Copyright
by
Kilnagar S. Bhaskar
2015

The Report Committee for Kilnagar S. Bhaskar
Certifies that this is the approved version of the following report:

Enhancing Usability and Applicability of Korat

APPROVED BY
SUPERVISING COMMITTEE:

Supervisor:

Sarfraz Khurshid

Herb Krasner

Enhancing Usability and Applicability of Korat

by

Kilnagar S. Bhaskar, B.E.

Report
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
August 2015

Dedication

To my wife Priya for her inspiration, my daughter Aditi for her distractions, and my
parents and sisters for their support, without whom this project would not have been

possible and would have been completed sooner.

Acknowledgements

I would like to thank Dr. Sarfraz Khurshid, Associate Professor of Electrical and
Computer Engineering at The University of Texas at Austin, for his expert guidance, and
Dr. Herb Krasner, Senior Lecturer in the Department of Electrical and Computer
Engineering at The University of Texas at Austin, for evaluating this report from the

perspective of his academic and industry experience.

A special note of thanks to my family members who assisted me with this report:
my doctor wife who watched over my health, my daughter who collated the printout by
page numbers, and my parents and sisters who reassured me that I could not have done

any better.

Abstract

Enhancing Usability and Applicability of Korat

Kilnagar S. Bhaskar, M.S.E.

The University of Texas at Austin, 2015

Supervisor: Sarfraz Khurshid

Software testing is an integral part of the software development cycle, and
mvolves various techniques to test software components and applications. Specification-
based testing focuses on expected functionality as described in given specifications.
Korat is a tool for generating structurally complex test nputs for specification-based
testing of Java programs that operate on such inputs. Korat uses specifications written as
Java predicates, that describe properties of expected input structures and efficiently
generates all non-isomorphic valid structures within given bounds on input size.

This report describes the software requirements, application design and
implementation details of our effort to improve usability and applicability of Korat. Our
work involves functional enhancements to the classic Korat tool to provide support for
the following elements: Graphical User Interface (GUI), Java Universal Network/Graph
Framework (JUNG) output, Finite State Machine Domain (FSM), and JavaScript Object

Notation (JSON) graph archival.

Vi

Table of Contents

LSt OF TabIES. ...t e
LSt OF FAGUIES ..vvviiiiiiiiieeeeeeeei ettt e e e e e ettt e e e e e e e e e e e e e sssnesesaeeaee e X
Chapter 1 INtrodUCTIONuuiiiiiiiiiiiieeee e e e e e e e e e e 1
LT KOTAL e 1

1.2 Korat ENhancementscooeviiiiiiieiiniiiiiiee e 2
Chapter 2 REqUITEIMENLSceeviiiiiiiiiiiiiiiiiiiieseeeeeeeeeeeeeeeeeeeeeeeeeeeeaesrasaennnnnnnnnnnns 3
2.1 Functional REQUIrEMENLSccceeeeeeiiiiiiiiiiiiieeiiiiee e 3

2.1.1 Graphical User Interface (GUI) Support.........ccccouvvvviveiierenennnnnn. 3

2.1.2 Finite State Machine (FSM) Support..........cooovviviiiiiiiiiiiiiinnnn. 8

2.1.3 Java Universal Network/Graph Framework (JUNG) Support ... 10

2.1.4 JavaScript Object Notation (JSON) Supportccccvvveeeennnnen. 11

2.2 Non-Functional ReqUIremMentsccevvveeeeeeeeeeeeeneeeiiiiiiiiirieeeeeeeeenns 13
Chapter 3 DESIZN .ceeeeeeeeeeeieeeecceeeeeeee e e e e e e e e e e e e e e e e e eeeeaaaa b ananes 14
3.1 Use Case DIagramuuuuuuuuuiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeveaesenaeeees 14

3.2 Class Dia@ramcceeeiieeieeiiiiiiiiieeeeeeee e 15

3.3 Sequence DIagrami...........coeeeeeiiiiiiiiiiiiiiiiiieee e e e ee e 16

3.4 User Interface ProtOtyPesuuueeeieiieeieeeeeeeeeeeee e 17

341 File MENU ..o e e 17

342 RUNMENU..ooiiiiiiiiiiiiiie e 17

3,43 0Utput MENU.......coeeiiiiiiiiiiiieeeeirree e e e 18

344 HEIP MENU..oooiiiiiiie e 20

3.5 Finite State Machine DeSignc.cuvvviiiiiieeiieiiiieeiiiiiiiiiiieeeeeeeeeeen 21

3.5.1 Target Class ..cceeeeeeieeeieeeeeeeeeeeeee e e e e e e 21

3.5.2 CoVErage MELIICSccevveeieeieiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeereeeeeeeaaeees 22

3.6 Java Universal Network/Graph..........cccccceiieiiiiiiiiiiiiiiiiiiieiceeeeeeen 24

3.7 JavaScript Object NOtatiOn......uuuiieeeeeeeeeeeeeeeeeeeeieieieeeieeeiieeenes 24

vil

Chapter 4 Code Implementationeeeeeiiiriieeeeeeeeeeeeeeeeeeeeeeeeeeiieee e 26

N BN [0 11 11 s USSP PP PPN 26

4.2 REPOSTEOTY .evvvuiiiieeeeeeeeeeeeeeeeeeeeeeeeeteaeseaasasssasnsaaasaeeaeaaaasaeeeseessessssnens 28

4.3 Building Korat-2015.Jareveiiieeeeeiiiiiiiiiiiieeeee e 28

4.3.1 Using Command Line on Local Repositorycccccevvvrvnnnne. 29

4.3.2 Using Jenkins on Local Repositorycoeeeuiviiiiiieiereeenennnn. 30

4.3.3 Using Jenkins on Remote Repositorycccceeeervviiieeeennnnnnne. 31

4.4 Building <target Class™.Jarccvvriririiieiiiiiiiiiiieeeeeeeeeeeeeereeeeeeereeenenens 31
Chapter 5 Verification and Validation..........cccceeeeeeeeeeeiiiiiiiiiiiiiiiiin 32
5.1 ReGIEeSSION TESES ...eeviiiiiiieiiiiiiiie e 32

5.2 Enhancements TestS.......c.uuueeieiiiiiiiiiiiiiiiiiieeeeeieeee e 34

5.2.1 Automated TESESuuueeiiiiiiiiieeeieiieii e 34

5.2.2 Manual TeStS..coeeuuiiiiiiiiiiieie e 39

5.2.3 CompariSOn TESTSuuuuiiiiiiiiieeeieeeeiiiiiiiiieeeeee e e e e e e e e e e 39

Chapter 6 Downloading, Installing and Using Korat-2015............ccccevviiieeiennns 42
6.1 DOWNIOAAING ...c.eeieiieeieiiiiicee e 42

6.2 INStAllINGcoeiiiiiiiiiiiiee e 42

6.3 Creating Target Class........cooveiiiiiiiiiiiiiiiiee e 44

6.4 Using Korat-2015oooiiiiiiiiiiiieeee e 45

6.4.1 Running on LiNUXcccoviiiiiiiiiiiiiiiiiinieeeeeeeeeeeeeeeeeeeeeeeeeeneeees 45

6.4.2 Running on WindOowsc.eeeeieimniiiieieiiniiiiieeeerieeeee e 47

Chapter 7 Traceability MatriXceeeiieeeeeiiiiiiiiiiiiiiiiieeeeee e e e e e e e e e 49
Chapter 8 ConCIUSION.........uiiiiiiiiiiiii ettt 52
RETETENCES. ...ttt 53

viil

List of Tables

Table 2.1: GUI Functional Requirementsceeeeeeeeeiiiiiiiiiiiiiiiiiiinnnn 4
Table 2.1 (continued): GUI Functional Requirementsccoeeeiuvviereeennneen. 5
Table 2.1 (continued): GUI Functional Requirementsccceeeuvevevivernnnen. 6
Table 2.1 (continued): GUI Functional Requirementsccceeeuvevevivernnnen. 7
Table 2.1 (continued): GUI Functional Requirementscoeeeeuvvevrveennnen. 8
Table 2.2: FSM Functional Requirementsccceevvieiiieeeeeeeneenniiiiiiieeeeen. 8
Table 2.2 (continued): FSM Functional Requirementsccceccuvverrvvennnnen. 9
Table 2.2 (continued): FSM Functional Requirementsccccceeuvvvrrnnnnne. 10
Table 2.3: JUNG Functional Requirementscoeeevvviiriiiiiiiiiniinnnnn. 10
Table 2.3 (continued): JUNG Functional Requirementseevvevennnnnnn.. 11
Table 2.4: JSON Functional Requirementscoeeviriiiiiiiiiiiieeeiieennnn. 11
Table 2.4 (continued): JSON Functional Requirementsceevveeennnnnnn.. 12
Table 2.5: FSM Non-Functional Requirements..............cceeerviiieeiinnnninierennns 13
Table 7.1: Traceability MatriXccceeeeeeiiiiiiiiiiiiiiiiiieieeee e e e e e e 49
Table 7.1 (continued): Traceability MatriXcccuvvviiiiiiiieeeeeeeneeeiiiiiiiieeee, 50
Table 7.1 (continued): Traceability MatriXcccvvvviiiiiiieeeeeeeeeeeeieiiiiiiieeeeee, 51

Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:

