL)

– are popular techniques for estimating species trees in the presence of gene

duplication and loss. In this chapter, we present an alternative approach to

solving MGD and MGDL from rooted gene trees. First, we characterize each

tree in terms of its subtree-bipartitions (a concept we introduce). Then we

show that the MGD species tree is defined by a maximum weight clique in

a vertex-weighted graph that can be computed from the subtree-bipartitions

Much of the material in this chapter is taken without alteration from the following
paper.

• M. S. Bayzid, S. Mirarab, and T. Warnow. Inferring optimal species trees under gene
duplication and loss. In Proceedings of the of Pacific Symposium on Biocomputing
(PSB), volume 18, pages 250–261, 2013

MSB designed the study, developed the clique-based formulations and dynamic program-
ming algorithms for MGD and MGDL problems, and proved all the theoretical results. MSB
and TW wrote the paper with comments from SM. SM implemented the algorithms as a
software tool.
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of the input gene trees, and the MGDL species tree is defined by a minimum

weight clique in a similarly constructed graph. We also show that these optimal

cliques can be found in polynomial time in the number of vertices of the graph

using a dynamic programming algorithm, because of the special structure of

the graphs. Finally, we show that a constrained version of these problems,

where the subtree-bipartitions of the species tree are drawn from the subtree-

bipartitions of the input gene trees, can be solved in time that is polynomial

in the number of gene trees and taxa.

3.1 Introduction

The estimation of species trees typically proceeds by concatenating

multiple sequence alignments together for many genes and then estimating

a tree on the resultant super-matrix. These combined analyses require that

all sequences be orthologous (hence each taxon should appear in each gene

sequence alignment at most once), and assume that the true trees for the

different genes are topologically identical. These two conditions can easily

fail to hold when gene duplication and loss occurs, even when valiant efforts

are made to estimate orthology. Thus, the estimation of species trees from

gene trees that can differ due to gene duplication and loss [37, 43, 84, 107, 157],

especially when these gene trees contain more than a single copy of each taxon,

requires more care.

Two of the most popular approaches for species tree estimation in the

presence of gene duplication and loss are methods, such as iGTP [15] and

37



DupTree [150], that employ local search techniques to “solve” the NP-hard

optimization problems MGD (Minimize Gene Duplication) and MGDL (Min-

imize Gene Duplication and Loss). For example, analyses based upon MGD

and MGDL have been used in estimating species trees for snakes [127], verte-

brates [108, 109], Drosophia [20], and plants [125]. These local search strategies

are effective for relatively small numbers of taxa, but their utility for very large

numbers of taxa has not been explored.

In addition to local search techniques, exact solutions [14, 31] and fixed-

parameter tractable algorithms [50, 132] have been proposed for addressing

MGD and MGDL. Doyon and Chauve [31] have described an exact solution

using branch-and-bound and a technique to constrain the branch-and-bound

procedure using prior knowledge. A constrained version of this approach was

applied to a dataset of 29 taxa; this analysis produced the same solution

as iGTP, but took orders of magnitude more computational time. Chang et

al. [14] also proposed an exact solution for MGD based on an ILP formulation,

and were able to apply their approach to datasets of up to 14 taxa.

In this chapter we present a new approach for MGD and MGDL that

does not use local search techniques or branch-and-bound techniques, but in-

stead uses dynamic programming to produce an optimal solution within a

user-specified subspace of the set of candidate species trees. Thus, by letting

that subspace be all possible species trees we obtain a globally optimal solu-

tion for MGD or MGDL, while constraining the set allows us to obtain good

(even if not globally optimal) solutions in polynomial time. Our dynamic pro-
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gramming approach is similar to the WIDTH K MGD and MGDL techniques

introduced by Hallet and Lagergren [50]. Hallet and Lagergren propose creat-

ing the subspace of candidate species trees using a parameter they introduce

called WIDTH, and show that with a bounded WIDTH, the dynamic pro-

gramming approach can find the optimum species tree in the subspace defined

by the given WIDTH. While our dynamic programming approach is similar

to that of Hallet and Lagergren, our clique-based formulation of the problem

is new, and some of our theoretical results are not explicitly stated in [50].

In addition, we have implemented our version of the dynamic programming

algorithm in a publicly available software tool.

The algorithmic technique we present is also related to the approach

used in Than and Nakhleh [141] (see also Yu, Warnow, and Nakhleh [155]) for

the MDC (Minimize Deep Coalescence) problem [84], an optimization prob-

lem for species tree estimation in the presence of incomplete lineage sort-

ing. In these papers, the optimal solution for MDC is characterized graph-

theoretically, as follows. First, every binary rooted tree on n taxa can be

represented by its set of clusters, where a cluster is the set of taxa that appear

below a node in the tree. Furthermore, two clusters are said to be compat-

ible if and only if they can co-exist in a tree (equivalently, two clusters are

compatible if and only if they are pairwise disjoint or one contains the other).

To solve MDC, each possible cluster is represented by a node in a graph, and

edges exist between pairs of nodes whose clusters are compatible. It is known

that whenever a set of clusters is given that are all pairwise compatible, then
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a rooted tree exists with precisely that set of clusters. Thus, a set of n − 1

pairwise compatible clusters, where n is the number of species, defines a binary

rooted species tree for that set of clusters.

Than and Nakhleh [141] showed that it is possible to weight the nodes

in the graph so that the total weight of any (n − 1)-clique is the MDC score

for the species tree defined by that clique, so that solving the MDC problem

is equivalent to finding a minimum weight n− 1 clique.

This problem formulation seems to be particularly expensive, since

MaxClique is NP-hard and the graph has an exponential number of vertices,

but Than and Nakhleh also showed that finding the minimum weight clique

of size n − 1 can be obtained in time that is polynomial in the number of

nodes in the graph, using dynamic programming (DP). They also presented a

“heuristic” version that only uses clusters that appear in the input gene trees,

and so runs in polynomial time. This heuristic version produces highly accu-

rate species trees [61, 141, 155], suggesting that restricting the search space to

clusters in the input trees is an effective strategy for MDC.

The approach we present here for optimizing MGD or MGDL builds on

these ideas. We also build a graph, but the nodes of our graph correspond to

subtree-bipartitions, a generalization of clusters that we defined in Chapter 2

(Sec. 2.5). We show how to define weights on vertices in the graph so that the

optimal solution to MGD is obtained by finding a minimum weight clique of

size n− 1, and we show how to find that clique using dynamic programming.

This technique directly allows us to solve the constrained MGD problem, in
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which we constrain the species tree solution to have its subtree-bipartitions

from a user-provided set; as with MDC, a DP algorithm solves this in poly-

nomial time. We then show how to extend this to the MGDL problem, using

the same graph but with different weights on the edges.

3.2 Basics

3.2.1 Prior terminology and theory

We begin by defining the MGD, MGDL, and MDC problems. The

input to each problem is the same: a set G = {t1, t2, . . . , tk} of rooted binary

gene trees, with leaves drawn from the set X of n taxa, and we allow the gene

trees to have multiple copies of the taxa, and even to miss some taxa. The

output of each problem is a species tree T on X minimizing
∑

i d(ti, T ), where

d(ti, T ) is defined differently for each problem.

The original definitions for these problems assumed that the gene tree

ti had at least one copy of each taxon, and so these definitions need to be

modified in order to handle incomplete gene trees, which have no copies of

some taxon.

Handling incomplete gene trees: Most of the literature has handled the

case of incomplete gene trees ti as follows. Let T ′ be the tree obtained by

restricting T to the leaf set of ti and then suppressing all non-root nodes of

degree two (i.e., T ′ is the homeomorphic subtree of T defined on the leafset

of ti). Then, T ′ is used instead of T when computing the MDC, MGD, or

MGDL score. We call this the restriction-based approach, and hence define

41



the restriction-based optimization problems MGDr, MGDLr, and MDCr.

Another approach is as follows. Given incomplete gene tree ti and

taxon set X, we say that gene tree t′i is a completion of ti if t
′
i is formed by

adding one copy of each missing taxon into ti. Given ti, the completion t′i

is sought that gives the best score with respect to the species tree T . We

call this the completion-based approach, and thus define the completion-based

optimization problems MGDc,MGDLc, and MDCc.

These two approaches are identical when gene trees are complete, but

produce different optimization problems and have different theory for incom-

plete gene trees. For example, Bayzid and Warnow [7] showed that the MDCr

and MDCc scores can be different, and that Phylonet-MDC produces MDCc

scores but that iGTP produces MGDr scores. Here we address the problem

of solving MGDr and MGDLr.

Optimal embeddings for MGDr,MDGLr, and MDCr.

The optimal embedding for each of the three criteria we discuss (MDCr,

MGDr, and MGDLr) is obtained using M-mapping (described in Chapter 2),

even when the gene tree gt is incomplete (lacks some taxon) or contains more

than one copy of some taxon [84, 141, 157, 158]. Therefore, since the same

reconciliation of a gene tree into a species tree optimizes all three criteria, we

may refer to an optimal reconciliation without specifying the criterion. Also,

for any given mapping, the calculation of the three scores can be performed

in polynomial time. Therefore, given a set of rooted gene trees and a rooted
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species tree, we can calculate the MGDr,MGDLr, and MDCr scores of the

species tree in polynomial time.

Given a rooted, binary gene tree gt and a rooted, binary species tree

ST such that L(gt) ⊆ L(ST ), the number of duplications (Dup(gt, ST )), and

the number of duplications and losses (Duploss(gt, ST )) needed to reconcile

gt with ST under the M mapping can be calculated using the restriction-based

analyses described in Chapter 2 (see Sec. 2.2.2.1).

3.3 New theorems

All results here are for rooted binary gene trees and species trees. We

assume that the species tree has exactly one copy of each taxon in X, but that

the gene trees can have any number (including zero) of each taxon in X. The

total number of taxa in X is n.

Observation 3.3.1. A set C of n−1 subtree bipartitions is compatible (mean-

ing all pairs of clusters are compatible) if and only if there exists a binary rooted

tree whose set of subtree bipartitions is exactly C.

Proof. Follows from the definition of subtree bipartition compatibility, and the

fact that a set of n−1 compatible clusters on n taxa defines a binary tree with

that set of clusters.

We use the fact that (n − 1)-cliques in the compatibility graph define

rooted binary trees to develop solutions for the MGDr and MGDLr problems.
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To do this, we define weights on nodes in the compatibility graph to charac-

terize the solutions to these problems as (n−1)-cliques with maximum weight

(for MGDr) or minimum weight (for MGDLr). As was done by Than and

Nakhleh [141] for the MDCc problem, we will present a dynamic programming

algorithm that finds an optimal (n − 1)-clique in time that is polynomial in

the number of nodes in the compatibility graph.

Lemma 3.3.2. Let gt be a rooted binary gene tree, ST a rooted binary species

tree, and u an internal node of gt. Suppose the subtree-bipartition for u is

dominated by the subtree-bipartition of v in ST . Then M(u) = v.

Proof. Since SBPgt(u) is dominated by SBPST (v), it follows that cgt(u) ⊆

cST (v). Let w = M(u). Hence, cST (v) ∩ cST (w) 6= ∅, and so v and w are

comparable (that is, either they are identical or one lies above the other in ST ).

Suppose by way of contradiction that v 6= w. Since cgt(u) ⊆ cST (v), it follows

that v must lie above w. But then cST (w) is a subset of the cluster of one of v’s

children, and so disjoint from the cluster for the other child. Hence, SBPgt(u)

is not dominated by SBPST (v), contradicting the initial assumption.

The following corollary is then obvious:

Corollary 3.3.3. Let gt be a rooted binary gene tree and ST a rooted binary

species tree. Then every subtree-bipartition of gt is dominated by at most one

subtree-bipartition in ST .
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Theorem 3.3.4. Let ST be a rooted, binary species tree, gt be a rooted binary

gene tree, and u an internal node in gt. Then the subtree-bipartition of u in

gt is dominated by a subtree-bipartition in ST if and only if u is a speciation

node.

Proof. Suppose u is a node in gt such that its subtree-bipartition is dominated

by a subtree bipartition in ST . Let l and r be the two children of u in gt.

Then SBPgt(u) = (c(l)|c(r)). Let v be a node in ST such that SBPgt(u) is

dominated by SBPST (v). Let l′ and r′ be the children of v. Then, without

loss of generality, c(l) ⊆ c(l′) and c(r) ⊆ c(r′). Therefore, under the MRCA

mapping, l and r will be mapped to a node in the subtree rooted at l′ and r′,

respectively. Moreover, by Lemma 3.3.2 M(u) = v. Therefore, M(l) 6= M(u),

and M(r) 6= M(u). Hence u is not a duplication node.

Next, assume that SBPgt(u) is not dominated by any subtree-bipartition

of ST , and let SBPST (M(u)) = (p1|p2). Then at least one of the following holds

(1) c(l) 6⊂ p1 and c(l) 6⊂ p2 or (2) c(r) 6⊂ p1 and c(r) 6⊂ p2. Without loss of

generality, suppose (1) holds. Then l cannot map to a node strictly below v.

However, it is also equally obvious that l cannot map to a node strictly above

v, since M(u) = v and l is a child of u. Hence, it must be that M(l) = u. But

in this case, u is a duplication node.

Comment: As a result, for a given species tree ST and gene tree gt, the vertices

of gt partition into duplication nodes, speciation nodes, and leaves, and this

partition can be computed using the domination relation.
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We now define some functions:

• dominated(bp, ST ) ∈ {0, 1}, with dominated(bp, ST ) = 1 if bp is domi-

nated by a subtree-bipartition in SBPST , and 0 otherwise.

• dom(bp, bp′) = 1 if bp is dominated by bp′ and 0 otherwise.

Corollary 3.3.5. Let gt be a rooted binary gene tree and ST a rooted binary

species tree. Then

Dup(gt, ST ) = |Vint(gt)| −
∑

u∈Vint(gt)

dominated(SBPgt(u), ST ).

Proof. Follows directly from Theorem 3.3.4.

3.4 Algorithms for MGDr on rooted binary gene trees

3.4.1 Graph-theoretic characterization of optimal solution to MGDr

Let G = {gt1, gt2, . . . , gtk} be a set of rooted, binary gene trees on the

set X of n taxa, and let ni be the number of leaves in tree gti. Note that ni

does not refer to |L(gti)|, since L(gti) is the set of taxa in X that appear at

least once in gti, whereas ni is the total number of leaves in gti. Since gti can

have multiple copies of a taxon, ni can be larger than |L(gti)|.

We construct the compatibility graph CG(G) with one vertex for each

possible subtree-bipartition defined on X, as described in the previous section.

We set the weight of each node v, denoted by Wdom(v), to be the total number
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of subtree-bipartitions of G that are dominated by v. That is,

Wdom(v) =
∑

gt∈G

|{bp : bp ∈ SBPgt and dom(bp, v) = 1}|.

We then find a clique C of size n− 1 so as to maximize the weight Wdom(C) of

the clique C, where Wdom(C) =
∑

v∈C Wdom(v).

Theorem 3.4.1. Let G = {gt1, gt2, . . . , gtk} be a set of binary, rooted gene

trees on the n taxa in X. Let C be an (n − 1)-clique in CG(G) maximizing

Wdom(C), and let ST be the species tree defined by the clique (so that SBPST

corresponds to C). Then ST is a binary species tree that optimizes MGDr

with respect to G.

Proof. Recall that any (n−1)-clique in the compatibility graph defines a rooted

binary tree on X. Let C be a clique of size n − 1 and ST be the tree defined

by C. By Corollary 3.3.3, every subtree-bipartition in gti can be dominated

by at most one node in C. Therefore, each node of gti contributes either 1

(if the node is dominated) or 0 (if the node is not dominated) to the weight

of C. Let wi be the amount contributed by gti to the weight of C. Thus,

wi is the number of speciation nodes in gti with respect to the species tree

corresponding to ST . By Corollary 3.3.3,
∑

v∈C Wdom(v) is equal to the total

number of speciation nodes. Then

∑

v∈C

Wdom(v) =

k
∑

i=1

wi = Wdom(C).

Furthermore, by Corollary 3.3.5 and because a rooted binary tree with ni

leaves has ni − 1 internal nodes, Dup(gti, ST ) = ni − 1− wi. Then,
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Dup(G, T ) =

k
∑

i=1

Dup(gti, ST ) =

k
∑

i=1

[ni − 1− wi] = N − k −Wdom(C),

where
∑k

i=1 ni = N . Therefore, the clique with maximum weight defines a

tree ST that minimizes Dup(G, ST ).

3.4.2 Dynamic programming algorithm for MGDr

The graph-theoretic characterization of the optimal solution for MGDr

given in the previous section suggests an algorithm for finding the optimal

solution, in which a max weight clique is sought in an exponentially large

graph. However, we will show that this optimal solution can be found in

time that is polynomial in the number of vertices in the graph, using dynamic

programming. In addition, we will show that a constrained version of the

MGDr problem, in which the allowed subtree-bipartitions are given as input,

can also be solved using the same basic dynamic programming algorithm.

Finally, when the set of allowed subtree-bipartitions comes from the input set

of gene trees, the result is an algorithm that runs in polynomial time.

In the constrained version, instead of constructing a compatibility graph

with one node for each subtree bipartition, the compatibility graph will only

have nodes for the (at most) N − k subtree bipartitions in the input gene

trees (where N =
∑k

i=1 ni). A clique of size n − 1 with the maximum weight

will define an optimal solution to the constrained version of MGDr where the
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species tree is only permitted to have subtree bipartitions from the input gene

trees.

Figure 3.1 illustrates how the constrained version works. Here, the

number of duplications associated with the species tree that corresponds to

the maximum weight clique is 3 ∗ (4− 1)− (2 + 2+ 3) = 2. It is easy to verify

that this solution minimizes the possible total, even if all subtree bipartitions

had been considered.

a cb d d bc aa cb d

ab|c

c|da|b

abc|d

ab|cd

bcd|a

cd|b

2 2

1

33

1

3

(a)

(b)

gt1 gt2 gt3

CG(G)

Figure 3.1: Illustration of the constrained version of our algorithm
for MGD. (a) Three gene trees gt1, gt2, and gt3, (b) the compatibility graph
CG(G). Cliques of size three correspond to a species tree on {a, b, c, d}. The
maximum weight clique is indicated by dark lines.
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Nodes in gt1 gt2 gt3
CG(G) a|b ab|c abc|d a|b c|d ab|cd c|d cd|b bcd|a
(a|b) 1 0 0 1 0 0 0 0 0

(c|d) 0 0 0 0 1 0 1 0 0

(ab|c) 0 1 0 0 0 0 0 0 0

(cd|b) 0 0 0 0 0 0 0 1 0

(ab|cd) 0 1 0 0 0 1 0 1 0

(abc|d) 0 0 1 0 1 0 1 0 0

(bcd|a) 1 0 0 1 0 0 0 0 1

Table 3.1: Demonstration of the weights of the nodes in the compat-
ibility graph illustrated in Fig. 3.1.

Let SBP be any set of subtree-bipartitions. We will define the con-

strained MGDr problem by limiting the solution space to those rooted, bi-

nary trees, all of whose subtree-bipartitions are in the set SBP. Thus, by

setting SBP to be the set of all possible subtree-bipartitions we obtain the

globally optimal solution, but setting SBP to be a proper subset of the set of

all subtree-bipartitions is also possible.

By Theorem 3.4.1, the binary species tree with a maximum total weight

(as defined by summing up the weights of its subtree bipartitions) has a mini-

mum number of duplications, because the duplication nodes are exactly those

nodes whose subtree-bipartitions are not dominated by any subtree-bipartition

in the species tree.

We now show how to calculate that optimal binary species tree directly,

using dynamic programming. The DP algorithm computes a rooted, binary

tree TA for every cluster A of at least two elements that appears in some gene

tree, such that TA maximizes the sum, over all gene trees t, of the number
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of subtree-bipartitions in t that are dominated by some subtree-bipartition in

TA. We denote this total number by value(A).

We preprocess the data as follows. First, we compute the cluster c(x)

(where c(x) = p∪ q and x = (p|q)) for every subtree-bipartition x ∈ SBP, and

order them based on size. We also calculate SBPG =
⋃k

i=1 SBPgti, i.e. the set

of all subtree bipartitions in all gene trees, and we set count(x) for x ∈ SBPG

to be the number of times x appears in any of the gene trees. Recall that

for a subtree bipartition x, we define Wdom(x) to be the number of subtree

bipartitions of the gene trees that are dominated by x. We define a partial

order for elements of SBP and SBPG based upon subtree-bipartition size. For

every ordered pair < x, y > such that x ∈ SBPG and y ∈ SBP, we determine

whether x is dominated by y; if y dominates x then Wdom(y) is incremented

by count(x). At the end of this step, Wdom(y) is calculated correctly for every

y ∈ SBP. All the preprocessing can be computed in O(n|SBP|2).

We compute value(A) in order, from the smallest cluster to the largest

cluster X. We set value(A) as follows. For any cluster A with two taxa, we

set value(A) = Wdom(a1|a2), where A = {a1, a2}. For a cluster A with more

than two taxa, we set value(A) as follows:

value(A) = max{value(A1) + value(A−A1) +Wdom(A1|A−A1) :

(A1|A− A1) ∈ SBP}

If there is no (A1|A−A1) ∈ SBP, we set its value(A) to −∞, signifying that

A cannot be further resolved. At the end of the algorithm, if SBP includes
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at least one clique of size n − 1, we have computed value(X) as well as suf-

ficient information to construct the species tree having the minimum number

of duplications. If subtree bipartitions in SBP are not sufficient for building a

fully resolved tree on X, then value(X) will be −∞, and our algorithm returns

FAIL.

Note that for a specific cluster A, value(A) can be computed inO(|SBP|)

time, since at worst we need to look at every subtree-bipartition in SBP. In

other words, we have proven the following:

Theorem 3.4.2. Let G be a set of rooted binary gene trees, SBP a set of

subtree-bipartitions. Then the DP algorithm finds the species tree ST mini-

mizing the total number of duplications subject to the constraint that SBPST ⊆

SBP in O(n|SBP|2) time. Therefore, if SBP is all possible subtree-bipartitions,

we have an exact but exponential time algorithm. However, if SBP contains

only those subtree-bipartitions from the input gene trees, then the DP algorithm

finds the optimal constrained species tree in O(d2n3k2) (since the number of

subtree-bipartitions |SBP| in G is O(dkn)), where n is the number of species,

k is the number of gene trees, and d the maximum number of times that any

taxon appears in any gene tree.

3.5 Algorithms for MGDLr

3.5.1 Graph-theoretic characterization

We begin with some additional theorems.
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Theorem 3.5.1. (From Than and Nakhleh [141] and Yu, Warnow, and Nakhleh

[155]) Let gt be a rooted binary gene tree and ST a species tree on the same

set of taxa. Let B be a cluster in ST and let e be the parent edge of B in ST .

Then kB(gt) is equal to the number of lineages on e in an optimal reconcil-

iation of gt within ST with respect to MDCc. Therefore, MDCc(gt, ST ) =
∑

B(kB(gt)− 1), where B ranges over the clusters of ST .

Theorem 3.5.2. Let gt be a rooted binary gene tree and ST a species tree

on the same set of leaves. Then MDCr(gt, ST ) =
∑

B(kB(gt)− 1), where B

ranges over the clusters of ST (gt).

Proof. By definition, MDCr(gt, ST ) = MDCc(gt, ST (gt)). However, gt and

ST (gt) have the same set of taxa. Therefore, by Theorem 3.5.1,

MDCc(gt, ST (gt)) =
∑

B

(kB(gt)− 1),

as B ranges over the clusters of ST (gt).

Theorem 3.5.3. (From Zhang [158]) Let gt be a rooted binary gene tree and

ST a rooted binary species tree. Then, under the restriction-based analysis,

Duploss(gt, ST ) = MDCr(gt, ST )+3∗Dup(gt, ST )+|V (gt)|−|V (RST (L(gt)))|.

Let v be a vertex associated with the subtree-bipartition (p|q), and let

B = p ∪ q be the cluster associated with v. Define

Wxl(v, gt) =

{

0 if p∩L(gt) = ∅ or q∩L(gt) = ∅,
kB(gt)− 1 otherwise.

(3.1)
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We then set Wxl(v) =
∑k

i=1Wxl(v, gti). Then, for any species tree ST and set

G of gene trees,

MDCr(G, ST ) =
k

∑

i=1

MDCr(gti, ST ) =
∑

v∈C

Wxl(v) (3.2)

where C is the clique in CG(G) that corresponds to ST .

Theorem 3.5.4. Let G = {gt1, gt2, . . . , gtk} be a set of binary rooted gene

trees on set X of n species, and let CG(G) be the compatibility graph with vertex

weights defined by WMGDL(v) = Wxl(v)−3Wdom(v). The set of bipartitions in

an (n − 1)-clique of minimum weight in CG(G) defines a binary species tree

ST that optimizes MGDLr.

Proof. Let C be a clique of size n−1 and ST be the rooted binary tree defined

by the subtree-bipartitions represented by the nodes in C. Let SBPdom(gt, ST )

be the set of subtree-bipartitions in gt that are dominated by a subtree-

bipartition in ST , i.e.,

SBPdom(gt, ST ) = {bp : bp ∈ SBPgt and dominated(bp, ST ) = 1}.

Note that |SBPdom(gt, ST )| is the number of speciation nodes in gt with re-

spect to ST . Therefore, the total number of speciation nodes in G is

k
∑

i=1

|SBPdom(gti, ST )| =
∑

v∈Vint(ST )

Wdom(v).
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Let N =
∑k

i=1 ni. Then,

Duploss(G, ST ) =

k
∑

i=1

Duploss(gti, ST )

=

k
∑

i=1

[MDCr(gti, ST ) + 3 ∗Dup(gti, ST )

−(|V (gti)| − |V (RST (L(gti)))|)] (by Theorem 3.5.3)

=
k

∑

i=1

[MDCr(gti, ST ) + 3 ∗Dup(gti, ST )]

−
k

∑

i=1

(|V (gti)| − |V (RST (L(gti)))|)

=

k
∑

i=1

[MDCr(gti, ST ) + 3 ∗ ((ni − 1)− |SBPdom(gti, ST )|)]

−
k

∑

i=1

(|V (gti)| − |V (RST (L(gti)))|) (by Corollary 3.3.5)

=
∑

v∈C

Wxl(v) +
k

∑

i=1

3(ni − 1)− 3
∑

v∈C

Wdom(v)−
k

∑

i=1

(2ni − 1)

+
k

∑

i=1

|V (RST (L(gti)))| (since |V (gti)| = 2ni − 1)

=
∑

v∈C

(Wxl(v)− 3Wdom(v)) + 3

k
∑

i=1

ni − 3k − 2

k
∑

i=1

ni + k

+

k
∑

i=1

|V (RST (L(gti)))|

=
∑

v∈C

WMGDL(v) +

k
∑

i=1

ni − 2k +

k
∑

i=1

|V (RST (L(gti)))|

= WMGDL(C) +N − 2k +

k
∑

i=1

|V (RST (L(gti)))|

Note that |V (RST (L(gti)))| does not depend on ST . Therefore, the clique C
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with minimum weight defines a tree ST that minimizes Duploss(G, ST ).

3.5.2 Dynamic programming approach for MGDLr

We now show how to use dynamic programming to find the optimal

solution for MGDLr without having to explicitly search for the optimal clique.

As we did for MGDr, we generalize the problem to allow the user to provide

a set SBP of subtree-bipartitions, and the solution space is restricted to those

rooted, binary trees, all of whose subtree-bipartitions are in the set SBP.

We compute value(A) for all clusters A with at least two species as

follows. If |A| = 2, we set value(A) = W (a1|a2), where A = {a1, a2}. For set

A with more than two taxa, we set value(A) as follows:

value(A) = min{value(A1) + value(A− A1) +Wxl(A1|A− A1)−

3Wdom(A1|A− A1) : (A1|A− A1) ∈ SBP}.

The optimal number of duplications and losses is given by value(X) +

N − 2k +
∑k

i=1 |V (RST (L(gti))|, where N =
∑k

i=1 ni, and ni is the number

of leaves in gene tree gti. By backtracking, we can find the optimal set of

compatible clusters and hence can construct the optimal tree. We now have

the following theorem:

Theorem 3.5.5. Let G be a set of k rooted binary gene trees on the set X of n

taxa. Let SBP be an arbitrary set of subtree bipartitions on X. Then the DP

algorithm finds the species tree ST optimizing the restriction-based DUPLOSS
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problem, subject to the constraint that SBPST ⊆ SBP, in O(n|SBP|2) time.

Therefore, for the case where SBP is the set of subtree-bipartitions from the

k gene trees, the algorithm uses O(d2n3k2) time, where d is the maximum

number of times any taxon appears in any gene tree.

3.6 Conclusion

We have presented graph-theoretic characterizations of exact solutions

to the MGDr and MGDLr problems, and presented dynamic programming

algorithms for these problems. Furthermore, these results enable the user to

provide a set of subtree-bipartitions to define a constrained search for the

species tree, and thus make it possible to find optimal solutions subject to

these constraints in polynomial time. For the particular case where the set

of subtree-bipartitions is all subtree-bipartitions from the input gene trees,

these methods could be quite fast. Furthermore, for large enough numbers

of taxa and gene trees, these algorithms may present an advantage compared

to methods that are based upon local search techniques in which candidate

species trees are visited and scored with respect to the desired criterion, and

then the tree is topologically modified (for example by a TBR move) and

the new tree scored, etc. However, the relative advantages of this approach

compared to local search techniques still remains to be explored.

Certain theoretical questions are not addressed in this study. In par-

ticular, we have not addressed the case where the gene trees are unrooted. We

have also not addressed optimizing MGDc and MGDLc for sets of incomplete
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gene trees.

We have implemented our dynamic programming algorithm in a pub-

licly available software tool (http://www.cs.utexas.edu/users/phylo/software/

dynadup/).
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Chapter 4

Inferring Optimal Species Trees under Gene

Duplication and Loss: Beyond Rooted Gene

Trees

In this chapter we extend our algorithms for MGDr and MGDLr

(Bayzid et al. [6], discussed in Chapter 3) so that they can handle unrooted

gene trees when gene trees can have at most one copy per species. We extend

the concept of subtree-bipartition and domination (introduced in Chapter 3)

to unrooted gene trees, and show how to find the set of subtree-bipartitions

for an unrooted gene tree gt. We first show how to root an unrooted gene tree

gt with respect to a species tree ST so that the resulting rooted version gt∗ of

gt minimizes the duplication and duplication-loss costs over all possible rooted

versions of gt. We develop linear time algorithm to find this optimal rooting.

Finally, we modify the weight assignment for each vertex in the compatibility

graph (as defined in Chapter 3) so that our DP-based algorithm can solve

the MGD and MGDL problems for unrooted gene trees given the extended

definitions of subtree-bipartition and domination.

The results presented in this chapter are not published yet. Md. Shamsuzzoha Bayzid
designed the study, developed the algorithms, proved all the theoretical results, and wrote
the chapter with comments from Tandy Warnow.
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4.1 Introduction

One of the basic approaches to understanding differences between true

gene trees is duplication events [37, 43, 84, 107, 157]. Gene duplication is a po-

tential tool for constructing phylogenetic trees for snakes [127], vertebrates [108,

109], Drosophia [20], and plants [125]. In this context, a natural computational

problem is the Minimize Gene Duplications (MGD) problem, which seeks a

species tree minimizing the total number of duplications needed to explain

the observed gene trees. Related to MGD is the Minimize Gene Duplication

and Loss (MGDL) problem, which considers both duplications and losses in

scoring a tree.

We introduced exact algorithms for inferring species trees under the

MGD and MGDL criteria from a collection of rooted, binary gene trees [6]

(described in Chapter 3). Nevertheless, in phylogenetic analyses of biological

data sets, estimated gene trees may be unrooted. This is mostly because

because DNA mutation models are time reversible, and this makes the root of

the tree non-identifiable [25]. Unrooted gene trees are often converted to rooted

trees using an outgroup so that the root is necessarily between the outgroup

and the rest of the taxa in the tree, or introducing additional assumption of

the presence of molecular clock. However, finding an appropriate outgroup is

very difficult and pre-specified outgroup may result in biased placement of the

root [46, 112]. Therefore, in the absence of a molecular clock or appropriate

outgroup, rooting trees can be difficult [9, 56], and so it is desirable to develop

methods for estimating species trees from unrooted gene trees. In this way, the
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MGD (and MGDL) problem becomes one in which the input is a set of gene

trees that may not be rooted, and the objective is a rooted, binary species tree

that optimizes the MGD (and MGDL) criterion. We provide exact algorithms

and heuristics for inferring species trees for these cases.

4.2 Prior terminology and theory

4.3 MGDru and MGDLru

We formulate the minimize gene duplication (MGD) and minimize gene

duplication and loss (MGDL) problems for unrooted gene trees when the gene

trees can have at most one copy per species, and show how to solve them with

the dynamic programming based approach presented in [6] for rooted gene

trees. The input to each problem is the same: a set G = {gt1, gt2, . . . , gtk}

of rooted binary gene trees, with leaves drawn from the set X of n taxa, and

we only allow the gene trees to have exactly one copy of the taxa, or to miss

some taxa. MGD for unrooted case, which we call MGDru, can be defined as

follows. The input to MGDru is a set G = {gt1, gt2, . . . , gtk} of unrooted and

binary gene trees such that L(gti) ⊆ X, where i ∈ 1, 2, . . . , k, and at most one

copy per species is present in each of the gene trees. The output is a rooted

and binary species tree ST on X and set G∗ = {gt∗1, gt∗2, . . . , gt∗k}, where gt∗i is

a rooted version of gti, such that Dup(G∗, ST ) is minimized.

MGDLru is defined in a similar way, where the objective function to

minimize is Duploss(G∗, ST ). In Chapter 3, we proposed dynamic program-

ming (DP) based exact solutions for MGDr and MGDLr, when gene trees are

61



rooted, such that the DP algorithm finds the species tree ST minimizing the

total number of duplications (for MGD) or total number of duplication and

losses (for MGDL) subject to the constraint that SBPST ⊆ SBP in O(n|SBP|2)

time, where SBP is a set of subtree-bipartitions. For rooted gene trees, our

result was as follows.

Theorem 4.3.1. (From Bayzid et al. [6], described in Chapter 3) Let G be a

set of rooted binary gene trees, SBP a set of subtree-bipartitions. Then the DP

algorithm finds the species tree ST minimizing the total number of duplications

(for MGDr) or total number of duplications and losses (for MGDLr) subject

to the constraint that SBPST ⊆ SBP in O(n|SBP|2) time. Therefore, if SBP

is all possible subtree-bipartitions, we have an exact but exponential time algo-

rithm. However, if SBP contains only those subtree-bipartitions from the input

gene trees, then the DP algorithm finds the optimal constrained species tree in

O(d2n3k2) (since the number of subtree-bipartitions |SBP| in G is bounded by

O(dkn)), where n is the number of species, k is the number of gene trees, and

d the maximum number of times that any taxon appears in any gene tree.

In this chapter, we extend this result so that our algorithms can handle

unrooted gene trees. Therefore, we have the following result when gene trees

are unrooted and can have at most one copy of a particular gene per species.

Theorem 4.3.2. Let G be a set of unrooted binary gene trees with single copy

per species, SBP a set of subtree-bipartitions. Then the DP algorithm finds

the species tree ST minimizing the total number of duplications (or duplica-

tions and losses when solving MGDLru), with respect to the optimal rooting
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of each of the gene trees in G, subject to the constraint that SBPST ⊆ SBP

in O(n|SBP|2) time. Therefore, if SBP is all possible subtree-bipartitions,

we have an exact but exponential time algorithm. However, if SBP contains

only those subtree-bipartitions from the input gene trees, then the DP algo-

rithm finds the optimal constrained species tree in O(n3k2) (since the number

of subtree-bipartitions |SBP| in G is bounded by O(kn) as we will show in The-

orem 4.4.1 and Corollary 4.4.2), where n is the number of species and k is the

number of gene trees.

4.4 MGD and MGDL on unrooted, binary, and incom-
plete gene trees

We now extend our DP-based approach for MGDr and MGDLr to

MGDru and MGDLru. The optimal solution for MGDr is characterized

graph-theoretically as follows. First, every binary rooted tree on n taxa can

be represented by its set of subtree-bipartitions. To solve MGDr, each pos-

sible subtree-bipartition is represented by a node in a graph, and edges exist

between pairs of nodes whose subtree-bipartitions are compatible. It is proved

that whenever a set of subtree-bipartition is given that are all pairwise compat-

ible, then a rooted tree exists with precisely that set of subtree-bipartitions [6]

(see Observation 3.3.1 in Chapter 3). Thus, a set of n−1 pairwise compatible

subtree-bipartitions, where n is the number of species, defines a binary rooted

species tree for that set of subtree-bipartition.

Bayzid et al. [6] (described in Chapter 3) showed that it is possible to
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weight the nodes in the graph so that the total weight of any (n− 1)-clique is

the number of speciation nodes (in the input gene trees) for the species tree

defined by that clique, so that solving the MGDr problem is equivalent to

finding a maximum (maximizing speciation nodes minimizes the number of

duplication nodes) weight (n− 1)-clique.

This problem formulation seems to be particularly expensive, since

MaxClique is NP-hard and the graph has an exponential number of vertices,

but Bayzid et al. [6] (see Chapter 3) also showed that finding the minimum

weight clique of size n − 1 can be obtained in time that is polynomial in the

number of nodes in the graph, using dynamic programming (DP). We also pre-

sented a “heuristic” version that only uses subtree-bipartitions that appear in

the input gene trees, and so runs in polynomial time. We also showed how to

extend this to the MGDLr problem, using the same graph but with different

weights on the edges. We refer to Chapter 3 for details.

The approaches we present here for solving MGDru or MGDLru are

based on these ideas. We first show how to root an unrooted gene tree with

respect to a species tree in an optimal way under duplication and duplication

and loss criteria. Then we modify our weight assignment accordingly so that

the dynamic programming technique can still be applied to unrooted gene

trees.

Given a species tree and a set of unrooted gene trees, it is easy to

compute the optimal rooting of each gene tree with respect to the given species

tree, since there are only O(n) possible locations for the root in a gene tree
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with n leaves, and for each possible rooting we can compute the score of that

solution in O(n) time. Thus, we can compute the optimal rooting in O(n2)

time. Here we present a more efficient way of solving this problem by finding

the optimal rooting in O(n) time that saves a factor of n. Next, we will extend

our algorithms for MGDr and MGDLr to unrooted gene trees that are more

efficient than the algorithms presented in [50].

Extending the concept of subtree-bipartition The set of subtree-bipartitions

of a tree T depends on whether or not T is rooted. Each internal node of a

rooted tree T defines one subtree-bipartition. However, for an unrooted tree T ,

the set of subtree-bipartitions contains all the subtree-bipartitions for all pos-

sible rooted versions of T . That is, if T is an unrooted tree, SBPT = ∪iSBPTi
,

where Ti ranges over all possible rooted versions of T .

For any binary unrooted tree, three edges are incident on any internal

node u (see Fig 4.1(a)). The tree can be rooted at any of these three edges. Fig-

ures 4.1(b)–(d) demonstrate these rooted versions. Throughout this chapter,

we denote by A,B and C the three clusters associated with an internal node

u of an unrooted gene tree gt (see Figure 4.1(a)). Then, the set of all subtree-

bipartitions at an internal node u is {A|B, (A∪B)|C,A|C, (A∪C)|B,B|C, (B∪

C)|A}. Therefore, for an unrooted tree gt, SBPgt(u) is this set of six elements.

Among them, (A ∪ B)|C, (A ∪ C)|B, (B ∪ C)|A contains all the taxa. For

any node u (as shown in Fig 4.1(a)), we define SBP
∗
gt(u) = {A|B,B|C,A|C}.

Hence, SBP
∗
gt(u) ( SBPgt(u). For an unrooted gene tree gt, we define SBPgt
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as follows.

SBPgt = ∪u∈Vint(gt)SBPgt(u), (4.1)

where SBPgt(u) is the set of six subtree-bipartitions as described above. There-

fore,

Theorem 4.4.1. Let gt be an unrooted gene tree with n leaves. Then, |SBPgt| =

5n− 9.

Proof. Note that for any two internal nodes u1 and u2, SBP
∗
gt(u1)∩SBP

∗
gt(u2) =

φ. For any internal node u, the three subtree-bipartitions in SBPgt(u), that

contain all the taxa are the splits defined by the three edges incident on u.

Therefore, since an unrooted tree with n taxa contains n − 2 internal nodes

and 2n− 3 edges, |SBPgt| = 3(n− 2) + 2n− 3 = 5n− 9.

Corollary 4.4.2. For a set G = {gt1, gt2, . . . , gtk} of unrooted gene trees,

where L(gti) ⊆ X and |X| = n,

|SBPG| =
k

∑

i=1

|SBPgti | = O(kn).

Proof. Follows immediately from Theorem 4.4.1.

We now extend the notion of domination to unrooted gene trees. We

say an internal node u of an unrooted gene tree gt is a dominated node, with
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respect to a species tree T , if a subtree-bipartition in SBPgt(u) is dominated

by a subtree-bipartition in T .

A

B

C
u

(a)

BA

(b)

CA

(c)

CB

(d)

C B A

Figure 4.1: Illustration of different rooted versions of an unrooted
tree around a particular internal node. (a) An unrooted gene tree gt,
(b)–(d) three possible rooted versions of gt on the three edges incident on u.

4.4.1 Optimal rooting

We now show how to root an unrooted, binary gene tree gt with at

most single copy per species with respect to a rooted binary species tree ST

to minimize the number of duplications. For clarity, we will assume that

L(gt) = L(ST ). In general, if L(gt) ⊂ L(ST ) then we can simply set ST to

be ST |L(gt).

Lemma 4.4.3. Let gt be a binary unrooted gene tree and ST be a binary
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rooted species tree, both on the same set of taxa X. If gt does not contain the

root subtree-bipartition of ST (SBPST (root(ST ))), then for any node u in gt,

at most one of its subtree-bipartitions can be dominated.

Proof. Let A,B and C be the clusters associated with u. Note that A|BC,

AB|C, and AC|B contain all the taxa. Therefore, only the root subtree-

bipartition of ST can dominate them. Moreover, it is quite easy to see that

the root subtree-bipartition of ST cannot dominate more than one of these

three subtree-bipartition. Thus, if the root subtree-bipartition of ST dominate

any of these three subtree-bipartition, then the dominated subtree-bipartition

is exactly the same subtree-bipartition defined at the root of ST . Therefore,

if gt does not contain SBPST (root(ST )), then none of these three subtree-

bipartitions can be dominated. Now consider the other three possible subtree-

bipartitions (A|B, B|C, and A|C). We assume for a contradiction that two

of them are dominated. Without loss of generality, assume that both A|B

and B|C are dominated. Then the only subtree-bipartition that can dominate

these two is AC|B which contains all the taxa and must be SBPST (root(ST )),

contradicting our hypothesis that gt does not have the root subtree-bipartition

of ST .

Lemma 4.4.4. Let gt be a binary unrooted gene tree and ST be a binary

rooted species tree, both on the same set of taxa X. Assume that gt con-

tains the root subtree-bipartition of ST (SBPST (root(ST ))), and let e ∈ E(gt)

be the edge that defines that subtree-bipartition. Then, for an internal ver-

tex u which is incident on e, two of the subtree-bipartitions in SBP
∗
gt(u) are
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dominated by SBPST (root(ST )). Also, the bipartition defined by e will be

dominated. Therefore, three subtree-bipartitions in SBPgt(u) are dominated

by SBPST (root(ST )). For all other internal nodes v, none of its subtree-

bipartitions is dominated by SBPST (root(ST )).

Proof. Let SBPST (root(ST )) = X|Y . Then gt is as illustrated in Fig 4.2(a).

Let u1 and u2 be the two vertices incident on e. First, we prove that two

subtree-bipartitions from each of the two sets SBP
∗
gt(u1) and SBP

∗
gt(u2) are

dominated by X|Y . We assume that X = X1 ∪ X2 and Y = Y1 ∪ Y2. Note

that since u1 and u2 are internal node, X1, X2, Y1, Y2 are non-empty. Here,

SBP
∗
gt(u1) = {X1|Y,X2|Y,X1|Y }; and SBP

∗
gt(u2) = {Y1|X, Y2|X, Y1|Y2}. It is

easy to see that X|Y dominates X1|Y,X2|Y ∈ SBP
∗
gt(u1), and it also dom-

inates Y1|X, Y2|X ∈ SBP
∗
gt(u2). Moreover, X|Y ∈ SBPgt(u1), and X|Y ∈

SBPgt(u2).

