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5G, the next-generation cellular network, must serve an aggregate data rate of

1000 times that of current 4G networks while reducing data latency by a factor of ten.

To meet these requirements, 5G networks will be far denser than existing networks,

and small cells (femtocells and picocells) will augment network capacity. However,

dense networks raise questions regarding interference, user association, and handoff

between base stations. Where recent papers have demonstrated that interference

from small cells will not be prohibitive under multi-slope path loss models, this

thesis describes how the use of different path loss models affects the design of such

dense, multi-tier networks. This thesis concludes that the gains realized by downlink

biasing and uplink/downlink decoupling are strongly dependent on the path loss

model assumed and the density differential between base station tiers. Furthermore,

this thesis argues that the gains from uplink/downlink decoupling are reduced by a

factor of 50% when optimal biasing for the downlink is used.
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Chapter 1

Introduction

1.1 Motivation

Continuing its exponential rise, demand for wireless data services will soon

overwhelm existing cellular networks. The success of 4G, 4G LTE, and 4G LTE-

A wireless networks has led to a proliferation of mobile apps and novel data uses,

including mobile video. Increasing demand comes in two forms: the number of

mobile connected devices and the data rate required by each device. In 2014 alone,

global mobile data traffic grew 69%, the number of mobile devices grew 7.2% to

7.4 billion, and average data usage on smart phones (the current dominant form of

mobile devices) grew 45%, largely due to the spread of LTE [1]. By 2020, overall

mobile data traffic is expected to by a factor of ten, and there will be 11.5 billion

mobile devices. This number may rise yet further depending on the penetration of

Internet of Things technologies. Next generation wireless networks must realize gains

on the order of a 1000x increase in transmission capacity and area spectral efficiency

to meet this demand [2].

These trends and predictions have informed industry and research targets for

5G networks. These targets include a 1000x improvement in aggregate network data

rate and a 100x increase in achievable per-device data rate, from 1 Mbps to 100 Mbps
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for 95% of users (all but the worst cell edge users)[2]. These requirements, along

with the tentative 2020 goal to implement 5G systems, will outpace the incremental

technology improvements in 4G systems, and the entire network architecture must

be reimagined for 5G networks.

1.1.1 Network Densification

One of the key ideas toward meeting the requirements is to change the makeup

and topology of base stations (BSs). 5G networks will primarily be heterogeneous and

multi-tier, taking advantage of multiple Radio Access Technologies (RATs) trans-

mitting at different signal powers on separate tiers; the density of base stations

will drastically increase, with density varying by tier [2]. As macro cells become

overloaded, it may be beneficial to offload data to dense pico or femtocells in het-

erogeneous networks. Base stations on smaller tiers, with lower transmit powers and

potentially different propagation characteristics, are far more numerous than macro

base stations. This offloading trend has already started: 46% of mobile data traffic

was offloaded to WiFi or cellular femtocells in 2014, blunting some of the growth of

cellular data traffic [1]. This offloading has reduced load on macro base stations and

has prevented network overload.

Densification is not new; it has been the key driver of increasing wireless net-

work capacity in the last fifty years [3]. Physical layer improvements have been vital

in increasing data rate, and research in that area will continue to drive improvement

with respect to metrics such as energy efficiency and latency [4]. However, the in-

crease in system capacity has largely been due to adding base stations. Figure 1.1

2



charts the contributions of more spectrum, frequency division, modulation & coding,

and spectrum re-use due to densification toward increasing system capacity in the last

60 years. This thesis assumes this trend will continue and that network densification

will be an important enabler of system capacity increases in 5G networks.

Figure 1.1: Capacity contributions of various factors since 1955 [3]

Several questions remain regarding the ultra-dense networks of tomorrow,

including: (a) Is an asymptotically linear throughput gain with increasing density

possible, and how will interference be managed to achieve it? and (b) How will

network nodes work together to balance load and associate users? These questions

drive this thesis and related work. In the following sections, this work’s approach

and specific questions are made clear.

3



1.1.2 System Level Modeling

The questions in Section 1.1.1 cannot be answered using traditional informa-

tion theory. Much of information and communication theory, following the work of

Claude Shannon in [5], has focused on deriving bounds for single-link capacity. How-

ever, this approach has its limitations: it cannot evaluate the trade-off of evaluating

more network nodes at a system level, as adding nodes strictly increases interference

and thus decreases link-level capacity. Similarly, it is intractable to use link-level

interactions to answer network design questions regarding interaction between mul-

tiple base stations, such as how to use biasing to offload users to a lightly loaded

cell. Models such as the Wyner model can be used to approximate SIR and SINR at

the system level. However, such models require calculations across large grids, with

approximations for User Equipment (UE) locations. They do not easily yield distri-

butions for user SIR or SINR. Finding such distributions in the past have required

building systems and running large simulations.

However, recent work has introduced the use of stochastic geometry to pro-

duce tractable and tight bounds on system level performance [6]. This framework has

been used to show that, under dual-slope path loss models with empirically justified

path loss exponents, SINR converges to a positive, constant value with increasing

network density [7]. Thus, adding nodes (even randomly without sophisticated net-

work planning), asymptotically increases system throughput.

This thesis extends this work to study network design in dense heterogeneous

networks. The impact of dual-slope models on the gains realized by biasing and

decoupling the uplink from the downlink is studied. Simulations were built to inform

4



future analytic work.

1.2 Thesis Overview

This thesis seeks to answer questions about user association (for both the

uplink and downlink) in dense multi-tier networks using various path loss models. It

starts with an overview of wireless performance increases in the last several decades

and then previews requirements and technologies in 5G networks. This overview is

meant for a lay audience. It then discusses literature and current techniques in user

association for both the downlink and uplink and describes the system model and

simulation setup. Finally, this thesis poses and answers several questions regarding

how different path loss models affect the gains realized by user association techniques.