Figure 3.6 (continued):

Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 5.1:
Figure 5.2:

List of Figures

Requirements Management Tooloovvviiiiiiiiiiiiiiiieeeeeeeeeeeee, 3
Use Case DIagram.........cueveeiiiiiiiiiiiiiiiiieeceenieeee e 14
Class Diagramcoooeiiiiiiiiiiiiieeee e 15
Sequence DIagramcooeeieeieiiiiiiiiiiiiiiiiiieeeeee e 16
File MeNU SCIEENS. ..ccceviuiiiiiiiiiiiiiiiee ettt 17
Run Menu SCTeensceeueiiiiiiiiiiiiiiiiiee e 18
OUPUL MENU SCIEENSvvviuiiiieeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeaaeeaaen s 19

Output Menu SCTEEMNScevvvvvrvvrrririiiiiiiiiineeeeeeeeaeeeenn 20
Help Menu SCIeensoceeeeeeeeeiiiiiiiiiicceeeeee e 20
Random Reset......coooiiiiiiiiiiiiii e, 21
Target Class SKeleton...........ooooiiiiiiiiiiiiiiree e 22
COVETAZE METIICS ..ttt e ettt e e e e e e e e e 23
Graph Displayceeeoviiiiiiii e 24
JSON SEIUCTUIE ..eeeiiiiiiiiiic e 25
ACtiVIty DIagramoceeeiiiiiiiiiiiiiiiiiee e 27
File build.Xmlooiiiiiiiiii e 28
BUIId LOZ .eviiiiiiiiieeeeeeeee e 29
Jenkins Buildcoooiiiiiiiiiiiii e 30
Jenking Build Logccceeeeeeeeieiiicc e 30
Jenkins Build Log From GitHuboovviiiiiiiiiiiieeeeeeeeeeeee, 31
Target Class Build............oooooiiiiiiiiiiiee e 31
Jenkins Test RUN........ooooiiiiiiiiiiiee e, 32
Jenkings Test Lo ..ccceeveeiiiiiiiiiiiieee e 32

Figure 5.3 Command Line Test LOZccoovuiiiiiiiiiiiiiiiiiiiiiicceeieecce e 33

Figure 5.4: File build.xml Changes..........cceeeeiiiiiiiiiiiiiiiiiceeieeceeeeee, 34
Figure 5.5: FSM Exploration Test Classes........cocuvviieiiniiiieieiiniiiiieeeeeeiieeen. 35
Figure 5.6: Test Script Target Classccceeveevieiiiiiiiiiiiiiiieeeeeeeeeeeeiieeeeee 36
Figure 5.7: Jenkins Output From JUnit Run...........ccccoevviiiiiiiiniiieiee, 37
Figure 5.8: JUnit Test REPOTt........cuuiiiiiiiiiiiiiiiiiiiiiiee e 38
Figure 5.9: Korat and Korat-2015 Comparison Runcccccccoiiiiiiiiiiininnne. 39
Figure 5.9 (continued): Korat and Korat-2015 Comparison Run...................... 40
Figure 5.10: FSM and non-FSM Graphs.........cccoeeeeeiiiiiiiiiiiiiien 40
Figure 5.10 (continued): FSM and non-FSM Graphscccccceeviiiiiiiiiiiinnnnee. 41
Figure 6.1: DIrectory StruCTUIE.........cceevmiiiiiiiiiiiiiieieee it 43
Figure 6.1 (continued): Directory Structureccceveeeeeieeeeeeeeeeeeeniiiiiieeeee, 43
Figure 6.1 (continued): Directory Structureccccevvevireieeeeereeeeeeniiiiieneeee, 44
Figure 6.2: Target Class Compilationccoovuiiiiieiiiiiiiieeeinniiiceee e 45
Figure 6.3: Running on LiNUXooeeiiiiiiiiiiiiiiiiiiieee e 45
Figure 6.3 (continued): Running on LinuX........ccccouiiiiiiiiiiiiiiiinniiiiiiieee 46
Figure 6.4: Running on WindOWS........ccoeeiiiiiiiiiiiiiiiiiiiiiiiieeeee e 47
Figure 6.4 (continued): Running on Windowsccovviviiiiiiiiiiiiiiiiiniennn. 48

Xi

Chapter 1 Introduction

Software testing is an integral part of the software development cycle. Various
testing techniques are used in the industry to test software components and applications.
Specification-based testing tests the functionality of code with respect to given
specifications that describe expected program behaviors. Specification-based testing is
typically black-box testing -- the testers are not required to have knowledge of the
software architecture, design or code implementation, and they can focus on what the
software does and not on how it does it.

The mput domain space mvolved in modern day applications is typically very
large, which makes manual testing costly and error-prone. An approach to deal with
large mput spaces is to construct their models and use tools to automate testing with
respect to the models. Input space models can be written in the form of specifications in
formal languages. A common approach is to use finite-state machine models to describe

how the system is expected to behave.

1.1 KORAT

Korat [2] is a tool for specification-based generation of structurally complex test
mputs for Java programs. Given a specification of desired inputs, Korat enumerates all
mputs that meet the specification within a given bound on the mput size. Korat's key
strength is its ability to generate structurally complex mputs, which satisfy complex
properties that relate parts of the structure. Korat requires the users to write mput
specifications in Java. A typical input specification is written as a predicate (i.e., boolean
returning method) that mspects its given nput to check whether expected properties hold

and returns true or false based on the outcome of the inspection. The user also provides a
1

Finitization method that defines the bound on the nput space. Korat outputs all non-
isomorphic structures that are within the finitization bound and are determined by the

predicate method to be valid.

1.2 KORAT ENHANCEMENTS

This report describes the software requirements, application design and
implementation details of our work on improving the usability and applicability of Korat,
specifically on the following elements:

. Graphical User Interface using Java Swing [11]
. Graph Output Format using JUNG (Java Universal Network/Graph Framework)

[10]

. Finite State Machine Domain

. Graph Archival using JSON (JavaScript Object Notation) [9]

We embody these enhancements in our prototype tool named Korat-2015 [5].

Chapter 2 Requirements

The software requirements were captured and their quality scores were reviewed

using Innoslate [6] requirements management tool as shown in Figure 2.1

[3 korat.csv (Last Modified: 6/7/2015) ~ Quality Score Labels
FSM-RQ-1 provide ca / 100%
pability to perform FSM modeling on a target class that implements the FSMModel _
interface
o
FSM-RQ-2 The target class will identify the names of the FSM states. 100"_ = -
o
FSM-RQ-3 The target class will identify the names of the FSM triggers. 100"— i i
FSM-RQ-4 " . 100% [Functonal Requre...
The target class will implement a method to reset the FSM to its initial state _
FSM-RQ-5 ‘ 100% [Functionai Requre...
The target class will implement a method to return the current state of the FSM _

Figure 2.1: Requirements Management Tool

2.1 FUNCTIONAL REQUIREMENTS

This section lists both functional and non-functional software requirements for

Korat-2015.

2.1.1 Graphical User Interface (GUI) Support

The software requirements to add a graphical user interface to Korat-2015 are
shown i Table 2.1. They include running Korat-2015 by providing specific arguments,
viewing the generated text and graph outputs, viewing any console output generated,

obtaining help information, saving the graph as a file, and loading a graph from a file.

ID

Requirement Description

GUI-RQ-1 Provide a “- -gui” command line switch to start Korat-2015 in GUI
mode.

GUI-RQ-2 Invoke Korat-2015 in classical text mode if the command line does not
contain the “- -gui” switch.

GUI-RQ-3 On startup, launch Korat-2015 in full screen mode and display a blank
screen.

GUI-RQ-4 Display the tool name on the application tool bar.

GUI-RQ-5 A “File” menu will allow user to transform and manage the Korat-2015
generated internal models as text based files.

GUI-RQ-6 | Under the “File” menu, a “Load File” submenu will allow users to
navigate to the file location and choose the Korat-2015 file. This file
will be used as input to display the models in a graph format.

GUI-RQ-7 | The “Load File” submenu will display folders in the file chooser dialog
box.

GUI-RQ-8 | When a user loads a “kjson” file, Korat-2015 will hold only the model
data contained in this file and will erase any other model information
that it had prior to loading the file.

GUI-RQ-9 Under the “File” menu, a “Save File” submenu will allow users to
navigate to a file location to store the Korat-2015 file. This file will be
used to store the Korat-2015 graph models.

GUI-RQ-10 | The “Save File” submenu will display folders in the file chooser dialog
box.

Table 2.1: GUI Functional Requirements

ID

Requirement Description

GUI-RQ-11 | Under the “File” menu, an “Exit” submenu will allow users to quit the
application.

GUI-RQ-12 | A “Run” menu will allow user to specify parameters and execute Korat-
2015.

GUI-RQ-13 | Under the “Run” menu, a “Run” submenu will display a “Run” screen
that allow users to enter the parameters required to execute Korat-2015.

GUI-RQ-14 | A “Run” heading will be displayed on the “Run” screen to inform users
of their current navigation point in the Korat-2015 menu.

GUI-RQ-15 | The “Run” submenu will display default screen values for all the
parameters.

GUI-RQ-16 | Users will be able to overwrite the default screen values and enter the
command parameters.

GUI-RQ-17 | Korat-2015 will process only those fields that do not have the default
screen values.

