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Individual differences in children’s executive functions (EFs) are relevant for a 

wide range of normal and atypical psychological outcomes across the life span, but the 

origins of variation in children’s EFs are not well understood. We used data from a 

racially and socioeconomically diverse sample of 505 third- through eighth-grade twins 

and triplets from the Texas Twin Project to estimate genetic and environmental 

influences on a Common EF factor and on variance unique to four core EF domains: 

inhibition, switching, working memory, and updating. As has been previously 

demonstrated in young adults, the Common EF factor was 100% heritable, which 

indicates that correlations among the four EF domains are entirely attributable to shared 

genetic etiology. Nonshared environmental influences were evident for variance unique 

to individual domains. General EF may thus serve as an early life marker of genetic 

propensity for a range of functions and pathologies later in life. 
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Introduction 

Executive functions (EFs) are supervisory cognitive processes that monitor, coordinate, 

and control the execution of other cognitive operations necessary for learning and everyday 

functioning. Across the life span, there exist marked individual differences in EF abilities, 

which include temporary storage of information simultaneous with cognitive processing 

(working memory), monitoring of incoming stimuli and replacement of old information 

with new information (updating), rapid shifting between cognitive operations (switching), 

and effortful inhibition of prepotent responses (inhibition). The neural bases for EFs are 

well studied; early research implicated the prefrontal cortex as fundamental to EFs, and 

more recent research has implicated complex and distributed networks of brain regions 

(Carpenter, Just, & Reichle, 2000; Collette, Hogge, Salmon, & Van der Linden, 2006). EFs 

are commonly conceptualized as psychological intermediaries between neurobiology and 

complex psychological outcomes, including normal-range individual differences (in, e.g., 

intelligence; Kane & Engle, 2002) and clinical levels of psychopathology (e.g., 

schizophrenia; Elliott, 2003). Although much of the research on EFs has been based on 

adult samples, a growing body of developmental research indicates that EFs during 

childhood are related, both concurrently and prospectively, to a host of normative 

psychological outcomes, such as academic achievement and externalizing problem 

behaviors, as well as childhood-onset psychiatric disorders, such as attention-

deficit/hyperactivity disorder and autism (Best, Miller, & Naglieri, 2011;Pennington & 

Ozonoff, 1996; Young et al., 2009; Zelazo, Carter, Reznick, & Frye, 1997). 

Among adults, behavioral genetic studies of EFs have highlighted the importance 

http://pss.sagepub.com/content/26/8/1151.full#ref-5
http://pss.sagepub.com/content/26/8/1151.full#ref-6
http://pss.sagepub.com/content/26/8/1151.full#ref-17
http://pss.sagepub.com/content/26/8/1151.full#ref-10
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http://pss.sagepub.com/content/26/8/1151.full#ref-27
http://pss.sagepub.com/content/26/8/1151.full#ref-40
http://pss.sagepub.com/content/26/8/1151.full#ref-41
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of genetic influences on these abilities. Individual differences in performance on individual 

EF tasks are moderately heritable (e.g., Ando, Ono, & Wright, 2001; Kremen et al., 

2009; T. Lee et al., 2012; Vasilopoulos et al., 2012). When data for individual tasks are 

combined to measure broader EFs, these abilities—including inhibition, switching, and 

updating—“are almost entirely genetic in origin” (Friedman et al., 2008). Additionally, the 

covariation among EF domains, as represented by a single higher-order EF factor, is also 

nearly 100% heritable. Thus, by adulthood, nongenetic variance in environmental 

experience accounts for variation in executive processing only narrowly, that is, at the level 

of performance on specific tasks; at the level of the construct, adult identical twins’ EFs 

are nearly perfectly correlated. However, it is currently unclear whether the outstandingly 

high heritability of general executive processing is in place in childhood, or whether 

genetic influences do not reach a developmental apex until adulthood. 

Very few behavioral genetic studies of childhood EFs have been conducted, and 

those that have been reported have focused on individual EF tasks in isolation, rather than 

broader EF factors (e.g., Kuntsi et al., 2006; Luciano et al., 2001; Polderman et al., 

2006; Schachar, Forget-Dubois, Dionne, Boivin, & Robaey, 2011; M. Wang & Saudino, 

2013; Z. Wang, Deater-Deckard, Cutting, Thompson, & Petrill, 2012). Such task-level 

analyses are unable to differentiate genetic and environmental influences on nonexecutive 

demands from those specific to the EF in question, nor are they able to test the extent to 

which genetic and environmental influences are shared across different EFs. Other studies 

(e.g., Cuevas et al., 2014) have examined parent-child resemblance for more general EF 

composites but have been unable to distinguish the extent to which such resemblance 

http://pss.sagepub.com/content/26/8/1151.full#ref-1
http://pss.sagepub.com/content/26/8/1151.full#ref-19
http://pss.sagepub.com/content/26/8/1151.full#ref-19
http://pss.sagepub.com/content/26/8/1151.full#ref-22
http://pss.sagepub.com/content/26/8/1151.full#ref-34
http://pss.sagepub.com/content/26/8/1151.full#ref-11
http://pss.sagepub.com/content/26/8/1151.full#ref-20
http://pss.sagepub.com/content/26/8/1151.full#ref-24
http://pss.sagepub.com/content/26/8/1151.full#ref-28
http://pss.sagepub.com/content/26/8/1151.full#ref-28
http://pss.sagepub.com/content/26/8/1151.full#ref-31
http://pss.sagepub.com/content/26/8/1151.full#ref-36
http://pss.sagepub.com/content/26/8/1151.full#ref-36
http://pss.sagepub.com/content/26/8/1151.full#ref-37
http://pss.sagepub.com/content/26/8/1151.full#ref-8
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derives from genetic versus shared environmental factors. We are aware of no studies of 

children that have both implemented genetically informative designs capable of 

distinguishing genetic from environmental effects and focused on broader EF factors 

representing variance common to multiple EF tasks separately from unique, potentially 

nonexecutive, variance. 

The heritability of EFs might be substantially lower in childhood than in adulthood, 

as developmental increases in genetic influence have been observed for multiple 

phenotypes. For instance, meta-analyses (Briley & Tucker-Drob, 2013; Haworth et al., 

2009) have indicated that the heritability of cognitive ability increases continuously from 

less than 20% in early childhood to upward of 70% by early adulthood. From middle 

childhood forward, these increases primarily result from the amplification of the same 

genetic factors over time (Briley & Tucker-Drob, 2013; Tucker-Drob & Briley, 2014), 

possibly as a result of dynamic processes whereby children select and evoke cognitively 

stimulating experiences on the basis of genetically influenced traits (Tucker-Drob, Briley, 

& Harden, 2013). Should EFs show substantially lower heritability in childhood than has 

been reported for early adulthood, this may point to the sensitivity of EFs to similar 

dynamic processes over development. 

