
Copyright

by

Ioannis Mitliagkas

2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/322357442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Ioannis Mitliagkas
certifies that this is the approved version of the following dissertation:

Resource-Constrained, Scalable Learning

Committee:

Sriram Vishwanath, Supervisor

Constantine Caramanis, Co-Supervisor

Alexandros Dimakis

Sujay Sanghavi

Pradeep Ravikumar

Resource-Constrained, Scalable Learning

by

Ioannis Mitliagkas, M.Sc.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2015

To my Father

Acknowledgments

The early years of my doctoral work were marked with adjustment diffi-

culties, bad news from home and no lack of mental distress. I owe a tremendous

amount to my advisors Constantine and Sriram for their unconditional sup-

port and endless patience. Acting in unofficial advisor capacity, Alex Dimakis

also offered me his own valuable pieces of advice and endless hours of brain-

storming on the board. My undergraduate advisor, Nikos Sidiropoulos, first

inspired the love for research in me and provided me with constant support

all of these years. I would like to express deep gratitude to all of them; they

taught me how good work is done and gave me the confidence to actually do

it. Finally, I want to thank my collaborators Aditya, Jubin, Prateek, Dimitris

and Michael for working with me; each one taught me something valuable.

On a personal level, I feel indebted to my family. After my parents put

me through school in Greece and saw me off to the US, they provided me with

emotional and financial support even while they were going through serious

adversity back home. My sister, Dina, was there for them in the thick of it,

allowing me to pursue my goals abroad.

At a critical turning point, my love, Emily, came and lifted the heavy

blanket of depression off of me. She inspired me with confidence and desire to

enjoy life and she shared beautiful travels and good food with me. Her energy

v

motivated me to set higher goals and take on challenges I would not have in

the past. Many a time I chased her for 13.1 miles.

I want to thank all of my friends back home for showing a ton of patience

and understanding in the face of our highly irregular communication pattern.

Also, all of my good friends in Austin: Kumar, Sharayu, Fabio, Aditya, Ankit,

Sid, Chinmayi, Dimitris and Megas for sharing good and bad times with me.

Finally, I am grateful to all my musician friends who provided me with a

creative outlet both fun and very cathartic. Thank you Arvind, Niko, Priyam-

vada, Vinit, Constantine, Alex, Tsambika and Taso!

vi

Resource-Constrained, Scalable Learning

by

Ioannis Mitliagkas, Ph.D.

The University of Texas at Austin, 2015

Supervisors: Sriram Vishwanath
Constantine Caramanis

Our unprecedented capacity for data generation and acquisition often

reaches the limits of our data storage capabilities. Situations when data are

generated faster or at a greater volume than can be stored demand a stream-

ing approach. Memory is an even more valuable resource. Algorithms that

use more memory than necessary can pose bottlenecks when processing high-

dimensional data and the need for memory-efficient algorithms is especially

stressed in the streaming setting. Finally, network along with storage, emerge

as the critical bottlenecks in the context of distributed computation. These

computational constraints spell out a demand for efficient tools, that guaran-

tee a solution in the face of limited resources, even when the data is very noisy

or highly incomplete.

vii

For the first part of this dissertation, we present our work on streaming,

memory-limited Principal Component Analysis (PCA). Therein, we give the

first convergence guarantees for an algorithm that solves PCA in the single-

pass streaming setting. Then, we discuss the distinct challenges that arise

when the received samples are overwhelmingly incomplete and present an al-

gorithm and analysis that deals with this issue. Finally, we give a set of ex-

tensive experiment results that showcase the practical merits of our algorithm

over the state of the art.

The need for heavy network communication arises as the bottleneck

when dealing with cluster computation. In that paradigm, a set of worker

nodes are connected over the network to produce a cluster with improved

computational and storage capacities. This comes with an increased need for

communication across the network. In the last part of this work, we consider

the problem of PageRank on graph engines. Therein, we make changes to

GraphLab, a state-of-the-art platform for distributed graph computation, in a

way that leads to a 7x-10x speedup for certain PageRank approximation tasks.

Accompanying analysis supports the behaviour we see in our experiments.

viii

Table of Contents

Acknowledgments v

Abstract vii

Chapter 1. Introduction 1

1.1 Streaming Principal Component Analysis 3

1.2 Missing Entries . 5

1.3 PageRank Approximations on Very Large Graphs 8

Chapter 2. Background 11

2.1 Notation . 11

2.2 Streaming PCA . 11

2.3 Unbiased Covariance Estimation 12

2.4 Imputation-based Algorithms 13

2.5 Large-scale Graph Computation 15

2.6 PageRank . 16

Chapter 3. Memory-constrained, Streaming PCA 19

3.1 Problem Formulation . 19

3.2 Prior Work . 20

3.3 Algorithm and Guarantees . 23

3.4 Proofs . 31

3.5 Perturbation-tolerant Subspace Recovery 42

3.6 Experiments . 43

Chapter 4. Dealing with Highly Incomplete Samples 47

4.1 Problem Formulation . 47

4.2 Algorithm . 49

4.3 Convergence Analysis . 50

4.4 Experiments . 52

ix

Chapter 5. Fast PageRank Approximations on Graph Engines 63

5.1 Top PageRank Elements . 68

5.2 Algorithm . 70

5.3 Main Result . 73

5.4 Related Work . 77

5.5 Experiments . 79

5.6 Analysis . 84

Vita 120

x

Chapter 1

Introduction

Inexpensive electronics and fast networks lead to data collection capac-

ity that is ever-growing in rate and resolution. Paired with practices of bulk

data collection, this trend often meets the limits of data processing and storage.

Naturally, computational power is the first resource concern. Poor algorith-

mic design and implementation can easily lead to a system that is CPU-bound.

Beyond the CPU, and depending on the platform, problem, algorithm and im-

plementation, other resources turn out to be the limiting factor: main memory,

storage and over-the-network communication are the usual suspects. In this

thesis, we study learning problems motivated by a limiting resource. In each

case, we identify the limitation, propose an algorithmic/system approach to

solving it and support our work with tight analysis and experiments. We now

discuss three kinds of resources and then introduce a few problems motivated

by them – or lack thereof.

Memory becomes a bottleneck when the prescribed algorithm requires

more memory than the application-specific minimum. For example, bad mod-

eling can lead to an unwieldy parameter space, which blows up way past the

given system’s limitations. Often an algorithmic choice is at the heart of this

1

issue. Or simply the whole dataset is too big. Consider a problem with an

input dataset that exceeds the size of the main memory, but small output size.

It would seem reasonable to stream the input data points and only consider

them one-by-one, or in small batches. We will see examples like this, where

the access mode, algorithm and platform are motivated by these bottlenecks.

Storage becomes the bottleneck when available disks cannot keep up

with the rate or total volume of the data acquired. For example, optic fibres

outpace most hard disks, including SSDs, and high-definition video recorded

by a cell phone would soon demand all of the storage available on the device.

In the context of streaming, this further implies that we can only perform a

single pass over the whole dataset, as we cannot store it in its entirety. In the

single-pass streaming paradigm, each sample collected is looked at once, any

useful information is extracted and then the sample is discarded. For the first

part of our work, we focus on streaming, memory-limited problems constrained

by these memory and storage bottlenecks.

Network becomes the bottleneck for distributed systems. Computation

is balanced across many machines in a cluster to leverage much more compu-

tational power than that of a single machine. This computational gain comes

at the cost of increased communication needs. For the latter part of our work,

we turn our attention to the distributed approximation of PageRank, one of

the most important graph analytics tasks. We provide a new system that

outperforms the state of the art, along with supporting analysis.

2

1.1 Streaming Principal Component Analysis

Principal component analysis (PCA) is a fundamental tool for dimen-

sionality reduction, clustering, classification, and many more learning tasks.

It is a basic preprocessing step for learning, recognition, and estimation pro-

cedures. The core computational element of PCA is performing a (partial)

singular value decomposition, and much work over the last half century has

focused on efficient algorithms (e.g., [29] and references therein) and hence on

computational complexity.

The recent focus on understanding high-dimensional data, where the

dimensionality of the data scales together with the number of available sample

points, has led to an exploration of the sample complexity of covariance esti-

mation. This direction was largely influenced by Johnstone’s spiked covariance

model, where data samples are drawn from a distribution whose (population)

covariance is a low-rank perturbation of the identity matrix [39]. Work initi-

ated there, and also work done in [72] (and references therein) has explored

the power of batch PCA in the p-dimensional setting with sub-Gaussian noise,

and demonstrated that the singular value decomposition (SVD) of the empir-

ical covariance matrix succeeds in recovering the principal components (ex-

treme eigenvectors of the population covariance) with high probability, given

n = O(p) samples.

The first part of our work brings the focus on another critical quan-

tity: memory/storage. The only currently available algorithms with provable

sample complexity guarantees either store all n = O(p) samples (note that

3

for more than a single pass over the data, the samples must all be stored) or

explicitly form or approximate the empirical p×p (typically dense) covariance

matrix. All cases require as much as O(p2) storage for exact recovery. In

certain high-dimensional applications, where data points are high resolution

photographs, biometrics, video, etc., p often is of the order of 1010 − 1012,

making the need for O(p2) memory prohibitive. At many computing scales,

manipulating vectors of length O(p) is possible, when storage of O(p2) is not.

A typical desktop may have 10-20 GB of RAM, but will not have more than a

few TB of total storage. A modern smart-phone may have as much as a GB of

RAM, but has a few GB, not TB, of storage. In distributed storage systems,

the scalability in storage comes at the heavy cost of communication.

In this light, we consider the streaming data setting, where the samples

xt ∈ Rp are collected sequentially, and unless we store them, they are irretriev-

ably gone.1 For the spiked covariance model (and natural generalizations), we

show that a simple algorithm requiring O(kp) storage – the best possible –

performs as well as batch algorithms (namely, SVD on the empirical covari-

ance matrix), with sample complexity O(p log p). We discuss related work in

Chapter 2 and present our results in detail in Chapter 3. To the best of our

knowledge, this is the first algorithm with both storage complexity and sample

complexity guarantees.

1This is similar to what is sometimes referred to as the single-pass model.

4

1.2 Missing Entries

The second part of our work, considers the problem of PCA under severe

memory/storage constraints and partial observation – a setting where to the

best of our knowledge, there are no known algorithms with global performance

guarantees. Again, we consider the streaming setting, where we see data points

sequentially, and these are nowhere stored. We seek to use no more total

storage than required for the output. This essentially means that while our

algorithm sees each data point, it can only do so once.

Motivated by many recent applications in preference and behavior mod-

eling, we focus on the partial observation setting: each data point is not only

noisy as in traditional PCA. It also suffers some – perhaps overwhelming –

number of erasures. Extreme erasures are typical of application areas where

the data are naturally sparse. Moreover, erasures may be an introduced fea-

ture, e.g. where features are withheld to protect privacy, while allowing collec-

tive learning. It is possible to erase features in a way that makes it impossible

to complete any one sample, while principal components can still be extracted.

This distinction between extracting principle components and completing the

data, becomes important in our work as it sets it apart from imputation-based

methods (cf. Section 2.4).

We consider the following problem: given partial observations ẋt of

vectors xt ∈ Rp, we seek a k-dimensional subspace U along which the variance

of complete vectors {xi} is maximized. Matrix completion techniques using

either SVD [41] or nuclear norm optimization approaches (e.g., [22, 53, 60, 43])

5

have formed the bulk of research into such problems. Largely, their algorithmic

and statistical performance is quite well understood. Yet these algorithms all

have storage complexity on the order of O(p2). Moreover, most of these results

focus on matrix completion – an objective of less value in the setting where we

cannot store points.

In contrast, we focus on recovering a subspace close to U . If there are

enough observations, this is equivalent to matrix completion, but that is not

always the case. Recent work on memory-restricted PCA has considered this

objective, including [51, 6, 9, 11]. Of these, our work in [51] is the only one

that guarantees optimal sample complexity and global convergence, yet does

not consider erasures; [11, 12] is the only one that can handle erasures, though

convergence guarantees there are only local. The algorithms in [11] (GROUSE)

and [55] (Stochastic Approximation, finally analyzed in [9]) perform very well

in general but they share two important drawbacks: i) their performance can

suffer when the number of erasures is very large and ii) their success critically

depends on careful individual parametrization for every dataset. These are

discussed in more detail in Sections 2.2 and 4.4.

Our contributions: We provide a practical, easy-to-deploy algorithm

that does not suffer from the above issues. To the best of our knowledge, it is

the first algorithm for streaming PCA with erasures, that comes with global

convergence guarantees. Specifically:

• Algorithm and Performance: We provide a simple, fast algorithm

6

that has the form of a block power method update. We experiment

on synthetic and real data, and demonstrate the performance of our

algorithm.

• Implementation and deployability: Perhaps its most salient quality

is the fact that it obviates the need for “guesswork” when deploying on a

new dataset. That is, unlike other streaming algorithms, the same exact

parametrization, can perform well in different datasets. See Section 4.4

for the numbers and discussion.

• Sample Complexity: Under mild assumptions on the data distribu-

tion, we show that our algorithm recovers the k principal components

with Õ(p/δ2ε2) samples, which is scaling-wise optimal for any algorithm.

Furthermore, we show – in theory and experiments – that we can recover

U even when δp < k. In this regime, matrix completion is generally not

possible.

• Memory Complexity: Our algorithm requires memory O(pk) – this

is the best possible. This much memory is required to store the output

alone.

We discuss connections to past work in Chapter 2 and introduce the

system model in detail in Section 4.1. We then present our algorithm and anal-

ysis in Section 4.2, and Section 4.3, respectively, and conclude with extensive

experiments in Section 4.4.

7

1.3 PageRank Approximations on Very Large Graphs

For the last part of this dissertation, we turn our attention to a dif-

ferent computational paradigm. Large-scale graph processing is becoming in-

creasingly important for the analysis of data from social networks, web pages,

bioinformatics and recommendation systems. Graph algorithms are difficult

to implement in distributed computation frameworks like Hadoop MapReduce

and Spark. For this reason several in-memory graph engines like Pregel, Gi-

raph, GraphLab and GraphX [49, 48, 77, 65] are being developed.

PageRank computation [56], which gives an estimate of the importance

of each vertex in the graph, is a core component of many search routines; more

generally, it represents, de facto, one of the canonical tasks performed using

such graph processing frameworks. Indeed, while important in its own right,

it also represents the memory, computation and communication challenges to

be overcome in large scale iterative graph algorithms.

In this dissertation we propose a novel algorithm for fast approximate

calculation of high PageRank vertices. Note that even though most previous

works calculate the complete PageRank vector (of length in the millions or

billions), in many graph analytics scenarios a user wants a quick estimation

of the most important or relevant nodes – distinguishing the 10th most rele-

vant node from the 1 000th most relevant is important; the 1 000 000th from

the 1 001 000th much less so. A simple solution is to run the standard PageR-

ank algorithm for fewer iterations (or with an increased tolerance). While

certainly incurring less overall cost, the per-iteration cost remains the same;

8

more generally, the question remains whether there is a more efficient way to

approximately recover the heaviest PageRank vertices.

There are many real-world applications that may benefit from a fast

top-k PageRank algorithm. One example is growing loyalty of influential cus-

tomers [1]. In this application, a telecom company identifies the top-k influ-

ential customers using the top-k PageRank on the customers’ activity (e.g.,

calls) graph. Then, the company invests its limited budget on improving user

experience for these top-k customers, since they are most important for build-

ing good reputation. Another interesting example is finding keywords and key

sentences in a given text. In [50], the authors show that PageRank performs

better than known machine learning techniques for keyword extraction. Each

unique word (noun, verb or an adjective) is regarded as a vertex and there is

an edge between two words if they occur in close proximity in the text. Using

approximate top-k PageRank, we can identify the top-k keywords much faster

than obtaining the full ranking. When keyword extraction is used by time

sensitive applications or for an ongoing analysis of a large number of docu-

ments, speed becomes a crucial factor. The last example we describe here is

the application of PageRank for online social networks (OSN). It is impor-

tant in the context of OSNs to be able to predict which users will remain

active in the network for a long time. Such key users play a decisive role in

developing effective advertising strategies and sophisticated customer loyalty

programs, both vital for generating revenue [37]. Moreover, the remaining

users can be leveraged, for instance for targeted marketing or premium ser-

9

vices. It is shown in [37] that PageRank is a much more efficient predictive

measure than other centrality measures. The main innovation of [37] is the

usage of a mixture of connectivity and activity graphs for PageRank calcu-

lation. Since these graphs are highly dynamic (especially the user activity

graph), PageRank should be recalculated constantly. Moreover, the key users

constitute only a small fraction of the total number of users, thus, a fast ap-

proximation for the top-PageRank nodes constitutes a desirable alternative to

the exact solution.

In Chapter 5 of this dissertation we address this problem. Our algo-

rithm (called FrogWild! for reasons that will become subsequently appar-

ent) significantly outperforms the simple reduced iterations heuristic in terms

of running time, network communication and exhibits better scaling. We note

that, naturally, we compare our algorithm and reduced-iteration-PageRank

within the same framework: we implemented our algorithm in GraphLab Pow-

erGraph and compare it against the built-in PageRank implementation. A key

part of our contribution also involves the proposal of what appears to be sim-

ply a technically minor modification within the GraphLab framework, but

nevertheless results in significant network-traffic savings, and we believe may

nevertheless be of more general interest beyond PageRank computations.

10

Chapter 2

Background

2.1 Notation

Lowercase letters denote scalars or vectors. Uppercase letters denote

matrices. ‖x‖q denotes the `q norm of x; ‖x‖ denotes the `2 norm of x. ‖A‖

or ‖A‖2 denotes the spectral norm of A while ‖A‖F denotes the Frobenius

norm of A. If U is a matrix, U⊥ denotes an orthogonal basis for the subspace

perpendicular to span(U). We denote its ith row by U i and its ith column

by ui. Similarly for a vector x, we write xi for its ith entry. For x ∈ Rp and

Ω ⊆ [p], we use xΩ to denote the restriction of x to the elements in the set Ω.

Finally, we write 〈a,b〉 = a>b for the inner product between a, b. The (i, j)

element of a matrix A is Aij. We denote the transpose of a matrix A by A′.

We use ∆n−1 for the probability simplex in n dimensions, and and ei ∈ ∆n−1

for the indicator vector for item i. For example, e1 = [1, 0, ...0]. For the set of

all integers from 1 to n we write [n].

2.2 Streaming PCA

Memory- and computation-efficient algorithms that operate on stream-

ing data are plentiful in the literature and many seem to do well in practice.

11

While much work has focused on memory-constrained PCA, there has as of

yet been no work that simultaneously provides sample complexity guarantees

competitive with batch algorithms, and also memory/storage complexity guar-

antees close to the minimal requirement of O(kp) – the memory required to

store only the output (cf. Section 3.2 for a listing of prior work). Because of

the practical relevance, there is renewed interest in this problem with vari-

ous sources mentioning it as an important unresolved issue (e.g., [75, 5]). In

Chapter 3, we present an algorithm that provably meets both objectives stated

above.

For the partially observed setting, two directions stand out: covariance

estimation and imputation-based algorithms. The motivating discussion in

Section 1.2 contains a list of references for them, and the next two sections

provide detailed insight into their strengths and weaknesses.