Next, we prove that for an internal node v (other than u1 and u2),

no subtree-bipartition in SBPgt(v) is dominated by X|Y . First, note that

X|Y 6∈ SBPgt(v). Thus, the subtree-bipartitions of SBPgt(v) that contain

all the taxa cannot be dominated by X|Y . Next, we prove that no subtree-

bipartition in SBP
∗
gt(v) is dominated by X|Y . The reason is, for any internal

node v (other than u1 and u2), if v is inside the subtree induced by X , then

for any subtree-bipartition P |Q ∈ SBP
∗
gt(v), P ∩X 6= φ,Q ∩X 6= φ. So they

cannot be dominated by X|Y . Again, if v is inside the subtree induced by

Y , then for any subtree-bipartition P |Q ⊂ SBP
∗
gt(v), P ∩ Y 6= φ,Q ∩ Y 6= φ.

Hence they cannot be dominated by X|Y . For an example, in Fig 4.2(b),

69



SBP
∗
gt(v) = {Y1|(Y3 ∪ X), Y2|(Y3 ∪ X), Y1|Y2}. It is easy to see that none of

them is dominated by X|Y . It is also easy to see that X|Y 6∈ SBPgt(v).
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(b)(a)

Y1

Y2

Y3

Y

Y

XX
u1 u2

v

Figure 4.2: (a) An unrooted gene tree containing the root subtree-bipartition
of ST (SBPST (root(ST )) = X|Y ), (b) an internal node inside the subtree
induced by Y .

Lemma 4.4.5. Suppose gt does not contain the root subtree-bipartition of

ST (SBPST (root(ST )) = X|Y ). Let DS be the set of dominated subtree-

bipartitions in SBPgt with respect to ST . Let gtA|B be the restriction of gt into

A|B, which means gtA|B is the subtree of gt induced by the cluster A∪B. Then

the tree gt∗ produced by rooting gt on an edge e ∈ (E(gt)−∪X|Y ∈DSE(gtX|Y ))

satisfies Dup(gt∗, ST ) ≤ Dup(gt′, ST ), where gt′ is a rooted version of gt.

Proof. Let an internal node u in gt be dominated by ST . By Lemma 4.4.3, at

most one subtree-bipartition in SBPgt(u), u ∈ V (gt) can be dominated. Then,

without loss of generality, let the subtree-bipartition A|B at u be dominated

by ST (see Figure 4.1(a)). Let gtA|B be the restriction of gt into A|B. Then
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the tree gt′, rooted on an edge e ∈ E(gt)−E(gtA|B), will contain the subtree-

bipartition A|B. Let DS be the set of dominated subtree-bipartitions in SBPgt

by ST . Then the tree gt∗ rooted on an edge e ∈ (E(gt)− ∪X|Y ∈DSE(gtX|Y ))

will contain all the subtree-bipartitions in DS. Now we show that there is

at least one edge in E(gt) − ∪X|Y ∈DSE(gtX|Y ). Note that the root subtree-

bipartition of ST contains all the taxa and hence the subtree induced by

this subtree-bipartition contains all the edges in gt. Since gt does not have

the root subtree-bipartition, DS does not contain any subtree-bipartition that

contains all the taxa. Pick a subtree-bipartition S1 = X|Y ∈ DS which is

maximal (i.e., it does not contain any subtree-bipartition in DS). We will

show that the parent edge e of S1 is not inside any subtree of gt induced by

a subtree-bipartition in DS. Suppose, for the way of contradiction, e is inside

the subtree induced by a subtree-bipartition S2 = P |Q ∈ DS. Since S1 is

maximal, it follows that S1 6⊆ S2. Moreover, since S2 contains e, it follows

that S2 6⊆ S1. Thus, either S1 and S2 are disjoint, or one of the following two

holds.

• Either P = X , or (P = Y and Q 6∈ X ∪ Y ).

• Either Q = X , or (Q = Y and P 6∈ X ∪ Y ).

That means, S1 ∩ S2 = ∅, or S1 ∩ S2 = SS where SS = X , or SS = Y (SS

cannot contain taxa from both X and Y , otherwise S2 cannot be dominated

by ST ). For the former case, where S1 and S2 are disjoint, S2 cannot contain
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e. For the later case, without loss of generality, we assume that P = Y . Then,

X|Y ∪Q ∈ DS which contradicts our assumption that S1 is maximal.

We now show that for any rooted version gt′ of gt, Dup(gt∗, ST ) ≤

Dup(gt′, ST ). Note that DS contains all the dominated subtree-bipartitions

in all possible rooted versions of gt. Then clearly, |DS| ≥ |DS
′|, where DS

′ is

the set of dominated subtree-bipartitions in any rooted version gt′ of gt. Since

gt∗ has all the subtree-bipartitions in DS,

Dup(gt∗, ST ) = n− 1− |DS|

≤ n− 1− |DS′|

= Dup(gt′, ST ).

Lemma 4.4.6. Suppose gt contains the root subtree-bipartition of ST

(SBPST (root(ST ))), and let e∗ ∈ E(gt) be the edge that defines that subtree-

bipartition. Let gt∗ be the rooted tree obtained by rooting gt on e∗. Then for a

rooted version gt′ of gt, Dup(gt∗, ST ) ≤ Dup(gt′, ST ).

Proof. Let SBPST (root(ST )) = X|Y . Then SBPgt∗(root(gt
∗)) = X|Y , and

hence root(gt∗) is a speciation node. Let gtX and gtY be the subtrees of gt

induced by X and Y , respectively. Then clearly, e∗ = E(gt)−E(gtX)−E(gtY ).

Let gt′ be a rooted version of gt produced by rooting gt on an edge other

than e∗. Then SBPgt′(root(gt
′)) 6= SBPST (root(ST )). Hence root(gt′) is a

duplication node (since root(gt′) can only be dominated by root(ST )).
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Note that gtX or gtY must have at least one edge in it, otherwise there

are only two taxa in the gene tree gt and only one possible rooting and hence

gt∗ = gt′. Without loss of generality, we assume that gt′ is rooted on the

edge e ∈ E(gtX). Then it is easy to see that all the subtree-bipartitions in

gt′Y are also present in gt∗Y . All other subtree-bipartitions in gt∗ (other than

those in gt′Y and SBPgt′(root(gt
′)) are of the form P |Q such that case 1 )

P,Q ∈ X , or case 2 ) either Y ⊆ P or Y ⊆ Q (without loss of generality we

assume that Y ⊆ P ). It is easy to see that all the subtree-bipartitions satis-

fying case 1 are also present in gt∗. We now consider the subtree-bipartitions

P |Q satisfying case 2. Notice that only SBPST (root(ST )) can dominate such

subtree-bipartitions, since Y ⊆ P . Let u be the internal node in gtX which is

incident on e∗. By Lemma 4.4.4, SBPgt′(u) is dominated by SBPST (root(ST )),

and any subtree-bipartition SBPgt′(u1) satisfying case 2, where u1 6= u, is not

dominated. For an example, let X = {u} ∪X1 ∪X2 as illustrated in Fig. 4.3.

If gt′ is obtained by rooting on e ∈ E(gt{u}∪X1
), then SBP gt′(u) = X2|Y is

dominated by root(ST ). If gt′ is obtained by rooting on e ∈ E(gt{u}∪X2
),

then SBP gt′(u) = X1|Y is dominated by root(ST ). Therefore, regardless of

whether u is a dominated node in gt∗, the number of dominated nodes in gt∗

is greater than or equal to the number of dominated nodes in gt′. Therefore,

Dup(gt∗, ST ) ≤ Dup(gt′, ST ).

Consider the scenario described in Lemma 4.4.6. Clearly e∗ 6∈ (E(gt)−

∪X|Y ∈DS′E(gtX|Y )), where DS
′ = DS− SBPST (root(ST )) and DS is the set of
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dominated subtree-bipartitions in gt with respect to ST . Now the following

theorem directly follows.

Theorem 4.4.7. Let gt be an unrooted, binary gene tree and ST be a rooted,

binary species tree. Let DS be the set of dominated subtree-bipartitions in

SBPgt with respect to ST , and DS
′ = DS − SBPST (root(ST )). Note that

DS = DS
′ when gt does not contain the root subtree-bipartition of ST . The

tree gt∗, produced by rooting gt on an edge e ∈ (E(gt)−∪X|Y ∈DS′E(gtX|Y )), is

the optimal rooted version of gt under the MGD criterion (i.e., Dup(gt∗, ST ) ≤

Dup(gt′, ST ), where gt′ is any rooted version of gt).

u

(b)(a)

X Y

Y

X1

X2

e∗

Figure 4.3: (a) An unrooted gene tree gt and (b) a rooted tree ST . Here
X = X1 ∪X2 ∪ {u}.

4.4.2 Solving MGDru

Given the extended definition of domination and Theorem 4.4.7, we can

apply our clique based DP algorithms [6] (described in Chapter 3) to unrooted

gene trees by modifying the weight calculation of a subtree-bipartition appro-
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priately. For rooted gene trees, the weight of a subtree-bipartition v = X|Y is

defined as follows [6] (described in Chapter 3).

Wdom(v) =
∑

gt∈G

|{bp : bp ∈ SBPgt and dom(bp, v) = 1}|

By definition, the set SBPgt of subtree bipartitions in an unrooted tree

gt contains the subtree bipartitions present in all possible rooted versions of

gt. In MGDru, we count the number of duplications required to reconcile the

optimal rooted version gt∗ of gt. Therefore, we need to modify Wdom(v) as

it counts dominated subtrees in all possible rooted versions. By Lemma 4.4.3

and Lemma 4.4.4, a subtree-bipartition v = X|Y that does not contain all the

taxa of a gene tree gt cannot dominate more than one subtree-bipartition of

an internal node in gt. According to Lemma 4.4.4, if the subtree-bipartition v

contains all the taxa in gt and gt contains v, then v dominates three subtree-

bipartitions of SBPgt(u), where u is an internal node incident on the edge that

defines v in gt. Using these results, we now modify Wdom(v) for unrooted gene

trees as follows.

For a subtree-bipartition v = X|Y , let Ngt(v) denote the number of

gene trees containing this subtree-bipartition v, and with L(gt) = X ∪ Y .

Note that, the later condition (L(gt) = X ∪ Y ) is due to the reason that gene

trees may be incomplete (L(gt) ⊂ L(ST )). The corrected weight W ∗
dom(v) for

unrooted gene trees can be defined as follows.
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W ∗
dom(v) =


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
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



Wdom(v) if both X and Y
contain exactly
one taxon,

Wdom(v)− 4Ngt(v) if both X and
Y contain more
than one taxon,

Wdom(v)− 2Ngt(v) if either X or
Y contains more
than one taxon.

(4.2)

We now discuss these weight corrections with a simple example. Con-

sider the unrooted tree gt shown in Fig. 4.4 (a), and the rooted species tree

ST in Fig. 4.4 (b). Here SBPgt = {a|b, b|c, a|c, ab|c, bc|a, ac|b}, and SBPST =

{a|b, ab|c}. For each subtree-bipartition v = X|Y ∈ SBPST , we need to find

the number of dominated subtree-bipartitions in SBPgt. For v = a|b, there is

only one subtree-bipartition (a|b ∈ SBPgt ) which is dominated by v. There-

fore, Wdom(a|b) = 1. Since bothX = {a}, and Y = {b} contain only one taxon,

W ∗
dom(a|b) = Wdom(a|b) = 1. For v = ab|c, X = {a, b} and Y = {c}; and hence

Ngt(ab|c) = 1 since gt contains this subtree-bipartition and L(gt) = {a, b, c}.

It is easy to see that three subtree-bipartitions ({a|c, b|c, ab|c}) in SBPgt are

dominated by ab|c. Therefore, Wdom(ab|c) = 3. However, a rooted version of

gt cannot contain all these three subtree-bipartitions. The optimal rooted ver-

sion gt∗ = ((a, b), c) contains ab|c but does not contain a|c and b|c. Therefore,

according to Eqn. 4.2, W ∗
dom(ab|c) = Wdom(ab|c) − 2 ∗ Ngt(ab|c) = 3 − 2 = 1.

Similarly, when bothX and Y contain more than one taxon, we need to correct

Wdom(v) by subtracting 4 ∗Ngt(v) as defined in Eqn. 4.2.

76



a b c

(b)(a)

c

a

b

Figure 4.4: (a) An unrooted gene tree gt, (b) a rooted binary species tree ST .

Therefore, we can compute the score of any candidate species tree with

respect to a set of unrooted gene trees as follows, and thus our DP technique

can still be applied to unrooted gene trees.

Theorem 4.4.8. Let ST be a species tree and G = {gt1, gt2, . . . , gtk} be a set

of unrooted, binary gene trees with at most single copy per species. Let G∗ =

{gt∗1, gt∗2, . . . , gt∗k} be a set of binary gene trees such that gt∗i is an optimally

rooted version of gti that minimizes the number of duplications with respect to

ST . Then Dup(G∗, ST ) =
∑k

i=1 |Vint(gt
∗
i )|−

∑

v∈SBPST
W ∗

dom(v). Furthermore,

the optimal G∗ can be computed in O(nk) time.

Therefore, we have the following:

Theorem 4.4.9. Let G = {gt1, gt2, . . . , gtk} be a set of unrooted binary gene

trees on the n taxa in X (with at most single copy per species). Let CG(G) be

the compatibility graph with vertex weights defined by W ∗
dom(v). Let C be an

(n − 1)-clique in CG(G) maximizing W ∗
dom(C), and let ST be the species tree

defined by the clique (so that SBPST corresponds to C). Then ST is a binary

species tree that optimizes MGDru with respect to G.
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Proof. The proof is similar to that of Theorem 3.4.1 in Chapter 3.

For any set SBP of subtree-bipartition, we can define the constrained

version of MGDr by limiting the solution space such that SBP(ST ) ∈ SBP

(in a similar way which we discussed in Chapter 3). We can obtain the exact

solution by setting SBP to be the set of all possible subtree-bipartitions.

4.4.3 Extension to MGDLru

We now describe MGDLru problem. The input to this problem is a set

G = {gt1, gt2, . . . , gtk} of unrooted and binary gene trees such that L(gti) ⊆ X,

where i ∈ 1, 2, . . . , k, and at most one copy per species is present in each of

the gene trees. MGDLru problem asks to find a rooted and binary species

tree ST on X and set G∗ = {gt∗1, gt∗2, . . . , gt∗k}, where gt∗i is a rooted version of

gti such that Duploss(G∗, ST ) is minimized.

Yu et al. [155] describes the optimal rooting of an unrooted gene tree

gt with respect to a binary rooted species tree ST under the minimize deep

coalescence (MDC) criterion. Let C(gt) and C(ST ) be the set of all clusters

in gt and ST , respectively. We say that a cluster A in gt is ST -maximal if

there is a cluster B ∈ C(ST ) such that B 6= X and A is B-maximal. The

optimal rooting under the MDC criterion can be obtained as described in the

following theorem [155].

Theorem 4.4.10. (From [155]) Let gt be an unrooted gene tree on X and ST

be a species tree on X. Let C∗ be the set of ST -maximal clusters in gt. Let
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e be any edge of gt such that ∀Y ∈ C∗, e 6∈ E(gtY ) (i.e., e is not inside any

subtree of gt induced by one of the clusters in C∗). Then the tree gt∗ produced

by rooting gt on edge e is the optimal rooted version of gt under MDC criteria.

Furthermore, there is at least one such edge in gt.

We now prove the following theorem.

Theorem 4.4.11. Let gt be an unrooted binary gene tree (single copy) and ST

a species tree both on X. There is an edge e such that the tree gt∗, produced by

rooting gt on edge e, is the optimal rooted version of gt under both the MDCr

and MGDr criteria.

Proof. Let C∗ be the set of ST -maximal clusters in gt and DS be the set of

dominated subtree-bipartitions in DS. Let DS
′ = DS − SBPST (root(ST )).

Let e be any edge of gt such that ∀Y ∈ C∗, e 6∈ E(gty) (i.e., e is not inside

any subtree of gt induced by one of the clusters in C∗). According to The-

orem 4.4.10, the tree gt∗ produced by rooting gt on edge e is optimal under

the MDC criterion. We will argue that gt∗ is also an optimal rooted version

of gt under the MGD criterion. Let S1 be a subtree-bipartition in ST and

a subtree-bipartition S2 in gt is the maximal subtree-bipartition in gt which

is dominated by S1. We denote by Cluster(S) the cluster associated with a

subtree bipartition S (i.e., Cluster(S) is the set of leaves in S). Then, from

the definition of domination, it is clear that Cluster(S2) ⊆ Cluster(S1). It

follows that Cluster(S2) ⊆ cl∗, where cl∗ ∈ C∗. Therefore, for any subtree-

bipartition S ∈ DS
′, Cluster(S) ⊆ cl∗ where cl∗ is a cluster in C∗. Hence,
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e ∈ E(gt)− ∪X|Y ∈DS′E(gtX|Y ). Therefore, according to Theorem 4.4.7, gt∗ is

an optimal rooted version of gt under the MGD criterion. Furthermore, by

Theorem 4.4.10, there is at least one such edge in gt.

Theorem 4.4.12. (From Zhang [158]) Let gt be a rooted binary gene tree and

ST a rooted binary species tree such that L(gt) ⊆ L(ST ). Then, under the

restriction-based analysis, Duploss(gt, ST ) = MDC(gt, ST )+3∗Dup(gt, ST ).

From Theorem 4.4.11 and Theorem 4.4.12, we now have the following

theorem.

Theorem 4.4.13. Let gt be an unrooted gene tree and ST a species tree both

on X. There is an edge e such that the tree gt∗, produced by rooting gt on

edge e, is the optimal rooted version of gt under all three optimization criteria

(MDCr, MGDr and MGDLr).

4.4.4 Solving MGDLru

We have already shown how to solve MGDru. Yu et al. showed how to

solve MDC for unrooted gene trees [155] and showed that the score function

remains unchanged when we consider unrooted gene trees instead of rooted

(see corollary 2 of [155]). As a result we can use all the techniques used for

MGDLr (see Chapter 3) with necessary modifications in the weight calculation

as described in Sec. 4.4.2.
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Theorem 4.4.14. Let G = {gt1, gt2, . . . , gtk} be a set of binary rooted gene

trees on set X of n species, and let CG(G) be the compatibility graph with vertex

weights defined by W ∗
MGDL(v) = Wxl(v)−3W ∗

dom(v), where Wxl(v) is as defined

in [6], and described in Section 3.5 in Chapter 3. The set of bipartitions in an

(n − 1)-clique of minimum weight in CG(G) defines a binary species tree ST

that optimizes MGDLru.

Proof. The proof is similar to that of Theorem 3.5.4 in Chapter 3.

Advantage over Hallett and Lagergren [50] Hallett and Lagergren [50]

solved MGD and MGDL for unrooted gene trees (allowing the gene trees to

have multiple copies of the taxa, and even to miss some taxa) using a similar

DP based approach. They choose a set P of partitions (similar to our concept

of subtree-bipartition) from input gene trees (see [50] for details), and then

find the optimal species tree for MGD and MGDL subject to the constraint

that PS ⊆ P, where PS is the set of partitions in S. The running time of

their algorithm is O(p2ral3), where p = |P|, l is the size of the leafset, r is the

number of gene trees and a is the time needed to access a set A ∈ P (Theorem

1 in [50]). If P contains only the partitions from k input gene trees on n taxa

(identical to the constrained version we consider), their running time becomes

O(n5k3a), since p = O(nk) and r = k. But, as we showed in Theorem 4.3.2,

running time of our method is O(n3k2a) saving a factor of O(n2k).
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4.5 Conclusion

Phylogenetic methods for estimating species trees from a collection of

gene trees often assume that the gene trees are rooted. However, estimated

gene trees are often unrooted and rooting the gene trees correctly is very

difficult. Estimating species tree by summarizing gene trees considering the

reasons for gene tree discordance is a difficult task. Absence of rooted gene

trees makes the inference of rooted binary species tree even more complicated.

In this chapter we proposed exact and heuristic algorithms for solving MGD

and MGDL problems for the cases where gene trees can be unrooted. We

showed how to root a gene tree with respect to a species tree by minimizing

gene duplication and loss. Next we showed how to estimate a binary, rooted

species tree from a collection of gene trees under MGD and MGDL criteria.

We proposed exact solutions as well as constrained versions where the solution

space is defined by the input gene trees.
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Chapter 5

Gene Tree Parsimony for Incomplete Gene

Trees under Gene Duplication and Loss

Species tree estimation from gene trees can be complicated by gene

duplication and loss, and gene tree parsimony (GTP) is one approach for es-

timating species trees from multiple gene trees. In its standard formulation,

the objective is to find a species tree that minimizes the total number of gene

duplications and losses with respect to the input set of gene trees. Although

much is known about GTP, little is known about how to treat inputs con-

taining some incomplete gene trees (i.e., gene trees lacking one or more of

the species). In this chapter, we present new theory for GTP when incom-

pleteness results from gene birth and death (i.e., true biological loss), and a

dynamic programming algorithm that can be used for an exact solution for

small numbers of taxa, or as a heuristic for larger numbers of taxa. We also

prove that the “standard” calculations for duplications and losses exactly solve

GTP when incompleteness results from taxon sampling, although they can be

incorrect when incompleteness results from true biological loss.

The results presented in this chapter are not published yet. Md. Shamsuzzoha Bayzid
designed the study, developed the algorithms and proved all the theoretical results. Bayzid
and Tandy Warnow wrote this chapter. Siavash Mirarab implemented the algorithms as a
software tool.
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5.1 Introduction

The estimation of species trees is often performed by estimating mul-

tiple sequence alignments for some collection of genes, concatenating these

alignments into one super-matrix, and then estimating a tree (often using

maximum likelihood or a Bayesian technique) on the resultant super-matrix.

However, this approach cannot be used when the species’ genomes contain

multiple copies of some gene, which can result from gene duplication. Since

gene duplication and loss is a common phenomenon, the estimation of species

trees requires a different type of approach in this case.

Gene Tree Parsimony (GTP) is an optimization problem for estimating

species trees from multiple gene trees. In its most typical formulations, only

gene duplication and loss are considered, so that GTP depends upon two

parameters: cd (the cost for a duplication) and cl (the cost for a loss). The

two most popular versions of GTP are MGD (minimize gene duplication), for

which cd = 1 and cl = 0, and MGDL (minimize gene duplication and loss),

for which cd = cl = 1. The version of GTP which seeks the tree minimizing

the total number of losses has also been studied; for this, cd = 0 and cl = 1.

These variants of GTP are NP-hard optimization problems [83], but software

such as DupTree [150] and iGTP [15] for GTP are in wide use.

Basic to all these problems is the ability to compute the number of

duplications and losses implied by a species tree and gene tree. This problem

is called the reconciliation problem, surveyed in [32], and intensively studied

in the literature (see, for example, [43, 44, 47, 50, 83, 95, 103, 105, 107, 132, 157,
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158]). The mathematical formulation of the reconciliation problem was derived

for the case where the gene tree and the species tree have the same set of taxa,

and then extended to be able to be used on incomplete gene trees, i.e., trees

that can miss some taxa.

Incomplete gene trees are quite common, and can arise for two different

reasons: (1) taxon sampling : the gene may be available in the species’ genome,

but the biologist did not sample it when he/she estimated the gene tree, or

(2) gene birth/death: as a result of gene birth and death (true biological gene

loss), the species does not have the gene in its genome.

Given an incomplete gene tree gt and a species tree ST , two formula-

tions for the number of losses have been defined. One, described in [16, 145],

correctly computes the number of losses when incompleteness is a result of

true gene loss, as we will prove. The other, and most commonly used one,

computes the number of losses by first computing the homeomorphic subtree

ST (gt) of ST induced by gt, and then computing the number of losses re-

quired to reconcile gt with ST (gt) (see, for example, [47, 83, 158]). Although

this second formulation (described in Chapter 2) is in wide use (and is the

basis of both iGTP [15] and Duptree [150], two popular methods for “solving”

GTP), the theoretical basis for this approach has not yet been established. We

refer to this second formulation as the “standard” approach because of this

widespread use in both software and the theoretical literature on GTP.

This chapter addresses the GTP problem for the case where some of

the input gene trees may be incomplete due to either taxon sampling strategies
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or true biological loss. The main results are as follows:

• We formalize the duploss reconciliation problem when gene trees are

incomplete due to taxon sampling as the “optimal completion of a gene

tree” (Section 5.2.4), and we prove (Theorem 5.2.1) that the standard

calculation correctly computes losses for this case.

• We show by example that the standard calculation for losses in GTP can

be incorrect when incompleteness is due to true biological loss (Section

5.2.5).

• We show how to compute the number of losses implied by a gene tree and

species tree, when incompleteness is due to true biological loss (Section

5.3).

• We formulate variants of the GTP problem (when gene tree incomplete-

ness is due to true biological loss) as minimum weight maximum clique

problems (see Theorem 5.4.10 for one duploss variant), and show how

to solve these problems efficiently using dynamic programming (Section

5.4).

5.2 Basics

5.2.1 Notation and terminology

Throughout this chapter we will assume that gene trees and species

trees are rooted binary trees, and we let gt denote a gene tree (with any

number of copies of each taxon) and ST denote a species tree. We let L(t)
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denote the set of taxa at the leaves of t, and require that L(gt) ⊆ L(ST ). We

let n denote the number of leaves in gt and n′ denote the number of leaves in

ST ; note that we cannot infer any relationship about the relative magnitudes

of n and n′. If L(gt) = L(ST ) we say that gt is complete, and otherwise we

say that gt is incomplete. Given a node u in a rooted binary tree, we let r

denote the right child of u and l denote the left child of u.

ST (gt) and ST ∗(gt). ST (gt) is the homeomorphic subtree of ST induced by

the taxon set of gt, and is produced as follows: ST is restricted to the taxon

set of gt, and then nodes with in-degree and out-degree 1 are suppressed.

ST ∗(gt) is the tree obtained by restricting ST to the taxon set of gt, but not

suppressing nodes of in-degree and out-degree 1.

Maximal missing clades, UMMC, and LMMC. We say that clade cl

in ST is a missing clade with respect to gt if L(gt)∩L(cl) = ∅, and a maximal

missing clade if it is not contained in any other missing clade. Maximal missing

clades that lie below M(r(gt)) are called the “lower” maximal missing clades,

and those that do not lie below M(r(gt)) are called the “upper” maximal

missing clades. We denote by LMMC(gt, ST ) (or LMMC), the set of lower

maximal missing clades, and UMMC(gt, ST ) (or UMMC), the set of upper

maximal missing clades. Note UMMC(gt, ST ) = ∅ iff M(r(gt)) = r(ST ).
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5.2.2 Reconciliation of gene trees and species trees

There are several equivalent definitions of reconciliation of gene trees

and species trees in the presence of gene duplication and loss; of these, we

find the definition based on “DS-trees” the easiest to understand, and so our

discussion is based on this. DS-trees are gene trees that explain the evolution

of the gene in terms only of gene duplications and speciations; thus, no gene

losses are needed in the evolutionary history (see, for example, [16]).

DS-trees. We say that T is a DS-tree for the species tree ST , or equiv-

alently that T is DS-consistent with ST , iff for every internal vertex v of T

(with children l and r), there exists a vertex v′ of ST (with children l′ and r′)

such that L(Tv) = L(STv′) and one of the following conditions holds:

• L(Tr) = L(Tl), in which case v is said to be a duplication node, or

• L(Tr) = L(STr′) and L(Tl) = L(STl′) (or the condition obtained by

swapping r′ and l′), in which case v is said to be a speciation node.

How DS-trees define evolutionary scenarios. A subtree insertion [16]

in a tree t is obtained by grafting a new subtree onto an existing branch of

t, and a tree t′ is said to be an extension of t if it can be obtained from t

by a sequence of subtree insertions. A reconciliation between a gene tree gt

and a species tree ST is an extension T of gt that is DS-consistent with ST .

Note that in a DS-tree T , every node is labelled either as a speciation node or
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a duplication node. The creation of the tree T from gt allows us to identify

the specific leaves in T that correspond to each leaf in gt (despite the fact

that gt can be multi-copy), and thus define the MRCA mapping from the

internal nodes of gt to the internal nodes of T ; therefore, we can identify the

duplication nodes in gt. Finally, the gene losses implied by this reconciliation

are defined by the subtree insertions used to create T from gene tree gt. Thus,

the number of duplications in this reconciliation is the number of duplication

nodes in T , and the number of gene losses is the number of subtree insertions.

Given a gene tree gt, species tree ST , and DS-tree T that is a reconciliation

for gt with ST , there is a mapping from the nodes of gt to ST defined by first

mapping each node v to the MRCA v′ in T of L(gtv), and then mapping v′ to

the MRCA v′′ in ST of L(Tv′). Thus, a reconciliation defines a mapping from

the nodes of the gene tree to the nodes of the species tree. For this reason, in

the literature a reconciliation is identified by a mapping.

5.2.3 The standard formula for computing losses

The most commonly used approach of reconciliation and calculating

losses, which we call the standard approach, is based upon the homeomorphic

subtree of the species tree. The standard formula (see, for example, [6, 44,

47, 83, 158]) for computing the minimum number of losses of a (potentially

incomplete) gene tree gt with respect to a species tree ST is discussed in

Chapter 2. Due to its relevance to this chapter and for our convenience, we

define the standard loss, denoted by Lstd(gt, ST ), as follows.
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Lstd(gt, ST ) =
∑

u∈Vint(gt)

F (u, ST (gt)),

where F (u, T ) is defined for internal nodes u with children l and r (which can

be interchanged in the formula below) by:

F (u, T ) =


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
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
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

d(M(r),M(u)) + 1 if M(r) 6= M(u) &
M(l) = M(u),

d(M(l),M(u)) + 1 if M(l) 6= M(u) &
M(r) = M(u),

d(M(r),M(u))
+d(M(l),M(u)) if M(r) 6= M(u) &

M(l) 6= M(u),
0 if M(r) = M(l) =

M(u).

(5.1)

where d(s, s′) is the number of internal nodes in T on the path from s to s′.

When gt is complete, then ST (gt) = ST , and this formula follows from [16].

Note that Eqn. 5.1 is equivalent to Eqn. 2.2.

5.2.4 Incompleteness due to sampling strategies

When gene trees are incomplete due to taxon sampling strategies used

to define the gene dataset rather than due to true biological loss, a natural

optimization problem is to add the missing taxa into each gene tree so as to

produce complete gene trees, and then try to estimate the species tree. This

yields two problems: one for reconciling (and hence scoring) a gene tree gt

with a species tree ST , and the other for finding an optimal species tree from

a set of incomplete gene trees. Since the second problem depends upon the

first, we discuss the first problem:
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Optimal completion of a gene tree:

• Input: rooted binary gene tree gt and rooted binary species tree with

L(gt) ⊆ L(ST ).

• Output: complete gene tree Tsamp(gt, ST ) that is an extension of gt such

that Tsamp(gt, ST ) implies a minimum number of losses with respect to

ST .

In other words, we add all the missing taxa into gt (each taxon added at

least once, but perhaps several times) so as to produce a complete binary

gene tree that has a minimum number of losses with respect to ST . Let

Lsamp(gt, ST ) = Lstd(Tsamp(gt, ST ), ST ). Thus, Lsamp(gt, ST ) denotes the

total number of losses needed for an optimal completion of gt. Similarly, we

can define DLsamp(gt, ST ) to be the total number of duplications and losses

needed for a completion of gt that minimizes the duploss score.

Theorem 5.2.1. Given a binary rooted gene tree gt and a binary rooted species

tree ST such that L(gt) ⊆ L(ST ), the MRCA mapping defines a reconciliation

that minimizes the number of duplications, the number of losses, and hence

also the total number of duplications and losses, where we treat losses as due to

taxon sampling strategies. Furthermore, Lstd(gt, ST ) = Lsamp(gt, ST ), which

means the standard formula correctly computes the number of losses when we

treat incompleteness as due to taxon sampling strategies.

Proof. Consider ST (gt), the homeomorphic subtree of ST defined by the taxon

set of gt. Since gt is complete with respect to ST (gt), the optimal reconciliation
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that minimizes duplications, losses, and their sum, is defined byM , the MRCA

mapping from gt to ST , and the standard formula correctly computes the

number of losses for this reconciliation [16]. Note that for any completion t

of gt, Lstd(t, ST ) ≥ Lstd(gt, ST ); in other words, the number of losses cannot

decrease by making gt complete. Similarly, the number of duplications for t

with respect to ST cannot be less than the number of duplications of gt with

respect to ST . We will show we can add all the remaining taxa into gt to

produce a complete gene tree t∗ such that Lstd(t
∗, ST ) = Lstd(gt, ST ) and so

that t∗ has the same number of losses and duplications with respect to ST as

t∗ has. Therefore, t∗ will be an optimal completion. Furthermore, this will

also imply that Lstd(gt, ST ) = Lsamp(gt, ST ), as desired.

Recall the definition of the sets UMMC and LMMC, the upper and

lower maximal missing clades, respectively. Since gt is not complete, there

must be at least one missing taxon, and hence at least one maximal missing

clade. If M(r(gt)) = r(ST ) then UMMC = ∅ and we set gt′ = gt. Otherwise,

M(r(gt)) 6= r(ST ) and UMMC 6= ∅. Consider the path in ST from r(ST )

down to M(r(gt)), and the m ≥ 1 subtrees that hang off that path before

we reach M(r(gt)). Note that each of these subtrees is an upper maximal

missing clade. Let gt′ be the tree created by starting with ST and replacing

the subtree of ST rooted at M(r(gt)) by gt. Note also that the number of

duplications has not changed, and that Lstd(gt
′, ST ) = Lstd(gt, ST ).

If LMMC = ∅ we are done; otherwise, we now add the lower maximal

missing clades to gt′ one at a time. Let LMMC = {t1, t2, . . . , tp}, so that
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p ≥ 1. We will define a sequence of gene trees gt1, gt2, . . . , gtp = t∗, so that

gt1 is the result of adding clade t1 to gt′, and gti is the result of adding clade

ti to gti−1 for p ≥ i ≥ 2. We will show that Lstd(gti, ST ) = Lstd(gt
′, ST )

for p ≥ i ≥ 2, and that the number of duplications in gti is the same as the

number of duplications in gt′. Since gtp = t∗ is a completion of gt, our theorem

will be proven.

So consider t = t1, the first lower maximal missing clade, and let q be

the node in ST that is the parent of r(t) (i.e., q = p(r(t))). Consider the edges

(x, y) in gt′ with y = p(x), such that q lies in the path between M(x) and

M(y). Subdivide each such edge (creating a new node), and add t to gt′ by

making its root the child of each such newly created node. Note that there

must be at least one such edge in gt′ but there can be several such edges, and

hence this step adds t at least once (and perhaps several times) to gt′. Note

that when we add t1 to gt′, we do not change the image under the MRCA

mapping for any node v that is in gt′.

We now show that t1 has the same number of duplications as gt with

respect to ST . Clearly, any node in a copy of t is a speciation node (since t

is a subtree of ST , which only has speciation nodes). Now consider a node

u created by subdividing an edge (x, y), where y is the parent of x in gt′.

One child of u is the root of t and the other child has an entirely disjoint leaf

set; thus u is a speciation node. When we subdivide edge (x, y) we make y

the parent of u. Therefore, M(u) 6= M(y). Thus, y is a duplication node

in gt1 if and only if M(z) = M(y) where z is the other child of y in gt′.
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But then y is a duplication node in gt′ if and only if y is a duplication node

in gt1, since the MRCA mapping does not change. Hence, no node in gt′

changes duplication/speciation status, and the newly added nodes are always

speciation nodes. Therefore the number of duplication nodes does not change.

We now show that the number of losses does not change, i.e., Lstd(gt
′, ST ) =

Lstd(gt1, ST ). Now consider an edge (x, y) that is subdivided through the ad-

dition of a node u that is made the parent of the subtree t1. Then x, y,

and u all map (under M) to different vertices in ST (gt1). Also, a sim-

ple case analysis (using the standard formula) verifies that F (y, ST (gt′)) =

F (y, ST (gt1)) + F (u, ST (gt1)). Since F (z, ST (gt′)) = F (z, ST (gt1)) for all

other vertices z ∈ V (gt′), this means that the total number of losses does not

change.

Therefore, the result of adding each lower maximal missing clade to gt′

does not imply any additional losses nor any additional duplications, and so

also the total number of duplications and losses does not change. Let t∗ = tp

be the tree obtained after adding in all the missing maximal clades, and return

t∗. The result then follows by induction on p.

5.2.5 Incompleteness due to gene birth and death

As we will see, while the MRCA mapping is still an optimal reconcilia-

tion when gene trees are incomplete due to gene birth and death, the standard

formula does not correctly compute the number of losses.
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We begin by summarizing some results that have already been estab-

lished:

Theorem 5.2.2. (From [16, 45]) Given a binary rooted gene tree gt and a

binary rooted species tree ST such that L(gt) ⊆ L(ST ), the MRCA mapping

defines a reconciliation that minimizes the number of duplications and the

number of losses where we treat losses as due to gene birth and death. The set

of speciation nodes in gt are those vertices v ∈ Vint(gt) that satisfy M(v) 6∈

{M(l),M(r)}, where l and r are the two children of v and M is the MRCA

mapping from gt to ST ; all other nodes are duplication nodes. Furthermore,

we can compute the MRCA mapping, the set of duplication nodes, and the set

of speciation nodes, in O(n + n′) time, where ST has n leaves and gt has n′

leaves.

Proof. Chauve et al. [16] proved that the MRCA mapping minimizes the losses

required to reconcile gt with ST (gt) for complete gene trees, but the proof also

applies to incomplete gene trees, treating incompleteness as due to gene birth

and death. Górecki et al. [45] showed that the MRCA mapping minimizes

the number of duplications required to reconcile gt with ST (gt), treating in-

completeness as due to gene birth and death. Therefore, the MRCA mapping

is optimal for all three scores (number of duplications, number of losses, and

number of duplications plus losses), when treating incompleteness as due to

gene birth and death.

It is easy to see that the duplication nodes in gt are those nodes that

have M(v) = M(l) or M(v) = M(r) (where l and r are the two children of
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v, and M is the MRCA mapping), and all other nodes are speciation nodes.

Since the MRCA mapping M can be computed in O(n + n′), where ST has

n leaves and gt has n′ leaves, it follows that all these can be computed in

O(n+ n′) time.

However, the standard calculation for the number of losses can be in-

correct when incompleteness is due to true biological loss! Consider the simple

example gt = ((a, b), c) and ST = ((a, (b, d)), c). Under the standard formula,

Lstd(gt, ST ) = 0, since ST (gt) = gt. Under the assumption that incomplete-

ness is due to true biological loss, the genome for d does not have the gene.

Because d is sister to b and all the other taxa have the gene, the gene must have

been present in the parent of d, and lost on the branch leading to d. Therefore,

the standard formula for the number of losses can be incorrect when gene trees

are incomplete due to gene birth and death (i.e., true biological loss).

5.3 How to calculate losses

We now show how to calculate the number of losses for an incomplete

gene tree gt and species tree ST , treating incomplete gene trees as due to gene

birth and death. How this is defined will depend upon whether one assumes,

a priori, that the gene is present in the genome of the common ancestor of

the species in ST (i.e., at the root of ST ). Thus, this section shows how to

calculate the following values:

• L∗
bd(gt, ST ), the minimum number of losses, under the assumption the
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gene is present in the common ancestor of the species in ST (DL∗
bd(gt, ST )

is defined similarly for the total number of duplications and losses), and

• Lbd(gt, ST ) the minimum number of losses without assuming the gene is

present in the common ancestor of the species in ST (DLbd(gt, ST ) is

defined similarly for duplications and losses).

Because the MRCA mapping is optimal for duplications and also for losses

(and hence also for their sum) when interpreting missing taxa as due to gene

birth and death (as shown in Theorem 5.2.2), the reconciliation that optimizes

Lbd(gt, ST ) will optimizeDLbd(gt, ST ), L
∗
bd(gt, ST ), andDL∗

bd(gt, ST ). There-

fore, we will focus on how to compute the number of losses (i.e., Lbd(gt, ST )

and L∗
bd(gt, ST )), using the fact that the MRCA mapping defines an optimal

reconciliation.

Theorem 5.3.1. Let gt be a gene tree and ST a species tree such that L(gt) ⊆

L(ST ). Then,

Lbd(gt, ST ) =
∑

u∈Vint(gt)
F (u, ST ),

and

L∗
bd(gt, ST ) = Lbd(gt, ST ) + |UMMC(gt, ST )|.

Furthermore, these values can be calculated in O(n + n′) time, where ST has

n leaves and gt has n′ leaves.

Proof. Note that we use a modification of the standard formula, F (u, ST ), so

that we do not replace ST by ST (gt) as was done in [16, 145].
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Derivation of Lbd(gt, ST ). Recall that Lbd(gt, ST ) does not assume that the

most recent common ancestor of the species in ST has the gene. Since gene

birth can happen only once (although loss can happen repeatedly), we begin

by determining the location of the gene birth. If M(r(gt)) = r(ST ), then the

gene is born before r(ST ), and is present at the root of ST . Otherwise, it

is easy to see that the location of the gene birth that minimizes the number

of losses is the edge above M(r(gt)). Now consider the modification of the

standard formula (i.e., using ST instead of ST (gt)):

Lbd(gt, ST ) =
∑

u∈Vint(gt)

F (u, ST ). (5.2)

It is easy to see that this correctly returns the number of inserted subtrees,

and hence the number of losses.

Derivation of L∗
bd(gt, ST ). By definition of L∗

bd(gt, ST ), the gene is assumed

to be present at the root of the species tree ST . If M(r(gt)) = r(ST ), then

UMMC(gt, ST ) = ∅, and the result follows. However, if M(r(gt)) 6= r(ST ),

the gene must be present on the path between r(ST ) and M(r(gt)). Since

the gene is not present in any leaf that is not below M(r(gt)), to minimize

losses, the gene must be lost on every edge off that path, since such edges

lead to subtrees that do not have the gene present in any leaf. Note that

if M(r(gt)) 6= r(ST ), then the number of edges that lead off that path is

|UMMC(gt, ST )| = d(M(r(gt)), r(ST )) + 1. Since the gene must be lost on

each of those edges, and the total number of losses is the sum of this value

and the number of losses that occur within the subtree rooted at M(r(gt)), it
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follows that

L∗
bd(gt, ST ) = Lbd(gt, ST ) + |UMMC(gt, ST )|. (5.3)

The running time follows easily from the fact that the MRCA mapping

can be computed in linear time [40].

Figure 5.1 illustrates an example distinguishing Lbd(gt, ST ) and L∗
bd(gt, ST ).

b ca cb

e

f

ad

g

(a) (b)

gt ST

M(r(gt))

Figure 5.1: (a) A gene tree gt = ((b, c), a), (b) a species tree ST =
((((a, c), (b, d)), e), (f, g)). Here, M(r(gt)) 6= r(ST ), and UMMC(gt, ST ) =
{{e}, {f, g}}. Lbd(gt, ST ) is the number of losses required to reconcile gt
with ST according to the Eqn. 5.2, and we get L∗

bd(gt, ST ) by adding
|UMMC(gt, ST )| to Lbd(gt, ST ).

Now the most important question in terms of estimating the optimal

species tree is – given a set G of (possibly incomplete) gene trees, is the species

tree that minimizes
∑

gt∈G L
∗
bd(gt, ST ) or

∑

gt∈G Lbd(gt, ST ) is different than
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the one that minimizes
∑

gt∈G Lstd(gt, ST )? If the same species tree optimizes

both ways of calculating losses, then defining loss differently is not that im-

portant in the context of phylogenomic analyses. But this is not necessarily

true as we will show in the following theorem.

Theorem 5.3.2. Let G be a set of incomplete gene trees and STbd, ST
∗
bd and

STstd are the species trees that minimizes
∑

gt∈G Lbd(gt, ST ),
∑

gt∈G L
∗
bd(gt, ST )

and
∑

gt∈G Lstd(gt, ST ), respectively. Then STstd is not necessarily identical to

STbd or ST ∗
bd.

Proof. We prove this by showing an example. Consider the two gene tree

topologies tp1 and tp2 as shown in Fig. 5.2(a) and Fig. 5.2(b). Let G be a set

of 14 gene trees, with 8 gene trees having topology tp1 and the rest 6 gene trees

having topology tp2. It is easy to verify that the species tree with topology tp2

minimizes
∑

gt∈G Lstd(gt, ST ). Here,
∑

gt∈G Lstd(gt, tp2) = 8 ∗ 3 + 6 ∗ 0 = 24.

Any other species tree will result into more than 24 losses. The reason is as

follows. There are three tree topologies on leaf-est {a, b, c}: ((a, b), c), ((a, c), b)

and ((b, c), a). Reconciling tp1 with ((a, c), b) or ((b, c), a) requires 3 losses.

Therefore, any species tree ST , such that ST (tp1) is not identical to tp1 =

((a, b), c), requires 8 ∗ 3 = 24 losses to reconcile the eight gene trees (having

topology tp1) with ST . Therefore, to achieve less than 24 losses, ST (tp1)

should be identical to tp1. We now estimate the number of losses required to

reconcile tp2 with a ST such that ST (tp1) = ((a, b), c). Note that, tp2(tp1) =

((a, c), b). Reconciling ((a, c), b) with ((a, b), c) requires 3 losses. Then taking
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{d, e, f} into consideration, it is quite easy to verify that it requires more than

4 losses to reconcile tp2 with a species tree ST such that ST (tp1) = ((a, b), c).