GUI-RQ-18 | The “Run” submenu will have a “Clear” button to erase all user entered
information and reset all the parameters to their default screen values.

GUI-RQ-19 | The user entered information in the “Run” form will not be erased,
when the user navigates to a different menu item.

GUI-RQ-20 | An “Output” menu will allow users to view output generated by Korat-

2015 in different formats.

Table 2.1 (continued): GUI Functional Requirements

ID

Requirement Description

GUI-RQ-21 | Under the “Output” menu, a “Graph” submenu will allow users to view
the Korat-2015 model output in graph format, represented as a directed
graph containing vertices and edges.

GUI-RQ-22 | A “Graph” heading will be displayed on the “Graph” screen to inform
users of their current navigation point in the Korat-2015 menu.

GUI-RQ-23 | A complete non-highlighted graph will be displayed, if one has been
generated, when the user chooses the “Graph” submenu.

GUI-RQ-24 | Korat-2015 will allow users to browse the generated paths on the graph,
and the current displayed path will be highlighted on the graph.

GUI-RQ-25 | The “Graph” screen will have a “Next” button to allow the user to
browse the next path on the graph.

GUI-RQ-26 | The “Graph” screen will have a “Previous” button to allow the user to
browse the previous path on the graph.

GUI-RQ-27 | The “Graph” screen will show the identifier of the current path
displayed.

GUI-RQ-28 | The “Graph” screen will contain an “Animate” button that will allow
users to automatically browse by sequencing through the paths after a
short delay.

GUI-RQ-29 | Under the “Output” menu, a “Text” submenu will allow users to view

the Korat-2015 model output in text format.

Table 2.1 (continued): GUI Functional Requirements

ID

Requirement Description

GUI-RQ-30 | A “Text” heading will be displayed on the “Text” screen to inform users
of their current navigation point in the Korat-2015 menu. This screen
will display information sent by Korat-2015 to the standard output.

GUI-RQ-31 | The “Text” screen will allow users to scroll through information on this
screen.

GUI-RQ-32 | The “Text” screen will have a “Clear” button to allow users to erase
information on this screen.

GUI-RQ-33 | The information in the “Text” screen will not be erased, when the user
navigates to a different menu item.

GUI-RQ-34 | Under the “Output” menu, a “Console” submenu will allow users to
view the Korat-2015 system output.

GUI-RQ-35 | A “Console” heading will be displayed on the “Console” screen to
nform users of their current navigation point in the Korat-2015 menu.
This screen will display error information sent by Korat-2015 to the
standard error.

GUI-RQ-36 | The “Console” screen will allow users to scroll through information on
this screen.

GUI-RQ-37 | The “Console” screen will have a “Clear” button to allow users to erase
information on this screen.

GUI-RQ-38 | The information in the “Console” screen will not be erased, when the

user navigates to a different menu item.

Table 2.1 (continued): GUI Functional Requirements

ID

Requirement Description

GUI-RQ-39

A “Help” menu will provide information about the Korat-2015 tool.

GUI-RQ-40

Under the “Help” menu, a “Help” submenu will display helpful

mformation about the Korat-2015 tool.

Table 2.1 (continued): GUI Functional Requirements

2.1.2 Finite State Machine (FSM) Support

The software requirements to run Korat-2015 on a target class that implements a

finite state machine are shown in Table 2.2. They include exploring the state space,

generating exploration information in text format and in an appropriate format to generate

a graph, and generating coverage metrics.

ID Require ment Description
FSM-RQ-1 Provide capability to perform FSM modeling on a target class that
implements the FSMModel interface.
FSM-RQ-2 The target class will identify the names of the FSM states.
FSM-RQ-3 The target class will identify the names of the FSM triggers.
FSM-RQ-4 The target class will implement a method to reset the FSM to its initial
state.
FSM-RQ-5 The target class will implement a method to return the current state of
the FSM.
Table 2.2: FSM Functional Requirements

ID

Requirement Description

FSM-RQ-6 The target class will use the “@Trigger” annotation to identify the
trigger methods that perform actions in the FSM.

FSM-RQ-7 The target class will define a guard method associated with a trigger
method. The guard method defines when a trigger is valid and can be
pulled /performed.

FSM-RQ-8 Translate the FSM state information into an appropriate format to show
the states as vertices in the graph format.

FSM-RQ-9 Translate the FSM trigger information into an appropriate format to
show the triggers as edges in the graph format.

FSM-RQ-10 | Provide standard text output from the Korat-2015 FSM model run, in
the Text Output window.

FSM-RQ-11 | Provide any error information from the Korat-2015 FSM model run, in
the Console Output window.

FSM-RQ-12 | Provide “Trigger Coverage” metrics for modeling performed on an
FSM class.

FSM-RQ-13 | Provide “State Coverage” metrics for modeling performed on an FSM
class.

FSM-RQ-14 | Provide “Transition Coverage” metrics for modeling performed on an
FSM class.

FSM-RQ-15 | Provide “Transition Pair Coverage” metrics for modeling performed on

an FSM class.

Table 2.2 (continued): FSM Functional Requirements

ID

Requirement Description

FSM-RQ-16 | (OPTIONAL Requirement)
Korat-2015 will have the capability to perform a random state reset
during a modeling run on the target class.

FSM-RQ-17 | (OPTIONAL Requirement)

Korat-2015 will have the capability for automated test case generation

based on the modeling run on the target class.

Table 2.2 (continued): FSM Functional Requirements

2.1.3 Java Universal Network/Graph Framework (JUNG) Support

The software requirements to generate a graph for an explored state space on a

target class are shown in Table 2.3.

ID Require ment Description

JUNG-RQ-1 Korat-2015 will display the graph using the information in the
“kjson” file.

JUNG-RQ-2 The paths in the graph will be displayed using vertices and edges.

JUNG-RQ-3 Korat-2015 will display the graph using least possible number of
nodes and edges.

JUNG-RQ-4 The vertices in the graph will be displayed as circles.

JUNG-RQ-5 The edges in the graph will be displayed as directed edges.

Table 2.3: JUNG Functional Requirements

10

ID Requirement Description

JUNG-RQ-6 The vertex information will be displayed as a label inside the vertex.

JUNG-RQ-7 The edge information will be displayed as a label alongside the edge.

JUNG-RQ-8 Highlight the vertices and the edge corresponding to the path browsed

by the user, in a different color.

JUNG-RQ-9 Korat-2015 will display the graph information from any user edited

“kjson” file, provided the file contents are in the correct format.

JUNG-RQ-10 | Korat-2015 will display any error that it encounters while processing

the graph information.

JUNG-RQ-11 | For FSM models, Korat-2015 will display the states as vertices in the

graph.

JUNG-RQ-12 | For FSM models, Korat-2015 will display the state transitions as

directed edges in the graph.

Table 2.3 (continued): JUNG Functional Requirements

2.1.4 JavaScript Object Notation (JSON) Support

The software requirements to save a graph as a file, and load a graph from a file in

the appropriate format, are shown in Table 2.4.

ID Require ment Description

JSON-RQ-1 The Json format files will be generated in plain text format.

JSON-RQ-2 The “GFX kjson” file name will be used to generate the Json file.

Table 2.4: JSON Functional Requirements

11

ID

Requirement Description

JSON-RQ-3 The current directory will be used as the default location to store the
Json file.

JSON-RQ-4 After a model execution, Korat-2015 will automatically store the
network paths corresponding to the generated model, in the default
file at the default location.

JSON-RQ-5 Korat-2015 will allow users to save the graph information in Json
format in a user specified folder.

JSON-RQ-6 Korat-2015 will allow users to load the graph information from a user
specified file.

JSON-RQ-7 Korat-2015 will read the graph information from any user edited
“kjson” file, provided the file contents are in the correct format.

JSON-RQ-8 Korat-2015 will not perform modeling validation on the graph
information in the “kjson” file.

JSON-RQ-9 The user defined Json file should have a “kjson” file extension, but
can have any file name.

JSON-RQ-10 | Korat-2015 will display any error that it encounters while processing

the Json mput file.

Table 2.4 (continued): JSON Functional Requirements

12

2.2 NON-FUNCTIONAL REQUIREMENTS

The software requirements that capture the non-functional aspects are shown in

Table 2.5.
ID Require ment Description
NF-RQ-1 The GUI must launch in a reasonable time frame, not exceeding 1

minute, on a standard workstation.

NF-RQ-2 The ease of use to run FSM modeling using the GUI must be similar to

that of non-FSM models.

NF-RQ-3 The graph must be capable of supporting at least 5 vertices, and at most

2 edges between any two vertices.

NF-RQ-4 The graph must display labels for the vertices and the edges in an easily

readable format.

NF-RQ-5 A Json file of at least 5 lines and at least 5 data elements per line must

be supported.

Table 2.5: FSM Non-Functional Requirements

13

Chapter 3 Design

The design principle used is to seamlessly build on top of the existing classical
framework, with maximum reuse of software components to provide the enhancement

functionalities. This section describes the design through sample UML diagrams.

3.1 USECASE DIAGRAM
The use case diagram from the perspective of a Korat-2015 user is shown in
Figure 3.1. It follows the possible paths that a user can navigate using the graphical user

mterface.