2.3 Unbiased Covariance Estimation

A critical element of many PCA algorithms is some form of covariance

estimation, be that explicit or implicit. The former is true for the classic batch

PCA algorithm. The algorithm computes the empirical covariance matrix,

Σn =
1

n

n∑
i=1

xix
T
i , (2.1)

and then performs a Singular Value Decomposition (SVD) on Σn to recover

the range of U . The statistical limits of this process are characterized in [40].

Specifically, O(p) samples are necessary for the recovery of U in the full-rank,

12

subgaussian case. This includes the spiked covariance model.

The introduction of erasures in the data stream, renders the estimator

in (2.1) biased. The authors in [47] discuss this issue for the batch setting and

provide an alternative algorithm. It is based on,

Σ̃n = δ−2Σn + (δ−1 − δ−2)diag(Σn), (2.2)

and employs regularized optimization to make the method efficient in the high-

dimensional case. That algorithm is not applicable in a streaming setup, how-

ever the estimator in (2.2) and accompanying concentration analysis, provided

therein is a useful tool for our purposes.

2.4 Imputation-based Algorithms

A line of empirically successful algorithms introduced in [11] (GROUSE)

and studied further in [35] and [12], avoid covariance estimation. To that end,

they use updates that resemble stochastic approximation, except they are per-

formed along the Grassmanian manifold. In its general form, the algorithm

first calculates the projection of the latest sample, ẋt, on the current subspace

estimate, say Qt. As per the model, only a subset Ωt of indices is observed,

i.e. ẋt|Ωt = xt|Ωt and ẋt|Ωt = 0. Restricting ẋt and Qt to the observed indices,

the projection is calculated as follows:

wt = argminw∈Rk
∥∥ẋt|Ωt −Qt|Ωtw

∥∥
2
. (2.3)

13

Then, Qt and the optimal weights in wt are used to impute the entries missing

from ẋt.

ẋt|Ωt ← Qt|Ωtwt (2.4)

Finally, the algorithm uses the imputed vector to update Qt, performing a

descent step on the Grassmanian.

This method has proven to perform well in practice. However, in the

regime where the number of observed elements per vector (|Ωt|) is less than the

number of components (k), the projection in (2.3) is underdetermined, making

the step ill-defined. Picking the minimum-norm solution is a reasonable way

to deal with this issue and we put this idea to the test in our experiments. The

results in Section 4.4, suggest that even though this ”fix” makes the imputation

step well-defined, it does not lead to accurate recovery of the ground truth.

Another natural way to modify these algorithms to deal with this case,

is discarding all samples with an insufficient number of observed entries (less

than k). This makes a very small difference in experiments – not included here

for brevity – but there is a simple probabilistic argument against it: Assuming

each entry is observed independently, the number of observed entries is given by

a binomial random variable (more generally Poisson trials). For k = (c+ 1)δp,

with c > 0, a Chernoff bound gives

P (|Ωt| ≥ k) ≤ exp
{
−
(
c2 ∧ c

)
δp/3

}
. (2.5)

This implies that, for any c > 0, the number of wasted samples would range

from large to overwhelming, depending on the scaling of δp.

14

We conclude that methods based on projection-based imputation face

significant problems in the regime of many missing entries and provide an

alternative in Chapter 4.

2.5 Large-scale Graph Computation

Graph engines provide simple programming abstractions and take care

of partitioning and storing very large graphs and their metadata on the ma-

chines of a cluster. This partitioning makes it possible to deal with graphs that

are otherwise too big for a single machine. Furthermore, the total computa-

tional load can be balanced across the cluster. A number of different graph

engines are under active development. Pregel, Giraph, GraphLab and GraphX

[49, 48, 77, 65] each provide slightly different functionality and abstractions.

There is no full consensus on the fundamental abstractions of graph process-

ing frameworks but certain patterns such as vertex programming and the Bulk

Synchronous Parallel (BSP) framework seem to be increasingly popular.

Vertex programming refers to a class of programming abstractions. The

programmer essentially gives instructions to a vertex, in the form of a message-

passing-like scheme. In the abstraction of Pregel – also adopted by GraphLab

and other engines – the life of a vertex is split into three stages:

Gather The vertex wakes up and collects messages from its immediate neigh-

bourhood.

Apply The vertex performs some computation based on its current state and

15

the received messages and calculates its new state.

Scatter The vertex sends messages to its immediate neighbourhood.

This abstraction is surprisingly powerful and expressive, but most importantly,

it allows the engine to perform a number of performance optimization steps

under the hood (cf. [30]). The engine also takes care of vertex scheduling, which

can be synchronous or asynchronous. The most commonly used scheme is Bulk

Synchronous Parallel [70]: the stages of gather/apply/scatter are grouped into

super-steps. Using global synchronization, the engine schedules a subset of all

vertices and only considers a super-step finished when all running vertices are

finished.

2.6 PageRank

Consider a directed graph G = (V,E) with n vertices (|V | = n) and let

A denote its adjacency matrix. That is, Aij = 1 if there is an edge from j to

i. Otherwise, the value is 0. Let dout(j) denote the number of successors (out-

degree) of vertex j in the graph. We assume that all nodes have at least one

successor, dout(j) > 0. Then we can define the transition probability matrix

P as follows:

Pij = Aij/dout(j). (2.6)

The matrix is left-stochastic, which means that each of its columns sums to

1. We call G(V,E) the original graph, as opposed to the PageRank graph,

16

which includes a weighted edge between any pair of vertices. We now define

its transition probability matrix, and the PageRank vector.

Definition 1 (PageRank [56]). Consider the matrix

Q , (1− pT)P + pT
1

n
1n×n.

where pT ∈ [0, 1] is a parameter, most commonly set to 0.15. The PageRank

vector π ∈ ∆n−1 is defined as the principal right eigenvector of Q. That is,

π , v1(Q). By the Perron-Frobenius theorem, the corresponding eigenvalue

is 1. This implies the fixed-point characterization of the PageRank vector,

π = Qπ.

The PageRank vector assigns high values to important nodes. Intu-

itively, important nodes have many important predecessors (other nodes that

point to them). This recursive definition is what makes PageRank robust to

manipulation, but also expensive to compute. It can be recovered by exact

eigendecomposition of Q, but at real problem scales this is prohibitively ex-

pensive. In practice, engineers often use a few iterations of the power method

to get a “good-enough” approximation.

The definition of PageRank hinges on the left-stochastic matrix Q,

suggesting a connection to Markov chains. Indeed, this connection is well

documented and studied [2, 28]. An important property of PageRank from its

random walk characterization, is the fact that π is the invariant distribution

for a Markov chain with dynamics described by Q. A non-zero pT , also called

17

the teleportation probability, introduces a uniform component to the PageRank

vector π. We see in our analysis that this implies ergodicity and faster mixing

for the random walk.

18

Chapter 3

Memory-constrained, Streaming PCA

In this chapter, we formally pose the problem, as introduced in Sec-

tion 1.1. Then we propose an algorithm to solve it and give theoretical guar-

antees on its convergence in Sections 3.3.1 and 3.3.2. The experiments in

Section 3.6 support our theoretical findings.

3.1 Problem Formulation

We consider the streaming model: at each time step t, we receive a

point xt ∈ Rp. Any point that is not explicitly stored can never be revisited.

Our goal is to compute the top k principal components of the data: the k-

dimensional subspace that offers the best squared-error estimate for the points.

We assume a probabilistic generative model, from which the data is sampled

at each step t. Specifically,

xt = Azt + wt, (3.1)

where A ∈ Rp×k is a fixed matrix, zt ∈ Rk×1 is a multivariate normal random

variable, i.e.,

zt ∼ N (0k×1, Ik×k),

19

and wt ∈ Rp×1 is the “noise” vector, also sampled from a multivariate normal

distribution, i.e.,

wt ∼ N (0p×1, σ
2Ip×p).

Furthermore, we assume that all 2n random vectors (zt,wt,∀1 ≤ t ≤ n) are

mutually independent.

In this regime, it is well-known that batch-PCA is asymptotically con-

sistent (hence recovering A up to unitary transformations) with number of

samples scaling as n = O(p) [73]. It is interesting to note that in this high-

dimensional regime, the signal-to-noise ratio quickly approaches zero, as the

signal, or “elongation” of the major axis, ‖Az‖2, is O(1), while the noise mag-

nitude, ‖w‖2, scales as O(
√
p). The central goal of this work is to provide

finite sample guarantees for a streaming algorithm that requires memory no

more than O(kp) and matches the consistency results of batch PCA in the

sampling regime n = O(p) (possibly with additional log factors, or factors

depending on σ and k).

3.2 Prior Work

Online-PCA for regret minimization is considered in several papers,

most recently in [75]. There, the multiplicative weights approach is adapted to

this problem, with experts corresponding to subspaces. The goal is to control

the regret, improving on the natural follow-the-leader algorithm that performs

batch-PCA at each step. However, the algorithm can require O(p2) memory,

in order to store the multiplicative weights. A memory-light variant described

20

in [5] typically requires much less memory, but there are no guarantees for

this, and moreover, for certain problem instances, its memory requirement is

on the order of p2.

Sub-sampling, dimensionality-reduction and sketching form another fam-

ily of low-complexity and low-memory techniques, see, e.g., [23, 52, 32]. These

save on memory and computation by performing SVD on the resulting smaller

matrix. The results in this line of work provide worst-case guarantees over

the pool of data, and typically require a rapidly decaying spectrum, not re-

quired in our setting, to produce good bounds. More fundamentally, these

approaches are not appropriate for data coming from a statistical model such

as the spiked covariance model. It is clear that subsampling approaches, for

instance, simply correspond to discarding most of the data, and for funda-

mental sample complexity reasons, cannot work. Sketching produces a similar

effect: each column of the sketch is a random (+/−) sum of the data points.

If the data points are, e.g., independent Gaussian vectors, then so will each

element of the sketch, and thus this approach again runs against fundamental

sample complexity constraints. Indeed, it is straightforward to check that the

guarantees presented in ([23, 32]) are not strong enough to guarantee recovery

of the spike. This is not because the results are weak; it is because they are

geared towards worst-case bounds.

Algorithms focused on sequential SVD (e.g., [19, 18], [24],[45] and more

recently [10, 34]) seek to have the best subspace estimate at every time (i.e.,

each time a new data sample arrives) but without performing full-blown SVD

21

at each step. While these algorithms indeed reduce both the computational

and memory burden of batch-PCA, there are no rigorous guarantees on the

quality of the principal components or on the statistical performance of these

methods.

In a Bayesian mindset, some researchers have come up with expectation

maximization approaches [62, 68], that can be used in an incremental fashion.

The finite sample behavior is not known.

Stochastic-approximation-based algorithms along the lines of [61] are

also quite popular, due to their low computational and memory complexity,

and excellent empirical performance. They go under a variety of names, in-

cluding Incremental PCA (though the term Incremental has been used in the

online setting as well [38]), Hebbian learning [36], and stochastic power method

[5]. The basic algorithms are some version of the following: upon receiving

data point xt at time t, update the estimate of the top k principal components

via:

U (t+1) = Proj(U (t) + ηtxtx
>
t U

(t)), (3.2)

where Proj(·) denotes the “projection” that takes the SVD of the argument,

and sets the top k singular values to 1 and the rest to zero (see [5] for dis-

cussion). Though this kind of algorithm performs well empirically, the best

known analysis ([9]) guarantees an Ω(p2) sample complexity, when k = 1. This

is an order of magnitude greater compared to the necessary and sufficient O(p)

given in [40].

22

Another important line of work, is the Expectation - Maximization

(EM) approach [26]. Unfortunately, there are no global guarantees for EM

in this case, nor is it clear how the M -step would be implemented without

violating the memory constraint.

In summary, while much work has focused on memory-constrained

PCA, there has as of yet been no work that simultaneously provides sam-

ple complexity guarantees competitive with batch algorithms, and also mem-

ory/storage complexity guarantees close to the minimal requirement of O(kp)

– the memory required to store only the output. In Chapter 3, we present an

algorithm that provably does both.

3.3 Algorithm and Guarantees

In this section, we present our proposed algorithm and its finite sample

analysis. It is a block-wise stochastic variant of the classical power-method.

Stochastic versions of the power method already exist in the literature; see

[5]. The main impediment to the analysis of such stochastic algorithms (as

in (3.2)) is the large variance of each step, in the presence of noise. This

motivates us to consider a modified stochastic power method algorithm, that

has a variance reduction step built in. At a high level, our method updates

only once in a “block” and within one block we average out noise to reduce

the variance.

Below, we first illustrate the main ideas of our method as well as our

sample complexity proof for the simpler rank-1 case. The rank-1 and rank-

23

Algorithm 1
Block-Stochastic Power Method Block-Stochastic Orthogonal Iteration

input {x1, . . . ,xn}, Block size: B
1: q0 ∼ N (0, Ip×p) (Initialization) H i ∼ N (0, Ip×p), 1 ≤ i ≤ k (Initialization)
2: q0 ← q0/‖q0‖2 H ← Q0R0 (QR-decomposition)
3: for τ = 0, . . . , n/B − 1 do
4: sτ+1 ← 0 Sτ+1 ← 0
5: for t = Bτ + 1, . . . , B(τ + 1) do
6: sτ+1 ← sτ+1 + 1

B 〈qτ ,xt〉xt Sτ+1 ← Sτ+1 + 1
Bxtx

>
t Qτ

7: end for
8: qτ+1 ← sτ+1/‖sτ+1‖2 Sτ+1 = Qτ+1Rτ+1 (QR-decomposition)
9: end for
output

k algorithms are so similar, that we present them in the same panel. We

provide the rank-k analysis in Section 3.3.2. We note that, while our algorithm

describes {x1, . . . ,xn} as “input,” we mean this in the streaming sense: the

data are no-where stored, and can never be revisited unless the algorithm

explicitly stores them.

3.3.1 Rank-One Case

We first consider the rank-1 case for which each sample xt is generated

using: xt = uzt + wt where u ∈ Rp is the principal component that we wish

to recover. Our algorithm is a block-wise method where all the n samples are

divided in n/B blocks (for simplicity we assume that n/B is an integer). In

the (τ + 1)-st block, we compute

sτ+1 =

 1

B

B(τ+1)∑
t=Bτ+1

xtx
>
t

qτ . (3.3)

Then, the iterate qτ is updated using qτ+1 = sτ+1/‖sτ+1‖2. Note that, sτ+1

24

can be computed online, with O(p) operations per step. Furthermore, storage

requirement is also linear in p.

3.3.1.1 Analysis

We now present the sample complexity analysis of our proposed method.

Using O(σ4p log(p)/ε2) samples, Algorithm 1 obtains a solution qT of accuracy

ε, i.e. ‖qT − u‖2 ≤ ε.

Theorem 2. Denote the data stream by x1, . . . ,xn, where xt ∈ Rp,∀t is gen-

erated by (3.1). Set the total number of iterations T = Ω(log(p/ε)
log((σ2+.75)/(σ2+.5))

)

and the block size B = Ω(
(1+3(σ+σ2)

√
p)2 log(T)

ε2
). Then, with probability 0.99,

‖qT − u‖2 ≤ ε, where qT is the T -th iterate of Algorithm 1. That is, Al-

gorithm 1 obtains an ε-accurate solution with number of samples (n) given

by:

n = Ω̃

(
(1 + 3(σ + σ2)

√
p)2 log(p/ε)

ε2 log((σ2 + .75)/(σ2 + .5))

)
.

Note that in the total sample complexity, we use the notation Ω̃(·) to

suppress the extra log(T) factor for clarity of exposition, as T already appears

in the expression linearly.

Proof. The proof decomposes the current iterate into the component of the cur-

rent iterate, qτ , in the direction of the true principal component (the spike) u,

and the perpendicular component, showing that the former eventually dom-

inates. Doing so hinges on three key components: (a) for large enough B,

the empirical covariance matrix Fτ+1 = 1
B

∑B(τ+1)
t=Bτ+1 xtx

>
t is close to the true

25

covariance matrix M = uu> + σ2I, i.e., ‖Fτ+1 −M‖2 is small. In the pro-

cess, we obtain “tighter” bounds for ‖u>(Fτ+1 −M)u‖ for fixed u; (b) with

probability 0.99 (or any other constant probability), the initial point q0 has

a component of at least O(1/
√
p) magnitude along the true direction u; (c)

after τ iterations, the error in estimation is at most O(γτ) where γ < 1 is a

constant.

There are several results that we use repeatedly, which we collect here,

and prove individually in Section 3.4.

Lemma 3. Let B, T and the data stream {xt} be as defined in Theorem 2.

Then, w.p. 1− C/T we have:∥∥∥∥∥ 1

B

∑
t

xtx
>
t − uu> − σ2I

∥∥∥∥∥
2

≤ ε.

Lemma 4. Let B, T and the data stream {xt} be as defined in Theorem 2.

Then, w.p. 1− C/T we have:

u>sτ+1 ≥ u>qτ (1 + σ2)

(
1− ε

4(1 + σ2)

)
,

where st = 1
B

∑
Bτ<t≤B(τ+1) xtx

>
t qτ .

Lemma 5. Let q0 be the initial guess for u, given by Steps 1 and 2 of Al-

gorithm 1. Then, w.p. 0.99: |〈q0,u〉| ≥ C0√
p
, where C0 > 0 is a universal

constant.

Step (a) is proved in Lemmas 3 and 4, while Lemma 5 provides the

required result for the initial vector q0. Using these lemmas, we next complete

26

the proof of the theorem. We note that both (a) and (b) follow from well-

known results; we provide them for completeness.

Let qτ =
√

1− δτu +
√
δτgτ , 1 ≤ τ ≤ n/B, where gτ is the component

of qτ that is perpendicular to u and
√

1− δτ is the magnitude of the component

of qτ along u. Note that gτ may well change at each iteration; we only wish

to show δτ → 0.

Now, using Lemma 4, the following holds with probability at least

1− C/T :

u>sτ+1 ≥
√

1− δτ (1 + σ2)

(
1− ε

4(1 + σ2)

)
. (3.4)

Next, we consider the component of sτ+1 that is perpendicular to u:

g>τ+1sτ+1 = g>τ+1

 1

B

B(τ+1)∑
t=Bτ+1

xtx
>
t

qτ = g>τ+1(M + Eτ)qτ ,

where M = uu>+σ2I and Eτ is the error matrix: Eτ = M− 1
B

∑B(τ+1)
t=Bτ+1 xtx

>
t .