1.2.1 Chapter Descriptions

In Chapter 2, an historical overview of the technologies and performance of

past wireless systems is given, along with projections of required system performance

through 2020. Descriptions of some of the key drivers of these performance require-

ments (the Internet of Things, virtual reality applications, and vehicular networks)

are then given. Finally, an envisioned network architecture is described with previous

work in user association and heterogeneous networks.

In Chapter 3, the system model is described. Stochastic geometry models

are briefly discussed and then the parameters and assumptions used in this thesis

are detailed. Finally, the performance metrics used to compare user association

strategies are included.
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In Chapter 4, the simulations and code flow is described, including the data

processing workflow. The simulator is verified by comparing its output to analytic

and simulation results from [7]. Benchmarks comparing the C++ code to Matlab code

are given. The C++ code is shown to be about 20 times faster than Matlab code.

In Chapter 5, various experiments are described alongside their results. First,

the use of static biasing is studied. Optimal bias values for various system design

parameters – tier density and power disparities – and for different path loss models

are included. Next, uplink/downlink decoupling is studied for various path loss

models and downlink association techniques.

1.2.2 Contributions

This thesis answers several questions regarding downlink and uplink user as-

sociation with different path loss models: a) how does the use of various single and

multi-slope path loss models affect the gains predicted for optimal biasing in the

downlink? b) what do the different path loss models predict about the gains re-

alized by decoupling the downlink from the uplink? and c) do gains predicted for

uplink/downlink decoupling extend to the case when optimal biasing is used for the

downlink?

Simulations show that though biasing leads to large gains for a basic single

slope path loss model with α = 2, these gains are much smaller for larger path loss

exponents. Furthermore, both the optimal bias and the gain from biasing is shown

to be a function of the relative densities between the tiers. As the relative density

for the small cell tier approaches infinity, the gains from biasing tend to zero.

6



Next, this work quantifies the gain from uplink/downlink decoupling over

coupled association with optimal biasing for the downlink. It is shown that there is

a small, positive gain from decoupling, but this gain is about 50% less than the gain

over coupling without optimal biasing.

Finally, the simulations suggest a possible heuristic that can be used instead

of schemes in which the base stations calculate their bias. It is shown that association

with optimal biasing can be roughly approximated by a user-centric association in

which UEs connect (for the downlink) to the base station that maximizes a linear

combination of downlink and uplink SINR. Such an association provides a balance

between connecting to small cell BSs (that are lightly loaded) and connecting to

the macro BS which may provide the highest downlink power. This scheme can be

analyzed in future work.
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Chapter 2

5G Overview

2.1 Performance Requirements

Wireless technology has penetrated every aspect of our lives in the last twenty

years, and its growth has been staggering. The majority of people in the world now

own mobile devices, and adoption of 4G and 4G LTE is increasing worldwide. Each

new generation of cellular technology (from 2G through 4G-LTE) has enabled a new

type of application. Most recently, 4G-LTE has enabled mobile streaming video and

video chatting, which as of 2014 utilizes 55% of mobile data traffic [1]. This section,

meant for a lay audience, traces the history of wireless and cellular technologies

through the performance of various systems and the usage over time.

2.1.1 History

Figures 2.1, 2.2, 2.3, and 2.4 show historical and projected approximate data

rates, total mobile devices, worldwide mobile data traffic, and network latency, re-

spectively, starting from 1940. The data for these figures were collated from [1], [2],

[8], [9], [10], [11], [12], and [13]. Note that the 1990s served as an inflection point:

the number of global mobile devices, data rates, and total network all increased

dramatically, and network latency fell significantly. Since then, there has been an

exponential growth in network usage. The 2000s did not see as large of an expo-
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nential growth as the 1990s in the number of mobile devices because the mobile cell

phone market saturated. However, data usage rose exponentially due to the rise of

smart phones. This exponential growth is expected to continue as new applications

demand ever-increasing amounts of data.

Figure 2.1: Approximate, peak date rate over time for wireless technologies. Exact
values depend on network load, location, and distance to the base station, among
other factors.

2.1.2 5G System Requirements and Performance Drivers

Driven both by technical feasibility and potential applications, there is a broad

consensus on system requirements and goals for 5G [2, 14]. A key aspect of 5G

networks is heterogeneity: in both the potential applications and their requirements.

5G networks must support an edge rate 100 Mbps, between 1000x and 10000x more

9



Figure 2.2: Number of mobile devices over time. The 1990s saw a large exponen-
tial rise in devices. This rise has tapered in the last five years as the mobile cell
phone market has saturated. The IoT market may again lead to an exponential rise,
however, by 2020.
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Figure 2.3: Worldwide data traffic over time. While the number of devices has not
seen the same exponential rise as it saw in the 1990s, overall data traffic has continued
its exponential trend as per device usage has risen.
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Figure 2.4: Cellular network latency over time, measuring the time it takes to send
a packet from a source to a receive through the entire network stack. Note that
this time includes not just the link latency (from the base station to a UE), but
also the backhaul and internet latency. Drastically lower latency is required for 5G
technologies to support new generations of applications.

12



overall traffic, 1 ms link latency, and high reliability. Some applications, especially

sensor networks, will require high uplink capacity. In the following subsections, some

of these potential applications are described along with their associated network

needs.

2.1.2.1 Internet of Things

One of the largest sources of data and device growth in the next decade will be

from “Internet of Things” (IoT) technologies. Though the hype has grown faster than

the technology in the last decade, the vision remains the same: “sensors and actuators

blend[ing] seamlessly with the environment around us, [with] the information shared

across platforms in order to develop a common operating picture” [15]. Market

penetration of IoT technologies will strain existing wireless networks. A large number

of devices will demand both high downlink and uplink capacity.