Hence, there is no species tree ST so that
∑

gt∈G Lstd(gt, ST ) < 24. Therefore,

ST = tp2 minimizes
∑

gt∈G Lstd(gt, ST ). However, the species tree ST =

(((((a, b), c), d), e), f) minimizes
∑

gt∈G Lbd(gt, ST ). Here
∑

gt∈G Lbd(gt, ST ) =

8 ∗ 3 + 6 ∗ 6 = 60, which is less than
∑

gt∈G Lbd(gt, tp2) = 8 ∗ 9 + 6 ∗ 0 = 72.

Therefore, STstd is not necessarily same as STbd. Then the fact that STstd is

not necessarily identical to ST ∗
bd immediately follows.

c adefb

(b)

c b a

(a)

Figure 5.2: (a) Gene tree topology tp1, and (b) gene tree topology tp2.

5.4 Algorithms to find species trees

Here we address the problem of finding a species tree that has a mini-

mum total number of duplications and losses, treating incompleteness as due to

true biological loss. Prior results on this problem include a branch-and-bound
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algorithm for this problem in [31], based on techniques from [16]. However,

the branch-and-bound algorithm in [31] cannot be used on even moderate-sized

datasets.

In this section, we derive a different approach for the GTP problems,

treating incomplete gene trees as due to true biological loss (i.e., minimiz-

ing Lbd(gt, ST ) or L∗
bd(gt, ST )). The techniques we propose can be used to

solve GTP exactly for small datasets, or approximately (though without any

guaranteed error bounds) on larger datasets. The approach we take here is

based on Chapter 3 [6] (see also [50, 141, 154, 155], which use very similar tech-

niques). Bayzid et al. [6] provided a graph-theoretic formulation forMGDLstd,

whereby an optimal solution to MGDLstd corresponded to finding a minimum

weight maximum clique inside a graph called the compatibility graph. The

nodes of the compatibility graph correspond to subtree-bipartitions. Bayzid

et al. [6] showed how to find a minimum weight max clique using a dynamic

programming approach. We will use the same graph-theoretic formulation as

in [6], but modify the weights appropriately, to show that the optimal so-

lution to MGDL∗
bd still corresponds to a minimum weight max clique. The

DP algorithm in [6] can then be used directly to find the optimal solution to

MGDL∗
bd.

To achieve this, we first derive an efficient formula for Lbd(gt, ST ) (and

L∗
bd(gt, ST ), similar to the one derived in [158] for Lstd(gt, ST ), but somewhat

more involved. We now show how we derive these formulas.

By Theorem 5.2.2, the number of duplications for a given gene tree
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and species tree pair does not depend upon how one interprets missing taxa in

gene trees, and can be inferred directly from the MRCA mapping. Therefore,

we will let Dgt,ST denote the set of duplication nodes in gt with respect to ST

and Sgt,ST denote the set of speciation nodes in gt with respect to ST . When

gt and ST are known, we may write these as D and S.

However, the calculation for the number of losses does depend on how

we interpret incompleteness in gene trees. Therefore, rather than having a

single optimization problem like MGDL, we have variants of this problem de-

pending on how we treat incompleteness. As shown in Theorem 5.2.1, the term

MGDL in the literature refers toMGDLstd, which (by Theorem 5.2.1) is iden-

tical to MGDLsamp. Here, we consider the optimization problems MGDL∗
bd,

where we treat incompleteness as due to gene birth and death. And therefore,

we also consider MGDLbd, MGL∗
bd, and MGLbd.

5.4.1 Basic material

Definition 5.4.1. For a gene tree gt and a species tree ST such that L(gt) ⊆

L(ST ), the number of extra lineages (summing over all edges) is defined to be

XL(gt, ST ) =
∑

e′∈E(ST ∗(gt))

XL(gt, e′),

where XL(gt, e′) is the number of extra lineages on e′.

Definition 5.4.2. (From [155]) For B ⊆ X and gene tree gt, we set kB(gt)

to be the number of B-maximal clusters in gt (see Chapter 2).
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Definition 5.4.3. We define Wxl(x, gt) for x either a subtree-bipartition or a

subset of X, as follows. If x ⊆ X, then we set Wxl(x, gt) = 0 if x ∩ L(gt) = ∅

and otherwise Wxl(x, gt) = kx(gt) − 1. If x is a subtree-bipartition, then we

let B = p ∪ q for x = (p|q), and we set Wxl(x, gt) = 0 if B ∩ L(gt) = ∅, and

otherwise Wxl(x, gt) = kB(gt)− 1. For a set G of gene trees and ST a species

tree, we set W0 =
∑

gt∈G

∑

x∈XWxl({x}, gt).

[155] showed that for any edge e in ST , where B is the cluster below e,

then kB(gt) is the number of lineages going through edge e, and so kB(gt)− 1

is the number of extra lineages going through e. They defined weights on

potential species tree clusters B by Wmdc(B, gt) = 0 if B ∩ L(gt) = ∅ and

otherwise Wmdc(B, gt) = kB(gt) − 1 (i.e., Wmdc is defined for clusters while

Wxl is defined for subtree-bipartitions), and extended this to a set G of gene

trees by W ′
mdc(B) =

∑

gt∈G Wmdc(B, gt), and then to a set C of clusters by

W ′′
mdc(C) =

∑

B∈C W ′
mdc(B). From this, it follows easily that a set C of n− 1

compatible clusters minimizing W ′′
mdc(C) defines a rooted binary species tree

with a minimum MDC score.

Theorem 5.4.4. (From Bayzid et al. [6] (presented in Chapter 3; see Corol-

lary 3.3.3 and Theorems 3.3.4, 3.4.1 and 3.5.4))

• For any subtree bipartition (A|B) and any species tree T , there is at most

one subtree bipartition in T that dominates (A|B).

• Let gt and ST be a gene tree and species tree pair, and (A|B) be a subtree

bipartition in gt associated with internal vertex v. Then v is a speciation
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node in gt if and only if (A|B) is dominated by ST .

• A set Z of n − 1 subtree-bipartitions on set X of n taxa is pairwise-

compatible if and only if there is a rooted binary tree T such that SBPT =

Z. Hence, every clique of size n− 1 in CG(G) defines a species tree on

X. Furthermore, if the nodes in CG(G) are weighted by Wdom(v), then a

maximum weight clique with n−1 vertices defines an optimal solution to

MGD. If the nodes are weighted by Wxl − 3Wdom(v), then the minimum

weight clique with n−1 vertices defines an optimal solution to MGDLstd.

5.4.2 Deriving Lbd(gt, ST ) and L∗
bd(gt, ST )

We begin with the following theorem:

Theorem 5.4.5. (From [158]) Let gt be a rooted binary gene tree, ST a rooted

binary species tree and D the set of duplication nodes in gt with respect to ST .

Then

Lstd(gt, ST ) = XL(gt, ST (gt)) + 2|D|+ |V (gt)| − |V (ST (gt))|.

We now derive formulas for Lbd(gt, ST ) and L∗
bd(gt, ST ); to obtain for-

mulas for DLbd(gt, ST ) and DL∗
bd(gt, ST ), simply add |D(gt, ST )|.

Recall that in the definition of F (u, T ) given in Eqn. 5.1, losses are

associated with internal nodes, and the total number of losses is defined as the

sum of losses associated to each internal node. However, the definition of the

number of losses corresponding to a node can be rewritten in terms of edges,
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as we now show. Let D(s, s′) = d(s, s′)+1; i.e., D(s, s′) is the number of edges

in the path in ST between s and s′. Then, for a vertex u in gt with children

r and l, we can rewrite Eqn. 5.1 as follows:

F (u, ST ) =































D(M(r),M(u))
+D(M(l),M(u)) if M(r) 6= M(u) = M(l),
(D(M(r),M(u))− 1)
+(D(M(l),M(u))− 1) if M(u) 6∈ {M(l),M(r)},
D(M(r),M(u))
+D(M(l),M(u)) if M(r) = M(u) = M(l).

It is easy to see that in all three branches of the equation above, the two terms

of the sum correspond to the edges connecting u to its two children l and r.

(The second term in the first branch and both terms in the third branch are 0,

but we wrote them in terms of the function D(., .) for convenience.) Therefore,

we can associate gene losses to edges e = (x, p(x)) instead of nodes, as follows:

MD(e) = D(M(x),M(p(x)), and

edgelossST (e) =

{

MD(e) if p(x) ∈ Dgt,ST ,
MD(e)− 1 otherwise.

We use the subscript ST in edgelossST (e) to emphasize the fact that the

distance is taken within the tree ST and not within ST (gt). Note therefore

∑

u∈Vint(gt)

F (u, ST ) =
∑

e∈E(gt)

edgelossST (e).

Lemma 5.4.6. For all gene trees gt and species trees ST with L(gt) ⊆ L(ST ),
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Lbd(gt, ST ) =
∑

e∈E(gt)

MD(e)− |E(gt)|+ 2|D|, (5.4)

and for all sets G of gene trees,

Lbd(G, ST ) =
∑

gt∈G

Lbd(gt, ST )

=
∑

gt∈G

∑

e∈E(gt)

MD(e)−
∑

gt∈G

|E(gt)|

+2
∑

gt∈G

|Dgt,ST |. (5.5)

Finally, equalities concerning DLbd(gt, ST ) and DLbd(G, ST ) can be obtained

from these equalities by adding |D(gt, ST )| and |D(gt,G)|.

Proof. We partition all the non-root nodes in gt into two sets: CD (children of

duplications), consisting of those nodes whose parents are duplication nodes,

and CS (children of speciations), consisting of those nodes whose parents are

speciation nodes. Note that every edge (x, p(x)) ∈ E(gt) can be associated

with the set containing x. Therefore,

Lbd(gt, ST ) =
∑

e∈E(gt)

edgelossST (e)

=
∑

x ∈ CD

MD(x, p(x))

+
∑

x ∈ CS

(MD(x, p(x))− 1)

=
∑

e∈E(gt)

MD(e)− |CS|. (5.6)
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Since each internal node has two children, clearly the number of vertices x for

which p(x) is a speciation node is twice the number |S| of speciation nodes;

therefore

Lbd(gt, ST ) =
∑

e∈E(gt)

MD(e)− 2|S|.

Since each internal node is a speciation node or a duplication node, it follows

that 2(|D|+ |S|) = |E(gt)|, and the result follows.

Let L(gt, e) be the number of lineages that go through edge e ∈ E(ST );

thus, XL(gt, e) = L(gt, e)− 1, and so (by Definition 5.4.1)

XL(gt, ST ) =
∑

e′∈E(ST ∗(gt))

L(gt, e′)− |E(ST ∗(gt))|. (5.7)

Lemma 5.4.7. For any gene tree gt and species tree ST ,

∑

e∈E(gt)

MD(e) =
∑

e′∈E(ST ∗(gt))

L(gt, e′).

and (by Equation 5.7)

XL(gt, ST ) =
∑

e∈E(gt)

MD(e)− |E(ST ∗(gt))|. (5.8)

Thus, for a set G of gene trees and species tree ST ,

XL(G, ST ) =
∑

gt∈G

XL(gt, ST )

=
∑

gt∈G

∑

e∈E(gt)

MD(e)−
∑

gt∈G

|E(ST ∗(gt))|.
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Proof. We establish the first equality, since the remaining ones follow directly

from it. Consider the lists of edges in paths in ST from M(x) to M(p(x)), as

x ranges over the internal vertices in gt. It is easy to see that the number of

occurrences of an edge e′ ∈ E(ST ∗(gt)) in these lists is L(gt, e′) (the number

of lineages through e′). Also, the edges e ∈ E(ST )− E(ST ∗(gt)) will not be

present in these lists, since these are the edges incident on the missing clades

in ST with respect to gt. Therefore, the sum of the lengths of these lists is

equal to
∑

e∈E(gt)MD(e) and also equal to
∑

e∈ST ∗(gt) L(gt, e).

Theorem 5.4.8. For all gene trees gt, sets G of gene trees, and species trees

ST ,

Lbd(gt, ST ) = XL(gt, ST ) + 2|D|+ |E(ST ∗(gt))| − |E(gt)|

Lbd(G, ST ) = XL(G, ST ) + 2
∑

gt∈G

|Dgt,ST |

+
∑

gt∈G

(|E(ST ∗(gt))| − |E(gt)|). (5.9)

Proof. Follows from Lemma 5.4.6 and Lemma 5.4.7.

Corollary 5.4.9. For all gene trees gt and species trees ST ,

L∗
bd(gt, ST ) = Lbd(gt, ST ) + |UMMC(gt, ST )|

= XL(gt, ST ) + 2|Dgt,ST |

+|E(ST ∗(gt))| − |E(gt)|

+|UMMC(gt, ST )|. (5.10)
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and

DL∗
bd(gt, ST ) = Lbd(gt, ST ) + |UMMC(gt, ST )|

+|Dgt,ST |

= XL(gt, ST ) + 3|Dgt,ST |

+|E(ST ∗(gt))| − |E(gt)|

+|UMMC(gt, ST )| (5.11)

Proof. The equalities concerning L∗
bd follow from Theorem 5.3.1 and Theo-

rem 5.4.8. The equalities concerning DL∗
bd follow by adding |D(gt, ST )|.

5.4.3 Assigning weights to subtree-bipartitions

To use the graph-theoretic formulation of MGDL∗
bd, we have to as-

sign weights to each node in the compatibility graph, CG(G), where G is

the input set of gene trees, so that a minimum weight clique of n − 1 ver-

tices defines an optimal solution to MGDL∗
bd(G). We will define weights

Wxl(v),Wdom(v),WEC(v), andWMMC(v) to each subtree-bipartition (i.e., node

in the compatibility graph), and set

WMGDL∗

bd
(v) = Wxl(v)− 3Wdom(v) +WEC(v) +WMMC(v).

We then prove (see Theorem 5.4.10) that a set of n − 1 compatible subtree-

bipartitions that has minimum total weight defines a species tree that opti-

mizes MGDL∗
bd. Note that weights Wxl(v) and Wdom(v) have already been

defined (in Section 4.1.1 and Section 4.1.2, respectively). Hence, all that re-

mains is to define WEC(v) and WMMC(v), and then to prove Theorem 5.4.10.
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Calculating WEC(v) and |E(ST ∗(gt))|: We now show how to define weight

WEC(v, gt) for every vertex v in the compatibility graph CG(G) so that for

all species trees ST , |E(ST ∗(gt))| is the sum of the vertex weights for the

n− 1 clique C in CG(G) corresponding to ST . To count the number of edges

in E(ST ∗(gt)), we need to exclude those edges from E(ST ) that are incident

on a clade that is missing in gt. For a vertex v associated with the subtree-

bipartition (p|q), we defineWEC(v, gt) as follows (swapping p and q as needed):

WEC(v, gt) =























0 if p ∩ L(gt) = ∅ and
q∩L(gt) ∈ {L(gt), ∅}

1 if p ∩ L(gt) = ∅ and
∅ 6= q ∩ L(gt) ( L(gt)

2 otherwise.

(5.12)

Then, |E(ST ∗(gt))| = ∑

u∈SBPST
WEC(u, gt). We setWEC(v) =

∑

gt∈G WEC(v, gt).

Then, for any species tree ST and set G of gene trees,

∑

gt∈G

|E(ST ∗(gt))| =
∑

v∈C

WEC(v), (5.13)

where C is the clique in CG(G) that corresponds to ST .

Calculating WMMC(v) and |UMMC(gt, ST )|: We now show how to as-

sign the weight WMMC(v, gt) to each vertex v of the compatibility graph so

that for all species trees ST , |UMMC(gt, ST )| is the sum of the weights over

all the vertices of the clique C in CG(G) corresponding to ST . Recall that
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UMMC(gt, ST ) is the set of upper maximal missing clades in ST . For a ver-

tex v associated with the subtree-bipartition (p|q), we define WMMC(v, gt) as

follows (swapping p and q as needed):

WMMC(v, gt) =







1 if p∩L(gt) = ∅ and q∩L(gt) =
L(gt) (or vice-versa)

0 otherwise.
(5.14)

Then |UMMC(gt, ST )| = ∑

u∈SBPST
WMMC(u, gt). Finally, we setWMMC(v) =

∑

gt∈G WMMC(v, gt). Then, for any species tree ST and set G of gene trees,

∑

gt∈G

|UMMC(gt, ST )| =
∑

v∈C

WMMC(v), (5.15)

where C is the clique in CG(G) that corresponds to ST .

We can extend the MGDL∗
bd techniques to allow for losses and dupli-

cations to have different costs, as follows. Let cd be the cost of a duplication

and assume the cost of a loss (cl) is 1. Let DG,ST =
∑k

i Dgti,ST , and set

DL∗
bd(G, ST, cd) = cd ∗DG,ST +L∗

bd(G, ST ). Let MGDL∗
bd(G, cd) be the problem

that takes a set G of gene trees and duplication cost cd as input, and finds the

species tree that minimizes the weighted duploss score DL∗
bd(G, ST, cd). Let

W cd
MGDL∗

bd

(v) = Wxl(v) − (cd + 2)Wdom(v) + WEC(v) +WMMC(v). (If cd = 1,

we omit the superscript cd and write WMGDL∗

bd
(v).)
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Theorem 5.4.10. Let G = {gt1, gt2, . . . , gtk} be a set of binary rooted gene

trees on set X of n species, and set the weights on the vertices in the com-

patibility graph using W cd
MGDL∗

bd

(v). (a) A set of subtree-bipartitions in an

(n − 1)-clique of minimum weight in CG(G) defines a binary species tree ST

that minimizes DL∗
bd(G, ST, cd). Furthermore, the weighted duploss score of

ST is given by W0 +W cd
MGDL∗

bd

(C) + cd(N − k). (b) If we reset the weights to

be WMGL∗

bd
(v) = WMGDL∗

bd
(v) +Wdom(v), then a set of subtree-bipartitions in

an (n − 1)-clique of minimum weight in CG(G) defines a binary species tree

ST that minimizes L∗
bd(G, ST ).

Proof. We prove (a), since (b) follows directly from (a). Let C be a clique of

size n−1 in CG(G) and ST the associated species tree. Let SBPdom(gt, ST ) be

the set of subtree-bipartitions in gt that are dominated by a subtree-bipartition

in ST . Note that |SBPdom(gt, ST )| is the number of speciation nodes in

gt with respect to ST . Therefore, the total number of speciation nodes in

G is
∑k

i=1 |SBPdom(gti, ST )| =
∑

v∈Vint(ST )Wdom(v). Also,
∑

v∈C Wxl(v) =
∑k

i=1XL(gti, ST ), and
∑k

i=1 |Dgti,ST | =
∑k

i=1(ni − 1)−∑

v∈C Wdom(v), where

ni is the number of leaves in gti. Finally, since all gene trees are rooted binary

trees, |E(gti)| = 2ni − 2 and |Vint(gti)| = ni − 1. Recall that W0 is the num-

ber of extra lineages contributed by the leaf set of the species tree (Definition

5.4.3). Therefore,
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DL∗
bd(G, ST, cd) =

k
∑

i=1

(cd ∗D(gti, ST ) + L∗
bd(gti, ST ))

= +
k

∑

i=1

[XL(gti, ST ) + (cd + 2)|Dgti,ST |

+ |UMMC(gti, ST )|
+|E(ST ∗(gti))| − |E(gti)|] (by Cor. 5.4.9)

= W0 +
∑

v∈C

Wxl(v) +

k
∑

i=1

(cd + 2)(ni − 1)

−(cd + 2)
∑

v∈C

Wdom(v) +
∑

v∈C

WMMC(v)

+
∑

v∈C

WEC(v)−
k

∑

i=1

(2ni − 2)

(by Equations 5.13 and 5.15.)

= W0 +W
cd
MGDL∗

bd

(C) + cd(N − k)

where N =
∑k

i=1 ni. Note that W0 does not depend on the topology of the
species tree. Hence, the (n− 1)-clique C with minimum weight defines a tree
ST that minimizes DL∗

bd(G, ST, cd). The proof for (b) follows trivially.

5.4.4 Dynamic programming algorithm

Let SBP be a set of subtree-bipartitions, with SBP equal to all possible

subtree-bipartitions if an exact solution is desired, and otherwise a proper sub-

set if a faster algorithm is desired or necessary. We present the DP algorithm

for the MGDL∗
bd(G, cd) problem.

Algorithm MGDL∗
bd(G, cd)

For A ∈ SBP

if |A| = 1 then score(A) = WXL(A)
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else

score(A) = max{score(A1) + score(A− A1)

+W cd
MGDL∗

bd

(A1|A− A1) : (A1|A− A1) ∈ SBP}

The running time is O(n|SBP |2). The optimal number of duplications

and losses is given by score(X) + cd(N − k), by Theorem 5.4.10. We can

construct the optimal set of compatible clusters and hence the optimal species

tree (subject to the constraint that all the subtree bipartitions in the output

tree are in SBP) using backtracking.

Theorem 5.4.11. Let G be a set of rooted binary gene trees, SBP a set of

subtree-bipartitions. The DP algorithm finds the species tree ST minimizing

the total weighted GTP cost where cd is the cost of a duplication and losses have

unit cost, treating incomplete gene trees as resulting from gene birth and death,

subject to the constraint that SBPST ⊆ SBP in O(n|SBP|2) time. Therefore, if

SBP is all possible subtree-bipartitions, we have an exact but exponential time

algorithm. However, if SBP contains only those subtree-bipartitions from the

input gene trees, then the DP algorithm finds the optimal constrained species

tree in O(d2n3k2) time, where n is the number of species, k is the number of

gene trees, and d the maximum number of times that any taxon appears in any

gene tree.

Proof. Note that |SBPST | is O(dkn). The running time analysis follows the

same argument as given in [6], since WXL(v) and Wdom(v) can be computed in
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O(1) time after the preprocessing (as described in [6]). The proof of correctness

follows from the observation that the DP algorithm correctly computes the

minimum weight of all maximum cliques.

Note that this theorem allows all values of cd, and so can solve the

standard MGDLbd problem in which losses and duplications have the same

cost, or where they have different costs.

5.4.5 Extensions

It is trivial to extend the theory for MGDL∗
bd and MGL∗

bd to MGDLbd

and MGLbd, as we now show. Recall that Lbd(gt, ST ) = L∗
bd(gt, ST ) −

|UMMC(gt, ST )| and thatDLbd(gt, ST ) = DL∗
bd(gt, ST )−|UMMC(gt, ST )|.

Therefore, to extend the algorithmic approach to solve MGLbd and MGDLbd,

we define

WMGLbd
(v, gt) = WMGL∗

bd
(v, gt)−WMMC(v, gt)

and

WMGDLbd
(v, gt) = WMGDL∗

bd
(v, gt)−WMMC(v, gt),

and then seek a minimum weight maximum clique in the compatibility graph

with these modified weights.

5.5 Conclusion

In this chapter we investigated how different reasons for gene tree in-

completeness affects the mathematical formulation of gene loss. We showed
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that the standard definition of loss is appropriate when the reason for missing

taxa is taxon sampling strategies, and can be incorrect if the incompleteness

is due to true biological gene loss. We present the first mathematical formu-

lation to model gene loss due to true biological loss, and distinguish this from

incompleteness due to taxon sampling. We show that the optimal species tree

by minimizing gene duplications and losses can be different based on different

reasons for missing taxa. We propose exact and heuristic algorithms to infer

species trees from a set of incomplete gene trees by minimizing gene duplica-

tions and losses by assuming that the incompleteness is due to true biological

loss.
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Chapter 6

Gene Tree Parsimony for Incomplete Gene

Trees under ILS

The estimation of species trees typically involves the estimation of trees

and alignments on many different genes, so that the species tree can be based

on many different parts of the genome. This kind of phylogenomic approach

to species tree estimation has the potential to produce more accurate species

tree estimates, especially when gene trees can differ from the species tree due

to processes such as incomplete lineage sorting (ILS), gene duplication and

loss, and horizontal gene transfer. Because ILS (also called deep coalescence)

is a frequent problem in systematics, many methods have been developed to

estimate species trees from gene trees or alignments that specifically take ILS

into consideration. In this chapter we consider the problem of estimating

species trees from gene trees and alignments for the general case where the

gene trees and alignments can be incomplete, which means that not all the

Much of the material in this chapter is taken without alteration from the following
paper.

• M. S. Bayzid and T. Warnow. Estimating optimal species trees from incomplete gene
trees under deep coalescence. Journal of Computational Biology, 19(6):591–605, 2012

TW designed the study; MSB performed the study; MSB and TW proved the theoretical
results, analyzed the data, and wrote the paper.
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genes contain sequences for all the species.

We formalize optimization problems for this context and prove theo-

retical results for these problems. We also present the results of a simulation

study evaluating existing methods for estimating species trees from incomplete

gene trees.

Our simulation study shows that *BEAST [52], a statistical method

for estimating species trees from gene sequence alignments, produces by far

the most accurate species trees. However, *BEAST can only be run on small

datasets. The second most accurate method, MRP [3] (a standard supertree

method), can analyze very large datasets and produces very good trees, making

MRP a potentially acceptable alternative to *BEAST for large datasets.

6.1 Introduction

Over the last two decades, there have been dramatic improvements in

the mathematical foundations of phylogenomic analyses. Many methods have

been developed to construct a species tree from a collection of gene trees.

However, little is known (in terms of both theoretical and empirical results)

about the impact of incomplete estimated gene trees, by which we mean the

case where the gene trees might not contain any individuals for some species.

In this chapter, we consider the problem of estimating species trees from es-

timated gene trees when the true gene trees can differ from the true species

trees due to incomplete lineage sorting. We focus our attention on the problem

of estimating species trees from incomplete estimated gene trees. In this case,
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methods that require that all the gene trees have the same set of taxa cannot

be applied. In addition, results from prior studies that evaluated methods on

inputs in which all gene trees have at least one individual from each species are

not necessarily applicable, since performance on incomplete gene trees could

be different.

We begin with a study of the Minimize Deep Coalescence (MDC) prob-

lem introduced in [84]. This problem takes as input a set of rooted binary gene

trees, each on the same set of taxa, and seeks the species tree for which there

is a minimum total number of deep coalescences. Although this approach to

species tree estimation is not statistically consistent when gene trees can differ

from the species tree due to ILS [142], it is one of the most popular tech-

niques for estimating species trees when ILS is suspected. We show how to

extend MDC to the case where the gene trees are incomplete, and we prove

that Phylonet-MDC [143] solves this computational problem exactly. We then

report on a simulation study we performed to evaluate methods for estimating

species trees from incomplete gene trees or alignments for datasets with multi-

ple genes and with 11, 17, or 100 taxa. We compare *BEAST [52], a Bayesian

method for estimating species trees from gene sequence alignments when genes

can differ from species trees due to ILS, to methods based on MDC (iGTP-

MDC [15] and Phylonet-MDC). We also make comparisons to a heuristic for

MRP (matrix representation with parsimony, a standard supertree method)

[2, 115] known to be one of the most accurate supertree methods [72, 135] and

to heuristics to minimize duplications or duplications+losses in iGTP [15],
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none of which consider ILS when estimating species trees. We compare these

methods on datasets simulated on gene trees that can differ from species trees

due to ILS and report the missing branch rates of each species tree that we

compute.

Although we did not attempt to run *BEAST on the 100-taxon datasets

(due to its excessive computational requirements on large datasets), it pro-

duced the most accurate trees on the datasets with 11 or 17 taxa. Comparisons

between other methods showed that generally MRP gave the most accurate

results, and that (when it could be run), the exact version of Phylonet-MDC

produced the next most accurate results. In addition, MRP was very fast on

these datasets, producing results in under a minute on all datasets. These

results suggest that at least for some conditions involving incomplete gene

trees, methods that attempt to solve MRP may be computationally tractable

ways of producing reasonably accurate species trees, and perhaps better than

methods that optimize the MDC criterion. However, for those datasets for

which statistical methods (such as *BEAST) can be run, they may be able to

produce substantially more accurate trees than all other methods.

6.2 Theoretical results for MDC

We begin by defining the MDC problem in the context of complete

rooted, binary gene trees. We then show how to extend MDC to incomplete

gene trees.
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Name Meaning Comments

ILS Incomplete Lineage Sorting Also called “deep coalescence”
MBMC Minimizing B-maximal clusters A computational problem for estimating

species trees from complete gene trees, shown
to be equivalent to MDC in [155]

MBMCinc MBMC for incomplete gene trees Extension of MBMC to incomplete gene trees,
shown here to be equivalent to MDCinc.

MDC Minimize Deep Coalescence Optimization problem for species tree
estimation in the presence of ILS, defined

only for complete gene trees
MDCinc MDC for incomplete gene trees MDCinc seeks completions of all gene

trees and a species tree, so that the
species tree optimizes MDC with respect to

the completed gene trees.
MRP Matrix Representation with Parsimony Standard optimization problem for supertree

computation, known to be NP-hard.

Table 6.1: Acronyms used in this chapter

Name Summary Reference

*BEAST Bayesian co-estimation of gene trees [52]
and species trees, in the presence of ILS

FastTree-2 (FT) Fast maximum likelihood phylogeny estimation. [114]
FT-75 refers to the tree obtained by running FastTree-2
and then collapsing all branches with support below 75%.

iGTP Gene Tree Parsimony software, implementing a [15]
heuristic search to construct species trees from sets

of gene trees, under three criteria: MDC,
duplications, and duplications plus losses

PAUP* Phylogenetic Analysis using Parsimony (*and [137]
Other Methods). We use heuristics in PAUP*

for parsimony, applied to an MRP matrix we compute.
Phylonet Software package that performs several functions [143]

related to species phylogeny estimation from sets of
gene trees. In this paper we use Phylonet to

find solutions (exact or heuristic) to the MDC problem.

Table 6.2: Software used in this study
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6.2.1 MDC for complete gene trees

The MDC problem is as follows:

• Input: A set T = {t1, t2, . . . , tk} of rooted, binary gene trees with each

tree ti on the same set S of taxa.

• Output: a rooted, binary species tree T that minimizes the number of

extra lineages with respect to T, denoted by XL(T,T) =
∑

i XL(T, ti)

To define the MDC problem, therefore, we need to define XL(T, ti),

i.e., the number of extra lineages of a species tree T with respect to a gene

tree ti. Visually, this is defined by embedding the gene tree ti into the species

tree T , and then counting how many lineages there on each edge of the species

tree; for a given edge, the number of extra lineages is one less than the total

number of lineages on the edge [84].

An alternative definition is given in terms of the B-maximal clusters

(defined in Chapter 2). For a cluster B of T , we define kB(t) to be the number

of B-maximal clusters of t, and we let wB(t) = kB(t) − 1. It is now known

that the embedding of the gene tree t into the species tree T that maps every

node in t to MRCA (most recent common ancestor) in T of the leafset below

v optimizes the MDC cost. Furthermore, for this embedding, the number of

lineages “leaving” the parent edge of the cluster B (i.e., the edge between B

and the root of the tree T ) is kB(t); therefore, the number of extra lineages

on the parent edge is wB(t) (one less than the number of lineages) (see, for

123



example, [155]). Note that wB(t) ≥ 0 since t and T have the same set of taxa,

and that XL(T, t) =
∑

B wB(t), where the sum is taken over all clusters B in

the tree T , is the number of extra lineages implied by the pair t, T . This is

what is meant by the MDC cost for T with respect to gene tree t.

The MDC problem can then be restated as follows:

• Input: set T = {t1, t2, . . . , tk} of binary rooted trees on leafset S.

• Output: binary rooted species tree T on S such that

XL(T,T) =
∑

i

∑

B wB(ti) is minimized, where i ranges from 1 to k and

B ranges over the clusters in the species tree T .

Than and Nakhleh noted that this problem could be solved exactly by

finding a minimum weight clique of size n − 2 in a graph in which there is

a node for every possible cluster in the species tree (i.e., subset of taxa), an

edge between nodes where their clusters are compatible (meaning that they

can co-exist in a rooted tree), and where the weight of the node for cluster B is
∑

i wB(ti) [141]. This observation yielded the exact version of Phylonet-MDC

[143]. By restricting the set of nodes to those clades that appear in the input

set of gene trees, they produced the heuristic version of Phylonet-MDC; this

method solves the MDC problem exactly when constrained to species trees

whose clades are drawn only from the input gene tree clades. Finally, [155]

showed how to modify the Phylonet-MDC algorithm so that it could work with

unrooted, partially resolved gene trees and find optimal rooted refinements and

species trees that minimize the MDC score.
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6.2.2 Extension to incomplete gene trees

We now discuss how to extend the MDC criterion to handle incomplete

gene trees, where the gene tree leaf sets may not contain all the species. We

begin with a definition: If S is the full set of taxa and t is a binary rooted tree

on a subset of S, then we say that t′ is a completion of t if t′ is a binary rooted

tree that contains all the taxa in S and that agrees with t when restricted to

the taxa in t. Thus, a completion t′ is obtained by adding additional leaves to

t so that it contains all the taxa it is missing. With this, we can now define

MDC for incomplete gene trees.

MDC for incomplete gene trees (MDCinc).

• Input: set T = {t1, t2, . . . , tk} with each ti a rooted binary tree on leafset

Si, with Si ⊆ S (i.e., each ti is an incomplete rooted binary tree)

• Output: binary rooted species tree T and completions t′i of ti so as to

minimize XL(T,T′), where T′ = {t′1, t′2, . . . , t′k}.

We will refer to this problem as MDC-incomplete, and we will denote a solution

to MDC-incomplete on input set T by MDCinc(T) = (T,T′).

Recall that kB(t) is defined for the case where the gene tree t is rooted

and has the same set of taxa as the species tree; in this case, it equals the

number of B-maximal clusters of t. Furthermore, again for the case where

the gene trees all have the same set of taxa, we have defined XL(T,T) =
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∑

B

∑

iwB(t), where B ranges over all clusters of T , i ranges from 1 to k,

and wB(t) = kB(t) − 1. However, we will modify the definition of wB(t) to

appropriately reflect the possibility that the cluster B may contain taxa that

do not appear in t. That is, we set

• wB(t) = 0 if B ∩ L(t) = ∅ (where L(t) denotes the leafset of t), and

• wB(t) = kB(t)− 1, otherwise.

In other words, we generally use the same definition for wB(t), except when B

is entirely disjoint from the leafset of t. This definition ensures that wB(t) ≥ 0

for all clusters B and all gene trees t.

Minimizing B-maximal clusters (MBMCinc).

• Input: set T = {t1, t2, . . . , tk} of binary rooted trees, with ti on leafset

Si, for i = 1, ..., k.

• Output: binary rooted species tree T on S = ∪iSi such that
∑

i

∑

B wB(ti)

is minimized, where i ranges from 1 to k and B ranges over all clusters

in T .

We refer to this problem as MBMC-incomplete, and the optimal tree given

input T is given by MBMCinc(T). Note that when Si = Sj for all i, j, then

all the gene trees are complete (on the same set of taxa), and the problem

is identical to the MDC problem (optimal solutions to this problem minimize

the number of extra lineages).
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The main result in this chapter is the following:

Theorem 1: Let T be a set of incomplete, rooted, binary gene trees. If T =

MBMCinc(T) then there exists extensions t′i for each ti so that MDCinc(T) =

(T,T′), where T′ = {t′1, t′2, . . . , t′k}. Also, if MDCinc(T) = (T,T′), then T =

MBMCinc(T).

In other words, the species tree T that optimizes the MBMCinc crite-

rion is the species tree component of the optimal solution to MDCinc.

Phylonet-MDC and iGTP-MDC. The software packages Phylonet [143]

and iGTP [15] handle incomplete gene trees differently when attempting to

solve MDC, in that they can compute MDC scores differently. In particular,

Phylonet defines the MDC score using the MBMCinc cost, as described above

(i.e., the cost of a species tree T is
∑

i

∑

B wB(ti), where B ranges over the clus-

ters in T and i ranges from 1 to k). Theorem 1 thus shows that Phylonet-MDC

computes the MDC score correctly. By contrast, there are inputs for which

iGTP-MDC does not return this score, indicating that iGTP-MDC defines the

MDC score differently for incomplete gene trees. One particular instance in

which this occurs is as follows:

• Input gene trees: T1 = (((a, b), c), d), T2 = ((b, c), (d, e)), and T3 =

((a, d), (b, e)).
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• Output of Phylonet-MDC exact version: ((d,e),(a,(b,c,))), claiming 3

extra lineages.

• Output of iGTP(MDC): ((d,e),(c,(a,b))), and claims 2 extra lineages.

By our calculation and definition forMDCinc, Phylonet-MDC correctly

computes the number of extra lineages, but iGTP does not. We conjecture

that iGTP seeks the species tree T that minimizes
∑

i XL(Ti, ti), where Ti is

the subtree of T induced by Si. Therefore, iGTP-MDC and Phylonet solve

different problems when given gene trees that are incomplete.

6.3 Establishing the relationship between MDCinc and

MBMCinc

In this section we establish the relationship between optimizing the

MDCinc and MBMCinc problems. As a result of this theorem, it will follow

that the exact formulation of Phylonet-MDC solves the MDC problem opti-

mally. That is, given an input of incomplete, binary rooted gene trees, to find

an optimal species tree and completions of the binary gene trees it will suffice

to find a minimum weight clique containing n − 2 vertices (where n is the

number of taxa) in the graph defined by Phylonet, which has one vertex for

each possible cluster, edges between vertices exist if and only if their clusters

are compatible (either disjoint or one contains the other), and the weight on

the vertex for cluster B set to wB.

We begin with the following lemma.
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Lemma 6.3.1. Let T and t be rooted binary trees with L(t) ⊂ L(T ), and let

X be a maximal cluster in T with X ∩ L(t) = ∅. Let B0 be the sibling cluster

of X in T (i.e., X ∪B0 is the smallest cluster in T that properly contains X),

and let A0 be any B0-maximal cluster in t. Let t′ be the rooted binary tree

obtained by modifying t by inserting the clade for X as the sibling to the clade

on A0. Then for all clusters B of T , wB(t) = wB(t
′).

Proof. We consider the four cases that can occur in a species tree T in which

B,B0 and X are clusters:

• Case 1: B ⊆ X

• Case 2: B ⊆ B0

• Case 3: B0 ∪X ⊆ B

• Case 4: (B0 ∪X) ∩B = ∅

We take each case in turn.

Case 1: B ⊆ X . In this case, B is a cluster in the clade on X , and

hence a cluster in t′. Therefore, wB(t
′) = 0. Since B ⊆ X , it follows that

B ∩ L(t) = ∅, and so (by definition) wB(t) = 0.

Case 2: B ⊆ B0. First, if B ∩ L(t) = ∅, then B ∩ L(t′) = ∅ and

wB(t) = wB(t
′) = 0. Hence, assume that B ∩ L(t) 6= ∅. We will show that A

is a B-maximal cluster in t if and only if A is a B-maximal cluster in t′, and

so wB(t) = wB(t
′). Suppose A is B-maximal in t. Then A is a cluster of t
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and (since A ⊆ B ⊆ B0) also a cluster of t′. Hence A will be B-maximal for

t′ unless the parent cluster in t′ of A is a subset of B. Since A is B-maximal

in t, the parent cluster of A in t is not a subset of B. Note that A’s parent

cluster in t′ is either the same cluster as in t, or else the parent cluster in t′

contains A0 ∪X ; in either case, the parent cluster of A in t′ is not a subset of

B. Therefore, A is also B-maximal in t′.

Conversely, suppose A is a B-maximal cluster in t′. Since A ⊆ B ⊆ B0,

A is a cluster in t. If A is B-maximal in t, then we are done. Else, suppose A is

not B-maximal in t. Note that A cannot have the same parent cluster in t and

t′, since otherwise A is also B-maximal in t′ (contradicting our hypothesis),

and so A’s parent cluster in t′ must contain A0∪X . Hence, A’s parent cluster

in t must be defined by an internal node on the path from the root of A0 to

the root of t. Label the nodes on that path root(A0) = v0, v1, . . . , vt = root(t),

and let the “other” child of each vi, i = 1, 2, . . . , t be wi, defining cluster Ai.

Note that A1 is the sibling cluster to A0 in t. Then A = Ai for some i. Note

that if A = A0, then A is B-maximal in t (since A0 is B0-maximal in t and

B ⊆ B0). Note also that A 6= A1, since otherwise A1 is B-maximal, and

so A1 ⊆ B ⊆ B0, contradicting that A0 is B0-maximal. Now suppose that

A = Ai, for some i ≥ 2. Then the parent cluster of A in t contains X , and so

is not a subset of B, establishing that A is B-maximal in t as well. Therefore,

wB(t) = wB(t
′).

Case 3: B0 ∪ X ⊆ B. Our first observation is that A0 is B-maximal

in t if and only if A0 ∪ X is B-maximal in t′. Hence, we need only concern
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ourselves with the B-maximal clusters in t other than A0, and (equally) with

the B-maximal clusters in t′ other than A0 ∪X . However, when A 6= A0, it is

easy to see that A is a B-maximal cluster in t if and only if A is a B-maximal

cluster in t′. Hence, wB(t) = wB(t
′).

Case 4: (B0 ∪X)∩B = ∅. It is easy to see that for any cluster A, A is

B-maximal in t if and only if A is B-maximal in t′, and so wB(t) = wB(t
′).

The following lemma is obvious and the proof is omitted:

Lemma 6.3.2. Let t be an incomplete gene tree, T a species tree, and t′ a

completion of t to the taxon set of T . Then wB(t) ≤ wB(t
′) for all clusters B

of T .

Theorem 6.3.3. Let T be a set of incomplete, rooted, binary gene trees. If T =

MBMCinc(T) then there exists extensions t′i for each ti so that MDCinc(T) =

(T,T′), where T′ = {t′1, t′2, . . . , t′k}. Also, if MDCinc(T) = (T,T′), then T =

MBMCinc(T).

Proof. Let t ∈ T be given, and let T = MBMCinc(T). By Lemma 6.3.2, for

any completion t′ of t and any cluster B of T , wB(t
′) ≥ wB(t). By Lemma

6.3.1, there is a completion t′ of t that achieves wB(t) = wB(t
′) for all clusters

B of T . Since t was arbitrary, we can let T′ denote the set of completions of

each t ∈ T so that wB(t) = wB(t
′) for all clusters B of T . Hence, the number

of extra lineages in T with respect to T′ is
∑

B

∑

i wB(t), where B ranges over

the clusters B of T and i ranges from 1 to k, where T = {t1, t2, . . . , tk}. It
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follows, by Lemma 6.3.2, that T has the minimum number of extra lineages

with respect to any set of completions of T, and so (T,T′) is a solution to

MDCinc(T).

For the converse, let (T,T′) be a solution to MDCinc(T), with T′ =

{t′1, t′2, . . . , t′k} (each t′i a completion of ti). Then since T′ is a set of rooted,

binary, complete gene trees (i.e., all on the same set of taxa as T ), it follows

that XL(T,T′) =
∑

i

∑

B wB(t
′
i), as B ranges over the clusters of T and i

ranges from 1...k, and that this is the minimum possible among all species

trees T and set T′ of completions of the gene trees. Therefore, for all clusters

B in T and for all i, wB(ti) = wB(t
′
i), since otherwise we could complete ti

differently. Now suppose the tree T isn’t an optimal solution to MBMCinc(T).

Therefore, for some other binary rooted species tree T ∗ on the same set of taxa,
∑

B

∑

iwB(ti) < XL(T,T′), where B ranges over the clusters of T ∗. But then

there is a completion T∗ of the gene trees in T so thatXL(T ∗,T∗) < XL(T,T′),

contradicting our hypothesis.

6.4 Materials and methods

6.4.1 Overview

The simulation study used gene sequences that evolve down gene trees

that can differ from the true species tree due to ILS. To produce these sequence

datasets, we used sequences used in previous studies and provided to us by

the authors of these studies–the 11-taxon datasets from [19], the 17-taxon

datasets from [141], and the 100-taxon datasets from [152]. We summarize the
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simulation protocols used in these studies here, and direct the reader to the

relevant publication for the details of how the data were generated.

In each case, a model species tree was generated (typically using a birth-

death process). Then a set of gene trees within each species tree was produced

under a coalescent process, so that for each gene one individual was sampled

for each species. This produces gene trees with branch lengths that can differ

topologically from their associated species tree due to ILS. DNA sequences

were then simulated down each gene tree. For the 11-taxon and 17-taxon

datasets, these simulations were done under a substitution-only model, and for

the 100-taxon datasets these simulations were done under GTR+Gamma+gap

models with varying gap lengths; thus, the 100-taxon datasets evolved with

indels as well as with substitutions. Many replicates were generated for each

model condition, and each replicate consisted of true sequence alignments for

each gene.

For each replicate dataset we had the true alignment as well as the true

tree. We then deleted taxa randomly, varying the number of taxa removed,

from each gene sequence alignment, thus producing incomplete gene sequence

alignments. On each resultant gene sequence alignment we estimated trees

using FastTree-2 [114]; this produces a tree as well as branch support estima-

tions. We produced a 75%-branch support version of each estimated gene tree

by contracting all edges with support below 75%.