Alternatively, it is possible that individual differences in EFs are nearly entirely 

genetic in origin even in childhood. If so, individual differences in EFs may represent 

genetically influenced aptitudes that are expressed early and serve as foundations onto 

which higher-order cognitive processes are scaffolded. Should childhood EFs prove to be 

high in heritability, they may serve as developmental endophenotypes: early-life markers 

http://pss.sagepub.com/content/26/8/1151.full#ref-3
http://pss.sagepub.com/content/26/8/1151.full#ref-14
http://pss.sagepub.com/content/26/8/1151.full#ref-14
http://pss.sagepub.com/content/26/8/1151.full#ref-3
http://pss.sagepub.com/content/26/8/1151.full#ref-32
http://pss.sagepub.com/content/26/8/1151.full#ref-33
http://pss.sagepub.com/content/26/8/1151.full#ref-33
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of genetic risk for a cross-cutting range of later-life functions and pathologies (Gottesman 

& Gould, 2003). Researchers who are interested in understanding the mechanisms of 

genetic risk for these complex, multidetermined outcomes would thus be able to study 

variables that are mechanistically more proximal to genotypes and less “diluted” by 

extraneous influences. Developmental endophenotypes could also be leveraged in applied 

settings to identify children who are at genetic risk for—but who have not yet expressed—

maladaptive outcomes and who might therefore be the best candidates for preventive 

treatments or interventions. 

This article reports the first comprehensive multivariate behavioral genetic analysis 

of EFs in childhood. Using a population-based sample of third- through eighth-grade twins 

and a multivariate test battery, we investigated genetic and environmental effects in four 

EF domains: inhibition, switching, working memory, and updating. 

  

http://pss.sagepub.com/content/26/8/1151.full#ref-12
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5 

 

Method 

Sample 

Data were drawn from 505 third- through eighth-graders who were recruited through the 

Texas Twin Project (Harden, Tucker-Drob, & Tackett, 2013), a registry of infant, child, 

and adolescent twins in central Texas. Here, we report 2-year results from a study that 

stems from the Texas Twin Project and includes in-laboratory assessments of executive 

function. For the current report, data were available for a total of 272 pairs (233 twin pairs 

and 39 pairs from triplet sets). Participants ranged in age from 7.89 to 15.25 years (M = 

10.97, SD = 1.74); 52.1% were female. Their racial-ethnic distribution was as follows: 

64.6% non-Hispanic White, 18.6% Hispanic, 6.7% African American, 2.0% Asian, 1.2% 

other, and 6.9% multiple races or ethnicities. Of the participating families, 31.2% reported 

having received a form of means-tested public assistance, such as food stamps. Thus, the 

current sample is comparable in size to and considerably more diverse than the sample in 

which Friedman et al. (2008) found nearly 100% heritability of EF factors in young 

adulthood (N = 293 pairs, approximately 90% non-Hispanic White; for a description of the 

sample, see Rhea, Gross, Haberstick, & Corley, 2006). As in-lab data collection for the 

current study is predominantly conducted each summer, with about 100 to 150 pairs 

assessed per year, we decided to proceed with the current analysis after the second summer 

of data collection, so that our sample size would approximate that of Friedman et al. 

Zygosity of same-sex twins was assessed by a latent-class analysis of parents’ and 

experimenters’ ratings of physical similarity. Zygosity determinations from latent-class 

analyses of physical-similarity ratings have been found to be more than 99% accurate, as 
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validated by determinations based on genotyping (Heath et al., 2003). Our final sample 

consisted of 84 (30.9%) monozygotic pairs, 99 (36.4%) same-sex dizygotic pairs, and 89 

(32.7%) opposite-sex dizygotic pairs. Behavioral genetic analyses that excluded the 

opposite-sex pairs produced a pattern of results very similar to what is reported here. 

Measures 

Twelve tasks were selected to assess individual differences in the following four EF 

domains: inhibition, switching, working memory, and updating (see Table 1). As EF tasks 

are generally known to have poor reliability relative to cognitive-ability measures (Miyake 

et al., 2000), we placed considerable emphasis on selecting tasks that have been reported 

to have strong psychometric properties in child samples. Tasks were administered orally, 

by computer (Windows computers running E-Prime 2.0, Psychology Software Tools, 

http://www.pstnet.com, and Inquisit 4, Millisecond Software, Seattle, WA), or on paper. 

To maintain consistency with the broader EF literature, we converted timed 

responses to reaction time (RT) metrics. Switch costs and inhibition costs were multiplied 

by −1 so that higher scores indicated better performance. To correct for positive skew, we 

log-transformed trail-making and local-global scores and took the square root of n-back 

and listening-recall scores. All stop-signal scores in a given block were omitted if the 

participant failed to stop on stop trials less than 25% or more than 75% of the time, failed 

to respond on go trials more than 60% of the time, responded incorrectly on go trials more 

than 10% of the time, or had a stop-signal RT less than 50 ms (Congdon et al., 2010). Stop-

signal RTs were averaged across blocks for the 91% of participants for whom block-level 

data remained. Plus-minus scores more than 3 standard deviations from the mean were 
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Winsorized to the next least extreme value. Additional scores were omitted because of 

errors in task administration. All analyses used standardized scores. We controlled for age-

related differences in performance by regressing first-order latent EF factors onto age in 

all models.
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Table 1 

Descriptions of Tasks and Measured Outcomes 

EF and task Source Paradigm Dependent variable 

Inhibition    

Animal Stroop After Wright, 

Waterman, Prescott, 

and Murdoch-Eaton 

(2003) 

Verbally identify animal drawings; three conditions: the face 

matches the body (congruent), the face does not match the 

body and identification should be based on the body 

(incongruent), and the face area is blank and identification 

should be based on the body (neutral) 

Inhibition cost: mean RT for 

incongruent trials minus mean 

RT for congruent and neutral 

trials 

Mickey K. Lee, Bull, and 

Ho (2013) 