Using Lemma 3, ‖Eτ‖2 ≤ ε (w.p. ≥ 1− C/T). Hence, w.p. ≥ 1− C/T :

g>τ+1sτ+1 = σ2g>τ+1qτ + ‖gτ+1‖2‖Eτ‖2‖qτ‖2 ≤ σ2
√
δτ + ε. (3.5)

Now, since qτ+1 = sτ+1/‖sτ+1‖2,

δτ+1 = (g>τ+1qτ+1)2 =
(g>τ+1sτ+1)2

(u>sτ+1)2 + (g>τ+1sτ+1)2
,

(i)

≤
(g>τ+1sτ+1)2

(1− δτ)
(
1 + σ2 − ε

4

)2
+ (g>τ+1sτ+1)2

,

(ii)

≤ (σ2
√
δτ + ε)2

(1− δτ)
(
1 + σ2 − ε

4

)2
+ (σ2

√
δτ + ε)2

, (3.6)

27

where, (i) follows from (3.4) and (ii) follows from (3.5) along with the fact

that x
c+x

is an increasing function in x for c, x ≥ 0. Assuming
√
δτ ≥ 2ε and

using (3.6) and bounding the failure probability with a union bound, we get

(w.p. ≥ 1− τ · C/T)

δτ+1 ≤
δτ (σ

2 + 1/2)2

(1− δτ)(σ2 + 3/4)2 + δτ (σ2 + 1/2)2

(i)

≤ γ2τδ0

1− (1− γ2τ)δ0

(ii)

≤ C1γ
2τp,

(3.7)

where γ = σ2+1/2
σ2+3/4

and C1 > 0 is a global constant. Inequality (ii) follows from

Lemma 5; to prove (i), we need the following lemma. It shows that in the

recursion given by (3.7), δτ decreases at a fast rate. The rate of decrease in δτ

might be initially (for small τ) sub-linear, but for large enough τ the rate is

linear. We defer the proof to Section 3.4.

Lemma 6. If for any τ ≥ 0 and 0 < γ < 1, we have δτ+1 ≤ γ2δτ
1−δτ+γ2δτ

, then,

δτ+1 ≤
γ2t+2δ0

1− (1− γ2t+2)δ0

.

Hence, using the above equation after T = O (log(p/ε)/ log (1/γ)) up-

dates, with probability at least 1 − C,
√
δT ≤ 2ε. The result now follows by

noting that ‖u− qT‖2 ≤ 2
√
δT .

Remark: In Theorem 2, the probability of recovery is a constant and

does not decay with p. One can correct this by either paying a price of O(log p)

in storage, or in sample complexity: for the former, we can run O(log p)

instances of Algorithm 1 in parallel; alternatively, we can run Algorithm 1

28

O(log p) times on fresh data each time, using the next block of data to evalu-

ate the old solutions, always keeping the best one. Either approach guarantees

a success probability of at least 1− 1
pO(1) .

3.3.2 General Rank-k Case

In this section, we consider the general rank-k PCA problem where each

sample is assumed to be generated using the model of equation (3.1), where

A ∈ Rp×k represents the k principal components that need to be recovered.

Let A = UΛV > be the SVD of A where U ∈ Rp×k, Λ, V ∈ Rk×k. The matrices

U and V are orthogonal, i.e., U>U = I, V >V = I, and Σ is a diagonal matrix

with diagonal elements λ1 ≥ λ2 · · · ≥ λk. The goal is to recover the space

spanned by A, i.e., span(U). Without loss of generality, we can assume that

‖A‖2 = λ1 = 1.

Similar to the rank-1 problem, our algorithm for the rank-k problem

can be viewed as a streaming variant of the classical orthogonal iteration used

for SVD. But unlike the rank-1 case, we require a more careful analysis as we

need to bound spectral norms of various quantities in intermediate steps and

simple, crude analysis can lead to significantly worse bounds. Interestingly,

the analysis is entirely different from the standard analysis of the orthogonal

iteration as there, the empirical estimate of the covariance matrix is fixed while

in our case it varies with each block.

For the general rank-k problem, we use the largest-principal-angle-

29

based distance function between any two given subspaces:

dist (span(U), span(V)) = dist(U, V) = ‖U>⊥V ‖2 = ‖V >⊥ U‖2,

where U⊥ and V⊥ represent an orthogonal basis of the perpendicular subspace

to span(U) and span(V), respectively. For the spiked covariance model, it is

straightforward to see that this is equivalent to the usual PCA figure-of-merit,

the expressed variance.

Theorem 7. Consider a data stream, where xt ∈ Rp for every t is generated

by (3.1), and the SVD of A ∈ Rp×k is given by A = UΛV >. Let, wlog,

λ1 = 1 ≥ λ2 ≥ · · · ≥ λk > 0. Let,

T = Ω

(
log
(p
kε

)
/ log

(
σ2 + 0.75λ2

k

σ2 + 0.5λ2
k

))
,

B = Ω


(

(1 + σ)2
√
k + σ

√
1 + σ2k

√
p
)2

log(T)

λ4
kε

2

 .

Then, after T B-size-block-updates, w.p. 0.99, dist(U,QT) ≤ ε. Hence, the

sufficient number of samples for ε-accurate recovery of all the top-k principal

components is:

n = Ω̃


(

(1 + σ)2
√
k + σ

√
1 + σ2k

√
p
)2

log(p/kε)

λ4
kε

2 log
(
σ2+0.75λ2k
σ2+0.5λ2k

)
 .

Again, we use Ω̃(·) to suppress the extra log(T) factor.

The key part of the proof requires the following additional lemmas

that bound the energy of the current iterate along the desired subspace and

30

its perpendicular space (Lemmas 8 and 9), and Lemma 10, which controls the

quality of the initialization.

Lemma 8. Let X , A, B, and T be as defined in Theorem 7. Also, let σ be

the variance of noise, Fτ+1 = 1
B

∑
Bτ<t≤B(τ+1) xtx

>
t and Qτ be the τ -th iterate

of Algorithm 1. Then, ∀ v ∈ Rk and ‖v‖2 = 1, w.p. 1− 5C/T we have:

‖U>Fτ+1Qτv‖2 ≥ (λ2
k + σ2 − λ2

kε

4
)
√

1− ‖U>⊥Qτ‖2
2.

Lemma 9. Let X , A, B, Fτ+1, Qτ be as defined in Lemma 8. Then, w.p.

1− 4C/T , ‖U>⊥Fτ+1Qτ‖2 ≤ σ2‖U>⊥Qτ‖2 + λ2
kε/2.

Lemma 10. Let Q0 ∈ Rp×k be sampled uniformly at random from the set of

all k-dimensional subspaces (see Initialization Steps of Algorithm 1). Then,

w.p. at least 0.99: σk(U
>Q0) ≥ C

√
1
kp

, where C > 0 is a global constant.

The full proofs for all the lemmata and Theorem 7 are given in Sec-

tion 3.4.

3.4 Proofs

In this section we provide all so far omitted proofs. First, we provide

some results from the literature – what we call Preliminaries – then we prove

Theorem 7 and supporting lemmas.

31

3.4.1 Preliminaries

Lemma 11 (Lemma 5.4 of [73]). Let A be a symmetric k × k matrix, and let

Nε be an ε-net of Sk−1 for some ε ∈ [0, 1). Then,

‖A‖2 ≤
1

(1− 2ε)
sup
x∈Nε
|〈Ax,x〉|.

Lemma 12 (Proposition 2.1 of [72]). Consider independent random vectors

x1, . . . ,xn in Rp, n ≥ p, which have sub-Gaussian distribution with parameter

1. Then for every δ > 0 with probability at least 1− δ one has,

‖ 1

n

n∑
i=1

xix
T
i − E[xix

T
i]‖2 ≤ C

√
log(2/δ)

√
p

n
.

Lemma 13 (Corollary 3.5 of [73]). Let A be an N × n matrix whose entries

are independent standard normal random variables. Then for every t ≥ 0,

with probability at least 1− 2 exp(−t2/2) one has,

√
N −

√
n− t ≤ σk(A) ≤ σ1(A) ≤

√
N +

√
n+ t.

Lemma 14 (Theorem 1.2 of [63]). Let ζ1, . . . , ζn be independent centered real

random variables with variances at least 1 and subgaussian moments bounded

by B. Let A be an k × k matrix whose rows are independent copies of the

random vector (ζ1, . . . , ζn). Then for every ε ≥ 0 one has

Pr(σmin(A) ≤ ε/
√
k) ≤ Cε+ cn,

where C > 0 and c ∈ (0, 1) depend only on B. Note that B = 1 for the

standard Gaussian variables.

32

Lemma 15. Let xi ∈ Rm, 1 ≤ i ≤ B be i.i.d. standard multivariate normal

variables. Also, yi ∈ Rn are also i.i.d. normal variables and are independent

of xi,∀i. Then, w.p. 1− δ,∥∥∥∥∥ 1

B

∑
i

xiy
>
i

∥∥∥∥∥
2

≤
√
C max(m,n) log(2/δ)

B
.

Proof. Let M =
∑

i xiy
T
i and let m > n. Then, the goal is to show that,

the following holds w.p. 1 − δ: 1
B
‖Mv‖2 ≤

√
Cm log(2/δ)

B
for all v ∈ Rn s.t.

‖v‖2 = 1.

We prove the lemma by first showing that the above mentioned result

holds for any fixed vector v and then use standard epsilon-net argument to

prove it for all v.

Let N be the 1/4-net of Sn−1. Then, using Lemma 5.4 of [73] (see

Lemma 11),

‖ 1

Bm
MTM‖2 ≤ 2 max

v∈N

1

Bm
‖Mv‖2

2. (3.8)

Now, for any fixed v: Mv =
∑

i xiy
T
i v =

∑
i xici, where ci = yTi v ∼ N(0, 1).

Hence,

‖Mv‖2
2 =

m∑
`=1

(
B∑
i=1

xi`ci)
2.

Now,
∑B

i=1 xi`ci ∼ N(0, ‖c‖2
2) where cT = [c1 c2 · · · cB]. Hence,

∑B
i=1 xi`ci =

‖c‖2h` where h` ∼ N(0, 1).

33

Therefore, ‖Mv‖2
2 = ‖c‖2

2‖h‖2
2 where hT = [h1 h2 · · ·hB]. Now,

Pr(
‖c‖2

2‖h‖2
2

Bm
≥ 1 + γ) ≤ Pr(

‖c‖2
2

B
≥
√

1 + γ) + Pr(
‖h‖2

2

m
≥
√

1 + γ)

ζ1
≤ 2 exp(−Bγ

2

32
) + 2 exp(−mγ

2

32
) ≤ 4 exp(−mγ

2

32
), (3.9)

where 0 < γ < 3 and ζ1 follows from Lemma 13.

Using (3.8), (3.9), the following holds with probability (1−9n+1e−
mγ2

32):

‖M‖2
2

Bm
≤ 1 + 2γ. (3.10)

The result now follows by setting γ appropriately and assuming n < Cm for

small enough C.

3.4.2 Proof of Theorem 7

Recall that our algorithm proceeds in a blockwise manner; for each

block of samples, we compute

Sτ+1 =

 1

B

B(τ+1)∑
t=Bτ+1

xtx
>
t

Qτ , (3.11)

where Qτ ∈ Rp×k is the τ -th block iterate and is an orthogonal matrix, i.e.,

Q>τ Qτ = Ik×k. Given Sτ+1, the next iterate, Qτ+1, is computed by the QR-

decomposition of Sτ+1. That is,

Sτ+1 = Qτ+1Rτ+1, (3.12)

where Rτ+1 ∈ Rk×k is an upper-triangular matrix.

34

Proof. By using update for Qτ+1 (see (3.11), (3.12)):

Qτ+1Rτ+1 = Fτ+1Qτ , (3.13)

where Fτ+1 = 1
B

∑
Bτ<t≤B(τ+1) xtx

>
t . That is,

U>⊥Qτ+1Rτ+1v = U>⊥Fτ+1Qτv, ∀v ∈ Rk, (3.14)

where U⊥ is an orthogonal basis of the subspace orthogonal to span(U). Now,

let v1 be the singular vector corresponding to the largest singular value, then:

‖U>⊥Qτ+1‖2
2 =
‖U>⊥Qτ+1v1‖2

2

‖v1‖2
2

=
‖U>⊥Qτ+1Rτ+1ṽ1‖2

2

‖Rτ+1ṽ1‖2
2

(i)
=

‖U>⊥Qτ+1Rτ+1ṽ1‖2
2

‖U>Qτ+1Rτ+1ṽ1‖2
2 + ‖U>⊥Qτ+1Rτ+1ṽ1‖2

2

(ii)
=

‖U>⊥Fτ+1Qτ ṽ1‖2
2

‖U>Fτ+1Qτ ṽ1‖2
2 + ‖U>⊥Fτ+1Qτ ṽ1‖2

2

. (3.15)

where ṽ1 =
R−1
τ+1v1

‖R−1
τ+1v1‖2

. (i) follows as Qτ+1 is an orthogonal matrix and [U U⊥]

form a complete orthogonal basis; (ii) follows by using (3.13). The existence of

R−1
τ+1 follows using Lemma 8 along with the fact that σk(Rτ+1) = ‖Rτ+1ζ0‖2 ≥

‖U>Qτ+1Rτ+1ζ0‖2 = ‖U>Fτ+1Qτζ0‖2 > 0, where ζ0 is the singular vector of

Rτ+1 corresponding to its smallest singular value, σk(Rτ+1).

Now, using (3.15) with Lemmas 8, 9 and using the fact that x/(x+ c)
is an increasing function of x, for all x > 0, we get (w.p. ≥ 1− 2C/T):

‖U>⊥Qτ+1‖22 ≤
(σ2‖U>⊥Qτ‖2 + λ2

kε/2)2

(λ2
k + σ2 − λ2kε

4)2(1− ‖U>⊥Qτ‖22) + (σ2‖U>⊥Qτ‖2 + 0.5λ2
kε)

2
.

Now, assuming ε ≤ ‖U>⊥Qτ‖2
2, using the above equation and by using union

bound, we get (w.p. ≥ 1− 2τC/T):

‖U>⊥Qτ+1‖2
2 ≤

γ2‖U>⊥Qτ‖2
2

1− ‖U>⊥Qτ‖2
2 + γ2‖U>⊥Qτ‖2

2

, (3.16)

35

where γ =
σ2+λ2k/2

σ2+3λ2k/4
< 1 for λk > 0. Using Lemma 6 along with the above

equation, we get (w.p. ≥ 1− 2τC/T):

‖U>⊥Qτ+1‖2
2 ≤ γ2τ ‖U>⊥Q0‖2

2

1− ‖U>⊥Q0‖2
2

.

Now, using Lemma 10 we know that ‖U>⊥Q0‖2
2 is at most 1−Ω(1/(kp)). Hence,

for T = O(log(p/ε)/ log(1/γ), we get: ‖U>⊥QT‖2
2 ≤ ε. Furthermore, we require

B (as mentioned in the Theorem) samples per block. Hence, the total sample

complexity bound is given by O(BT), concluding the proof.

3.4.3 Proof of Lemma 3

Proof. Note that,

1

B

∑
t

xtx
>
t − uu> − σ2I = uu>

1

B

∑
t

(z2
t − 1)+

1

B

∑
t

(wtw
>
t − σ2I) +

1

B

∑
t

ztwtu
> +

1

B
u
∑
t

ztw
>
t . (3.17)

We now individually bound each of the above given terms in the RHS. Using

standard tail bounds for covariance estimation (see Lemma 12), we can bound

the first two terms (w.p. 1− 2C/T):

1

B

∣∣∣∣∣∑
t

(z2
t − 1)

∣∣∣∣∣ ≤
√
C log(T)

B
,

‖ 1

B

∑
t

(wtw
>
t − σ2I)‖2 ≤ σ2

√
C1p log(T)

B
. (3.18)

Similarly, using Lemma 15, we can bound the last two terms in (3.17) (w.p.

1− 2C/T):

‖ 1

B

∑
t

ztwtu
>‖2 = ‖ 1

B
u
∑
t

ztw
>
t ‖2 ≤ σ

√
C1p log(T)

B
. (3.19)

36

The lemma now follows by using (3.17), (3.18), (3.19) along with B as given

by Theorem 2.

3.4.4 Proof of Lemma 4

Proof. Let qτ =
√

1− δτu +
√
δτu

⊥
τ , where u⊥τ is the component of qτ that is

orthogonal to u. Now,

u>sτ+1 =
1

B

∑
t

(u>xt)(x
>
t qt)

=
1

B

∑
t

(zt + u>wt)(
√

1− δτ (zt + u>wt) +
√
δτw

>
t u
⊥
τ)

=

√
1− δτ
B

∑
t

(zt + u>wt)
2 +

√
δτ
B

∑
t

(zt + u>wt)w
>
t u
⊥
τ . (3.20)

Now, the first term above is a summation of B i.i.d. chi-square variables and

hence using standard results (see Lemma 13), w.p. (1− C/T):

1

B

∑
t

(zt + u>wt)
2 ≥ (1 + σ2)(1−

√
C log(2T)

B
). (3.21)

Also, w>t u and w>t u⊥τ are independent random variables, as both w>t u, w>t u⊥τ

are Gaussians and E[w>t u⊥τ u>wt] = 0. Hence, using Lemma 15, the following

holds with probability ≥ 1− 4C/T :

‖ 1

B

∑
t

(zt + u>wt)w
>
t u⊥τ ‖2 ≤ σ

√
1 + σ2

√
C log(T)

B

(i)

≤ σ
√

1 + σ2

√
C1p log(T)

B(1− δ0)

√
1− δτ , (3.22)

where (i) follows by using inductive hypothesis (i.e.,
√

1− δτ >
√

1− δτ−1,

induction step follows as we show that the error decreases at each step) and

Lemma 5.

37

The lemma now follows by using (3.20), (3.21), (3.22) and by setting

B, T appropriately.

3.4.5 Proof of Lemma 5

Proof. Using standard tail bounds for Gaussians (see Lemma 13), ‖q0‖2 ≤

2
√
p with probability 1 − exp(−C1p), where C1 > 0 is a universal constant.

Furthermore, (‖q0‖2q0)>u ∼ N(0, 1). Hence, there exists C0 > 0, s.t., with

probability 0.99, |(‖q0‖2q0)Tu| ≥ C0. Hence, |q>0 u| ≥ C0

2
√
p
.

3.4.6 Proof of Lemma 6

Proof. We prove the lemma using induction. The base case (for τ = 0) follows

trivially.

Now, by the inductive hypothesis, δτ ≤ γ2tδ0
1−(1−γ2t)δ0 . That is,

1

δτ
≥ 1− (1− γ2t)δ0

γ2tδ0

.

Finally, by assumption,

δτ+1 ≤
γ2

1
δτ
− (1− γ2)

≤ γ2

1−(1−γ2t)δ0
γ2tδ0

− (1− γ2)
.

The lemma follows after simplification of the above given expression.

38

3.4.7 Proof of Lemma 8

Proof. Using the generative model (3.1), we get:

U>Fτ+1Qτv = Λ

(
1

B

∑
t

ztz
>
t

)
ΛU>Qτv +

(
1

B

∑
t

U>wtw
>
t U

)
U>Qτv

+ (
1

B

∑
t

U>wtz
>
t)ΛU>Qτv + Λ(

1

B

∑
t

ztw
>
t U)U>Qτv

+

(
1

B

∑
t

(Λzt + U>wt)w
>
t U⊥U

>
⊥Qτ

)
v. (3.23)

Note that in the equation and rest of the proof, t varies fromBτ < t ≤ B(τ+1).

We now show that each of the five terms in the above given equation

concentrate around their respective means. Also, let yt = U>wt and y⊥t =

U>⊥wt. Note that, yt ∼ N(0, σ2Ik×k) and y⊥t ∼ N(0, σ2I(p−k)×(p−k)).

