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We present the full analytical solution for steady-state in-plane crack

motion in a brittle triangular lattice. This allows quick numerical evaluation

of solutions for very large systems, facilitating comparisons with continuum

fracture theory. Cracks that propagate faster than the Rayleigh wave speed

have been thought to be forbidden in the continuum theory, but clearly exist

in lattice systems. Using our analytical methods, we examine in detail the

motion of atoms around a crack tip as crack speed changes from subsonic to

supersonic.

Subsonic cracks feature displacement fields consistent with a stress in-

tensity factor. For supersonic cracks, the stress intensity factor disappears.

Subsonic cracks are characterized by small-amplitude, high-frequency oscilla-

tions in the vertical displacement of an atom along the crack line, while su-

personic cracks have large-amplitude, low-frequency oscillations. Thus, while

supersonic cracks are no less physical than subsonic cracks, the connection
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between microscopic and macroscopic behavior must be made in a different

way. This is one reason supersonic cracks in tension had been thought not to

exist.

In continuum fracture theory, the energy flowing into the crack tip

becomes negative or imaginary for crack speeds faster than the Rayleigh wave

speed. This would suggest that supersonic cracks are not physically allowed.

In response to this, we study the energy flow in our supersonic solutions in

the lattice. First, we construct an energy flux vector in the lattice analogous

to the Poynting vector in electromagnetism. This allows us to calculate the

energy flow at each atom in the lattice. We find that there is positive energy

flux into the crack tip for both subsonic and supersonic solutions in the lattice.
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Chapter 1

Introduction

Fracture is a phenomenon from everyday life that everyone is familiar

with. The study of the physics of fracture yields many interesting and unex-

pected results. For example, throwing a brick at a pane of glass creates a few

atomically thin cracks that run at the speed of sound from end to end.

Here we present some results from two theories of fracture mechanics.

The first theory takes place in a continuum, where a fracturing material is

treated as a solid and the motion of a crack can be understood using equations

of linear elasticity. The second is an atomic theory, taking place in a lattice,

in which exact analytical calculations of crack motion can be performed for

arbitrarily large systems. The advantage of the atomic theory is that the

mathematical starting point is simple and unambiguous, and many analytical

solutions are possible. In this work, we present original results in the atomic

theory of fraction mechanics and attempt to reconcile some differences with

the continuum theory.
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(a) Mode I

(b) Mode II

(c) Mode III

Figure 1.1: Different fracture modes
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1.1 Continuum background

When studying the motion of a crack, whether in a continuum or a

lattice, we focus on three symmetrical configurations called modes. These are

shown in Figure 1.1. There are mixed-mode situations that occur from certain

combinations of forces, but for the study of the physics of cracks we restrict

our attention to these three modes with high degrees of symmetry. For Mode I,

which is the focus of this work, the crack faces, under tension, are displaced

in a direction normal to the fracture plane. In Mode II, the motion is along

the fracture plane. Mode III is an out of plane tearing where the motion is

normal to the plane of the material.

The development of continuum fracture mechanics is very elaborate.

There is a formalism developed by Muskhelishvili [23] that uses conformal

mapping to compute the stress fields around two-dimensional static cracks in

a solid. Here, we present this technique modified to find the fields around a

moving crack1. We find the displacements and stress around a Mode I crack,

and use these results to compute the energy flowing into the crack tip as a

function of the crack velocity.

We start with the equation of motion for an isotropic elastic body in a

continuum

ρ
∂2u

∂t2
= µ∇2u + (λ+ µ)∇(∇ · u). (1.1)

This is the Navier-Cauchy equation. The vector u is a field describing the dis-

1M. Marder, notes on fracture
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placement of each mass point from its starting location in an unstrained body,

ρ is the density, and the constants µ and λ are Lamé constants, which have

dimensions of energy per volume, and are usually on the order 1010 ergs/cm3.