Press a button indicating the side of the screen on which 

Mickey Mouse’s face appears, while ignoring any preceding 

squares that flash on-screen; three conditions: a square flashes 

on the same side as Mickey (congruent), a square flashes on 

the opposite side (incongruent), and squares flash on both sides 

(neutral) 

Inhibition cost: mean RT for 

incongruent trials minus mean 

RT for congruent and neutral 

trials 

Stop signal After Logan, 

Schachar, and 

Tannock (1997) and 

Verbruggen, Logan, 

and Stevens (2008) 

Indicate where an arrow points, but do not respond if a tone 

(stop signal) sounds after the arrow is presented   

Stop-signal RT: kth RT for go 

trials (no stop signal) minus 

mean stop-signal delay, where 

k is the product of the 

probability of responding on a 

trial with a stop signal and the 

number of responses (in a 

given block), and stop-signal 

delay is the delay between the 

onset of the arrow and the 

presentation of the stop signal 
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Table 1 (continued) 

EF and task Source Paradigm Dependent variable 

Switching 
   

Trail making Salthouse (2011) Connect circles containing numbers in numerical sequence and 

circles containing letters in alphabetical order; in the two 

simple conditions, only numbers or letters are presented; in the 

two alternating conditions, both numbers and letters are 

presented, and the circles should be connected in an alternating 

sequence (numbers-letters: 1-A-2-B, etc.; letters-numbers: A-

1-B-2, etc.) 

Switch cost: mean RT for 

alternating conditions minus 

mean RT for simple conditions 

Local-global After Miyake et al. 

(2000) 

Verbally identify letters and shapes composed of smaller 

letters and shapes; three conditions: name the small, 

constituent letters or shapes (local), name the large, overall 

letter or shape (global), and alternate between naming the 

constituent and overall letters or shapes (alternating) 

Switch cost: mean RT for the 

alternating condition minus 

mean RT for the local and 

global (simple) conditions 

Plus-minus After Miyake et al. 

(2000) 

Complete simple addition and subtraction problems; three 

conditions: add 1 to each number (addition), subtract 1 from 

each number (subtraction), and alternate between adding and 

subtracting 1 (alternating) 

Switch cost: mean RT for the 

alternating condition minus 

mean RT for the addition and 

subtraction (simple) conditions 

Working memory   

Symmetry span After Kane et al. 

(2004) 

View and encode a square flashing on a grid and, on 

alternating trials, indicate whether the geometric display is 

symmetrical; later, recall the locations, in order, of the flashing 

squares on the preceding trials (sequences increase in length) 

Total number of squares 

correctly recalled 

Listening recall After Daneman and 

Carpenter (1980) 

Listen to single letters and sentences presented in alternation 

and determine whether the sentences make sense; later, recall 

the order of the letters on the preceding trials (sequences 

increase in length)  

Total number of letters 

correctly recalled 

Digit Span 

Backward 

Wechsler (2008) Repeat increasingly long strings of numbers backward Total number of strings 

correctly recalled 
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Table 1 (continued) 

 

EF and task Source Paradigm Dependent variable 

Updating    

Running memory 

for letters 

After Broadway and 

Engle (2010) 

View a sequence of single letters and identify the last n digits 

in order of their presentation 

Total number of letters 

correctly recalled 

n-back After Jaeggi et al. 

(2010) 

View a sequence of individual shapes and indicate when the 

current shape matches the shape from two trials prior 

Number of hits minus number 

of false alarms 

Keeping track After Miyake et al. 

(2000) 

Listen to words falling under four categories and recall the 

most recent word from a given category 

Total number of words 

correctly recalled 

Note: EF = executive function, RT = reaction time. 
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Phenotypic analyses 

For all phenotypic analyses, the sample was treated as consisting of individual cases. 

Analyses were run using Mplus Version 7.11 (Muthén & Muthén, 2012). We used the 

Complex Survey option in Mplus to correct for the nonindependence of observations that 

arose from having individuals embedded in the same family. Each of the 12 tasks was 

specified to load onto one of up to four latent variables representing inhibition, switching, 

working memory, and updating ability. This latent-variable approach allowed us to extract 

factors representing variance common across selected tasks separately from task-specific 

(and potentially nonexecutive) variance. 

We fit a series of confirmatory factor models to evaluate possible relationships 

among the EF tasks: a four-factor model in which four distinct EFs accounted for variation 

in task performance (Model 1), a three-factor model in which updating and working 

memory tasks were modeled as indicators of a single latent variable (Model 2), a three-

factor model in which inhibition and switching tasks served as indicators of a single latent 

variable (Model 3), a two-factor model in which updating and working memory were 

combined into one latent factor and switching and inhibition were combined into a second 

factor (Model 4), and a one-factor model in which all tasks were regressed onto a single 

latent variable (Model 5). Models 1 through 4 included a latent, Common EF factor for 

which all first-order latent factors served as indicators. Model fit was assessed by the chi-

square test, which measures badness of fit of the model to the data; by the root-mean-square 

error of approximation (RMSEA), which indicates the overall degree of discrepancy 

between the observed covariance matrix and a model-implied covariance matrix; by the 



12 

comparative fit index (CFI), which compares the model with a baseline model in which no 

variables are interrelated; and by the Akaike information criterion (AIC), which enables 

the comparison of nonnested models. To compare the fit of different models, we computed 

scaled chi-square difference statistics. 

Behavioral genetic analyses 

Our primary behavioral genetic analyses modeled phenotypic variances as the sum of three 

factors: additive genetic influences (A), which serve to make individuals who are 

genetically more related (e.g., monozygotic twins compared with dizygotic twins) more 

similar on an outcome of interest; shared environmental influences (C), which serve to 

make children raised in the same family more similar than children raised in different 

families, regardless of genetic relatedness; and nonshared environmental influences (E), 

which serve to differentiate children raised in the same family, even when genetically 

identical. We also fit models in which the C factors were dropped. One of these consisted 

of only the A and E factors, and the other allowed for contributions from 

the A and E factors along with a factor representing dominance genetic effects (D), which 

are nonadditive. Using the best-fitting phenotypic model for guidance, we estimated the 

relative contributions of the genetic and environmental factors to variance at three levels 

of measurement: the Common EF factor, the domain-specific factors (independent of 

Common EF), and the individual tasks (independent of Common EF and domain-specific 

factors). All behavioral genetic analyses used the Complex Survey option in Mplus to 

correct for the nonindependence of observations that arose from having multiple “twin” 

pairs from each set of triplets. 
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Results 

Table 2 reports descriptive statistics for the twelve executive function tasks. For each 

Inhibition and Switching task that compared RTs across non-executive and executive 

conditions, there was a mean RT cost associated with the respective executive skill. 

