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Abstract 

 

Enhancing Usability and Applicability of Korat 

 

Kilnagar S. Bhaskar, M.S.E. 

The University of Texas at Austin, 2015 

 

Supervisor:  Sarfraz Khurshid 

 

Software testing is an integral part of the software development cycle, and 

involves various techniques to test software components and applications. Specification-

based testing focuses on expected functionality as described in given specifications. 

Korat is a tool for generating structurally complex test inputs for specification-based 

testing of Java programs that operate on such inputs. Korat uses specifications written as 

Java predicates, that describe properties of expected input structures and efficiently 

generates all non-isomorphic valid structures within given bounds on input size. 

This report describes the software requirements, application design and 

implementation details of our effort to improve usability and applicability of Korat.  Our 

work involves functional enhancements to the classic Korat tool to provide support for 

the following elements: Graphical User Interface (GUI), Java Universal Network/Graph 

Framework (JUNG) output, Finite State Machine Domain (FSM), and JavaScript Object 

Notation (JSON) graph archival. 
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Chapter 1 Introduction 

Software testing is an integral part of the software development cycle. Various 

testing techniques are used in the industry to test software components and applications. 

Specification-based testing tests the functionality of code with respect to given 

specifications that describe expected program behaviors.  Specification-based testing is 

typically black-box testing -- the testers are not required to have knowledge of the 

software architecture, design or code implementation, and they can focus on what the 

software does and not on how it does it.  

The input domain space involved in modern day applications is typically very 

large, which makes manual testing costly and error-prone.  An approach to deal with 

large input spaces is to construct their models and use tools to automate testing with 

respect to the models.  Input space models can be written in the form of specifications in 

formal languages.  A common approach is to use finite-state machine models to describe 

how the system is expected to behave. 

 

1.1 KORAT 

Korat [2] is a tool for specification-based generation of structurally complex test 

inputs for Java programs.  Given a specification of desired inputs, Korat enumerates all 

inputs that meet the specification within a given bound on the input size.  Korat's key 

strength is its ability to generate structurally complex inputs, which satisfy complex 

properties that relate parts of the structure.  Korat requires the users to write input 

specifications in Java.  A typical input specification is written as a predicate (i.e., boolean 

returning method) that inspects its given input to check whether expected properties hold 

and returns true or false based on the outcome of the inspection.  The user also provides a 
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Finitization method that defines the bound on the input space. Korat outputs all non-

isomorphic structures that are within the finitization bound and are determined by the 

predicate method to be valid. 

 

1.2 KORAT ENHANCEMENTS  

This report describes the software requirements, application design and 

implementation details of our work on improving the usability and applicability of Korat, 

specifically on the following elements: 

 Graphical User Interface using Java Swing [11] 

 Graph Output Format using JUNG (Java Universal Network/Graph Framework) 

[10] 

 Finite State Machine Domain 

 Graph Archival using JSON (JavaScript Object Notation) [9] 

 

We embody these enhancements in our prototype tool named Korat-2015 [5]. 
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Chapter 2 Requirements 

The software requirements were captured and their quality scores were reviewed 

using Innoslate [6] requirements management tool as shown in Figure 2.1 

 

 

Figure 2.1: Requirements Management Tool 

  

2.1 FUNCTIONAL REQUIREMENTS  

This section lists both functional and non-functional software requirements for 

Korat-2015. 

 

2.1.1 Graphical User Interface (GUI) Support  

The software requirements to add a graphical user interface to Korat-2015 are 

shown in Table 2.1. They include running Korat-2015 by providing specific arguments, 

viewing the generated text and graph outputs, viewing any console output generated, 

obtaining help information, saving the graph as a file, and loading a graph from a file.  
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ID Requirement Description 

GUI-RQ-1 Provide a “- -gui” command line switch to start Korat-2015 in GUI 

mode. 

GUI-RQ-2 Invoke Korat-2015 in classical text mode if the command line does not 

contain the “- -gui” switch. 

GUI-RQ-3 On startup, launch Korat-2015 in full screen mode and display a blank 

screen. 

GUI-RQ-4 Display the tool name on the application tool bar. 

GUI-RQ-5 A “File” menu will allow user to transform and manage the Korat-2015 

generated internal models as text based files. 

GUI-RQ-6 Under the “File” menu, a “Load File” submenu will allow users to 

navigate to the file location and choose the Korat-2015 file. This file 

will be used as input to display the models in a graph format. 

GUI-RQ-7 The “Load File” submenu will display folders in the file chooser dialog 

box. 

GUI-RQ-8 When a user loads a “.kjson” file, Korat-2015 will hold only the model 

data contained in this file and will erase any other model information 

that it had prior to loading the file. 

GUI-RQ-9 Under the “File” menu, a “Save File” submenu will allow users to 

navigate to a file location to store the Korat-2015 file. This file will be 

used to store the Korat-2015 graph models. 

GUI-RQ-10 The “Save File” submenu will display folders in the file chooser dialog 

box. 

Table 2.1: GUI Functional Requirements 
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ID Requirement Description 

GUI-RQ-11 Under the “File” menu, an “Exit” submenu will allow users to quit the 

application. 

GUI-RQ-12 A “Run” menu will allow user to specify parameters and execute Korat-

2015. 

GUI-RQ-13 Under the “Run” menu, a “Run” submenu will display a “Run” screen 

that allow users to enter the parameters required to execute Korat-2015. 

GUI-RQ-14 A “Run” heading will be displayed on the “Run” screen to inform users 

of their current navigation point in the Korat-2015 menu. 

GUI-RQ-15 The “Run” submenu will display default screen values for all the 

parameters. 

GUI-RQ-16 Users will be able to overwrite the default screen values and enter the 

command parameters.   

GUI-RQ-17 Korat-2015 will process only those fields that do not have the default 

screen values. 

GUI-RQ-18 The “Run” submenu will have a “Clear” button to erase all user entered 

information and reset all the parameters to their default screen values. 

GUI-RQ-19 The user entered information in the “Run” form will not be erased, 

when the user navigates to a different menu item. 

GUI-RQ-20 An “Output” menu will allow users to view output generated by Korat-

2015 in different formats. 

Table 2.1 (continued): GUI Functional Requirements 
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ID Requirement Description 

GUI-RQ-21 Under the “Output” menu, a “Graph” submenu will allow users to view 

the Korat-2015 model output in graph format, represented as a directed 

graph containing vertices and edges. 

GUI-RQ-22 A “Graph” heading will be displayed on the “Graph” screen to inform 

users of their current navigation point in the Korat-2015 menu. 