We can now find the solution for a Mode I crack. Consider Eq. (1.1) applied

to a steady state in a moving frame with x = vt. We get

ρv2
∂2u

∂x2
= µ∇2u + (λ+ µ)∇(∇ · u). (1.2)

We decompose u into transverse and longitudinal parts

u = ut + ul (1.3)

which are defined in terms of potentials vt and vl as

ul = ∇vl, ut =

(
∂vt
∂y

,−∂vt
∂x

)
. (1.4)

It follows that[
(λ+ 2µ)∇2 − ρv2 ∂

2

∂x2

]
ul = f =

[
µ∇2 − ρv2 ∂

2

∂x2

]
ut (1.5)

for some harmonic function f (where fx − ify is a function of x+ iy). We get[
α2 ∂

2

∂x2
+

∂2

∂y2

]
∇2vl = 0 (1.6)[

β2 ∂
2

∂x2
+

∂2

∂y2

]
∇2vt = 0 (1.7)

where

α2 = 1− ρv2

λ+ 2µ
(1.8a)

β2 = 1− ρv2

µ
. (1.8b)
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The general form of the potentials is

vl = v0l (z) + v0l (z) + v1l (x+ iαy) + v1l (x+ iαy) (1.9)

vt = v0t (z) + v0t (z) + v1t (x+ iβy) + v1t (x+ iβy) (1.10)

with Eq. (1.5) giving the relation between v0l and v0t . These harmonic functions

vanish from the expressions for u and can be neglected. We define φ(z) =

∂v1l (z)/∂z and ψ(z) = ∂v1t (z)/∂z. We can now write the components of u as

ux = φ(zα) + φ(zα) + iβ
[
ψ(zβ)− ψ(zβ)

]
(1.11a)

uy = iα
[
φ(zα) + φ(zα)

]
−
[
ψ(zβ) + ψ(zβ)

]
(1.11b)

where

zα = x+ iαy, zβ = x+ iβy. (1.12)

Equation (1.11) gives the general solution for linear elasticity problems in a

steady state moving at a constant velocity v. The components of the stress

tensor are given by

σij = λδijuk,k + µ(ui,j + uj,i). (1.13)

Let us define Φ(z) = ∂φ(z)/∂z and Ψ(z) = ∂ψ(z)/∂z. The stresses are given

by

σxx + σyy = 2(λ+ µ)
[
Φ(zα) + Φ(zα)

]
(1− α2) (1.14a)

σxx − σyy = 2µ
{

(1 + α2)
[
Φ(zα) + Φ(zα)

]
+ 2iβ

[
Ψ(zβ)−Ψ(zβ)

]}
(1.14b)

2σxy = 2µ
{

2iα
[
Φ(zα)− Φ(zα)

]
− (β2 + 1)

[
Ψ(zβ) + Ψ(zβ)

]}
. (1.14c)
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We also note that

∂uy
∂x
− ∂ux

∂y
= −(1− β2)

[
Ψ(zβ) + Ψ(zβ)

]
. (1.15)

The stresses are given directly by

σxx = µ(1 + 2α2 − β2)
[
Φ(zα) + Φ(zα)

]
+ 2iβµ

[
Ψ(zβ)−Ψ(zβ)

]
(1.16)

σyy = −µ(1 + β2)
[
Φ(zα) + Φ(zα)

]
− 2iβµ

[
Ψ(zβ)−Ψ(zβ)

]
. (1.17)

We can solve a general problem by finding functions φ and ψ that

match boundary conditions. Let us turn to the problem of a crack moving

under symmetric loading at a constant speed v. Assume the crack lies along

the negative x-axis. The crack tip is at x = 0 and moves in the positive x

direction. We only need to assume the problem is symmetric under reflection

about the x-axis.