Reliabilities were generally moderate to high for individual conditions but occasionally 

somewhat lower for difference scores, representing person-specific Switching and 

Inhibition costs, as is typical for the literature. Reliabilities for the Updating and Working 

Memory tasks were also generally moderate to high.  

Confirmatory factor models 

We compared four factor structures to determine which model to enter into behavioral 

genetic analyses. Table 4 presents the standardized factor loadings from these competing 

models. Our primary model was a hierarchical factor model consisting of four first-order 

EF domains and a higher-order Common EF factor (Model 1). The fit of this full model 

was excellent, χ2(58) = 62.31, p = .326, RMSEA = .01, CFI = .997 (seeTable 5). Factor 

loadings of individual tasks on the first-order factors were all significant and generally in 

the moderate range, with the exception of lower—yet still significant—loadings for the 

Mickey, stop-signal, and plus-minus tasks. This overall pattern of loading magnitudes 

(Mdn = .62, M = .54) is comparable to that found in previous EF research with adult 

samples: Miyake et al. (2000) reported a median loading of .60 and a mean loading of .50, 

and Friedman et al. (2008) reported a median loading of .63 and a mean loading of .59.  

 

 

http://pss.sagepub.com/content/26/8/1151.full#T4
http://pss.sagepub.com/content/26/8/1151.full#T5
http://pss.sagepub.com/content/26/8/1151.full#ref-25
http://pss.sagepub.com/content/26/8/1151.full#ref-11
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Table 2 

Descriptive Statistics for the Task Conditions 

Task and condition     n M (ms) SD (ms) Reliability () 

Animal Stroop: congruent     504 953.86 250.38 .83 

Animal Stroop: neutral     504 955.99 218.01 .81 

Animal Stroop: incongruent     504 1,180.27 322.40 .86 

Mickey: congruent     472 419.52 100.04 .93 

Mickey: neutral     472 444.22 112.84 .82 

Mickey: incongruent     472 454.26 96.91 .94 

Trail making: numbers     505 1,151.50 490.07 .88 

Trail making: letters     505 1,622.76 1,999.89 .83 

Trail making: numbers-letters     505 2,514.92 1,653.57 .76 

Trail making: letters-numbers     503 3,239.71 3,476.84 .76 

Local-global: local     496 1,089.30 344.03 .84 

Local-global: global     496 1,021.05 386.25 .75 

Local-global: alternating     496 2,473.43 973.49 .80 

Plus-minus: addition     490 3,223.41 3,264.16 .94 

Plus-minus: subtraction     491 3,690.44 4,556.96 .94 

Plus-minus: alternating     491 4,154.18 4,069.63 .94  

Note: The statistics in this table are based on untransformed data. Reliabilities were 

calculated across trials.  

 

  



15 

 

Table 3 

Descriptive Statistics for the Dependent Variables 

Task and dependent variable     n M SD Reliability () 

Animal Stroop: inhibition cost     504 229.42 ms 206.26 ms .86a 

Mickey: inhibition cost     472 22.39 ms 44.30 ms .38b 

Stop signal: stop-signal reaction time     422 326.44 ms 82.41 ms .42b 

Trail making: switch cost     505 1,316.93 ms 1,051.60 ms .87a 

Local-global: switch cost     495 1,432.36 ms 788.49 ms .67a 

Plus-minus: switch cost     491 703.71 ms 1,357.53 ms .69a 

Symmetry span: number correct     501 20.17 8.60 .77c 

Listening recall: number correct     498 23.83 7.85 .77c 

Digit Span Backward: number correct     505 6.96 1.81 .57c 

Running memory for letters: number 

correct 
    490 19.13 8.23 .74c 

n-back: number correct minus 

number incorrect 
    497 2.59 8.27 .84b 

Keeping track: number correct     494 6.71 2.28 .48c 

Note: The statistics in this table are based on untransformed data. 

aFor all reaction time measures, reliability was calculated by computing Cronbach’s alpha 

from difference scores formed by subtracting reaction time on nonswitch (or noninhibit) 

blocks from reaction time on switch (or inhibit) blocks, for each possible pair of switch 

(inhibit) and nonswitch (noninhibit) blocks. bReliability was calculated across blocks. 

cReliability was calculated across trials. 
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Loadings of the first-order factors on the higher-order Common EF factor, when 

standardized relative to the factors’ total variances, were moderate in range (.33, .61, .75, 

and .78 for Inhibition, Switching, Working Memory, and Updating, respectively). 

However, because each of the first-order factors was also regressed on age (see Table 4), 

such loadings are semipartial with respect to age; the loadings are therefore attenuated 

relative to what they would be in an age-homogeneous sample. When standardized relative 

to variance in each factor that was independent of age—that is, partial with respect to age 

and therefore more directly comparable to loadings from an age-homogeneous sample—

the loadings of the first-order factors on the Common EF factor were large (.66, .80, 1.00, 

and .92 for Inhibition, Switching, Working Memory, and Updating, respectively), as has 

often been found in child samples (e.g., K. Lee, Bull, & Ho, 2013). 

Model-implied semipartial correlations among the first-order factors were .20 for 

Inhibition and Switching, .25 for Inhibition and Working Memory, .26 for Inhibition and 

Updating, .46 for Switching and Working Memory, .48 for Switching and Updating, and 

.59 for Working Memory and Updating. Model-implied partial correlations among the 

first-order factors were .52 for Inhibition and Switching, .65 for Inhibition and Working 

Memory, .60 for Inhibition and Updating, .79 for Switching and Working Memory, .73 for 

Switching and Updating, and .91 for Working Memory and Updating. 