GUI-RQ-23 A complete non-highlighted graph will be displayed, if one has been 

generated, when the user chooses the “Graph” submenu. 

GUI-RQ-24 Korat-2015 will allow users to browse the generated paths on the graph, 

and the current displayed path will be highlighted on the graph. 

GUI-RQ-25 The “Graph” screen will have a “Next” button to allow the user to 

browse the next path on the graph.  

GUI-RQ-26 The “Graph” screen will have a “Previous” button to allow the user to 

browse the previous path on the graph. 

GUI-RQ-27 The “Graph” screen will show the identifier of the current path 

displayed. 

GUI-RQ-28 The “Graph” screen will contain an “Animate” button that will allow 

users to automatically browse by sequencing through the paths after a 

short delay. 

GUI-RQ-29 Under the “Output” menu, a “Text” submenu will allow users to view 

the Korat-2015 model output in text format.  

Table 2.1 (continued): GUI Functional Requirements 
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ID Requirement Description 

GUI-RQ-30 A “Text” heading will be displayed on the “Text” screen to inform users 

of their current navigation point in the Korat-2015 menu. This screen 

will display information sent by Korat-2015 to the standard output. 

GUI-RQ-31 The “Text” screen will allow users to scroll through information on this 

screen. 

GUI-RQ-32 The “Text” screen will have a “Clear” button to allow users to erase 

information on this screen. 

GUI-RQ-33 The information in the “Text” screen will not be erased, when the user 

navigates to a different menu item. 

GUI-RQ-34 Under the “Output” menu, a “Console” submenu will allow users to 

view the Korat-2015 system output.  

GUI-RQ-35 A “Console” heading will be displayed on the “Console” screen to 

inform users of their current navigation point in the Korat-2015 menu. 

This screen will display error information sent by Korat-2015 to the 

standard error. 

GUI-RQ-36 The “Console” screen will allow users to scroll through information on 

this screen. 

GUI-RQ-37 The “Console” screen will have a “Clear” button to allow users to erase 

information on this screen. 

GUI-RQ-38 The information in the “Console” screen will not be erased, when the 

user navigates to a different menu item. 

Table 2.1 (continued): GUI Functional Requirements 
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ID Requirement Description 

GUI-RQ-39 A “Help” menu will provide information about the Korat-2015 tool. 

GUI-RQ-40 Under the “Help” menu, a “Help” submenu will display helpful 

information about the Korat-2015 tool. 

Table 2.1 (continued): GUI Functional Requirements 

 

2.1.2 Finite State Machine (FSM) Support 

The software requirements to run Korat-2015 on a target class that implements a 

finite state machine are shown in Table 2.2. They include exploring the state space, 

generating exploration information in text format and in an appropriate format to generate 

a graph, and generating coverage metrics.  

 

ID Requirement Description 

FSM-RQ-1 Provide capability to perform FSM modeling on a target class that 

implements the FSMModel interface. 

FSM-RQ-2 The target class will identify the names of the FSM states. 

FSM-RQ-3 The target class will identify the names of the FSM triggers. 

FSM-RQ-4 The target class will implement a method to reset the FSM to its initial 

state. 

FSM-RQ-5 The target class will implement a method to return the current state of 

the FSM. 

Table 2.2: FSM Functional Requirements 
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ID Requirement Description 

FSM-RQ-6 The target class will use the “@Trigger” annotation to identify the 

trigger methods that perform actions in the FSM. 

FSM-RQ-7 The target class will define a guard method associated with a trigger 

method. The guard method defines when a trigger is valid and can be 

pulled /performed. 

FSM-RQ-8 Translate the FSM state information into an appropriate format to show 

the states as vertices in the graph format. 

FSM-RQ-9 Translate the FSM trigger information into an appropriate format to 

show the triggers as edges in the graph format. 

FSM-RQ-10 Provide standard text output from the Korat-2015 FSM model run, in 

the Text Output window. 

FSM-RQ-11 Provide any error information from the Korat-2015 FSM model run, in 

the Console Output window. 

FSM-RQ-12 Provide “Trigger Coverage” metrics for modeling performed on an 

FSM class. 

FSM-RQ-13 Provide “State Coverage” metrics for modeling performed on an FSM 

class. 

FSM-RQ-14 Provide “Transition Coverage” metrics for modeling performed on an 

FSM class. 

FSM-RQ-15 Provide “Transition Pair Coverage” metrics for modeling performed on 

an FSM class. 

Table 2.2 (continued): FSM Functional Requirements 
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ID Requirement Description 

FSM-RQ-16 (OPTIONAL Requirement) 

Korat-2015 will have the capability to perform a random state reset 

during a modeling run on the target class. 

FSM-RQ-17 (OPTIONAL Requirement) 

Korat-2015 will have the capability for automated test case generation 

based on the modeling run on the target class. 

Table 2.2 (continued): FSM Functional Requirements 

 

2.1.3 Java Universal Network/Graph Framework (JUNG) Support 

The software requirements to generate a graph for an explored state space on a 

target class are shown in Table 2.3. 

 

ID Requirement Description 

JUNG-RQ-1 Korat-2015 will display the graph using the information in the 

“.kjson” file. 

JUNG-RQ-2 The paths in the graph will be displayed using vertices and edges. 

JUNG-RQ-3 Korat-2015 will display the graph using least possible number of 

nodes and edges. 

JUNG-RQ-4 The vertices in the graph will be displayed as circles. 

JUNG-RQ-5 The edges in the graph will be displayed as directed edges. 

Table 2.3: JUNG Functional Requirements 
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ID Requirement Description 

JUNG-RQ-6 The vertex information will be displayed as a label inside the vertex. 

JUNG-RQ-7 The edge information will be displayed as a label alongside the edge. 

JUNG-RQ-8 Highlight the vertices and the edge corresponding to the path browsed 

by the user, in a different color. 

JUNG-RQ-9 Korat-2015 will display the graph information from any user edited 

“.kjson” file, provided the file contents are in the correct format. 

JUNG-RQ-10 Korat-2015 will display any error that it encounters while processing 

the graph information. 

JUNG-RQ-11 For FSM models, Korat-2015 will display the states as vertices in the 

graph. 

JUNG-RQ-12 For FSM models, Korat-2015 will display the state transitions as 

directed edges in the graph. 

Table 2.3 (continued): JUNG Functional Requirements 

 

2.1.4 JavaScript Object Notation (JSON) Support 

The software requirements to save a graph as a file, and load a graph from a file in 

the appropriate format, are shown in Table 2.4. 

 

ID Requirement Description 

JSON-RQ-1 The Json format files will be generated in plain text format. 