(a): Consider the first term in (3.23). Using ‖Av‖2 ≤ ‖A‖2‖v‖2 and the

assumption that λ1 = 1, we get:

‖Λ

(
1

B

∑
t

ztz
>
t − I

)
ΛU>Qτv‖2 ≤ ‖

(
1

B

∑
t

ztz
>
t − I

)
‖2‖U>Qτv‖2

. Using Lemma 12 we get (w.p. 1− C/T):

‖ 1

B

∑
t

ztz
>
t − I‖2 ≤

√
C1k log(T)

B
.

That is,

‖Λ(
1

B

∑
t

ztz
>
t − I)ΛU>Qτv‖2 ≤

√
C1k log(T)

B
‖U>Qτv‖2. (3.24)

(b): Similarly, the second term in (3.23) can be bounded as (w.p. 1− C/T):

‖

(
1

B

∑
t

U>wtw
>
t U − σ2I

)
U>Qτv‖2 ≤ σ2

√
C1k log(T)

B
‖U>Qτv‖2. (3.25)

39

(c): Now consider the third and the fourth term. Now wt and zt are indepen-
dent 0-mean Gaussians, hence using Lemma 15, we get: ‖ 1

B

∑
t U
>wtz

>
t ‖2 ≤

σ
√

C1k log(T)
B

. Hence, w.p. 1− 2C/T ,

‖Λ(
1

B

∑
t

ztw
>
t U)U>Qτv‖+‖(

1

B

∑
t

U>wtzt)ΛU
>Qτv‖ ≤ 2σ

√
C1k log(T)

B
‖U>Qτv‖2.

(3.26)

(d): Finally, we consider the last term in (3.23). Note that, (Λzt + U>wt) ∼

N(0, D) where D is a diagonal matrix with Dii = λ2
i +σ2. Also, Q>U⊥U

>
⊥wt ∼

N(0, σ2I(p−k)×(p−k)) and is independent of (Λzt+U
>wt) asE[Q>U⊥U

>
⊥wtw

>
t U] =

0; recall that for Gaussian RVs, covariance is zero iff RVs are independent.

Hence, using Lemma 15, w.p. ≥ 1− C/T :

‖(1

B

∑
t

(Λzt + U>wt)w
>
t U⊥U

>
⊥Qτ)v‖2 ≤

√
1 + σ2σ

√
C1k log(T)

B
. (3.27)

Now, using (3.23), (3.24), (3.25), (3.26), (3.27) (w.p. ≥ 1− 5C/T)

‖U>Fτ+1Qτv‖2 ≥ ‖(Λ2 + σ2I)U>Qτv‖2

−
√
C1k log(T)

B
‖U>Qτv‖2

(
(1 + σ)2 +

σ
√

1 + σ2

‖U>Qτv‖2

)
. (3.28)

Now, ‖U>Qτv‖2 ≥ σk(U
>Qτv). Next, by using the inductive hypothesis (i.e.,

σk(U
TQτ) ≥ σk(U

TQτ−1), induction step follows as we show that the error

decreases at each step) and Lemma 10, we have ‖U>Qτv‖2 ≥ σk(U
>Q0) ≥ C√

pk

with probability ≥ 0.99.

Also, ‖(Λ2+σ2I)U>Qτv‖2 ≥ (λ2
k+σ

2)‖U>Qτv‖2.Additionally, ‖U>Qτv‖2 ≥√
1− ‖U>⊥Qτ‖2

2. Hence, lemma follows by using these facts with (3.28) and

by selecting B as given in Theorem 7.

40

3.4.8 Proof of Lemma 9

Proof. Similar to our proof for Lemma 8, we separate out the “error” or de-

viation terms in ‖U>⊥Fτ+1Qτ‖2 and bound them using concentration bounds.

Now,

‖U>⊥Fτ+1Qτv‖2 = ‖U>⊥ (UΛ2U> + σ2I + Eτ)Qτv‖2

≤ ‖σ2U>⊥Qτv‖2 + ‖U>⊥EτQτv‖2

≤ σ2‖U>⊥Qτv‖2 + ‖Eτ‖2, (3.29)

where Eτ is the error matrix representing deviation of the estimate Fτ+1 from

its mean. That is,

E =
1

B

∑
t

xtx
>
t − UΛ2U> − σ2I

= UΛ(
1

B

∑
t

ztz
>
t − I)ΛU> + (

1

B

∑
t

wtw
>
t − σ2I)

+ UΛ
1

B

∑
t

ztw
>
t +

1

B

∑
t

wtz
>
t ΛU. (3.30)

Note that the above given four terms correspond to similar four terms in (3.23)

and hence can be bounded in similar fashion. In particular, the following holds

with probability 1− 4C/T :

‖E‖2 ≤
√
C1k log(T)

B
+ σ2

√
C1p log(T)

B
+ 2σ

√
C1p log(T)

B
≤ λ2

kε/2, (3.31)

where the second inequality follows by setting B as required by Theorem 7.

The lemma now follows using (3.29), (3.30), (3.31).

41

3.4.9 Proof of Lemma 10

Proof. Using Step 2 of Algorithm 1: H = Q0R0. Let vk be the singular vector

of U>Q0 corresponding to the smallest singular value. Then,

σk(U
>Q0) =

‖U>Q0R0R
−1
0 vk‖2

‖R−1
0 vk‖2

‖R−1
0 vk‖2

≥ σk(U
>Q0R0)σk(R

−1
0). (3.32)

Now, σk(R
−1
0) = 1

‖R0‖2 = 1
‖Q0R0‖2 = 1

‖H‖2 . Note that ‖H‖2 is the

spectral norm of a random matrix with i.i.d. Gaussian entries and hence can

be easily bounded using standard results. In particular, using Lemma 13, we

get: ‖H‖2 ≤ C1
√
p w.p. ≥ 1− e−C2p, where C1, C2 > 0 are global constants.

By Theorem 1.1 of [63] (see Lemma 14), w.p. ≥ 0.99, σk(U
>Q0R0) =

σk(H) ≥ C/
√
k. The lemma now follows using the above two bounds with

(3.32).

3.5 Perturbation-tolerant Subspace Recovery

While our results thus far assume A has rank exactly k, and k is known

a priori, here we show that both these can be relaxed; hence our results hold

in a quite broad setting.

Let xt = Azt+wt be the t-th step sample, with A = UΛV T ∈ Rp×r and

U ∈ Rp×r, where r ≥ k is the unknown true rank of A. We run Algorithm 1

with rank k to recover a subspace QT that is contained in U . The largest

principal angle-based distance, from the previous section, can be used directly

42

in our more general setting. That is, dist(U,QT) = ‖UT
⊥QT‖2 measures the

component of QT “outside” the subspace U .

Now, our analysis can be easily modified to handle this case. Naturally,

now the number of samples we require increases according to r. In particular,

if

n = Ω̃

((1 + σ)2
√
r + σ

√
1 + σ2r

√
p
)2

log(p/rε)

λ4
rε

2 log
(
σ2+0.75λ2r
σ2+0.5λ2r

)
 ,

then dist(U,QT) ≤ ε. Furthermore, if we assume r ≥ C · k (or a large enough

constant C > 0) then the initialization step provides us better distance, i.e.,

dist(U,Q0) ≤ C ′/
√
p rather than dist(U,Q0) ≤ C ′/

√
kp bound if r = k. This

initialization step enables us to give tighter sample complexity as the r
√
p in

the numerator above can be replaced by
√
rp.

3.6 Experiments

In this section, we show that, as predicted by our theoretical results,

our algorithm performs close to the optimal batch SVD. We provide the re-

sults from simulating the spiked covariance model, and demonstrate the phase-

transition in the probability of successful recovery that is inherent to the statis-

tical problem. Then we stray from the analyzed model and performance metric

and test our algorithm on real world–and some very big–datasets, using the

metric of explained variance.

In the experiments for Figures 3.1 (a)-(b), we draw data from the gen-

erative model of (3.1). Our results are averaged over at least 200 independent

43

10
2

10
3

10
4

10
0

10
2

10
4

10
6

p (dimension)

n
 (

s
a

m
p

le
s
)

Samples to retrieve spike (σ=0.5, ε=0.05)

Batch SVD

Our algorithm (streaming)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Probability of success (n=1000, ε=0.05).

Noise standard deviation (σ).

A
m

b
ie

n
t

d
im

e
n

s
io

n
 (

p
).

0

0.2

0.4

0.6

0.8

1

(a) (b)

2 4 6 8 10
0%

10%

20%

30%

40%

k (number of components)

E
x
p
la

in
e
d
 v

a
ri
a
n
c
e

NIPS bag−of−words dataset

Optimal (batch)

Our algorithm (streaming)

Optimal using B samples

1 2 3 4 5 6 7
0%

10%

20%

k (number of components)

E
x
p

la
in

e
d

 v
a

ri
a

n
c
e

Our algorithm on large bag−of−words datasets

NY Times: 300K samples, p=103K

PubMed: 8.2M samples, p=140K

(c) (d)
Figure 3.1: (a) Number of samples required for recovery of a single component
(k = 1) from the spiked covariance model, with noise standard deviation σ =
0.5 and desired accuracy ε = 0.05. (b) Fraction of trials in which Algorithm
1 successfully recovers the principal component (k = 1) in the same model,
with ε = 0.05 and n = 1000 samples, (c) Explained variance by Algorithm 1
compared to the optimal batch SVD, on the NIPS bag-of-words dataset. (d)
Explained variance by Algorithm 1 on the NY Times and PubMed datasets.

runs. Algorithm 1 uses the block size prescribed in Theorem 7, with the

empirically tuned constant of 0.2. As expected, our algorithm exhibits lin-

ear scaling with respect to the ambient dimension p – the same as the batch

SVD. The missing point on batch SVD’s curve (Figure 3.1(a)), corresponds

to p > 2.4 · 104. Performing SVD on a dense p × p matrix, either fails or

takes a very long time on most modern desktop computers; in contrast, our

44

streaming algorithm easily runs on this size problem. The phase transition

plot in Figure 3.1(b) shows the empirical sample complexity on a large class

of problems and corroborates the scaling with respect to the noise variance we

obtain theoretically.

Figures 3.1 (c)-(d) complement our complete treatment of the spiked

covariance model, with some out-of-model experiments. We used three bag-

of-words datasets from [58]. We evaluated our algorithm’s performance with

respect to the fraction of explained variance metric: given the p × k matrix

V output from the algorithm, and all the provided samples in matrix X, the

fraction of explained variance is defined as Tr(V TXXTV)/Tr(XXT). To be

consistent with our theory, for a dataset of n samples of dimension p, we set

the number of blocks to be T = dlog(p)e and the size of blocks to B = bn/T c

in our algorithm. The NIPS dataset is the smallest, with 1500 documents and

12K words and allowed us to compare our algorithm with the optimal, batch

SVD. We had the two algorithms work on the document space (p = 1500) and

report the results in Figure 3.1(c). The dashed line represents the optimal

using B samples. The figure is consistent with our theoretical result: our

algorithm performs as well as the batch, with an added log(p) factor in the

sample complexity.

Finally, in Figure 3.1 (d), we show our algorithm’s ability to tackle very

large problems. Both the NY Times and PubMed datasets are of prohibitive

size for traditional batch methods – the latter including 8.2 million documents

on a vocabulary of 141 thousand words – so we just report the performance

45

of Algorithm 1. It was able to extract the top 7 components for each dataset

in a few hours on a desktop computer. A second pass was made on the data

to evaluate the results, and we saw 7-10 percent of the variance explained on

spaces with p > 104.

46

Chapter 4

Dealing with Highly Incomplete Samples

In this chapter we address a completely new set of challenges introduced

by a stream of highly erased samples. Some algorithmic issues that arise are

discussed in Section 2.2. In short, some traditional methods suffer from bias

at the covariance estimation step. More importantly, methods that rely on

imputing the missing entries, are bound to fail when faced with too many

erasures (e.g. [12]). Here, we overcome of the above challenges.

We first formally pose the system model and objective, then present

an algorithm for this problem and give theoretical guarantees for its conver-

gence in Section 4.3. Finally, we present an extensive set of experiments that

showcase our approach’s many merits over the state of the art (Section 4.4).

4.1 Problem Formulation

System Model. Assume that at each time step t, we receive a point

ẋt, which is a partially erased version of xt ∈ Rp. Our goal is to compute the

top k principal components of the data: the k-dimensional subspace that offers

the best squared-error estimate for the points. Our total storage capacity is

O(kp) – the storage required to store the output. The streaming setting means,

47

in particular, that any vector not explicitly stored can never be revisited.

Our analytical (sample complexity) guarantees are based on the follow-

ing generative model for the data: the full samples are described by

xt = UΛzt + wt, (4.1)

where each component of zt, i.e., zit, 1 ≤ i ≤ p is sampled i.i.d. from a fixed

distribution D, s.t., E[zit = 0], E[(zit)
2 = 1], and finally |zit| ≤ M∞ almost

surely. Similarly, we assume that each component of wt is sampled i.i.d. from

another fix distribution D′ which also satisfies the same set of normalization

constraints, i.e., E[wi
t = 0], E[(wi

t)
2 = 1], and |wi

t| ≤ M∞ almost surely. The

sequences {zt}t and {wt}t are mutually independent, U ∈ Rp×k is a matrix

with orthonormal columns and Λ ∈ Rk×k a diagonal matrix.

Note that, our analysis holds even when zt,wt are sampled from any

general fixed sub-Gaussian. We assume bounded distribution for simplicity

of exposition. Finally, we assume that the observed samples, ẋt, are erased

versions of xt, where for each entry j, independently,

ẋt(j) =

{
xt(j) w.p., δ

0, otherwise
. (4.2)

Hence, each sample, has δp observed entries in expectation.

Objective and Metric. Given a data stream {x1,x2, . . . }, the stan-

dard goal of streaming PCA is to recover the variance-maximizing subspace,

i.e., of maximizing the explained variance. However, for our generative model,

this corresponds to recovering the subspace spanned by the orthonormal ma-

trix U . Now, we measure the error in estimation of the required subspace using

48

the largest principle angle based distance ([76]). That is, given any unitary

matrix Q, we use the following distance:

dist(U,Q) =dist (span(U), span(Q))

=‖U>⊥Q‖2 = ‖Q>⊥U‖2 (4.3)

The distance is symmetric and takes values in [0, 1]. Given enough samples,

the minimization of (4.3) is equivalent to maximizing the explained variance.

In our experiments, Section 4.4, we use both metrics.

4.2 Algorithm

We now present our algorithm (see Algorithm 2) for the problem of

streaming PCA, which uses some ideas from Algorithm 1. At a high level, the

algorithm essentially leverages concentration of the sample covariance to the

true covariance (Theorem 18) to estimate the next iterate.

Algorithm 2, takes in the stream of data vectors xi, the (known) prob-

ability of observation δ, the number of components k, and a block size B. It

starts with a given k-dimensional subspace and refines that estimate doing a

single pass over the data. Every subset of B subsequent samples is considered

a block, even though only one sample is held in memory at any time.

To see why this algorithm works, consider line 7 of the algorithm and

49

over the course of block τ :

Sτ =
1

B

Bτ∑
t=B(τ−1)+1

[
1

δ2
xtx

>
t +

(
1

δ
− 1

δ2

)
Dt

]
Qτ−1

=

 1

B

Bτ∑
t=B(τ−1)+1

1

δ2
xtx

>
t +

(
1

δ
− 1

δ2

)
Dt

Qτ−1

=Σ̃BQτ−1,

where Dt = diag(xtx
>
t). From the last line, we see that after every block,

the algorithm is equivalent to performing a power iteration step. That is, the

previous subspace estimate, Qτ−1, is essentially premultiplied by the estimator

in (2.2) using all the samples in the block. The complication is that, with every

block, the covariance estimate, Σ̃B, is different. As we know from Chapter 3,

this complicates the analysis requiring more advanced tools when compared

to the simpler analysis of the classic power method.

It should be noted that, even though the algorithm effectively performs

a power iteration per block, Σ̃n is never formed explicitly – all of the calcula-

tions can be performed in O(kp) memory.

In Section 2.2 we discuss connections to other recent work, related to

this problem and algorithm and in Section 4.3 we provide theoretical guaran-

tees for the convergence of Algorithm 2.

4.3 Convergence Analysis

In this section we give theoretical guarantees for the convergence of

Algorithm 2. In particular, we can show the following convergence result for

50

Algorithm 2

Input: X = {xi}ni=1, δ, k, Block size: B, Starting Estimate: H ∈ Rp×k

1: H ← Q0R0 (QR-decomposition)
2: for τ = 1, . . . , n/B do
3: Sτ ← 0
4: for t = B(τ − 1) + 1, . . . , Bτ do
5: Dt ← diag(xtx

>
t)

6: Sτ ← Sτ + 1
B

[
1
δ2

xtx
>
t +

(
1
δ
− 1

δ2

)
Dt

]
Qτ−1

7: end for
8: Sτ = QτRτ (QR-decomposition)
9: end for

10: Return: Qτ

Algorithm 2.

Theorem 16. Consider a data stream, where ẋt ∈ Rp for every t is generated

by (4.1),(4.2), and the SVD of A ∈ Rp×k is given by A = UΛV >. Let, WLOG,

λ1 = 1 ≥ λ2 ≥ · · · ≥ λk > 0. If σk(U
TQ0) ≥ c for some constant c, then

T = Ω

(
log(p/kε)/ log

(
σ2 + 0.75λ2

k

σ2 + 0.5λ2
k

))
,

B = Ω

(
(k + σ2)(k + σ2p) log (2pT)

δ2ε2λ4
k

)
.

after T updates with block size B, dist(U,QT) ≤ ε, w.p. 0.99.

The result in Theorem 16 follows from the analysis in Section 3.4 and

Theorem 18.

Assumption 17 (Sub-gaussian observations [47]). The random vector x ∈ Rp

is sub-gaussian, that is ‖x‖ψ2 < ∞. In addition, there exists a numerical

constant c1 > 0, such that: E(〈x,u〉)2 ≥ c1‖〈x,u〉‖2
ψ2
, ∀u ∈ Rp, where ‖x‖ψ2 =

inf {u > 0 : E exp (|x|2/u2) ≤ 2} .

51

Theorem 18 (Prop. 3, [47]). Let x1, . . . ,xn ∈ Rp be i.i.d. random vectors

satisfying Assumption 17. Let y1, . . . ,yn be the corresponding observed vectors

with δ ∈ (0, 1]. Then, for any t > 0, we have with probability at least 1− e−t,

‖Σ̃n − Σ‖2 ≤ C
‖Σ‖2

c1

·max

{√
r(Σ) (t+ log(2p))

δ2n
,

r(Σ) (t+ log(2p))

δ2n
(c1δ + t+ log n)

}
,

where C > 0 is an absolute constant and r(Σ) = tr(Σ)
‖Σ‖2 .

Theorem 19 (Theorem 1.4 of [69]). Consider a finite sequence Xk of inde-

pendent, random, self-adjoint matrices with dimension d. Assume that each

random matrix satisfies E[Xk] = 0 and ‖Xk‖2 ≤ R almost surely. Then, for

all t ≥ 0,

Pr(‖
∑
k

Xk‖2 ≥ t) ≤ d · exp

(
−t2/2

σ2 +Rt/3

)
,

where σ2 = ‖
∑

k E[XkX
T
k]‖2.