We know in the case of a static crack that the stress fields have a square

root singularity at the crack tip. We will assume this to be true in this problem

as well, as it is true in all cases that can be worked explicitly. Near the crack

tip, we can write

φ(z) ∼ (Ar + iAi)z
1/2 (1.18)

ψ(z) ∼ (Br + iBi)z
1/2. (1.19)

The symmetry of the problem gives

ux(−y) = ux(y), uy(−y) = −u(y). (1.20)
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Plugging Eqs. (1.18) and (1.19) into Eq. (1.11) and using the symmetries in

Eq. (1.20), we find that Ai = Br = 0, therefore

Φ(z) ∼ Ar
z1/2

, Ψ(z) ∼ iBi

z1/2
. (1.21)

The square roots in the expressions of the potentials Eqs. (1.18) and (1.19) have

their branch cuts along the negative x-axis corresponding to the crack. On the

crack surface, we require that the stresses σxy and σyy vanish. Substituting

Eq. (1.21) into Eq. (1.17), we find that σyy = 0 is satisfied for x < 0 and y = 0.

Substituting into Eq. (1.14c) with y = 0 gives

σxy = iµ
[
2αAr − (β2 + 1)Bi

]{ 1√
x
− 1√

x∗

}
(1.22)

therefore

Bi

Ar
=

2α

β2 + 1
. (1.23)

Here we used the z = z∗ notation to denote the complex conjugate. The

stresses rewritten using Eq. (1.23) are

σxx =
K√
2πD

[
(β2 + 1)(1 + 2α2 − β2)

{
1√
zα

+
1√
z∗α

}
− 4αβ

{
1
√
zβ

+
1√
z∗β

}]
(1.24)

σyy =
K√
2πD

[
−(β2 + 1)

{
1√
zα

+
1√
z∗α

}
+ 4αβ

{
1
√
zβ

+
1√
z∗β

}]
(1.25)

σxy =
K√
2πD

2iα(β2 + 1)

{
1√
zα
− 1√

z∗α
− 1
√
zβ

+
1√
z∗β

}
(1.26)

with

D = 4αβ − (1 + β2)2. (1.27)
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The constant K is the called the stress intensity factor and is given by

K = lim
x→0+

√
2πxσyy. (1.28)

The energy flux in this problem can be found by taking the time deriva-

tive of the total energy (kinetic plus potential)

d

dt
[K + P ] =

d

dt

∫
dxdy

[
ρ

2
u̇αu̇α +

1

2

∂uα
∂xβ

σαβ

]
. (1.29)

The spatial integration is taken over an area that is static in the laboratory

frame. The stress tensor is symmetric so we get

d

dt
[K + P ] =

∫
dxdy

[
ρüαu̇α +

∂u̇α
∂xβ

σαβ

]
. (1.30)

Inserting the equation of motion

ρüα(x) =
∂

∂xβ
σαβ(x) (1.31)

we can write the energy flux as

J tot =

∫
dxdy

[
∂

∂xβ
σαβu̇α +

∂u̇α
∂xβ

σαβ

]
(1.32)

=

∫
dxdy

∂

∂xβ
[σαβu̇α] (1.33)

=

∫
∂S

u̇ασαβnβ (1.34)

where the last integral is taken over the boundary of the area, and the nβ are

the components of an outward unit vector normal to the boundary.

Using the asymptotic expression for σyy from Eq. (1.25) and the cor-

responding expressions for uy from Eq. (1.11b), we find that the total energy
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flowing into the crack tip per unit time is

J tot = v(1− β2)
α

2µ

1

4αβ − (1 + β2)2
K2 (1.35)

where v is the crack speed, cl and ct are longitudinal and transverse wave

speeds respectively, α =
√

1− v2/c2l , β =
√

1− v2/c2t , µ is a Lamé constant,

and K, the Mode I dynamic stress intensity factor, is the coefficient of a

universal singularity that develops outside of cracks that run as they are pulled

symmetrically in tension from above and below.

One of the conclusions frequently drawn from the continuum theory of

fracture mechanics is that cracks in tension cannot travel faster than the speed

at which sound travels over a flat surface, the Rayleigh wave speed [4, 10, 27].