One of the most prominent examples of a ready-for-market IoT technology

is Nest’s home automation technology [16]. Nest builds thermostats, among other

devices, that learn when a home is occupied and then optimize the home’s heating

and air conditioning to save electricity while keeping its occupants comfortable. The

technology senses the environment (a regular home, in this case), uploads the data,

processes it (often through machine learning techniques), and then controls the envi-

ronment. Nest, as an indoor technology often meant for homes and businesses, uses

WiFi. Future IoT applications, especially those meant for outdoor use, must have

cellular capabilities.

Such technologies may soon be ubiquitous, with infrastructure monitoring,

13



internet search for the physical world, and pervasive sensing. IoT will bring signifi-

cant economic gain: Cisco estimates that IoT will be a $19 trillion industry by 2020

[17], and Google recently acquired Nest for $3.2 billion [18].

However, significant technological gains must be made to serve IoT applica-

tions and sensors. Several architectural challenges remain at the higher layer of the

networking stack, including security and the question of how to address the poten-

tially trillions of tagged physical objects [15, 19, 20]. There are several challenges

for the wireless communication layers as well. Most fundamentally, there must be

enough capacity to connect all networked devices to the core internet, and this ca-

pacity will primarily come through densification of the network. The large number

of devices also poses challenges in user association, load balancing, and scheduling.

Furthermore, sensor networks will increase demand for wireless uplink capac-

ity. In existing cellular networks, there is much higher demand for the downlink than

the uplink. For instance, users stream videos to their device through LTE far more

often than they upload videos or other data from their devices. Many architectural

decisions (such as uplink/downlink coupling) are based on this assumption. Sensor

networks, with non-user devices, turn that relation on its head: any given device

only needs to download control or synchronization instructions but needs to continu-

ously upload collected data. The network architecture must evolve to increase uplink

capacity without sacrificing downlink capacity.

Finally, parts of the IoT will demand low latency and high reliability connec-

tions. Industrial control systems, in particular, are currently only operated through

wired networks due to their high reliability and low latency constraints [21]. How-
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ever, it may be desirable to run such systems through a wireless network to simplify

adding new actuators or sensors and to control systems across a large geographic

region. Wireless protocols with low latency at a high reliability must be developed

and implemented in 5G network. These IoT challenges must be tackled directly in

future cellular network design.

2.1.2.2 Vehicular Networks

The cell phone helped kill the car phone. In the next decade, however, vehicles

will be re-connected to the network, but not for human communication. Vehicular

networks will come in two forms: Vehicle to Vehicle (V2V) and then Vehicle to Base

Station. These networks demand spectrum resources and low latency protocols.

V2V networks are a form of Mobile Ad-Hoc Networks (MANETs) with a

long research history. V2V networks involve short range, direct connections between

vehicles, often for safety applications. For example, a vehicle could send message to

the vehicle behind it that it is suddenly braking, and the trailing vehicle could start

the breaking process faster than person at the wheel could respond. The United

States is considering mandating that all vehicles manufactured as soon as 2017 have

such capabilities [22]. Such communications require very low latency, but V2V in

general will not affect 5G cellular design: such networks can be separate from the

larger network on their own bands.

However, the second class of vehicular networks, in which vehicles are con-

nected to the larger network, will affect 5G design. Many commercial vehicles already

connect their vehicles for tracking purposes. Especially as more autonomous vehicles
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enter the marketplace, it will be beneficial to connect more vehicles to the network

for control and monitoring purposes. A centralized controller could optimize vehicles’

routes through traffic. In a truly autonomous-driving world, such networks will be

required for safety and control and could be used to optimize traffic signals [23]. To

connect vehicles to the larger network, 5G networks must be able to handle millions

of new devices, and much of the communication must be low latency. Furthermore,

because vehicles by definition are often moving, low network latency must be pre-

served even with handoff between base stations.

2.1.2.3 Other Drivers

In addition to IoT and vehicular communication – which require the network

to support billions of new devices, high uplink capacity, and low latency – other ap-

plications will tax the network with respect to more traditional network performance

metrics. For example, augmented reality applications will require large downlink ca-

pacity and data rates. Such applications will continually overlay information about

the world on devices such as smart glasses.

2.2 Network Heterogeneity

The requirements in Section 2.1 – very large number of devices, high uplink

data rates, low latency, and high reliability – are difficult to achieve individually, and

all trade off from one another. To meet these requirements, 5G networks will display

two types of heterogeneity.

First, different RATs must be coordinated and used. A single wireless tech-
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nology cannot meet all the constraints for any given application, and a device may

require various types of connections at different times. Devices must be able to

simultaneously use different technologies to meet all their needs. For instance, an

industrial controller (with sensors and actuators) may need low latency and high

reliability for regular operation. It may also occasionally need to upload data that

it has collected, thus requiring a high data rate connection; however, a protocol op-

timized for high reliability with low latency may not support high uplink data rates.

These protocols must co-exist.

Furthermore, different technologies can be used to augment cellular technol-

ogy. For example, WiFi can be used alongside cellular to provide high data rates

for stationary or slow-moving users. Various cellular physical layer technologies may

also be used together to meet needs; 5G networks will use mmWave, for instance, and

machine to machine communication may also be used [2]. This coordination is not

always trivial. A fierce debate is currently raging over the use of LTE on unlicensed

bands (the 5 GHz band in particular) currently used by WiFi [24–27].

Second, even assuming a single RAT throughout the network, 5G networks

will be heterogeneous with respect to transmit power and size of base stations. Tra-

ditional cellular towers, or macro base stations, will be supplemented with small cell

base stations with lower transmit power. These small cells can augment system ca-

pacity by allowing macro base stations to offload some of their users to the smaller

base stations. This thesis primarily concerns this type of heterogeneity, and user

association and uplink/downlink decoupling are studied with multiple tiers of base

stations.
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2.3 Network Densification

Along with being heterogeneous, 5G networks will also be asymptotically

dense, with femtocells potentially every ten square meters in some geographic areas.