Load-File

Korat-User

Figure 3.1: Use Case Diagram

3.2 CLASS DIAGRAM

The class diagram shown in Figure 3.2 depicts at a high level, the changes made
to the existing design framework. It includes key elements that are added new or have
been modified. As can be seen, the design reuses the existing software components.

The dotted lines in the diagram indicate the new dependencies that are added

across the existing java packages.

korat testing.impl | korat I Korat.utils.io

public TestCradieFSM - - public GraphPaths
cintertace - |
now 00t public IFSKModel
Wwimpon
- - e R _ public GraphPaths()
public ArrayList getTriggers("5 public void resetState e port public void)
public ArrayList getTriggersGuards0 L | e s T TP, I public boolean addGHFath)
P::;:E :_’:1'“ ;::;?;?&’;:::3“”0 snterfaces public boolean addF SMOKPath()
:uhm‘ sm?m gelStateName) publc Trigver -~ B L aema e
public void getaliStateNames0 {new imporf) public boolean freadPathsJsond
public void startCoverageFSMg [7T T T T T T T TTTTTTT B ::E::E E:zlz:h!:?a;P::I;JSONO
public void calculateCoverageMetrics) pubslic Korat public void pamszgugagrsmo
o N
public void resetF SMState() revimpe public Sting getGraphinfog)
————————————————————— -3 public Korat) (12 Ppan) public void drawGraph)
public TestCradie publicrunPanelg [~ C T TTTTTTTTTTTTTT 1 public void saveGtPath.son()
. public graphPanel() public void saveF SMGfPathdsan()
E public consolePanel() =
public void start public tetPanel(.
public void starTestGeneration() public helpPanel) e import
e mmmen R . Korat.instrumentation
public CannotimokekethodException public FSMModel no change
- B I |
I . I . -
. : naw e import stafic boolean fsm_model .
public CannotinvokeMethodException() public boolean isFSMModel() o korat.finitization
public CannotAccessFieldException ¢ no change BI
E
= i Korat.util _
public CannotdccessFieldException() 7 orat.utils
Korat.guiviz K |

public ToXML onverter) no change 5
e “[ehanged®™y Korat.tils.cv

M public void convertGif) N
_ public ToXMLInstanceConvartar) _
orat.confi I public VizListener

korat.loading.fitter
public configloacer ‘:l — e]
thanged public VizListener()
L_ public vold notitNewTestCase() -

public ConfigLoader() public void notifyTestFinished(
Korat.loading

public void initStufFromOplions()
public configManager P korat.guiviz.metamodel | I _Jne cnangeﬁ

public boolean gui

Figure 3.2: Class Diagram

15

3.3 SEQUENCE DIAGRAM

An overview of a sample sequence diagram is shown in Figure 3.3. It depicts the
key elements and actions involved when Korat-2015 is run from the graphical user
mterface. Only the high level components are shown without getting into the granular
details of the sequence flow.

As can be seen, every time a graph is generated, the corresponding network
information is stored in a temporary file. The fInit() call clears graph information stored

in the offline file.

I’ “Korat ‘confightanager | l :configl.oader | ‘ MizListener sToXMLInstanceComserter :TestCradie || MestCradieFSH | GraphPaths
main ' i ' ' i
Panel 0 i \ ; \ | |]
o~] 1} 1 I 1] 1
runactonlistenar § | L . : - X s
runkorat | H H H H \ :
' i i i i i i
' ' i \ i 1 i
unncw)] 1 " 1] 1
CmdLing 0 | H i ; H \ H
pare dLine
U; A parseArgs O ! ! : '
| H H H
storeCptions 0} f .) H
i i i 1]
checkRequiredOptions §) \ ' .
i i i i
inRSHMFromOptions O H H i h
i h i 1
i i i i i
i I i 1]
nolifNewTesiCasg () 1) ! ! !]
| saveGbPathison 0 | et
— SN PSS, F— 1
i T
; | 1
i i i
| i]
i i]
i i i
i i
H i i i i
,,,,,,,,,,,,,,,,, L H | h | | '
<] 1 1] 1 1 1
H H starld H H H |]
¥ : i \ starlTesttenerationF M O '
i ' i ' i i
i H i H netTriggerGuandh 0
' ' i i i
\ ' i I 1
0 i i i i
! !] ! stanCoverageF M O
' ' i i i
' ' \ ']
b - A calculateCovefageMetrics O
i i i i
: : : : oo
i i '
)) ! " I —
0 i i i i
¥ H 1 3 SaveFEMOtPathJsgn O
| H i h
[1 1 [- - -
' ' i ']
| i i ' T i
- mmmm - - ----a - —-a--- i sE - | '
| H h ' i i i
' ' i I i | '
] 1 1] 1 1 1
——— ' i i i i i]
| 5 = \ H " \ b \ i
-] 1 [1 1

Figure 3.3: Sequence Diagram

16

3.4 USER INTERFACE PROTOTYPES

This section shows the prototypes for the user interface screens for the enhanced
Korat-2015 application. The graphical interface is implemented in Korat-2015 using the
Java Swing library. The landing screen is launched i full screen mode with

JFrame. MAXIMIZED BOTH arguments to setExtendedState().

3.4.1 File Menu

The file menu screens are shown in Figure 3.4. The title bar displays the
application name as highlighted by (1). The screen at the center is for loading the graph
information from a folder using showOpenDialog(). The one on the right is for saving the

graph information to a folder using showSaveDialog().

oose folder to Load Korat JSON from. 53 4] Choose folder to Save Korat JSON to. =

File] Run Ouput Help

Load File
Save File
Exit

Lookn: |3 viz_json MRENENEEEE

3 gumball

Folder name: |C\Users\dzhvn0\DesKlopikivz_ison

Files of Type:

Savein: (] Documents

] Attachmate

(=] DYMO Label

38

3 GitHub

] GumBail

] personal

=] Remote Assistance Logs

Folder name: C:\Users\dzhvn0iDocument ts

Files of Type:

v| &) |5 |3 [88]E

Figure 3.4: File Menu Screens

3.4.2 Run Menu

The run menu screens are shown in Figure 3.5. The screen on the right is for
choosing the arguments to run Korat-2015 as highlighted by (1). The bottom of the
screen highlighted by (2) contains arguments that correspond to finite state machine

analysis.
17

A Swing ActionListener listens to event on the Clear button and resets the fields

to their default values. The entered values are not cleared when the screen focus changes

ensuring the values are retained across Ul navigation.

%) Korat 2015

, File Run| Ouput Help
I Run

)

--excludePackages|<packages>

-finitization
-listeners
--maxStructs
--predicate
--progress
--serialize

-Run
[] —print --args <arg-list= ‘] Run I
[] —-printCandVects --class =fullClassName= |
[] —-cvDelta --config <fileName=] | Clear ‘
[] —cvWrite —cvEnd =num=]
[] --visualize —-cvExpected <nums=]
--cvFile =filename=
--cvFullFormatRatio|<num=
--cvStart <num=
--cvWriteNum <num=

=finMethodName=
<listenerClasses=
=num=
=predMethodName:
=threshold=

filename=]

rFSM

@ [v] Random reset Probability(%): [50.0

Figure 3.5: Run Menu Screens

3.4.3 Output Menu

The output menu screens are shown in Figure 3.6. The screen on the top right

corresponds to

the graph output.

On initial navigation to the

pantGraph(PLAIN) will display a complete plain graph.

Graph screen,

Browsing a specific graph path displays the network path information as

highlighted by (1), and the network graph as highlighted by (2). The sequence number of

18

the explored paths that is currently displayed is shown as highlighted by (3). The
explored paths can be manually traversed using the buttons highlighted by (4), or
traversed automatically using the check box highlighted by (5). An ActionListener listens
to the events on the navigation buttons, and traverse through the GraphPath ArrayList to
display the graph paths. The Animate ActionListener sequences through the graph paths
with a delay between each display.

The screen on the bottom left corresponds to the text output. The current
navigation point is displayed as highlighted by (1). The screen on the bottom right
corresponds to the console output. The Clear button is hooked to an ActionListener to
clear the screen.

The system standard output and error messages are displayed on the text and

console windows, by redirecting OutputStream with System.setOut() and

System.setErr().

o Komts e e | -

File Run | Ouput | Help 5/ ,,71 @ .

’ Graph 4]
Text

Console
Directed Graph Display 2

Figure 3.6: Output Menu Screens
19

~_/: G
Figure 3.6 (continued): Output Menu Screens
3.4.4 Help Menu

The help menu screens are shown in Figure 3.7. The screen on the right displays

the help information about the Korat-2015 application.

?@ e 1 | e

i
I —
e Korat is a tool for constraint-based generation of structurally complex test inputs for Java programs.
1 File Run OUDUt He&p 1 More information can be found at the website: hitp://korat.sourceforge.net/index.html

i Help File:

; Load File - Load Graphs from Korat Json format file.
1 Save File - Save Graphs as Korat Json format file.
1
1
1

Exit - Quit application.

Run:
Execute Korat model.

Output:

Graph - View Korat Graph output.
Text - View Korat text output.
Console - View Korat error output.

Help:
This information.

@2015 Enhancements by Kilnagar Bhaskar, Univ. of Texas at Austin.

Figure 3.7: Help Menu Screens

20

3.5 FINITE STATE M ACHINE DESIGN

This section describes the mechanics related to analyzing a FSM target class using

Korat-2015.