4.4 Experiments

In this section, we perform a number of experiments that corroborate

our theoretical claims and provide evidence that Algorithm 2 can perform

better than the state of the art in several important regions. We start with

describing the algorithms used in the experiments along with any implemen-

tation considerations. Then we proceed to experiments with synthesized, ar-

tificially sparsified real data, and naturally sparse data. For all these cases

we compare the algorithms based on several performance metrics and discuss

52

their running times and robustness to parametrization. Since all the data sets

are, of course, stored, we simulate the streaming and no-storage aspect for our

algorithm.

Algorithm 2: The algorithm we propose. Reworking the equations on the

number and size of blocks from Theorem 16 we can get an expression for T

(the number of blocks) as a function of all given parameters. One important

missing quantity is the ratio of eigenvalues at the cutoff point which we do

not assume we know. For all the experiments that follow we use the following

simplified formula:

T = CAlgo2 log
pnδ

k
. (4.4)

All of the parameters in the formula, are available before the start of the

experiment, except for the erasure probability δ which can be very quickly

and accurately estimated from the data stream, much faster than the PCA

procedure itself. For all of our experiments in this manuscript, we use the

constant CAlgo2 = 1
4

(see Section 4.4.4) and round the result to the nearest

integer to get the number of blocks.

Stochastic Approximation: The most popular manifestation of Stochastic

Approximation for PCA is Oja’s rule ([55]). Even though it is not designed

to deal with missing data, we nonetheless include it in our experiments as it

is an industry standard. With every new sample (ẋt) received, the algorithm

53

updates its estimate based on the following rule.

Ũt = Ut−1 +
CSA
t

ẋtẋ
T
t Ut−1 (4.5)

After each step, the intermediate estimate, Ũt+1 is orthonormalized to give Ut.

The O(1
t
) rule for the step size is accepted universally – see [55] and [9]

for some discussion. However, to the best of our knowledge, the only complete

characterization of the constant depends on the unknown eigengap at the cut-

off point. For our experiments, we resort to picking a different constant C as

suited to different datasets, as summarized in Section 4.4.4.

GROUSE: We include GROUSE in our experiments for it is a lightweight,

fast and efficient algorithm, having proven to do well in most situations. For

use in our experiments, we download the GROUSE Matlab code from the au-

thor’s website. To make the algorithm well-defined in the region k > δp (see

discussion in Section 2.2), we make sure to use the pseudo-inverse operator for

the projection step in (2.3). GROUSE is more complicated than Stochastic

Approximation (see [11], or Section 2.2 for more references). The two algo-

rithms, however, share a diminishing step-size, C
t
. Again, we are faced with

selecting a constant CGROUSE and, much like Stochastic Approximation, there

is no formula we can use in all cases. As we discuss in Subsection 4.4.4, we

resort to using an individually tuned constant for every dataset.

Batch: As a simple – but not necessarily optimal – baseline for our experi-

ments, we use the unbiased covariance estimator described in (2.2). This is

54

computed bringing all the samples in memory at once, hence the characteri-

zation “batch.” We only include it in our first few experiments for validation

purposes. It is omitted in the larger, real datasets as it is the most resource

intensive of all algorithms considered here.

4.4.1 Simulations on the model

We start our experiments in a fully controlled setting. For that, we

synthesize data points based on the model at (4.2). While this is a fairly

general model, we widen our scope to real datasets in the remainder on this

section. Figure 4.1 demonstrates a single example run for a case when the

number of observed entries per sample is smaller than the target number of

principal components. Figure 4.2 shows another example run with a single,

highly coherent component. Methods using a single sample to update seem to

be having trouble. We see this behaviour again in Figure 4.4.

Single-run convergence figures give us a good understanding of how

things look, but are by no means evidence of a trend. To demonstrate the

performance of all algorithms, we perform many independent runs in several

diverse scenaria and present the averages.

Figure 4.3 showcases a qualitative difference between the studied algo-

rithms. We study the transition from the region where k < δp (more observed

entries than components) to k > δp, or the no-completion region. Notice that

the performance of Algorithm 2 deteriorates gracefully. On the other hand,

imputation-based algorithms (like GROUSE) are ill-defined in that region (as

55

2000 4000 6000 8000
10

−3

10
−2

10
−1

10
0

Number of samples used

S
q
u
a
re

d
 e

rr
o
r

(ε
2
)

Batch

Algorithm 2

GROUSE

SA

Figure 4.1: Example convergence curve with fewer observed entries than rank
on average (p = 20, k = 5, δ = 0.2, σ = 0.2).

discussed in Section 2.2) and show rapid deterioration in performance.

In Figure 4.4 we study the dependence of performance on the coherence

of the signal components (spikes). Most algorithms show a gradual deterio-

ration as the component becomes more coherent, with the exception of the

Stochastic Approximation algorithm.

4.4.2 Gas Sensor Array Data

For our first experiment with real data we use the gas sensor array

drift dataset from [71]. It consists of 13910 samples with 128 entries each, all

measurements of gas concentrations. The dataset has no missing entries and

56

0.5 1 1.5 2

x 10
5

10
−3

10
−2

10
−1

10
0

Number of samples used

S
q
u
a
re

d
 e

rr
o
r

(ε
2
)

Batch

Algorithm 2

GROUSE

SA

Figure 4.2: Example convergence curves for one highly coherent component
(p = 100, k = 1, δ = 0.05, µ = 0.95p).

we use it as an intermediate step between synthetic and real data as follows:

First we randomly permute its samples. Then we consider the samples in

order, and simulate our erasure model from Section 4.1. That is, every entry

is observed independently with probability δ. Unobserved entries are replaced

with zeros. We do a predetermined number of passes over the whole dataset

before reporting the final performance. To evaluate performance we use the

classic metric of explained variance. Let X denote a matrix containing all

samples, and let Q ∈ Rp×k denote the subspace estimate provided by the

algorithm. The metric of explained variance, is given by ||QTX||F , which we

normalize with ||X||F to bring into the [0, 1] range.

57

6 8 10 12
10

−2

10
−1

10
0

Number of components (k)

S
q
u
a
re

d
 m

e
a
n
 e

rr
o
r

(ε
2
)

k
=

δ
p

Batch

Algorithm 2

GROUSE

SA

Figure 4.3: Transition around the boundary k = δp (p = 100, δ = 0.01,
σ = 0.2, average of 134 runs)

In Figure 4.5, we see that Algorithm 2 is able to achieve maximal

explained variance, while being more robust with respect to the choice of k.

To compare the running times of the 3 algorithms we calculate the average

running time in seconds per sample and report these times in Table 4.1.

4.4.3 MovieLens

In our last set of experiments, we use the MovieLens dataset from [31].

It contains about 10 million ratings for 10 thousand movies by 72 thousand

users of the MovieLens service. The dataset is naturally sparse: every user

only rates a tiny fraction of the movies in the database.

58

0.5 0.6 0.7 0.8 0.9
10

−2

10
−1

10
0

Normalized Component Coherence (µ / p)

S
q

u
a

re
d

 m
e

a
n

 e
rr

o
r

(ε
2
)

Batch

Algorithm 2

GROUSE

SA

Figure 4.4: Performance vs coherence of the signal component (p = 100, δ =
0.05, σ = 0.2, average of 56 runs)

In this case again, there is no access to the “true” principal components,

so instead of the distance metric in (4.3), we evaluate based on the explained

variance.

To separate training from testing, we adhere to the following procedure:

We first split the 10M ratings in the dataset into training and testing sets, with

a 70/30 ratio. The training ratings are fed into the algorithms; each user is

considered as a sample. Finally, let Mtest denote the testing set in matrix

form (movies by users) and let Q ∈ Rp×k denote the subspace output by the

algorithm. We evaluate based on the normalized explained variance, given by

||QTMtest||F/||Mtest||F .

59

1 2 3 4 5
40 %

50 %

60 %

70 %

80 %

90 %

100%

Number of components (k)

E
x
p
la

in
e
d
 V

a
ri
a
n
c
e

Algorithm 2

GROUSE

SA

Figure 4.5: Performance on the gas sensor array dataset (δ = 0.02, 30 inde-
pendent passes)

In Figure 4.6 we see that, after only a single pass over the dataset, our

algorithm is able to explain almost as much variance, as the batch algorithm

and achieve a significant gap over GROUSE and improve over SA. The running

times for this experiment are reported in Table 4.1.

4.4.4 Ease of parametrization

As discussed in this section, a common theme for GROUSE and SA is

the choice of the constant used in the step-size sequence. This can prove to

be a very time-consuming task, especially in the case when no ground truth

information is available. A “good” constant for one experiment might be

60

Table 4.1: Average running time per processed sample

Experiment Algorithm 2 GROUSE SA
Gas k=1 1.049e-04 1.312e-04 5.274e-05

k=2 1.027e-04 1.306e-04 4.587e-05
k=3 1.094e-04 1.521e-04 5.654e-05
k=4 9.666e-05 1.347e-04 4.870e-05
k=5 1.157e-04 1.681e-04 6.372e-05

ML k=5 4.617e-02 1.796e-01 3.179e-01
k=10 3.854e-02 3.138e-02 3.078e-02
k=15 5.075e-02 3.711e-02 3.210e-01
k=20 5.530e-02 6.148e-02 7.646e-02

completely unsuitable for another. This forces us to look for a good parameter

in every experiment we run. We went to great lengths to pick an ideal constant

every time – still it is likely that slightly better choices exist. Such is the nature

of this endeavor.

To demonstrate the complexity we are faced with in our experiments

and to enable reproducibility of our results, we corral the values that were used

in our real-data experiments and present them in Table 4.2. An important

feature of Algorithm 2 that we want to emphasize here is that we were able

to use a single parameter for all of our experiments. This makes Algorithm 2

very appealing for deployment on new datasets.

61

5 10 15 20
0 %

5 %

10%

15%

20%

Number of components (k)

E
x
p
la

in
e
d
 V

a
ri
a
n
c
e

Batch

Algorithm 2

GROUSE

SA

Figure 4.6: Performance on the MovieLens dataset

Table 4.2: Parametrization for real data

Experiment CAlgo2 CGROUSE CSA
Gas k=1 0.25 2.644e-06 3.944e-06

k=2 0.25 1.261e-05 1.881e-05
k=3 0.25 3.158e-05 4.711e-05
k=4 0.25 1.216e-04 1.813e-04
k=5 0.25 2.861e-04 4.269e-04

ML k=5 0.25 5.265e+00 6.582e+00
k=10 0.25 2.315e+01 2.893e+01
k=15 0.25 2.569e+00 3.854e+00
k=20 0.25 4.652e+00 6.978e+00

62

Chapter 5

Fast PageRank Approximations on Graph

Engines

In this chapter, we propose FrogWild!, a novel algorithm for fast

approximation of high PageRank vertices It is geared towards reducing net-

work costs of running traditional PageRank algorithms. Our algorithm can

be seen as a quantized version of power iteration that performs multiple par-

allel random walks over a directed graph. One important innovation is that

we introduce a modification to the GraphLab framework that only partially

synchronizes mirror vertices. This partial synchronization vastly reduces the

network traffic generated by traditional PageRank algorithms, thus greatly

reducing the per-iteration cost of PageRank. On the other hand, this partial

synchronization also creates dependencies between the random walks used to

estimate PageRank. Our main theoretical innovation is the analysis of the

correlations introduced by this partial synchronization process and a bound

establishing that our approximation is close to the true PageRank vector.

We implement our algorithm in GraphLab and compare it against the

default PageRank implementation. We show that our algorithm is very fast,

performing each iteration in less than one second on the Twitter graph and

63

can be up to 7× faster compared to the standard GraphLab PageRank imple-

mentation.

Contributions: We consider the problem of fast and efficient (in the

sense of time, computation and communication costs) computation of the high

PageRank nodes, using a graph engine. To accomplish this we propose and

analyze a new PageRank algorithm specifically designed for the graph engine

framework and, significantly, we propose a modification of the standard prim-

itives of the graph engine framework (in particular, GraphLab PowerGraph),

that enables significant network savings. We explain in further detail both our

objectives, and our key innovations.

Rather than seek to recover the full PageRank vector, we aim for the

top k PageRank vertices (where k is considered to be approximately in the

order of 10 − 1000). Given an output of a list of k vertices, we define two

natural accuracy metrics that compare the true top-k list with our output.

The algorithm we propose, FrogWild, operates by starting a small (sublin-

ear in the number of vertices n) number of random walkers (frogs) that jump

randomly on the directed graph. The random walk interpretation of PageR-

ank enables the frogs to jump to a completely random vertex (teleport) with

some constant probability (set to 0.15 in our experiments, following standard

convention). After we allow the frogs to jump for time equal to the mixing

time of this non-reversible Markov chain, their positions are sampled from the

invariant distribution π which is the PageRank vector. The standard PageR-

ank iteration can be seen as the continuous limit of this process (i.e., the frogs

64

become water), which is equivalent to power iteration for stochastic matrices.

The main algorithmic contributions of this work are comprised of the

following three innovations. First, we argue that discrete frogs (a quantized

form of power iteration) is significantly better for distributed computation,

when one is interested only in the large entries of the vector π. This is because

each frog produces an independent sample from π. If some entries of π are

substantially larger and we only want to determine those, a small number of

independent samples suffices. We make this formal using standard Chernoff

bounds (see also [64, 25] for similar arguments). On the contrary, during

standard PageRank iterations, vertices pass messages to all their out-neighbors

since a non-zero amount of water must be transferred. This tremendously

increases the network bandwidth especially when the graph engine is over a

cluster with many machines.

One major issue with simulating discrete frogs on a graph engine is tele-

portations. Graph frameworks partition vertices to physical nodes and restrict

communication on the edges of the underlying graph. Global random jumps

would create dense messaging patterns that would increase communication.

Our second innovation is a way of obtaining an identical sampling behavior

without teleportations. We achieve this by initiating the frogs at uniformly

random positions and having them perform random walks for a life span that

follows a geometric random variable. The geometric probability distribution

depends on the teleportation probability and can be calculated explicitly.

Our third innovation involves a simple proposed modification for graph

65

frameworks. Most modern graph engines (like GraphLab PowerGraph [30])

employ vertex-cuts as opposed to edge-cuts. This means that each vertex of

the graph is assigned to multiple machines so that graph edges see a local ver-

tex mirror. One copy is assigned to be the master and maintains the master

version of the vertex data while remaining replicas are mirrors that maintain

local cached read–only copies of the data. Changes to the vertex data are

made to the master and then replicated to all mirrors at certain synchroniza-

tion barriers. This architecture is highly suitable for graphs with high-degree

vertices (as most real-world graphs are) but has one limitation when used for

a few random walks: imagine that vertex v1 contains one frog that wants to

jump to v2. If vertex v1 has very high degree, it is very likely that multiple

replicas of that vertex exist, possibly one in each machine in the cluster. In an

edge-cut scenario only one message would travel from v1 → v2, assuming v1

and v2 are located in different physical nodes. However, when vertex-cuts are

used, the state of v1 is updated (i.e., contains no frogs now) and this needs to

be communicated to all mirrors. It is therefore possible that a single random

walk can create a number of messages equal to the number of machines in the

cluster.

We modify PowerGraph to expose a scalar parameter ps per vertex.

By default, when the framework is running, in each super-step all masters

synchronize their programs and vertex data with their mirrors. Our modifica-

tion is that for each mirror we flip an independent coin and synchronize with

probability ps. Note that when the master does not synchronize the vertex

66

program with a replica, that replica will not be active during that super-step.

Therefore, we can avoid the communication and CPU execution by performing

limited synchronization in a randomized way.

FrogWild! is therefore executed asynchronously but relies on the Bulk

Synchronous execution mode of PowerGraph with the additional simple ran-

domization we explained. The name of our algorithm is inspired by Hog-

Wild [59], a lock-free asynchronous stochastic gradient descent algorithm pro-

posed by Niu et al.. We note that PowerGraph does support an asynchronous

execution mode [30] but we implemented our algorithm by a small modifica-

tion of synchronous execution. As discussed in [30], the design of asynchronous

graph algorithms is highly nontrivial and involves locking protocols and other

complications. Our suggestion is that for the specific problem of simulating

multiple random walks on a graph, simply randomizing synchronization can

give significant benefits while keeping design simple.

While the parameter ps clearly has the power to significantly reduce

network traffic – and indeed, this is precisely born out by our empirical results

– it comes at a cost: the standard analysis of the Power Method iteration no

longer applies. The main challenge that arises is the theoretical analysis of

the FrogWild algorithm. The model is that each vertex is separated across

machines and each connection between two vertex copies is present with prob-

ability ps. A single frog performing a random walk on this new graph defines a

new Markov Chain and this can be easily designed to have the same invariant

distribution π equal to normalized PageRank. The complication is that the

67

trajectories of frogs are no longer independent: if two frogs are in vertex v1 and

(say) only one mirror v′1 synchronizes, both frogs will need to jump through

edges connected with that particular mirror. Worse still, this correlation effect

increases, the more we seek to improve network traffic by further decreasing

ps. Therefore, it is no longer true that one obtains independent samples from

the invariant distribution π. Our theoretical contribution is the development

of an analytical bound that shows that these dependent random walks still

can be used to obtain π̂ that is provably close to π with high probability. We

rely on a coupling argument combined with an analysis of pairwise intersection

probabilities for random walks on graphs. In our convergence analysis we use

the contrast bound [20] for non-reversible chains.

We now make precise the intuition and outline given in the introduction.

Given the definition of PageRank in Section 2.6, we first define the problem of

approximating the top elements. We then define the algorithm, state our main

analytical results and provide full analysis. We conclude with a comprehensive

set of experiments.

5.1 Top PageRank Elements

Given the true PageRank vector, π and an estimate given by an ap-

proximate PageRank algorithm, we define the estimate’s top-k accuracy using

one of two metrics.

Definition 20 (Mass Captured). Given distribution

v ∈ ∆n−1, the true PageRank distribution π ∈ ∆n−1 and an integer k ≥ 0, we

68

define the mass captured by v as follows.

µk(v) , π(argmax|S|=kv(S))

For a set S ⊂ [n], v(S) ,
∑

i∈S v(i) denotes the total mass ascribed to the set

by the distribution v ∈ ∆n−1.

Put simply, the set S∗ that gets the most mass according to v out of

all sets of size k, is evaluated according to π and that gives us our metric. It

is maximized by π itself, i.e. the optimal value is µk(π).

The second metric we use is the exact identification probability, i.e.

the fraction of elements in the output list that are also on the true top-k list.

Note that the second metric is limited in that it does not give partial credit for

high PageRank vertices that are not on the true top-k list. In our experiments

in Section 5.5, we mostly use the normalized captured mass accuracy metric

but also report the exact identification probability for some cases – typically

the results are similar.

Our algorithm approximates the heaviest elements of the invariant dis-

tribution of a Markov Chain, by simultaneously performing multiple random

walks on the graph. The main modification to PowerGraph is the exposure

of a parameter, ps, controlling the probability that a given master node syn-

chronizes with any one of its mirrors. Per step, this leads to a proportional

reduction in network traffic. The main contribution of this work is to show

that we get results of comparable or improved accuracy, while maintaining this

69

network traffic advantage. We demonstrate this analytically in Section 5.3 and

empirically in Section 5.5.