For each replicate of each model, we thus have three types of datasets

(each consisting of a collection of gene sequence alignments and trees): the
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true gene sequence alignment, the binary trees estimated by FastTree-2 on the

true gene sequence alignment, and the 75%-branch support FastTree-2 trees

estimated on each true gene sequence alignment.

For each such dataset, we estimated species trees using the following

techniques:

• iGTP v. 1.1. We explore all three optimization criteria (deep coalescence,

duplications, duplication-loss) available in iGTP. We ran iGTP on 75%

support version of the input binary trees, although it is not guaranteed

to give meaningful outputs for non-binary gene trees.

• Phylonet v. 2.4. We explore both heuristic and exact version of Phylonet

used to solve the MDC problem on both binary and unresolved gene

trees. However, the exact version can only be run on small datasets, and

so we used it only on the 11-taxon datasets.

• Matrix Representation with Parsimony (MRP). We ran MRP heuristics

on the FastTree-2 trees (both binary and 75%-support versions), using

a Python script to run a parsimony ratchet analysis using PAUP*, with

100 iterations, followed by taking the greedy consensus of the set of trees.

• *BEAST v. 1.6.2. We ran *BEAST on the true alignments for each

dataset using its default settings.

We recorded the average (over all replicates) missing branch rate and

running time for each method. When computing the missing branch rate,
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we compare the estimated species tree to the subtree of the true species tree

induced by those species present in at least one gene tree.

6.4.2 Datasets

We ran our experiments on datasets that evolve with ILS. We used

11-taxon datasets, each with 10 genes, obtained from [19]. We also used 17-

taxon datasets with 8 genes each, used previously in [141]. Finally, we used

100-taxon datasets with 25 genes each, used in [152].

6.5 Results

6.5.1 Missing branch rates

We begin by discussing performance with respect to missing branch

rates.

6.5.1.1 Results on 11-taxon datasets

For these datasets, we were able to run the exact version of Phylonet-

MDC, and hence solve the MDC problem exactly. As before, we ran the

heuristic version of Phylonet-MDC, the three iGTP methods (for the MDC

score, duplication score, and duplication plus losses score), and MRP. We

explored results with two, three, and five missing taxa; see Figure 6.1.

The first observation is that *BEAST produced the most accurate

species trees, for all percents of missing taxa. The second best method varied

depending on the percentage of missing taxa, with MRP on the 75%-support
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trees best for 20% missing taxa, Phylonet-exact on the 75%-support trees best

for 30% missing taxa, and MRP best for 50% missing taxa. Thus, there was no

clear second best method. Furthermore, although these three methods gener-

ally gave reasonably good results, they were not always among the next most

accurate. Between the iGTP methods, iGTP-dup had the worst results, and

iGTP-MDC and iGTP-duploss were sometimes reasonably accurate. A note-

worthy trend was that Phylonet-heuristic gave the worst results at all percents

of missing taxa, whether applied to the fully resolved trees or the 75%-support

trees. Finally, using the 75%-support trees instead of the fully resolved trees

improved MRP and Phylonet (both exact and heuristic) for small numbers of

missing taxa, but not when the number of missing taxa was large. Also, using

the 75%-support trees did not help the other methods.

6.5.1.2 Results on 17-taxon datasets

Performance on 17-taxon datasets with 8 genes showed similar results,

see Figure 6.2. Because of the number of taxa, we did not run Phylonet-exact.

However, the results we saw here are similar to what we saw on the 11-taxon

datasets. As before, *BEAST was the most accurate, for all percents of missing

taxa. The next best methods were MRP and iGTP-MDC (on either binary or

75%-support trees), and sometimes also iGTP-duploss on binary trees, but all

had at least 7% higher missing branch rates than *BEAST. The worst results

were obtained using Phylonet-heuristic and iGTP-dup on either the binary or

75%-support trees.
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Figure 6.1: Average missing branch rates of methods on twenty (20)
11-taxon 10-gene datasets on true alignments (TA). Gene trees are
estimated using FastTree-2 (FT), and in some cases the branches with support
less than 75% are contracted (FT-75). From top to bottom, the number of
missing taxa is 2, 3, and 5. 137
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Figure 6.2: Average missing branch rates of methods on twenty (20)
17-taxon 8-gene datasets on true alignments (TA). Gene trees are es-
timated using FastTree-2 (FT), and in some cases the branches with support
less than 75% are contracted (FT-75). From top to bottom, the number of
missing taxa is 1, 5, and 8. 138



6.5.1.3 Results on 100-taxon datasets

We now describe results on the 100-taxon datasets. Because of the

number of taxa, we did not run *BEAST (running long enough to reach con-

vergence was infeasible for this experimental study), nor Phylonet-exact. How-

ever, these data allow us to compare the other methods, Phylonet-heuristic,

the three variants of iGTP, and MRP, on both binary and 75%-support trees;

see Figure 6.3.

On the estimated gene trees, MRP on the 75%-support trees gives the

most accurate trees, but MRP on binary trees comes quite close. The least

accurate method is Phylonet-heuristic on binary trees, and Phylonet-heuristic

on 75%-support trees is only slightly better (and much less accurate than

all the other methods). A comparison between the iGTP methods no longer

shows no reliable differences: for example, sometimes iGTP-MDC is the best

and sometimes it is the worst of the three.

6.5.1.4 Overall results

For all levels of missing data, certain trends were clearly seen. Results

for all methods improved when given more estimated gene trees rather than

fewer; these trends are to be expected, and consistent with prior studies (see,

for example, [152]). In addition, we saw that for each species tree estimation

method, the missing branch rate increased with increased levels of taxon dele-

tion, but the increase in error was particularly large for the heuristic version

of Phylonet-MDC.
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Figure 6.3: Average missing branch rates of methods on ten (10)
100-taxon 25-gene datasets on true alignments (TA). Gene trees are
estimated using FastTree-2 (FT), and in some cases the branches with support
less than 75% are contracted (FT-75). From top to bottom, the number of
missing taxa is 10, 30, and 50. 140



The relative performance between methods showed clearly that when

analyzing estimated gene trees, *BEAST produced the most accurate results

(as indicated by the lowest missing branch rate). MRP, especially on the

75%-support trees, typically came in second or close to second, and when

Phylonet-exact could be run, it gave results that were close to that of MRP.

However, in all the experiments, Phylonet-heuristic gave the least accurate

results or tied for last. Comparisons between the iGTP methods depended on

the model condition, and no overall trends could be observed.

Using 75%-support trees had a variable effect on the different methods

we explored. First, on low taxon deletion levels, Phylonet-MDC (in either the

exact or heuristic version) and MRP were improved by using the 75%-support

trees, but this changed for the highest level of taxon deletion. Why this is

happened is unclear, although it could be that the branches on the estimated

gene trees had low support when estimated on very sparse taxon sets (such as

would be obtained by deleting many taxa), leading to more loss of information

when using the 75%-support trees. On the other hand, the iGTP methods did

not show any advantage when used with 75%-support trees, and were often

hurt.

6.5.2 Computational Issues

We also evaluated the running time and memory usage of the differ-

ent methods we studied. Phylonet-exact uses time that is exponential in the

number of taxa, and so could only be run on the 11-taxon datasets; however,
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on these datasets it completed in less than 2 seconds. The next most expen-

sive method is *BEAST, which must be run long enough to converge to the

stationary distribution. Therefore, we only ran *BEAST on the 11-taxon and

17-taxon datasets. On average, *BEAST finished its analyses in 15 minutes on

the 11-taxon datasets and 20 minutes on the 17-taxon datasets. The remaining

methods were much faster: all finished in under a second on the 11-taxon and

17-taxon datasets, and in under a minute on the 100-taxon datasets. Some

differences in running time were evident on the 100-taxon datasets, where

Phylonet-heuristic finished in 6 seconds, MRP finished in 20 seconds, but the

three iGTP methods took between 20-64 seconds. Peak memory usage by

these methods all differed, but only *BEAST used any substantial memory –

about 1GB on the 17-taxon datasets.

6.6 Discussion

We begin with some observations about methods that attempt to opti-

mize the MDC criterion. First, it is clear that iGTP-MDC generally gives more

accurate trees than Phylonet-MDC run in its heuristic mode; however, when

the exact version of Phylonet-MDC can be run, it produces more accurate trees

than its heuristic version, and also more accurate trees than iGTP-MDC. The

reason for this is likely due to the improved MDC scores produced by using

the exact version of Phylonet-MDC (which are mathematically guaranteed),

compared to the other methods. It is worth noting that the substantial reduc-

tion in topological accuracy by using the heuristic version instead of the exact
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version of Phylonet-MDC is almost certainly a result of the fact that all the

gene trees are incomplete, with randomly deleted taxa. This greatly impairs

the ability of Phylonet-MDC’s heuristic to score trees that are topologically

similar to the true tree, since all the clades in any estimated tree must be drawn

from the input gene tree clades in this case. However, the heuristic used in

iGTP-MDC explicitly searches through treespace and so is not impaired in

the same way. Given that previous research [152] has shown very good trees

resulting from Phylonet-MDC’s heuristic version when the input gene trees

are all complete, it seems likely that Phylonet-MDC might give better results

when the taxon deletion is not random, or when at least some of the gene

trees are based on complete taxon sets. Thus, although this study showed

poor accuracy for Phylonet-MDC’s heuristic, this trend may not hold under

other circumstances, including those that might better represent systematic

practice. Future work will investigate this possibility.

We also note that contracting low support branches in estimated gene

trees typically (but not always) benefited Phylonet-MDC and MRP, but not

the iGTP methods. This difference is likely due to differences in the treatment

of unresolved gene trees within the iGTP, Phylonet-MDC, and MRP software.

For example, it seems likely that iGTP-MDC and Phylonet-MDC do not score

proposed species trees identically when the input gene trees are unresolved

(Phylonet-MDC scores species trees with respect to optimal refinements of

unresolved gene trees [155], a guarantee that may not be true of iGTP-MDC).

This study establishes that there is currently no computationally feasi-
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ble solution for estimating highly accurate species trees from incomplete gene

trees for large numbers of taxa. That is, only *BEAST was able to pro-

duce highly accurate species trees; all other methods had much higher error

rates. Therefore, for small enough numbers of taxa so that *BEAST can be

run properly without huge running times, very accurate species trees can be

computed. Although this study did not investigate the feasibility of running

*BEAST on larger datasets, other studies with Bayesian methods have shown

that proper analyses of datasets (even small ones) can take weeks of analysis

to reach convergence [152]. Therefore, the poor results of the other methods

on larger datasets suggests that highly accurate species tree estimations from

incomplete gene trees and alignments may be beyond what current methods

can achieve.

This study also suggests some limitations to analyses based on MDC.

Unsurprisingly, we saw that optimizing MDC generally gave better results than

optimizing duplications or duplications and losses. We also observed (as had

been noted earlier in [152]) that optimizing the total number of duplications

and losses produced more accurate trees than optimizing duplications alone.

Finally, and perhaps most interestingly, we noted that optimizing MDC

produced generally less accurate trees than optimizing MRP. This is a very

interesting result, given that MRP is agnostic about the cause of incongruence

between gene trees, and MDC explicitly addresses ILS as the cause for incon-

gruence. However, there is no mathematical explanation for why MRP would

perform well, and so this remains only an empirical observation.
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This study shows that the standard heuristics (the parsimony ratchet

as implemented in PAUP*) for the supertree method MRP produces highly

accurate species tree estimations, even though it does not consider ILS, and

can do so reasonably quickly, even on large datasets. These observations, com-

bined with the observation that none of the methods we studied (other than

*BEAST) that explicitly take into account events such as ILS or duplication

and loss produced trees as accurate as MRP, suggest that optimizing MRP

may be a reasonable approach to species tree estimation for large datasets,

when statistical methods (such as *BEAST) cannot be run for computational

reasons. Therefore, other supertree methods, such as SuperFine [101, 102, 136],

a new supertree method that has been shown to produce better MRP scores

and more accurate trees than standard MRP heuristics (while also being faster

than standard MRP heuristics), should also be investigated. Finally, for com-

plete gene trees, the greedy consensus produced highly accurate species trees,

despite not being statistically consistent (at least when used on rooted gene

trees, as shown in [26]). Given this observation, other consensus methods (see

[12], [63], and [113] for some entries into the literature on consensus methods)

might also be useful for estimating species trees for large numbers of taxa.

6.7 Conclusion

Species tree estimation from incomplete gene trees that can differ from

the true species tree due to ILS presents many interesting theoretical and

empirical challenges: excellent results can be obtained using *BEAST, a sta-
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tistical approach that explicitly models the processes that cause incongruence

between gene trees and species trees, but *BEAST is too computationally

intensive for even moderately large datasets. In contrast, a very simple su-

pertree method, MRP, is able to provide reasonably good results on very large

datasets, even though it does not provide statistical guarantees. Thus, while it

seems likely that methods based on sound statistical models will produce the

most accurate species trees, the current methods that can analyze incomplete

gene trees are either limited to small datasets, or are not based upon statisti-

cal models of gene tree incongruence. Given the increased use of multi-marker

analyses for species tree estimation, methods that are both statistically-based

and can run on large datasets (and can analyze incomplete gene datasets), are

likely to have high impact. Future work will hopefully produce methods that

are scalable and statistically-based, and that produce highly accurate trees on

datasets with large, incomplete gene trees.
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Chapter 7

Naive Binning

Species tree estimation in the presence of incomplete lineage sorting

(ILS) is a major challenge for phylogenomic analysis. Although many methods

have been developed for this problem, little is understood about the relative

performance of these methods when estimated gene trees are poorly estimated,

due to inadequate phylogenetic signal.

We explored the performance of some methods for estimating species

trees from multiple markers on simulated datasets in which gene trees differed

from the species tree due to ILS. We included *BEAST, concatenated analy-

sis, and several summary methods: BUCKy, MP-EST, MDC, MRP, and the

greedy consensus. We found that *BEAST and concatenation gave excellent

results, often with substantially improved accuracy over the other methods.

We observed that *BEAST’s accuracy is largely due to its ability to co-estimate

the gene trees and species tree. However, *BEAST is computationally inten-

Much of the material in this chapter is taken without alteration from the following
paper.

• M. S. Bayzid and T. Warnow. Naive binning improves phylogenomic analyses. Bioin-
formatics, 29(18):2277–84, 2013

MSB and TW designed the study; MSB performed the study; MSB and TW analyzed the
data, and wrote the paper.

147



sive, making it challenging to run on datasets with 100 or more genes or with

more than 20 taxa.

We propose a new approach to species tree estimation in which the

genes are partitioned into sets, and the species tree is estimated from the

resultant “supergenes.” We show that this technique improves the scalability

of *BEAST without affecting its accuracy and improves the accuracy of the

summary methods. Thus, naive binning can improve phylogenomic analysis

in the presence of ILS. We also developed an improved version of the binning

technique called weighted statistical binning (WSB) [5], which we will describe

in Chapter 8.

7.1 Introduction

Species tree estimation from multiple genes is often performed using

concatenation (also called “combined analysis”): alignments are estimated

for each gene and concatenated into a supermatrix, which is then used to

estimate the species tree. When gene trees are identical, concatenation can

give very accurate results; however, this approach to species tree estimation is

potentially problematic when gene trees differ from the species tree (and hence

from each other) due to several biological factors, including gene duplication

and loss, horizontal gene transfer, and incomplete lineage sorting.

The best studied of these problems is species tree estimation in the pres-

ence of incomplete lineage sorting (ILS), which is based on the multi-species

coalescent [146]. Many methods have been developed to estimate species trees
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in the presence of ILS, beginning with the MDC (minimize deep coalescence)

approach suggested in [84], and now including many different types of methods

(see [28, 67] for a discussion of some methods). Some of these new methods

(for example, MP-EST [80] and the population tree from BUCKy [1, 73]) have

been proven to be statistically consistent in the presence of ILS. In contrast,

the greedy consensus, majority consensus, the concordance tree from BUCKy,

and MDC [1, 26, 142] can be inconsistent in the presence of ILS (i.e., there are

some parameter settings under which these methods are inconsistent). The

Bayesian method *BEAST [33] may produce a statistically consistent point

estimate (e.g., the MAP tree) of the species tree, but a formal proof has not

yet been provided (however, see [131], which proves the statistical consistency

of gene tree estimation using Bayesian MCMC methods). When true gene

trees differ due to ILS, combined analyses can be statistically inconsistent

[26, 119], and can produce incorrect estimates of the species tree, sometimes

with high confidence [24, 36, 69, 73, 74, 80, 124].

As a result of these studies and the growing awareness that ILS can be

present in many phylogenomic datasets, there is great interest in using ILS-

based estimation of species trees instead of concatenated analysis [28, 35, 53,

67]. However, only a few studies have been published comparing ILS-based

methods and even fewer have compared concatenated analyses to ILS-based

methods. Performance in simulation has been mixed, with ILS-based methods

outperforming concatenation in some cases but not all [24, 33, 36, 74, 80]. The

performance of ILS-based methods on biological datasets has also been mixed,
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with concatenation often producing trees with very high bootstrap support

that may not be completely correct, but ILS-based methods often producing

trees with very low bootstrap support [88, 129]. Thus, we still do not know very

much about the relative performance of ILS-based methods, how they compare

to methods (such as concatenation) that do not take ILS into account, and

what factors impact the absolute and relative performance of methods.

In this chapter, we report on a simulation study to evaluate a collec-

tion of methods for estimating species trees and gene trees in the presence

of ILS. Our simulation study includes datasets generated under three model

conditions from prior studies [19, 155]. One model condition has 17-taxon

datasets that evolve under a strong molecular clock, and the other two model

conditions have 11-taxon datasets that do not evolve under a clock. The

amount of ILS varies between the three model conditions, ranging from rel-

atively low amounts to very high amounts. Finally, estimated gene trees on

these datasets have low average bootstrap support due to insufficient phylo-

genetic signal, reflecting conditions often encountered when sampling genes

from throughout the genome. We study a wide range of methods for esti-

mating species trees from multiple markers, including *BEAST [33], both the

population and concordance trees returned by BUCKy [1, 73], MP-EST [80],

Phylonet-MDC [143, 155], greedy consensus (GC) (also called the extended

majority consensus), matrix representation with parsimony (MRP) [3], and

concatenation using maximum likelihood (CA-ML).

Our study revealed that many methods have poor accuracy when the
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individual gene sequence alignments have low phylogenetic signal. This vul-

nerability to poor signal affects all methods, but especially those that combine

estimated gene trees; by comparison, *BEAST and CA-ML are relatively less

impacted.

We developed an approach to address the vulnerability of species tree

methods to low phylogenetic signal. We randomly partitioned the genes into

subsets (which we call “supergenes”), estimated trees from these supergene

alignments, and then used methods to estimate the species tree from the su-

pergene trees. This approach did not produce statistically significant changes

in accuracy on the 17-taxon datasets, but improved the accuracy of the trees

estimated by combining estimated gene trees, often very substantially, on the

11-taxon datasets. Running *BEAST on the binned supergene alignments

did not impact its accuracy, but did improve its scalability. Furthermore,

when used with binning, several methods came close to being as accurate as

*BEAST, while being orders of magnitude faster than *BEAST. Thus, this

study suggests that highly accurate large-scale phylogenomic analyses may be

achievable through a naive binning technique.

7.2 Materials and methods

See Appendix A for details.

Datasets: We used simulated 11-taxon [19] and 17-taxon [155] multi-gene

datasets. The 11-taxon datasets have 100 genes, and the 17-taxon datasets
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have 32 genes. The protocols used in the two studies were fairly similar,

however, the 11-taxon datasets reflect more heterogeneity, and hence are less

idealized than the 17-taxon datasets. In each case, a model species tree was

generated and a set of gene trees within each species tree (with one haploid

individual sampled per species) produced under a coalescent process. This

produces gene trees that can differ topologically from their associated species

tree due to ILS. DNA sequences were then simulated down each gene tree

under the Jukes-Cantor model. 100 replicates were generated for each model

condition, and each replicate consisted of a set of true sequence alignments

(i.e., one alignment for each gene).

The 11-taxon and 17-taxon datasets differ in some regards. First, the

17-taxon datasets evolved under a molecular clock, but the 11-taxon datasets

did not. Second, the 11-taxon datasets have very short sequences (only 500

nucleotides), but the 17-taxon datasets have long sequences (2000 nucleotides).

In the 11-taxon model conditions, there is substantial rate variation between

the gene trees and species tree, but this is not true for the 17-taxon model

conditions. Finally, the model conditions also varied in the amount of ILS, as

we now discuss.

We calculated two statistics to evaluate the level of ILS in each model

condition: the “average clade distance” between the true species tree and the

true gene trees and the percentage of the true gene trees that have the same

topology as the true species tree. The clade distance between two rooted

trees (i.e., the rooted analog of the bipartition distance) is the total number of
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unique non-trivial clades (in one tree but not in both) divided by 2n−4. Thus,

if two rooted trees on 7 leaves share exactly 2 clades in common, the clade

distance is 60%. Using this metric, the 17-taxon datasets have the highest

amount of ILS (avg. clade distance 25.7%). The 11-taxon datasets came in

two forms, one with somewhat lower (but still high) amounts of ILS (avg. clade

distance 14.8%), and one with very low amounts of ILS (avg. clade distance

2.9%). We refer to the two 11-taxon models as strongILS and weakILS, ac-

cordingly. The percent of gene trees that match the species tree also fits with

this relative ranking: 73.1% for the 11-taxon weakILS datasets, 21.3% for the

11-taxon strongILS datasets, and only 1.7% for the 17-taxon datasets. Thus,

the 17-taxon datasets have extremely high levels of ILS, but the 11-taxon

strongILS also have a high level of ILS.

Selecting subsets of genes. For the 17-taxon datasets, we used the

provided 8-gene and 32-gene datasets; for the 11-taxon datasets, we sampled

from the 100 genes to produce subsets with the desired number of genes.

Gene tree estimation: We compared *BEAST, RAxML v. 7.3.1 [130],

and FastTree-2 [114], as gene tree estimators. We used 20 runs of RAxML

on each of the alignments, and retained the tree with the best ML score; for

FastTree-2, we used it with only one run (since it is deterministic, it is not

improved by multiple runs). For *BEAST, we ran it as described below. We

used RAxML with 400 bootstrap replicates for BUCKy and for Phylonet.
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Species tree methods: We include *BEAST, MP-EST, BUCKy-pop,

BUCKy-con, CA-ML, the greedy consensus (GC), Phylonet-MDC, and ma-

trix representation with parsimony (MRP); see below for details. With the

exception of *BEAST and CA-ML, these methods estimate the species tree

by combining estimated gene trees; we refer to these as summary methods.

For MP-EST, MRP, and GC, we use the binary gene trees as input (these

methods either require binary gene trees or have not been shown to improve

by contracting low support branches [152]).

We used *BEAST v. 1.6.2 [33] in its default setting, and used the default

point estimates for the gene trees and species tree. For a given *BEAST

analysis, we discarded the first 10% of the trees returned by the analysis, and

then sampled one (1) out of each 1000 of the remaining trees. We ran *BEAST

long enough to return ESS values that were large enough to suggest possible

convergence. Even after 150 hours of analysis, the ESS statistics for *BEAST

on the 11-taxon 100-gene strongILS datasets were very poor, suggesting that

*BEAST had not converged; therefore, we omit results of *BEAST for these

datasets.

We used MP-EST [80] in its default setting, using MAXROUND=100000,

and with RAxML gene trees rooted at the provided outgroup.

We used BUCKy [1] with the default setting to compute two species

tree estimations - the population tree (BUCKy-pop) and the concordance tree

(BUCKy-con). We computed gene tree distributions using RAxML with boot-

strapping and also using *BEAST as input to BUCKy. On each model con-
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dition and number of genes, we ran BUCKy using a sufficiently large number

of MCMC iterations to reach sufficiently low standard deviations for the con-

cordance factors to suggest possible convergence.

We used Phylonet v. 2.4 [143] for a version of the NP-hard MDC (Min-

imize Deep Coalescence) problem that takes gene tree branch support val-

ues into consideration. Although MDC is not statistically consistent [142],

Phylonet-MDC can produce highly accurate species trees [152] when applied

to gene trees in which all the low support branches are collapsed. Phylonet

provides a technique to solve this version of MDC exactly, even for unrooted

gene trees [7, 155], which can be used on datasets with a small enough number

of taxa; we used this exact method for MDC for the 11-taxon datasets, and

Phylonet’s heuristic method (which restricts the solution space to those trees

all of whose bipartitions come from the input set of trees) for the 17-taxon

datasets. We used Phylonet on the ML gene trees with all branches having

bootstrap support less than 75% collapsed.

We used PAUP* to estimate MRP (matrix representation with parsi-

mony), using the standard heuristic search, and also to compute a greedy con-

sensus (GC) (also called the “extended majority consensus”) of the estimated

gene trees. Both of these analyses are performed on the binary gene trees

estimated by maximum likelihood. We also studied CA-ML, using RAxML

to infer a species trees from the super-alignment (without partitioning), and

using 10 independent runs (-N 10).
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Criteria: We report tree error using the missing branch rate (also known as

the FN or “false negative” rate), which is the proportion of internal branches

in the true tree defining bipartitions that are missing in the estimated tree.

The use of FN rates rather than Robinson-Foulds (RF) rates is due to the

observation that some of the methods for estimating trees produce unresolved

trees, and the RF rates would be biased in favor of these methods [117]. We

tested for statistical significance using the Wilcoxon signed rank test.

Experiments: The first experiment compared the “fast” methods (all meth-

ods except *BEAST and BUCKy) on 100 replicates of the 11-taxon and 17-

taxon datasets, varying the number of genes, using RAxML to estimate gene

trees. The second experiment compared the full set of methods on 20 repli-

cates of these model conditions, again using RAxML to estimate gene trees.

We explored the accuracy of gene trees estimated by RAxML, FastTree, and

*BEAST in the third experiment. The fourth experiment evaluated the accu-

racy of species trees computed for gene trees estimated by *BEAST. The fifth

experiment then examined the impact of binning genes into supergenes, using

a simple “naive” binning technique.

7.3 Results

We show results evaluating computational aspects of the different meth-

ods, and then results of the five basic experiments exploring accuracy. See

Appendix A for additional details.
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Computational issues. The phylogenomic pipelines we studied differed

dramatically in terms of their running times, making some methods infeasible

to use on some datasets within the limits of this study. Due to space lim-

itations, we present a brief discussion of the computational requirements of

the different methods, and direct the interested reader to Appendix A for full

results.

Pipelines that used *BEAST took the most time, with running times

of 80-150 hours for the 50-gene datasets with 11 taxa; analyses of the 100-gene

datasets with 11 taxa did not converge, even in 150 hours. The pipelines with

BUCKy, when used with distributions computed using RAxML bootstrapping,

took up to 5 hours, but were able to be run on even the 100-gene 11-taxon

datasets. Pipelines with Phylonet when used with the RAxML bootstrap trees

(restricted to the high support edges) took up to 2 hours per dataset (almost

all of that for running RAxML). Pipelines with MRP, GC, and CA-ML took

just a few minutes per dataset.

Because of these computational issues, we only ran BEAST on unbinned

datasets with at most 50 genes (and even these were very computationally

intensive). We also did not run *BEAST or unbinned BUCKy on more than

20 replicates for any model condition. Therefore, in the remaining study, we

show results for the “fast” methods (everything but *BEAST and BUCKy) on

100 replicates of the model conditions, and we examine *BEAST and BUCKy

on only 20 replicates of the model conditions. We do, however, show results

using BUCKy with binning on 100 replicates of some model conditions. In
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total, we estimate that we used at least 5000 CPU hours, just for the *BEAST

runs.

Experiment 1: The first experiment explored the accuracy of the “fast”

methods for estimating species trees, i.e., CA-ML, MP-EST, MRP, Phylonet,

and GC; see Figures 7.1, 7.2, and 7.3. CA-ML had the best accuracy, with very

large improvements over other methods on the 11-taxon datasets and small

improvements on the 17-taxon datasets. All the improvements are statistically

significant: p < 0.003 for the 11-taxon strongILS with up to 100 genes and the

11-taxon weakILS with up to 25 genes, and p ≤ 0.04 for the 17-taxon datasets.
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Figure 7.1: Results for “fast” methods on 100 replicate 11-taxon
weakILS models. CA-ML uses just the input alignments, and the other
methods use gene trees estimated using RAxML. We show average FN rates
with standard error bars.

Experiment 2: We then evaluated BUCKy-pop, MP-EST, *BEAST, CA-

ML, and BUCKy-con. Because *BEAST is computationally intensive, the
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Figure 7.2: Results for “fast” methods on 100 replicate 11-taxon
strongILS models. We show results (average FN rate with standard er-
ror bars) for up to 100 genes.
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Figure 7.3: Results for “fast” methods on 100 replicate 17-taxon mod-
els. We show average FN rates with standard error bars.
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analyses were limited to 20 replicates per datapoint. See Figures 7.4, 7.5, and

7.6.
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Figure 7.4: Results for *BEAST, BUCKy, MP-EST, and CA-ML on
20 replicate 11-taxon weakILS datasets. We show average FN rates
with standard error bars. CA-ML and *BEAST return the true tree on the
25-gene case, and all methods shown return correct trees on the 50-gene case.
Therefore, no results are shown for datasets with 100 genes.

Note that *BEAST and CA-ML are the two most accurate methods on

these data, with the greatest improvement over the other methods on the 11-

taxon weakILS datasets and the least improvement on the 17-taxon datasets.

The relative performance between CA-ML and *BEAST varied, with CA-ML

better in some cases and worse in others, and often the difference was small.

BUCKy-pop is in third place, and even matched the accuracy of *BEAST

on the 11-taxon strongILS datasets with 25 genes. A comparison between

BUCKy-pop and BUCKy-con shows that they had very close accuracy in most

cases, but that BUCKy-pop was sometimes more accurate than BUCKy-con
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Figure 7.5: Results for *BEAST, BUCKy, MP-EST, and CA-ML on
20 replicate 11-taxon strongILS datasets. We show average FN rates
with standard error bars.
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Figure 7.6: Results for *BEAST, BUCKy, MP-EST, and CA-ML on
20 replicate 17-taxon datasets. We show average FN rates with standard
error bars.
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(e.g., on the 11-taxon strongILS datasets with 25 or 50 genes), with statisti-

cally significant differences (p = 0.003 and p = 0.035, respectively).

Of these various observations, the most important here are the fol-

lowing: CA-ML and *BEAST had the best accuracy on these data; the gap

between methods was least on the 17-taxon datasets, and greatest on the 11-

taxon weakILS datasets; and all methods became less accurate with increases

in the amount of ILS. It is easy to understand why the methods that are not

statistically consistent under the multi-species coalescent model increase in

error with the degree of ILS, but not that easy to understand why *BEAST,

MP-EST, and BUCKy-pop decrease in accuracy with increases in ILS. Here

we offer a possible explanation for this trend.

Recall that the conditions that favor ILS are very short branches in

the species tree. Thus, the conditions that increase the amount of ILS (i.e.,

short branches) also make it challenging to estimate the gene trees. In fact,

the weakILS model trees have long branches (and are called “LB” in [19]),

and the strongILS model trees have short branches (and are called “SB” in

[19]), and gene trees estimated using RAxML have lower error on the 11-

taxon weakILS model conditions than on the strongILS model conditions (30%

vs. 40%, respectively). Therefore, it’s not at all surprising that species trees

estimated by combining gene trees under the highILS model conditions would

have higher error than species trees estimated by combining gene trees under

the lowILS model condition. Finally, the 17-taxon datasets had the highest

level of ILS, and on these data the summary methods perform the worst. Note
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that this vulnerability applies to all summary methods, even to the statistically

consistent methods like MP-EST and BUCKy-pop.

Experiments 3 and 4: The next two experiments attempted to under-

stand why *BEAST was so much more accurate than the summary methods.

In Experiment 3, we evaluated the accuracy of the gene trees estimated by

*BEAST, FastTree-2, and RAxML for all three model conditions, and ob-

served that *BEAST produces substantially more accurate gene trees than

FastTree-2 and RAxML. For example, under the 11-taxon weakILS model

condition with 50 genes, gene trees estimated by *BEAST had only 3.3% er-

ror while gene trees estimated by RAxML had 31.9% error - a reduction of

roughly 90%. More generally, the greatest improvement was for the model

condition with the lowest rate of ILS (11-taxon weakILS), and the least im-

provement was for the model condition with the highest rate of ILS (17-taxon

datasets). However, even on the 17-taxon datasets, the reduction was at least

50%. Results for the 17-taxon datasets are given in Figure 7.7; see Appendix A

for the other results. These analyses also show that RAxML has a small but

statistically significant advantage over FastTree (differences in missing branch

rate of at most 1.7% on the 11-taxon weakILS conditions, 2.5% on the 11-taxon

strongILS conditions, and 1.1% on the 17-taxon conditions).

In Experiment 4 (see Appendix A), we examine the results of using

the summary methods (i.e., BUCKy-con, BUCKy-pop, Phylo-MDC, MP-EST,

MRP, and GC) on inputs of gene trees estimated by *BEAST. These experi-
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Figure 7.7: Gene tree estimation error rates on 17-taxon datasets.
Average and standard error bars (over 20 replicates) of *BEAST, RAxML,
and FastTree-2.

ments show that species trees estimated by combining gene trees estimated by

*BEAST are essentially as accurate as the species trees estimated by *BEAST,

and there are no statistically significant differences. This suggests that the

accuracy obtained by *BEAST is primarily due to its improved gene tree ac-

curacy, rather than to some sophisticated way of combining accurate gene

trees.

Experiment 5: Since reduced phylogenetic signal in individual gene se-

quence alignments impacts the summary methods, we considered the following

approach.

• Step 1: Partition the genes into bins,

• Step 2: Within each bin, compute a “supergene” alignment, by concate-

nating the alignments for the genes in the bin,
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• Step 3: Compute a “supergene tree” using ML on each supergene align-

ment, and

• Step 4: Estimate the species tree from the set of supergene trees (using

one of the summary methods), or from the set of supergene alignments

(using *BEAST, for example).

Since this binning technique can put genes into the same bin that may not

share the same history, this approach is a blend of CA-ML and the species

tree estimation technique used in Step 4.

Our motivation for this approach is empirical. The hope is that since

each supergene has more sites, ML trees estimated on each supergene might be

more resolved than ML trees estimated on the individual genes. If the genes

placed in the same bin have the same gene tree topology, then this approach

could potentially lead to higher accuracy gene trees. If the genes placed in the

same bin have different gene tree topologies, then they may not represent any

gene tree that appears in the dataset, but may be closer to the species tree.

In either case, summary methods applied to these supergene trees might be

more accurate than summary methods applied to the individual gene trees.

Evaluating binning on fast methods. In our initial experiment, we

explored the impact of binning on the fast methods on 100 replicate datasets

of each model condition. We used bins with 5 genes each for the 11-taxon

datasets, and bins with 4 genes each for the 17-taxon datasets. We do not
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present results for *BEAST (unbinned or binned) or BUCKy on unbinned

datasets due to computational issues; however, we do show results for BUCKy

on binned datasets. Note also that because we ran CA-ML without partition-

ing, binning has no impact on CA-ML.

Results for the 11-taxon strongILS datasets are shown in Figures 7.8,

7.9, and 7.10. See Appendix A for results on the 11-taxon weakILS datasets

and 17-taxon 32-gene datasets. Binning improved accuracy for all methods

for the 11-taxon datasets (both weakILS and strongILS), but not always sta-

tistically significantly. Results on the 17-taxon datasets showed that binning

did not have any statistically significant impact on any method (p > 0.22).
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Figure 7.8: Results of binning experiments of the fast methods on
100 replicates of the 11-taxon 25-gene strongILS datasets. We show
average FN rate with standard error bars. Each bin contains 5 genes. We omit
BUCKy on unbinned genes and *BEAST (binned or unbinned) because these
are too slow to run on all 100 replicates within our time limits. CA-ML is not
impacted by binning because it uses an unpartitioned analysis.

On the 11-taxon weakILS datasets with 25 genes, all methods improved
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Figure 7.9: Results of the binning experiment for the fast methods on
100 replicates of the 11-taxon 50-gene strongILS datasets. We show
average FN rates with standard error bars. Each bin contains 5 genes. We
omit BUCKy on unbinned genes and *BEAST (whether binned or unbinned)
because these are too slow to run on all 100 replicates within our time limits.
CA-ML is not impacted by binning, because it uses an unpartitioned analysis.
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Figure 7.10: Results of the binning experiment for the fast methods on
100 replicates of the 11-taxon 100-gene strongILS datasets. We show
average FN rates with standard error bars. Each bin contains 5 genes. We
omit BUCKy on unbinned genes and *BEAST (whether binned or unbinned)
because these are too slow to run on all 100 replicates within our time limits.
CA-ML is not impacted by binning because it uses an unpartitioned analysis.
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in accuracy. These improvements were statistically significant for MP-EST and

Phylonet (p = 0.002 and p = 0.016, respectively), but not for the other sum-

mary methods. However, all methods were already highly accurate without

binning.

Binning produced large reductions in error for many methods on the

11-taxon strongILS datasets with 25 genes. Phylonet-MDC showed the largest

improvement (reduction from 12.6% to 9.6%, p = 0.002), MP-EST showed the

second largest improvement (reduction from 11.0% to 8.8%, p = 0.021), and

GC and MRP showed the least improvement (reductions of at least 1%, but

not statistically significant, p = 0.16 and p = 0.18, respectively).

On 50 genes, all methods had reductions in error, with Phylonet-MDC

showing the largest improvement (reduction from 8.9% to 4.1%, p < 10−5),

GC showing the next largest improvement (reduction from 9.6% to 5.4%, p <

10−4), MRP the next largest improvement (reduction from 9.1% to 5.3%, p <

10−4), and MP-EST with the smallest improvement (reduction from 7.3% to

5.7%, but not statistically significant, p = 0.057).

On 100 genes, all methods had reductions in error, and again Phylonet-

MDC had the largest improvement (reduction from 5.4% to 2.4%, p < 10−3),

GC had the next largest (reduction from 5.4% to 3.4%, p = 0.007), and MRP

and MP-EST showing smaller improvements that were not statistically signif-

icant (p > 0.07).

Thus, binning improved the accuracy of all methods on the 11-taxon
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model conditions, with large reductions for the strongILS conditions and smaller

(but still significant) reductions on the weakILS conditions. The greatest im-

provements were for intermediate numbers of genes, in which the methods used

without binning still had some error (and hence could be improved), but had

enough genes so that binning produced a reasonable number of supergenes.

Binning had no statistically significant impact on the 17-taxon model condi-

tions with 100 replicates (p > 0.22). CA-ML was still the most accurate of

all tested methods, but some methods came close to the accuracy of CA-ML

when used with binning.

Evaluating binning on all methods. Due to the computational effort

in using *BEAST, we limited the analysis to only 20 replicates of each model

condition. We limit this discussion to the impact of binning on *BEAST and

BUCKy, since the analysis on 100 replicate datasets allowed us to evaluate

binning on the other methods with a higher number of replicates. Results on

the 11-taxon weakILS datasets with 25 genes are shown in Appendix A; all

methods improved, but the improvement was statistically significant only for

BUCKy-pop (reduction from 3.1% to 0.0%, p = 0.03). Results on the 20-

replicate 17-taxon datasets (see Appendix A) show no statistically significant

differences (p > 0.3) for BUCKy-pop, BUCKy-con, and *BEAST, and all

differences were very small (at most 0.5%). Results on 11-taxon strongILS

datasets are shown in Figures 7.11 and 7.12. BUCKy-pop generally improved

with binning, but the results were not statistically significant (p > 0.06).
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BUCKy-con also improved using binning (reduction in error from 14.3% to

9.4% on 25 genes, from 12.5% to 5% on 50 genes, and from 5.6% to 2.5% on

100 genes), and the changes on 25 and 50 genes were statistically significant

(p = 0.018 and p = 0.005, respectively).

The impact of binning on *BEAST is interesting. On the 100-gene

datasets, we were unable to run *BEAST to convergence without binning even

with 150 hours of analysis; however, *BEAST was able to reach acceptable ESS

values in only 10 hours using 4 threads when run on 20 bins with 5 genes each.

Thus, the use of binning did not impact the accuracy of *BEAST, but it made

it feasible to use *BEAST on datasets with large numbers of genes.
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Figure 7.11: Results of the binning experiment for all methods on 20
replicate 11-taxon 50-gene strongILS datasets. CA-ML is not impacted
by binning since it is an unpartitioned analysis. Each bin contains 5 genes.
Average and standard error bars shown.
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Figure 7.12: Results of the binning experiment for all methods (ex-
cept *BEAST) on 20 replicate 11-taxon 100-gene strongILS datasets.
Each bin contains 5 genes. Average and standard error bars shown. We omit
*BEAST on unbinned genes because it could not run to convergence on this
dataset within the time limit; however, we show results for *BEAST on the
binned datasets. CA-ML returns the true tree on these data.
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7.4 Discussion

The main purpose of this study was to evaluate methods for estimating

species trees in the presence of ILS under realistic conditions. Since many

real world phylogenomic analyses have to contend with genes with poor phy-

logenetic signal [124], we specifically examined conditions in which estimated

gene trees were only partially resolved. As expected, the number of genes and

amount of ILS impacted the accuracy of the methods we tested, so that all

methods returned more accurate trees with increasing numbers of genes and

decreasing levels of ILS. However, in addition to these expected results, we

make the following observations:

First, all the summary methods we studied were impacted by gene tree

estimation error. In contrast, although *BEAST and CA-ML were also affected

by the amount of phylogenetic signal in the multiple sequence alignments, the

impact was generally less.

Second, CA-ML and *BEAST had similar accuracy, and were generally

more accurate than the summary methods we tested.

Third, *BEAST produced dramatically more accurate gene trees than

ML analyses on the alignments, and summary methods on these gene trees

produced species trees as accurate as *BEAST species trees, explaining why

*BEAST produces more accurate species trees than other methods.

Fourth, the naive binning technique we tested generally improved coalescent-

based methods. It improved the scalability of *BEAST without impacting its
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accuracy, making it feasible to use *BEAST on datasets with many genes.

Binning also improved the accuracy of species trees estimated using the sum-

mary methods we tested on the 11-taxon conditions, although the degree of

impact depended on the number of genes and the level of ILS. Finally, binning

had no statistically significant impact on the 17-taxon conditions.

The observation that summary methods are vulnerable to poor phylo-

genetic signal in the gene sequences is consistent with the empirical studies

reported by [124] and [88], and this study would seem to suggest that naive

binning would be helpful for species tree estimation under these circumstances.

However, naive binning could have unforeseen negative consequences if it puts

genes with different histories into the same bin. The good performance of

naive binning under the 11-taxon strongILS condition we explored suggests

that it may be somewhat robust in practice, even under relatively high rates

of ILS. However, since naive binning did not improve the accuracy of summary

methods on the 17-taxon datasets (which had the highest rate of ILS), this

suggests that naive binning could reduce accuracy when the amount of ILS is

very large. There is also a possibility that binning will only be helpful when

concatenation is more accurate than the coalescent-based methods. Therefore,

further research is needed in order to assess the conditions in which binning

improves or reduces accuracy.

One of the most interesting results in this study is the observation that

CA-ML outperformed all the ILS-based methods that operate by combining

estimated gene trees. This observation would seem to run counter to other
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simulation studies that have shown that concatenation can return incorrect

trees with high confidence and can also produce trees that are less accurate

than trees estimated by ILS-based methods [24, 33, 36, 73, 74, 80]. However,

these studies used simulated datasets that evolve under a strong molecular

clock (a condition that may benefit some coalescent-based methods more than

concatenation [24]), few taxa, and generally had many genes relative to the

number of taxa (and estimated gene trees on these alignments may have been

fairly accurate). In contrast, our study had 11- and 17-taxon datasets, at most

100 genes, and poorly estimated gene trees. Thus, it seems that there are con-

ditions under which some ILS-based methods might outperform CA-ML, and

other conditions under which CA-ML might outperform the ILS-based meth-

ods. In particular, it is possible that the critical issue is the number of genes,

and that ILS-based methods will have better accuracy than concatenation

when the number of genes is large enough. Clearly, further research is needed

in order to understand which conditions favor each type of approach.

7.5 Additional discussion

7.5.1 Previous studies comparing concatenation to coalescent-based
estimation of species trees

One of the interesting results in this study is that concatenation using

maximum likelihood produced better results than the summary coalescent-

based methods, and was often more accurate than *BEAST. Since this result

seems to run counter to the literature about coalescent-based methods, we
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discuss this in some detail.

While many papers have used simulations to evaluate coalescent-based

methods, most of these papers only compared coalescent-based methods to

each other, rather than to concatenation. Thus, to the best of our knowledge,

only [24, 33, 36, 69, 73, 74, 80] present results of simulation studies that compare

concatenated analysis (either based on a Bayesian or a maximum likelihood

method) to coalescent-based methods. We discuss each of these in turn.