We tested whether a number of more parsimonious models could account for the 

data as well as the full hierarchical four-factor model (see Tables 4 and 5). Model 2 was a 

hierarchical three-factor model in which working memory and updating tasks served as 

indicators for the same factor. Though model fit was good overall, χ2(60) = 82.19, p = .030, 

http://pss.sagepub.com/content/26/8/1151.full#T4
http://pss.sagepub.com/content/26/8/1151.full#ref-21
http://pss.sagepub.com/content/26/8/1151.full#T4
http://pss.sagepub.com/content/26/8/1151.full#T5
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RMSEA = .03, CFI = .984, there was a significant decrease in fit compared with Model 1 

(p < .001). In Model 3, inhibition and switching tasks were loaded onto the same factor, 

and working memory and updating tasks remained independent. The model fit the data 

well, χ2(60) = 76.86, p = .07, RMSEA = .02, CFI = 9.88, though not as well as Model 1 

(p < .001). Model 4 was a two-factor model that consisted of a combined Inhibition and 

Switching factor and a combined Working Memory and Updating factor. The decrement 

in model fit, χ2(63) = 97.21, p = .004, RMSEA = .03, CFI = .976, as compared with Model 

1, was even more pronounced (p < .001). Finally, we considered the possibility that the 

commonalities among the tasks and factors could be explained by a unitary dimension 

(Model 5). Although all factor loadings onto the Common EF factor remained significant 

and model fit was acceptable, χ2(65) = 127.623, p < .001, RMSEA = .04, CFI = .956, this 

model fit appreciably worse than all the other models (p < .001). Additional model fit 

statistics and comparisons are provided in Table 5. On the basis of these comparisons, we 

accepted Model 1 as the best-fitting model. 
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Table 4 

4a) Standardized Parameter Estimates From Alternative Factor Models of Executive Functions: Models 1 & 2 

 Model 1 Model 2 

Parameter Factor 1  

(In) 

Factor 2 

(Sw) 

Factor 3 

(WM) 

Factor 4 

(Up) 
Common EF 

Factor 1  

(In) 

Factor 2 

(Sw) 

Factor 3 

(WM-Up) 
Common EF 

Tasks as indicators of first-order factors 

Animal-Stroop 

loading 

.42*** 

[0.28, 0.56] 
    

.42*** 

[0.28, 0.57] 
   

Mickey loading .30*** 

[0.17, 0.44] 
    

.30*** 

[0.17, 0.43] 
   

Stop-signal 

loading 

.15* 

[0.02, 0.28] 
    

.15* 

[0.02, 0.28] 
   

Trail-making 

loading 
 

.68*** 

[0.59, 0.76] 
    

.67*** 

[0.59, 0.76] 
  

Local-global 

loading 
 

.60*** 

[0.51, 0.69] 
    

.60*** 

[0.51, 0.69] 
  

Plus-minus 

loading 
 

.32*** 

[0.20, 0.45] 
    

.33*** 

[0.20, 0.45] 
  

Symmetry-span 

loading 
  

.64*** 

[0.58, 0.71] 
    

.63*** 

[0.56, 0.70] 
 

Listening-recall 

loading 
  

.76*** 

[0.71, 0.82] 
    

.76*** 

[0.71, 0.81] 
 

Digit Span Back-

ward loading 
  

.52*** 

[.45, .60] 
    

.53*** 

[0.46, 0.61] 
 

Running-memory 

loading 
   

.82*** 

[0.77, 0.86] 
   

.78*** 

[0.73, 0.83] 
 

n-back loading 
   

.67*** 

[0.59, 0.74] 
   

.64*** 

[0.57, 0.71] 
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Table 4 (continued) 

 Model 1 Model 2 

Parameter Factor 1  

(In) 

Factor 2 

(Sw) 

Factor 3 

(WM) 

Factor 4 

(Up) 
Common EF 

Factor 1  

(In) 

Factor 2 

(Sw) 

Factor 3 

(WM-Up) 
Common EF 

Keeping-track 

loading 
   

.64*** 

[0.58, 0.70] 
   

.63*** 

[0.56, 0.69] 
 

First-order factors as indicators of the Common EF factor 

Factor 1 loading 
    

33** 

[0.13, 0.54] 
   

.46** 

[0.14, 0.63] 

Factor 2 loading 
    

61*** 

[0.49, 0.73] 
   

.74*** 

[0.47, 1.01] 

Factor 3 loading 
    

.75*** 

[0.65, 0.84] 
   

.64*** 

[0.40, 0.87] 

Factor 4 loading 
    

.78*** 

[0.68, 0.88] 
    

Age as a predictor of the first-order factors 

Age effect 0.86*** 

[0.59, 1.13] 

0.65*** 

[0.56, 0.74] 

0.66*** 

[0.56, 0.75] 

0.53*** 

[0.43, 0.63] 
 

0.86*** 

[0.59, 1.13] 

0.65*** 

[0.56, 0.74] 

0.60*** 

[0.51, 0.69] 
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Table 4 (continued) 

4b) Standardized Parameter Estimates From Alternative Factor Models of Executive Functions: Models 3, 4, 5 

 Model 3 Model 4 Model 5 

Parameter Factor 1  

(In-Sw) 

Factor 2 

(WM) 

Factor 3 

(Up) 
Common EF 

Factor 1  

(In-Sw) 

Factor 2 

(WM-Up) 
Common EF 

Factor 1 

(Common EF) 

Tasks as indicators of first-order factors 

Animal-Stroop 

loading 

.43*** 

[0.33, 0.53] 

   .43*** 

[0.33, 0.53] 

  .39*** 

[0.30, 0.48] 

Mickey loading .26*** 

[0.16, 0.36] 

   .26*** 

[0.16, 0.36] 

  .22*** 

[0.12, 0.32] 

Stop-signal 

loading 

.13* 

[0.02, 0.25] 

   .13* 

[0.02, 0.25] 

  .12* 

[0.01, 0.23] 

Trail-making 

loading 

.64*** 

[0.56, 0.72] 

   .64*** 

[0.57, 0.72] 

  .62*** 

[0.56, 0.69] 

Local-global 

loading 

.59*** 

[0.50, 0.68] 

   .59*** 

[0.50, 0.68] 

  .54*** 

[0.44, 0.64] 

Plus-minus 

loading 

.33*** 

[0.20, 0.45] 

   .33*** 

[0.20, 0.45] 

  .30*** 

[0.18, 0.42] 

Symmetry-span 

loading 

 .64*** 

[0.58, 0.71] 

   .63*** 

[0.56, 0.69] 

 .63*** 

[0.57, 0.70] 

Listening-recall 

loading 

 .76*** 

[0.71, 0.82] 

   .76*** 

[0.71, 0.81] 

 .75*** 

[0.71, 0.80] 

Digit Span Back-

ward loading 

 .52*** 

[0.45, 0.60] 

   .53*** 

[0.46, 0.61] 

 .53*** 

[0.45, 0.60] 

Running-memory 

loading 

  .82*** 

[0.77, 0.86] 

  .78*** 

[0.73, 0.83] 