JSON-RQ-2 The “GFX.kjson” file name will be used to generate the Json file. 

Table 2.4: JSON Functional Requirements 
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ID Requirement Description 

JSON-RQ-3 The current directory will be used as the default location to store the 

Json file. 

JSON-RQ-4 After a model execution, Korat-2015 will automatically store the 

network paths corresponding to the generated model, in the default 

file at the default location. 

JSON-RQ-5 Korat-2015 will allow users to save the graph information in Json 

format in a user specified folder. 

JSON-RQ-6 Korat-2015 will allow users to load the graph information from a user 

specified file. 

JSON-RQ-7 Korat-2015 will read the graph information from any user edited 

“.kjson” file, provided the file contents are in the correct format. 

JSON-RQ-8 Korat-2015 will not perform modeling validation on the graph 

information in the “.kjson” file. 

JSON-RQ-9 The user defined Json file should have a “.kjson” file extension, but 

can have any file name. 

JSON-RQ-10 Korat-2015 will display any error that it encounters while processing 

the Json input file. 

Table 2.4 (continued): JSON Functional Requirements 
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2.2 NON-FUNCTIONAL REQUIREMENTS  

The software requirements that capture the non-functional aspects are shown in 

Table 2.5. 

 

ID Requirement Description 

NF-RQ-1 The GUI must launch in a reasonable time frame, not exceeding 1 

minute, on a standard workstation. 

NF-RQ-2 The ease of use to run FSM modeling using the GUI must be similar to 

that of non-FSM models. 

NF-RQ-3 The graph must be capable of supporting at least 5 vertices, and at most 

2 edges between any two vertices. 

NF-RQ-4 The graph must display labels for the vertices and the edges in an easily 

readable format. 

NF-RQ-5 A Json file of at least 5 lines and at least 5 data elements per line must 

be supported. 

Table 2.5: FSM Non-Functional Requirements 
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Chapter 3 Design 

The design principle used is to seamlessly build on top of the existing classical 

framework, with maximum reuse of software components to provide the enhancement 

functionalities. This section describes the design through sample UML diagrams. 

 

3.1 USE CASE DIAGRAM 

The use case diagram from the perspective of a Korat-2015 user is shown in 

Figure 3.1. It follows the possible paths that a user can navigate using the graphical user 

interface.  

 

 

Figure 3.1: Use Case Diagram  
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3.2 CLASS DIAGRAM 

The class diagram shown in Figure 3.2 depicts at a high level, the changes made 

to the existing design framework. It includes key elements that are added new or have 

been modified. As can be seen, the design reuses the existing software components.  

The dotted lines in the diagram indicate the new dependencies that are added 

across the existing java packages. 

 

 

Figure 3.2: Class Diagram 
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3.3 SEQUENCE DIAGRAM 

An overview of a sample sequence diagram is shown in Figure 3.3. It depicts the 

key elements and actions involved when Korat-2015 is run from the graphical user 

interface. Only the high level components are shown without getting into the granular 

details of the sequence flow. 

As can be seen, every time a graph is generated, the corresponding network 

information is stored in a temporary file. The fInit() call clears graph information stored 

in the offline file. 

 

 

Figure 3.3: Sequence Diagram 
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3.4 USER INTERFACE PROTOTYPES  

This section shows the prototypes for the user interface screens for the enhanced 

Korat-2015 application. The graphical interface is implemented in Korat-2015 using the 

Java Swing library. The landing screen is launched in full screen mode with 

JFrame.MAXIMIZED_BOTH arguments to setExtendedState(). 

 

3.4.1 File Menu  

The file menu screens are shown in Figure 3.4. The title bar displays the 

application name as highlighted by (1). The screen at the center is for loading the graph 

information from a folder using showOpenDialog(). The one on the right is for saving the 

graph information to a folder using showSaveDialog(). 

 

 

 
  

Figure 3.4: File Menu Screens 

   

3.4.2 Run Menu  

The run menu screens are shown in Figure 3.5. The screen on the right is for 

choosing the arguments to run Korat-2015 as highlighted by (1). The bottom of the 

screen highlighted by (2) contains arguments that correspond to finite state machine 

analysis.  
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A Swing ActionListener listens to event on the Clear button and resets the fields 

to their default values. The entered values are not cleared when the screen focus changes 

ensuring the values are retained across UI navigation. 

 

 

 

Figure 3.5: Run Menu Screens 

    

3.4.3 Output Menu  

The output menu screens are shown in Figure 3.6. The screen on the top right 

corresponds to the graph output. On initial navigation to the Graph screen, 

paintGraph(PLAIN) will display a complete plain graph.  

Browsing a specific graph path displays the network path information as 

highlighted by (1), and the network graph as highlighted by (2). The sequence number of 
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the explored paths that is currently displayed is shown as highlighted by (3). The 

explored paths can be manually traversed using the buttons highlighted by (4), or 

traversed automatically using the check box highlighted by (5). An ActionListener listens 

to the events on the navigation buttons, and traverse through the GraphPath ArrayList to 

display the graph paths. The Animate ActionListener sequences through the graph paths 

with a delay between each display. 

The screen on the bottom left corresponds to the text output. The current 

navigation point is displayed as highlighted by (1). The screen on the bottom right 

corresponds to the console output. The Clear button is hooked to an ActionListener to 

clear the screen. 

The system standard output and error messages are displayed on the text and 

console windows, by redirecting OutputStream with System.setOut() and 

System.setErr().  

 

 

 

Figure 3.6: Output Menu Screens 
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Figure 3.6 (continued): Output Menu Screens  

 

3.4.4 Help Menu  

The help menu screens are shown in Figure 3.7. The screen on the right displays 

the help information about the Korat-2015 application. 

 

 

 

Figure 3.7: Help Menu Screens 
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3.5 FINITE STATE MACHINE DESIGN 

This section describes the mechanics related to analyzing a FSM target class using 

Korat-2015. 

 

3.5.1 Target Class 

The target class is checked for the presence of @Trigger annotations to determine 

if the exploration and coverage analysis corresponding to a finite state machine needs to 

be performed. 

The FSM target class implements the IFSMModel interface, defines a public 

String variable called State, and state names FSM_STATE_<number>. The resetState 

method sets the state to the initial state, and is when Korat-2015 performs a random reset 

during state space exploration. The trigger methods are earmarked using @Trigger 

annotations, and the guard methods have the same names as their corresponding trigger 

methods and end with “Guard”. 

The random reset during state space exploration can be enabled using the check 

box on the run screen as shown in Figure 3.8. The value of probability determines the 

randomness of the reset performed. 