3.5.1 Target Class

The target class is checked for the presence of @Trigger annotations to determine
if the exploration and coverage analysis corresponding to a finite state machine needs to
be performed.

The FSM target class implements the IFSMModel interface, defines a public
String variable called State, and state names FSM STATE <number>. The resetState
method sets the state to the initial state, and is when Korat-2015 performs a random reset
during state space exploration. The trigger methods are earmarked using @Trigger
annotations, and the guard methods have the same names as their corresponding trigger
methods and end with “Guard”.

The random reset during state space exploration can be enabled using the check
box on the run screen as shown in Figure 3.8. The value of probability determines the

randomness of the reset performed.

FSM

lv| Random reset Probability(%): |50.0

Figure 3.8: Random Reset

21

The skeleton of a target class is shown in Figure 3.9 with mandatory elements

highlighted in bold. A finite state machine target class must have these elements.

public class <TargetClass> implements IFSMModel

{
public String State;

public String FSM_STATE_1=<Value>;
public String FSM_STATE_2=<value>;

public boolean <trigger>Guard () {
}

public @Trigger void <trigger> () {
b

@Override
public void resetState() {

State = FSM STATE 1;
¥

Figure 3.9: Target Class Skeleton

3.5.2 Coverage Metrics

The coverage metrics calculated by Korat-2015 on a FSM target class is shown in
Figure 3.10. It includes some common metrics like state coverage, trigger coverage,

transition coverage, and transition pair coverage.

22

Start of Korat Execution for <Target Class> (repOK, [<#explorations>])
FSM state reset probability: <probability between 0 and 100> %
(<from state>, <trigger>, <to state>) ****

(<from state>, <trigger>, <to state>)

Total explored: <# explorations done>

New & Valid found: <# unique and those validated by trigger guards>
State coverage:

<state 1>

<state 2>

covered: <#states covered> / <total # states> (<percent covered> %)
Trigger coverage:

<trigger 1>

<trigger 2>

covered: <# triggers covered> / <total # triggers> (<percent covered> %)
Transition coverage:

<transition 1>

< transition 2>

covered: <# transitions covered>

Transition pair coverage:

<transition 1>:<transition 2>

<transition 3>:<transition 4>

covered: <# transition pairs covered>

End of Korat Execution
Overall time: <execution time in seconds> s.

Figure 3.10: Coverage Metrics

23

3.6 JAVA UNIVERS AL NETWORK/GRAPH

A sample graph network displayed by Korat-2015 is shown in Figure 3.11. The
states indicated by vertices are highlighted by (1) and the triggers indicated by edges are
highlighted by (2). Korat-2015 displays the current path in the explored state space in a
different color (green). The graph network is implemented in Korat-2015 using the JUNG

library.

Figure 3.11: Graph Display

3.7 JAVASCRIPT OBJECT NOTATION

Korat-2015 saves the graph network information in intermediate files using the
Json format. This format is viewable as a plain text and can be manually manipulated for
any advanced custom analysis. The content structure of this file is shown in Figure 3.12.

Korat-2015 stores the network information in a temporary folder named

“viz_json” in the current directory location. For non-FSM model analysis, the files are

24

named GFX[n].kjson, where [n] is a running number, and each exploration graph is
stored in a separate file. For FSM model analysis, the information is stored in a single file
named “GFXkjson”. Korat-2015 also uses this format when the user saves the network
information as an external file or loads it from an external file. Korat-2015 used the Json
file to display the graph, and does not perform model validation on the file data. The Json

is implemented in Korat-2015 using the Google Gson [12] java library.

File Name: viz_json/GF X kjson

File Content:
<index 1>, “from_state”, <from state>, <index 1>, “to_state”, <to state>, <index 1>,
“in_transition”, <trigger>

File Name: viz_json/GF X[n].kjson
File Content:

[{"fromnode":<node1>,"tonode":<node2>,"relation":<relation 1>} ,{ "fromnode":<nod
€3>,"tonode":<node4>,"relation":<relation2>}]

Figure 3.12: Json Structure

25

Chapter 4 Code Implementation

This section outlines some key aspects like algorithms, repository choices, and
builds mechanisms. The implementation principle is to use and build on top of the

existing code base [3].

4.1 ALGORITHM

One of the key algorithms in the support for finite state machine is the state space
exploration on the target class. The UML activity diagram for this algorithm in
TestCradleFSM is shown in Figure. 4.1.

The algorithm starts by scanning for variable names FSM_ STATE i to gather a
list of State names. It then scans for the @Trigger annotations and gathers the list of
Trigger methods. It then gathers the Guard methods based on the Trigger method names.
It then iterates through invoking all Guard methods for every possible State value. The
corresponding Trigger method is invoked if the Guard method returns true.

The coverage information is recorded in the iterations, and this information is
used to generate the coverage metrics.

Also, the resetState () method is invoked at the probability specified when

running Korat-2015.

26

\

Scan for variable
FSM_STATE_i

Add value to the List
of State Names

Get value from
FSM_STATE_i

[

variable exists

variable does not exist

‘Add <trigger>Guard
to the List of
Guard Names

Scan for @Trigger
annotation

exists
Add value to the List

of Trigger Names

annotation does not exist

Calculate number of states,
triggers and max. explorations
n=0

n < max. exploration

Calculate Random

value
value > probabiltiy
> Call)

Get next Trigger and Guard
from the List

end of list

Add State and Trigger

Get next State Name
to Coverage Log

from the list

end of list

Set State = State Name
Call Guard method

guard returned false

guard retumed true

Calculate State Coverage,
Trigger Coverage,

Transition Coverage,
Transition Pair Coverage
from Coverage Log

Generate Coverage Output

Figure 4.1: Activity Diagram

27

4.2 REPOSITORY

The code is maintained in the repositories shown below. The development code
base is on the local machine, and also at GitHub [7] which can be integrated with Jenkins
to trigger a build. The GitHub repository for the Korat-2015 code is located at
https:/github.com/sbhaskar17/korat2015

4.3 BUILDING KORAT-2015.JAR

The ant build.xml file has been updated to include the new java source files and
the additionaljar dependencies required by the enhanced Korat-2015 application. Figure

4.2 shows a section of the build.xml file that lists the complete list of dependencies.

<path id="Korat.classpath">
<pathelement location="${BUILD DIR}" />
<pathelement location="lib/alloy4viz.jar" />
<pathelement location="lib/commons-cli-1.0.jar" />
<pathelement location="lib/javassist.jar" />
<pathelement location="1ib/junit.jar" />
<pathelement location="1ib/gson-2.2.4.jar" />
<pathelement location="lib/colt-1.2.0.jar" />
<pathelement location="lib/concurrent-1.3.4.jar" />
<pathelement location="1ib/jung-graph-impl-2.0.1.jar" />
<pathelement location="lib/jung-algorithms-2.0.1.jar" />
<pathelement location="1ib/jung-visualization-2.0.1.jar" />
<pathelement location="lib/collections-generic-4.01.jar" />
<pathelement location="lib/jung-api-2.0.1.jar" />

</path>

Figure 4.2: File build.xml

28

https://github.com/sbhaskar17/korat2015

4.3.1 Using Command Line on Local Repository

The build can be done using the same command that was used to build the classic
Korat-2015 application using the ant script. Figure 4.3 shows the log when building
korat2015.jar from the command line, and the code base repository on the local

computer.

sbhaskarl7(@bhaskar:~/korat$ ant createJar
Buildfile: /home/sbhaskar17/korat/build. xml

createlar:

clean:
[delete] Deleting directory /home/sbhaskarl7/korat/build
[delete] Deleting directory /home/sbhaskarl7/korat/dist

init:
[mkdir] Created dir: /home/sbhaskar17/korat/build
[copy] Copying 6 files to /home/sbhaskar17/korat/build

build:

[echo] Korat: /home/sbhaskar]7/korat/build.xml

[javac] /home/sbhaskar17/korat/build.xml:58: warning: 'includeantruntime' was not
set, defaulting to build.sysclasspath=last; set to false for repeatable builds

[javac] Compiling 184 source files to /home/sbhaskar17/korat/build

[javac] warning: [options] bootstrap class path not set in conjunction with -source
1.5

[javac] 1 warning

[mkdir] Created dir: /home/sbhaskar17/korat/dist

[jar] Building jar: /home/sbhaskar17/korat/dist/korat2015.jar

BUILD SUCCESSFUL
Total time: 9 seconds
sbhaskar17@bhaskar:~/korat$

Figure 4.3: Build Log

29

4.3.2 Using Jenkins on Local Repository
The build can be done using Jenkins, by providing appropriate build target as

shown in Figure 4.4. The code base repository is on the local computer. The build log

from Jenkins is shown in Figure 4.5.

Build

Invoke Ant

Ant Version
Ant

larget
goss createlar

Figure 4.4: Jenkins Build

. e () Console Output

Changes

Console Output

View as plain text

build

Figure 4.5: Jenkins Build Log

30

4.3.3 Using Jenkins on Remote Repository

The build can be done using Jenkins, on a remote code base repository like

GitHub. The build log from Jenkins is shown in Figure 4.6.