The reason for this assertion is that the motion of a crack requires energy

to break bonds, but energy flux seems to become nonsensical for supersonic

cracks. In particular, the rate at which energy flows into a crack tip per

time is given by J tot from Eq. (1.35), The denominator of this expression

vanishes when the crack speed v reaches the Rayleigh wave speed, and for

slightly higher velocities it becomes negative. Once the crack speed exceeds

the transverse wave speed, the expression becomes imaginary. An expression

saying that cracks moving above the Rayleigh wave speed need negative energy

seems physically impossible, and an expression requiring imaginary energy

seems even worse. One resolution of these problems is to conclude that cracks

traveling faster than the Rayleigh wave speed in tension are not physically

allowed.
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1.2 Supersonic crack evidence

However, there is evidence that such cracks exist after all. The first in-

dications came from measurements of earthquakes [14]. These suggested com-

puter simulations [1, 11], and laboratory experiments [28] for cracks that move

by sliding faces past each other, showing that cracks in shear (Mode II) can

move faster than the transverse wave speed ct (and hence the Rayleigh wave

speed as well) and reach speeds close to the longitudinal speed cl. Dynamic

fracture theory was extended to include these “intersonic” cracks [4, 6, 26].

Cracks in rubber under tension were found to have a wedge-like tip

suggestive of supersonic motion [8]. Additional experimental work confirmed

that the cracks do travel faster than the transverse wave speed [7, 25]. The

experiments led to theoretical descriptions for supersonic cracks in tension [19,

20]. Both explicit numerical solutions for atomic equations of motion and

the corresponding analytical solutions show the supersonic cracks do in fact

exist [13]. This last reference contains an extended discussion of how crack

speed depends upon loading for the models studied in this work.

Supersonic cracks were also observed for cracks with hyperelastic con-

stitutive laws that cause stiffening near the tip [5]. As shown, for example, in

this work supersonic cracks exist equally well in materials without hyperelastic

constitutive laws. Thus we are not sure that hyperelasticity is actually needed

to promote supersonic cracks.
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1.3 Atomic theory motivation

Our main technical tool to provide this discussion is the atomic theory

of dynamic cracks. Analytical solutions at the atomic level for moving cracks

were first found by Slepyan. His original calculations applied to out-of-plane

(Mode III) cracks in an infinite square lattice [31]. He then generalized the

solutions to in-plane (Mode I) cracks in an infinite square lattice [16]. Many

additional solutions due to Slepyan are found in [30].

Additional solutions for cracks in a finite strip formed from a triangular

lattice were found by Marder and Gross [22]. This paper also considers linear

and nonlinear instabilities of the solutions. Many additional observations on

the experimental implications of the solutions in discrete lattices are contained

in [18]. Figure 1.2 shows a crack moving at a constant speed v in a triangular

lattice with spacing a. The bonds between atoms along the crack line break

at time intervals of ∆t = a/v. This is the lattice studied in the paper [22] and

expanded upon in this work.

In all these analytical solutions, the central quantity obtained from the

analytical methods is a relationship between the external load applied to make

a crack move, and the speed v at which the crack travels. In fact, the speed

v of the crack enters the theory as an input parameter, and the calculations

give the load as an output. For subsonic cracks, one can equivalently say that

one obtains KI(v), the stress intensity factor as a function of crack speed. For

supersonic cracks, the end result is the external system strain eyy as a function

of crack speed [20].

11



(a) t = 0 (b) t = a/v

(c) t = 2a/v (d) t = 3a/v

Figure 1.2: Snapshots of the motion of a crack tip showing the sequence of bond breaks as
the crack advances. The lattice spacing is a and the crack is moving at a constant speed v.
Bonds break at time intervals of ∆t = a/v
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The theory provides more than just this relation. In principle, the

theory makes it possible to find the behavior of every atom as a function of

time for a crack moving in steady state. This information is relatively easy to

obtain for cracks moving in anti-plane shear [22]. However, for two-dimensional

cracks where atoms move freely in the plane, the expressions are so lengthy that

to our knowledge no one has completed the process of extracting analytically

the motion of every atom.