[24]: This study introduces Supermatrix Rooted Triplets (SMRT), a coalescent-

based method that is statistically consistent under the multi-species coalescent

model when sequences evolve under the two-state CFN molecular clock model.

They compare SMRT to maximum likelihood in an extensive simulation study

with model trees having at most 6 taxa (most have only 4 or 5 taxa). Almost

all of the simulations were performed under a strong molecular clock. In their

simulations, concatenation was generally, but not always, outperformed by

SMRT. However, the relative performance was clearly impacted by the amount

of ILS (as determined by parameter settings), with concatenation performing

as well (or better) when ILS was very low. The relative performance was also

impacted by the number of genes, so that under some models where SMRT

outperformed concatenation for large numbers of genes, concatenation outper-

formed SMRT for small numbers of genes. They also explored the impact of

violating the molecular clock in the simulation, but inferring under the clock;

this study showed that concatenation was less impacted by the model violation

175



than SMRT.

The most interesting part of this analysis is that it showed that the

relative performance of concatenation using maximum likelihood and SMRT

depended on several conditions, including whether sequences evolved under a

strong molecular clock, the amount of ILS, and the number of genes.

[74]: This paper reports on a very extensive comparison several coalescent-

based methods (STEM, BUCKy, and BEST) to two concatenation meth-

ods (one using MrBayes and one using maximum parsimony implemented in

PAUP*) on 5-taxon model species trees. Sequence evolution on each gene was

under Jukes-Cantor with a strong molecular clock, and produced sequences

of length 1000 bp. They also report the percentage of time the true tree is

returned by the given analysis.

One focus of their study was evaluating the impact of the model tree

topology (balanced vs. unbalanced) on the relative performance of methods;

they observed that BEST generally had the highest accuracy on the asymmet-

ric model species trees and BUCKy generally had the best accuracy on the

symmetric model species trees. There were, however, some model conditions

(reflecting the amount of ILS) in which MrBayes was either first or tied for

first, and many conditions in which MrBayes was only slightly less accurate

than BEST and BUCKy.
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[73]: This paper presents a comparison of concatenated analysis using a

consensus tree output by MrBayes [55] to the BUCKy-pop and BUCKy-con

trees, on three model conditions with rooted species trees and 5 taxa. Every

model species tree has the strong molecular clock, and sequences with 500

bp evolve under the Jukes-Cantor model. They report only the percentage

of times that each method recovers the true tree exactly. Two of the three

models are in the anomaly zone, and one of these is in the “too greedy” zone.

The analysis shows that BUCKy-pop generally had the best results of all three

methods. Results on the easiest of the three model conditions show all methods

had roughly the same accuracy (though BUCKy-pop does better at 10 and 30

genes than the other methods), and all methods converged to the true species

tree at 100 genes. Results on the two trees in the anomaly zone distinctly

show the improvement of BUCKy-pop over the other methods.

[80]: This paper presents the MP-EST method, and reports results for

several simulation studies in which MP-EST is compared to other coalescent-

based method. However, they also provide a simulation study comparing MP-

EST and concatenation. The model tree here is a 5-taxon species tree in

the anomaly zone, and sequences of length 500 evolve under the Jukes-Cantor

model with the strong molecular clock. They report the frequency of returning

the correct tree. Their study suggests that the two methods have roughly the

same accuracy at the smallest number of genes they studied (100), but that

MP-EST converges to the correct tree at 2500 genes, while Bayesian analysis
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(MrBayes) converges to the wrong tree at 500 genes.

[36]: This paper introduced the coalescent-based method BEST, which

co-estimates gene trees and species trees. They provide a simulation study

comparing BEST to MrBayes from 30 genes that evolve within an 8-taxon

model species tree. Sequence evolution on these genes is under the Jukes-

Cantor model and a strong molecular clock and had 500 bp. For this analysis,

they report that the species tree had 98% of the posterior probability under the

BEST analysis, but that MrBayes converged to the wrong tree as the number

of genes increased.

[33]: This paper introduced *BEAST, a method for co-estimating gene trees

and species trees. They compared *BEAST to BEST (another coalescent-

based co-estimation method) and also to BEAST, a Bayesian concatenation

method for estimating species trees. They performed a simulation study using

7-taxon species trees with 4 genes that evolved under the Jukes-Cantor model

and a strong molecular clock. The sequence alignments each had 1600 bp.

They evaluated performance with respect to the how often the true species

tree appeared in the 95% credible set of tree topologies. They observed that

*BEAST had the best results, with BEST not too far below - but that BEAST

had by far the worst accuracy.

Discussion: These studies clearly indicate that coalescent-based methods

can be more likely to produce the true species tree than concatenation under
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some circumstances. However, all these studies shared some features: small

numbers of taxa, generally large numbers of genes, and all genes evolving un-

der a strong molecular clock. Some of these studies also primarily focused on

model species trees in the anomaly zone. These features are likely to make

it easier for coalescent-based methods (possibly especially ones that combine

estimated gene trees) to perform better than concatenation-based methods

that do not take ILS into account. For example, [24] observed that the pres-

ence of a strong molecular clock favors SMRT, a coalescent-based method that

assumes the molecular clock; since many other coalescent-based methods as-

sume the strong molecular clock, this would suggest that simulations under a

strong molecular clock may be biased in favor of the coalescent-based methods.

Also, summary methods (i.e., methods that combine estimated gene trees) are

impacted by the accuracy of the estimated gene trees, and the simulation con-

ditions in these studies may have all had sufficient sequence length and rates

of evolution (relative to the number of taxa) to provide fairly accurate gene

trees. Finally, most of these papers (though not all!) focused on accuracy on

large numbers of genes, and the results in [24] show that the relative accuracy

concatenation and coalescent-based methods can change with the number of

genes (with concatenation sometimes being as good or better on small num-

bers of genes, but coalescent-based methods being better than concatenation

on larger numbers of genes).

Taken as a whole, these studies do show that coalescent-based methods

can be more accurate than concatenation. However, these studies primarily
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explored performance only for very small numbers of taxa, large numbers of

genes, high amounts of ILS, and a strong molecular clock, while also demon-

strating that these model conditions can impact the relative accuracy of con-

catenation and coalescent-based methods. Like these studies, our study focuses

on performance under high amounts of ILS (the 11-taxon strongILS and 17-

taxon conditions both have high amounts of ILS), and we also use sequences

that evolved under the Jukes-Cantor model. However, there are several key

difference between these studies and our study. First, we explore performance

on small numbers of genes (at most 100) rather than on large numbers of

genes. Second, our conditions produce estimated gene trees that are generally

not that accurate as a result of inadequate sequence length, and we conjecture

that the other studies had more accurate gene trees than our study. Third,

the 11-taxon model conditions do not evolve sequences under a strong molec-

ular clock. Fourth, we use 11-taxon and 17-taxon datasets instead of smaller

datasets.

These differences may be sufficient to explain the different conclusions

between this study and the others, but additional research will be needed

to understand the impact of these model conditions on the relative accuracy

of concatenation and coalescent-based estimation. Finally, we note that the

performance criterion used in our study is different from that used in these

other studies; they explored the percentage of the datasets in which the true

species tree was recovered by each method, while we reported the average False

Negative (missing branch) rate. While these criteria are equal for very small
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trees (4-taxon unrooted trees or 3-taxon rooted trees), they are not identical for

larger trees, and it is possible that relative performance between two methods

could change depending on the choice of criterion.

7.5.2 Limitations on binning

One of the findings of this study is that naive binning is helpful for

coalescent-based methods. However, the conditions in which we explored the

use of naive binning were either cases where concatenation was more accu-

rate than binning (the 11-taxon datasets with not too many genes) or where

the difference between concatenation and coalescent-based methods was very

small (the 17-taxon datasets, and the 11-taxon datasets with sufficiently many

genes so that all methods recovered the true tree). Therefore, it is possible that

the naive binning technique we used is helping only because it creates a hy-

brid method that falls somewhere between concatenation and coalescent-based

estimation, and therefore has accuracy that falls between these two.

In other words – does this naive binning technique help because it

brings the coalescent-based method closer to concatenation, or does it help

for some other reasons as well (such as addressing the vulnerability to poor

signal gene trees)? Understanding the reasons that naive binning helps, and

the conditions under which it helps, requires additional study.

We close our discussion with a basic question about phylogenetic esti-

mation, suggested by this study. Given that summary methods are impacted

by error in the estimated gene trees (resulting from inadequate phylogenetic

181



signal in the sequence alignments), what is the optimal binning strategy? More

generally, what is the best trade-off between data quantity (number of esti-

mated gene trees) and quality (accuracy of estimated gene trees) for summary

methods? Understanding the trade-off between data quantity and quality for

each summary method will help inform binning strategies (e.g., how to pick

the size of the bins), even if these strategies are statistically-based. This topic

is subtle and statistically complex, and is only beginning to be studied, but

see [53] for further discussion.

7.6 Conclusion

Under the conditions of our experiments (at least 11 taxa, at most 100

genes, and low signal per gene sequence alignment) we observed relatively poor

species tree estimations using standard summary methods, and more accurate

results from concatenation or from *BEAST, a method that co-estimates gene

trees and species trees. However, the current co-estimation methods (includ-

ing *BEAST) are computationally intensive and may not be feasible for use

with more than 100 genes or more than 20 species. This study showed that a

simple binning technique was able to make dramatic improvements in scala-

bility for *BEAST, and generally improve the accuracy of summary methods,

thus making some of these methods nearly as accurate as *BEAST.

This study should not be interpreted as recommending the use of naive

binning, but instead as an indication of the potential for binning techniques

to improve species tree estimation. For example, statistical techniques could
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be used to estimate whether a set of genes is likely to have a common tree,

so that bins would only include genes expected to have a common history.

Also, while concatenation performed well in this study, we conjecture that new

techniques designed to handle markers with limited phylogenetic signal, might

outperform concatenation even under these model conditions. Whether these

new techniques will employ binning, or other ways of working with poorly

estimated gene trees, the potential for substantial advances in species tree

estimation could be great.
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Chapter 8

Weighted Statistical Binning

Because biological processes can result in different loci having differ-

ent evolutionary histories, species tree estimation requires multiple loci from

across multiple genomes. While many processes can result in discord between

gene trees and species trees, incomplete lineage sorting (ILS), modeled by the

multi-species coalescent, is considered to be a dominant cause for gene tree

heterogeneity. Coalescent-based methods have been developed to estimate

species trees, many of which operate by combining estimated gene trees, and

so are called summary methods. Because summary methods are generally

fast (and much faster than more complicated coalescent-based methods that

co-estimate gene trees and species trees), they have become very popular tech-

niques for estimating species trees from multiple loci. However, recent studies

have established that summary methods can have reduced accuracy in the

Much of the material in this chapter is taken without alteration from the following
paper.

• M. S. Bayzid, S. Mirarab, B. Boussau, and T. Warnow. Weighted statistical binning:
Enabling statistically consistent genome-scale phylogenetic analyses. PLoS ONE,
10(6):e0129183, 2015

SM and TW designed the study, MSB ran experiments on weighted statistical binning, SM
and MSB ran experiments on statistical binning, BB generated the simulated datasets, all
authors analyzed the data. MSB wrote the first complete draft of this paper, and TW, SM
and BB wrote the final version.

184



presence of gene tree estimation error, and also that many biological datasets

have substantial gene tree estimation error, so that summary methods may

not be highly accurate in biologically realistic conditions.

Bayzid et al. [8] presented a novel technique called naive binning to

address the problem of gene tree estimation error (discussed in Chapter 7).

Mirarab et al. [90] presented the “statistical binning” technique, which is an

improvement over naive binning, to improve gene tree estimation in multi-

locus analyses, and showed that it improved the accuracy of MP-EST, one

of the most popular coalescent-based summary methods. Statistical binning,

which uses a simple heuristic to evaluate “combinability” and then uses the

larger sets of genes to re-calculate gene trees, has good empirical performance,

but using statistical binning within a phylogenomic pipeline does not have

the desirable property of being statistically consistent [5]. We proposed a

statistically consistent variant of binning technique called weighted statistical

binning (WSB) [5]. However, with respect to the statistical consistency, the

current mathematical theory does not suggest any advantage will be gained

using WSB within a phylogenomic pipeline compared to an unbinned analysis

(i.e., the use of the summary method without binning), because (unbinned)

summary methods are also statistically consistent with sufficiently large num-

bers of true gene trees. Hence, the more important question is to investigating

the empirical performance of WSB within a phylogenomic pipeline – how it

impacts the accuracy of the estimated species trees; and so our study focused

on whether WSB tends to increase or decrease the accuracy of summary meth-
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ods, and how the model conditions impact the relative performance of binned

and unbinned analyses.

In this chapter, we describe the phylogenomic pipeline based on weighted

statistical binning. We report on an extensive experimental study (based on

both simulated and biological datasets) that weighted statistical binning sub-

stantially improves the accuracy of phylogenomic analyses. We refer to [5, 89]

for theoretical results on statistical consistency.

8.1 Introduction and background

Empirical studies suggest that summary methods are impacted by gene

tree estimation error, and can produce less accurate estimated species trees

than concatenation when gene tree estimation error is high enough (see [8, 41,

90, 111, 120] for examples of these studies on summary methods and further

discussion). In a genome-scale analysis, it is unlikely that all the loci will

have substantial phylogenetic signal, and so this vulnerability to gene tree

estimation error means that coalescent-based summary methods may not be

highly accurate techniques for estimating species trees from genome-scale data.

Bayzid et al. [8], and Mirarab et al. [90] proposed a new type of phy-

logenomic species tree estimation pipeline to handle gene tree estimation error,

that has four steps instead of two (where the extra two steps are partition-

ing the genes into bins, and computing supergene trees for each bin using a

fully partitioned maximum likelihood analysis). This pipeline showed very

promising results when used with MP-EST. However, we did not address the
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theoretical properties of these pipelines, we only examined model trees with 37

or more species, and we only analyzed one coalescent-based summary method,

MP-EST.

In this chapter, we report on an extended evaluation of statistical bin-

ning. Specifically,

• We describe a variant of statistical binning that we call weighted statis-

tical binning.

• We evaluate the impact of statistical binning (both weighted statisti-

cal binning and the original unweighted statistical binning technique)

on biological and simulated datasets. We examine pipelines using two

coalescent-based summary methods, ASTRAL and MP-EST. We include

results on simulated and biological datasets studied in [90], and also on

additional simulated datasets with 10 and 15 taxa.

This study shows that weighted and unweighted statistical binning have

very similar results across most datasets, and also that both ASTRAL and MP-

EST tend to improve in accuracy when used with binning. However, there was

one condition (characterized by a very high level of ILS, low average bootstrap

support for the gene trees, and only ten species) in which statistical binning

reduced accuracy for both MP-EST and ASTRAL. Thus, this study shows

that binning is often beneficial, but also that there are some conditions under

which binning can increase rather than decrease species tree error. Finally, we

conclude with suggestions for further research.
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8.2 Weighted statistical binning

The statistical binning technique presented in [90] operates as follows.

The input is a multiple sequence alignment on each of p given genes, and a

user-specified “threshold support” value B < 1. The role of the threshold B is

to specify which branches in the gene trees are considered reliable, and which

ones have support that is so low that the branches may be due to estimation

error. Therefore, if the trees on two genes differ only in their low support edges,

the differences are considered potentially consistent with estimation error, and

the two genes are considered “combinable” or “compatible”.

Statistical binning computes maximum likelihood (ML) gene trees and

bootstrap support on the branches for each gene, and then uses a simple heuris-

tic based on bootstrap support values so that two genes can only be in the

same bin if their ML gene trees do not have conflicting branches, each with

bootstrap support of at least B. This is the combinability test, so that two

genes are not considered combinable if they have highly supported conflict-

ing branches, and otherwise are considered combinable. (Equivalently, two

genes are combinable if their ML gene trees, after collapsing all branches with

support less than B, share a common refinement.) Finally, because pairwise

compatibility ensures setwise compatibility [48], if a set of gene trees can be all

put in the same bin, then there is a tree that combines all the highly supported

branches in any of the trees in the set.
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Computing and using the incompatibility graph to bin the genes.

The first step in statistical binning creates a graph based on the input, and

uses a graph-theoretic optimization to bin the genes into subsets. Each gene is

represented by a single vertex in the graph, and an edge is placed between two

genes if their gene trees are not combinable, based on the heuristic described

above. Determining if two genes are combinable can be computed in linear

time [148], and so this graph, which we call the incompatibility graph, can be

computed in time linear in the number of taxa and quadratic in the number

of genes.

Since longer sequences tend to produce more accurate gene trees, hav-

ing the bins be as large as possible is desirable; this is accomplished indirectly

by seeking a coloring with as few colors as possible (i.e., a minimum vertex col-

oring), which is an NP-hard problem [64]. However, summary methods, such

as MP-EST, use the distribution of the gene trees to estimate the species tree.

Assuming gene tree reconstruction error only results in low-support branches,

binning the genes so that the bins have nearly the same size means that the

supergene tree frequency will be close to the true gene tree distribution (as-

suming that binning combines genes with the same tree, and that we can

compute correct supergene trees). Note also that with such a constraint, fre-

quent true gene tree topologies will be represented in several bins, while each

of the rarest gene trees will be represented in a smaller number of bins (and

perhaps in only one bin). Therefore, the objective is a coloring of the vertices,

using a small number of colors, so that every color class contains about the
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same number of colors. To achieve such a coloring, [90] modified the Brélaz

heuristic [10] for minimum vertex coloring, so that during the greedy coloring,

a node is added to the smallest bin for which it has no conflicts. This coloring

produces a partitioning of the vertices of the graph into subsets based on the

color classes; thus, all vertices with the same color are in the same bin.

Computing a supergene tree for each bin. Once the vertex coloring is

computed, the genes in a given color class form a bin, and their alignments are

concatenated into a supergene alignment. Then, a maximum likelihood tree

is computed (perhaps with bootstrapping) on each supergene alignment. For

estimating supergenes, we use a fully partitioned analysis where each gene is

assigned a separate partition, and all numeric model parameters are allowed to

differ between partitions. We call the trees that are computed on the supergene

alignments “supergene trees”. Because using a fully partitioned analysis is key

to the theoretical guarantees of statistical binning, we specifically discuss this

step in the pipeline.

Concatenated ML analyses of alignments from different loci can be

performed in many ways, but their theoretical properties depend on the details

of how they are performed, and in particular whether they are performed

using an unpartitioned analysis, or a partitioned analysis. In an unpartitioned

analysis, all the sites in the concatenated alignment are assumed to evolve

down a single model tree (i.e., topology and numeric parameters), and the

model tree maximizing the likelihood is sought for the matrix. In contrast,
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fully partitioned analyses of concatenated alignments assume that the different

loci all evolve down the same tree topology, but allow the different parts within

the concatenated alignment to have different values for all of the numeric

parameters of the model. In the context of the GTR model, a fully partitioned

maximum likelihood analysis would allow each locus to have its own 4 × 4

substitution matrix and gene tree branch lengths. Thus, if there are 10 loci

within the concatenated alignment, a single tree topology is returned, but

also ten different lengths for each branch, and ten different 4× 4 substitution

matrices. Fully partitioned and unpartitioned maximum likelihood analyses

can result in different trees, and these analyses have very different theoretical

properties; see the example provided in the Methods section, below.

Applying summary methods to the supergene trees. The super-

gene trees are used by a coalescent-based summary method (e.g., MP-EST) to

estimate the species tree. In other words, by recalculating the gene trees, sta-

tistical binning changes the input to the coalescent-based summary method.

Hence, statistical binning is a technique to re-estimate gene trees used within

the coalescent-based pipeline for species tree estimation, as shown in Fig. 8.1.

Fig. 8.1 describes the three possible pipelines (unbinned, unweighted

binned, and weighted binned) for use with a summary method. In the un-

binned analysis, each gene is analyzed independently, a gene tree is estimated

for each gene, and then a summary method, such as MP-EST, uses the gene

trees to estimate the species tree. In both the weighted and unweighted binned
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analyses, the gene trees are computed independently, and then the incompat-

ibility graph is formed with one vertex for each gene. In the shown example,

there are 12 genes, and so the graph has 12 vertices. The 12 vertices of the

incompatibility graph are then assigned colors, with two vertices colored pur-

ple, three vertices colored green, three vertices colored red, and four vertices

colored blue. Note that no two vertices of the same color have an edge between

them. For each color class, the sequence alignments for the associated genes

are concatenated into one long supergene alignment, and a supergene tree

is computed on the supergene alignment using a fully partitioned maximum

likelihood analysis. After this point, the weighted and unweighted binning

methods have different strategies. In the unweighted binning method, exactly

one copy of each supergene tree is given as input to the summary method,

but in the weighted binning method multiple copies of the supergene trees are

given as input. Hence, in this example, MP-EST analyzes only four supergene

trees in the unweighted binning pipeline, but it analyzes 12 supergene trees in

the weighted binning pipeline.

By design, if the bin sizes are exactly the same, then the statistical

binning pipelines produced using weighted and unweighted statistical binning

produce the same results; hence, these two approaches can only produce dif-

ferent results when the binning is unbalanced.
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Figure 8.1: Pipeline for unbinned analyses, unweighted statistical bin-
ning, and weighted statistical binning. The input to the pipeline is a
set of sequences for different loci across different species. In the traditional
pipeline, a multiple sequence alignment and gene tree is computed for each
locus, and then these are given to the preferred coalescent-based summary
method, and a species tree is returned. In the statistical binning pipeline, the
estimated gene trees are used to compute an incompatibility graph, where each
vertex represents a gene, and an edge between two genes indicates that the
differences between the trees for these genes is considered significant (based
on the bootstrap support of the conflicting edges between the trees). The ver-
tices of the graph are then assigned colors, based on a heuristic for balanced
minimum vertex coloring, so that no edge connects two vertices of the same
color. The vertices with a given color are put into a bin, and the sequence
alignments for the genes in a bin are combined into a supergene alignment. A
(supergene) tree is then computed for each supergene alignment using a fully
partitioned analysis. In the unweighted binning approach (presented in [90]),
these supergene trees are then given to the preferred summary method, and
a species tree is returned. In the weighted binning approach presented here,
each supergene tree is repeated as many times as the number of genes in its
bin, and this larger set is then given to the preferred summary method.

193



8.3 Experimental study

8.3.1 Datasets

We use the avian and mammalian simulated datasets studied in [90]

(each based on MP-EST analyses of biological datasets, and having at least 37

taxa) and two other collections of simulated datasets with 10 and 15 taxa. The

simulated datasets range from moderately low ILS (the lowest ILS mammalian

condition) to extremely high ILS conditions (the higher ILS 10-taxon and 15-

taxon model conditions), and range in terms of average gene tree bootstrap

support (from very low to moderately high). Thus, the simulated datasets

provide a range of conditions in which we explore the impact of statistical

binning. We also analyzed two biological datasets (a 48-species avian dataset

and a 37-species mammalian dataset) studied in [90].

We used biologically-based simulated datasets that were studied in [90],

and are based on species trees estimated using MP-EST on the avian dataset

of [62] and the mammalian dataset of [129]. In the avian simulation, the mark-

ers vary in sequence length (250bp, 500bp, 1000bp, and 1500bp) in order to

produce bootstrap support values similar to those we observed in the biological

dataset. In the mammalian simulation, we again explored the impact of phy-

logenetic signal by varying the sequence length (250bp, 500bp, and 1000bp)

for the markers. In both cases, three levels of ILS are simulated by multiplying

or dividing all internal branch lengths in the model species tree by two, and

we also explore various numbers of genes. The mammalian datasets range in

ILS level from relatively low (18% average distance between true gene trees
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and the species tree) for the 2X branch length level to relatively high (54%

average distance between true gene trees and the species tree) for the 0.5X

branch length level, and the average bootstrap support on the estimated gene

trees ranges from low (43%) for the shorter (250bp) sequences to moderately

high (79%) for the longest (1000bp) sequences. The avian datasets have higher

ILS levels than the mammalian datasets, and range from moderate (35% av-

erage distance between true gene trees and the species tree) for the 2X branch

length condition to high (59% average distance between true gene trees and

the species tree) for the 0.5X branch length condition. The estimated gene

trees range in average bootstrap support from very low (27%) for the shortest

(250bp) sequences to moderate (60%) for the longest (1500bp) sequences.

We also used a 15-taxon model species tree with a caterpillar-like (also

known as a pectinate, or ladder-like) topology, which has 12 short internal

branches (0.1 in coalescence units) in succession, a condition that gives rise to

high levels of ILS [69, 122]. Ultrametric gene trees were simulated down this

tree using the multi-species coalescent process. Unlike the biologically-based

model conditions, no transformations of branch lengths were used, and there-

fore, gene trees follow a strict molecular clock. Sequence data were simulated

down each gene tree, and we built four model conditions by trimming gene

data to 100 or 1000 sites, and by using 100 or 1000 genes. This dataset is

very homogeneous since all 10 replicates we simulated are based on the same

species tree, and gene trees differ in topology and branch length only due

to the coalescence process. The 15-taxon datasets have very high ILS lev-
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els (82% average topological distance between true gene trees and the species

tree), and so represent a rather extreme condition. The gene trees estimated

on the shorter sequences (100bp) had only 35% average bootstrap support,

and the combination of very high ILS and very low average bootstrap support

represents a very challenging condition. Gene trees estimated on the longer

sequences have better average bootstrap support (70%), and so represent a

somewhat easier condition.

We also generated 10-taxon simulated datasets using simPhy [86]. In

this simulation protocol, we simulated a different species tree for each repli-

cate, and simulated 200 gene trees for each species tree using the multi-species

coalescent process. We simulated two model conditions, one with very high

ILS and another with somewhat lower (but still high) ILS. The simPhy proce-

dure uses a host of various distributions to make the gene trees heterogeneous

in various aspects, such as sequence lengths, deviation of branch lengths from

the strict molecular clock, and rate variation across different genes. We used

these gene trees to simulate sequence data with 100 sites using Indelible [38].

Therefore, our 10-taxon datasets are very heterogeneous: different replicates

have different species trees, and within each replicate, various genes have dif-

ferent rates of evolution. The ILS levels of the 10-taxon datasets range from

moderately high (40% average distance from true gene trees to the species

tree) for the “lower ILS” condition to extremely high (84% average distance)

for the “higher ILS” condition. The average bootstrap support on the esti-

mated gene trees ranged from 37% for the higher ILS condition to 45% for the
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lower ILS condition, and so both have very poor average bootstrap support.

Thus, the 10-taxon and the 15-taxon datasets with short sequences represent

the hardest model conditions in that they have very high ILS and very low

average bootstrap support.

The simulated datasets we studied varied in many respects (sequence

length per locus, whether the sequence evolution is ultrametric or not, and

the ILS level). Table 8.1 presents data about the ILS level, as reflected in the

average topological distance between the true gene trees and the true species

tree. Note that two of the model conditions (the 10-taxon higher ILS and

15-taxon datasets) have extremely high ILS, reflected in average topological

distances between the true gene trees and the species tree. In fact, most of

the model conditions have high ILS levels (with 30% or more average topo-

logical distance between the true gene trees and the species tree), and only

one model condition has low levels of ILS (the mammalian datasets with 2X

branch lengths, which have 18% average topological distance between the true

gene trees and true species tree). It is likely that the “1X” ILS levels for the

mammalian and avian simulated datasets are larger than the ILS levels for the

respective biological datasets, since the model trees that were used to generate

these data are based on MP-EST analyses of the datasets, and results in [90]

suggest that MP-EST estimations tend to under-estimate branch lengths, and

hence inflate estimated ILS levels.
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Dataset ILS level Discordance (%)
Avian 2X 35
Avian 1X 47
Avian 0.5X 59
Mammalian 2X 18
Mammalian 1X 32
Mammalian 0.5X 54
10-taxon Lower ILS 40
10-taxon Higher ILS 84
15-taxon High ILS 82

Table 8.1: Topological discordance between true gene trees and true
species tree. For each collection of simulated datasets (defined by the type
of simulation and the ILS level), we show the average topological distance
between true gene trees and the species tree.

8.3.2 Methods

We computed coalescent-based species trees using summary methods

with MLBS gene trees in three ways: without binning, with weighted statistical

binning and with unweighted statistical binning. Our main focus is on MP-

EST, but we explore results with ASTRAL on a subset of the data. ASTRAL

estimates species trees given unrooted gene trees, and can analyze very large

datasets (such as the plant transcriptome dataset with approximately 100

species and 600 loci [151]); hence, ASTRAL can analyze larger datasets than

MP-EST, and so understanding the impact of binning on ASTRAL’s accuracy

is of practical importance.

We perform statistical binning using both weighted and unweighted

pipelines and using two support thresholds (B): 50% and 75%. Due to the

extremely large computational effort involved, on our two large biologically-
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based simulated datasets, we explore one threshold for most of our results; we

follow the protocol used in [90] and set B = 50% for the avian datasets, and

B = 75% for the mammalian datasets. However, we also study the impact of

B on one model condition for avian and mammalian datasets.

We compute gene trees and concatenation species trees using RAxML

[130] maximum likelihood. For estimating supergene trees, we use fully parti-

tioned RAxML analyses (using the −M option to vary branch lengths across

genes) for smaller (10- and 15-taxon) simulated datasets and for all biological

analyses. However, since partitioned analyses are expensive, we use unparti-

tioned analyses to compute supergene trees for our studies on the avian and

mammalian simulated datasets (because these studies are very extensive). We

compare results using coalescent-based summary methods to concatenation,

also using unpartitioned maximum likelihood. Note that the binned methods

and the concatenation analysis would potentially become more accurate if fully

partitioned analyses were employed.

8.3.3 Measurements

For the simulated datasets, we explore species tree accuracy with re-

spect to the true (model) species tree topology (the missing branch rate, or

false negative rate (FN)) and branch lengths, and also examine the branch

support of both true positive and false positive branches. We also explore the

error in the estimated gene trees and gene tree distribution estimated using

binning (weighted and unweighted), compared to unbinned analyses. We ana-
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lyze these simulated datasets using weighted statistical binning with MP-EST

and ASTRAL, to determine if there are differences between weighted and un-

weighted statistical binning. Since ASTRAL does not produce branch lengths,

we only use MP-EST to evaluate branch length estimation. In addition, we

examine the bootstrap support on the branches of estimated species trees pro-

duced using MP-EST, as false positive edges that have low support are not as

deleterious as false positive edges with high support. The bootstrap support

of estimated species trees was not studied in [90], and so this study provides

the first analysis of bootstrap support for MP-EST on these datasets, as well

as of the impact of binning on bootstrap support values.

These aspects of phylogenomic estimation are important for different

reasons. Species tree topologies indicate which species are more closely related

to each other than to others, and so estimating accurate species tree topolo-

gies is the most important aspect of phylogenomic estimation. However, the

improvement in species tree (coalescent-unit) branch length estimation is also

biologically relevant, since these lengths are related to effective population

sizes and generation times of ancestral species, and are also used to estimate

the amount of ILS in the data. Bootstrap support is important, since low

support branches are often ignored, but high support branches are generally

assumed to be correct; hence, understanding whether a method returns high

support for false positive branches (indicating incorrect relations within a tree)

is particularly important. Improvements in estimating the gene tree distribu-

tion matter because the accuracy of summary methods depends on an input
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that captures the correct gene tree distribution.

For the biological datasets, we compare estimated species trees to the

literature for each dataset, focusing on whether the estimated species tree

violates known subgroups for the phylogeny.

8.4 Results and discussion

8.4.1 Biologically-based simulated datasets

Gene tree error and gene tree distribution error on avian simulated
datasets

We evaluated the impact of statistical binning on gene tree estimation

error for the 1X (default ILS) model condition, with sequence lengths varying

from 250bp to 1500bp. At the shorter sequence lengths, gene tree estimation

error was reduced substantially (from 79% to 57% for 250bp, and from 69%

to 57% for 500bp) (Table B.1 in Appendix B). Gene tree estimation error

was reduced slightly at 1000bp (from 55% to 51%) and even less at 1500bp

(from 46% to 45%). Hence, when gene tree estimation error is high due to

insufficient sequence length, then binning reduces gene tree estimation error,

but binning has little impact on gene tree estimation error when the sequences

are long enough.

We measure the error in estimated gene tree distributions using the

deviation of triplet frequencies from the triplet frequency distribution com-

puted using the true gene trees. We express these results using a cumulative

distribution over all possible triplets and all replicates; hence, if a curve for
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one method lies above the curve for another method, then the first method

strictly improves on the second method with respect to estimating the gene

tree distribution. In Fig. 8.2(a) we show results for 1000 avian genes under

default ILS levels, as we vary the sequence length. In Fig. 8.2(b) we show

results with 1000 genes of length 500bp, varying the ILS level. Here, true

triplet frequencies are estimated based on true gene trees for each of the
(

n

3

)

possible triplets, where n is the number of species. Similarly, triplet frequen-

cies are calculated from estimated gene/supergene trees. For each of these
(

n

3

)

triplets, we calculate the Jensen-Shannon divergence of the estimated triplet

distribution from the true gene tree triplet distribution. We show the empirical

cumulative distribution of these divergence scores. The empirical cumulative

distribution shows the percentage of the triplets that are diverged from the

true triplet distribution at or below the specified divergence level. Results are

shown for 10 replicates. We used 50% bootstrap support threshold for binning,

and estimated the supergene trees using RAxML with unpartitioned analyses.

In both cases (Fig. 8.2(a) and (b)), both weighted and unweighted binning are

nearly identical. Weighted and unweighted binning also show nearly identi-

cal gene tree distribution errors under other conditions (see Appendix B, Fig.

B.3). Binning improves the accuracy of estimated gene tree distributions in

general, but not for the longest sequences (1500bp). Also, the improvement

over unbinned analyses was highest for the lowest ILS level (2X species tree

branch lengths), but was high even for the highest ILS level we explored.
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Figure 8.2: Divergence of estimated gene tree (triplet) distributions
from true gene tree distributions for MP-EST analyses of simulated
avian datasets. In (a), we vary the gene sequence length (250bp genes have
the highest error, and 1500bp has the lowest error) and explore 1000 genes
under default ILS levels, and in (b) we vary the amount of ILS and fix the
number of genes to 1000 and sequence length to 500bp.
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Species tree estimation error on avian simulated datasets

Fig. 8.3 shows results for species tree topology estimation error for

analyses of avian genes of different length under the default ILS level using

MP-EST and ASTRAL, for varying number of 500bp genes with default ILS

using MP-EST, and for 1000 genes of 500bp with varying ILS using MP-EST.

Weighted and unweighted statistical binning are essentially identical for both

MP-EST and ASTRAL (no statistically significant differences were observed

according to a two-way ANOVA test; see Tables 8.2 and 8.3), and both reduce

species tree estimation error compared to unbinned analyses (differences were

always statistically significant with p < 0.001; see Tables 8.2 and 8.3).

Dataset Varying Weighted vs. WSB-50 vs. WSB-75 vs.
parameter Unweighted Unbinned Unbinned

10-taxon ILS level 0.96 0.96 0.96
15-taxon # of genes, seq length 0.96 0.96 0.04
Avian sequence length 0.96 <0.0001 n.a.
Avian ILS level 0.96 <0.0001 n.a.
Avian # of genes 0.91 <0.0001 n.a.
Mammalian # of genes, seq length 0.96 n.a. <0.0001
Mammalian ILS level 0.96 n.a. 0.0003

Table 8.2: Statistical significance test results for choice of binning
method on MP-EST. We performed ANOVA to test the significance of the
choice of methods (unbinned, weighted binned, unweighted binned, WSB-50:
weighted statistical binning using 50% bootstrap support threshold and WSB-
75: weighted binning using 75% bootstrap support threshold). For weighted
vs. unweighted, we compared 50% bootstrap support threshold for avian, 75%
for mammalian, and both 50% and 75% for 15- and 10-taxon datasets. All
p-values are corrected for multiple hypothesis testing using the FDR correction
(n = 16). “n.a.” stands for “not available”.

The largest improvements are for the shortest gene sequences, where
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Figure 8.3: Species tree estimation error (FN) for MP-EST and AS-
TRAL with MLBS on avian simulated datasets. (a) MP-EST on 1000
genes with varying gene sequence length (controlling gene tree error) and with
1X ILS. (b) ASTRAL on the exact same conditions, (c) MP-EST on varying
numbers of genes with fixed default level of ILS (1X level) and 500bp sequence
length, and (d) MP-EST on varying levels of ILS and 1000 genes of length
500bp. We show results for 20 replicates everywhere, except for 2000 genes
that are based on 10 replicates. Binning was performed using 50% bootstrap
support threshold.
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Dataset Varying Weighted vs. WSB-50 vs. WSB-75 vs.
parameter Unweighted Unbinned Unbinned

10-taxon ILS level 1 1 0.91
15-taxon # of genes, seq length 0.91 0.57 0.008
Avian sequence length 0.91 <0.0001 n.a.
Avian sequence length 1 n.a. 0.57
Mammalian ILS level 0.57 n.a. 0.0009
Mammalian # of genes 0.91 n.a. <0.0001

Table 8.3: Statistical significance test results for choice of binning
method on ASTRAL. We performed ANOVA to test the significance of the
choice of methods (unbinned, weighted binned, unweighted binned, WSB-50:
weighted statistical binning using 50% bootstrap support threshold and WSB-
75: weighted binning using 75% bootstrap support threshold). For weighted
vs. unweighted, we compared 50% bootstrap support threshold for avian, 75%
for mammalian, and both 50% and 75% for 15- and 10-taxon datasets. All
p-values are corrected for multiple hypothesis testing using the FDR correction
(n = 14). “n.a.” stands for “not available”.

error is reduced from 23% to 14% using MP-EST and from 19% to 13% us-

ing ASTRAL. The difference between binned and unbinned analyses is lower

for 1000bp sequences, and there are no noteworthy differences for 1500bp se-

quences (sequence length has a statistically significant impact; see Tables 8.4

and 8.5). When the number of genes is changed (see Fig. 8.3(c)), the impact

of binning on MP-EST ranges from neutral to highly positive, and the largest

improvements are for datasets with large numbers of genes (impact of the num-

ber of genes is statistically significant; see Table 8.4). The impact of binning

is also significantly impacted by ILS levels (see Table 8.4), with the largest

improvements obtained for lower levels of ILS. In general, binning helps both

ASTRAL and MP-EST, but MP-EST tends to be helped more than ASTRAL.

For example, with 500bp genes, the error for MP-EST is reduced from 19% to
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Dataset Interaction Weighted vs WSB-50 vs WSB-75 vs
variable Unweighted Unbinned Unbinned

10-taxon ILS level 0.99 0.99 0.49
15-taxon # of genes, seq length 0.99 & 0.99 0.59 & 0.99 0.24 & 0.17
Avian sequence length 0.99 <0.0001 n.a.
Avian ILS level 0.99 <0.0001 n.a.
Avian # of genes 0.99 <0.0001 n.a.
Mammalian # of genes, seq length 0.99 & 0.99 n.a. 0.99 & 0.38
Mammalian ILS level 0.15 n.a. 0.15

Table 8.4: Statistical significance test results for interaction ef-
fects (binning and simulation parameter) on MP-EST. We performed
ANOVA to test the significance of whether there is an interaction between the
choice of the method (unbinned, weighted binned, unweighted binned, WSB-
50: weighted statistical binning using 50% bootstrap support threshold and
WSB-75: weighted statistical binning using 75% bootstrap support threshold)
and the variable changed in each dataset. For weighted vs. unweighted, we
compared 50% bootstrap support threshold for avian, 75% for mammalian,
and both 50% and 75% for 15- and 10-taxon datasets. All p-values are cor-
rected for multiple hypothesis testing using the FDR correction (n = 21).
“n.a.” stands for “not available”.

10% using binning, but the error of ASTRAL is reduced from 15% to 9%.

Fig. 8.4 shows the impact of binning on species tree branch length (in

coalescent units) estimation error on the biologically-based simulations using

MP-EST. We show the species tree branch length error (the ratio of estimated

branch length to true branch length for branches of the true tree that appear

in the estimated tree; 1 indicates correct estimation). Fig. 8.4(a) shows results

on 1000 genes under default (1X) ILS levels and varying gene sequence length,

and Fig. 8.4(b) shows results on 1000 genes of 500bp with varying ILS levels.

Branch length estimation accuracy is reported using the ratio of the estimated

branch length to the true branch length, for those true branches recovered by
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Dataset Interaction Weighted vs WSB-50 vs WSB-75 vs
variable Unweighted Unbinned Unbinned

10-taxon ILS level 0.99 1 0.99
15-taxon # of genes, seq length 0.99 & 0.99 0.99 & 0.99 0.29 & 0.02
Avian sequence length 0.99 <0.0001 n.a.
Mammalian sequence length 0.99 n.a. 0.29
Mammalian ILS level 0.99 n.a. 0.29
Mammalian # of genes 0.99 n.a. 0.99

Table 8.5: Statistical significance test results for interaction ef-
fects (binning and simulation parameter) on ASTRAL. We performed
ANOVA to test the significance of whether there is an interaction between the
choice of the method (unbinned, weighted binned, unweighted binned, WSB-
50: weighted statistical binning using 50% bootstrap support threshold and
WSB-75: weighted statistical binning using 75% bootstrap support threshold)
and the variable changed in each dataset. For weighted vs. unweighted, we
compared 50% bootstrap support threshold for avian, 75% for mammalian,
and both 50% and 75% for 15- and 10-taxon datasets. All p-values are cor-
rected for multiple hypothesis testing using the FDR correction (n = 17).
“n.a.” stands for “not available”.
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Figure 8.4: Effect of binning on the branch lengths (in coalescent
units) estimated by MP-EST using MLBS on the avian and mam-
malian simulated datasets. Results are shown for (a) 1000 avian genes of
1X ILS level with varying gene sequence length, (b) 1000 avian genes of 500bp
and with varying levels of ILS, and (c) varying number of mammalian genes
and varying sequence length (250bp, 500bp, and 1000bp) with 1X ILS level.
Results are shown for 20 replicates. We used 50% and 75% bootstrap support
threshold for binning on avian and mammalian datasets, respectively.

209



the method. Thus, values equal to 1 indicate perfect accuracy, values below

1 indicate under-estimation of branch lengths (and hence over-estimation of

ILS), and values above 1 indicate over-estimation of branch lengths (and hence

under-estimation of ILS).

Both types of binning (weighted and unweighted) produce nearly identi-

cal results with respect to species tree branch length estimation (with a slight

advantage for weighted analyses). Unbinned analyses substantially under-

estimate branch lengths, but as the sequence length increases, the branch

length estimations produced by unbinned analyses improve, so that they are

more accurate with 1500bp markers. The most accurate species tree branch

length estimation is obtained using true gene trees. Using binning (either

type) improves branch length estimation from estimated gene trees, and the

improvement is very large for the shorter sequences (Fig. 8.4(a)). When levels

of ILS are changed, weighted and unweighted binning are again close (with a

slight advantage for weighted), and show little change in branch length esti-

mation with changes in ILS levels; however, unbinned analyses substantially

under-estimate branch lengths for the lowest ILS model condition, and then

become more accurate (although still under-estimate) with increases in the ILS

level. Hence, the biggest improvement obtained by binning is for the lowest

ILS (2X branch lengths), and there is less improvement for the highest ILS

level (0.5X). The likely explanation for this trend is that MP-EST interprets

all discord as due to ILS, and produces a model tree (with branch lengths) that

it considers most likely to generate the observed discordance. Hence, MP-EST
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tree branch lengths will be closer to the correct lengths when the ILS level is

very high.

Bootstrap support on avian simulated datasets

We explore bootstrap support of trees estimated on simulated avian

datasets, as follows. We assign relative quality to each edge in an estimated

tree, taking bootstrap support into account. The highest quality edges are

the true positive branches with the highest bootstrap support, and the low-

est quality edges are the false positive branches with the highest bootstrap

support, and all other edges fall in between. We order all the edges by their

quality, so that the true positive branches come first (with the high support

branches before low support branches), followed by the false positive branches

(with the low support branches before the high support branches). Given this

ordering, we create figures in which the x-axis indicates the edge quality (from

very high to very low, as you move from left to right), and the y-axis indicates

the fraction of the edges having at least the quality indicated by the x-axis.

Thus, the higher the curve, the better the overall quality of the species tree.