Small cells can be installed at a much cheaper cost than can macro base stations.

At such a high density, cell edge users are eliminated – all UEs are close to a base

station.

2.3.1 Interference in Dense Networks

With such a large number of base stations installed in an unorganized manner,

interference can become an issue. Densifying the network makes spatial frequency

reuse difficult because unless the bandwidth is split into many orthogonal sub-bands,

interfering base stations will be nearby even with frequency reuse. Similarly, sectoring

may not be feasible with such small cells due to side lobe leakage. In [7], Zhang and

Andrews derived coverage and SINR bounds in a dense network when dual-slope

(or more generally, multi-slope) path loss models are used. They found that the

scaling on coverage and capacity depend on the path loss parameters: for α0 > 2,

the probability of coverage approaches a constant value above zero as density tends

to infinity, and so system throughput scales linearly. With α0 < 2, however, the

probability of coverage tends to 0 and so system throughput no longer scales linearly.

For α0 < 1, system throughput tends to 0 as the density increases. This thesis

extends this work to multi-tier networks with a power differential between the tiers

and with various user association strategies.
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2.3.2 Downlink User Association

Many of the benefits of dense networks may not be realized if users do not

connect to the small-cell base stations. In most existing cellular systems, users

connect to the base station based on signal strength (SINR). However, users often

receive the strongest SINR from macro base stations, rather than from closer, less

powerful base stations. The macro base stations may become overloaded, and adding

femtocells may not improve network capacity.

In [28], the authors set up a test bed of a dense WiFi network, with two tiers in

the 2.4 GHz and 5 GHz bands, respectively. They found that when clients were free

to associate to any router in this dense network, they often chose poorly. Router load

and resource differences between the bands often led to much higher performance in

the 5 GHz band. However, clients often connected to a lower performing 2.4 GHz

router because it delivered a higher SINR due to propagation behavior through walls.

The overall network capacity, as well as per-user rate for users in the 2.4 GHz band,

was lower as a result.

This loss can be recovered by changing user association algorithms. One

common user association techniques is to bias users towards lightly loaded tiers. For

user association purposes, a biasing factor Bi is added to the received signal power

for tier i to extend the range of the tier in the network. In [29], the authors analyze

coverage and rate (for the downlink) when biasing is used. They observe that the

effect of biasing depends on the bias factor, the relative densities of the network

tiers, and on other network specific factors. However, in general, biasing slightly

diminishes probability of coverage in exchange for increasing overall rate through
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better resource management. In this thesis, simulations show that biasing is further

dependent on the path loss model used and, for large densities or higher path loss

exponents, the gain from biasing is negligible.

While well-designed biasing may improve performance, static bias factors Bi

may not be well suited for dynamic networks (as heterogeneous networks naturally

are, as routers may be added or removed without warning). Changing these biases

per network configuration may lead to too much overhead. Furthermore, while the

factors may be designed based on average or predicted loads on particular tiers, they

may be ineffective for instantaneous or actual user distributions in a network. Recent

work has sought to dynamically adjust these weights in a distributed and real-time

manner [30, 31].

Iterative, distributed algorithms to determine bias weights are used in [30]

and [31]. Though the details differ, in both methods base stations broadcast their

current biases to users, who use those biases and channel information to tentatively

associate with a base station. Each base station then updates its bias based on the

number of users connected to it. This process continues until associations converge.

Associations are updated as needed, with user mobility or with new users in the

system.

2.3.3 Uplink/Downlink Decoupling

The association techniques described above are currently solely used to max-

imize downlink performance. However, the uplink is considered increasingly impor-

tant for anticipated applications (especially sensor networks, IoT, and autonomous
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vehicles). Recent literature has emphasized large potential gains in the uplink by

decoupling user association in the downlink and uplink [32, 33]. The idea of up-

link/downlink decoupling is that though connecting to a macro cell may be beneficial

in the downlink due to the larger transmit power, the larger distance (higher path

loss) hurts uplink SINR. The analysis becomes trickier with uplink power control

and downlink biasing, and this work simulates such configurations.

In [32], the authors observe significant throughput gain in the uplink through

decoupling the uplink and downlink. Their model includes neither power control

nor load balancing for either the uplink or the downlink, and instantaneous channel

effects are not considered. Rather, each device connects to the base station from

which it receives the highest average power for the downlink and the base station to

which it transmits the highest average power in the uplink.

In [33], the authors simulate a dense HetNet using a ray tracing prediction

model, yielding detailed performance information. Uplink and downlink association

in the decoupled case is similar to above. Downlink association is determined as in

LTE (signal power of a reference signal), and uplink association is determined by the

path loss to the base station. Through their detailed simulations, the authors also

observe significant throughput gains for the uplink through decoupling.

The works described above do not factor in load balancing (for either the

uplink or the downlink). In [34], Singh, et. al claims that, without decoupling, biasing

for load balancing in the downlink would also benefit the uplink; biasing for the

downlink reduces the impact of unequal base station transmit power, and so users are

more likely to connect to closer, low power base stations that also exhibit less uplink
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path loss. Such a benefit does not negate the benefit from decoupling: the authors in

[35] posit that the decoupled uplink would still outperform coupled association with

downlink biasing. In this work, simulations show that uplink/downlink decoupling

does lead to gains over optimal static biasing for the downlink, but this gain is very

small compared to the gain over no biasing for the downlink.