 

 

Figure 3.8: Random Reset  
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The skeleton of a target class is shown in Figure 3.9 with mandatory elements 

highlighted in bold. A finite state machine target class must have these elements. 

 

 

Figure 3.9: Target Class Skeleton 

  

3.5.2 Coverage Metrics 

The coverage metrics calculated by Korat-2015 on a FSM target class is shown in 

Figure 3.10. It includes some common metrics like state coverage, trigger coverage, 

transition coverage, and transition pair coverage. 

  

public class <TargetClass> implements IFSMModel 

{  
 public String State ; 
 public String FSM_STATE_1=<Value>; 
 public String FSM_STATE_2=<value>;  

 ...      
 public boolean <trigger>Guard () { 
 } 
 ...  

 public @Trigger void <trigger> () {   
 } 
 ... 

 @Override 

 public void resetState() { 
  State =  FSM_STATE_1; 
 } 
} 
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Figure 3.10: Coverage Metrics 

  

Start of Korat Execution for <Target Class> (repOK, [<#explorations>]) 

 
FSM state reset probability: <probability between 0 and 100> % 
 
(<from state>, <trigger>, <to state>) **** 

(<from state>, <trigger>, <to state>) 
… 
 
Total explored: <# explorations done> 

New & Valid found: <# unique and those validated by trigger guards> 
 
State coverage:  
<state 1> 

<state 2> 
… 
covered: <#states covered> / <total # states> (<percent covered> %) 
 

Trigger coverage:  
<trigger 1> 
<trigger 2> 
… 

covered: <# triggers covered> / <total # triggers> (<percent covered> %) 
 
Transition coverage:  
<transition 1> 

< transition 2> 
… 
covered: <# transitions covered> 
 

Transition pair coverage:  
<transition 1>:<transition 2> 
<transition 3>:<transition 4> 
… 

covered: <# transition pairs covered> 
 
End of Korat Execution 
Overall time: <execution time in seconds> s. 
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3.6 JAVA UNIVERSAL NETWORK/GRAPH 

A sample graph network displayed by Korat-2015 is shown in Figure 3.11. The 

states indicated by vertices are highlighted by (1) and the triggers indicated by edges are 

highlighted by (2). Korat-2015 displays the current path in the explored state space in a 

different color (green). The graph network is implemented in Korat-2015 using the JUNG 

library. 

 

 

Figure 3.11: Graph Display 

  

3.7 JAVASCRIPT OBJECT NOTATION 

Korat-2015 saves the graph network information in intermediate files using the 

Json format. This format is viewable as a plain text and can be manually manipulated for 

any advanced custom analysis. The content structure of this file is shown in Figure 3.12. 

Korat-2015 stores the network information in a temporary folder named 

“viz_json” in the current directory location. For non-FSM model analysis, the files are 
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named GFX[n].kjson, where [n] is a running number, and each exploration graph is 

stored in a separate file. For FSM model analysis, the information is stored in a single file 

named “GFX.kjson”. Korat-2015 also uses this format when the user saves the network 

information as an external file or loads it from an external file. Korat-2015 used the Json 

file to display the graph, and does not perform model validation on the file data. The Json 

is implemented in Korat-2015 using the Google Gson [12] java library. 

  

 

Figure 3.12: Json Structure 

  

 

  

  

File Name: viz_json/GFX.kjson  

 
File Content: 
<index 1>, “from_state”, <from state>, <index 1>, “to_state”, <to state>, <index 1>, 
“in_transition”, <trigger> 

… 
 
File Name: viz_json/GFX[n].kjson  
 

File Content: 
[{"fromnode":<node1>,"tonode":<node2>,"relation":<relation1>},{"fromnode":<nod
e3>,"tonode":<node4>,"relation":<relation2>}] 
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Chapter 4 Code Implementation 

This section outlines some key aspects like algorithms, repository choices, and 

builds mechanisms. The implementation principle is to use and build on top of the 

existing code base [3]. 

 

4.1 ALGORITHM 

One of the key algorithms in the support for finite state machine is the state space 

exploration on the target class. The UML activity diagram for this algorithm in 

TestCradleFSM is shown in Figure. 4.1. 

The algorithm starts by scanning for variable names FSM_STATE_i to gather a 

list of State names. It then scans for the @Trigger annotations and gathers the list of 

Trigger methods. It then gathers the Guard methods based on the Trigger method names. 

It then iterates through invoking all Guard methods for every possible State value. The 

corresponding Trigger method is invoked if the Guard method returns true. 

The coverage information is recorded in the iterations, and this information is 

used to generate the coverage metrics. 

Also, the resetState () method is invoked at the probability specified when 

running Korat-2015. 

 



 27 

 

Figure 4.1: Activity Diagram   
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4.2 REPOSITORY 

The code is maintained in the repositories shown below. The development code 

base is on the local machine, and also at GitHub [7] which can be integrated with Jenkins 

to trigger a build. The GitHub repository for the Korat-2015 code is located at 

https://github.com/sbhaskar17/korat2015 

 

4.3 BUILDING KORAT-2015.JAR 

The ant build.xml file has been updated to include the new java source files and 

the additional.jar dependencies required by the enhanced Korat-2015 application. Figure 

4.2 shows a section of the build.xml file that lists the complete list of dependencies.  

 

 

Figure 4.2: File build.xml 

  

 

    <path id="Korat.classpath"> 
        <pathelement location="${BUILD_DIR}" /> 

        <pathelement location="lib/alloy4viz.jar" /> 
        <pathelement location="lib/commons-cli-1.0.jar" /> 
        <pathelement location="lib/javassist.jar" /> 
        <pathelement location="lib/junit.jar" /> 

        <pathelement location="lib/gson-2.2.4.jar" /> 
        <pathelement location="lib/colt-1.2.0.jar" /> 
        <pathelement location="lib/concurrent-1.3.4.jar" /> 
        <pathelement location="lib/jung-graph-impl-2.0.1.jar" /> 

        <pathelement location="lib/jung-algorithms-2.0.1.jar" /> 
        <pathelement location="lib/jung-visualization-2.0.1.jar" /> 
        <pathelement location="lib/collections-generic-4.01.jar" /> 
        <pathelement location="lib/jung-api-2.0.1.jar" /> 

    </path> 

https://github.com/sbhaskar17/korat2015
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4.3.1 Using Command Line on Local Repository 

The build can be done using the same command that was used to build the classic 

Korat-2015 application using the ant script. Figure 4.3 shows the log when building 

korat2015.jar from the command line, and the code base repository on the local 

computer. 