5.2 Algorithm

During setup, the graph is partitioned using GraphLab’s default ingress

algorithm. At this point each one of N frogs is born on a vertex chosen

uniformly at random. Each vertex i carries a counter initially set to 0 and

denoted by c(i). Scheduled vertices execute the following program.

Incoming frogs from previously executed vertex programs, are collected

by the init() function. At apply() every frog dies with probability pT = 0.15.

This, along with a uniform starting position, effectively simulates the 15%

uniform component from Definition 1.

A crucial part of our algorithm is the change in synchronization be-

haviour. The <sync> step only synchronizes a ps fraction of mirrors leading

to commensurate gains in network traffic (cf. Section 5.5). This patch on the

GraphLab codebase was only a few lines of code. Section 5.5 contains more

details regarding the implementation.

The scatter() phase is only executed for edges e incident to a mirror

of i that has been synchronized. Those edges draw a binomial number of frogs

to send to their other endpoint. The rest of the edges perform no computation.

The frogs sent to vertex j at the last step will be collected at the init() step

when j executes.

70

Parameter pT is the teleportation probability from the random surfer

model in [56]. To get PageRank using random walks, one could adjust the

transition matrix P as described in Definition 1 to get the matrix Q. Alterna-

tively, the process can be replicated by a random walk following the original

matrix P , and teleporting at every time, with probability pT . The destina-

tion for this teleportation is chosen uniformly at random from [n]. We are

interested in the position of a walk at a predetermined point in time as that

would give us a sample from π. This holds as long as we allow enough time

for mixing to occur.

Due to the inherent markovianity in this process, one could just con-

sider it starting from the last teleportation before the predetermined stopping

time. When the stopping time is late enough, the number of steps performed

between the last teleportation and the predetermined stopping time, denoted

by X, is geometrically distributed with parameter pT . This follows from the

time-reversibility in the teleportation process: inter-teleportation times are

geometrically distributed, so as long as the first teleportation event happens

before the stopping time, then X ∼ Geom(pT).

This establishes that, the FrogWild! process – where a frog performs

a geometrically distributed number of steps following the original transition

matrix P – closely mimics a random walk that follows the adjusted transi-

tion matrix, Q. In practice, we stop the process after t steps to get a good

approximation. To show our main result, Theorem 24, we analyze the latter

process.

71

FrogWild! vertex program

Input parameters: ps, pT = 0.15, t

apply(i) K(i)← [# incoming frogs]

If t steps have been performed:

c(i)← c(i) +K(i)

HALT

For every incoming frog:

With probability pT , frog dies:

c(i)← c(i) + 1,

K(i)← K(i)− 1.

<sync> For every mirror m of vertex i:

With probability ps:

Synchronize state with mirror m.

scatter(e = (i, j)) [Only on synchronized mirrors]

Generate Binomial number of frogs:

x ∼ Bin

(
K(i),

1

dout(i)ps

)
Send x frogs to vertex j: signal(j,x)

Using a binomial distribution to independently generate the number of

frogs in the scatter() phase closely models the effect of random walks. The

marginal distributions are correct, and the number of frogs, that did not die

during the apply() step, is preserved in expectation. For our implementation

72

we resort to a more efficient approach. Assuming K(i) frogs survived the

apply() step, and M mirrors where picked for synchronization, then we send

dK(i)
M
e frogs to min(K(i),M) mirrors. If the number of available frogs is less

than the number of synchronized mirrors, we pick K(i) arbitrarily.

5.3 Main Result

Our analytical results essentially provide a high probability guarantee

that our algorithm produces a solution that approximates well the PageRank

vector. Recall that the main modification of our algorithm involves randomiz-

ing the synchronization between master nodes and mirrors. For our analysis,

we introduce, in Section 5.6.1, a broad model to deal with partial synchroniza-

tion.

Our results tell us that partial synchronization does not change the

distribution of a single random walk. To our statements clear, we need the

simple definition. Note that for a time-varying vector x, in this chapter, we

denote its value at time t by xt.

Definition 21. We denote the state of random walk i at its tth step by sti.

Then, we see that P
(
st+1

1 = i
∣∣st1 = j

)
= 1/dout(j), and xt+1

1 = Pxt1.

This follows simply by the symmetry assumed in Definition 27. Thus if we

were to sample serially, the modification of the algorithm controlling (limiting)

synchronization would not affect each sample, and hence would not affect our

estimate of the invariant distribution. However, we start multiple (all) random

73

walks simultaneously. In this setting, the fundamental analytical challenge

stems from the fact that random walks that intersect are correlated. The key

to our result is that we can control the effect of this correlation, as a function

the parameter ps and the pairwise probability that two random walks intersect.

We define this formally.

Definition 22. Suppose two walkers l1 and l2 start at the same time and

perform t steps. The probability that they meet is defined as follows.

p∩(t) , P
(
∃ τ ∈ [0, t], s.t. sτl1 = sτl2

)
(5.1)

Definition 23 (Estimator). Given the positions of N random walks at stop-

ping time t, {stl}Nl=1, we define the following estimator for the invariant distri-

bution π.

π̂N(i) ,
|{l : l ∈ [N], stl = i}|

N
=
c(i)

N
(5.2)

Here c(i) refers to the tally maintained by the FrogWild! vertex program.

Now we can state the main result. Here we give a guarantee for the

quality of the solution furnished by our algorithm.

Theorem 24 (Main Theorem). Consider N frogs following the FrogWild!

process (Section 5.2), under the erasure model of Definition 27. The frogs

start at independent locations, distributed uniformly and stop after a geomet-

ric number of steps or, at most, t steps. The estimator π̂N (Definition 23),

captures mass close to the optimal. Specifically, with probability at least 1− δ,

µk(π̂N) ≥ µk(π)− ε,

74

where

ε <

√
(1− pT)t+1

pT
+

√
k

δ

[
1

N
+ (1− p2

s)p∩(t)

]
. (5.3)

Remark 1 (Scaling). The result in Theorem 24 immediately implies the fol-

lowing scaling for the number of iterations and frogs respectively. They both

depend on the maximum captured mass possible, µk(π) and are sufficient for

making the error, ε, of the same order as µk(π).

t = O

(
log

1

µk(π)

)
, N = O

(
k

µk(π)2

)
The proof of Theorem 24 is deferred to Section 5.6.2. The guaranteed

accuracy via this result also depends on the probability that two walkers will

intersect. Via a simple argument, that probability is the same as the meeting

probability for independent walks. The next theorem bounds this probability.

Theorem 25 (Intersection Probability). Consider

two independent random walks obeying the same ergodic transition probability

matrix, Q with invariant distribution π, as described in Definition 1. Fur-

thermore, assume that both of them are initially distributed uniformly over the

state space of size n. The probability that they meet within t steps, is bounded

as follows,

p∩(t) ≤
1

n
+
t‖π‖∞
pT

,

where ‖π‖∞, denotes the maximal element of the vector π.

The proof is based on the observation that the l∞ norm of a distribution

controls the probability that two independent samples coincide. We show that

75

for all steps of the random walk, that norm is controlled by the l∞ norm of π.

We defer the full proof to Section 5.6.3.

A number of studies, give experimental evidence (e.g. [14]) suggesting

that PageRank values for the web graph follow a power-law distribution with

parameter approximately θ = 2.2. That is true for the tail of the distribution –

the largest values, hence of interest to us here – regardless of the choice of pT .

The following proposition bounds the value of the heaviest PageRank value,

‖π‖∞.

Proposition 26 (Maximum of Power-Law). Let π ∈ ∆n−1 follow a power-

law distribution with parameter θ and minimum value pT/n. Its maximum

element, ‖π‖∞, is at most n−γ, with probability at least 1− cnγ−
1
θ−1 , for some

universal constant c.

Proof. The expected maximum value of n independent draws from a power-law

distribution with parameter θ, is shown in [54] to be

Exmax = O(n−
1
θ−1).

Simple application of Markov’s inequality, gives us the statement.

Assuming θ = 2.2 and picking, for example, γ = 0.5, we get

P(‖π‖∞ > 1/
√
n) ≤ cn−1/3.

This implies that with probability at least 1− cn−1/3 the meeting probability

is bounded as follows.

p∩(t) ≤
1

n
+

t

pT
√
n
.

76

One would usually take a number of steps t that are either constant or loga-

rithmic with respect to the graph size n. This implies that for many reasonable

choices of set size k and acceptable probability of failure δ, the meeting prob-

ability vanishes as n grows. Then we can make the second term of the error

in (5.3) arbitrarily small by controlling the number of frogs, N .

5.4 Related Work

There is a very large body of work on computing and approximating

PageRank on different computation models (e.g. see [16, 21, 64, 25, 4] and

references therein). To the best of our knowledge, our work is the first to

specifically design an approximation algorithm for high-PageRank nodes for

graph engines. Another line of work looks for Personalized PageRank (PPR)

scores. This quantifies the influence an arbitrary node i has on another node

j, cf. recent work [46] and discussion therein. In [8], the top-k approximation

of PPR is studied. However, PPR is not applicable in our case, as we are

looking for an answer close to a global optimum.

In [7], a random-walks-based algorithm is proposed. The authors pro-

vide some insightful analysis of different variations of the algorithm. They

show that starting a single walker from every node, is sufficient to achieve a

good global approximation. We focus on capturing a few nodes with a lot

of mass, hence we can get away with orderwise much fewer frogs than O(n).

This is important for achieving low network traffic when the algorithm is ex-

ecuted on a distributed graph framework. Figure 5.10 shows linear reduction

77

in network traffic when the number of initial walkers decreases. Furthermore,

our method does not require waiting for the last frog to naturally expire (note

that the geometric distribution has infinite support). We impose a very short

time cut-off, t, and exactly analyze the penalty in captured mass we pay for

it in Theorem 24.

One natural question is how our algorithm compares to, or can be com-

plemented by, graph sparsification techniques. One issue here is that graph

sparsification crucially depends on the similarity metric used. Well-studied

properties that are preserved by sparsification methods include lengths of

shortest paths between vertices (such sparsifiers are called Spanners, see e.g.

[57]), cuts between subsets of vertices [15] and more generally quadratic forms

of the graph Laplacian [67, 13], see [13] and references therein for a recent

overview. To the best of our knowledge, there are no known graph sparsifica-

tion techniques that preserve vertex PageRank.

One natural heuristic that one may consider is to independently flip a

coin and delete each edge of the graph with some probability r. Note that

this is crucially different from spectral sparsifiers [67, 13] that choose these

probabilities using a process that is already more complicated than estimat-

ing PageRank. This simple heuristic of independently deleting edges indeed

accelerates the estimation process for high-PageRank vertices. We compare

FrogWild to this uniform sparsification process in Figure 5.6. We present

here results for 2 iterations of the GraphLab PR on the sparsified graph.

Note that running only one iteration is not interesting since it actually esti-

78

mates only the in-degree of a node which is known in advance (i.e., just after

the graph loading) in a graph engine framework. It can be seen in Figure

5.6 that even when only two iterations are used on the sparsified graph the

running time is significantly worse compared to FrogWild and the accuracy

is comparable.

Our base-line comparisons come from the graph framework papers since

PageRank is a standard benchmark for running-time, network and other com-

putations. Our implementation is on GraphLab (PowerGraph) and signifi-

cantly outperforms the built-in PageRank algorithm. This algorithm is al-

ready shown in [30, 65] to be significantly more efficient compared to other

frameworks like Hadoop, Spark, Giraph etc.

5.5 Experiments

In this section we compare the performance of our algorithm to the

PageRank algorithm shipped with GraphLab v2.2 (PowerGraph) [48]. The

fact that GraphLab is the fastest distributed engine for PageRank is estab-

lished experimentally in [65]. We focus on two algorithms: the basic built-in

algorithm provided as part of the GraphLab graph analytics toolkit, referred

to here as GraphLab PR, and FrogWild. Since we are looking for a top-k

approximation and GraphLab PR is meant to find the entire PageRank vec-

tor, we only run it for a small number of iterations (usually 2 are sufficient).

This gives us a good top-k approximation and is much faster than running

the algorithm until convergence. We also fine tune the algorithm’s tolerance

79

parameter to get a good but fast approximation.

We compare several performance metrics, namely: running time, net-

work usage, and accuracy. The metrics do not include time and network usage

required for loading the graph into GraphLab (known as the ingress time).

They reflect only the execution stage.

5.5.1 The Systems

We perform experiments on two systems. The first system is a cluster

of 20 virtual machines, created using VirtualBox 4.3 [74] on a single physical

server. The server is based on an Intel R© Xeon R© CPU E5-1620 with 4 cores at

3.6 GHz, and 16 GB of RAM. The second system, comprises of a cluster of up

to 24 EC2 machines on AWS (Amazon web services) [3]. We use m3.xlarge

instances, based on Intel R© Xeon R© CPU E5-2670 with 4 vCPUs and 15 GB

RAM.

5.5.2 The Data

For the VirtualBox system, we use the LiveJournal graph [44] with 4.8M

vertices and 69M edges. For the AWS system, in addition to the LiveJournal

graph, we use the Twitter graph [42] which has 41.6M nodes and 1.4B edges.

5.5.3 Implementation

FrogWild is implemented on the standard GAS (gather, apply, scat-

ter) model. We implement init(), apply(), and scatter(). The purpose of

80

init() is to collect the random walks sent to the node by its neighbors using

scatter() in the previous iteration. In the first iteration, init() generates a

random fraction of the initial total number of walkers. This implies that the

initial walker locations are randomly distributed across nodes. FrogWild

requires the length of random walks to be geometrically distributed (see Sec-

tion 5.2). For the sake of efficiency, we impose an upper bound on the length

of random walks. The algorithm is executed for the constant number of it-

erations (experiments show good results with even 3 iterations) after which

all the random walks are stopped simultaneously. The apply() function is

responsible for keeping track of the number of walkers that have stopped on

each vertex and scatter() distributes the walkers still alive to the neighbors

of the vertex. The scatter() phase is the most challenging part of the im-

plementation. In order to reduce information exchange between machines, we

use a couple of ideas.

First, we notice that random walks do not have identity. Hence, random

walks destined for the same neighbor can be combined into a single message.

The main optimization and most significant part of our work is modifying

the GraphLab engine to support randomized synchronization, as described

in Section 5.2. We expose the synchronization probability ps ∈ [0, 1] to the

user as a small extension to the GraphLab API. It describes the fraction of

replicas that will be synchronized. Replicas not synchronized remain idle for

the upcoming scatter phase. The source changes in the engine are a matter

of a few (about 10) lines of code. Using this feature is completely optional;

81

i.e., setting ps = 1 results in using the original engine, leaving other analytic

workloads unaffected. However, any random walk or “gossip” style algorithm

(that sends a single messages to a random subset of its neighbors) can benefit

by reducing ps. Our modification of the GraphLab engine as well as the

FrogWild vertex program can be found in [17].

5.5.4 Results

FrogWild is significantly faster and uses less network and CPU com-

pared to GraphLab PR. Let us start with the Twitter graph and the AWS

system. In Figure 5.1(a) we see that, while GraphLab PR takes about 7.5

seconds per iteration (for 12 nodes), FrogWild takes less than 1 sec, achiev-

ing more than a 7x speedup. Reducing the value of ps decreases the running

time. We see a similar picture with the total running time of the algorithms

in Figure 5.1(b)).

We plot network performance in Figure 5.2(c). We get a 1000x im-

provement compared to the exact GraphLab PR, and more than 10x with

respect to doing 1 or 2 iterations of GraphLab PR. In Figure 5.2(d) we can

see that the total CPU usage reported by the engine is also much lower for

FrogWild.

We now turn to compare the approximation metrics for the PageRank

algorithm. For various k, we check the two accuracy metrics: Mass captured

(Figure 5.3(a)) and the Exact identification (Figure 5.3(b)). Mass captured

– is the total PageRank that the reported top-k vertices worth in the exact

82

ranking. Exact identification – is the number of vertices in the intersection

of the reported top-k and the exact top-k lists. We can see that the approx-

imation achieved by the FrogWild for ps = 1 and ps = 0.7 always outper-

forms the GraphLab PR with 1 iteration. The approximation achieved by

the FrogWild with ps = 0.4 is relatively good for both metrics, and with

ps = 0.1 is reasonable for mass captured.

In Figure 5.4 we can see the trade-off between the accuracy, total run-

ning time, and the network usage. The performance of FrogWild is evalu-

ated for various number of iterations and the values of ps. The results show

that with the accuracy comparable to GraphLab PR, FrogWild has much

less running time and network usage. Figure 5.5 illustrates how much network

traffic we save using FrogWild. The area of each circle is proportional to

the number of bytes sent by each algorithm.

We also compare FrogWild to an approximation strategy that uses

a simple sparsification technique described in Section 5.4. First, the graph

is sparsified by deleting each edge with probability r, then GraphLab PR

is executed. In Figure 5.6, we can see that FrogWild outperforms this

approach in terms running time while achieving comparable accuracy.

Finally, we plot results for the LiveJournal graph on the VirtualBox

system. Figures 5.7(a,b) show the effect of the number of walkers, N , and the

number of iterations for FrogWild on the achieved accuracy. Good accuracy

and running time (see Figure 5.8(c,d)) are achieved for 800K initial random

walks and 4 iterations of FrogWild. Similar to the Twitter graph, also for

83

the LiveJournal graph we can see, in Figure 5.9, that our algorithm is faster

and uses much less network, while still maintaining good PageRank accuracy.

By varying the number of initial random walks and the number of iterations

we can fine-tune the FrogWild for the optimal accuracy-speed trade-off.

Interestingly, for both graphs (Twitter and LiveJournal), reasonable

parameters are: 800K initial random walks and 4 iterations, despite the order

of magnitude difference in the graph sizes. This implies slow growth for the

necessary number of frogs with respect to the size of the graph. This scaling

behavior is tough to check in practice, but it is explained by our analysis.

Specifically, Remark 1 shows that the number of frogs should scale as N =

O
(

k
µk(π)2

)
.

5.6 Analysis

In this section, we provide detailed proofs for all posed statements.

First, we introduce an edge erasure model that provides both intuition and

rigor for the subsequent analysis.

5.6.1 Edge Erasure Model

Definition 27 (Edge Erasure Model). An edge erasure model is a process that

is independent from the random walks (up to time t) and temporarily erases

a subset of all edges at time t. The event Et
i,j represents the erasure of edge

(i, j) from the graph for time t. The edge is not permanently removed from

the graph, it is just disabled and considered again in the next step. The edge

84

erasure models we study satisfy the following properties.

1. Edges are erased independently for different vertices,

P(Et
i,j, E

t
i,k) = P(Et

i,j)P(Et
i,k)

and across time,

P(Et
i,j, E

s
i,j) = P(Et

i,j)P(Es
i,j).

2. Each outgoing edge is preserved (not erased) with probability at least ps.

P(Et
i,j) ≥ ps

3. Erasures do not exhibit significant negative correlation. Specifically,

P(Et
i,j|Et

i,k) ≥ ps.

4. Erasures in a neighbourhood are symmetric. Any subset of out-going

edges of vertex i, will be erased with exactly the same probability as an-

other subset of the same cardinality.

The main two edge erasure models we consider are described here. They

both satisfy all required properties. Our theory holds for both1, but in our

implementation and experiments we use ”At Least One Out-Edge Per Node.”

Example 28 (Independent Erasures). Every edge is preserved independently

with probability ps.