 .76*** 

[0.71, 0.81] 

n-back loading   .67*** 

[0.59, 0.74] 

  .64*** 

[0.57, 0.71] 

 .63*** 

[0.55, 0.70] 
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Table 4 (continued) 

 Model 3 Model 4 Model 5 

Parameter Factor 1  

(In-Sw) 

Factor 2 

(WM) 

Factor 3 

(Up) 
Common EF 

Factor 1  

(In-Sw) 

Factor 2 

(WM-Up) 
Common EF 

Factor 1 

(Common EF) 

Keeping-track 

loading 

  .64*** 

[0.58, 0.70] 

  .63*** 

[0.56, 0.69] 

 .62*** 

[0.55, 0.68] 

First-order factors as indicators of the Common EF factor 

Factor 1 loading 
   

.57*** 

[0.46, 0.68] 
  

.81*** 

[0.65, 0.97] 
 

Factor 2 loading 
   

.75*** 

[0.64, 0.86] 
  

.55*** 

[0.45, 0.65] 
 

Factor 3 loading 
   

.78*** 

[0.68, 0.88] 
    

Factor 4 loading         

Age as a predictor of the first-order factors 

Age effect 0.86*** 

[0.59, 1.13] 

0.65*** 

[0.56, 0.74] 

0.66*** 

[0.56, 0.75] 

0.53*** 

[0.43, 0.63] 

 0.86*** 

[0.59, 1.13] 

0.65*** 

[0.56, 0.74] 

0.60*** 

[0.51, 0.69] 

Note: The table shows the standardized loadings of the 12 executive-function (EF) tasks on the first-order factors in each 

model, the standardized loadings of the first-order factors on the higher-order EF factor, and the standardized regression 

coefficients for age as a predictor of the latent EF scores. Note that the composition of the numbered factors varies across 

models. Values in brackets are 95% confidence intervals. In = Inhibition; Sw = Switching; WM = Working Memory; Up = 

Updating. 

*p < .05. **p < .01. ***p < .001.  
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Table 5 

Results for the Confirmatory Factor Models of Executive Functions: Fit Indices and Results for Scaled Chi-Square Differences 

Between Models 

Model 

Model fit p for the χ2 difference 

χ2 
χ2  scaling 

factor 
RMSEA CFI AIC 

vs.  

Model 1 

vs.  

Model 2 

vs.  

Model 3 

vs.  

Model 4 

1. Four factors: In, 

Sw, WM, Up 

χ2(58) = 62.31, 

p = .326 
1.07 .012 [.00, .03] .997 15,128.45 —    

2. Three factors: In, 

Sw, WM-Up 

χ2(60) = 82.19, 

p = .030 
1.06 .027 [.02, .04] .984 15,144.89 2.05e–6 —   

3. Three factors: In-

Sw, WM, Up 

χ2(60) = 76.86, 

p = .070 
1.06 .024 [.00, .04] .988 15,139.49 1.77e–4 — —  

4. Two factors: In-

Sw, WM-Up 

χ2(63) = 97.21, 

p = .004 
1.06 .033 [.03, .05] .976 15,155.35 8.48e–7 2.93e–3 2.08e–4 — 

5. One factor: 

Common EF 

χ2(65) = 127.62, 

p < .001 
1.07 .044 [.03, .06] .956 15,184.86 3.45e–9 1.48e–7 1.06e–8 4.32e–6 

Note: Values in brackets are 95% confidence intervals. EF = executive function; In = Inhibition; Sw = Switching; WM = 

Working Memory; Up = Updating; RMSEA = root-mean-square error of approximation; CFI = comparative fit index; AIC = 

Akaike information criterion. 
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Age-invariance models 

Age-related differences in the measurement properties of the EF tasks could distort 

estimates of genetic and environmental influence. To address this concern, we divided the 

sample into relatively equally sized groups of younger children (< 11 years) and older 

children and adolescents (≥ 11 years) and tested for measurement invariance. We first fit 

an invariance model in which each EF task was specified to load onto its corresponding 

first-order EF domain (as per Model 1), and factor loadings and intercepts were constrained 

to be invariant across age groups. The invariance model exhibited excellent fit to the data, 

χ2(112) = 115.44, p = .39, RMSEA = .01, CFI = .996. Next, we fit a noninvariance model 

in which the intercepts and loadings of the tasks on their respective factors were free to 

differ across groups. The noninvariance model also resulted in exceptional model fit, χ2(96) 

= 101.59, p = .33, RMSEA = .02, CFI = .993. A χ2 difference test indicated that the 

invariance model fit no worse than the noninvariance model (p = .514), an indication of 

measurement invariance across age groups. 

Behavioral genetic models 

The best-fitting model (Model 1) from the confirmatory factor analyses specified a 

hierarchical structure with each task loading onto one of four broad EF domains (Inhibition, 

Switching, Working Memory, and Updating) that in turn loaded onto a higher-order 

Common EF factor. This structure served as the basis for our behavioral genetic analyses. 

We first fit a model that estimated A, C, and E influences operating on the Common EF 

factor, individual EFs, and specific tasks (see Fig. 1 and Table 6). The 

standardized a coefficient for the Common EF factor equaled 1.00 (p < .001); this indicated 

http://pss.sagepub.com/content/26/8/1151.full#F1
http://pss.sagepub.com/content/26/8/1151.full#T6
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that genetic influences on the Common EF factor mediated 100% of the variance common 

to the domain-specific factors. Of the domain-specific factors, only Switching showed 

genetic influence independent of the Common EF factor (a = .59, p< .001). We also 

observed significant unique nonshared environmental influence on Working Memory (e = 

.38, p = .003) and Updating (e = .24, p = .028). Significant residual genetic effects were 

present for 7 of the 12 tasks, and all tasks exhibited significant nonshared environmental 

effects. The shared environment significantly contributed to residual variance of only one 

task, stop signal (c = .28, p = .021). 

We next fit an AE model (see Table 6), which yielded a pattern of results very 

similar to that of the ACE model: 100% additive genetic influence on the Common EF 

factor, unique genetic influence on the Switching factor and 7 tasks, and unique nonshared 

environmental influence on Working Memory, Updating, and all 12 tasks. A model fit 

comparison revealed that the AE and ACE models did not differ significantly in their chi-

square values (p = .092); thus, there was no loss in fit to the data when shared 

environmental parameters were dropped completely. 