A minimum path loss association is shown to be optimal for the uplink in

[34], regardless of power control or network density. However, such an association is

optimal with the assumption that such it would lead to an identical load distribution

across all APs. While this is true in expectation (with UEs and BSs distributed

according to a PPP), it may not be true instantaneously. Rather, for a particular

realization, load may be distributed unevenly across the BSs with minimum path

loss association. With non-PPP distributions for users (such as clustered users),

load may also be quite unbalanced even in expectation. Thus, real-time distributed

load balancing for the uplink, similar to that used for the downlink in [31], may

increase rate. Future work could extend the results from this thesis which shows

the gain from decoupling when constant, static biases are used at each base station

across a tier.

This thesis uses a channel inversion path loss model when analyzing uplink

capacity, following literature. A fractional pathloss-inversion power control policy

is used for the uplink in [34]. For the case of equal spectral resources to each UE

connected to a base station, this policy is identical to a path-loss inversion power

control policy. In Chapter 5, it is shown that with such a policy, biasing for the

uplink does not produce large gains over uplink pathloss association, which itself
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produces a small but consistent gain over coupled association with optimal biasing

for the downlink.

These gains are further affected by the use of dual or multi-slope path loss

models, which punish large distances much more heavily than they punish small

distances. Most of the work described above uses fixed, identical, single slope path

loss models for all tiers. In this work, it is shown that the gain is smaller for higher

path loss exponents.
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Chapter 3

System Model

This work uses stochastic geometric modeling techniques introduced in [6],

where both base stations and users are drawn from a Poisson Point Process. Fig-

ure 3.1 shows voronoi tessellations for both single-tier networks (under grid and PPP

models) and two-tier networks with a transmit power differential, and Figure 3.2

shows networks at various densities. This thesis is simulation-based and so does not

immediately realize tractability benefits associated with stochastic geometric models.

However, the thesis does benefit from the accuracy of stochastic geometric models:

PPPs have been shown to more closely model real-world realizations of networks

than grid models and provide a lower bound for most capacity and probability of

coverage results [6, 36]. Furthermore, recent work has shown that a constant “de-

ployment gain” can be used to easily convert the coverage distribution (with respect

to a threshold) from a PPP model to the distribution of a deployment [37]. Future

work will use insights from simulation to derive analytic results.
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(a) (b) (c)

Figure 3.1: Voronoi tesselations for a standard grid model, a single-tier network, and
a two-tier network with 13 dB transmit power difference, respectively.

Figure 3.2: Two-tier networks with various densities.
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UEs and BSs in each tier i are placed using Poison Point Processes (PPPs)
with densities λu and λi, respectively. A sample p is drawn from a Poisson distribu-
tion with mean λ, and p points from a 2-D uniform distribution are drawn on the
grid [−g, g]. Users are associated with base stations, and base station load (for the
BS to which the user at the origin is connected), SINR, Pcoverage, and rate are calcu-
lated for the user at the origin. These values are measured over many experiments
to generate distributions given each set of parameters.

Without loss of generality, all measurements are made with respect to a fixed
user at the origin. A full list of parameters is included in Table 3.1 on page 35.

3.1 Signal Propagation Model

This work uses a propagation model similar to those in [6] and [7]. This
section details each component of the model.

3.1.1 Channel Model

A Rayleigh Fading channel model is assumed by default. A channel value hk,ij
between user k and base station j in tier i is drawn from iid exponential distributions
px(hk,ij , λ) = λe−λx, where λ = 1.

3.1.2 Path Loss Models

A contribution of this thesis is to illustrate how the use of dual-slope path
loss models affects design choices. Following [7], the single-slope and dual-slope path
loss equations are given in (3.1) and (3.2), respectively:

Pr = hk,ijPtK|
x

d0
|−α (3.1)

where K encapsulates all system parameters.

Pr =

{
hk,ijPtK| xd0 |

−α0 x ≤ Rc

Rα1−α0
c hk,ijPtK| xd0 |

−α1 x > Rc
(3.2)

where the Rα1−α0
c factor is used for continuity purposes. Figure 3.3 shows received

power (without fading) depending on different path loss exponents, with Rc = 200m
and d0 = 100m.

26



Figure 3.3: Pr based on distance, without fading, from a base station with Pt = 0
dBW
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3.1.3 Uplink Power Control

Truncated channel inversion is used in the uplink. Figure 3.4 shows the uplink
power as a function of distance from the BS (on average with fading).

Figure 3.4: Truncated channel inversion for the uplink

3.2 Downlink Association

For downlink association, two standard techniques are analyzed: highest re-
ceived SNR, and SNR with biasing. Future work can extend these simulations by
integrating load balancing user association.
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3.2.1 Highest Received SNR

A user k is associated with the base station j in tier i that maximizes

arg max
ij

(γ(dB) = Pr,ij − σ2) (3.3)

where all terms are in dB. Note that such an association differs from association in
real networks, where a UE can easily determine SINR from each base station using
reference signals. In large simulations with thousands of base stations and users,
interference cannot be taken into account when associating each user because the
run-time of the code would scale by O(NUsers ×Nbase stations), which is not tractable.
SNR association is also used in [32] and [33], which similarly use simulations. This
limitation does not largely affect results because interference affects rate both linearly
(through proportional allocation) and inside the log function, and only the term
inside the log function would differ if SINR association is used.

3.2.2 Biasing

A user k is associated with the base station j in tier i that maximizes

arg max
ij

(γ(dB)biased = Pr,ij +Bi − σ2) (3.4)

where all terms are in dB. Optimal biases are found for various λi pairs.

3.3 Uplink Association

Two strategies are also used for uplink association: coupled with the downlink
(both with and without biasing), and decoupled with highest received SNR.