Fig. 8.5 shows results on 1000 avian genes under default ILS and with

varying sequence length, and also with 1000 genes of 500bp with varying ILS

levels. Both types of binning are nearly identical in terms of their impact on

bootstrap support, and both improve bootstrap support; in particular, using

binning increases the number of highly supported true positive branches and

decreases the number of highly supported false positive branches. However,
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Figure 8.5: Cumulative distribution of the bootstrap support values
(obtained using MLBS) of true positive (TP) and false positive (FP)
edges estimated by binned and unbinned MP-EST on avian datasets.
In (a) we fix the number of genes to 1000, use default ILS levels, and vary
sequence length to control gene tree estimation error, and in (b) we study 1000
genes with 500bp sequence length, and vary ILS levels. We order the branches
in the estimated species tree by their quality, so that the true positives with
high support come first, followed by lower support true positives, then by false
positives with low support, and finally by false positives with high support.
The false positive branches with support above 75% are the most troublesome,
and the highly supported false positives are indicated by the grey area. When
the curve for a method lies above the curve for another method, then the
first method has better bootstrap support. We used 50% bootstrap support
threshold for binning. 212



the sequence length modulates the impact of binning on bootstrap support, so

that the largest impact is for the shortest sequences (250bp) and there is no

discernible impact for the longest sequences (1500bp). ILS levels also impact

how binning affects the bootstrap support, so that the biggest improvement

in bootstrap support is obtained for the lowest ILS level (2X branch lengths).

The number of genes also impacts the bootstrap support (Appendix B, Fig.

B.4) so that the biggest improvement in bootstrap support is obtained for the

largest number of genes (2000) (and there is little to no difference between

binned and unbinned analyses on 50 or 100 genes); furthermore, weighted and

unweighted binning produce very similar bootstrap support values.

Comparisons to concatenation on avian simulated datasets

On the shortest 250bp sequences, concatenation matches the accuracy

of weighted and unweighted binned MP-EST methods (Fig. 8.3(a)) and is

slightly less accurate than both binned ASTRAL trees (Fig. 8.3(b)). As se-

quence length increases, both types of binning using either ASTRAL or MP-

EST become more accurate than concatenation. Unbinned analyses are less

accurate than concatenation for shorter sequences and more accurate for longer

sequences (the transition point depends on whether ASTRAL or MP-EST is

used). Both binned analyses are more accurate than concatenation and un-

binned analyses at all ILS levels (Fig. 8.3(d)). Thus, compared to concatena-

tion, binned analyses have their largest advantage on longer gene sequences,

higher ILS levels, and higher number of genes.
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Results on mammalian datasets

Results on simulated mammalian datasets are similar to analyses of

avian datasets. In nearly every condition, both weighted and unweighted bin-

ning show very similar results (see Fig. 8.6) and have no statistically signif-

icant differences using either ASTRAL or MP-EST (see Tables 8.2 and 8.3).

As before, we evaluated the impact of statistical binning on gene tree estima-

tion error under the 1X (default ILS) model condition with varying sequence

lengths, and observed that binning substantially reduces gene tree estimation

error for short sequences (250bp and 500bp) but had little impact on longer

sequences (1000bp) (Table B.1 in Appendix B). Binning improves gene tree

distributions, generally with very large improvements, and the improvements

decrease with the sequence length and ILS level (Appendix B, Fig. B.5). Bin-

ning also improves species tree topology estimation (Fig. 8.6 and Tables 8.2

and 8.3). The impact appears to depend on the sequence length (binning

seems more beneficial for shorter sequences and neutral for longer sequences)

and number of genes (binning can dramatically improve species tree topologies

given a large number of genes, but can be neutral or even detrimental for a

small number of genes), and the choice of summary method (binning helps

both ASTRAL and MP-EST, but helps MP-EST more). ILS level also seems

to impact relative accuracy (Tables 8.4 and 8.5), so that binning seems most

helpful for low ILS levels, and less helpful for high ILS levels (Appendix B,

Fig. B.6). However, the effects of number of genes, sequence length, and the

ILS level were not statistically significant for this dataset (Tables 8.4 and 8.5).

214



Figure 8.6: Species tree estimation error for MP-EST and ASTRAL
using MLBS on mammalian simulated datasets. We show average FN
rate over 20 replicates. (a) Results for MP-EST. We varied the number of
genes (50, 100, 200, 400 and 800) and sequence length (250bp (43% BS), 500bp
(63% BS) and 1000bp (79% BS)) with default amount of ILS (1X level). (b)
ASTRAL on varying numbers of genes with fixed 1X ILS level and 500bp se-
quence length. We used 50% and 75% bootstrap support threshold for binning
on avian and mammalian datasets, respectively, and estimated the supergene
trees using RAxML with unpartitioned analyses.
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As observed in the avian simulations, unbinned analyses substantially

under-estimate species tree branch lengths (Fig. 8.4(c) and Fig. B.7 in Ap-

pendix B). Both weighted and unweighted binning produce nearly identical

branch lengths for all sequence lengths, number of genes, and ILS levels, and

both types of binning come closer to the true branch lengths than unbinned

analyses. Finally, both weighted and unweighted binning produce nearly iden-

tical species tree branch support values, where both match or improve un-

binned analyses for all tested numbers of genes, sequence lengths, and ILS

levels (Figures B.8 and B.9 in Appendix B). However, improvements increase

with the number of genes and decrease with the sequence length and ILS level.

Impact of support threshold B on avian and mammalian simulated
datasets

In addition to varying model conditions, we use a single avian and a

single mammalian model condition to study the impact of the support thresh-

old B on binning (Fig. 8.7). We use a mixed model condition with 200 genes

of 500bp and 200 genes of 1000bp for the mammalian dataset, and a model

condition with 1000 genes of 500bp for the avian dataset (both with default

1X ILS level).

On the avian dataset, binning is always beneficial, but the impact is

larger with B = 50% compared to B = 75% (Fig. 8.7(a)). For example,

unbinned MP-EST has 19% error, and using B = 50% reduces the error to

11%, and using B = 75% reduces the error to 13%.
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Figure 8.7: Species tree estimation error for MP-EST and ASTRAL
using MLBS on avian and mammalian simulated datasets with two
support thresholds (B). We show average FN rate for unbinned, and
weighted and unweighted binned analyses with both B = 50% and B = 75%.
Results are shown for (a) the avian dataset with 10 replicates of 1000 genes of
length 500bp and 1X ILS level, and (b) the mammalian dataset with 20 repli-
cates of 400 mixed genes (200 genes with 500bp and 200 genes with 1000bp)
with 1X ILS level.
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On the mammalian mixed data, binning is beneficial in all cases (see

Fig. 8.7(b)); however, the extent of the impact depends substantially on both

the threshold and the summary method. ASTRAL has high accuracy even

without binning, and binning with either threshold has only a small impact

on its accuracy. When MP-EST is used, binning with B = 50% leads to

relatively small improvements in accuracy, whereas B = 75% results in much

larger improvements. Thus, the choice of the threshold can have an impact,

but for the two model conditions we studied here both choices of the threshold

are beneficial.

Effects of binning on gene tree and species tree error for 15-taxon
datasets

We explored the impact of statistical binning on gene tree estimation

error using two sequence lengths and two values for B, the bootstrap support

threshold parameter (Table B.1 in Appendix B). For the shorter sequence

lengths (100bp), binning increases gene tree estimation error (from 77% to

80% when B = 50%, and from 77% to 86% when B = 75%). For the longer

sequence lengths (1000bp), binning with B = 50% has no impact on gene tree

estimation error, but using B = 75% increases error from 36% to 40%. Thus,

statistical binning increases gene tree estimation error for these very high ILS

15-taxon datasets, but the amount of the increase depended on the parameter

B (with larger increases for B = 75% and small increases for B = 50%)

and sequence length (where the impact on gene tree estimation error is much

reduced for the 1000bp alignments).
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Figure 8.8: Species tree estimation error for MP-EST and ASTRAL
with MLBS on 15-taxon simulated datasets. We show average FN rate
over 10 replicates. We varied the number of genes (100 and 1000) and se-
quence length (100bp and 1000bp). We used 50% and 75% bootstrap support
thresholds for binning, and estimated the supergene trees using RAxML with
fully partitioned analyses.

219



Fig. 8.8 shows the impact of weighted and unweighted statistical bin-

ning on species tree accuracy for the 15-taxon dataset. We apply statisti-

cal binning with two support thresholds (50% and 75%), and we use both

MP-EST and ASTRAL as the summary method. In all cases, weighted and

unweighted binning have similar accuracy, with no statistically significant dif-

ferences (Tables 8.2 and 8.3). The relative accuracy of unbinned and binned

analyses depends on the support threshold, so that with B = 50%, there are

no statistically significant differences, but with B = 75%, binning significantly

improves accuracy (p = 0.04 for MP-EST and p = 0.008 for ASTRAL; Tables

8.2 and 8.3). The extent of the improvements seems larger for more genes

and smaller alignments, but the impact of these factors are not statistically

significant for MP-EST (p = 0.24 and p = 0.17 respectively) and only impact

of sequence length was significant for ASTRAL (p = 0.02 ; Tables 8.4 and

8.5). The biggest gains are obtained when the 75% threshold is used with

1000 genes of 100bp, where binning reduces the error of MP-EST from 21% to

only 7%. Thus, the choice of the threshold can matter, and on this dataset,

the effects of binning can range from neutral to highly beneficial, depending

on the threshold used, number of genes, and gene sequence length.

Effects of binning on species tree error for 10-taxon datasets

Fig. 8.9 shows the impact of binning on species tree accuracy on the 10-

taxon datasets with two choices of the threshold B for the statistical binning

pipeline (B = 50% and 75%), two choices of the summary method (MP-EST
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and ASTRAL), and two levels of ILS (high and very high). No statistically

significant differences are observed on these data between weighted and un-

weighted binning, or between weighted binning and unbinned analyses (see

Tables 8.2 and 8.3); nevertheless, some patterns can be observed in terms of

the average error (Fig. 8.9). Both weighted and unweighted statistical binning

are close to neutral (regardless of the choice of method or level of ILS) when

applied with a 50% threshold. When the 75% threshold is used, the impact of

binning depends on the level of ILS: binning improves accuracy with low ILS

levels and reduces accuracy with high ILS levels, especially when MP-EST is

used, but these differences are not statistically significant (Tables 8.2 and 8.3).

Analysis of biological datasets

We compared weighted and unweighted binning of MP-EST and AS-

TRAL on MLBS gene trees on the avian and mammalian biological datasets

studied in [90].

Results for MP-EST on these datasets showed the following trends.

First, for the avian dataset, there are no topological differences between MP-

EST trees estimated using weighted or unweighted statistical binning, and ex-

tremely small differences in branch support (less than 3%; see Fig. 8.10). Thus,

although [62] only explored unweighted statistical binning with MP-EST, the

main conclusions they drew about the evolutionary history of modern birds

are also found in the weighted statistical binning analysis using MP-EST.

The unbinned MP-EST analysis violates several subgroups established in the
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Figure 8.9: Species tree estimation error for MP-EST and ASTRAL
with MLBS on 10-taxon simulated datasets. We show average FN rate
over 20 replicates. We varied the amount of ILS and fixed the number of
genes to 200 and gene sequence length to 100bp. We used 50% and 75%
bootstrap support thresholds for binning, and estimated the supergene trees
using RAxML with fully partitioned analyses.
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avian phylogenomics project and other studies (indicated in red in Fig. 8.10),

but the binned MP-EST analyses do not violate any of these subgroups. Of

these violated subgroups, the failure of the unbinned MP-EST analysis to re-

cover Australaves is the most significant, since it has been recovered in many

prior analyses [65, 87, 133, 147]. On the mammalian dataset, weighted and un-

weighted MP-EST again produce the same exact tree, with small differences

in support (less than 3%; see Appendix B, Fig. B.13). The unbinned MP-EST

tree, however, has one topological difference (the position of treeshrews; com-

pare Figs. B.12 and B.13 in Appendix B) with binned analyses, as discussed

in [90].

Results for ASTRAL on the biological datasets show generally similar

trends. Unbinned ASTRAL on the avian dataset (Appendix B, Fig. B.10)

recovers Australaves and hence is more in line with the prior literature than

unbinned MP-EST; however, just like unbinned MP-EST, the unbinned AS-

TRAL does not recover some key clades recovered by concatenation and other

analyses reported in [62]. Using weighted and unweighted statistical binning

with ASTRAL on the avian dataset produces almost identical results, and are

also almost identical to the binned MP-EST tree (the only change is the posi-

tion of hoatzin which has low support in all trees; see Appendix B, Fig. B.11).

On the mammalian dataset, trees produced by binned ASTRAL analyses with

weighted or unweighted binning pipelines are topologically identical to each

other, and to the tree produced by the unbinned analysis, and have rather

small differences in bootstrap support (see Appendix B, B.14). Binned and
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Figure 8.10: Trees computed on the avian biological dataset using MP-
EST on MLBS gene trees. We show results with weighted and unweighted
binning (left), and unbinned analyses (right). We used 50% bootstrap support
threshold for binning. Supergene trees were estimated using fully partitioned
analyses. MP-EST with weighted and unweighted binning returned the same
tree. The branches on the binned MP-EST tree are labeled with two support
values side by side: the first is for unweighted binning and the second is for
weighted binning; branches without designation have 100% support. Branches
in red indicate contradictions to known subgroups.
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unbinned ASTRAL analyses and binned MP-EST analyses all put treeshrews

as sister to Glires, while unbinned MP-EST puts them as sister to primates.

The placement of treeshrews is of substantial debate, and so the differential

placement is of considerable interest in mammalian systematics.

Overall, results on the two biological datasets show that weighted and

unweighted statistical binning analyses produced identical species trees and

nearly identical branch support values; furthermore, these binned analyses

were more congruent with established subgroups than unbinned analyses.

8.4.2 Summary of observations

Across all our analyses, results for both ASTRAL and MP-EST are very

similar with respect to how they responded to statistical binning. Weighted

statistical binning produces nearly identical results to unweighted statistical

binning on the biologically-based simulated datasets, and topologically iden-

tical results (with very similar bootstrap support values) on the biological

datasets we explored in this study, and so this study generally supports the

conclusions about statistical binning in [90]. In addition, because weighted

and unweighted statistical binning produce topologically identical trees on

the avian dataset, this study supports the findings about the avian phylogeny

reported in [62]. The fact that weighted and unweighted binning typically pro-

duced similar results is not surprising, since the unweighted binning technique

strives to create “balanced” bins as much as possible, and largely achieves this

on the datasets we explored. Furthermore, if the bins produced by statisti-
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cal binning have exactly the same size, then pipelines based on weighted and

unweighted statistical binning will produce the same species tree, since the

distributions of gene trees they produce will be identical. Since the bin sizes

produced using our heuristic for balanced minimum vertex coloring are close

to balanced, this explains why we observed very small differences between

weighted and unweighted statistical binning in these analyses.

Under most of the model conditions we studied, both weighted and un-

weighted statistical binning improved the estimation of gene tree topologies,

gene tree distributions, species tree topologies and branch lengths, and boot-

strap support (so that statistical binning increases bootstrap support for true

positive edges, and reduces the number of highly supported false positives),

compared to unbinned analyses. These improvements are largest when gene

sequence alignments have low phylogenetic signal, the gene trees exhibit at

most moderately large ILS levels, or there are many genes.

The impact of statistical binning on the 15-taxon datasets is somewhat

different than for the biologically-based simulations. Gene tree estimation

accuracy is reduced for both sequence lengths (though the impact is small

for the longer sequence lengths and only substantial for the short sequence

lengths with B = 75%). Nevertheless, the impact on species tree estimation

on these data tends to be neutral, but there are also conditions where binning

was beneficial.

On the lower ILS 10-taxon datasets, statistical binning reduces gene

tree estimation error, and both weighted and unweighted binning reduce species
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tree estimation error for B = 75%. However, species tree estimation error is

unchanged when B = 50%.

The results on the higher ILS 10-taxon datasets stand out from the

other analyses: statistical binning slightly increases gene tree estimation er-

ror when B=50% but substantially increases gene tree estimation error when

B=75%. Furthermore, while species tree estimation error is not increased for

B = 50%, when B = 75%, the error increases.

The difference in impact for statistical binning in this case is interesting,

and points out the significance of how B is set. To understand this, note that

when B is very small, then bin sizes will tend to be very small, since any

pair of incompatible branches with support above B will be considered to be

evidence of statistically significant discord; thus, small settings for B produce

results that are similar to unbinned analyses. Conversely, very large settings

for B are more likely to bin genes together, since only the strongest supported

conflicting branches will prevent genes from being binned. Therefore, if all

the gene trees have low support then statistical binning could tend to produce

results that are similar to concatenation. Thus, the choice of the threshold

matters.

To better understand the difference in impact of statistical binning on

these simulated datasets, it is helpful to consider the ILS levels and gene tree

bootstrap support values for these data. As shown in Table 8.1, the average

distance between the true gene trees and the species trees ranges for these

datasets from as low as 18% (for the Mammalian 2X collection) to above 80%
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(for the 10-taxon higher ILS collection and the 15-taxon collection). Fig. 8.3

shows how the effect of statistical binning used with MP-EST is impacted by

ILS level on the avian datasets: statistical binning provided an improvement

at all ILS levels, with the largest improvement for the lowest ILS level (2X

branch lengths) and the smallest improvement on the highest ILS level (0.5X

branch lengths). Figures B.5, B.6, B.7 in Appendix B evaluate this issue on

the mammalian datasets, and shows large improvements provided by statistical

binning under the lowest (2X branch lengths) ILS level, smaller improvements

under the middle (1X branch length) ILS level, and then no improvement under

the highest (0.5X branch lengths) ILS level. Thus, statistical binning provided

an improvement except for a small number of model conditions: some of the

15-taxon conditions (which have discordance of 82%), the higher ILS 10-taxon

conditions (which have discordance of 84%), and the highest ILS mammalian

condition (which have discordance of 54%). Table B.2 in Appendix B shows

that the average bootstrap support for the higher ILS 10-taxon datasets is

quite low – only 37%. Thus, statistical binning seems to be beneficial when

both ILS level and gene tree bootstrap support are not too high, will be neutral

when bootstrap support values are high (so little or no binning occurs), but

can be detrimental when ILS levels are extremely high but gene tree bootstrap

support is low enough that binning occurs. Thus, one consequence of this study

is the suggestion that when ILS levels are very high and the average gene tree

bootstrap support is low, then either statistical binning should not be used,

or it should be used in a very conservative fashion – with the parameter B set
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very low.

8.5 Conclusion

Because species trees and gene trees can differ, the estimation of species

trees requires multiple loci. One approach to estimating species trees from mul-

tiple conflicting loci seeks to restrict the set of loci using principled arguments

[124], but other approaches that explicitly model the discordance have also

been developed. When gene tree discord is due to incomplete lineage sorting,

then summary methods, such as MP-EST or ASTRAL, can be used to estimate

the species tree by combining gene trees. However, this study, as well as oth-

ers [8, 41, 74, 90, 93, 111], demonstrates that gene tree estimation error impacts

species tree estimation, so that species trees estimated using summary meth-

ods on poorly estimated gene trees can have low accuracy. The (unweighted)

statistical binning technique proposed in [90] improved the accuracy of esti-

mated gene trees, and was shown to improve the accuracy of MP-EST when

applied to MLBS gene trees. However, using unweighted statistical binning

within a phylogenomic pipeline can be statistically inconsistent [5].

This study described a modification to statistical binning, obtained by

replicating each supergene tree by the number of genes in its bin (equivalently,

replacing each gene tree from the input set by its recalculated tree, which is

the supergene tree for the bin).

On the biologically-based simulated datasets, weighted and unweighted

statistical binning generally improved estimated gene tree distributions and

229



led to improvements for MP-EST and ASTRAL estimations of species tree

topologies. The use of statistical binning with MP-EST also improved esti-

mated species tree branch lengths, increased bootstrap support for true posi-

tive edges, and reduced the number of highly supported false positives, com-

pared to unbinned MP-EST analyses. These improvements increased when

gene sequence alignments had low phylogenetic signal, the species tree had

low ILS, or there were many genes.

The estimation of species tree branch lengths is biologically significant

since these lengths are used to infer the amount of ILS in the data. Unbinned

MP-EST analyses tended to substantially underestimate branch lengths (and

thus over-estimate ILS), but both weighted and unweighted binning reduce

this problem and produce branch lengths that are much closer to their true

lengths. Since MP-EST tends to over-estimate ILS in the presence of gene

tree estimation error, this means that predictions of ILS levels for biological

datasets may have been over-estimated. Another consequence of this observa-

tion is that the biologically-based model species trees used here and in [90, 91]

may have inflated levels of ILS, since they used MP-EST to construct the

model species tree. If so, then performance under the lower ILS levels (species

tree branch lengths of 2X or larger) might be closer to the biological dataset

conditions than the default 1X condition and higher ILS conditions.

The improvement in branch support is biologically relevant, especially

since unbinned MP-EST analyses sometimes produced highly supported false

positive branches in the presence of poorly estimated gene trees and low levels
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of ILS, but binning reduced the incidence of these false positive branches with

high support.

The results on small numbers of species, and in particular on the higher

ILS 10-taxon datasets, show somewhat different trends. While results on the

15-taxon datasets showed binning generally being helpful or neutral, statis-

tical binning ranged from neutral to detrimental on the higher ILS 10-taxon

datasets (however, the differences were not statistically significant). Both the

higher ILS 10-taxon and 15-taxon datasets had extremely high levels of ILS

(the two highest we examined – average topological distance between true gene

trees and the true species trees of 84% and 82%, respectively). Given that sta-

tistical binning ranged from neutral to highly beneficial for all the other model

conditions, these data suggest that statistical binning may not be suitable to

datasets with extremely high ILS levels. Clearly, further research is therefore

needed to understand the conditions under which binning will be beneficial

and where binning may reduce accuracy.

This study also did not examine model conditions in which gene tree

estimation error is due to model misspecification, nor other biological causes for

gene tree discord, such as gene duplication and loss or horizontal gene transfer.

Furthermore, while we examined sequence datasets with varying numbers of

sites for each locus (including some with 100bp), even shorter sequences may

be needed to avoid loci that include any recombination [41].

This study mainly examined the impact of statistical binning on MP-

EST, and examined its impact on ASTRAL only for a subset of the data and
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only with respect to species tree topology estimation (instead of the full set

of criteria). Thus, an important direction for future study is to consider other

coalescent-based methods for estimating the species tree from multiple loci.

As a simple example, Mirarab et al. [91] showed that the accuracy of MP-

EST species trees depended on whether MLBS or best maximum likelihood

(BestML) gene trees were used, and that MP-EST trees based on BestML gene

trees generally produced more accurate species tree topologies for datasets

with large numbers of genes (such as some of the model conditions studied in

this study). The explanation offered for this is that BestML gene trees are

generally closer to the true gene tree than MLBS gene trees, and that this

helps coalescent-based species tree estimation. Hence, the evaluation of the

impact of binning on MP-EST with BestML gene trees is also needed. It is

also possible that better results would be obtained using Bayesian methods

(such as MrBayes [55]), rather than MLBS, to generate the distribution of

gene trees [23], since the posterior distribution produced by Bayesian MCMC

methods may be more closely centered around the true gene tree than the

MLBS sample.

This study suggests that substantial improvement in species tree esti-

mation could be obtained if we can develop more accurate methods for gene

tree estimation. For example, methods that co-estimate gene sequence align-

ments and trees, such as BAli-Phy [118], SATé [76, 77], and PASTA [92], might

provide improved gene tree estimation accuracy, compared to standard two-

step procedures for estimating trees (first align, and then compute the tree).
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Indeed, another challenge is that if loci are restricted to ultra-short

sequences (10-50 sites), so as to decrease the probability of intra-locus recom-

bination, then approaches based on combining estimated gene trees may not

be able to provide highly accurate results, no matter what techniques are used

to estimate gene trees. Hence, it is also possible that methods that construct

species trees directly from the sequence data, rather than by combining gene

trees, will have the best accuracy (see, for example, [18, 21]), since they can

avoid the analytical and empirical challenges caused by gene tree estimation

error.

However, as observed in this and other studies [41, 74], concatenation

often produces more accurate trees than even the best coalescent-based meth-

ods when the level of ILS is low enough. Therefore, an important question

is whether a given biological dataset has a sufficiently high level of ILS that

a coalescent-based analysis is needed. Conversely, coalescent-based methods

that are not only more accurate than concatenation under conditions with

high ILS, but also comparably accurate even under low levels of ILS, would

be very helpful tools.

Finally, since statistical binning did reduce accuracy for some of the

data we examined with small numbers of species and the very highest ILS

levels, an important question that needs to be addressed is whether these very

high ILS simulation conditions explored here and elsewhere represent realistic

levels of ILS, or whether they represent extreme conditions that are unlikely

to be observed in nature. Accurate estimations of ILS levels in biological
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data would enable the research community to direct its efforts to developing

methods that would have the greatest utility in practice.
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Chapter 9

Disk Covering Methods Improve

Phylogenomic Analyses

With the rapid growth rate of newly sequenced genomes, species tree

inference from multiple genes has become a basic bioinformatics task in com-

parative and evolutionary biology. However, accurate species tree estimation

is difficult in the presence of gene tree discordance, which is often due to

incomplete lineage sorting (ILS), modelled by the multi-species coalescent.

Several highly accurate coalescent-based species tree estimation methods have

been developed over the last decade, including MP-EST. However, the running

time for MP-EST increases rapidly as the number of species grows.

We present divide-and-conquer techniques that improve the scalability

of MP-EST so that it can run efficiently on large datasets. Surprisingly, this

technique also improves the accuracy of species trees estimated by MP-EST,

Much of the material in this chapter is taken without alteration from the following
paper.

• M. S. Bayzid, T. Hunt, and T. Warnow. Disk covering methods improve phylogenomic
analyses. BMC Genomics, 15(Suppl 6):S7, 2014

MSB and TW designed the study; MSB implemented the SSG and DACTAL decomposi-
tions, performed the analyses; TH implemented DCM1-based decomposition and performed
analyses; MSB and TW wrote the paper.
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as our study shows on a collection of simulated and biological datasets.

9.1 Introduction

A standard approach to species tree estimation uses multiple loci and

then concatenates alignments for each locus into a super-matrix, which is then

used to estimate the species tree. When genes all evolve down the same tree

topology under the same well-behaved process, then statistical methods of

phylogeny estimation (such as maximum likelihood) applied to the concate-

nated alignment are statistically consistent, and so will return the true tree

with high probability given a large enough number of sites or genes. However,

when the genes evolve down different tree topologies, which can happen in the

presence of gene duplication and loss, horizontal gene transfer, or incomplete

lineage sorting, then there are no statistical guarantees for concatenated anal-

yses. Furthermore, simulations have shown that concatenation can return in-

correct trees with high confidence in the presence of incomplete lineage sorting

[69], a population-level process modelled by the multi-species coalescent [66].

Because incomplete lineage sorting is expected to occur under many biologi-

cally realistic conditions (and especially in the presence of rapid radiations),

coalescent-based species tree methods with statistical guarantees of returning

the true tree with high probability (as the number of genes increases) have

been developed, and are increasingly popular [52, 68, 73, 78, 80, 81, 96].

Only some of these coalescent-based methods are fast enough to be

used with phylogenomic datasets that contain hundreds or thousands of genes
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and more than 30 or so species. For example, the fully-parametric coalescent-

based methods, such as BEST [78] and *BEAST [52] that co-estimate gene

trees and species trees, are limited to approximately 20 species and 100 genes

(and even datasets of this size can be extremely difficult) [8, 128]. The other

type of coalescent-based method are called “summary methods” because they

estimate species trees by combining estimated gene trees. These methods

tend to be much faster than the fully-parametric methods, and some of these

methods (e.g., MP-EST [80]) are able to be used with hundreds to thousands

of genes.

However, even the fast summary methods can be computationally in-

tensive on large datasets. For example, MP-EST, which has been used in

many biological dataset analyses [17, 71, 129, 159], uses a heuristic search to

solve an NP-hard pseudo-maximum likelihood optimization problem (based

on the triplet gene tree distribution). Our evaluation of MP-EST (reported

in this chapter) shows that the number of species greatly impacts the running

time; thus, improving MP-EST’s scalability (in terms of the number of species)

is an important objective.

This chapter introduces two general techniques for improving the scal-

ability of coalescent-based species tree estimation methods so that they can

analyze datasets with large numbers of species. Each technique uses an initial

tree estimated on the set of species to divide the species dataset into small

overlapping subsets, applies the species tree estimation method to each sub-

set of species to produce an estimated species tree for that subset, and then
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combines the estimated species trees (each on a subsets of the species) into a

tree on the full set of species. Furthermore, each technique can iterate, and

thus return a set of candidate species trees from which the final tree is se-

lected. The only difference between the two techniques is how the dataset is

divided into subsets, with one technique using the dataset decomposition tech-

nique from DACTAL [100] and the other using a modification of the dataset

decomposition technique from Rec-I-DCM3 [123].

We evaluate these two techniques on a collection of simulated and bi-

ological datasets, and show that both reduce the running time of MP-EST,

one of the most popular coalescent-based summary methods. Surprisingly,

these two techniques also improve the accuracy of MP-EST. Thus, the two

techniques improve the scalability of MP-EST, the leading coalescent-based

species tree estimation, so that it can be run on datasets with large numbers

of species and provide improved topological accuracy.

9.2 Methods

Disk-Covering Methods (DCMs) are meta-methods (employing divide-

and-conquer and in some cases also iteration) designed to “boost” the per-

formance of the existing phylogenetic reconstruction methods [58, 59, 97, 123].

The major steps of DCMs are: (i) decomposing the dataset into overlapping

subsets of taxa, (ii) estimating trees on these subsets using a preferred phylo-

genetic method, and finally (iii) merging the subtrees to get a tree on the full

set of taxa. However, DCMs have not yet been used in the context of species
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tree estimation from multiple gene trees, which is the focus of this study. Al-

though the approach we present can be used with any coalescent-based method

(including ones that co-estimate gene trees and species trees, such as BEST

and *BEAST), we study the technique specifically for use with MP-EST.

• Step 1: Compute a starting tree from the input set of gene trees; this

is the initial guide tree (we show results using MP-EST and Matrix

Representation with Parsimony (MRP) [115]).

• Step 2: Repeat for a user-specified number of iterations (we show 2 and

5).

– Step 2a: Decompose the set of species into small overlapping subsets

of taxa, with target subset size specified by the user (we show 15),

using the current guide tree.

– Step 2b: For each subset, create a set of gene trees by restricting

the input gene trees to the species present in the subset (each such

gene tree is called a subset gene tree), and then apply MP-EST to

the subset gene trees to produce a newly estimated subset species

tree.

– Step 2c: Combine the subset species trees estimated in Step 2b

using a supertree method (we use SuperFine+MRL [102]) , thus

producing a tree on the full set of species. This is the new guide

tree, and is used in the next iteration. We also add this tree to the

set of guide trees produced during the algorithm.
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• Step 3: Score each of the different guide trees produced during the algo-

rithm with respect to the selected optimization criterion and return the

tree with the best score.

We provide details for Step 2a and Step 3.

Step 2a: dataset decomposition techniques

We explored three different techniques for decomposing the set of species

into subsets: DCM1 [149], DACTAL [100], and a decomposition we call the

short subtree graph (SSG) [123]. The DCM1 decomposition improved MP-

EST but was less computationally efficient than the SSG-decomposition or

the DACTAL-decomposition. Therefore, we focus the remainder of our dis-

cussion on the other two techniques.

Definitions Let T be an edge-weighted guide tree on the set S of taxa. Let e

be an internal edge in T , and t1, t2, t3, t4 be the four subtrees around the edge

e (i.e., removing e and its two endpoints from T breaks T into four subtrees:

t1, t2, t3, t4.). A short quartet around e contains four leaves, one from each

of these four subtrees, where each leaf is selected to be the closest (according

to the edge weights) in its subtree to e. Hence, the set of short quartets of a

tree are obtained by taking all short quartets around all edges in the tree. We

used a “padding” technique where we find a collection of closest leaves (e.g., 2

or 3, rather than just 1) from each of the four subtrees around e, and we call

this a padded short quartet .
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DACTAL-based decomposition

DACTAL uses a padded-Recursive-DCM3 decomposition (PRD), as

follows. The input is a guide tree T (without edge weights) and target subset

size ms. The PRD decomposition finds a “centroid” edge (i.e., an edge that

splits the guide tree into two subtrees containing roughly equal numbers of

leaves). The removal of this edge and its endpoints divides the tree into four

subtrees, A,B,C and D. For each of these four trees, the set of at most p/4

(where p is the padding size, and p < ms) closest leaves to the edge e are

selected, and put into a set X ; four leaves selected from different subtrees

around the centroid edge, using this technique, are called padded short quar-

tets, generalizing the concept of short quartets where only the nearest leaf in

each subtree is selected [58, 97]. However, if there are ties (i.e., leaves that are

equally close to the branch e), then all leaves at the same (very close) distance

are included in the set; thus, |X| > p is possible. Then, the set of leaves

present in A∪X , B ∪X , C ∪X and D ∪X define four overlapping subsets.

If any of these sets is larger than ms, then the decomposition is repeated re-

cursively on that set until all subsets have size at most ms and the padding

size requirement is satisfied. However, if the application of the decomposition

cannot reduce the subset size, then the subset is returned. Thus, both p and

ms are treated as targets rather than hard constraints. For the simulated

datasets studied in this study, we set p = 4, which means that we only used

short quartets (one leaf in each subtree around a centroid edge). However, for

larger datasets, increasing p might lead to improved analyses.
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SSG-based decomposition

The SSG-based decomposition technique we present in this chapter is

similar to DCM3 decomposition presented in [123], but modified through the

use of the “padding” (described above) so that there is more overlap between

subsets.

Given input guide tree T and target maximum subset size (ms), the

SSG-based decomposition creates a “padded” short subtree graph G = (V,E)

as follows. First, we compute p = ⌊ms
4
⌋. We then compute the set of at

most p closest leaves in each subtree around a given edge in the graph, and

make a clique out of this set of (at most) 4p species. The graph containing

all these cliques is the padded short subtree graph. Equivalently, the vertex

set V contains the leaves in T (i.e., the species) and (si, sj) ∈ E if and only if

there is some edge e in the guide tree T such that si and sj are each among

the p nearest leaves to e in their respective subtrees. Because a padded short

subtree graph is chordal, it contains at most n = |V | maximal cliques, and

these can be found in polynomial time [42]. Note that typically the number

of vertices in the maximal cliques will be at most ms, but some of them can

be slightly bigger than ms. Thus, as with DACTAL, ms is a target maximal

value, and not a strict upper bound on the size of any subset we analyze.

Step 3: Selecting the best tree across different iterations

We explored two different optimality criteria – the maximum pseudo-

likelihood score computed by MP-EST, which is based on the rooted triplet

242



tree distribution, and a “quartet support score” [93]. The quartet support

measures the similarity between a candidate tree T and the input gene trees,

and is computed as follows. We decompose each input gene tree into its

induced set of quartet trees (i.e., unrooted trees formed by picking four leaves).

The quartet support score of a given candidate species tree T is the total, over

all the input gene trees, of the number of induced quartet trees that T agrees

with. As shown in [80], the tree that optimizes the maximum pseudo-likelihood

score is a statistically consistent estimator of the true species tree under the

multi-species coalescent model. Interestingly, the same is true of the quartet

support score, as shown in [93].

9.3 Experiments

We explore the performance of MP-EST [80] and these boosted ver-

sions of MP-EST on a collection of simulated and biological datasets. We

compare the estimated species trees to the model species tree (for the simu-

lated datasets) or to the scientific literature (for the biological datasets), to

evaluate accuracy. The tree error is measured using the missing branch rate

(also called the false negative rate), which is the percentage of the internal

edges in the model tree that are missing in the estimated tree. We measure

the statistical significance of the results by Wilcoxon signed-rank test with

α = 0.05.

243



9.3.1 Mammalian simulated datasets

We used datasets generated in another study [93] to explore perfor-

mance of coalescent-based methods for estimating species trees. These datasets

have gene sequence alignments generated under a multi-stage simulation pro-

cess, which begins with a species tree estimated on a mammalian dataset

(studied in [129]) using MP-EST, simulates gene trees down the species tree

under the multi-species coalescent model (so that the gene trees can differ

topologically from the species tree), and then simulates gene sequence align-

ments down the gene trees under the GTRGAMMA model. We direct the

reader to [93] for full details.

The basic model species tree has branch lengths in coalescent units, and

we produced other model species trees by rescaling the branch lengths. This

rescaling varies the amount of ILS (shorter branches have more ILS), and also

impacts the amount of gene tree estimation error and the average bootstrap

support (BS) in the estimated gene trees. The model condition with reduced

ILS was created by uniformly doubling (2X) the branch lengths, and two

model conditions with higher ILS were generated by uniformly dividing the

branch lengths by two (0.5X) and five (0.2X). The amount of ILS obtained

without adjusting the branch lengths is referred to as “moderate ILS”, and was

estimated by MP-EST on the biological data. Each model species tree was

then used to generate gene trees under the multi-species coalescent model. The

branch lengths in the gene trees were then modified to deviate from the strict

molecular clock, and sequences were simulated down each gene tree under the
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GTRGAMMA model.

Maximum likelihood (ML) gene trees were estimated on each sequence

alignment using RAxML [130] under the GTRGAMMA model, with 200 boot-

strap replicates to produce bootstrap support on the branches. The average

bootstrap support (BS) in the biological data was 71%, and the sequence

lengths were set to produce estimated gene trees with average BS bracketing

that value – 500bp alignments produced estimated gene trees with 63% average

BS and 1000bp alignments produced estimated gene trees with 79% average

BS.

The number of genes ranged from 50 to 800 to explore both smaller and

larger numbers of genes than the full biological dataset (which had roughly

400 genes). For each model condition (specified by the ILS level, the number

of genes, and the sequence length), we created 20 replicate datasets.

9.3.2 Biological datasets

We analyzed two biological datasets – the mammalian dataset from [129]

containing 37 species and 424 genes, and the amniota dataset from [17] con-

taining 16 species and 248 genes – using MP-EST and both versions of boosted

MP-EST. We set ms = 15 for the mammalian dataset, and ms = 10 for the

amniota dataset.
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9.4 Results

9.4.1 Running time on simulated datasets

Our first experiment evaluated the running time of MP-EST on different-

sized subsets of the simulated mammalian datasets; see Figure 9.1. Note the

fast increase in running time, so that MP-EST completed in 11 seconds on

8-taxon subsets, in 25 seconds on 10-taxon subsets, and in 150 seconds on

15-taxon subsets. Furthermore, MP-EST took 6900 seconds (115 minutes, or

nearly two hours) to analyze the 37-taxon mammalian dataset.

In contrast, each iteration of boosted MP-EST requires much less time:

12 minutes per iteration for SSG-boosting and 7 minutes per iteration for

DACTAL-boosting, each run sequentially.

The vast majority of the running time for both the DCM-boosted and

SSG-boosted versions of MP-EST is in computing the starting tree (if it uses

MP-EST or some other slow method) and when it runs MP-EST on subsets;

all the other steps completed in seconds, run sequentially. The decomposition

requires each subset to be no more than 15 species, but the average size of each

subset under the SSG- and DACTAL-based decompositions was between 12

and 13; hence, MP-EST on each subset took about one minute to analyze. The

number of subsets generated by the SSG-based decomposition ranged from 9 to

11, and used approximately 9-11 minutes. DACTAL decomposition typically

generated only 4-5 subsets (two cases with 7 subsets), and used approximately

4-5 minutes. Thus, the DACTAL-based analysis and SSG-based analysis pro-

duced subsets of approximately the same size, but DACTAL-based analyses
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had generally half the number of subsets to analyze, and so took about half the

time. We also observed (Fig. 9.2, 9.3 and 9.4) that two iterations of DACTAL-

boosting achieved about the same accuracy (and sometimes better accuracy)

as five iterations of SSG-boosting. Thus, DACTAL-boosting provides running

time benefits compared to SSG-boosting. Finally, since using MP-EST as the

starting tree is computationally expensive, we also evaluated boosting using

MRP, which is a very fast method for computing the starting tree, but which

is not as accurate as MP-EST for species tree estimation in the presence of

ILS; see below for these results.
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Figure 9.1: Running time of MP-EST for varying number of taxa. We
show the running time of MP-EST on the simulated mammalian datasets for
varying number of taxa on the model condition with moderate level of ILS,
200 genes and 500bp sequence length. The inset subfigure shows results in
seconds for 8 to 15 taxa, and the larger figure also shows results in minutes on
datasets with up to 37 taxa.
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Figure 9.2: Average FN rates of boosted MP-EST after two and five
iterations. We show the average FN rates of the best trees, with respect to
the quartet support, after two and five iterations of SSG and DACTAL-based
boosting on the simulated mammalian datasets with varying sequence length
(200 genes, moderate amount of ILS).
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Figure 9.3: Average FN rates of boosted MP-EST after two and five
iterations. We show the average FN rates of the best trees, with respect
to the quartet support, after 2 and 5 iterations of SSG and DACTAL-based
boosting on the simulated mammalian datasets with varying amount of ILS
(200 genes, 500bp).
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Figure 9.4: Average FN rates of boosted MP-EST after two and five
iterations. We show the average FN rates of the best trees, with respect
to the quartet support, after 2 and 5 iterations of SSG- and DACTAL-based
boosting on the simulated mammalian datasets with varying numbers of gene
trees (moderate amount of ILS, 500bp).

9.4.2 Impact of boosting on topological accuracy for simulated
datasets

We compared the accuracy and running time for various boosting tech-

niques. We used MP-EST to produce the starting tree, and then ran five

different iterations of DACTAL-boosting and SSG-boosting, using different

subset sizes (from 15 to 22), and using different criteria (maximum pseudo-

likelihood as computed by MP-EST or quartet support) to select the final

tree.

As noted above, DACTAL-boosting or SSG-boosting produced the same

results after five iterations. Analyses based on decompositions into subsets of

size 15 completed more quickly than decompositions into larger subsets, and

all subset sizes we explored (15-22) produced comparable accuracy. Finally,
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using quartet support scores rather than maximum pseudo-likelihood scores to

select the output species tree had better overall results (Fig. 9.5, 9.6 and 9.7).

Based on these preliminary results, we set default algorithmic parameters as

follows: DACTAL decomposition, subsets of size 15, and selecting the final

tree using the quartet support score. However, we show results for different

combinations of the algorithmic parameters below.
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Figure 9.5: Impact of how the final tree is selected (using quartet sup-
port or pseudo-likelihood) in boosted versions of MP-EST. We show
average FN rates of MP-EST (with and without boosting) on the simulated
mammalian datasets with varying amount of ILS, using two different ways of
selecting the final tree: quartet support (q) or pseudo-likelihood (l). We fixed
the number of genes to 200 and sequence length to 500bp, while varied the
amount of ILS. 2X model condition contains the lowest amount of ILS while
0.2X refers to the model conditions with the highest amount of ILS. We show
the results for SSG and DACTAL-based decomposition with maximum subset
size 15.

Figure 9.8 shows the average FN rates of concatenation using maxi-

mum likelihood, MP-EST, and boosted MP-EST (using both DACTAL and

SSG-based boosting). The results for boosting are based on starting with
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Figure 9.6: Impact of how the final tree is selected (using quartet sup-
port or pseudo-likelihood) in boosted versions of MP-EST. We show
average FN rates of MP-EST (with and without boosting) on the simulated
mammalian datasets with varying numbers of gene trees, using two different
ways of selecting the final tree: quartet support (q) or pseudo-likelihood (l).
We fixed the amount of ILS to moderate level (1X) and sequence length to
500bp, and varied the number of genes from 100 to 800. We show the results
for SSG- and DACTAL-based decompositions with maximum subset size 15.

the MP-EST tree, then performing 5 iterations and selecting the species tree

based on the quartet support. Both ways of boosting improved the accu-

racy of MP-EST across all levels of ILS, and were substantial on the model

conditions with increased ILS (0.5X and 0.2X). We measured the statistical

significance of the results using Wilcoxon signed-rank test (p-values given in

Table 9.1). With the exception of the 1X model condition, the improvements

of DACTAL-boosted MP-EST over un-boosted MP-EST were statistically sig-

nificant (p values are 0.002, 0.009, 0.09 and 0.04 for 0.2X, 0.5X, 1X and 2X

model conditions respectively). The improvements of SSG-boosted MP-EST

over un-boosted MP-EST were statistically significant for the highest ILS level
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Figure 9.7: Impact of how the final tree is selected (using quartet sup-
port or pseudo-likelihood) in boosted versions of MP-EST. We show
average FN rates of MP-EST (with and without boosting) on the simulated
mammalian datasets with varying numbers of gene trees, using two different
ways of selecting the final tree: quartet support (q) or pseudo-likelihood (l).
We fixed the amount of ILS to moderate level (1X) and number of genes to
200, and varied the sequence lengths from 250bp to 1000bp. We show the
results for SSG- and DACTAL-based decompositions with maximum subset
size 15.

(0.2X, p = 0.006), but not for the other levels (p values were 0.13, 0.08 and

0.117 for 0.5X, 1X and 2X model conditions, respectively).