Finally, we fit an ADE model representing the possibility that dominance genetic 

effects explained the observed task and factor correlations better than additive genetics 

alone (see Table 6). Genes continued to explain more than 99% of the variation in Common 

EF performance; additive genetics contributed 77.4% (p < .001), and dominance genetics 

contributed the remaining 23.0% (p = .177). The nonshared environment accounted for less 

than 1% of the variation in the Common EF factor. Dominance genetic effects significantly 

contributed to unique variance in Switching performance, as well as to residual variance 

http://pss.sagepub.com/content/26/8/1151.full#T6
http://pss.sagepub.com/content/26/8/1151.full#T6
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for five tasks. After we accounted for dominance effects, additive genetics contributed 

significantly to unique variance for only one task. Model fit, as indexed by chi-square, did 

not differ significantly from that of the AE model (p = .248). The AIC, which takes into 

account model parsimony, indicated that the AE model was the best of all three models. 
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Figure 1. Hierarchical multivariate twin model for additive genetic (A), shared 

environmental (C), and nonshared environmental (E) contributions to performance on 

executive-function tasks. The numbers on the arrows represent standardized factor 

loadings. The model controlled for age effects at the level of the first-order factors 

(Inhibition, Switching, Working Memory, and Updating). Because the purpose of this 

analysis was to understand the relative contributions of genetic and environmental 

influences to individual differences, as distinct from age-related differences, the loadings 

of the first-order factors have been standardized relative to their age-independent 

variance. Boldface indicates significant paths, p < .05.
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Table 6 

Standardized Factor Loadings From the Behavioral Genetic Models 

EF factor or task 

Model with shared environmental effects 

included 

Model with shared 

environmental effects omitted 

Model with shared environmental effects 

omitted and dominance genetic effects 

included 

a c e a e a d e 

Genetic and environmental contributions to the higher-order EF factor 

Common EF 
1.00*** 

[1.00, 1.00] 

.00 

[0.00, 0.00] 

.000 

[–0.05, 0.05] 

1.00*** 

[1.00, 1.00] 

.00 

[–0.01, 0.01] 

.88*** 

[0.52, 1.23] 

.48 

[–0.21, 1.17] 

.08 

[–0.61, 0.77] 

Genetic and environmental contributions unique to the first-order EF factors 

Inhibition  
.00 

[0.00, 0.00] 

.00 

[0.00, 0.00] 

.75 

[–0.12, 1.61] 

.00 

[0.00, 0.00] 

.70 

[–0.46, 1.87] 

.00 

[0.00, 0.00] 

.00 

[0.00, 0.00] 

.60 

[–1.49, 2.70] 

Switching 
.59*** 

[0.29, 0.89] 

.00 

[0.00, 0.00] 

.15 

[–1.09, 1.39] 

.59*** 

[0.29, 0.89] 

.15 

[–1.08, 1.38] 

.00 

[0.00, 0.00] 

.62*** 

[0.43, 0.81] 

.00 

[0.00, 0.00] 

Working Memory  
.00 

[0.00, 0.00] 

.00 

[0.00, 0.00] 

.38** 

[0.14, 0.62] 

.00 

[0.00, 0.00] 

.37** 

[0.12, 0.61] 

.00 

[0.00, 0.00] 

.00 

[0.00, 0.00] 

.36** 

[0.09, 0.62] 

Updating 
.00 

[0.00, 0.00] 

.00 

[0.00, 0.00] 

.24* 

[0.03, 0.46] 

.00 

[0.00, 0.00] 

.24* 

[0.03, 0.46] 

.00 

[0.00, 0.00] 

.00 

[0.00, 0.00] 

.26* 

[0.05, 0.47] 

Genetic and environmental contributions unique to individual tasks 

Animal Stroop 
.47*** 

[0.25, 0.68] 

.00 

[0.00, 0.00] 

.78*** 

[0.65, 0.92] 

.47*** 

[0.25, 0.68] 

.79*** 

[0.65, 0.92] 

.00 

[0.00, 0.00] 

.57*** 

[0.35, 0.79] 

.72*** 

[0.55, 0.89] 

Mickey 
.00 

[0.00, 0.00] 

.26 

[–0.04, 0.56] 

.92*** 

[0.81, 1.02] 

.26 

[–0.15, 0.68] 

.92*** 

[0.79, 1.05] 

.26 

[–0.16, 0.68] 

.00 

[0.00, 0.00] 

.92*** 

[0.79, 1.05] 

Stop signal 
.00 

[0.00, 0.00] 

.28* 

[0.04, 0.51] 

.95*** 

[0.88, 1.02] 

.19 

[–0.25, 0.62] 

.97*** 

[0.88, 1.06] 

.18 

[–0.26, 0.63] 

.00 

[0.00, 0.00] 

.97*** 

[0.89, 1.06] 

Trail making .33*** 

[0.14, 0.52] 

.00 

[0.00, 0.00] 

.63*** 

[0.52, 0.74] 

.33*** 

[0.14, 0.52] 

.63*** 

[0.52, 0.74] 

.00 

[0.00, 0.00] 

.38*** 

[0.21, 0.55] 

.60*** 

[0.51, 0.70] 

Local-global .26* 

[0.02, 0.51] 

.00 

[0.00, 0.00] 

.76*** 

[0.67, 0.85] 

.26* 

[0.02, 0.51] 

.76*** 

[0.67, 0.85] 

.00 

[0.00, 0.00] 

.34* 

[0.04, 0.63] 

.73*** 

[0.60, 0.86] 
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Table 6 (continued) 

EF factor or task 

Model with shared environmental effects 

included 

Model with shared 

environmental effects omitted 

Model with shared environmental effects 

omitted and dominance genetic effects 

included 

a c e a e a d e 

Plus-minus 
.00 

[0.00, 0.00] 

.00 

[0.00, 0.00] 

.95*** 

[0.91, 1.00] 

.00 

[0.00, 0.00] 

.95*** 

[0.91, 1.00] 

.00 

[0.00, 0.00] 

.32 

[–0.47, 1.11] 

.90*** 

[0.62, 1.18] 

Symmetry span 
.38* 

[0.01, 0.76] 

.15 

[–0.58, 0.87] 

.63*** 

[0.53, 0.73] 

.42*** 

[0.29, 0.54] 

.62*** 

[0.54, 0.71] 

.41*** 

[0.28, 0.54] 

.00 

[0.00, 0.00] 

.63*** 

[0.54, 0.71] 

Listening recall 
.00 

[0.00, .000] 