1.4 One-dimensional model

K = 1

K = 1/N

um,−

um,+

K = 1/N

UN
K = 1

K = 1

Figure 1.3: One-dimenional model.

We present here an example of these lattice calculations in the one-

dimensional system shown in Figure 1.3, which can be viewed as a model for

atoms lying along a crack surface [22]. The calculations for this system are

relatively simple compared to the triangular lattice we work on in Chapter 2,

but many of the equations we obtain hold for lattices.

The atoms in Figure 1.3 are attached to nearest neighbors in the same

row by elastic springs with constant K = 1. They are attached to atoms on

the other side of the crack line with the springs that snap when stretched

13



past a breaking distance. The two rows of atoms are being pulled apart by

weaker springs with constant K = 1/N , which are used to approximate N

vertical rows of atoms pulling the lattice apart on each side. When we study

the triangular lattice in Chapter 2, we calculate the motion of every atom in

every row on the lattice.

The equation of motion for an atom on the upper row in this one-

dimensional model is

üm,+ =
um+1,+ − 2um,+ + um−1,+
+(um,− − um,+)θ(2uf − |um,− − um,+|)
+ 1
N

(UN − um,+)− bu̇m,+
(1.36)

where θ is a step function of the stretch between atoms on opposite sides of

the crack line, which vanishes when the stretch reaches a distance 2uf . The

height of atoms after the crack has passed tends asymptotically to UN , which

is the boundary condition that drives the crack motion. There is a Stokes

dissipation term with a small constant b, which turns out to have mathematical

and physical importance.

As the system size N increases, the displacement UN must also increase

to continue driving the crack. We can find a dimensionless form of the bound-

ary condition UN . First, we need to find the minimum amount of energy stored

in the strip, per lattice spacing far to the right of the crack tip, needed to break

one bond along the crack line. The atoms far to the right of the crack tip are

displaced a small amount Uright above the crack line. We define the ratio

Q0 ≡
Uright

UN
. (1.37)
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We assume atoms far to the left and right of the crack are motionless and

the dissipation is negligible. Far to the right, the atoms are displaced by

Uright = um,+ = −um,−, so balancing the spring forces gives

2Uright =
1

N
(UN − Uright) (1.38)

Q0 =
1

2N + 1
. (1.39)

The energy per bond to the right is

Eright = 2
1

2

1

N
(UN − Uright)

2 +
1

2
(2Uright)

2 = 2Q0(UN)2. (1.40)

Far to the left of the crack, the displacement is

Uleft = UN . (1.41)

The energy per bond to the left is that which is needed to snap a spring along

the crack line and is given by

Eleft = 2u2f . (1.42)

Setting Eleft = Eright gives 2Q0(UN)2 = 2u2f , therefore the minimum value of

the boundary condition UN necessary to have enough energy stored to the

right of the crack so bonds are able to snap along the crack line is

U c
N =

uf√
Q0

. (1.43)

We define the load ∆ as a dimensionless measure of the displacement of the

edges of the strip

∆ ≡ UN
U c
N

=
UN
√
Q0

uf
. (1.44)
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Steady crack motion is only possible when ∆ ≥ 1. In the case of ∆ = 1, all

potential energy would have to go into snapping bonds for the crack to move.

Slepyan showed that atoms far from the crack tip are in motion when

a crack moves in steady state [31], so the calculations above are based on false

assumptions. It turns out that crack motion is only possible for ∆ > 1. The

procedure to find the steady state solutions is as follows.