3.3.1 Coupled Association

For the base measurements, uplink is coupled with downlink, and so a user k
is associated with the base station j in tier i that maximizes either received power
or receive power with bias.
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3.3.2 Highest Received SNR at the base station

A user k is associated with the base station j in tier i that maximizes uplink
received power.

arg max
ik

(γuplink(dB) = Pr,uplink − σ2) (3.5)

Pr,uplink =

{
hk,ij +K + Pt,u − 10α0 log10 | xd0 | x ≤ Rc

hk,ij +K + Pt,u − 10Rα1−α0
c α0 log10 | xd0 | x > Rc

(3.6)

where all terms are in dB, and Pt,u integrates truncated channel inversion.
Note that Pr,uplink does not depend on the base station to which the user is connected.
Thus, this association rule is the same as transmitting to the BS that receives the
highest SNR from the user (with fading). Equations 3.7 and 3.8 give the exact uplink
association rules for single and dual-slope path loss models, respectively.

arg max
ij

hk,ijK|
x

d0
|−α (3.7)

arg max
ij

{
hk,ijK| xd0 |

−α0 x ≤ Rc

Rα1−α0
c hk,ijK| xd0 |

−α1 x > Rc
(3.8)

3.4 Measurements

Thousands of simulations are run for each parameter combination. Several
measurements are calculated for each experiment and then aggregated at for each
parameter combination. For each experiment, relevant calculations are for the user
at the origin.

3.4.1 SINR

Using the above models, the final received power and SINR from base station
j in tier i are shown in (3.9) and (3.10). Note that in-cell interference is assumed to
be perfectly nulled.

Pr,ij = hijPt,i (3.9)
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γdownlink =
Pr,ij∑

l 6=j
Pr,il + σ2

(3.10)

3.4.2 Rate

Full Channel State Information at the Transmitter (CSIT) is assumed with
rate modulation. A user receives a rate r from base station j in tier i when SINR ≥ T ,
as shown in Equation 3.11.

r =

{
Wi

lij
log2(1 + γ) γ ≥ T

0 γ < T
(3.11)

This rate calculation translates to a system with fair, orthogonal resource partition-
ing.

3.4.3 Probability of Coverage

Given a SINR threshold T ,

PCoverage = E [1γ>T ]

=
Number of Times(γ > T )

Nexperiments

3.4.4 Optimal Bias

For several of the experiment setups, an optimal bias is found for each set of
parameter combinations. For example, an optimal bias is found for different relative
densities between the tiers and for transmit power differentials. The optimal bias is
the bias that maximizes the log sum rate, as shown in (3.12).

Boptimal = arg max
B1

∑
experiments

log r (3.12)
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Chapter 4

Methods

4.1 Simulation Setup

An extensible network simulator in C++ for large-scale, efficient simulations

of multi-tiered networks was developed as part of this thesis. For each experiment

described in Chapter 5, 3000 simulations are run with the model described in Chap-

ter 3. For each simulation, base station and user locations and counts are determined

as a realization of their respective PPPs.

A key benefit of the simulation software is the ability to plug in different

configurations and run them with minimal code overhead. The various user associa-

tion techniques described in Section 3.2 are used consecutively in experiments, and

their results compared. Arbitrary path loss models are plugged into the system, and

simulations are used to generate results comparing single-slope and multi-slope path

loss models.

Furthermore, this simulation setup can be used to simulate and compare a

wide variety of parameter combinations. Any levels of heterogeneous network tiers

can be simulated, with each tier following its path loss model, transmission power,

and base station association characteristics. Performance can be evaluated at high

density regimes, along with settings with differential density and power at each base

32



station.

The data generated by each experiment is stored in Comma Separated Value

(CSV) files to be post-processed. Each experiment is summarized with parameter

values and the key performance metrics discussed in Section 3.4. Python is then

used to parse the CSV files and create plots.

4.2 Performance Benchmarks

Figure 4.1 compares performance for C++ and Matlab to complete identical

tasks. The run-time of the simulator is largely determined by the time it takes to

associate users to base stations – naively, the distance between each user and each

base station must be found so that the signal strength can be calculated. This task

can be done efficiently using a k-nearest neighbor algorithm. However, the limitation

does prevent taking into account interference in association. The performance met-

rics in the figure were obtained by running k-nearest neighbors and a full simulation

on Matlab and C++ . The programs were run on different machines: the Matlab

code was run on a quad-core i7 machine running Windows, and the C++ code was

run on a dual-core Ubuntu virtual machine running on that Windows box. Normal-

ized to similar CPU performance specifications, the C++ code is approximately 20

times faster than the Matlab code. This gain is not drastic for small simulations.

However, for simulations that take multiple days such as those in this thesis, the gain

is essential. Furthermore, C++ can easily be parallelized and run on multiple cores

with minimal effort.
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4.3 Simulator Verification

The code and model was first verified by comparing its output to analytic

results derived in [7]. A single-tier network with [α0, α1] = [2, 4] and [3, 4] was simu-

lated. Table 4.1 details all parameters used in the experiment.

Figures 4.2, 4.4, 4.3, 4.5, 4.6 compare the output of the simulation code in

this thesis to images from [7]. The simulation curves match well with both analytic

and simulation results from literature, indicating that the simulator is well-suited to

analyze new configurations and questions. Furthermore, the images indicate the key

result from the literature: in a single-tier network using dual-slope path loss models,

there is a state transition at α0 = 2 in the probability of coverage and SIR with

asymptotic density.
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Table 4.1: Parameters for model verification

Parameter Value

Ntiers 1

λu 50 UEs/km2

λ0 .01 BS/km2 to 315 BS/km2

Wi 1 Hz
Pt,i 0 dB for all BSs
σ2 −∞ dB and 0 dB

[α0, α1] [2, 4] and [3, 4]

36



Figure 4.1: Performance of Matlab and C++ code.
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(a) Simulation results for SIR with α0 = 2, α1 = 4 from this work’s simulator