.00 

[0.00, 0.00] 

.64*** 

[0.57, 0.70] 

.00 

[0.00, 0.00] 

.64*** 

[0.57, 0.70] 

.00 

[0.00, 0.00] 

.00 

[0.00, 0.00] 

.64*** 

[0.57, 0.71] 

Digit Span 

Backward 

.43*** 

[0.28, 0.59] 

.00 

[0.00, 0.00] 

.72*** 

[0.64, 0.81] 

.43*** 

[0.28, 0.59] 

.72*** 

[0.64, 0.81] 

.33 

[–0.32, 0.98] 

.31 

[–0.48, 1.09] 

.72*** 

[0.61, 0.82] 

Running memory 
.17 

[–0.12, 0.46] 

.00 

[0.00, 0.00] 

.54*** 

[0.45, 0.64] 

.17 

[–0.12, 0.46] 

.54*** 

[0.45, 0.64] 

.00 

[0.00, 0.00] 

.28** 

[0.07, 0.49] 

.51*** 

[0.40, 0.61] 

n-back 
.44*** 

[0.30, 0.57] 

.00 

[0.00, 0.00] 

.62*** 

[.52, .71] 

.44*** 

[0.30, 0.57] 

.62*** 

[0.52, 0.71] 

.34 

[–0.18, 0.86] 

.32 

[–0.34, 0.97] 

.60*** 

[0.48, 0.71] 

Keeping track 
.30** 

[0.10, 0.50] 

.00 

[0.00, 0.00] 

.69*** 

[0.60, 0.78] 

.30** 

[0.10, 0.50] 

.69*** 

[0.60, 0.78] 

.00 

[0.00, 0.00] 

.33** 

[0.12, 0.53] 

.68*** 

[0.57, 0.78] 

Note: Values in brackets are 95% confidence intervals. EF = executive function; a = additive genetics coefficient; c = shared 

environment coefficient; e = nonshared environment coefficient; d = dominance genetics coefficient. The model controlled for 

age effects at the level of the first-order factors (Inhibition, Switching, Working Memory, and Updating). Because the purpose 

of this analysis was to understand the relative contributions of genetic and environmental influences to individual differences, 

as distinct from age-related differences, the loadings of the first-order factors were standardized relative to their age-

independent variance. *p < .05. **p < .01. ***p < .001. 
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Discussion 

Despite widespread interest in EFs as explanatory mechanisms for the development of a 

host of psychological and social outcomes, there has been surprisingly little behavioral 

genetic work on EFs in childhood. Motivated by provocative findings of substantial 

heritability of EF factors in young adults (Friedman et al., 2008), in the current study we 

applied behavioral genetic methods to estimate the magnitude of genetic and environmental 

influences on individual differences within a hierarchical factor structure of EFs in 

childhood. 

Our results indicate that an exclusively genetic factor mediates 100% of the 

variance common to all four EF domains that we examined: inhibition, switching, working 

memory, and updating. That we found this high level of heritability in a sample of children 

is particularly striking in light of strong evidence that other phenotypes, such as general 

intelligence, are only modestly heritable in childhood and increase in heritability into 

adulthood (Haworth et al., 2009). The nonshared environment contributed significantly to 

variance specific to the Working Memory and Updating factors, as well as to potentially 

nonexecutive variance specific to each individual task, but not to the Common EF factor. 

No appreciable effects of the shared environment were apparent at any level of analysis. 

Together, these results indicate that EFs in childhood are united by shared genetic 

influences, yet distinguishable as a result of both genetic and nonshared environmental 

contributions to specific EF domains and task performance. Although our main findings 

are consistent with the genetic architecture uncovered for young adults by Friedman et al. 

(2008), there is one notable difference. In contrast to Friedman et al., we did not detect 
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genetic effects specific to the latent Updating factor above and beyond those mediated by 

the Common EF factor. This may indicate that the genetic factors that distinguish EFs from 

one another are not fully expressed until later in development. 

The finding that the Common EF factor is entirely heritable in middle childhood 

has important implications for understanding how EFs develop over time, as well as for 

understanding the mechanisms through which they are associated with important 

psychosocial sequelae. In combination with accumulating evidence that childhood EFs 

predict a cross-cutting range of academic, economic, and mental-health outcomes later in 

life, our results suggest that childhood EFs may act as developmental endophenotypes—or 

prodromal markers—for an array of genetically influenced psychological, social, and 

health outcomes. This suggests not only that EFs have the potential to provide researchers 

“simpler clues to genetic underpinnings” (Gottesman & Gould, 2003, p. 636) of such 

outcomes compared with the outcomes themselves, but also that EFs might be used to 

identify children who are at genetic risk for as-yet-unexpressed maladaptive outcomes and 

who could therefore be targeted in early interventions. 

Our findings also open exciting avenues for future work. First, in light of the strong 

theoretical and empirical link between EFs and neurobiology, it will be important to test 

the extent to which the neural bases of EFs are themselves genetically influenced and 

whether such genetic factors are fully captured by behavioral EF measures. Second, 

although our findings indicate that there is a strong statistical link between the Common 

EF factor and genetic variation, it is well known that heritability may encompass variation 

resulting from Gene × Environment interactions, whereby the magnitude of genetic 
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influence on a phenotype differs as a function of environmental context, in addition to more 

direct genetic main effects. Future work will be necessary to test for Gene × Environment 

interactions involving EFs. For instance, do the Gene × Socioeconomic Status interactions 

observed for intelligence and achievement (Tucker-Drob et al., 2013) act on EFs? 

Alternatively, are genetic influences on EFs expressed equally across the range of 

socioeconomic status but differentially related to intelligence and achievement across 

socioeconomic strata? Third, it will be important to test for gene-environment correlations, 

whereby the types of environments experienced come to be nonrandomly associated with 

genetically influenced individual differences in EFs. If dynamic amplification processes 

involving gene-environment correlations serve as the basis for the strikingly high 

heritability of EF, as has been postulated to be the case for the heritability of cognitive 

ability (Tucker-Drob et al., 2013), such processes would need to unfold primarily very 

early in childhood, as our results indicate that heritability has already approached a 

maximum by middle childhood. Finally, future research will be necessary to test the extent 

to which interventions to boost EFs attenuate or magnify genetic variation in EFs. 

Investigating such questions has the potential to reveal key mechanisms underlying the 

development of a range of psychological and social outcomes, and such discoveries may 

better inform interventions and policies that promote psychological and social well-being.
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