Concatenation is expected to be less accurate than coalescent-based

methods when there is substantial ILS, and this is what we observed in these

experiments. Thus, with the exception of the 2X model condition (which had

the least ILS), concatenation was less accurate than both MP-EST and boosted

MP-EST. Interestingly, the improvement of concatenation over boosted MP-

EST on the 2X model condition was not statistically significant (p = 0.33

and p = 0.4 for SSG- and DACTAL-based boosting, respectively). Also, on
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Figure 9.8: Average FN rates of MP-EST (with and without boosting)
for different levels of ILS. Average FN rates of MP-EST (with and without
boosting) over 20 replicates on the simulated mammalian datasets with varying
amount of ILS. We also show the FN rate of concatenation. We fixed the
number of genes to 200 and sequence length to 500bp, while varied the amount
of ILS. 2X model condition contains the lowest amount of ILS while 0.2X
refers to the model conditions with the highest amount of ILS. We show the
results for short subtree graph (SSG) and DACTAL-based decompositions with
maximum subset size 15. We show the FN rate of the best tree with respect
to quartet support (as denoted by q in the figure legend) across five iterations.

the moderate level of ILS (1X), concatenation and MP-EST had very close

performance, but boosted MP-EST was more accurate than concatenation.

However, the differences between boosted MP-EST and concatenation were

not statistically significant (p = 0.08 and p = 0.11 for DACTAL and SSG-

based boosting respectively).

Figure 9.9 shows the comparison between unboosted and boosted MP-

EST using both SSG- and DACTAL-based decomposition on the simulated

mammalian datasets with 50 to 800 genes, moderate levels of ILS (1X), and

sequence length set to 500bp. Both SSG and DACTAL-based decomposition
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p-values
Model condition CA vs.

MP-EST
MP-EST
vs. MP-
EST (SSG)

MP-EST
vs. MP-EST
(DACTAL)

CA vs.
MP-EST
(SSG)

CA vs. MP-
EST (DAC-
TAL)

0.2X,200gt,500bp 0.014 0.006 0.002 0.0002 0.0001
0.5X,200gt,500bp 0.03 0.13 0.009 0.01 0.003
1X,200gt,500bp 0.433 0.08 0.09 0.11 0.08
2X,200gt,500bp 0.06 0.117 0.04 0.33 0.45
1X,50gt,500bp 0.023 0.003 0.06 0.41 0.31
1X,100gt,500bp 0.39 0.02 0.09 0.1 0.16
1X,400gt,500bp 0.08 0.09 0.09 0.02 0.02
1X,800gt,500bp 0.27 0.01 0.01 0.008 0.008
1X,200gt,250bp 0.22 0.18 0.01 0.27 0.49
1X,200gt,1000bp 0.0004 0.1 0.06 0.0002 0.0004

1X,200gt,true gene tree NA 0.03 0.06 NA NA

Table 9.1: p-values measured by Wilcoxon signed-rank test for the
simulated mammalian datasets. We evaluate the statistical significance
of differences in species tree topology using Wilcoxon signed-rank test with
α = 0.05. We show the p-values indicating whether the differences between
two methods are statistically significant. We compare concatenation (CA) and
MP-EST (unboosted) with SSG and DACTAL-boosted MP-EST.

improved MP-EST in all cases, sometimes substantially. The improvements of

SSG-based boosting over un-boosted MP-EST were statistically significant ex-

cept for the 200- and 400-gene cases (p values were 0.003, 0.02, 0.08, 0.09, and

0.01 for model conditions with 50, 100, 200, 400, and 800 genes, respectively).

DACTAL-based boosting was significantly better than un-boosted MP-EST

on the 800-genes case but not on the others (p values were 0.06, 0.09, 0.09,

0.09 and 0.01 for model conditions with 50, 100, 200, 400, and 800 genes,

respectively).

The comparison between concatenation and (boosted) MP-EST is also

interesting. For the 50-gene case, concatenation was more accurate than un-

boosted MP-EST, but DACTAL-boosted MP-EST matched the accuracy of

concatenation, and SSG-boosted MP-EST was slightly more accurate than
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concatenation. For other cases (100-800 genes), the differences between con-

catenation and MP-EST were not statistically significant (p > 0.05), but both

SSG-boosted and DACTAL-boosted versions of MP-EST were more accurate

than concatenation. Furthermore, the improvement of boosted MP-EST over

concatenation were statistically significant for 400- and 800-gene cases (p =

0.02 and 0.008 for the 400- and 800-gene cases, respectively, for both SSG and

DACTAL-based boosting).

Figure 9.10 compares boosted and un-boosted MP-EST on the mam-

malian datasets with varying sequence lengths. We fixed the amount of ILS

to the moderate level (1X) and number of genes to 200, while varying the

sequence lengths from 250bp to 1000bp. We also show the results on true

gene trees (i.e., without estimation error). Boosting improved the accuracy

of MP-EST in all cases. The improvements were statistically significant for

the 250bp case with DACTAL-based boosting and on the true trees for both

types of boosting (p < 0.05). On the 250bp condition (which has the highest

gene tree estimation error) concatenation was more accurate than MP-EST,

and boosted MP-EST matched concatenation.

9.4.3 Results on biological datasets

Amniota dataset. We analyzed data for 248 genes on 16 amniota species

from Chiari et al. [17]. Previous studies had placed turtles as the sister to

birds and crocodiles (Archosaurs) [57, 60, 156]. Chiari et al. [17] used con-

catenation and MP-EST with multi-locus bootstrapping on two sets of gene
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Figure 9.9: Average FN rates of MP-EST (with and without boost-
ing) for different number of gene trees. Average FN rates of MP-EST
(with and without boosting) over 20 replicates on the simulated mammalian
datasets with varying number of gene trees. We also show the FN rate of
concatenation. We varied the number of genes from 100 to 800, while set the
amount of ILS to 1X level and the sequence length to 500bp. We show the re-
sults for short subtree graph (SSG) and DACTAL-based decompositions with
maximum subset size 15. We show the FN rate of the best tree with respect
to quartet support (as denoted by q in the figure legend) across five iterations.

trees – one based on amino acid (AA) and the other based on nucleotide (NT)

alignments. Concatenation and MP-EST on the AA gene trees resolved the

clade as (turtles,(birds,crocodiles)) (i.e., birds and crocodiles were considered

sister taxa, consistent with the earlier studies) while MP-EST on the NT data

produced (birds,(turtles,crocodiles)), and so contradicted the previous studies.

Because the concatenation tree and the MP-EST(AA) tree agreed and were

consistent with previous studies, the resolution with turtles as sister to birds

and crocodiles was considered more likely to be correct.

We ran MP-EST on the NT datasets containing 248 gene trees with 10
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Figure 9.10: Average FN rates of MP-EST (with and without boost-
ing) for different sequence lengths. Average FN rates of MP-EST (with
and without boosting) over 20 replicates on the simulated mammalian datasets
with different amounts of gene tree estimation error by varying the sequence
lengths. We also show the FN rate of concatenation. We varied the sequence
lengths from 250bp to 1000bp with 200 genes and moderate amount of ILS
(1X). We show the results for short subtree graph (SSG) and DACTAL-based
decompositions with maximum subset size 15. We show the FN rate of the
best tree with respect to quartet support (as denoted by q in the figure legend)
across five iterations.

independent runs and retained the tree with maximum likelihood value; this

produced the same tree reported in [17]. We then ran four versions of boosted

MP-EST, with SSG- and DACTAL-based decompositions, and using the MP-

EST starting tree. For each analysis, we ran five iterations and retained the

tree with the highest quartet support across the five iterations. All variants

produced the same tree, resolving Archosaurs as (turtles,(birds,crocodiles))

(Fig. 9.11). Thus, the boosted MP-EST trees were consistent with concatena-

tion and other previous studies.
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Figure 9.11: Analyses of the amniota dataset using MP-EST (with
and without boosting). We show the trees estimated by MP-EST (right)
and SSG and DACTAL-boosted MP-EST (left) using the MP-EST and MRP-
estimated starting tree on the nucleotide amniota dataset from [17]. The sister
relationship of crocodiles and birds is considered reliable, and is recovered in
the SSG-boosted MP-EST tree. However, the MP-EST analysis of this dataset
places crocodiles as sister to turtles (indicated by the red edge), and is not
considered reliable.

Mammalian dataset. Song et al. [129] analyzed a dataset with 447

genes across 37 mammalian species using MP-EST and concatenation. In our

analysis of this data we detected 21 genes with mislabelled sequences (incorrect

taxon names, confirmed by the authors) which we removed from the dataset.

We also identified two additional gene trees that were clearly topologically

very different from all other gene trees, and removed these as well. We ran

MP-EST on the 424 gene trees with SSG and DACTAL-based boosting using

the MP-EST starting tree. All analyses we ran produced the same tree (see
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Fig. 9.12).
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Figure 9.12: Analyses of the mammalian dataset using MP-EST (with
and without boosting). MP-EST with SSG- and DACTAL-based boosting
using both MP-EST and MRP-estimated starting tree produced the same tree
as un-boosted MP-EST.

9.4.4 Pseudo-likelihood scores and quartet support values

Our analyses of the simulated and biological datasets showed that MP-

EST always found trees with pseudo-likelihood scores that were at least as good

as those found by any boosted MP-EST analysis, over all the iterations. In

other words, the best pseudo-likelihood score was always found in the MP-EST

starting tree. On the other hand, the best quartet support score was nearly

always found in a subsequent iteration, for both types of boosting techniques.
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The first of these observations suggests that MP-EST is doing a reasonably

good job of solving its optimization problem, since boosting is not improving

its search. The second of the observations is also very interesting, since the

boosting techniques are not explicitly designed to optimize quartet support,

and we have no explanation for this trend. Tables 9.2 and 9.3 show the log-

likelihood values and the quartet supports on mammalian simulated datasets.
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Log-likelihood values
Model condition starting tree best tree (SSG) best tree (DACTAL) model tree
0.2X,200gt,500bp -1338135 -1458629 -1477619 -1338257
0.5X,200gt,500bp -1001218 -1161407 -1280063 -1001269
1X,200gt,500bp -745312 -903602 -1145433 -745342
2X,200gt,500bp -613190 -808855 -782705 -613215
1X,100gt,500bp -370058 -437613 -469161 -370154
1X,400gt,500bp -1486055 -1952924 -1717131 -1486067
1X,800gt,500bp -2969112 -3721911 -3407789 -2969119
1X,200gt,250bp -999941 -1119309 -1145887 -1000048
1X,200gt,1000bp -563889 -778484 -703988 -563904

1X,200gt,true gene tree -465251 -755994 -628703 -465264

Table 9.2: Average log likelihood values (over 20 replicates) for dif-
ferent species trees. We estimated the log likelihood values using
MP-EST. We show the likelihood values for the initial tree estimated by MP-
EST and the true species tree (which is also estimated by MP-EST from the
biological datasets). For SSG and DACTAL-based boosting, we find the best
tree across the five iterations with respect to the log likelihood value estimated
by MP-EST with branch length optimization. The best likelihood values are
shown in bold.

Quartet support
Model condition MP-EST SSG DACTAL true species tree

0.2X,200gt,500bp 7818695 7819738 7820187 7816140
0.5X,200gt,500bp 10004913 10006656 10006864 10003929
1X,200gt,500bp 11269452 11269960 10006835 11266716
2X,200gt,500bp 11944097 11944516 11944554 11943759
1X,100gt,500bp 5635460 5635757 5635491 5630260
1X,400gt,500bp 22533544 22534293 22534313 22531906
1X,800gt,500bp 45095970 45096812 42841193 45096639
1X,200gt,250bp 10559948 10560603 10560467 10557321
1X,200gt,1000bp 11585974 11586449 11586514 11584969

1X,200gt,true gene tree 11745969 11746174 11746169 11744078

Table 9.3: Average quartet supports of different species trees. We
show the average (over 20 replicates) number of satisfied quartets
(in the input gene trees) by different species trees for various model
conditions. For SSG and DACTAL-based boosting, we find the best tree
across the five iterations with respect to the number of satisfied quartets. The
best quartet support values are shown in bold.
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9.4.5 Robustness to the starting trees

In the experiments shown so far, the starting tree was produced using

MP-EST. We tested robustness to the starting tree by using MRP, a fast

supertree technique, to compute a starting tree. However, MRP is not a

statistically consistent method for estimating the species tree in the presence

of ILS, and so is not likely to be as accurate as MP-EST.

Analyses of all biological datasets produced the same results, whether

based on MRP or MP-EST starting trees. Results on the simulated datasets

(Figs. 9.13, 9.14 and 9.15) show that MRP starting trees were generally not

as accurate as MP-EST starting trees, but that five iterations of DACTAL-

boosting from either starting tree produced essentially the same level of accu-

racy.
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Figure 9.13: Impact of different starting trees on DACTAL-based
boosting with MP-EST. We show the average FN rates of the best trees,
with respect to the quartet support, after five iterations of DACTAL-based
boosting using MP-EST and using the starting trees estimated by MRP
and MP-EST on the simulated mammalian datasets with varying sequence
length (200 genes, moderate amount of ILS). We ran MP-EST on the sub-
sets produced by DACTAL-based decomposition with maximum subset size
15 using different starting trees. MP-EST(MRP,dactal,15,q) refers to the re-
sults obtained by using the MRP-estimated starting tree, while MP-EST(MP-
EST,dactal,15,q) refers to the results obtained by using the starting tree es-
timated by MP-EST. We also show the FN rates of concatenation and the
starting trees estimated by MP-EST and MRP.
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Figure 9.14: Impact of different starting trees on DACTAL-based
boosting with MP-EST. We show the average FN rates of the best trees,
with respect to the quartet support, after 5 iterations of DACTAL-based boost-
ing using MP-EST and using the starting trees estimated by MRP and MP-
EST on the simulated mammalian datasets with varying amount of ILS (200
genes and 500bp). We ran MP-EST on the subsets produced by DACTAL-
based decomposition with maximum subset size 15 using different starting
trees. MP-EST(MRP,dactal,15,q) refers to the results obtained by using the
MRP-estimated starting tree, while MP-EST(MP-EST,dactal,15,q) refers to
the results obtained by using the starting tree estimated by MP-EST. We
also show the FN rates of concatenation and the starting trees estimated by
MP-EST and MRP.
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Figure 9.15: Impact of different starting trees on DACTAL-based
boosting with MP-EST. We show the average FN rates of the best trees,
with respect to the quartet support, after 5 iterations of DACTAL-based boost-
ing using MP-EST and using the starting trees estimated by MRP and MP-
EST on the simulated mammalian datasets with varying numbers of genes
(500bp, moderate amount of ILS). We ran MP-EST on the subsets produced
by DACTAL-based decomposition with maximum subset size 15 using differ-
ent starting trees. MP-EST(MRP,dactal,15,q) refers to the results obtained by
using the MRP-estimated starting tree, while MP-EST(MP-EST,dactal,15,q)
refers to the results obtained by using the starting tree estimated by MP-EST.
We also show the FN rates of concatenation and the starting trees estimated
by MP-EST and MRP.
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9.4.6 Statistical consistency

The following theorem is a direct corollary of Theorem 1 in [100].

Theorem 1: Let T be the true species tree, and let S1, S2, . . . , Sk be the

subsets created by a DACTAL- or SSG-decomposition with T as the starting

tree. Let ti be the true species tree on Si, i = 1, 2, . . . , k. Then the Strict

Consensus Merger (and by extension also SuperFine+MRL), applied to the

set t1, t2, . . . , tk, will return the species tree T .

Comment: SuperFine+MRL has two steps: first it computes the Strict

Consensus Merger (SCM), and then it resolves high degree nodes in the SCM

tree using MRL. Therefore, if SCM produces a fully resolved tree, SuperFine+MRL

returns the SCM tree.

Therefore, the following corollary can be easily proven:

Corollary 1: If the starting tree is computed using a method that is sta-

tistically consistent under the multi-species coalescent model, then the pipeline

based on either the DACTAL or SSG decomposition is statistically consistent

under the multi-species coalescent model.

9.5 Discussion

The results shown in this study suggest that using iteration and divide-

and-conquer (within the DACTAL-based and SSG-based decomposition tech-

niques) improved the topological accuracy of MP-EST. Furthermore, the spe-

cific choice of dataset decomposition technique (DACTAL-based or SSG-based)
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had little impact on accuracy. The improvement obtained by selecting trees

based on their quartet support scores instead of their maximum pseudo-likelihood

scores is very interesting, and suggests the possibility that although both op-

timality criteria are statistically consistent ways of searching for species trees

under the multi-species coalescent, the quartet support score might have better

empirical performance than the pseudo-likelihood score, at least under some

conditions.

While most of the analyses were based on using MP-EST to produce

the starting tree, we also showed that using MRP (a supertree method) to

produce the starting tree resulted in comparable accuracy after five iterations.

Since MRP generally produced less accurate starting trees than MP-EST, this

suggests that the boosting techniques are robust to the starting tree. Further-

more, MRP was very fast on these datasets, completing in just ten seconds.

Thus, when used with MRP as a starting tree, the entire pipeline (computing

the starting tree, running five iterations of DACTAL boosting, and selecting

the final tree) completes in 35 minutes. By comparison, MP-EST run without

boosting takes nearly 115 minutes (nearly two hours). Thus, boosting improves

the speed of MP-EST. If we use SuperFine+MRL or SuperFine+MRP to com-

pute the starting tree, then DACTAL-boosted MP-EST should be fast, even

for large numbers of species, since computing the starting tree using SuperFine

is typically very fast, even on large datasets [102]. Furthermore, although we

do not explore datasets with more than 37 species, the running times in Figure

1 suggest that MP-EST may be computationally infeasible for datasets with
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a few hundred species. By contrast, boosted versions of MP-EST are likely

to scale close to linearly with the number of species, and are embarrassingly

parallel. Thus, large-scale analyses of even several hundred species should be

feasible using boosted MP-EST.

While the improvement in speed was expected, the improvement in

accuracy was unexpected, and merits discussion. One possibility is that the

performance we observed is mainly the result of some specific property of the

simulation conditions we explored in this study, and that a larger study might

show a difference in relative performance between boosted and unboosted MP-

EST. However, both boosted versions of MP-EST gave more accurate results

on the biological amniota dataset, and so that is not likely to be the answer.

As noted, MP-EST is a heuristic for maximum pseudo-likelihood, and so an-

other possible explanation is that MP-EST might have difficulty finding good

solutions to its optimization problem on large datasets. However, the trees

found by MP-EST had ML scores that were at least as good (and most often

better) than the trees produced in any iteration by the boosted versions of

MP-EST. Thus, this was clearly not the reason boosting improves MP-EST.

Instead, the data suggests that the boosting technique leads to trees

with better quartet support scores, and that using quartet support scores to

select the best species tree might be helping these boosted versions of MP-

EST to produce more accurate trees. This hypothesis is supported by the

fact that selecting the best tree based on the quartet support produced im-

proved topological accuracy compared to selecting the best tree based on the
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pseudo-likelihood score, and that the quartet support optimization criterion is

statistically consistent under the multi-species coalescent model [93].

9.6 Conclusion

MP-EST is one of the popular methods for estimating species trees

from a collection of gene trees, and has statistical guarantees under the multi-

species coalescent model. MP-EST is fast on small datasets (with not too

many species) but its running time grows quickly with the number of species.

We presented two iterative divide-and-conquer techniques (DACTAL-boosting

and SSG-boosting) to use with MP-EST, with the goal of enabling MP-EST to

analyze datasets with large numbers of species more efficiently. We tested these

techniques on a collection of simulated and biological datasets, and showed that

boosted versions of MP-EST were fast and highly accurate using these divide-

and-conquer methods. The improvement in accuracy obtained by using these

boosting techniques is not explained by any failure in MP-EST to optimize

maximum likelihood effectively, but rather suggests the possibility that an

alternative optimization criterion – quartet support – may be a highly effective

approach to estimating species trees under the multi-species coalescent model.
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Chapter 10

Conclusions

The theory of evolution indicates that every organism on earth has

evolved from the “Universal Common Ancestor” (also known as last universal

ancestor (LUA)) [144]. This theory, coupled with the advancement in molec-

ular sequencing technology, has revolutionized the research in evolutionary

biology, and has presented the grand challenge of reconstructing the Tree of

Life. Fundamental to this reconstruction is the ability to produce, within rea-

sonable time constraints, accurate phylogenies for large datasets (in terms of

the number of genes and number of taxa). This dissertation contributes to

the problem of fast and accurate species tree estimation from genes sampled

throughout the whole genome, considering the presence of gene tree discor-

dance and other challenging scenarios that frequently arise in phylogenomic

analyses.

This dissertation makes significant contributions towards phylogenomic

reconstruction in the presence of gene duplication and loss, and incomplete

lineage sorting – two of the most important reasons for gene tree discordance.

We developed efficient algorithms for estimating species trees by minimizing

gene duplication and loss. We developed mathematical models for MGD and
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MGDL by introducing new concepts (subtree-bipartition and domination), and

presented clique-based formulations for both MGD and MGDL. We showed

that the MGD and MGDL species trees are defined by a maximum weight

clique and a minimum weight clique, respectively, in vertex-weighted graphs

that can be computed from the subtree-bipartitions of the input gene trees.

We also presented efficient polynomial time dynamic programming algorithms

to find these optimal cliques by using the special structure of the graphs. We

extended these algorithms for unrooted gene trees as well by considering the

fact that estimated gene trees are most often unrooted.

In phylogenetic analyses gene trees are very often incomplete, meaning

that genes might not have any individual for some species. Incomplete gene

trees can result from sampling error, or true biological gene loss. In this dis-

sertation we address the challenge of incomplete gene trees in phylogenomic

analyses. We conducted the first empirical study to investigate the perfor-

mance of different species tree estimation methods in the presence of gene

tree incompleteness. We showed that incompleteness significantly reduces the

accuracy of the species trees. We mathematically formalized the optimal com-

pletion problem, that seeks to add the missing taxa (species) into the gene trees

with respect to a species tree such that the distance (in terms of ILS) between

the gene tree and the species tree is minimized. We developed an efficient

algorithm for solving this problem. We formalized optimization problems in

the context of species tree estimation from a set of incomplete gene trees under

the multi-species coalescent model, and proposed algorithms for solving these
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problems.

We also presented different mathematical formulations of gene loss

based on different reasons for incompleteness (taxon sampling and true bi-

ological gene loss). We proved that the standard calculations for duplications

and losses exactly solve gene tree parsimony (GTP) problem when incom-

pleteness results from taxon sampling. However, they can be incorrect when

incompleteness results from true biological loss. We presented new theory for

gene tree parsimony when the gene trees are incomplete due to gene birth and

death (true biological loss).

This dissertation investigates the impact of gene tree estimation error,

which is a major challenge in phylogenomic analyses. Using extensive simu-

lation study, we identified that existing methods are susceptible to gene tree

estimation error. We proposed the first meta-method, which we call naive

binning, to address the problem of poorly estimated gene trees. We showed

that naive binning can dramatically improve the accuracy of the summary

methods. We also showed that this technique can also be used to scale com-

putationally expensive methods like *BEAST [52]. Statistical binning, which

is an improvement over naive binning, was used in avian phylogenomics project

to resolve the evolutionary history of 48 birds [62]. Being motivated by the

success of the binning technique, we developed an even more improved ver-

sion called weighted statistical binning. Weighted statistical binning enables

highly accurate genome-scale species tree estimation, and is also statistically

consistent under the multi-species coalescent model.
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Finally, considering the exploding amount of molecular data system-

atists are willing to analyze and the high computational requirements of the

existing methods, we developed divide-and-conquer based meta-methods that

can make the existing techniques scalable to large numbers of taxa. Our

method improves the scalability of MP-EST [80]. This technique also im-

proves the accuracy of species trees estimated by MP-EST.

We now outline some future research directions stemming from the

work in this dissertation:

• We addressed two major sources of gene tree discordance: gene dupli-

cation and loss, and incomplete lineage sorting. We always consider a

single source of discordance at a time. However, evolutionary process

could be more complex and a particular gene can evolve under multi-

ple biological processes (e.g., ILS, gene duplication and loss, horizontal

gene transfer etc.). Mathematical models to formulate the species tree

estimation methods assuming multiple sources of gene tree discordance

would enable us to better understand the gene and species evolution.

• We developed efficient algorithms for MGD and MGDL under the model

condition where gene trees can be rooted or unrooted, and have a single

copy per species. Extending these algorithms so that they can handle

non-binary and multi-copy (multiple copies per species that can result

from gene duplications) gene trees would be an important contribution.
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• Throughout this dissertation, we assume that the underlying evolution-

ary history is treelike. However, for many organisms, a significant level of

genetic exchange occurs between lineages (horizontal gene transfer), and

for some groups, lineages can combine to produce new independent lin-

eages (recombination) [22, 30, 84, 138]. These biological processes (known

as reticulate evolution) transform a tree into a network. Future studies

on investigating combinations of treelike and network-like evolutionary

histories, building complex evolutionary models to capture these two

modes of evolutions, and developing efficient algorithms for estimating

evolutionary history under these complex models would enable us better

understand the evolution.

• We developed meta-methods based on divide-and-conquer techniques,

that can make species tree estimation technique scalable to large num-

ber of taxa. We report on an experimental study that it significantly im-

proves the accuracy of MP-EST. It would be worth investigating its im-

pact on other leading methods like ASTRAL [93, 94]. Also, future studies

on reanalyzing large real biological datasets like the avian datasets [62]

using this meta-method would be an important contribution.

• One of the major contributions of this dissertation is the observation that

many species tree estimation methods are vulnerable to poorly estimated

gene trees. We developed a novel technique called binning to address this

problem. We presented weighted statistical binning, which improves phy-

logenomic analyses and is also statistically consistent, meaning that it
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can estimate the true species tree with arbitrarily high probability, given

a sufficiently large number of genes and sufficiently large numbers of sites

per gene. However, this assumption of having a large number of genes

with unbounded numbers of sites per gene is not realistic, and we do not

even need to use binning under these assumptions since a statistically

consistent species tree method can reconstruct the true species tree with

arbitrarily high probability, given a sufficiently large number of genes

and unbounded numbers of sites per gene. Under realistic conditions

with a limited number of genes and limited numbers of sites per gene,

binning may result in model violation by putting genes with discordant

evolutionary histories into a single bin, and thus the supergene tree dis-

tribution resulting from the binning approach may deviate from the true

gene tree distribution. On the other hand, existing (unbinned) sum-

mary methods perform very poorly on poorly estimated gene trees, and

therefore low signal genes are typically discarded from summary method

analyses which distorts the true gene tree distribution as well. Thus both

unbinned and binned analyses may be problematic with limited numbers

of low signal genes (although binning is useful in reducing the problem

of low signal genes, and empirically shown to be better than unbinned

analyses in many cases). Therefore, in addition to improving the meta-

methods like binning to handle poorly estimated gene trees, it is very

important to develop new highly accurate summary methods that can

handle gene tree estimation error to a certain extent.
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Overall, this dissertation not only made a series of significant contri-

butions in phylogenomic analyses, it also suggests additional avenues of im-

portant future works. We wish that one day, the present ambitious goal of

constructing the Tree of Life would come into reality; and perhaps, that grand

contribution might be traced back to the contribution of this thesis – just like

a phylogeny.
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Appendix A

Supplementary Materials for Naive Binning

These supplementary materials present additional details about the

methods used (Section A.1) and results obtained (Section A.2), and also

present additional discussion (Section 7.4).

A.1 Methods

A.1.1 Overview

We used previously generated datasets from two studies (17-taxon datasets

from [155] and 11-taxon datasets from [19]), and evaluated several pipelines for

estimating species trees and gene trees for these datasets. We included three

ways of estimating gene trees: RAxML and FastTree-2 to estimate maximum

likelihood trees from the sequence alignments, and *BEAST to co-estimate

gene trees and species trees. We explored several ways of estimating species

trees: BUCKy, *BEAST, MRP, Greedy Consensus, Phylonet-MDC, MP-EST,

and CA-ML. Each analysis produced a set of estimated gene trees and species

trees, which we could evaluate for accuracy by comparing them to the model

gene and species trees. We noted the missing branch rate (false negative, or

FN error) and running time usage for each method. We compared the meth-
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ods and determined which results were statistically significant using Wilcoxon

signed rank T-test, with α = 0.05.

We used 11-taxon datasets with 100 genes (100 replicates) and 17-taxon

datasets with up to 32 genes (also with 100 replicates). The 11-taxon datasets

were generated by model conditions that violate the molecular clock and came

in two forms: datasets that were generated under a high level of ILS (called

“strongILS”) and datasets that were generated under a low level of ILS (called

“weakILS”). The 17-taxon datasets were generated under the molecular clock

and had a high level of ILS; these came in two forms: 8-gene and 32-gene

datasets.

Slow methods: Pipelines that included *BEAST or BUCKy were too

computationally intensive to run on all the replicates; we therefore only ex-

plored these methods on a subset of the replicates. Specifically, we never ran

*BEAST on 100 replicates of any model condition. Instead, we ran *BEAST

(binned and unbinned) on 20 replicates of the 11-taxon datasets with at most

50 genes, and 20 replicates of the 17-taxon datasets with 8 genes and with 32

genes. For BUCKy, we were able to run it on 20 replicates (unbinned) of all

model conditions tested. In addition, when we ran BUCKy with binning, we

were able to run it on 100 replicates of the 11-taxon strongILS datasets and

100 replicates of the 17-taxon 32-gene datasets. The remaining methods were

all fast enough for us to run on all 100 replicates of all model conditions.
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Standard error: The error bars in the figures correspond to the standard

error, given by S/
√
n, where S is the standard deviation and n is the number

of datapoints.

A.1.2 Datasets

All datasets are available online at

http://www.cs.utexas.edu/users/phylo/datasets/ILS/.

11-taxon datasets: The 11-taxon datasets were created for the study

in [19], and simulated under a complex process to ensure substantial hetero-

geneity between genes and to deviate from the molecular clock. There were

two types of model trees – ones with long branches (LB) that produce low

levels of ILS, and ones with short branches (SB) that produce high levels of

ILS. We have referred to these two different model conditions as weakILS and

strongILS, respectively. Here we present the text from the paper, modified

only to remove the references to other papers and figures.

Text from [19]:

“We generated DNA alignments from 5-taxon and 11-taxon species

trees. An asymmetric tree topology was chosen on 5 taxa, as this was proven

to be more difficult to reconstruct in the presence of gene-to-gene discordance

[69]. Our 11-taxon tree contains two copies of our 5-taxon tree (subtree with

taxa 1, 2, 3, 4 and subtree with taxa 5, 7, 9, 10, both with taxon 11 as an
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outgroup). In one of the two copies, taxa 6 and 8 were added in order to de-

tect potential effects of the number of taxa on the estimation of internal edges

CFs. For each species tree topology, two sets of branch lengths were considered.

One set had long internal branches (LB), whereas the other set had some short

internal branches (SB). Species tree branch lengths were measured in coales-

cent units, as obtained by dividing the number of generations by the effective

population size. Under the coalescent model, branch lengths in coalescent units

determine the proportion of genes that share the species tree topology and the

proportion of genes that have any given conflicting topology.

“In order to simulate multilocus data sets, 10, 50, or 100 unlinked gene

trees were generated along the species trees. We used an effective size of 50,000

haploid individuals in each population. The numbers of generations between

speciations were determined by multiplying branch lengths in coalescent units

by the population size.

“HGTsimul was used to simulate a Poisson-distributed number of ge-

nomic rate change events (with a mean of three changes) on the species tree,

for genomic departure from the molecular clock. Lineage-specific rates were

simulated from a gamma distribution with mean 1 and shape parameter 2.0.

For each gene, branch lengths obtained from Serial SimCoal were multiplied

by these lineage-specific rates, then further multiplied by a common factor to

obtain a randomly chosen gene diameter (uniform in 0.024 and 0.037 substitu-

tions per site). Next, gene tree branch lengths were modified in a gene-specific

manner: for each individual gene, a Poisson-distributed number of rate change
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events (three changes on average) were placed on the gene tree, whose branch

lengths were multiplied by a gamma-distributed rate (mean 1 and shape param-

eter 2.0) in between these gene-specific rate change events. Finally, sequences

were simulated using the JukesCantor (JC) model and no site-specific rate

variation, for computational feasibility.

“In summary, our simulations included important factors that con-

tribute to heterogeneity among genes, such as heterogeneity in the overall rate

of evolution, departure from clock-like evolution, and topological discordance.”

17-taxon datasets: We used 17-taxon datasets that were simulated for

[155], and provided to us by the authors. In this simulation, species trees were

generated using the Yule module using Mesquite ([85]), and with total branch

length of 800,000 generations, not counting the outgroup. Two collections of

gene trees were simulated in this model: one with only 8 gene trees and one

with 32 gene trees; however, the 8-gene dataset is not a subset of the 32-gene

dataset. These gene trees were simulated within the species trees using the

“Coalescence Contained Within Current Tree” module within Mesquite, with

an effective population size of Ne = 100, 000. Then sequences were evolved

down the gene trees under the Jukes-Cantor model (without any rates-across-

sites), using Seq-gen ([116]), with each sequence having length 2000.

Thus, these sequences evolve under a strong molecular clock, and there

is no rate variation across sites or between different genes.
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Subsampling: Our 11-taxon datasets (both strongILS and weakILS) con-

tain 100 replicates each containing 100 genes. To evaluate the impact of the

number of genes on the performance of different methods, we subsample dif-

ferent number of genes (5, 10, 25, and 50 genes) from our available set of

100 genes. We randomly subsample a particular number of genes (5, 10, 25

etc.) from a replicate that contains 100 genes. We generated 20 set of such

subsamples from each replicate. For experiments analyzing 11-taxon datasets

with up to 50 genes, we generated either 20 replicates (all from one replicate

alignment) or 100 replicates (from 5 different replicate alignments). For exper-

iments analyzing 11-taxon datasets with 100 genes, we used all 100 replicates.

The 17-taxon datasets came in two collections - one with 8 genes, and one

with 32 genes. Therefore, for the analyses with 17-taxon datasets, we used 20

or 100 replicates of the datasets in each collection.

A.1.3 Methods

A.1.3.1 Gene tree estimation

We used three methods for estimating gene trees: FastTree-2, RAxML,

and *BEAST.

• FastTree-2 (v. 2.1.3 SSE3) ([114]). We used FastTree-2 to estimate ML

gene trees from the sequence alignments, using the following command:

FastTree -gtr -nt <sequenceAlignment>

> <outputFile>

• RAxML: We ran RAxML v. 7.3.1 ([130]) to estimate ML gene trees
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from sequence alignments. We ran 20 runs of RAxML on each of the

alignments, using the following command:

raxmlHPC-PTHREADS -T 2 -m GTRGAMMA

-s <sequenceAlignment> -n <output-name>

-N 20 -p 1234.

For estimating bootstrap branch support for the RAxML-estimated trees,

we generated 400 bootstrap trees per each gene and then drew branch

support on the edges of the ML tree by using these 400 bootstrap trees.

The proportion of the bootstrap trees in which a particular split is found

is taken to be the degree of support for that split. We then produced a

75%-branch support version of each estimated gene tree by contracting

all edges with support below 75%.

• *BEAST: We ran *BEAST in its default setting to co-estimate gene

trees and species trees; details are provided below under “Species Tree

Estimation”.

A.1.3.2 Species tree estimation

*BEAST: We used *BEAST v. 1.6.2 [33] in default mode to co-estimate the

gene trees and species tree on every dataset. For a given *BEAST analysis, we

discarded the first 10% of the trees returned by the analysis, and then sampled

one (1) out of each 1000 of the remaining trees. We return the maximum

credibility species tree and gene trees from the *BEAST output. On the 11-

taxon datasets with 5, 10, 25, and 50 genes, we ran *BEAST for 80M, 120M,
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160M, and 200M MCMC iterations, respectively. We did not run *BEAST

to convergence on the 100 gene datasets. On the 17-taxon datasets, we ran

*BEAST for 200M MCMC iterations.

We were able to run *BEAST on 11-taxon datasets with up to 50 genes.

We observed very high ESS values (all the ESS values were greater than 100,

and many of them were in the thousands) except for 5 and 10-gene cases, where

some ESS values were less than 100. On 17-taxon 8 and 32-gene datasets, we

observed very high ESS values (all the ESS values are greater than 100, and

many of them were in the thousands) when we ran it for 200M iterations.

When used with binning on 11- and 17-taxon datasets, we ran 50M iterations

on the supergenes and observed very high ESS values.

We ran *BEAST on 11-taxon 100-gene datasets with 50M iterations;

each of these analyses took around 100 hours per replicate dataset, but pro-

duced very poor ESS values (we observed many parameters having less than

100 ESS). Therefore, we did not report results for *BEAST on the 11-taxon

100-gene datasets.

BUCKy: We used BUCKy v.1.4.0 [1, 73] in default mode; thus, α = 1. As

noted in Chapter 7, most of the experiments involving BUCKy were run with

input gene tree distributions computed using RAxML. However, we also used

*BEAST in Experiment 4. We used the following command:

bucky -n <numberOfGenerations> -o <outputFileRoot> <inputFiles>
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For the analyses with distributions produced by *BEAST, we ran 80M,

120M, 160M, 200M iterations of *BEAST for 5, 10, 25, and 50 genes, respec-

tively, and we sampled one tree out of each 1000 iterations; this produced

80K, 120K, 160K, and 200K trees in each distribution for datasets with 5,

10, 25, and 50 genes, respectively. We discarded the first 10% of these trees

as burn-in, and used the remaining trees as the input to BUCKy. We ran

BUCKy with 30M generations for 5- and 10-gene cases, 40M generations on

25-gene cases, and 50M generations for 50-gene cases. For 17-taxon datasets,

we ran 40M generations. Note therefore that we did not test BUCKy on gene

tree distributions estimated by *BEAST on the 100-gene datasets, because

*BEAST was too expensive to run on these datasets.

We also ran BUCKy on RAxML-bootstrap trees, using 400 bootstrap

trees per gene. We ran 500M generations of BUCKy for 5-, 10-, and 25-gene

cases, and 200M generations for 50-gene cases. When run with binning, we

ran 500M and 50M generations of BUCKy on 11-taxon strongILS and weakILS

datasets, respectively. On 17-taxon datasets (both binned and unbinned), we

ran 100M generations of BUCKy.

As with *BEAST, there is no strict condition for convergence of BUCKy;

however, an “Average SD of mean sample-wide CF” below 0.05 may be ade-

quate to have high confidence about the convergence. Samples of the standard

deviation (SD) for the CF statistics for different BUCKy analyses follow:

• 11-taxon 50-gt, RAxML trees: SD = 0.000 to ∼ 0.004
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• 11-taxon 50-gt, *BEAST trees: SD = 0.000

• 11-taxon 25-gt, RAxML trees: SD = 0.001 to ∼ 0.006

• 11-taxon 25-gt, *BEAST trees: SD = 0.000

• 11-taxon 10-gt, RAxML trees: SD = 0.000 to ∼ 0.007

• 11-taxon 10-gt, *BEAST trees: SD = 0.000

• 11-taxon 5-gt, RAxML trees: SD = 0.000 to ∼ 0.001

• 11-taxon 5-gt, *BEAST trees: SD = 0.000

• 17-taxon 32-gt, RAxML trees: SD = 0.000

• 11-taxon 32-gt, *BEAST trees: SD = 0.000 to ∼ 0.003

• 17-taxon 8-gt, RAxML trees: SD = 0.000

• 11-taxon 8-gt, *BEAST trees: SD = 0.000

The following statistics are for the binned analyses:

• 11-taxon 50-gt (10 bins): SD = 0.000

• 11-taxon 25-gt (5 bins): SD = 0.000

• 17-taxon 32-gt (8 bins): SD = 0.000
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BUCKy returns two trees: one is the population tree (referred to as

“BUCKy-pop”) and the other is the concordance tree (referred to as “BUCKy-

con”). BUCKy-pop is statistically consistent in the presence of ILS, but

BUCKy-con is not.

MP-EST: We used MP-EST v. 1.2 [80] to estimate the species tree from

input gene trees. MP-EST requires rooted gene trees as input; our datasets all

include outgroups, and we root the estimated gene trees using these outgroups.

MP-EST is statistically consistent in the presence of ILS, and maximizes a

pseudo-likelihood function in order to estimate the species tree. We ran it in

its default setting with MAXROUND=1000000.

Matrix Representation with Parsimony (MRP): MRP [115] is a su-

pertree method that we use as a consensus method (since all the gene trees

have the same set of taxa). MRP has two steps: in the first step, it encodes

each input source tree as a matrix over {0,1, ?}, with one row for each taxon

in the full set of taxa, and with each character corresponding to one edge bi-

partition in one source tree. These matrices are then concatenated together

to obtain a single matrix. The MRP supertree is obtained by analyzing the

character matrix using a maximum parsimony approach.

We created MRP matrices using a custom Java program, and solved

MRP heuristically using the default approach implemented in PAUP* (v. 4.

0b10) [137]. By default, PAUP* generates an initial tree through random
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sequence addition (adding sequences one at a time in the most parsimonious

position in a tree) and then performs Tree Bisection and Reconnection (TBR)

moves until it reaches a local optimum. This process is repeated 1000 times,

and at the end the most parsimonious tree is returned. When multiple trees

are found with the same maximum parsimony score, the “extended majority

consensus” of those trees is returned.

Below is the PAUP* block:

begin paup;

set criterion=parsimony maxtrees=1000

increase=no;

hsearch start=stepwise addseq=random

nreps=100 swap=tbr;

filter best=yes;

savetrees file = <treeFile> replace=yes

format=altnex;

contree all/ strict=yes

treefile = <strictConsensusTreeFile>

replace=yes;

tcontree all/ majrule=yes strict=no

treefile = <majorityConsensusTreeFile>

replace=yes;

contree all/ majrule=yes strict=no

le50=yes
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treefile = <greedyConsensusTreeFile>

replace=yes;

log stop;

quit; end;

Phylonet: We use the Phylonet v. 2.4 [143] to solve MDC heuristically

or exactly, depending on the dataset size. For the 11-taxon datasets, we use

the version that is guaranteed to solve MDC optimally, and for the 17-taxon

datasets we use the heuristic version. The input to Phylonet in each case

is a set of gene trees restricted to the branches with bootstrap support at

least 75% (i.e., with all low-support branches contracted). The version of

Phylonet we used on these partially resolved gene tree estimates solves the

following problem: Given a set of (partially resolved) unrooted gene trees

T = {t1, t2, . . . , tk} (not necessarily on the same set of taxa), find binary

refinements t∗i for each ti, and species tree T , so that the MDC score of T

with respect to T∗ = {t∗1, t∗2, . . . , t∗k} is minimum among all such sets T∗ and

species trees T . Thus, Phylonet solves a constrained version of MDC, taking

bootstrap support into consideration. See [155] for more details and the proof

of correctness. See also [7] for the proof that Phylonet handles missing taxa

correctly.

Greedy Consensus: We ran the greedy consensus technique (also called

the extended majority consensus) using PAUP* v. 4.0b10. The greedy consen-

290



sus begins by computing the majority consensus (the tree whose edge-induced

taxon bipartitions are those that appear in more than half of the input trees),

and then adds compatible bipartitions, one at a time, in an order reflecting

the frequency with which each bipartition appears.

Below is the PAUP* block:

begin paup;

set autoclose = yes warntree = no

warnreset = no notifybeep = no

monitor = yes taxlabels = full;

set criterion = parsimony;

set increase = auto;

gettrees file = <nexusFile> allblocks = yes

warntree = no unrooted = yes;

contree all / strict = no

majrule = yes le50 = yes

treefile = <greedyConsensusTreeFile>;

end;

Combined Analyses using Maximum Likelihood (CA-ML): This

method concatenates the alignments on all genes into one super-alignment,

and then estimates a tree from the super-alignment using maximum likelihood,

treating the alignment as unpartitioned. We used RAxML for this analysis,

using the following command:
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raxmlHPC-PTHREADS -T 2 -m GTRGAMMA

-s <sequence> -n <output-name> -N 10

-p 1234.

A.1.4 Running time

*BEAST running time: We tested three 11-taxon datasets with 100

genes without using binning and using 50M iterations; these analyses ranged

from 80 to 150 hours. Based on the ESS values, none of these came close to

convergence; hence, the running times here are suggestive of lower bounds for

time needed to use *BEAST. However, these datasets were run on Condor,

and so running times are approximate.

The remaining analyses were on at most 50 genes, or used binning to

analyze 100 genes (and so had only 20 supergenes). Each analysis is of one

dataset only, and was done on a dedicated 64-bit machine with 32173 MB

memory.

• Unbinned analyses

– 11-taxon strongILS 50-gt, 200M iterations: 57 hours

– 11-taxon strongILS 25-gt 160M iterations: 20 hours

– 17-taxon 32-gt, 200M iterations: 35 hours

• Binned analyses (5 genes per bin)
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– 11-taxon strongILS 100-gt with 20 bins with 50M iterations: 10

hours using 4 threads

– 11-taxon strongILS 50-gt with 10 bins (5 genes in each bin), 50M

iterations: 6.4 hours

– 11-taxon 25-gt strongILS with 5 bins, 50M iterations: 3.1 hours

– 17-taxon 32-gt with 8 bins, 50M: 5.6 hours

BUCKy running time: We performed several BUCKy analyses for all

three model conditions. These analyses showed that the running time was

determined by the type of input distribution, and whether it was from one

of the two 11-taxon model conditions or from the 17-taxon model condition;

however, 11-taxon strongILS and 11-taxon weakILS analyses took the same

amount of time.