(b) Image from [7]. Analytic results for SIR with α0 = 2, α1 = 4

Figure 4.2: Verification SIR for a single-tier network with α0 = 2, α1 = 4 from
analysis and simulation. Note that the simulation results match almost perfectly
with analytic results for the simulated density range.
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(a) Simulation results for SIR and SINR with α0 = 2, α1 = 4 from this work’s
simulator

(b) Image from [7]. Analytic results for SIR with α0 = 2, α1 = 4

Figure 4.3: Verification SIR and SINR for a single-tier network with α0 = 2, α1 = 4
from analysis and simulation. Note that the simulation results match almost perfectly
with analytic results for the simulated density range.
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(a) Simulation results for SIR with α0 = 3, α1 = 4 from this work’s simulator

(b) Image from [7]. Analytic results for SIR with α0 = 3, α1 = 4

Figure 4.4: Verification SIR for a single-tier network with α0 = 3, α1 = 4 from
analysis and simulation. Note that the simulation results match almost perfectly
with analytic results for the simulated density range.
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(a) Simulation results for SIR and SINR with α0 = 3, α1 = 4 from this work’s
simulator

(b) Image from [7]. Analytic results for SIR with α0 = 3, α1 = 4

Figure 4.5: Verification SIR and SINR for a single-tier network with α0 = 3, α1 = 4
from analysis and simulation. Note that the simulation results match almost perfectly
with analytic results for the simulated density range.

41



(a) Simulation results for SINR CCDF with α0 = 2, α1 = 4 from this work’s
simulator

(b) Image from [7]. Analytic and simulation results for SINR CCDF with α0 =
2, α1 = 4

Figure 4.6: Verification SINR CCDF for a single-tier network with α0 = 2, α1 = 4
from analysis and simulation. Note that the simulation results match almost perfectly
with analytic results for the simulated density range.
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4.4 Discussion

This simulation methodology counters recent academic research trends in two
ways. First, complex software simulations of this variety are generally not used for
academic research. The main criticism for this approach is that such simulations are
only useful in producing insight for analysis later. Furthermore, such simulations
often produce noisy results and take a long time to run, especially if numerous
parameter combinations are studied. However, an initial simulation approach is
necessary for insights when numerous parameter values and strategies interact.

Second, this thesis simulated networks using C++ , rather than Matlab, which
is preferred in academic circles. As discussed in Section 4.2, the C++ simulations
are about 20 times faster when normalized to the same machine parameters. This
speed-up is important when optimizing a large number of parameters together as it
allows many parameter combinations to be simulated. Using C++ is essential for the
results in this work.
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Chapter 5

Experiments and Results

Two classes of problems were analyzed in this work. First, experiments were

run regarding the benefits of static biasing with different path loss models. Then,

uplink/downlink decoupling was analyzed for different path loss models and downlink

user association techniques.

5.1 Optimal Static Biasing

Optimal biasing was analyzed for two cases: when the density differential

between the tiers increases asymptotically, and when the density of each tier increases

together.

5.1.1 Relative Density Disparity

In this experiment, the density of the small cell tier was increased while the

density of the macro tier was held constant at 1 BS/km2. As the small cell density

increased, the log sum rate and other metrics were calculated for each bias value

between 0 and 20 dB. Table 5.1 contains the full parameters for this experiment.

Results. Along with log sum rate, the simulation tracked the tier to which

the UE at the origin connected as the density of the small cells increased. Figure 5.1
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Parameter Value

λ0 1 BS/km2

λ1 .3 BS/km2 to 315 BS/km2

B0 0 dB
B1 0 dB to 20 dB

Table 5.1: Parameters for optimal biasing with density of femto tier increasing. All
parameters not included are the same as in Table 3.1

shows the fraction of users which connected to the small cell tier for different path

loss models and densities, without any biasing and with a 20 dB bias. One surprising

result is that biasing flips the effect the path loss model has on predicting to which

tier the UE will connect. Without biasing, as the path loss exponents increase, more

UEs connect to small cells because they are closer. However, with biasing, the greater

the path loss the more likely a UE is to connect to a macro tier. This result can be

explained as follows: the variance of SNR values is smaller for lower path loss values

(far away base stations have higher SNRs), and so a given static bias affects systems

with lower path loss exponents more.

Furthermore, the path loss model used has a large effect on biasing gain.

Figure 5.2 shows the log sum rate with and without optimal biasing (the bias that

maximizes the log sum rate). Figure 5.3 shows the gain from biasing for the different

path loss models as density increases. Note that, the larger the path loss exponents,

the less useful biasing is. This result can be seen as a direct effect of the previous

result: the smaller the path loss exponent, the more UEs are associated with small

cells. The macro cells thus become less loaded, and each UE can receive more

resources. Similarly, when the femto tier has a much larger density than the macro
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tier, as would happen in a realistic realization, biasing gains disappear. These results

suggest the importance of carefully choosing path loss exponents and density when

analyzing the gains of various user association models. A user association strategy

may not yield predicted gains if a network realization has different parameters than

used in the analysis.

Next, it is instructive to note how the optimal bias values themselves change

with relative density. Figures 5.4 and 5.5 show the optimal bias values that maximize

the log sum rate and probability of coverage, respectively. Even with large averaging

and iterative runs that attempt to converge on an optimal value, the optimal values

are noisy. However, there is a clear negative relationship between density differential

and optimal biasing on each graph. This thesis posits that the trend is due to the

following tradeoff: at low differential density, most users receive a higher SNR from

the macro cell, which can thus provide fewer resources to each user. As the density

increases, however, there base station load is not a concern, and biasing away from

a stronger macro cell is harmful. These results do not extend to the case where the

density of each tier varies jointly, as is discussed in the next section.