 

 

Figure 4.3: Build Log 

  

sbhaskar17@bhaskar:~/korat$ ant createJar 

Buildfile: /home/sbhaskar17/korat/build.xml 
 
createJar: 
 

clean: 
   [delete] Deleting directory /home/sbhaskar17/korat/build 
   [delete] Deleting directory /home/sbhaskar17/korat/dist 
 

init: 
    [mkdir] Created dir: /home/sbhaskar17/korat/build 
     [copy] Copying 6 files to /home/sbhaskar17/korat/build 
 

build: 
     [echo] Korat: /home/sbhaskar17/korat/build.xml 
    [javac] /home/sbhaskar17/korat/build.xml:58: warning: 'includeantruntime' was not 
set, defaulting to build.sysclasspath=last; set to false for repeatable builds 

    [javac] Compiling 184 source files to /home/sbhaskar17/korat/build 
    [javac] warning: [options] bootstrap class path not set in conjunction with -source 
1.5 
    [javac] 1 warning 

    [mkdir] Created dir: /home/sbhaskar17/korat/dist 
      [jar] Building jar: /home/sbhaskar17/korat/dist/korat2015.jar 
 
BUILD SUCCESSFUL 

Total time: 9 seconds 
sbhaskar17@bhaskar:~/korat$  
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4.3.2 Using Jenkins on Local Repository 

The build can be done using Jenkins, by providing appropriate build target as 

shown in Figure 4.4. The code base repository is on the local computer. The build log 

from Jenkins is shown in Figure 4.5. 

 

 

Figure 4.4: Jenkins Build 

 

 

Figure 4.5: Jenkins Build Log 
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4.3.3 Using Jenkins on Remote Repository 

The build can be done using Jenkins, on a remote code base repository like 

GitHub. The build log from Jenkins is shown in Figure 4.6. 

 

 

Figure 4.6: Jenkins Build Log From GitHub 

 

4.4 BUILDING <TARGET CLASS>.JAR 

The steps to build <target class>.jar are shown in Figure 4.7. 

 

 

Figure 4.7: Target Class Build 

  

 

  
  

sbhaskar17@bhaskar:~$ javac -cp  ./korat/dist/korat2015.jar:. gumball/GumBall.java 
sbhaskar17@bhaskar:~$ ls gumball 
GumBall.class  GumBall.java 
sbhaskar17@bhaskar:~$ 
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Chapter 5 Verification and Validation 

This section provides the plan to test Korat-2015 application. The test principle is 

to use the existing test mechanisms [1, 4] and build on top of the current test framework. 

 

5.1 REGRESSION TESTS  

Our approach for regression test is to use the existing test framework as-is without 

any changes. The tests can be run using Jenkins with build target shown in Figure 5.1. 

The console output for the test is shown in Figure 5.2. 

 

  

Figure 5.1: Jenkins Test Run 

 

Figure 5.2: Jenkins Test Log 
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The regression tests can also be run from the command line or from Jenkins using 

the current build.xml ant and JUnit [13] test scripts.  Figure 5.3 contains the log generated 

when testing Korat-2015 from the command line. 

 

 

Figure 5.3 Command Line Test Log 

 

sbhaskar17@bhaskar:~/korat$ ant test 

Buildfile: /home/sbhaskar17/korat/build.xml 
 
init: 
 

build: 
     [echo] Korat: /home/sbhaskar17/korat/build.xml 
    [javac] /home/sbhaskar17/korat/build.xml:58: warning: 'includeantruntime' was not 
set, defaulting to build.sysclasspath=last; set to false for repeatable builds 

 
test: 
    [javac] /home/sbhaskar17/korat/build.xml:81: warning: 'includeantruntime' was not 
set, defaulting to build.sysclasspath=last; set to false for repeatable builds 

    [mkdir] Created dir: /home/sbhaskar17/korat/test-reports 
    [junit] Running korat.exploration.BinaryTreeExplorationTest 
    [junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.027 sec 
    [junit] Running korat.exploration.BinomialHeapExplorationTest 

    [junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.343 sec 
    [junit] Running korat.exploration.DisjSetExplorationTest 
    [junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.81 sec 
    [junit] Running korat.exploration.FibonacciHeapExplorationTest 

    [junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 2.248 sec 
    [junit] Running korat.exploration.HeapArrayExplorationTest 
    [junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.747 sec 
    [junit] Running korat.exploration.SortedListExplorationTest 

    [junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 5.478 sec 
 
BUILD SUCCESSFUL 
Total time: 15 seconds 

sbhaskar17@bhaskar:~/korat$ 
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5.2 ENHANCEMENTS TESTS  

There are different approaches to test, depending on how Korat-2015 is invoked 

by the user. One is using the command line interface and another is using the graphical 

user interface. The former involves adding tests to the build.xml ant script, while the 

latter involves manual testing. We use manual testing to test Java Swing components. 

 

5.2.1 Automated Tests 

Our approach for functions done purely from the command line interface is to use 

an automated test framework. These include FSM explorations and coverage, and do not 

include the random reset. The testing can be done using the existing ant and JUnit test 

framework and updating these scripts to cover the above functions.  

A new test script FSMExplorationTest has been added, and the key changes to the 

build.xml file are shown in Figure 5.4. 

 

 

Figure 5.4: File build.xml Changes 

File: build.xml 
 

        <junit printsummary="true" fork="true" haltonfailure="false"> 
            <classpath refid="Korat.classpath" /> 
            <formatter type="plain" /> 
            <batchtest fork="yes" todir="${TEST_REPORTS_DIR}"> 

                <fileset dir="tests/"> 
                    <include name="korat/exploration/*ExplorationTest.java" /> 
                    <exclude name="korat/exploration/BaseExplorationTest.java" /> 

                    <exclude name="korat/exploration/BaseFSMExplorationTest.java" 

/> 
                    <exclude name="korat/exploration/ExplorationAllTests.java" /> 
                </fileset> 
            </batchtest>  

        </junit> 
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The changes include new classes as shown in Figure 5.5, and test target class as 

shown in Figure 5.6. 