1 Independent Erasures can lose some walkers, when it temporarily leads to some nodes
having zero out-degree.

85

Example 29 (At Least One Out-Edge Per Node). This edge erasure model,

decides all erasures for node i independently, like Independent Erasures, but

if all out-going edges for node i are erased, it draws and enables one of them

uniformly at random.

5.6.2 Proof of Theorem 24

In this section we provide a complete proof of our main results. We

start from simple processes and slowly introduce the analytical intricacies of

our system one-by-one giving guarantees on the performance of each stage.

Process 30 (Fixed Step). Independent walkers start on nodes selected uni-

formly at random and perform random walks on the augmented graph. This

means that teleportation happens with probability pT and the walk is described

by the transition probability matrix (TPM) Q, as defined in Section 2.6. Each

walker performs exactly t steps before yielding a sample. The number of walk-

ers tends to infinity.

Before we talk about the convergence properties of this Markov chain,

we need some definitions.

Definition 31. The χ2-contrast χ2(α; β) of α with respect to β is defined by

χ2(α; β) =
∑
i

(α(i)− β(i))2

β(i)
.

Lemma 32. Let π ∈ ∆n−1 a distribution satisfying mini π(i) ≥ c
n

for constant

c ≤ 1, and let u ∈ ∆n−1 denote the uniform distribution. Then, χ2(u; π) ≤(
1−c
c

)
.

86

Proof.

χ2(u; π) =
∑
i

(1/n− π(i))2

π(i)
=
∑
i

(
1

n2π(i)
− 1

n

)
=

1

n

∑
i

1− nπ(i)

nπ(i)
≤ 1

n

∑
i

1− c
c

=
1− c
c

Here we used the assumed lower bound on π(i) and the fact that (1− x)/x is

decreasing in x.

Lemma 33. Let πt denote the distribution of the walkers after t steps. Its

χ2-divergence with respect to the PageRank vector, π, is

χ2(πt; π) ≤
(

1− pT
pT

)
(1− pT)t.

Proof. Since Q is ergodic (but non-reversible) we can use the contrast bound

in [20], which gives us

χ2(πt; π) ≤ λt2(Q̃Q)χ2(π0; π),

where Q̃ = DQ′D−1, for D = diag(π), is called the multiplicative reversibi-

lization of Q. We want an upper bound on the second largest eigenvalue

of Q̃Q = DQ′D−1Q. From the Perron-Frobenius theorem, we know that

λ1(Q) = 1 and from [33, 27, 66], |λ2(Q)| < 1 − pT . Matrix Q is similar to

Q̃ = DQ′D−1, so they have the same spectrum. From this we get the bound

|λ2(Q̃Q)| ≤ 1− pT .

The starting distribution π0 is assumed to be uniform and every element of

the PageRank vector is lower bounded by pT/n. From Lemma 32, we get

χ2(π0; π) ≤
(

1− pT
pT

)
,

87

and putting everything together we get the statement.

Process 34 (Truncated Geometric). Independent walkers start on nodes se-

lected uniformly at random and perform random walks on the original graph.

This means that there is no teleportation and the walk is described by the TPM

P as defined in Section 2.6. Each walker performs a random number of steps

before yielding a sample. Specifically, the number of steps follows a geomet-

ric distribution with parameter pT . Any walkers still active after t steps are

stopped and their positions are acquired as samples. This means that the num-

ber of steps is given by the minimum of t and a geometric random variable

with parameter pT . The number of walkers tends to infinity.

Lemma 35. The samples acquired from Process 30 and Process 34 follow the

exact same distribution.

Proof. Let πt denote the distribution of the walk after t steps according to

Q (Process 30) and π′t denote the distribution of the samples provided by

the truncated geometric process (Process 34). Note that both have the same

uniform starting distribution π0 = π′0 = u = 1n×1/n. For the latter process,

the sampling distribution is

π′t =
t∑

τ=0

pT (1− pT)τP τu+ (1− pT)t+1P tu. (5.4)

The last term corresponds to the cut-off we impose at time t. Now consider

the definition of the TPM Q (Definition 1). The Markov chain described by

Q, teleports at each step with probability pT ; otherwise, it just proceeds ac-

cording to the TPM P . With every teleportation, the walker starts from the

88

uniform distribution, u – any progress made so far is completely ”forgotten.”

Therefore, we just need to focus on the epoch between the last teleportation

and the cut-off time t. The times between teleportation events are geometri-

cally distributed with parameter pT . The teleportation process is memory-less

and reversible. Starting from time t and looking backwards in time, the last

teleportation event is a geometric number of steps away, and with probability

(1 − pT)t+1 it happens before the starting time 0. In that case we know that

no teleportation happens in [0, t]. The samples acquired from this process are

given by

πt =
t∑

τ=0

pT (1− pT)τP τu+ (1− pT)t+1P tu, (5.5)

which is exactly the distribution for Process 34 given in (5.4).

Lemma 36 (Mixing Loss). Let πt ∈ ∆n−1 denote the distribution of the sam-

ples acquired through Process 34. The mass it captures (Definition 20) is

lower-bounded as follows.

µk(π
t) ≥ µk(π)−

√
(1− pT)t+1

pT

Proof. Let us define δi = πti − πi. First we show that

µk(π
t) ≥ µk(π)− ‖π − πt‖1. (5.6)

To see this, first consider the case when δ1 = −δ2 and δi = 0 for i = 3, ..., n.

The maximum amount of mass that can be missed by πt, in this case, is

|δ1| + |δ2|. This happens when π1 and π2 are exactly |δ1| + |δ2| apart and are

flipped in the ordering by πt. This argument generalizes to give us (5.6). Now

89

assume that the χ2-divergence of πt with respect to the PageRank vector π is

bounded by ε2. Now using a variational argument and the KKT conditions we

can show that setting δi = πiε for all i gives the maximum possible l1 error:

||π − πt||1 ≤ ε =
√
χ2(πt; π). (5.7)

For another proof using the Cauchy-Schwarz inequality, see [20]. Finally, com-

bining (5.7) with (5.6) and the results from Lemma 35 and 33 gives us the

statement.

Lemma 37 (Sampling Loss). Let π̂N be the estimator of Definition 23 us-

ing N samples from the FrogWild! system. This is essentially, Process 34

with the added complication of random synchronization as explained in Sec-

tion 5.2. Also, let πt denote the sample distribution after t steps, as defined

in Lemma 35. The mass captured by this process is lower bounded as follows,

with probability at least 1− δ.

µk(π̂N) ≥ µk(π
t)−

√
k

δ

[
1

N
+ (1− p2

s)p∩(t)

]
,

Proof. In this proof, let xtl denote the individual (marginal) walk distribution

for walker l at time t. We know, that it follows the dynamics xt+1
l = Pxtl , for

all l ∈ [N], i.e. xtl = xt1. First we show that ‖π̂N − xt1‖2 is small.

P(‖π̂N − xt1‖2 > ε) ≤ E[‖π̂N − xt1‖2
2]

ε2
(5.8)

Here we used Markov’s inequality. We use stl to denote the position of walker

l at time t as a vector. For example, stl = ei, if walker l is at state i at time t.

90

Now let us break down the norm on the numerator of (5.8).

‖π̂N − xt1‖2
2 =

∥∥∥∥ 1

N

∑
l

(stl − xt1)

∥∥∥∥2

2

=
1

N2

∑
l

‖stl − xt1‖2
2 +

1

N2

∑
l 6=k

(stl − xt1)′(stk − xt1) (5.9)

For the diagonal terms we have:

E[‖stl − xt1‖2
2] =

∑
i∈[n]

E
[
‖stl − xt1‖2

2|stl = i
]
P(stl = i)

=
∑
i∈[n]

‖eti − xt1‖2
2x

t
1(i) = 1− ‖xt1‖2

2 ≤ 1 (5.10)

Under the edge erasures model, the trajectories of different walkers are

not generally independent. For example, if they happen to meet, they are

likely to make the same decision for their next step, since they are faced with

the same edge erasures. Now we prove that even when they meet, we can

consider them to be independent with some probability that depends on ps.

Consider the position processes for two walkers, {st1}t and {st2}t. At

each step t and node i a number of out-going edges are erased. Any walkers on

i, will choose uniformly at random from the remaining edges. Now consider

this alternative process.

Process 38 (Blocking Walk). A blocking walk on the graph under the erasure

model, follows these steps.

1. Walker l finds herself on node i at time t.

91

2. Walker l draws her next state uniformly from the full set of out-going

edges.

w ∼ Uniform(No(i))

3. If the edge (i, w) is erased at time t, the walker cannot traverse it. We

call this event a block and denote it by Bt
l . In the event of a block:

• Walker redraws her next step from the out-going edges of i not

erased at time t.

• Otherwise, w is used as the next state.

A blocking walk is exactly equivalent to our original process; walkers

end up picking a destination uniformly at random among the edges not erased.

From now on we focus on this description of our original process. We use the

same notation: {stl}t for the position process and {xtl}t for the distribution at

time t.

Let us focus on just two walkers, {st1}t and {st2}t and consider a third

process: two independent random walks on the same graph. We assume that

these walks operate on the full graph, i.e. no edges are erased. We denote

their positions by {vt1}t and {vt2}t and their marginal distributions by {zt1}t

and {zt2}t.

Definition 39 (Time of First Interference). For two blocking walks, τI de-

notes the earliest time at which they meet and at least one of them experiences

blocking.

τI = min
{
t : {st1 = st2} ∩ (Bt

1 ∪Bt
2)
}

92

We call this quantity the time of first interference.

Lemma 40 (Process equivalence). For two walkers, the blocking walk and the

independent walk are identical until the time of first interference. That is,

assuming the same starting distributions, x0
1 = z0

1 and x0
2 = z0

2, then

xt1 = zt1 and xt2 = zt2 ∀t ≤ τI .

Proof. The two processes are equivalent for as long as the blocking walkers

make independent decisions effectively picking uniformly from the full set of

edges (before erasures). From the independence in erasures across time and

vertices in Definition 27, as long as the two walkers do not meet, they are

making an independent choices. Furthermore, since erasures are symmetric,

the walkers will be effectively choosing uniformly over the full set of out-going

edges.

Now consider any time t that the blocking walkers meet. As long as nei-

ther of them blocks, they are by definition taking independent steps uniformly

over the set of all outgoing edges, maintaining equivalence to the independent

walks process. This concludes the proof.

Lemma 41. Let all walkers start from the uniform distribution. The proba-

bility that the time of first interference comes before time t is upper bounded

as follows. P(τI ≤ t) ≤ (1− p2
s)p∩(t)

Proof. Let Mt be the event of a meeting at time t, Mt , {st1 = st2}. In the

proof of Theorem 25, we establish that P(Mt) ≤ ρt/n,where ρ is the maximum

93

row sum of the transition matrix P . Now denote the event of an interference

at time t as follows. It , Mt ∩ (Bt
1 ∪ Bt

2), where Bt
1 denotes the event of

blocking, as described in Definition 38. Now,

P(It) = P(Mt ∩ (Bt
1 ∪Bt

2)) = P(Bt
1 ∪Bt

2|Mt)p∩(t).

For the probability of a block given that the walkers meet at time t,

P(Bt
1 ∪Bt

2|Mt) = 1− P(Bt
1 ∩Bt

2|Mt)

= 1− P(Bt
2|Bt

1,Mt)P(Bt
1 |Mt) ≤ 1− p2

s.

To get the last inequality we used, from Definition 27, the lower bound on the

probability that an edge is not erased, and the lack of negative correlations in

the erasures.

Combining the above results, we get

P(τI ≤ t) = P

(
t∑

τ=1

I{Iτ} ≥ 1

)
≤ E

[
t∑

τ=1

I{Iτ}

]
=

t∑
τ=1

P(Iτ)

≤
t∑

τ=1

(1− p2
s)P(Mτ) =

1− p2
s

n

t∑
τ=1

ρτ = (1− p2
s)p∩(t)

which proves the statement.

Now we can bound the off-diagonal terms in (5.10).

E
[
(stl − xt1)′(stk − xt1)

]
=E
[
(stl − xt1)′(stk − xt1)

∣∣τI ≤ t

]
P(τI ≤ t)

+ E
[
(stl − xt1)′(stk − xt1)

∣∣τI > t

]
P(τI > t)

94

In the second term, the case when l, k have not interfered, by Lemma 40, the

trajectories are independent and the cross-covariance is 0. In the first term,

the cross-covariance is maximized when stl = stk. That is,

E
[
(stl − xt1)′(stk − xt1)

∣∣τI ≤ t

]
≤ E[‖stl − xt1‖2

2] ≤ 1

From this we get

E
[
(stl − xt1)′(stk − xt1)

]
≤ (1− p2

s)p∩(t), (5.11)

and in combination with (5.10), we get from (5.9) that

E
[
‖π̂N − xt1‖2

2

]
≤ 1

N
+

(N − 1)(1− p2
s)p∩(t)

N
.

Finally, we can plug this into (5.8), and since all marginals xtl are the same,

and denoted by πt, we get

P(‖π̂N − πt‖2 > ε) ≤ 1 + (1− p2
s)p∩(t)(N − 1)

Nε2
. (5.12)

Let πt|S denote the restriction of the vector πt to the set S. That is,

πt|S(i) = πt(i) if i ∈ S and 0 otherwise. Now we show that for any set S of

cardinality k,

|πt(S)− π̂N(S)| ≤ ‖(πt − π̂N)
∣∣
S
‖1 ≤

√
k‖(πt − π̂N)

∣∣
S
‖2

≤
√
k‖πt − π̂N‖2 (5.13)

Here we used the fact that for k-length vector x, ‖x‖1 ≤
√
k‖x‖2 and ‖x|S‖ ≤

‖x‖. We define the top-k sets

Ŝ∗ = argmaxS⊂[n],|S|=kπ̂N(S)

95

S∗ = argmaxS⊂[n],|S|=kπ
t(S).

Per these definitions,

π̂N(Ŝ∗) = max
S⊂[n],|S|=k

π̂N(S)

≥ π̂N(S∗) ≥ πt(S∗)−
√
k‖πt − π̂N‖2. (5.14)

The last inequality is a consequence of (5.13). Now using the inequality

in (5.12) and denoting the LHS probability as δ, we get the statement of

Lemma 37.

Combing the results of Lemma 36 and Lemma 37, we establish the

main result, Theorem 24.

5.6.3 Proof of Theorem 25

Proof. Let u ∈ ∆n−1 denote the uniform distribution over [n], i.e. ui = 1/n.

The two walks start from the same initial uniform distribution, u, and in-

dependently follow the same law, Q. Hence, at time t they have the same

marginal distribution, pt = Qtu. From the definition of the augmented transi-

tion probability matrix, Q, in Definition 1, we get that

πi ≥
pT
n
, ∀i ∈ [n].

Equivalently, there exists a distribution q ∈ ∆n−1 such that

π = pTu+ (1− pT)q.

96

Now using this, along with the fact that π is the invariant distribution associ-

ated with Q (i.e. π = Qtπ for all t ≥ 0) we get that for any t ≥ 0,

‖π‖∞ = ‖Qtπ‖∞

= ‖QtpTu+Qt(1− pT)q‖∞

≥ pT‖Qtu‖∞.

For the last inequality, we used the fact that Q and q contain non-negative

entries. Now we have a useful upper bound for the maximal element of the

walks’ distribution at time t.

‖pt‖∞ = ‖Qtu‖∞ ≤
‖π‖∞
pT

(5.15)

Let Mt be the indicator random variable for the event of a meeting at time t.

Mt = I{walkers meet at time t}

Then, P(Mt = 1) =
∑n

i=1 p
t
ip
t
i = ‖pt‖2

2. Since p0 is the uniform distribution,

i.e. p0
i = 1

n
for all i, then ‖p0‖2

2 = 1
n
. We can also bound the l2 norm of the

distribution at other times. First, we upper bound the l2 norm by the l∞

norm.

‖p‖2
2 =

∑
i

p2
i ≤

∑
i

pi‖p‖∞ = ‖p‖∞

Here we used the fact that pi ≥ 0 and
∑
pi = 1.

97

Now, combining the above results, we get

p∩(t) = P

(
t∑

τ=0

Mτ ≥ 1

)
≤ E

[
t∑

τ=0

Mτ

]
=

t∑
τ=0

E[Mτ]

=
t∑

τ=0

P(Mτ = 1) =
t∑

τ=0

‖pτ‖2
2 ≤

t∑
τ=0

‖pτ‖∞

≤ 1

n
+
t‖π‖∞
pT

.

For the last inequality, we used (5.15) for t ≥ 1 and ‖p0‖2
2 = 1/n. This proves

the theorem statement.

98

12 nodes 16 nodes 20 nodes 24 nodes
10-1

100

101

Ti
m

e
pe

r i
te

ra
tio

n
(s

)

Twitter, AWS, 800K rw, 4 iters
GraphLab PR exact

FrogWild, Ps=1

FrogWild, Ps=0.7

FrogWild, Ps=0.4

FrogWild, Ps=0.1

(a)

12 nodes 16 nodes 20 nodes 24 nodes
100

101

102

103

To
ta

l t
im

e
(s

)

Twitter, AWS, 800K rw, 4 iters
GraphLab PR exact

GraphLab PR 2 ites

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.1

(b)

Figure 5.1: PageRank performance for various number of nodes. Graph: Twitter;
system: AWS (Amazon Web Services); FrogWild parameters: 800K initial ran-
dom walks and 4 iterations. (a) Running time per iteration. (b) Total running time
of the algorithms.

99

12 nodes 16 nodes 20 nodes 24 nodes107

108

109

1010

1011

1012

N
et

w
or

k
se

nt
 (b

yt
es

)

Twitter, AWS, 800K rw, 4 iters
GraphLab PR exact

GraphLab PR 2 ites

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.1

(c)

12 nodes 16 nodes 20 nodes 24 nodes
101

102

103

104

C
PU

 u
sa

ge
 (s

)

Twitter, AWS, 800K rw, 4 iters
GraphLab PR exact

GraphLab PR 2 ites

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.1

(d)

Figure 5.2: PageRank performance for various number of nodes. Graph: Twitter;
system: AWS (Amazon Web Services); FrogWild parameters: 800K initial ran-
dom walks and 4 iterations. (c) Total network bytes sent by the algorithm during
the execution (does not include ingress time). (d) Total CPU usage time. Notice,
this metric may be larger than the total running time since many CPUs run in
parallel.

100

k=30 k=100 k=300 k=1000
0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

Twitter, AWS, 16 nodes, 800K rw, 4 iters
GraphLab PR 2 iters

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.7

FrogWild, Ps=0.4

FrogWild, Ps=0.1

(a)

k=30 k=100 k=300 k=1000
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

ur
ac

y
- E

xa
ct

 id
en

tif
ic

at
io

n

Twitter, AWS, 16 nodes, 800K rw, 4 iters
GraphLab PR 2 iters

GraphLab PR 1 iters

FrogWild, Ps=1

FrogWild, Ps=0.7

FrogWild, Ps=0.4

FrogWild, Ps=0.1

(b)

Figure 5.3: PageRank approximation accuracy for various number of top-k PageR-
ank vertices. Graph: Twitter; system: AWS (Amazon Web Services) with 16 nodes;
FrogWild parameters: 800K initial random walks and 4 iterations. (a) Mass cap-
tured. The total PageRank that the reported top-k vertices worth in the exact
ranking. (b) Exact identification. The number of vertices in the intersection of the
reported top-k and the exact top-k lists.