Finally, as expected, biasing does not change the trends in probability of

coverage for different path loss models, as derived in [7]. Figure 5.6 shows that,

though optimal biasing for probability of coverage may produce gains at a low density

differential, the asymptotic trends with relative density remain the same. There is

a phase transition at α0 = 2 where probability of coverage tends to zero as density

increases. Note that the gain observed is a direct effect of the SNR association

rule. With SINR association, there would be no gain in probability of coverage with
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biasing – biasing would strictly reduce probability of coverage. As such, this gain

would not occur in real systems.

47



Figure 5.1: Fraction of UEs that connect to small cells as the density differential
increases
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Figure 5.2: Log sum rate with and without biasing as relative density increases
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Figure 5.3: Gain in log sum rate from biasing as relative density increases
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Figure 5.4: Optimal bias that maximizes the log sum rate as density differential
increases.

Figure 5.5: Optimal bias that maximizes probability of coverage as density differen-
tial increases.
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Figure 5.6: Probability of coverage with optimal biasing as relative density increases.
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Parameter Value

λ0 .3 BS/km2 to 315 BS/km2

λ1 .3 BS/km2 to 315 BS/km2

B0 0 dB
B1 0 dB to 20 dB

Table 5.2: Parameters for optimal biasing with density of each tier increasing. All
parameters not included are the same as in Table 3.1

5.1.2 Joint Density Variation

In the next experiment, the densities of both the small cell tier and the macro
tier were increased together, and the same metrics as before were measured. Table 5.2
contains the full parameters for this experiment.

Results. As with differential density, the biasing flips the effect the path loss
model has on predicting to which tier the UE will connect. Figure 5.1 shows the
fraction of users which connected to the small cell tier for different path loss models
and densities, without any biasing and with a 20 dB bias. Note that, for each path
loss model, the fraction of users associated with each tier remains the same with
density, though the same ‘flipping’ trend is observed with biasing.

Next, as opposed to when the density of the small cells increased alone, the
optimal bias values are independent of the densities of each tier varying together.
Figure 5.8 shows the bias values that maximize the log sum rate. Due to the inde-
pendent nature of these bias values, there is a constant gain from optimal biasing
when compared to the no biasing case. Figure 5.9 shows probability of coverage as
density increases. Note that the values with and without biasing do not converge,
and there is always a gain with optimal biasing. Figure 5.10 shows a similar trend
for log sum rate with optimal biasing.
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Figure 5.7: Fraction of UEs that connect to small cells as the density of both tiers
increases
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Figure 5.8: Optimal bias that maximizes the log sum rate as the densities of each
tiers increase together.

Figure 5.9: Probability of coverage with optimal biasing as the density of each tier
increases.
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Figure 5.10: Log sum rate with optimal biasing as the density of each tier increases.
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5.2 Uplink/Downlink Decoupling

With the same parameters as in the experiment described in Section 5.1.1,
uplink association was decoupled from downlink association. Two forms of uplink
association were studied: minimum path loss, as described in Section 3.3.2, and
biasing for the uplink.

Results. Figures 5.11 and 5.12 show uplink log sum rate for decoupled
association with UL Pathloss, decoupled association with optimal uplink biasing, and
coupled association without biasing, and coupled association with optimal downlink
biasing. As expected, biasing (toward small cells) for the uplink yields no gain.
With uniform user and base station distributions, uplink load is evenly distributed
and so biasing yields no benefit. However, decoupled association yields large gains
over downlink association without biasing, as such association favors connections to
macro base stations that may be further away than small cells. When biasing for the
downlink, this gain is reduced about 50%, and decoupling yields a small but constant
gain over optimal biasing for the downlink.

Finally, trends in tier association were measured for maximum biasing (B1 =
20 dB), optimal downlink biasing, uplink path loss, and downlink path loss. Fig-
ure 5.13 shows the trends as relative density increases. Note that, except for the
[α0, α1] = [2, 2] case, optimal biasing for the downlink is roughly halfway between
uplink pathloss association and downlink association without biasing. This result
suggests a downlink strategy that maximizes a linear combination of the downlink
and uplink path losses. Such a strategy would approximately match the results of
optimum static biasing – without the need to tune bias values. Future work may be
implementing this proposed strategy and quantifying its loss against static biasing.
Furthermore, the plots suggest why 20 dB biasing may never be the optimal strategy:
it would often associate UEs to small cells that are further than the nearest macro
cell.
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Figure 5.11: Uplink log sum rate with both coupled and decoupled association as
relative density increases with α0 = 2

Figure 5.12: Uplink log sum rate with both coupled and decoupled association as
relative density increases with α0 = 3
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Figure 5.13: Comparison of fraction of UEs associated with small cell base stations
for different association strategies
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Chapter 6

Discussion and Conclusion

This thesis presents the use of a C++ simulator to analyze optimal biasing and

uplink/downlink biasing under a stochastic geometry model. The 20x performance

gains over a Matlab simulator is essential when running multi-day simulations with

numerous parameter combinations, and the parallelizable nature of the code shows

promise for future simulation work.

The simulator was used to study optimal biasing in two cases: with a density

differential between tiers increasing and with the density of each tier increasing to-

gether. The optimal bias values and biasing gains is shown to be a function of the

density ratio between the tiers. Future work can extend these methods to analyze

to load balancing techniques and with changing power differentials.

Next, simulations were used to study uplink/downlink decoupling. Consistent

with prior literature, there is a gain from associating the uplink separately (using

path loss association). However, this gain is reduced 50% when optimal biasing for

the downlink is used. This work can be extended by analyzing load balancing for

both the uplink and the downlink.

These user association questions (for both the uplink and the downlink) must

be answered for dense, next-generation networks. In order to support the applications
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of tomorrow, next generations will be both dense and heterogeneous. Such networks

must be managed correctly, and this thesis moves toward such answers. In future

work, the insights gained from simulation will be specified analytically.
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