O Console Output

Started by user Kilnagar
Building in workspace C:\Program Files (x86
> C:\Program Files\Git\bin\git.exe rev-parse --is-
Fetching changes from the remote Git repository
> C:\Program Files\Git\bin\git.exe config remote.origin.url https://github.com/sbhaskarl7/korat2015.git # timeout=19
Fetching upstream changes from https://github.com/sbhaskarl7/korat2015.git
> C:\Program Files\Git\bin\git.exe --version # timeout=10
using .gitcredentials to set credentials
> C:\Program Files\Git\bin\git.exe config --local credential.helper store --file=\"C:\Windows\TEMP\git2025742319045794647.credentials\" #
timeout=10
> C:\Program Files\Git\bin\gi

kspace\korat2e1s
e-work-tree # timeout=10

.exe fetch --tags --progress https://github.com/sbhaskarl7/korat2015.git +refs/heads/*:refs/remotes/origin/*
> C:\Program Files\Git\ .exe config --local --remove-section credential # timeout=10
> C:\Program Files\Git\b .exe rev-parse "refs/remotes/origin/master*{commit}" # timeout=10
> C:\Program Files\Git\bin\git.exe rev-parse "refs/remotes/origin/origin/master”{commit}" # timeout=10
Checking out Revision 59f9a01ab2adcf74b0228eb776fdd21499e1a399 (refs/remotes/origin/master)
> C:\Program Files\Git\bin\git.exe config core.sparsecheckout # timeout=10
> C:\Program Files\Git\bin\git.exe checkout -f 59f9a01ab2ad4cf74b0228eb776fdd2149%e1a399
> C:\Program Files\Git\bin\git.exe rev-list 59f9a@lab2ad4cf74b0228eb776fdd21499e1a399 # timeout=10
Finished: SUCCESS

o

Figure 4.6: Jenkins Build Log From GitHub

4.4 BUILDING <TARGET CLASS>.JAR

The steps to build <target class>.jar are shown in Figure 4.7.

sbhaskar17@bhaskar:~$ javac -cp ./korat/dist/korat2015.jar:. gumbal/GumBall.java
sbhaskarl7@bhaskar:~$ Is gumball

GumBall.class GumBall.java

sbhaskar17@bhaskar:~$

Figure 4.7: Target Class Build

31

Chapter 5 Verification and Validation

This section provides the plan to test Korat-2015 application. The test principle is

to use the existing test mechanisms [1, 4] and build on top of the current test framework.

5.1 REGRESSION TESTS
Our approach for regression test is to use the existing test framework as-is without
any changes. The tests can be run using Jenkins with build target shown in Figure 5.1.

The console output for the test is shown in Figure 5.2.

Build

Invoke Ant

Ant Version

Ant

argets test

Figure 5.1: Jenkins Test Run

orat

) Console Output

Status

Changes

B console output

Figure 5.2: Jenkins Test Log

32

The regression tests can also be run from the command line or from Jenkins using
the current build.xml ant and JUnit [13] test scripts. Figure 5.3 contains the log generated

when testing Korat-2015 from the command line.

sbhaskar17@bhaskar:~/korat$ ant test
Buildfile: /home/sbhaskar17/korat/build. xml

nit;

build:

[echo] Korat: /home/sbhaskar17/korat/build.xml

[javac] /home/sbhaskarl7/korat/build.xml:58: warning: 'includeantruntime' was not
set, defaulting to build.sysclasspath=last; set to false for repeatable builds

test:
[javac] /home/sbhaskarl7/korat/build.xml:81: warning: 'includeantruntime' was not
set, defaulting to build.sysclasspath=last; set to false for repeatable builds
[mkdir] Created dir: /home/sbhaskar17/korat/test-reports
[junit] Running korat.exploration.BinaryTreeExplorationTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.027 sec
[junit] Running korat.exploration.BinomialHeapExplorationTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.343 sec
[junit] Running korat.exploration.DisjSetExplorationTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.81 sec
[junit] Running korat.exploration.FibonacciHeapExplorationTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 2.248 sec
[junit] Running korat.exploration.HeapArrayExplorationTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.747 sec
[junit] Running korat.exploration.SortedLListExplorationTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 5.478 sec

BUILD SUCCESSFUL
Total time: 15 seconds
sbhaskar17@bhaskar:~/korat$

Figure 5.3 Command Line Test Log

33

5.2 ENHANCEMENTS TESTS

There are different approaches to test, depending on how Korat-2015 is invoked
by the user. One is using the command line interface and another is using the graphical
user interface. The former involves adding tests to the build.xml ant script, while the

latter involves manual testing. We use manual testing to test Java Swing components.

5.2.1 Automated Tests

Our approach for functions done purely from the command line mterface is to use
an automated test framework. These include FSM explorations and coverage, and do not
include the random reset. The testing can be done using the existing ant and JUnit test
framework and updating these scripts to cover the above functions.

A new test script FSMExplorationTest has been added, and the key changes to the

build.xml file are shown in Figure 5.4.

File: build.xml

<junit printsummary="true" fork="true" haltonfailure="false">
<classpath refid="Korat.classpath" />
<formatter type="plain" />
<batchtest fork="yes" todir="${TEST REPORTS DIR}">
<fileset dir="tests/"™
<include name="korat/exploration/* ExplorationTest.java" />
<exclude name="korat/exploration/BaseExplorationTest.java" />
<exclude name="korat/exploration/BaseFSMExplorationTest.java"
/>
<exclude name="korat/exploration/ExplorationAllTests.java" />
</fileset>
</batchtest>
</junit>

Figure 5.4: File build.xml Changes

34

The changes include new classes as shown i Figure 5.5, and test target class as

shown in Figure 5.6.

File: BaseFSMExplorationTest
package korat.exploration;

glass TestConfigsFSM {
public class Base FSM ExplorationTest extends TestCase {
mprivate void doTestForAllConfigs(String[] args, int newCases, int tested) {

TestConfigsFSM it = TestConfigsFSM. getInstance();
it.reset();
while (it.hasNext()) {

it.next();
Korat.main(args);
assertEquals(newCases,
TestCradleFSM.getlnstance().getValidCasesGenerated());
if (tested > 0) {
assertEquals(tested, TestCradleFSM.getInstance().getTotalExplored());

b
b
b
h

File: FSMExplorationTest.java
package korat.exploration;
public class FSMExplorationTest extends BaseFSMExplorationTest {

public void testFSM() throws Exception {
String cmdLine = "-c korat.examples.fsm.FSM -a 3";
doTestForAllConfigs(cmdLine, 1, 3);

b
}

Figure 5.5: FSM Exploration Test Classes
35

File: FSM.java
package korat.examples.fsm;
import korat.*;

public class FSM implements [FSMModel {
public String State;
public String FSM_STATE 1="NO COINS";
public String FSM_STATE 2="ONE COIN";
public String FSM_STATE 3="TWO COINS";

public boolean addlcoinGuard() {

}

public @Trigger void addlcoin() {
State = State.equals(FSM_STATE 1) ? FSM_STATE 2 :
FSM_STATE 3;

}

public boolean add2coinsGuard() {
return (State.equals(FSM_STATE 1));
}

public @Trigger void add2coins() {
State = FSM_STATE 3;

return (State.equals(FSM_STATE 1) || State.equals(FSM_STATE 2))

}

public boolean vendgumGuard() {
return (State.equals(FSM_STATE 3));

}

public @Trigger void vendgum() {
State = FSM_STATE 1,
b

@Override
public void resetState() {
State = FSM_STATE 1;

}

b

Figure 5.6: Test Script Target Class

36

Figure 5.7 shows the Jenkins console output from running the above JUnit script

for the finite state machine test. Figure 5.8 shows the test report generated.

O Console Output

Started by user Kilnagar Bhaskar

Building in workspace C:\Program Files (x86)\Jenkins\workspace\korat

[korat] $ cmd.exe /C ""C:\Users\dzhvn@\Desktop\uta\VNV\apache-ant-1.9.5\bin\ant.bat test &% exit XXERRORLEVELXX"'
Buildfile: C:\Program Files (x86)\Jenkins\workspace\korat\build.xml

init:

build:
[echo] Korat: C:\Program Files (x86)\Jenkins\workspace\korat\build.xml
[javac] C:\Program Files (x86)\Jenkins\workspace\korat\build.xml:58: warning: 'includeantruntime' was not set, defaulting to
build.sysclasspath=last; set to false for repeatable builds

test:
[javac] C:\Program Files (x86)\Jenkins\workspace\korat\build.xml:81: warning: ‘includeantruntime' was not set, defaulting to
build.sysclasspath=last; set to false for repeatable builds
[junit] Running korat.exploration.BinaryTreeExplorationTest
[junit] Tests run: 1, Failures: @, Errors: 0, Skipped: @, Time elapsed: 0.277 sec
[junit] Running korat.exploration.BinomialHeapExplorationTest
[junit] Tests run: 1, Failures: @, Errors: ©, Skipped: @, Time elapsed: 0.911 sec
[junit] Running korat.exploration.DisjSetExplorationTest
[junit] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 0.223 sec
[junit] Running korat.exploration.FSMExplorationTest
[junit] Tests run: 1, Failures: @, Errors: @, Skipped: ©, Time elapsed: 0.224 sec
[junit] Running korat.exploration.FibonacciHeapExplorationTest
[junit] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: ©.591 sec
[junit] Running korat.exploration.HeapArrayExplorationTest
[junit] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: ©.555 sec
[junit] Running korat.exploration.SortedListExplorationTest
[junit] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.121 sec

BUILD SUCCESSFUL
Total time: 13 seconds
Finished: SUCCESS

Figure 5.7: Jenkins Output From JUnit Run

37

File: TEST-korat.exploration. FSMExplorationTest.txt

Testsuite: korat.exploration.FSMExplorationTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.229 sec
------------- Standard Output ---------------

Start of Korat Execution for korat.examples.fsm.FSM (repOK, [3])
FSM state reset probability: 0.0 %

(NO COINS, add2coins, TWO COINS) *#**
(ONE COIN, add2coins, ONE COIN)
(TWO COINS, add2coins, TWO COINS)

Total explored: 3
New & Valid found: 1

State coverage:
TWO COINS
covered: 1 /3 (33 %)

Trigger coverage:

add2coins
covered: 1 /3 (33 %)

Transition coverage:
NO COINS:add2coms - TWO COINS
covered: 1

Transition pair coverage:
covered: 0

End of Korat Execution
Overall time: 0.172 s.