101

100 101 102 103

Total time (s)

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

Twitter, AWS, 24 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

(a)

107 108 109 1010 1011 1012

Total network (bytes)

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

Twitter, AWS, 24 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

(b)

Figure 5.4: PageRank approximation accuracy with the “Mass captured” metric
for top-100 vertices. Graph: Twitter; system: AWS (Amazon Web Services) with 24
nodes; FrogWild parameters: 800K initial random walks. (a) - Accuracy versus
total running time. (b) - Accuracy versus total network bytes sent.

102

100 101 102 103

Total time (s)

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

Twitter, AWS, 24 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

Figure 5.5: Accuracy versus total running time. Graph: Twitter; system: AWS
(Amazon Web Services) with 24 nodes; FrogWild parameters: 800K initial ran-
dom walks. The area of each circle is proportional to the total network bytes sent
by the specific algorithm.

103

0 5 10 15 20 25 30
Total time (s)

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

Twitter, AWS, 12 nodes, 800K rw

GraphLab PR iters=2, q=(0.4,0.7,1)

FrogWild iters=4, Ps=(0.4,0.7,1)

Figure 5.6: Accuracy versus total running time. Graph: Twitter; system: AWS
(Amazon Web Services) with 12 nodes; FrogWild parameters: 800K initial ran-
dom walks. q = 1 − r is the probability of keeping an edge in the sparsification
process.

104

GL PR Ps=1 Ps=0.7 Ps=0.4 Ps=0.1

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

LiveJournal, VBox, 20 nodes, 4 iters
FrogWild, 1400000 rw

FrogWild, 1200000 rw

FrogWild, 1000000 rw

FrogWild, 800000 rw

FrogWild, 600000 rw

FrogWild, 400000 rw

GraphLab PR exact

GraphLab PR 2 iters

GraphLab PR 1 iters

(a)

GL PR Ps=1 Ps=0.7 Ps=0.4 Ps=0.1
0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

LiveJournal, VBox, 20 nodes, 800K rw
FrogWild, 6 iters

FrogWild, 5 iters

FrogWild, 4 iters

FrogWild, 3 iters

FrogWild, 2 iters

GraphLab PR exact

GraphLab PR 2 iters

GraphLab PR 1 iters

(b)

Figure 5.7: Graph: LiveJournal; system: VirtualBox with 20 nodes. (a) Accuracy
for various number of initial random walks in the FrogWild (with 4 iterations). (b)
Accuracy for various number of iterations of FrogWild (with 800K initial random
walks).

105

GL PR Ps=1 Ps=0.7 Ps=0.4 Ps=0.1
100

101

To
ta

l t
im

e
(s

)

218

LiveJournal, VBox, 20 nodes, 4 iters
FrogWild, 1400000 rw

FrogWild, 1200000 rw

FrogWild, 1000000 rw

FrogWild, 800000 rw

FrogWild, 600000 rw

FrogWild, 400000 rw

GraphLab PR exact

GraphLab PR 2 iters

GraphLab PR 1 iters

(c)

GL PR Ps=1 Ps=0.7 Ps=0.4 Ps=0.1
100

101

To
ta

l t
im

e
(s

)

218

LiveJournal, VBox, 20 nodes, 800K rw
FrogWild, 6 iters

FrogWild, 5 iters

FrogWild, 4 iters

FrogWild, 3 iters

FrogWild, 2 iters

GraphLab PR exact

GraphLab PR 2 iters

GraphLab PR 1 iters

(d)

Figure 5.8: Graph: LiveJournal; system: VirtualBox with 20 nodes. (c) Total
running time for various number of initial random walks in the FrogWild (with 4
iterations). (d) Total running time for various number of iterations of FrogWild
(with 800K initial random walks).

106

100 101 102 103

Total time (s)

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

LiveJournal, VBox, 20 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

(a)

107 108 109 1010 1011

Total network (bytes)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y
- M

as
s

ca
pt

ur
ed

 (k
=1

00
)

LiveJournal, VBox, 20 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

(b)

Figure 5.9: Graph: LiveJournal; system: VirtualBox with 20 nodes; FrogWild
parameters: 800K initial random walks. (a) Accuracy versus total running time.
(b) Accuracy versus total network bytes sent.

107

400K 600K 800K 1000K 1200K 1400K
Number of initial random walks

1.0

1.5

2.0

2.5

3.0

3.5

N
et

w
or

k
se

nt
 (b

yt
es

)

1e8 LiveJournal, VBox, 20 nodes, 4 iters

FrogWild Ps=1

Figure 5.10: Network usage of FrogWild versus the number of initial random
walks. Graph: LiveJournal; system: VirtualBox with 20 nodes; FrogWild param-
eters: 4 iterations.

108

Bibliography

[1] Teradata. http://www.teradata.com/Resources/

Videos/Grow-Loyalty-of-Influential-Customers. Accessed: 2014-

11-30. 9

[2] Alekh Agarwal and Soumen Chakrabarti. Learning random walks to rank

nodes in graphs. In Proceedings of the 24th international conference on

Machine learning, pages 9–16. ACM, 2007. 17

[3] Amazon web services. http://aws.amazon.com, 2014. 80

[4] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Vahab S

Mirrokni, and Shang-Hua Teng. Local computation of pagerank contri-

butions. In Algorithms and Models for the Web-Graph, pages 150–165.

Springer, 2007. 77

[5] R. Arora, A. Cotter, K. Livescu, and N. Srebro. Stochastic optimiza-

tion for PCA and PLS. In 50th Allerton Conference on Communication,

Control, and Computing, Monticello, IL, 2012. 12, 21, 22, 23

[6] Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro.

Stochastic optimization for PCA and PLS. In Communication, Con-

trol, and Computing (Allerton), 2012 50th Annual Allerton Conference

on, pages 861–868. IEEE, 2012. 6

109

[7] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte carlo

methods in pagerank computation: When one iteration is sufficient. SIAM

J. Numer. Anal., 45(2):890–904, February 2007. 77

[8] Konstantin Avrachenkov, Nelly Litvak, Danil Nemirovsky, Elena

Smirnova, and Marina Sokol. Monte carlo methods for top-k person-

alized pagerank lists and name disambiguation. CoRR, abs/1008.3775,

2010. 77

[9] Akshay Balsubramani, Sanjoy Dasgupta, and Yoav Freund. The fast

convergence of incremental PCA. In Advances in Neural Information

Processing Systems, pages 3174–3182, 2013. 6, 22, 54

[10] L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of

subspaces from highly incomplete information. In Communication, Con-

trol, and Computing (Allerton), 2010 48th Annual Allerton Conference

on, page 704–711, 2010. 21

[11] Laura Balzano, Robert Nowak, and Benjamin Recht. Online identifica-

tion and tracking of subspaces from highly incomplete information. In

Communication, Control, and Computing (Allerton), 2010 48th Annual

Allerton Conference on, pages 704–711. IEEE, 2010. 6, 13, 54

[12] Laura Balzano and Stephen J Wright. Local convergence of an al-

gorithm for subspace identification from partial data. arXiv preprint

arXiv:1306.3391, 2013. 6, 13, 47

110

[13] Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua

Teng. Spectral sparsification of graphs: Theory and algorithms. Commun.

ACM, 56(8):87–94, August 2013. 78

[14] Luca Becchetti and Carlos Castillo. The distribution of pagerank follows a

power-law only for particular values of the damping factor. In Proceedings

of the 15th international conference on World Wide Web, pages 941–942.

ACM, 2006. 76

[15] András A. Benczúr and David R. Karger. Approximating s-t minimum

cuts in Õ(n2) time. In Proceedings of the Twenty-eighth Annual ACM

Symposium on Theory of Computing, STOC ’96, pages 47–55, New York,

NY, USA, 1996. ACM. 78

[16] Pavel Berkhin. A survey on pagerank computing. Internet Mathematics,

2(1):73–120, 2005. 77

[17] Michael Borokhovich and Ioannis Mitliagkas. FrogWild! code repository.

https://github.com/michaelbor/frogwild, 2014. Accessed: 2014-10-

30. 82

[18] M. Brand. Fast low-rank modifications of the thin singular value decom-

position. Linear algebra and its applications, 415(1):20–30, 2006. 21

[19] Matthew Brand. Incremental singular value decomposition of uncertain

data with missing values. Computer Vision—ECCV 2002, page 707–720,

2002. 21

111

[20] Pierre Bremaud. Markov chains: Gibbs fields, Monte Carlo simulation,

and queues, volume 31. springer, 1999. 68, 87, 90

[21] Andrei Z Broder, Ronny Lempel, Farzin Maghoul, and Jan Pedersen. Ef-

ficient pagerank approximation via graph aggregation. Information Re-

trieval, 9(2):123–138, 2006. 77

[22] Emmanuel J Candès and Benjamin Recht. Exact matrix completion

via convex optimization. Foundations of Computational mathematics,

9(6):717–772, 2009. 5

[23] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in

the streaming model. In Proceedings of the 41st annual ACM symposium

on Theory of computing, page 205–214, 2009. 21

[24] P. Comon and G. H. Golub. Tracking a few extreme singular values and

vectors in signal processing. Proceedings of the IEEE, 78(8):1327–1343,

1990. 21

[25] Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad

Tetali. Distributed random walks. Journal of the ACM (JACM), 60(1):2,

2013. 65, 77

[26] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum

likelihood from incomplete data via the EM algorithm. Journal of the

Royal Statistical Society. Series B (Methodological), pages 1–38, 1977. 23

112

[27] Lars Eldén. A note on the eigenvalues of the google matrix. arXiv preprint

math/0401177, 2004. 87

[28] Santo Fortunato and Alessandro Flammini. Random walks on directed

networks: the case of pagerank. International Journal of Bifurcation and

Chaos, 17(07):2343–2353, 2007. 17

[29] Gene H. Golub and Charles F. Van Loan. Matrix computations, volume 3.

JHUP, 2012. 3

[30] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos

Guestrin. Powergraph: Distributed graph-parallel computation on natu-

ral graphs. In OSDI, volume 12, page 2, 2012. 16, 66, 67, 79

[31] GroupLens. Movielens dataset. http://grouplens.org/datasets/

movielens/, 2009. Accessed: 2014-02-21. 58

[32] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding struc-

ture with randomness: Probabilistic algorithms for constructing approx-

imate matrix decompositions. SIAM review, 53(2):217–288, 2011. 21

[33] Taher Haveliwala and Sepandar Kamvar. The second eigenvalue of the

google matrix. Stanford University Technical Report, 2003. 87

[34] J. He, L. Balzano, and J. Lui. Online robust subspace tracking from

partial information. arXiv preprint arXiv:1109.3827, 2011. 21

113

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/

[35] Jun He, Laura Balzano, and John Lui. Online robust subspace tracking

from partial information. arXiv preprint arXiv:1109.3827, 2011. 13

[36] Donald Olding Hebb. The organization of behavior: A neuropsychological

theory. Psychology Press, 2005. 22

[37] Julia Heidemann, Mathias Klier, and Florian Probst. Identifying key

users in online social networks: A pagerank based approach. In ICIS’10,

2010. 9, 10

[38] Mark Herbster and Manfred K. Warmuth. Tracking the best linear pre-

dictor. The Journal of Machine Learning Research, 1:281–309, 2001. 22

[39] Iain M. Johnstone. On the distribution of the largest eigenvalue in prin-

cipal components analysis. Ann. Statist, 29(2):295–327, 2001. 3

[40] Iain M Johnstone. On the distribution of the largest eigenvalue in prin-

cipal components analysis. The Annals of statistics, 29(2):295–327, 2001.

12, 22

[41] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. Matrix

completion from noisy entries. Journal of Machine Learning Research,

11(2057-2078):1, 2010. 5

[42] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is

Twitter, a social network or a news media? In WWW ’10: Proceedings

of the 19th international conference on World wide web, pages 591–600,

New York, NY, USA, 2010. ACM. 80

114

[43] Jason D Lee, Ben Recht, Ruslan Salakhutdinov, Nathan Srebro, and

Joel A Tropp. Practical large-scale optimization for max-norm regular-

ization. In NIPS, pages 1297–1305, 2010. 5

[44] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014. 80

[45] Y. Li. On incremental and robust subspace learning. Pattern recognition,

37(7):1509–1518, 2004. 21

[46] Peter Lofgren, Siddhartha Banerjee, Ashish Goel, and C Seshadhri. Fast-

ppr: Scaling personalized pagerank estimation for large graphs. arXiv

preprint arXiv:1404.3181, 2014. 77

[47] Karim Lounici. High-dimensional covariance matrix estimation with miss-

ing observations. arXiv preprint arXiv:1201.2577, 2012. 13, 51, 52

[48] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos

Guestrin, and Joseph M. Hellerstein. Graphlab: A new parallel frame-

work for machine learning. In Conference on Uncertainty in Artificial

Intelligence (UAI), July 2010. 8, 15, 79

[49] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for

large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, pages 135–146. ACM,

2010. 8, 15

115

[50] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into texts.

Association for Computational Linguistics, 2004. 9

[51] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. Memory

limited, streaming PCA. arXiv preprint arXiv:1307.0032, 2013. 6

[52] Boaz Nadler. Finite sample approximation results for principal component

analysis: a matrix perturbation approach. The Annals of Statistics, page

2791–2817, 2008. 21

[53] Sahand Negahban, Martin J Wainwright, et al. Estimation of (near) low-

rank matrices with noise and high-dimensional scaling. The Annals of

Statistics, 39(2):1069–1097, 2011. 5

[54] Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Con-

temporary physics, 46(5):323–351, 2005. 76

[55] Erkki Oja and Juha Karhunen. On stochastic approximation of the eigen-

vectors and eigenvalues of the expectation of a random matrix. Journal

of mathematical analysis and applications, 106(1):69–84, 1985. 6, 53, 54

[56] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. 1999. 8, 17, 71

[57] David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hy-

percube. In Proceedings of the Sixth Annual ACM Symposium on Princi-

ples of Distributed Computing, PODC ’87, pages 77–85, New York, NY,

USA, 1987. ACM. 78

116

[58] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion,

Padhraic Smyth, and Max Welling. Fast collapsed gibbs sampling for

latent dirichlet allocation. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining, page

569–577, 2008. 45

[59] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hog-

wild: A lock-free approach to parallelizing stochastic gradient descent.

In Advances in Neural Information Processing Systems, pages 693–701,

2011. 67

[60] Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix

factorization for collaborative prediction. In Proceedings of the 22nd in-

ternational conference on Machine learning, pages 713–719. ACM, 2005.

5

[61] Herbert Robbins and Sutton Monro. A stochastic approximation method.

The Annals of Mathematical Statistics, page 400–407, 1951. 22

[62] Sam Roweis. EM algorithms for PCA and SPCA. Advances in neural

information processing systems, page 626–632, 1998. 22

[63] Mark Rudelson and Roman Vershynin. Smallest singular value of a ran-

dom rectangular matrix. Communications on Pure and Applied Mathe-

matics, 62(12):1707–1739, 2009. 32, 42

117

[64] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating

pagerank on graph streams. Journal of the ACM (JACM), 58(3):13, 2011.

65, 77

[65] Nadathur Satish, Narayanan Sundaram, Mostofa Ali Patwary, Jiwon Seo,

Jongsoo Park, M Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and

Pradeep Dubey. Navigating the maze of graph analytics frameworks using

massive graph datasets. 8, 15, 79

[66] Stefano Serra-Capizzano. Jordan canonical form of the google matrix: a

potential contribution to the pagerank computation. SIAM Journal on

Matrix Analysis and Applications, 27(2):305–312, 2005. 87

[67] D. Spielman and N. Srivastava. Graph sparsification by effective resis-

tances. SIAM Journal on Computing, 40(6):1913–1926, 2011. 78

[68] Michael E. Tipping and Christopher M. Bishop. Probabilistic principal

component analysis. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 61(3):611–622, 1999. 22

[69] Joel A Tropp. User-friendly tail bounds for sums of random matrices.

Foundations of Computational Mathematics, 12(4):389–434, 2012. 52

[70] Leslie G Valiant. A bridging model for parallel computation. Communi-

cations of the ACM, 33(8):103–111, 1990. 16

[71] Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A Ryan,

Margie L Homer, and Ramón Huerta. Chemical gas sensor drift com-

118

pensation using classifier ensembles. Sensors and Actuators B: Chemical,

166:320–329, 2012. 56

[72] R. Vershynin. How close is the sample covariance matrix to the actual

covariance matrix? Journal of Theoretical Probability, page 1–32, 2010.

3, 32

[73] Roman Vershynin. Introduction to the non-asymptotic analysis of random

matrices. arXiv preprint arXiv:1011.3027, 2010. 20, 32, 33

[74] VirtualBox 4.3. www.virtualbox.org, 2014. 80

[75] Manfred K. Warmuth and Dima Kuzmin. Randomized online PCA algo-

rithms with regret bounds that are logarithmic in the dimension. Journal

of Machine Learning Research, 9:2287–2320, 2008. 12, 20

[76] Per Åke Wedin. On angles between subspaces of a finite dimensional inner

product space. In Matrix Pencils, pages 263–285. Springer, 1983. 49

[77] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica.

Graphx: A resilient distributed graph system on spark. In First Interna-

tional Workshop on Graph Data Management Experiences and Systems,

page 2. ACM, 2013. 8, 15

119

Vita

Ioannis Mitliagkas was born in Kozani, Greece on April 13 1984, the son

of Vasilis Mitliagkas and Despoina Tzika. He received his 5 year diploma and

M.Sc. in Electronic and Computer Engineering from the Technical University

of Crete, with an award of excellence by the Technical Chamber of Greece. He

was admitted as a fellow into the ECE PhD program at UT Austin in 2009.

As of Fall 2015 he is a postdoctoral scholar with the Department of Statistics

at Stanford University.

Permanent address: Methonis 41
Kozani, 50100
Greece

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

120

	Acknowledgments
	Abstract
	Chapter 1. Introduction
	Streaming Principal Component Analysis
	Missing Entries
	PageRank Approximations on Very Large Graphs

	Chapter 2. Background
	Notation
	Streaming PCA
	Unbiased Covariance Estimation
	Imputation-based Algorithms
	Large-scale Graph Computation
	PageRank

	Chapter 3. Memory-constrained, Streaming PCA
	Problem Formulation
	Prior Work
	Algorithm and Guarantees
	Rank-One Case
	General Rank-k Case

	Proofs
	Preliminaries
	Proof of Theorem 7
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10

	Perturbation-tolerant Subspace Recovery
	Experiments

	Chapter 4. Dealing with Highly Incomplete Samples
	Problem Formulation
	Algorithm
	Convergence Analysis
	Experiments
	Simulations on the model
	Gas Sensor Array Data
	MovieLens
	Ease of parametrization

	Chapter 5. Fast PageRank Approximations on Graph Engines
	Top PageRank Elements
	Algorithm
	Main Result
	Related Work
	Experiments
	The Systems
	The Data
	Implementation
	Results

	Analysis
	Edge Erasure Model
	Proof of Theorem 24
	Proof of Theorem 25

	Vita