 

 

Figure 5.5: FSM Exploration Test Classes 

File: BaseFSMExplorationTest 

package korat.exploration; 
.. 
class TestConfigsFSM { 
… 

} 
 
public class BaseFSMExplorationTest extends TestCase { 
… 

    private void doTestForAllConfigs(String[] args, int newCases, int tested) { 
 
        TestConfigsFSM it = TestConfigsFSM.getInstance(); 
        it.reset(); 

        while (it.hasNext()) { 
 
            it.next();  
            Korat.main(args); 

            assertEquals(newCases, 
TestCradleFSM.getInstance().getValidCasesGenerated()); 
            if (tested > 0) { 
                assertEquals(tested, TestCradleFSM.getInstance().getTotalExplored()); 

            } 
        } 
    } 
} 

 
File: FSMExplorationTest.java 
package korat.exploration; 
public class FSMExplorationTest extends BaseFSMExplorationTest { 

 
    public void testFSM() throws Exception { 
        String cmdLine = "-c korat.examples.fsm.FSM -a 3"; 
        doTestForAllConfigs(cmdLine, 1, 3); 

    } 
} 
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Figure 5.6: Test Script Target Class 

File: FSM.java 

package korat.examples.fsm; 
import korat.*; 
 
public class FSM implements IFSMModel { 

 public String State; 
 public String FSM_STATE_1="NO COINS"; 
 public String FSM_STATE_2="ONE COIN";  
 public String FSM_STATE_3="TWO COINS"; 

      
 public boolean add1coinGuard() { 
  return (State.equals(FSM_STATE_1) || State.equals(FSM_STATE_2));  
 } 

  
 public @Trigger void add1coin() { 
  State = State.equals(FSM_STATE_1) ? FSM_STATE_2 : 
FSM_STATE_3;  

 } 
  
 public boolean add2coinsGuard() {  
  return (State.equals(FSM_STATE_1)); 

 } 
  
 public @Trigger void add2coins() { 
  State = FSM_STATE_3;  

 } 
  
 public boolean vendgumGuard() { 
  return (State.equals(FSM_STATE_3));  

 } 
  
 public @Trigger void vendgum() { 
  State = FSM_STATE_1;  

 } 
  
 @Override 
 public void resetState() { 

  State = FSM_STATE_1;   
 }   
} 
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Figure 5.7 shows the Jenkins console output from running the above JUnit script 

for the finite state machine test. Figure 5.8 shows the test report generated. 

 

 

Figure 5.7: Jenkins Output From JUnit Run 
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Figure 5.8: JUnit Test Report  

 

File: TEST-korat.exploration.FSMExplorationTest.txt 

 
Testsuite: korat.exploration.FSMExplorationTest 
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.229 sec 
------------- Standard Output --------------- 

 
Start of Korat Execution for korat.examples.fsm.FSM (repOK, [3]) 
 
FSM state reset probability: 0.0 % 

 
(NO COINS, add2coins, TWO COINS) **** 
(ONE COIN, add2coins, ONE COIN) 
(TWO COINS, add2coins, TWO COINS) 

Total explored: 3 
New & Valid found: 1 
 
State coverage:  

TWO COINS 
covered: 1 / 3 (33 %) 
 
Trigger coverage:  

add2coins 
covered: 1 / 3 (33 %) 
 
Transition coverage:  

NO COINS:add2coins:TWO COINS 
covered: 1 
 
Transition pair coverage:  

covered: 0 
 
End of Korat Execution 
Overall time: 0.172 s. 

------------- ---------------- --------------- 
 
Testcase: testFSM took 0.226 sec 
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5.2.2 Manual Tests 

Our approach for the functions done purely from the graphical user interface is to 

test manually. These include FSM random reset, Swing UI, JUNG graph network, and 

Json functions. There is scope to automate most of these which can be considered for 

future work. 

 

5.2.3 Comparison Tests 

A sample run of original Korat and the enhanced Korat-2015 on a binary tree 

exploration is shown in Figure 5.9. The results are comparable, with Korat-2015 taking a 

slightly longer execution time for the sample run. 

 

 

Figure 5.9: Korat and Korat-2015 Comparison Run 

 

C:\Users\dzhvn0\Desktop\kk>"C:\Program Files (x86)\Java\jdk1.7.0_75"\bin\java -cp 
korat-1.0.jar;.\lib\*;. korat.Korat --class korat.examples.binarytree.BinaryTree --print -

-args 3,3,3 
 
Start of Korat Execution for korat.examples.binarytree.BinaryTree (repOK, [3, 3, 3]) 
 

korat.examples.binarytree.BinaryTree@1b7a553 
korat.examples.binarytree.BinaryTree@1b7a553 
korat.examples.binarytree.BinaryTree@1b7a553 
korat.examples.binarytree.BinaryTree@1b7a553 

korat.examples.binarytree.BinaryTree@1b7a553 
Total explored:63 
New found:5 
 

End of Korat Execution 
Overall time: 0.133 s. 
 
C:\Users\dzhvn0\Desktop\kk> 
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Figure 5.9 (continued): Korat and Korat-2015 Comparison Run 

 The graph outputs from the runs on a FSM and non-FSM target classes are 

shown in Figure 5.10. 

 

 

Figure 5.10: FSM and non-FSM Graphs  

C:\Users\dzhvn0\Desktop\kk>"C:\Program Files (x86)\Java\jdk1.7.0_75"\bin\java -cp 

korat2015.jar;.\lib\*;. korat.Korat --class korat.examples.binarytree.BinaryTree --print 
--args 3,3,3 
 
Start of Korat Execution for korat.examples.binarytree.BinaryTree (repOK, [3, 3, 3]) 

 
korat.examples.binarytree.BinaryTree@10e2558 
korat.examples.binarytree.BinaryTree@10e2558 
korat.examples.binarytree.BinaryTree@10e2558 

korat.examples.binarytree.BinaryTree@10e2558 
korat.examples.binarytree.BinaryTree@10e2558 
Total explored:63 
New found:5 

 
End of Korat Execution 
Overall time: 0.135 s. 
 

C:\Users\dzhvn0\Desktop\kk> 

Non-FSM (left) 
Command:  
java -cp korat2015.jar;.\lib\*;. korat.Korat –gui 
Arguments:  

 --class = korat.examples.binarytree.BinaryTree 
--args = 3,3,3 
 
FSM (right) 

Command:  
java -noverify -cp korat2015.jar;.\gumball;.\lib\*;. korat.Korat --gui 
Arguments:  
--class = gumball.GumBall  

--args = 10 
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Figure 5.10 (continued): FSM and non-FSM Graphs 
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Chapter 6 Downloading, Installing and Using Korat-2015 

This section provides the instructions to build, install and use Korat-2015. The 

information is also available at SourceForge [8] as described later in this section. 

 

6.1 DOWNLOADING 

There are multiple ways to download the Korat-2015 application: 

 Download Korat-2015 bundle. This bundle contains the libraries including those 

for generating graphs. If you instead need to use GraphViz for graphs, it needs to 

be downloaded and installed separately. 