Testcase: testFSM took 0.226 sec

Figure 5.8: JUnit Test Report

38

5.2.2 Manual Tests

Our approach for the functions done purely from the graphical user interface is to
test manually. These include FSM random reset, Swing UI, JUNG graph network, and
Json functions. There is scope to automate most of these which can be considered for

future work.

5.2.3 Comparison Tests

A sample run of original Korat and the enhanced Korat-2015 on a binary tree
exploration is shown in Figure 5.9. The results are comparable, with Korat-2015 taking a

slightly longer execution time for the sample run.

C:\Users\dzhvnO\Desktop\kk>"C:\Program Files (x86)\Java\jdk1.7.0 75™bin\java -cp
korat-1.0.jar;.\lib*;. korat.Korat --class korat.examples.binarytree.BinaryTree --print -
-args 3,3,3

Start of Korat Execution for korat.examples.binarytree.BinaryTree (repOK, [3, 3, 3])

korat.examples.binarytree.Binary Tree(@ 1b7a553
korat.examples.binarytree. Binary Tree@ 1b7a553
korat.examples.binarytree.Binary Tree(@ 1b7a553
korat.examples.binarytree.Binary Tree(@ 1b7a553
korat.examples.binarytree.Binary Tree(@ 1b7a553
Total explored:63

New found:5

End of Korat Execution
Overall time: 0.133 s.

C:\Users\dzhvnO\Desktop\kk>

Figure 5.9: Korat and Korat-2015 Comparison Run

39

C:\Users\dzhvnO\Desktop\kk>"C:\Program Files (x86)\Java\jdk1.7.0 75"\bin\java -cp
korat2015.jar;.\lib*;. korat.Korat --class korat.examples.binarytree.BinaryTree --print
--args 3,3,3

Start of Korat Execution for korat.examples.binarytree.BinaryTree (repOK, [3, 3, 3])

korat.examples.binarytree. Binary Tree@ 10e2558
korat.examples.binarytree.Binary Tree(@ 10e2558
korat.examples.binarytree.Binary Tree(@,10e2558
korat.examples.binarytree. Binary Tree(@ 10e2558
korat.examples.binarytree. Binary Tree(@,10e2558
Total explored:63

New found:5

End of Korat Execution
Overall time: 0.135 s.

C:\Users\dzhvnO\Desktop\kk>

Figure 5.9 (continued): Korat and Korat-2015 Comparison Run

The graph outputs from the runs on a FSM and non-FSM target classes are

shown in Figure 5.10.

Non-FSM_(left)

Command:
java -cp korat2015.jar;.\lib*;. korat.Korat —gui
Arguments:

--class = korat.examples.binarytree.BinaryTree
--args = 3,3,3

FSM (right)

Command:

java -noverify -cp korat2015.jar;.\gumball;.\lib*;. korat.Korat --gui
Arguments:

--class = gumball. GumBall

--args = 10

Figure 5.10: FSM and non-FSM Graphs

40

pi
Path# 5 | [] Animate |

Pathi 1

[Exploration# 5

From State: TWO COINS, Trigger. vendgum, To State: NO COINS

[4]

[4]

[

Figure 5.10 (continued):

FSM and non-FSM Graphs

41

Chapter 6 Downloading, Installing and Using Korat-2015

This section provides the instructions to build, install and use Korat-2015. The

information is also available at SourceForge [8] as described later in this section.

6.1 DOWNLOADING

There are multiple ways to download the Korat-2015 application:

Download Korat-2015 bundle. This bundle contains the libraries including those
for generating graphs. If you instead need to use GraphViz for graphs, it needs to
be downloaded and installed separately.

Download Korat-2015 lite. This is just the core Korat, and does not contain the
libraries. The following libraries need to be downloaded separately: alloy4viz.jar,
collections-generic-4.01.jar, colt-1.2.0.jar, = commons-cli-1.0.jar, concurrent-
1.3.4.jar, gson-2.2.4.jar, javassist.jar, jung-algorithms-2.0.1.jar, jung-api-2.0.1.jar,
jung-graph-impl-2.0.1.jar, jung-visualization-2.0.1.jar, and junit.jar.

Download source files and build. The deployed code can be used to build the
korat2015.jar file, or a custom korat2015.jar file.

The code, deployment jar files and support information are hosted on

SourceForge at http://korat2015.sourceforge.net

6.2 INSTALLING

The current directory/ folder that Korat-2015 runs, contains the korat2015.jar file.

The korat2015.jar file can be obtained as described in the above section. The current

42

http://korat2015.sourceforge.net/

directory contains two sub-directories, <target> and lib. The <target> directory contains

the <target>.jar file. The lib sub-directory contains the library files.
Figure 6.1 explains the directory structure on Windows. The structure on Linux

would be the same.

Current Folder— korat2015.jar

p——|ib = Alloy4Vizjar , etc.

= gumball=—— Gumball.java , Gumball.class

Figure 6.1: Directory Structure

C:\Users\dzhvnO\Desktop\kk>dir gumball

Volume in drive Cis OSVol

Volume Serial Number is 666B-D925

Directory of C:\Users\dzhvnO\Desktop\kk\gumball
05/28/2015 1041 AM <DIR>

05/28/2015 1041 AM <DIR>

06/15/2015 0444 PM

05/29/2015 08:00 PM

05/17/2015 0927 AM
2 File(s)

1,141 GumBall.class

838 GumBalljava
<DIR> viz_json
1,979 bytes

3 Dir(s) 382914,117,632 bytes free

C:\Users\dzhvnO\Desktop\kk>

Figure 6.1 (continued):

Directory Structure

43

C:\Users\dzhvn0O\Desktop\kk>dir korat2015.jar
Volume i drive Cis OSVol
Volume Serial Number is 666B-D925

Directory of C:\Users\dzhvnO\Desktop\kk
06/15/2015 01:02 PM 364,791 korat2015.jar
1 File(s) 364,791 bytes
0 Dir(s) 382914,117,632 bytes free

C:\Users\dzhvnO\Desktop\kk>dir lib
Volume in drive C is OSVol
Volume Serial Number is 666B-D925

Directory of C:\Users\dzhvnO\Desktop\kk\lib
06/15/2015 07:07 PM <DIR>
06/15/2015 07:07 PM <DIR>

06/15/2015 08:41 AM 716,757 alloy4viz.jar

06/15/2015 08:41 AM 531,557 collections-generic-4.01. jar
06/15/2015 08:41 AM 581,945 colt-1.2.0.jar

06/15/2015 08:41 AM 30,117 commons-cli-1.0.jar
06/15/2015 08:41 AM 189,284 concurrent-1.3.4.jar
06/15/2015 08:41 AM 190,418 gson-2.2.4.jar

06/15/2015 0841 AM 471,005 javassist.jar

06/15/2015 08:41 AM 233,113 jung-algorithms-2.0.1.jar
06/15/2015 08:41 AM 40,975 jung-api-2.0.1.jar
06/15/2015 08:41 AM 62,329 jung-graph-impl-2.0.1.jar
06/15/2015 08:41 AM 324,398 jung-visualization-2.0.1.jar
06/15/2015 08:41 AM 118,808 junit.jar

12 File(s) 3,490,706 bytes
2 Dir(s) 382914,117,632 bytes free

C:\Users\dzhvnO\Desktop\kk>

Figure 6.1 (continued): Directory Structure

6.3 CREATING TARGET CLASS

The target class can be created by downloading Gumball.java, and compiling the

target gumball. GumBall class as shown in Figure. 6.2.
44

Compiling target class:

Windows
javac -Xlint:deprecation -cp .;.\korat2015.jar .\gumbal\GumBall java

Linux
javac -Xlint:deprecation -cp .:./korat2015.jar ./gumbal/GumBall.java

Figure 6.2: Target Class Compilation

6.4 USING KORAT-2015

This section describes how to use Korat-2015 on a couple of popular platforms.
One method to run Korat-2015 is using command line interface, and providing the
application arguments with the command. The other method is to use the new graphical

(13

user interface. In this case, the application argument “--gui” is the only application

argument provided on the command line. The other application arguments are entered on

the Run screen.

6.4.1 Running on Linux

Figure 6.3 shows the command to run Korat-2015 on Linux.