Results on unbinned analyses with RAxML gene tree distributions:

• 11-taxon 100-gt, RAxML trees, 200M generations: 2.2 hours

• 11-taxon 50-gt, RAxML trees, 200M generations: 2.1 hours

• 11-taxon 25-gt, RAxML trees, 500M generations: 3.5 hours

• 11-taxon 10-gt, RAxML trees, 500M generations: 2.36 hours

• 11-taxon 5-gt, RAxML trees, 500M generations: 1.75 hours

• 17-taxon 8-gt, RAxML trees, 100M generations: 40 mins
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• 17-taxon 32-gt, RAxML trees, 100M generations: 2.07 hours

Results on unbinned analyses with *BEAST gene tree distributions:

• 11-taxon 50-gt, *BEAST trees, 50M generations: 21 mins

• 11-taxon 25-gt, *BEAST trees, 40M generations: 11 mins

• 11-taxon 10-gt, *BEAST trees, 30M generations: 7 mins

• 11-taxon 5-gt, *BEAST trees, 30M generations: 3 mins

• 17-taxon 32-gt, *BEAST trees, 40M generations: 15 mins

• 17-taxon 8-gt, *BEAST trees, 40M generations: 6 mins

Note the difference in running time between *BEAST and RAxML distribu-

tions, indicating that BUCKy converges with fewer MCMC iterations when

run with *BEAST distributions than when run with RAxML bootstrap distri-

butions! However, *BEAST takes much more time to run, so the total running

time when based on *BEAST is much longer.

Running time for binned analyses:

• 11-taxon 25-gt (5 bins), RAxML trees, 500M generations: 1.1 hours

• 11-taxon 50-gt (10 bins), RAxML trees, 500M generations: 1.75 hours

• 17-taxon 32-gt (8 bins), RAxML trees, 100M generations: 13 mins
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RAxML bootstrapping: We generated 400 bootstrap replicates per gene;

each analysis took under 2 minutes on each gene sequence alignment, whether

it was a single gene or a supergene. Specific results are:

• 11-taxon dataset strongILS and weakILS: less than 1 minute per gene

• 17-taxon dataset: less than 2 minutes per gene

• 11-taxon 50-gt, 10 bins (5 genes in each): less than 2 minutes per super-

gene

• 11-taxon 25-gt, 5 bins (5 genes in each): less than 2 minutes per super-

gene

• 11-taxon 100-gt, 20 bins (5 genes in each): less than 2 minutes per

supergene
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A.2 Additional results

A.2.1 Experiment 1: Evaluating fast species tree estimation meth-
ods on 100 replicate datasets

CA-ML showed substantial improvements over the next best method

(typically MP-EST, but in one case MRP) in Experiment 1 for the 11-taxon

datasets, with biggest improvements on the 11-taxon weakILS datasets. CA-

ML was also more accurate than the next best method on the 17-taxon

datasets, but the differences were smaller. As can be seen, the improvements

were statistically significant for all conditions, with p < 0.003 on the 11-

taxon datasets (both strongILS and weakILS), and p ≤ 0.043 on the 17-taxon

datasets.

• 11-taxon strongILS 5-gt: (CA-ML vs. MRP): p < 10−6

• 11-taxon strongILS 10-gt: (CA-ML vs. MP-EST): p < 10−3

• 11-taxon strongILS 25-gt: (CA-ML vs. MP-EST): p = 10−6

• 11-taxon strongILS 50-gt: (CA-ML vs. MP-EST): p < 10−5

• 11-taxon strongILS 100-gt: (CA-ML vs. MP-EST): p = 0.003

• 17-taxon 8-gt: (CA-ML vs. MP-EST): p = 0.013

• 17-taxon 32-gt: (CA-ML vs. MP-EST): p = 0.043

Thus, the improvement of CA-ML over the next best method is statistically

significant in all these cases.
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A.2.2 Experiment 2: Evaluating species tree estimation methods
on 20 replicate datasets

*BEAST vs. fast methods on RAxML gene trees: We compared

*BEAST to fast methods on RAxML gene trees on 20 replicates of all model

conditions. With the exception of the 17-taxon 32-gene case, the differences

were statistically significant. On 11-taxon strongILS datasets, *BEAST is

significantly better than the fast methods (p < 10−3). The difference is also

significant on 17-taxon 8-gene datasets (p-values are within the range 0.02 ∼

0.03). On 11-taxon weakILS datasets, *BEAST is significantly better than the

fast methods on 5 and 10 genes (p < 10−2), but not significantly better on 25

or 50 genes (p > 0.1).

CA-ML vs. *BEAST: As *BEAST is computationally intensive to run

(tens to hundreds of hours for each analysis for some datasets), we compared

CA-ML to *BEAST on only 20 replicate datasets of each model condition. The

relative performance between the two methods was mixed, with CA-ML being

more accurate in some cases and less accurate in others. However, the only

statistically significant differences were for two conditions: 11-taxon 25-gene

strongILS and 11-taxon 5-gene weakILS, in which CA-ML was more accurate

than *BEAST (p = 0.05 and p = 0.03, respectively).

BUCKY-con vs. BUCKy-pop: The difference is statistically significant

only on the 11-taxon strongILS 25-gene (p = 0.003) and 50-gene (p = 0.035)

cases.
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A.2.3 Experiment 3: Evaluating gene tree estimation error

Here we discuss the accuracy of gene trees estimated by maximum

likelihood (by RAxML or FastTree-2) and *BEAST. Results for the 11-taxon

strongILS conditions are provided in Figure A.1 and Table A.1; results for the

11-taxon weakILS conditions are provided in Figure A.2 and Table A.2. In

Table A.3 we present results for the 17-taxon datasets; the figure for these data

are in the main document. Note that *BEAST gives a dramatic improvement

in gene tree estimation accuracy, and that the smallest improvement is on the

17-taxon datasets. However, even on these data, the improvement is at least

50%.

Method Error Error Error Error Error
5 genes 10 genes 25 genes 50 genes 100 genes

*BEAST 0.224 0.162 0.155 0.141 -
FastTree 0.430 0.440 0.407 0.418 0.424
RAxML 0.405 0.424 0.401 0.399 0.413

Table A.1: Average missing branch rates (over 20 replicates) of
gene trees estimated by different methods on 11-taxon strongILS
datasets. *BEAST could not be run on 100-gene datasets. Experiment 3.
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Method Error Error Error Error
5 genes 10 genes 25 genes 50 genes

*BEAST 0.095 0.039 0.033 0.033
FastTree 0.314 0.299 0.338 0.334
RAxML 0.311 0.283 0.321 0.319

Table A.2: Average missing branch rates (over 20 replicates) of gene
trees estimated by different methods on 11-taxon weakILS datasets.
Experiment 3.

Method Error Error
8 genes 32 genes

*BEAST 0.195 0.176
FastTree 0.399 0.400
RAxML 0.393 0.389

Table A.3: Average missing branch rates over 20 replicates of gene
trees estimated by different methods on 17-taxon datasets. Experi-
ment 3.
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Figure A.1: Gene tree estimation error rates on 11-taxon strongILS
datasets. Average and standard error bars (over 20 replicates) of *BEAST,
RAxML, and FastTree-2. Experiment 3.
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Figure A.2: Gene tree estimation error rates on 11-taxon weakILS
datasets. Average and standard error bars (over 20 replicates) of *BEAST,
RAxML, and FastTree-2. Experiment 3.
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A.2.4 Experiment 4: Evaluating summary methods on gene trees
estimated by *BEAST

The figures below show results of using summary methods on gene trees

estimated using *BEAST, and compares them to the species trees estimated

by *BEAST. There were no statistically significant differences in the accuracy

of trees estimated using *BEAST as compared to using summary methods on

gene trees estimated using *BEAST (p > 0.2 for all pairwise comparisons).
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Figure A.3: Results for summary methods on gene trees estimated
using *BEAST on 11-taxon weakILS model conditions with up to
50 genes. Results are shown for 20 replicates. Experiment 4.
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Figure A.4: Results for summary methods with input gene tree distri-
butions estimated using *BEAST on 11-taxon weakILS model con-
ditions with up to 50 genes. Results are shown for 20 replicates. Every
method returns the true tree on the 25- and 50-gene datasets. Experiment 4.
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Figure A.5: Results for methods with input gene tree distributions
estimated using *BEAST on 17-taxon model conditions. Results are
shown for 20 replicates. Experiment 4.
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A.2.5 Experiment 5: Evaluating the impact of naive binning on
fast methods - 100 replicate datasets

We divide Experiment 5 into two parts: a comparison on 100 replicate

datasets of the fast methods (all methods other than *BEAST and BUCKy),

and then a comparison on 20 replicate datasets of all methods. See this sub-

section for results on fast methods, and the next subsection for results on

all methods. Note that the impact of binning on the fast methods is best

evaluated in the experiments on 100 replicate datasets, rather than on the 20

replicate datasets, especially in terms of statistical significance.

Because CA-ML is an unpartitioned analysis, it is not impacted by bin-

ning. Binning can impact all the other methods, but we do not have results for

the unbinned Bayesian methods (*BEAST and BUCKy) on these 100 replicate

datasets because they are too computationally expensive.

These experiments show the following trends:

• MP-EST, MRP, Phylonet, and Greedy Consensus each improved for all

numbers of genes on the 11-taxon strongILS condition and on the 25-

gene 11-taxon weakILS condition. The improvements on the 11-taxon

weakILS conditions with 25 genes were small (at most 0.5%), but this is

because all unbinned methods were highly accurate to begin with – all

had error between 0.4% and 1.4%. The improvements on the 11-taxon

strongILS conditions ranged from 1% to 4.8% (Phylonet on 50 genes),

but differences were generally less on the 100-gene case (ranging from
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0.6% to 3%) and 25-gene case (ranging from 1.1% for Greedy to 3% for

Phylonet) than on the 50-gene case (ranging from 1.6% for MP-EST to

4.2% for Greedy).

• Phylonet became 0.5% more accurate on the 17-taxon condition, but the

change was not statistically significant (p > 0.25). All other methods

(MP-EST, Greedy, and MRP) became less accurate on the 17-taxon

conditions, but the difference in accuracy was small (at most 1%) and

the changes were not statistically significant for any of these methods.

• On the 11-taxon models, the differences for Phylonet’s performance were

statistically significant for every case, and tended to be larger than for

the other methods. They were statistically significant for Greedy Con-

sensus only on the 11-taxon strongILS datasets with 50 and 100 genes

(and hence not for 25 genes on either strongILS or weakILS). The re-

sults were statistically significant for MP-EST on the 25-gene datasets

(both strongILS and weakILS), but not for the other cases. Finally,

the results were statistically significant for MRP only on the 50-gene

strongILS datasets.

Thus, methods differed in their response to binning, and binning on the

11-taxon datasets generally improved accuracy and sometimes substantially,

while generally reducing accuracy (but only slightly) on the 17-taxon datasets.

However, the only statistically significant differences were improvements in

accuracy. Phylonet in particular benefited from binning, improving even on
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the 17-taxon datasets, and improvement was greatest in cases where there were

enough genes (at least 50), and accuracy before binning was not too great.

Method Error Error Error
25 genes 50 genes 100 genes

CA-ML 0.053 0.031 0.018
BUCKy-con (binned) 0.070 0.045 0.034
BUCKy-pop (binned) 0.070 0.045 0.034
MP-EST 0.110 0.073 0.039
MP-EST (binned) 0.088 0.057 0.033
Phylonet-exact 0.126 0.089 0.054
Phylonet-exact (binned) 0.096 0.041 0.024
MRP 0.115 0.091 0.050
MRP (binned) 0.105 0.053 0.038
GC 0.114 0.096 0.054
GC (binned) 0.103 0.054 0.034

Table A.4: Average missing branch rates for methods (unbinned and
binned) on 11-taxon strongILS 25, 50 and 100-gene cases. Results are
shown for 100 replicates. Each bin contains 5 genes. BUCKy (unbinned) was
not run on 100 replicates. Experiment 5.
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Figure A.6: Results of binning experiment on 17-taxon datasets with
32 genes. We show the performance (average and standard error bars) of
methods other than BUCKy on unbinned genes and *BEAST. Each bin con-
tains 4 genes; n=100 for all datapoints. Experiment 5.
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Figure A.7: Results of the binning experiment on 11-taxon 25-gene
weakILS datasets. Each bin contains 5 genes. Average and standard error
bars shown; n=100 for all datapoints. CA-ML returns the true tree on these
data Experiment 5.
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Method p-values p-values p-values
25 genes 50 genes 100 genes

MP-EST 0.021 0.057 0.211
Phylonet 0.002 < 10−5 < 10−3

MRP 0.177 < 10−4 0.079
GC 0.156 < 10−4 0.007

Table A.5: Evaluating the statistical significance of using binning
on fast methods, when analyzing 100 replicate 11-taxon strongILS
datasets. We show p-values for the statistical significance of a difference be-
tween binned and unbinned analyses. Each bin has 5 genes. Experiment 5.

Method Error

CA-ML 0.000
MP-EST 0.014
MP-EST (binned) 0.003
Phylonet 0.008
Phylonet (binned) 0.000
MRP 0.008
MRP (binned) 0.004
GC 0.009
GC (binned) 0.004

Table A.6: Average FN rates for methods (unbinned and binned) on
11-taxon weakILS 25-gene case; n = 100. Each bin contains 5 genes. We
did not run *BEAST or BUCKy on 100 replicates. Experiment 5.
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Method p-values

MP-EST 0.002
Phylonet 0.016
MRP 0.188
GC 0.109

Table A.7: Evaluating the impact of binning on fast methods on 100
replicate 11-taxon weakILS datasets with 25 genes. We show p-values
for the statistical significance of a difference between binned and unbinned
analyses. Each bin has 5 genes. Experiment 5.

Method Error

CA-ML 0.136
BUCKy-con (binned) 0.154
BUCKy-pop (binned) 0.154
MP-EST 0.149
MP-EST (binned) 0.159
Phylonet 0.176
Phylonet (binned) 0.171
MRP 0.146
MRP (binned) 0.153
GC 0.151
GC (binned) 0.161

Table A.8: Average FN rates for methods (unbinned and binned) on
17-taxon 32-gene case; n = 100. Each bin contains 4 genes. We did not
run unbinned BUCKy on 100 replicates. Experiment 5.
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Method p-values

MP-EST 0.221
Phylonet 0.258
MRP 0.273
GC 0.245

Table A.9: Evaluating the impact of binning for fast methods (binned
vs. unbinned) on 100 replicates of 17-taxon 32-gene dataset. We show
p-values for the statistical significance of binned versus unbinned analyses.
Each bin has 4 genes. Experiment 5.
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A.2.6 Experiment 5: Evaluating the impact of naive binning on all
methods - 20 replicate datasets

We now show results for naive binning on all methods (including BUCKy

and *BEAST), but restricted to 20 replicate datasets. On these datasets, we

were able to run the Bayesian methods (BUCKy and *BEAST), and so can

explore the impact of binning on these methods. We do not show results for

unbinned *BEAST on the 100-gene datasets, because these were too compu-

tationally intensive to run, but do show results obtained using *BEAST with

binned datasets.

These results show the following trends:

• *BEAST has unchanged accuracy under all conditions where it can run

in the unbinned and binned settings.

• On the 17-taxon datasets, no changes were statistically significant.

• BUCKy-con improved for the 11-taxon strongILS datasets (ranging from

3% on the 100-gene case to 7.5% on the 50-gene case) and by 2.5% on the

11-taxon weakILS 25-gene case. The changes were statistically signifi-

cant for 25-genes and 50-genes, but not for 100-genes, on the strongILS

datasets.

• With the exception of Phylonet (which was 100% accurate both with

and without binning) all methods improved on the 11-taxon weakILS

datasets as a result of binning, and the improvements ranged from 0.7%
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(for MRP) to 3.1% (for BUCKy-pop). However, only BUCKy-pop had

a statistically significant improvement (p = 0.031).

These results are similar to those observed on the 100-replicate case,

except that with only 20 replicates, we do not detect statistically significant

changes.

Method Error Error Error
25 genes 50 genes 100 genes

CA-ML 0.062 0.025 0
*BEAST 0.100 0.038 -
*BEAST (binned) 0.100 0.038 0.012
BUCKy-con 0.143 0.125 0.056
BUCKy-con (binned) 0.094 0.050 0.025
BUCKy-pop 0.088 0.088 0.056
BUCKy-pop (binned) 0.094 0.050 0.025
MP-EST 0.156 0.163 0.044
MP-EST (binned) 0.106 0.056 0.031
Phylonet-exact 0.106 0.094 0.025
Phylonet-exact (binned) 0.077 0.069 0.018
MRP 0.143 0.163 0.056
MRP (binned) 0.138 0.056 0.043
GC 0.150 0.160 0.063
GC (binned) 0.125 0.056 0.044

Table A.10: Average FN rates for methods (unbinned and binned)
on 11-taxon strongILS 25, 50 and 100-gene cases; n = 20. We do not
show results for unbinned *BEAST on 100 genes, because it was not run to
convergence. Each bin contains 5 genes. Experiment 5.
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Figure A.8: Results of the binning experiment evaluating all meth-
ods on 20 replicates of the 11-taxon 25-gene weakILS datasets. Re-
sults are shown (average and standard error bars) for bins with 5 genes each.
CA-ML, *BEAST (binned and unbinned), BUCKy-con (binned), BUCKy-pop
(binned), and Phylonet-MDC (binned and unbinned) all return the true tree
on these data.
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Figure A.9: Results of binning experiment of 17-taxon datasets with
32 genes. Average and standard error bars shown for all methods. Each bin
has 4 genes; n=20 for all datapoints. No changes are statistically significant
(p = 0.053 for MRP, p = 0.082 for GC, and p > 0.2 for all other methods).
Experiment 5.
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Figure A.10: Results of the binning experiment on 11-taxon 25-gene
strongILS datasets. Each bin contains 5 genes. Average and standard error
bars shown; n=20 for all datapoints. Experiment 5.
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Method p-values p-values p-values
for 25 genes for 50 genes for 100 genes

*BEAST 0.500 0.500 -
BUCKy-con 0.018 0.005 0.089
BUCKy-pop 0.441 0.227 0.062
MP-EST 0.011 < 10−4 0.363
Phylonet 0.113 0.179 0.500
MRP 0.307 < 10−3 0.291
GC 0.230 < 10−4 0.290

Table A.11: Evaluating the impact of binning on all methods, ap-
plied to 20 replicates of the 11-taxon strongILS datasets. We show
p-values. We were not able to run *BEAST (unbinned) on 100-gene datasets.
Experiment 5.

Method Error

CA-ML 0.100
*BEAST 0.082
*BEAST (binned) 0.082
BUCKy-con 0.107
BUCKy-con (binned) 0.111
BUCKy-pop 0.119
BUCKy-pop (binned) 0.114
MP-EST 0.114
MP-EST (binned) 0.125
Phylonet 0.139
Phylonet (binned) 0.132
MRP 0.104
MRP (binned) 0.114
GC 0.104
GC (binned) 0.121

Table A.12: Average FN rates for methods (unbinned and binned) on
17-taxon 32-gene case; n = 20. Each bin contains 4 genes. Experiment 5.
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Method p-values

BUCKy-con 0.063
BUCKy-pop 0.031
MP-EST 0.250
Phylonet 0.500
MRP 0.500
GC 0.250

Table A.13: Evaluating the impact of binning on species tree esti-
mation methods on 20 replicates of the 11-taxon weakILS datasets
with 25 genes. We show p-values for methods (binned vs. unbinned meth-
ods). Each bin has 5 genes. Experiment 5.

Method Error

CA-ML 0.000
*BEAST 0.000
*BEAST (binned) 0.000
BUCKY-con 0.025
BUCKy-con (binned) 0.000
BUCKy-pop 0.031
BUCKy-pop (binned) 0.000
MP-EST 0.019
MP-EST (binned) 0.006
Phylonet 0.000
Phylonet (binned) 0.000
MRP 0.013
MRP (binned) 0.006
GC 0.019
GC (binned) 0.006

Table A.14: Average FN rates for methods (unbinned and binned)
on 11-taxon weakILS 25-gene case; n = 20. Each bin contains 5 genes.
Experiment 5.
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Method p-values

*BEAST 0.500
BUCKy-con 0.444
BUCKy-pop 0.311
MP-EST 0.191
Phylonet 0.212
MRP 0.053
GC 0.082

Table A.15: p-values for methods (binned vs. unbinned) on 20 repli-
cates of 17-taxon 32-gene dataset. Each bin has 4 genes. Experiment 5.
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Appendix B

Supplementary Materials for Weighted

Statistical Binning

These supplementary materials present additional details about the

datasets and methods used, and the results obtained for weighted statistical

binning (Chapter 8).

B.1 Evaluation

We explored the performance of MP-EST and ASTRAL with weighted

and unweighted statistical binning, and also without binning. We also examine

concatenation of the entire set of gene sequence alignments using an unparti-

tioned maximum likelihood analysis using RAxML. We explore performance

on a collection of simulated and biological datasets originally studied in [90].

We applied MP-EST and ASTRAL to a set of RAxML gene trees computed

on bootstrap replicates of each gene sequence alignment. With bootstrap ML

gene trees for each gene, summary methods were applied with the site-only

multi-locus bootstrapping (MLBS) procedure [126], implemented as follows.

For each gene or supergene, 200 replicates of bootstrapping are performed us-

ing RAxML. Next, 200 replicates (R1, R2, . . . , R200) of input datasets to the
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summary methods are created such that Ri contains the ith bootstrap tree

across all genes/supergenes. The summary methods are then run on these

200 input replicates, and 200 species trees are estimated. Finally, the greedy

consensus tree of these 200 estimated species tree is computed, and support

values are drawn on the branches of the greedy consensus tree by counting the

occurrences of each bipartition in the 200 species trees.

B.1.1 Triplet gene tree distribution error

MP-EST computes species trees using the estimated distribution on

rooted triplet trees defined by its input of gene trees. We therefore evaluated

the impact of binning on the estimated gene tree distribution, measuring the

divergence between the triplet distribution of estimated gene trees and the

triplet distribution of true gene trees. We represent the gene tree distribution

by the frequency of each of the three possible alternative topologies for all the
(

n

3

)

triplets of taxa, where n is the number of taxa. Therefore, we have
(

n

3

)

true

triplet distributions. Hence, for each triplet of taxa, we have estimated triplet

distributions using the unbinned analysis, as well as weighted and unweighted

binning analyses. We computed the Jensen-Shannon divergence of each of

these
(

n

3

)

triplet distributions and showed the empirical cumulative distribution

of these divergences. The Jensen-Shanon divergence is a symmetrized and

smoothed version of Kullback-Leibler divergence [70] between two distributions

P and Q, and can be calculated as follows [39]:
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JS(P,Q) =
1

2
KL(P,M) +

1

2
KL(Q,M) (B.1)

where M = P+Q

2
, and KL is the Kullback-Leibler divergence.

B.1.2 Species tree estimation error and branch support

We compared the estimated species trees to the model (i.e., true) species

tree (for the simulated datasets) or to the scientific literature (for the biological

datasets). We measure topological error using the missing branch rate (also

known as the false negative (FN) rate), which is the proportion of branches in

the true tree that are missing from the estimated tree. We also reported the

error in species tree branch lengths estimated by MP-EST using the ratio of

estimated branch length to true branch length for those branches of the true

tree that appear in the estimated tree; thus, 1 indicates correct estimation,

values above 1 indicate lengths that are too long, and values below 1 indicate

branch lengths that are too short. Note that species tree branch lengths reflect

the expected amount of ILS, and so under-estimation of species tree branch

lengths means over-estimation of ILS, and over-estimation of branch lengths

means under-estimation of ILS. We also computed the branch support of the

false positive (FP) and true positive (TP) edges, where false positive edges

are present in the estimated tree but not in the true tree, and edges that are

present in both the estimated and true tree are true positive edges.
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B.1.3 Simulated datasets

We studied four collections of simulated datasets: two based on biolog-

ical datasets that were generated in a prior study [90], and two new collections

with smaller numbers of species. We briefly describe the simulation protocol

for the biological datasets, and direct the reader to [90] for full details.

Mammalian simulated datasets

This dataset was generated by [90], and studied there and also in [91].

Here we describe the procedure followed by [90] to generate these data. First, a

species tree was computed for the full biological dataset in [129], using MP-EST

(this was done before removing 23 erroneous genes), and the tree topology and

branch lengths were used as the model tree. Thus, the mammalian simulation

model tree has an ILS level based on an MP-EST analysis of the biological

mammalian dataset. Gene trees were simulated within this species tree under

the multi-species coalescent model, and then the branch lengths on the gene

trees were defined using the gene trees estimated on the biological dataset.

Variants of the basic model condition were generated by varying the

amount of ILS, the number of genes, and the sequence length for each gene;

these modifications also impact the amount of gene tree estimation error and

the average bootstrap support in the estimated gene trees, and so can be

modified to produce datasets that resemble the biological data.

The amount of ILS was varied by adjusting the branch length (shorter

branches increase ILS). A model condition with reduced ILS was created by
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uniformly doubling (2X) the branch lengths, and a model condition with higher

ILS was generated by uniformly dividing the branch lengths by two (0.5X).

The amount of ILS obtained without adjusting the branch lengths is referred

to as “default ILS”, and was estimated by MP-EST on the biological data.

The average bootstrap support (BS) in the biological data was 71%,

and so [90] generated sequence lengths that produced estimated gene trees

with bootstrap support bracketing that value – 500bp alignments produced

estimated gene trees with 63% average BS and 1000bp alignments produced

estimated gene trees with 79% BS. We also generated model conditions with

very short sequence lengths (250bp), which have 43% average BS.

Here, we varied the number of genes from 50 to 800 to explore both

smaller and larger numbers of genes than the biological dataset (which had

roughly 400 genes). In total, we generated 17 different model conditions spec-

ified by the ILS level, the number of genes, and the sequence length. For each

of these model conditions, [90] created 20 replicates.

Avian simulated datasets

Mirarab et al. [90] used the species tree estimated by MP-EST on a

subset of the avian dataset with 48 species and 14,446 loci studied by [62],

and simulated gene trees by varying different parameters (similar to the mam-

malian simulated datasets). Three types of genomic markers were studied in

[62]: exons, UCEs, and introns. The average bootstrap support (BS) of the

gene trees based on exons, UCEs, and introns, was 24%, 39% and 48%, re-
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spectively; the longest introns had the highest average BS (59%). Mirarab et

al. varied sequence lengths (250bp, 500bp, 1000bp, and 1500bp) to produce

four model conditions with patterns of average bootstrap support that resem-

ble these four marker types. Mirarab et al. varied the number of genes from

200 to 2000, but here, we augmented the dataset to also look at fewer genes (50

and 100). Mirarab et al. varied the amount of ILS, using the same technique

as was used in generating the mammalian simulated datasets.

15-taxon simulated datasets

We simulated a collection of 15-taxon datasets. The model species

tree is a caterpillar-like ultrametric tree (i.e., the substitution process obeys a

strict molecular clock) with 15 taxa; hence, it has two leaves x and y that are

siblings in the tree. The lengths of all internal branches and the two branches

incident with leaves x and y are all set to 0.005 substitutions per site; note that

the assumption of ultrametricity defines the remaining branch lengths. The

population size parameter (θ = 4Nµ) is set to 0.05 for all branches, and this

results in 12 short internal branches (0.1 in coalescence units) in succession.

Ultrametric gene trees were simulated down this tree using McCoal[153] and

commands given in Fig. B.1 Sequence data were simulated down each gene

tree using bppseqgen [34] according to GTR+Γ parameters given in Fig. B.1.

We built four model conditions (with ten replicates each) by trimming gene

data to 100 or 1000 sites and by exploring 100 or 1000 genes.
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10-taxon simulated datasets

We used simPhy [86] to simulate species trees using the Yule process

with two different maximum tree length settings: 200K generations, result-

ing in short trees and high levels of ILS, and 1.8M generations, resulting in

relatively longer trees and lower levels of ILS. We generated 20 species trees

per model condition, and used simPhy to simulate 200 gene trees for each

species trees using the multi-species coalescent process (simPhy parameters

and commands are given in Fig. B.2). The gene trees (with branch lengths

in substitution units) deviate from the strict molecular clock, and the rates of

evolution vary across genes. We used Indelible to simulate GTR+Γ sequence

evolution down these gene trees with 100 sites, with parameters given in Fig.

B.2.

B.1.4 Biological datasets

We studied two biological datasets also studied in [90]: the avian

dataset [62] containing 14,446 loci across 48 species, and a reduced version

of the mammalian dataset studied by Song et al. [129] with 447 loci across

37 species, from which [90] deleted 23 erroneous genes and re-estimated gene

trees using RAxML (see [90, 91] for discussion of these loci).

Methods and commands

Gene tree estimation: RAxML version 7.3.5 [130] was used to estimate

gene trees under the GTRGAMMA model, using the following command:
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raxmlHPC-SSE3 -m GTRGAMMA -s [input alignment] -n [output name]

-N 20

-p [random seed number]

The following command was used for bootstrapping:

raxmlHPC-SSE3 -m GTRGAMMA -s [input alignment] -n [output name]

-N 200

-p [random seed number] -b [random seed number]

Supergene tree estimation: For the biological datasets and the 10- and

15-taxon simulated datasets, we used a fully partitioned maximum likelihood

analysis. All other analyses were based on unpartitioned maximum likelihood

analysis, using the command given above for gene tree estimation. For the

fully partitioned analysis, we used the following command:

raxmlHPC-SSE3 -m GTRGAMMA -s [input alignment] -m GTRGAMMA

-n [output name] -N 20

-M -q [partition file] -p [random seed number]

Concatenation: We concatenate the alignments of all genes into one su-

permatrix, and then estimate a tree from the supermatrix using unpartitioned

maximum likelihood. We computed a parsimony starting tree using RAxML

version 7.3.5, and then ran RAxML-light version 1.0.6. The following com-

mands were used:
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raxmlHPC-SSE3 -y -s supermatrix.phylip -m GTRGAMMA -n [out-

put name]

-p [random seed number]

raxmlLight-PTHREADS -T 4 -s supermatrix.phylip -m GTRGAMMA

-n name

-t [parsimony tree]

MP-EST: We used version 1.3 of MP-EST. We ran MP-EST 10 times

with different random seed numbers, and selected the species tree with the

best likelihood score using a custom shell script. MP-EST was run using

site-only multi-locus bootstrapping, using 200 MLBS replicates, and returning

the greedy consensus of the 200 MP-EST MLBS species trees as the output.

The branch support on the edges of the tree represent the frequency of the

bipartition in the sample of 200 species trees.

ASTRAL: We used ASTRAL version 4.7.6. in its default mode using the

following command:

astral.4.7.6.jar -i [input gene trees] -o [output file]

Greedy consensus: The greedy consensus (also called the “extended ma-

jority consensus”) of a set of trees, all on the same set of leaves, is obtained

by ordering the bipartitions that appear in one or more trees in the order of
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their frequency (most frequent first). Then, a tree is built from this set, be-

ginning with the first bipartition, and then modifying the tree to include the

next bipartition in the list, if the addition of the bipartition is possible. We

used Dendropy version 3.12.0 [134] to compute greedy consensus trees when

running MP-EST or ASTRAL with MLBS gene trees.

Data availability

Most of the datasets used in this study are available through the prior

publications. The new datasets generated for this study are available on

figshare, with DOI: http://dx.doi.org/10.6084/m9.figshare.1411146. (Retrieved

May 13, 2015.) The weighted statistical binning software is available on github

at

https://github.com/smirarab/binning (Retrieved May 14, 2015.)

B.2 Simulation protocols for 15- and 10-taxon datasets

Fig A.1 and A.2 illustrate the simulation protocols for 15- and 10-

taxon datasets, respectively. The simulation protocol of generating the 10-

taxon datasets is shown in Fig A.2. Gene trees were simulated using sim-

Phy with commands given here (a) which includes all the parameter set-

tings (important parameters are listed in panel (b)). The maximum tree

length parameter is set to either 1.8M or 200K to produce two different

model conditions. The speciation rate parameter is adjusted based on the

maximum tree length so that maximum rate multiplied by speciation rate
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is always 0.2 (thus, rate is 0.000000111 and 0.000001 for 1.8M and 200K

respectively). We used a perl script available at http://www.cs.utexas.

edu/~phylo/datasets/weighted-binning-datasets.html to draw parame-

ters for the Indelible simulations. Gene length is set to 1000 for all genes,

but sequences are trimmed to their first 100bp in this study. For GTR+Γ

parameters, we use a set of hyper parameters (estimated from real datasets)

to drawn different parameter values for each gene in each replicate. Hyper

parameters for base frequencies, GTR matrix, and the rate parameter (α)

are shown in panel (c). These hyperparameters were calculated using max-

imum likelihood estimation form a collection of three large scale multi-locus

datasets: 1KP dataset [151], Song et al Mammalian dataset [129], and Avian

phylogenomics dataset [62]. The base values used for this maximum likelihood

estimation and the corresponding scripts are available at http://www.cs.

utexas.edu/~phylo/software/astral/ (under the first bullet; i.e., estimate-

parameters.r). Note that for the shape frequency, α, we use a heavy-tailed

distribution, but to avoid unrealistic settings, values below 0.1 are discarded.
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a) Control files used for MCcoal simulations (MCcoal.ctl):

SimulatedData.txt

9823126266

15 A B C D E F G H I J K L M N O

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

((((((((((((((A #.05,B #.05):0.005 #.05,C #.05):0.01 #.05, D #.05):0.015

#.05,E #.05):0.02 #.05,F #.05):0.025 #.05,G #.05):0.03 #.05,H #.05):0.035

#.05,I #.05):0.04 #.05,J #.05):0.045 #.05,K #.05):0.05 #.05,L #.05):0.055

#.05,M #.05):0.06 #.05,N #.05):0.065 #.05,O #.05):0.565 #.05;

b) Command used to run MCcoal

printf "10000 1000" PATH_TO_MCCOAL/MCcoal

c) Commands to run bppseqgen

mkdir allTrees;

split -a 4 -l 1 out.trees;

for i in x* ; do mv $i allTrees/; done

for i in allTrees/x* ; do

bppseqgen number_of_sites=1000 input.tree.file=$i param=opts

output.sequence.file=$i".fasta"

done

d) GTR+Γ model parameters

model = GTR(a=1.062409952497, b=0.133307705766, c=0.195517800882,

d=0.223514845018, e=0.294405416545,

theta=0.469075709819, theta1=0.558949940165, theta2=0.488093447144)

rate_distribution = Gamma(n=4, alpha=0.370209777709)

Figure B.1: Simulation parameters and commands for 15-taxon dataset.
Gene trees were simulated using MCcoal, with control files given here (a) and the
command provided (b). The control files define the species tree, which is in the
caterpillar form. Running MCcoal simulated 10,000 gene trees, which we divided
into 10 replicates of 1000 genes or 100 genes. For each true gene tree, we then
simulated alignments using bppseqgen [34], using the command given in (c). Here,
the file “opts” is the same file we used in [90] and defines parameters given in (d).
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a) Command used for SimPhy simulations:

for t in 1800000 200000; do

b=0$(echo "scale=9; 1 / $t / 5"|bc -l}

simphy -RS 20 -RL U:1000,1000 -RG 1 -ST U:$t,$t -SB U:$b,$b \\

-SI U:1,1 -SL U:10,10 -CP U:400000,400000 -HS L:1.5,1 -HL L:1.2,1\\

-HG L:1.4,1 -CU E:10000000 -SO U:1,1 -OD 1 -OR 0 -V 3 -CS 293745\\

-O model.10.$t.$b |grep -E "[:-]"| tee log.10.$t.$b;

for r in ‘ls -d model.$sp.$t.$b/*‘; do

sed -i -e "s/_0_0//g" $r/g_trees*.trees;

done

done

b) Parameter settings for SimPhy:

Arg. Description Value Notes
ST maximum tree length 200K or 1.8M
SB birth rates 0.000001 or 0.000000111
SI number of individuals per species 1
SL number of leaves 10
P global population sizes 400000
HS Species-specific branch rate heterogeneity modifiers Log normal (1.5,1)
HL Locus-specific rate heterogeneity modifiers Log normal (1.2,1)
HG Gene-tree-branch-specific rate heterogeneity modifiers Log normal (1.4,1)
U Global substitution rate Exponential (10000000)
SO Outgroup branch length relative to half the tree length 1

c) Indelible GTR+Γ model parameters

Base frequencies ∼ Dirichlet(36, 26, 28, 32)
GTR Matrix ∼ Dirichlet(16, 3, 5, 5, 6, 15)

Rate parameter (α) ∼ Exponential(1.2) trimmed at 0.1 from below

Figure B.2: Simulation parameters and commands for 10-taxon
dataset.
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B.3 Supplementary tables

Dataset Model condition Gene tree error (%)
Unbinned Binned-50 Binned-75

250bp 79 57 n.a.
Avian 500bp 69 57 n.a.

1000bp 55 51 n.a.
1500bp 46 45 n.a.
250bp 60 n.a. 47

Mammalian 500bp 43 n.a. 35
1000bp 27 n.a. 26

15-taxon 100bp 77 80 86
1000bp 36 36 40

10-taxon Lower ILS 64 58 51
Higher ILS 69 73 80

Table B.1: Gene tree estimation error, with and without binning for
simulated datasets. We show the average gene tree estimation error for
the simulated datasets analyzed in this study. Results are shown for fixed
number of genes (1000 for avian and 200 for mammalian, 100 for 15-taxon
and 100 for 10-taxon). We fixed the level of ILS to 1X for avian, mammalian
and 15-taxon datasets; and varied the level of ILS for 10-taxon datasets with
100bp sequence length. Gene tree error is mean topological distance, measured
using the missing branch rate between the true gene tree and all 200 bootstrap
replicates of each estimated gene tree. For the supergene trees, each bootstrap
replicate of each supergene tree is compared separately against each true gene
tree for the genes put in that bin. “n.a.” stands for “not available”.
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Dataset Model condition Average bootstrap support (%)
250bp 27

Avian 500bp 31
1000bp 51
1500bp 60
250bp 43

Mammalian 500bp 63
1000bp 79

15-taxon 100bp 35
15-taxon 1000bp 70
10-taxon Lower ILS, 100bp 45

Higher ILS, 100bp 37

Table B.2: Average bootstrap support. We show the average bootstrap
support values of the estimated gene trees for the simulated datasets. Results
are shown for fixed number of genes (1000 for avian and 200 for mammalian,
100 for 15-taxon and 100 for 10-taxon datasets). We fixed the level of ILS to
1X for avian, mammalian and 15-taxon datasets; and varied the level of ILS
for 10-taxon datasets with 100bp sequence length.
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B.4 Supplementary figures

Figure B.3: Effect of binning on the branch lengths (in coalescent
units) estimated by MP-EST using MLBS on the avian simulated
datasets with varying numbers of gene trees. We show the species tree
branch length error (the ratio of estimated branch length to true branch length
for branches of the true tree that appear in the estimated tree; 1 indicates
correct estimation). We varied the number of genes from 50 to 2000, and fixed
the sequence length to 500bp with default amount of ILS (1X level). We used
50% bootstrap support threshold for binning. Supergene trees were estimated
using unpartitioned analyses.
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Figure B.4: Cumulative distribution of the bootstrap support val-
ues (obtained using MLBS) of true positive (TP) and false positive
(FP) edges estimated by MP-EST on avian datasets. We varied the
numbers of genes, and fixed the sequence length to 500bp (UCE-like) with
default amount of ILS (1X level). We used 50% bootstrap support threshold
for binning. Supergene trees were estimated using unpartitioned analyses. To
produce the graph, we order the branches in the estimated species tree by
their quality, so that the true positives with high support come first, followed
by lower support true positives, then by false positives with low support, and
finally by false positives with high support. The false positive branches with
support above 75% are the most troublesome, and that fraction are indicated
in the grey area. When the curve for a method lies above the curve for another
method, then the first method has better bootstrap support.
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Figure B.5: Divergence of estimated gene trees triplet distributions
from true gene tree distributions for simulated mammalian datasets.
(a) Varying gene sequence alignments lengths with 200 number of genes and
default levels of ILS (1X); (b) varying ILS levels with fixed 200 genes and
sequence length fixed to 500bp (63% BS). We used 75% bootstrap support
threshold for binning. Supergene trees were estimated using unpartitioned
analyses. True triplet frequencies are estimated based on true gene trees for
each of the

(

n

3

)

possible triplets, where n is the number of species. Similarly,
triplet frequencies are calculated from estimated gene/supergene trees. For
each of these

(

n

3

)

triplets, we calculate the Jensen-Shannon divergence of the
estimated triplet distribution from the true gene tree triplet distribution. We
show the empirical cumulative distribution of these divergences. The empirical
cumulative distribution shows that for a given divergence level, what percent-
age of the triplets are diverged from true triplet distribution at or below that
level. Results are shown for 10 replicates.
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Figure B.6: Species tree estimation error for MP-EST with MLBS
on mammalian simulated datasets with varying amounts of ILS. We
show average FN rate over 20 replicates. We varied the amount of ILS, and
fixed the number of genes to 200 and sequence length to 500bp (63% BS).
We used 75% bootstrap support threshold for binning. Supergene trees were
estimated using unpartitioned analyses.
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Figure B.7: Effect of binning on the branch lengths (in coalescent
unit) estimated by MP-EST using MLBS on the mammalian simu-
lated datasets with varying amounts of ILS. We show the species tree
branch length error (the ratio of estimated branch length to true branch length
for branches of the true tree that appear in the estimated tree; 1 indicates cor-
rect estimation). We varied the amount of ILS, and fixed the number of genes
to 200 and sequence length to 500bp (63% BS). We used 75% bootstrap sup-
port threshold for binning. Supergene trees were estimated using unpartitioned
analyses.
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Figure B.8: Cumulative distribution of the bootstrap support values
(obtained using MLBS) of true positive (TP) and false positive (FP)
edges estimated by MP-EST on mammalian datasets. We varied the
numbers of genes, and gene sequence alignments length with default amount
of ILS. We used 75% bootstrap support threshold for binning. Supergene trees
were estimated using unpartitioned analyses.
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Figure B.9: Cumulative distribution of the bootstrap support values
(obtained using MLBS) of true positive (TP) and false positive (FP)
edges estimated by MP-EST on mammalian datasets with varying
amounts of ILS. We varied the amount of ILS, and fixed the number of genes
to 200 and sequence length to 500bp. We used 75% bootstrap support thresh-
old for binning. Supergene trees were estimated using unpartitioned analyses.
To produce the graph, we order the branches in the estimated species tree by
their quality, so that the true positives with high support come first, followed
by lower support true positives, then by false positives with low support, and
finally by false positives with high support. When the curve for a method
lies above the curve for another method, then the first method has better
bootstrap support.
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Figure B.10: Species trees estimated by unbinned ASTRAL using
MLBS on avian biological datasets. Branches without designation have
100% support. We used 50% bootstrap support threshold for binning. Super-
gene trees were estimated using fully partitioned analyses.

339



Figure B.11: Species trees estimated by binned (with and without
weighting) ASTRAL using MLBS on avian biological datasets. (a)
Unweighted binned ASTRAL, and (b) weighted binned ASTRAL. Branches
without designation have 100% support. We used 50% bootstrap support
threshold for binning. Supergene trees were estimated using fully partitioned
analyses. Binned ASTRAL with weighting and binned ASTRAL without
weighting differ only in the placement of Opisthocomus hoazin. However, the
branches supporting different placements of Opisthocomus hoazin have low
support values (47% for unweighted binning and 55% for weighted binning).
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Figure B.12: Species trees estimated by unbinned MP-EST using
MLBS for mammalian biological datasets. Branches without designation
have 100% support. We used 75% bootstrap support threshold for binning.
We estimated the supergene trees using fully partitioned analyses.
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Figure B.13: Species trees estimated by binned (with and without
weighting) MP-EST using MLBS for mammalian biological datasets.
Binned and unbinned ASTRAL returned identical topology. The branches
on this tree are labeled with two support values side by side: the first one
corresponds to unweighted binning and the next one corresponds to weighted
binning. Branches without designation have 100% support. We used 75%
bootstrap support threshold for binning. Supergene trees were estimated using
fully partitioned analyses.
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Figure B.14: Species trees estimated by unbinned and binned (with
and without weighting) ASTRAL using MLBS for mammalian bio-
logical datasets. Binned and unbinned ASTRAL returned identical topol-
ogy. The branches on this tree are labeled with three support values side
by side: the first one corresponds to unbinned ASTRAL, the next one cor-
responds to unweighted binning, and the last one is for weighted binning.
Branches without designation have 100% support. We used 75% bootstrap
support threshold for binning. Supergene trees were estimated using fully
partitioned analyses.
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