 Download Korat-2015 lite. This is just the core Korat, and does not contain the 

libraries. The following libraries need to be downloaded separately: alloy4viz.jar, 

collections-generic-4.01.jar, colt-1.2.0.jar, commons-cli-1.0.jar, concurrent-

1.3.4.jar, gson-2.2.4.jar, javassist.jar, jung-algorithms-2.0.1.jar, jung-api-2.0.1.jar, 

jung-graph-impl-2.0.1.jar, jung-visualization-2.0.1.jar, and junit.jar. 

 Download source files and build. The deployed code can be used to build the 

korat2015.jar file, or a custom korat2015.jar file. 

 

The code, deployment jar files and support information are hosted on 

SourceForge at http://korat2015.sourceforge.net 

 

6.2 INSTALLING 

The current directory/ folder that Korat-2015 runs, contains the korat2015.jar file. 

The korat2015.jar file can be obtained as described in the above section. The current 

http://korat2015.sourceforge.net/
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directory contains two sub-directories, <target> and lib. The <target> directory contains 

the <target>.jar file. The lib sub-directory contains the library files. 

Figure 6.1 explains the directory structure on Windows. The structure on Linux 

would be the same. 

 

 

Figure 6.1: Directory Structure 

 

 

Figure 6.1 (continued): Directory Structure 

C:\Users\dzhvn0\Desktop\kk>dir gumball 
 Volume in drive C is OSVol 

 Volume Serial Number is 666B-D925 
 Directory of C:\Users\dzhvn0\Desktop\kk\gumball 
05/28/2015  10:41 AM    <DIR>          . 
05/28/2015  10:41 AM    <DIR>          .. 

06/15/2015  04:44 PM             1,141 GumBall.class 
05/29/2015  08:00 PM               838 GumBall.java 
05/17/2015  09:27 AM    <DIR>          viz_json 
               2 File(s)          1,979 bytes 

               3 Dir(s)  382,914,117,632 bytes free 
 
C:\Users\dzhvn0\Desktop\kk> 
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Figure 6.1 (continued): Directory Structure 

 

6.3 CREATING TARGET CLASS  

The target class can be created by downloading Gumball.java, and compiling the 

target gumball.GumBall class as shown in Figure. 6.2. 

C:\Users\dzhvn0\Desktop\kk>dir korat2015.jar 

 Volume in drive C is OSVol 
 Volume Serial Number is 666B-D925 
 
 Directory of C:\Users\dzhvn0\Desktop\kk 

06/15/2015  01:02 PM           364,791 korat2015.jar 
               1 File(s)        364,791 bytes 
               0 Dir(s)  382,914,117,632 bytes free 
 

C:\Users\dzhvn0\Desktop\kk>dir lib 
 Volume in drive C is OSVol 
 Volume Serial Number is 666B-D925 
 

 Directory of C:\Users\dzhvn0\Desktop\kk\lib 
06/15/2015  07:07 PM    <DIR>          . 
06/15/2015  07:07 PM    <DIR>          .. 
06/15/2015  08:41 AM           716,757 alloy4viz.jar 

06/15/2015  08:41 AM           531,557 collections-generic-4.01.jar 
06/15/2015  08:41 AM           581,945 colt-1.2.0.jar 
06/15/2015  08:41 AM            30,117 commons-cli-1.0.jar 
06/15/2015  08:41 AM           189,284 concurrent-1.3.4.jar 

06/15/2015  08:41 AM           190,418 gson-2.2.4.jar 
06/15/2015  08:41 AM           471,005 javassist.jar 
06/15/2015  08:41 AM           233,113 jung-algorithms-2.0.1.jar 
06/15/2015  08:41 AM            40,975 jung-api-2.0.1.jar 

06/15/2015  08:41 AM            62,329 jung-graph-impl-2.0.1.jar 
06/15/2015  08:41 AM           324,398 jung-visualization-2.0.1.jar 
06/15/2015  08:41 AM           118,808 junit.jar 
              12 File(s)      3,490,706 bytes 

               2 Dir(s)  382,914,117,632 bytes free 
 
C:\Users\dzhvn0\Desktop\kk> 
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Figure 6.2: Target Class Compilation 

 

6.4 USING KORAT-2015 

This section describes how to use Korat-2015 on a couple of popular platforms. 

One method to run Korat-2015 is using command line interface, and providing the 

application arguments with the command. The other method is to use the new graphical 

user interface. In this case, the application argument “--gui” is the only application 

argument provided on the command line. The other application arguments are entered on 

the Run screen. 

 

6.4.1 Running on Linux 

Figure 6.3 shows the command to run Korat-2015 on Linux. 

   

 

Figure 6.3: Running on Linux 

Compiling target class: 

 
Windows 
javac -Xlint:deprecation -cp .;.\korat2015.jar .\gumball\GumBall.java 
 

Linux 
javac -Xlint:deprecation -cp .:./korat2015.jar ./gumball/GumBall.java 

Using Graphical user interface: 
 
sbhaskar17@bhaskar:~$ java -noverify -cp ./korat2015.jar:./lib/*:./gumball:. 
korat.Korat --gui 
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 Figure 6.3 (continued): Running on Linux 

Using Command line interface: 

 
sbhaskar17@bhaskar:~$ java -noverify -cp ./korat2015.jar:./lib/*:./gumball:. 
korat.Korat -c gumball.GumBall -a 3 
 

Start of Korat Execution for gumball.GumBall (repOK, [3]) 
 
FSM state reset probability: 0.0 % 
 

(NO COINS, add1coin, ONE COIN) **** 
(ONE COIN, add1coin, TWO COINS) **** 
(TWO COINS, add1coin, TWO COINS) 
Total explored: 3 

New & Valid found: 2 
 
State coverage: 
TWO COINS 

ONE COIN 
covered: 2 / 3 (66 %) 
 
Trigger coverage: 

add1coin 
covered: 1 / 3 (33 %) 
 
Transition coverage: 

NO COINS:add1coin:ONE COIN 
ONE COIN:add1coin:TWO COINS 
covered: 2 
 

Transition pair coverage: 
NO COINS:TWO COINS 
covered: 1 
 

End of Korat Execution 
Overall time: 0.568 s. 
sbhaskar17@bhaskar:~$ 
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6.4.2 Running on Windows 

Figure 6.4 shows the command to run Korat-2015 on Windows. 