Using Graphical user interface:

sbhaskar17@bhaskar:~$ java -noverify -cp ./korat2015.jar:./lib/*:./gumball..
korat.Korat --gui

Figure 6.3: Running on Linux

45

Using Command line interface:

sbhaskar17@bhaskar:~$ java -noverify -cp ./korat2015.jar:./lib/*:./gumball..
korat.Korat -¢c gumball. GumBall -a 3

Start of Korat Execution for gumball. GumBall (repOK, [3])
FSM state reset probability: 0.0 %

(NO COINS, addlcoin, ONE COIN) ****
(ONE COIN, addlcoin, TWO COINS) #***
(TWO COINS, addlcoin, TWO COINS)
Total explored: 3

New & Valid found: 2

State coverage:
TWO COINS

ONE COIN

covered: 2 /3 (66 %)

Trigger coverage:

addlcoin
covered: 1 /3 (33 %)

Transition coverage:

NO COINS:addlcom:ONE COIN
ONE COIN:addlcon:TWO COINS
covered: 2

Transition pair coverage:
NO COINS:TWO COINS
covered: 1

End of Korat Execution
Overall time: 0.568 s.
sbhaskar17@bhaskar~$

Figure 6.3 (continued): Running on Linux

46

6.4.2 Running on Windows

Figure 6.4 shows the command to run Korat-2015 on Windows.

Using Command line interface:

C:\Users\dzhvnO\Desktop\kk> java -noverify -cp korat2015.jar;.\gumball;.\lib*;.
korat.Korat -¢c gumball. GumBall -a 3

Start of Korat Execution for gumball. GumBall (repOK, [3])
FSM state reset probability: 0.0 %

(NO COINS, addlcoin, ONE COIN) ****
(ONE COIN, addlcoin, TWO COINS) ****
(TWO COINS, addlcoin, TWO COINS)
Total explored: 3

New & Valid found: 2

State coverage:
TWO COINS

ONE COIN

covered: 2 /3 (66 %)

Trigger coverage:

addlcoin
covered: 1 /3 (33 %)

Transition coverage:

NO COINS:addlcoin:ONE COIN
ONE COIN:addlcon:TWO COINS
covered: 2

Transition pair coverage:
NO COINS:TWO COINS
covered: 1

End of Korat Execution
Overall time: 0.213 s.

Figure 6.4: Running on Windows

47

Using Graphical user interface:

C:\Users\dzhvn0\Desktop\kk> java -noverify -cp korat2015.jar;.\gumball;.\lib*;.
korat.Korat --gui

Figure 6.4 (continued): Running on Windows

48

Chapter 7 Traceability Matrix

The below Table 7.1 maps requirements, design and verification & validation

sections in this document.

Requirement | Design V&V Requirement | Design V&V
GUI-RQ-1 6.3 5.2.2 GUI-RQ-18 3.4.2 5.2.2
GUI-RQ-2 6.3 5.2.1 GUI-RQ-19 3.4.2 5.2.2
GUI-RQ-3 3.4.1 522 GUI-RQ-20 3.4.3 5.2.2
GUI-RQ-4 3.4.1 5.2.2 GUI-RQ-21 3.6 5.2.2
GUI-RQ-5 3.4.1 5.2.2 GUI-RQ-22 3.4.3 5.2.2
GUI-RQ-6 3.4.1 522 GUI-RQ-23 3.4.3 5.2.2
GUI-RQ-7 3.4.1 5.2.2 GUI-RQ-24 3.4.3 5.2.2
GUI-RQ-8 3.3 5.2.2 GUI-RQ-25 3.4.3 5.2.2
GUI-RQ-9 3.4.1 522 GUI-RQ-26 3.4.3 5.2.2
GUI-RQ-10 3.4.1 5.2.2 GUI-RQ-27 3.4.3 5.2.2
GUI-RQ-11 3.4.1 5.2.2 GUI-RQ-28 3.4.3 5.2.2
GUI-RQ-12 3.4.2 5.2.2 GUI-RQ-29 3.4.3 5.2.2
GUI-RQ-13 3.4.2 522 GUI-RQ-30 3.4.3 5.2.2
GUI-RQ-14 3.4.2 5.2.2 GUI-RQ-31 3.4.3 5.2.2
GUI-RQ-15 3.4.2 5.2.2 GUI-RQ-32 3.4.3 5.2.2
GUI-RQ-16 3.4.2 522 GUI-RQ-33 3.4.3 5.2.2
GUI-RQ-17 3.4.2 5.2.2 GUI-RQ-34 3.4.3 5.2.2

Table 7.1: Traceability Matrix

49

Requirement | Design V&V
GUI-RQ-35 3.4.3 5.2.2
GUI-RQ-36 3.4.3 5.2.2
GUI-RQ-37 343 5.2.2
GUI-RQ-38 3.4.3 5.2.2
GUI-RQ-39 3.44 5.2.2
GUI-RQ-40 344 5.2.2
FSM-RQ-1 3.5.1 5.2.1
FSM-RQ-2 3.5.1 5.2.1
FSM-RQ-3 3.5.1 5.2.1
FSM-RQ-4 3.5.1 5.2.1
FSM-RQ-5 3.5.1 5.2.1
FSM-RQ-6 3.5.1 5.2.1
FSM-RQ-7 3.5.1 5.2.1
FSM-RQ-8 3.6 5.2.1
FSM-RQ-9 3.6 5.2.1
FSM-RQ-10 343 5.2.1
FSM-RQ-11 3.4.3 5.2.1
FSM-RQ-12 3.5.2 5.2.1
FSM-RQ-13 3.5.2 5.2.1
FSM-RQ-14 3.5.2 5.2.1
FSM-RQ-15 3.5.2 5.2.1

Table 7.1 (continued): Traceability Matrix

50

Requirement | Design V&V
FSM-RQ-16 | 3.5.1 5.2.2
FSM-RQ-17 | N/A 5.2.1
JUNG-RQ-1 | 3.7 5.2.2
JUNG-RQ-2 | 3.6 5.2.2
JUNG-RQ-3 | 3.6 5.2.2
JUNG-RQ-4 | 3.6 5.2.2
JUNG-RQ-5 | 3.6 5.2.2
JUNG-RQ-6 | 3.6 5.2.2
JUNG-RQ-7 | 3.6 5.2.2
JUNG-RQ-8 | 3.6 5.2.2
JUNG-RQ-9 | 3.7 5.2.2
JUNG-RQ-10 | 3.4.3 5.2.2
JUNG-RQ-11 | 3.6 5.2.2
JUNG-RQ-12 | 3.6 5.2.2
JSON-RQ-1 | 3.7 5.2.2
JSON-RQ-2 | 3.7 5.2.2
JSON-RQ-3 | 3.7 5.2.2
JSON-RQ-4 | 3.7 5.2.2
JSON-RQ-5 | 3.4.1 5.2.2
JSON-RQ-6 | 3.4.1 5.2.2
JSON-RQ-7 | 3.7 5.2.2

Requirement | Design V&V
JSON-RQ-8 3.7 5.2.2
JSON-RQ-9 3.4.1 5.2.2
JSON-RQ-10 |3.4.3 5.2.2
NF-RQ-1 ALL 5.2.2
NF-RQ-2 ALL 5.2.2
NF-RQ-3 ALL 5.2.2
NF-RQ-4 ALL 5.2.2
NF-RQ-5 ALL 5.2.1

Table 7.1 (continued): Traceability Matrix

51

Chapter 8 Conclusion

This report presented our work on enhancing the usability and applicability of
Korat, which is a tool for automated specification-based testing of Java programs. Our
enhancements address the following elements: Graphical User Interface (GUI), Java
Universal Network/Graph Framework (JUNG) output, Finite State Machine Domain
(FSM), and JavaScript Object Notation (JSON) graph archival. We hope our work
provides a foundation that enables more developers and testers to benefit from automated

test input generation offered by Korat.

52

References

1. A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. Korat: A Tool for
Generating Structurally Complex Test Inputs. Formal Research Demo at the 29th

International Conference on Software Engineering (ICSE Demo 2007), Minneapolis,
MN, May 2007.

2. C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on Java

predicates. International Symposium on Software Testing and Analysis (ISSTA
2002), pages 123-133, Rome, Italy, July 2002.

3. Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, Sarfraz Khurshid. Java
implementation of korat http:/korat.sourceforge.net

4. S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and D. Marinov. Parallel test
generation and execution with Korat. 6th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2007), Dubrovnik, Croatia, Sept. 2007.

5. Kilnagar S. Bhaskar. Korat-2015 http://korat2015.sourceforge.net

6. Innoslate https://www.innoslate.com/

7. GitHub https://github.com/

8. SourceForge http:/sourceforge.net/

9. JSON http:/json.org/

10. JUNG http://sourceforge.net/projects/jung/

11. Java Swing http://docs.oracle.com/javase/tutorial/uisw ing/start/

12. Google GSON https://sites.google.com/site/gson/
53

http://korat.sourceforge.net/
http://korat2015.sourceforge.net/
https://www.innoslate.com/
https://github.com/
http://sourceforge.net/
http://json.org/
http://sourceforge.net/projects/jung/
http://docs.oracle.com/javase/tutorial/uiswing/start/
https://sites.google.com/site/gson/

13. JUnit http:/junit.org

54

http://junit.org/