 

 

Figure 6.4: Running on Windows  

Using Command line interface: 

 
C:\Users\dzhvn0\Desktop\kk> java -noverify -cp korat2015.jar;.\gumball;.\lib\*;. 
korat.Korat -c gumball.GumBall -a 3 
 

Start of Korat Execution for gumball.GumBall (repOK, [3]) 
 
FSM state reset probability: 0.0 % 
 

(NO COINS, add1coin, ONE COIN) **** 
(ONE COIN, add1coin, TWO COINS) **** 
(TWO COINS, add1coin, TWO COINS) 
Total explored: 3 

New & Valid found: 2 
 
State coverage: 
TWO COINS 

ONE COIN 
covered: 2 / 3 (66 %) 
 
Trigger coverage: 

add1coin 
covered: 1 / 3 (33 %) 
 
Transition coverage: 

NO COINS:add1coin:ONE COIN 
ONE COIN:add1coin:TWO COINS 
covered: 2 
 

Transition pair coverage: 
NO COINS:TWO COINS 
covered: 1 
 

End of Korat Execution 
Overall time: 0.213 s. 
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Figure 6.4 (continued): Running on Windows 

 
  

Using Graphical user interface: 

 
C:\Users\dzhvn0\Desktop\kk> java -noverify -cp korat2015.jar;.\gumball;.\lib\*;. 
korat.Korat --gui 
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Chapter 7 Traceability Matrix 

The below Table 7.1 maps requirements, design and verification & validation 

sections in this document. 

 

Table 7.1: Traceability Matrix 

Requirement Design V&V  Requirement Design V&V 

GUI-RQ-1 6.3 5.2.2  GUI-RQ-18 3.4.2 5.2.2 

GUI-RQ-2 6.3 5.2.1  GUI-RQ-19 3.4.2 5.2.2 

GUI-RQ-3 3.4.1 5.2.2  GUI-RQ-20 3.4.3 5.2.2 

GUI-RQ-4 3.4.1 5.2.2  GUI-RQ-21 3.6 5.2.2 

GUI-RQ-5 3.4.1 5.2.2  GUI-RQ-22 3.4.3 5.2.2 

GUI-RQ-6 3.4.1 5.2.2  GUI-RQ-23 3.4.3 5.2.2 

GUI-RQ-7 3.4.1 5.2.2  GUI-RQ-24 3.4.3 5.2.2 

GUI-RQ-8 3.3 5.2.2  GUI-RQ-25 3.4.3 5.2.2 

GUI-RQ-9 3.4.1 5.2.2  GUI-RQ-26 3.4.3 5.2.2 

GUI-RQ-10 3.4.1 5.2.2  GUI-RQ-27 3.4.3 5.2.2 

GUI-RQ-11 3.4.1 5.2.2  GUI-RQ-28 3.4.3 5.2.2 

GUI-RQ-12 3.4.2 5.2.2  GUI-RQ-29 3.4.3 5.2.2 

GUI-RQ-13 3.4.2 5.2.2  GUI-RQ-30 3.4.3 5.2.2 

GUI-RQ-14 3.4.2 5.2.2  GUI-RQ-31 3.4.3 5.2.2 

GUI-RQ-15 3.4.2 5.2.2  GUI-RQ-32 3.4.3 5.2.2 

GUI-RQ-16 3.4.2 5.2.2  GUI-RQ-33 3.4.3 5.2.2 

GUI-RQ-17 3.4.2 5.2.2  GUI-RQ-34 3.4.3 5.2.2 
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Table 7.1 (continued): Traceability Matrix 

 

Requirement Design V&V  Requirement Design V&V 

GUI-RQ-35 3.4.3 5.2.2  FSM-RQ-16 3.5.1 5.2.2 

GUI-RQ-36 3.4.3 5.2.2  FSM-RQ-17 N/A 5.2.1 

GUI-RQ-37 3.4.3 5.2.2  JUNG-RQ-1 3.7 5.2.2 

GUI-RQ-38 3.4.3 5.2.2  JUNG-RQ-2 3.6 5.2.2 

GUI-RQ-39 3.4.4 5.2.2  JUNG-RQ-3 3.6 5.2.2 

GUI-RQ-40 3.4.4 5.2.2  JUNG-RQ-4 3.6 5.2.2 

FSM-RQ-1 3.5.1 5.2.1  JUNG-RQ-5 3.6 5.2.2 

FSM-RQ-2 3.5.1 5.2.1  JUNG-RQ-6 3.6 5.2.2 

FSM-RQ-3 3.5.1 5.2.1  JUNG-RQ-7 3.6 5.2.2 

FSM-RQ-4 3.5.1 5.2.1  JUNG-RQ-8 3.6 5.2.2 

FSM-RQ-5 3.5.1 5.2.1  JUNG-RQ-9 3.7 5.2.2 

FSM-RQ-6 3.5.1 5.2.1  JUNG-RQ-10 3.4.3 5.2.2 

FSM-RQ-7 3.5.1 5.2.1  JUNG-RQ-11 3.6 5.2.2 

FSM-RQ-8 3.6 5.2.1  JUNG-RQ-12 3.6 5.2.2 

FSM-RQ-9 3.6 5.2.1  JSON-RQ-1 3.7 5.2.2 

FSM-RQ-10 3.4.3 5.2.1  JSON-RQ-2 3.7 5.2.2 

FSM-RQ-11 3.4.3 5.2.1  JSON-RQ-3 3.7 5.2.2 

FSM-RQ-12 3.5.2 5.2.1  JSON-RQ-4 3.7 5.2.2 

FSM-RQ-13 3.5.2 5.2.1  JSON-RQ-5 3.4.1 5.2.2 

FSM-RQ-14 3.5.2 5.2.1  JSON-RQ-6 3.4.1 5.2.2 

FSM-RQ-15 3.5.2 5.2.1  JSON-RQ-7 3.7 5.2.2 
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Table 7.1 (continued): Traceability Matrix 

 
 
 

 
 
 

 
  

Requirement Design V&V     

JSON-RQ-8 3.7 5.2.2     

JSON-RQ-9 3.4.1 5.2.2     

JSON-RQ-10 3.4.3 5.2.2     

NF-RQ-1 ALL 5.2.2     

NF-RQ-2 ALL 5.2.2     

NF-RQ-3 ALL 5.2.2     

NF-RQ-4 ALL 5.2.2     

NF-RQ-5 ALL 5.2.1     
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Chapter 8 Conclusion 

This report presented our work on enhancing the usability and applicability of 

Korat, which is a tool for automated specification-based testing of Java programs. Our 

enhancements address the following elements: Graphical User Interface (GUI), Java 

Universal Network/Graph Framework (JUNG) output, Finite State Machine Domain 

(FSM), and JavaScript Object Notation (JSON) graph archival. We hope our work 

provides a foundation that enables more developers and testers to benefit from automated 

test input generation offered by Korat. 
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