The steady state solutions have two important symmetries. First, there

is a mirror symmetry with respect to the crack line. Second, the atom dis-

placements repeat every ∆t = 1/v, but shifted over one lattice spacing. These

symmetries are written as

um,+ = −um,− (1.45)

um,+(t) = u0,+(t−m/v) (1.46)

where u0,+ is the displacement of the atom at the crack tip on the upper

row. This means all displacements along the lattice can be determined from

the displacement of a single atom. Let us denote u0,+ by u(t). Applying

Eqs. (1.45) and (1.46) to the equation of motion Eq. (1.36) gives

ü = u(t− 1/v)− 2u+ u(t+ 1/v) +
1

N
(UN − u)− 2uθ(2uf − 2|u|)− bu̇. (1.47)

Equation (1.47) can be solved analytically using the Wiener-Hopf technique [24].

Let us assume the bond breaks at t = 0, so u(0) = uf and the θ term vanishes

afterwards. We also assume u increases to uf this one time, and never falls

back below it. We can now write

ü = u(t− 1/v)− 2u+ u(t+ 1/v) +
1

N

(
UNe

−α|t| − u
)
− 2uθ(−t)− bu̇. (1.48)
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Here we have introduced the factor e−α|t| to avoid δ functions in the Fourier

transforms. We will let α tend to zero at the end of the calculation. Before

taking the Fourier transform of Eq. (1.48), we define

U±(ω) =

∫
dt eiωtθ(±t)u(t) (1.49)

so that the Fourier transform of u(t) is

U(ω) = U+(ω) + U−(ω). (1.50)

U+ is free of poles in the upper half complex ω plane, while U− is free of poles

in the lower half plane. This must be true for the integrals in Eq. (1.49) to be

convergent. We can now take the Fourier transform of Eq. (1.48) to get

−ω2U = 2(cos(ω/v)−1)+
UN
N

{
1

α + iω
+

1

α− iω

}
− U
N
−2U−+iωbU. (1.51)

Rearranging gives

U(ω)F (ω)− 2U−(ω) = −UN
N

{
1

α + iω
+

1

α− iω

}
(1.52)

where

F (ω) = ω2 + 2(cos(ω/v)− 1)− 1

N
+ iωb. (1.53)

This can be rearranged using Eq. (1.50) to get

U+(ω)
F (ω)

F (ω)− 2
+ U−(ω) = − UN

N(F (ω)− 2)

{
1

α + iω
+

1

α− iω

}
. (1.54)

We define the function Q as

Q(ω) =
F (ω)

F (ω)− 2
. (1.55)
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As α tends to zero, the quantity in brackets in Eq. (1.54) becomes δ(ω), so

we can replace F (ω) in the denominator on the right hand side of the same

equation with F (0) = −1/N to get

Q(ω)U+(ω) + U−(ω) = Q0UN

{
1

α + iω
+

1

α− iω

}
(1.56)

with Q0 given by Eq. (1.37) and Q0 = Q(0).

Eq. (1.56) is very important because the equations of motion of the

lattice models we study can be reduced to this form and solved using the

techniques presented in this section. The only difference is that the function

Q becomes more complicated as the model becomes more realistic, which we

will show in Chapter 2.

We can now apply the Wiener-Hopf technique to write

Q(ω) =
Q−(ω)

Q+(ω)
(1.57)

where Q− is free of poles and zeroes in the lower complex ω plane and Q+ is

free of poles and zeroes in the upper complex plane, and these functions are

given by

Q±(ω) = exp

[
∓
∫
dt eiωtθ(±t)

∫
dω′

2π
e−iω

′t lnQ(ω′)

]
(1.58)

= exp

[
lim
ε→0

∫
dω′

2π

lnQ(ω′)

iω ∓ ε− iω′
]
. (1.59)

Using Eq. (1.57), we can rearrange Eq. (1.56) to get

U+(ω)

Q+(ω)
− Q0UN
Q−(0)(−iω + α)

=
Q0UN

Q−(0)(iω + α)
− U−(ω)

Q−(ω)
(1.60)
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where the left hand side is free of poles in the upper half plane, and the right

hand side is free of poles in the lower half plane. For this to be true, both

sides must separately equal a polynomial, which has to vanish for all ω or the

inverse Fourier transforms of U− and U+ will have unphysical δ(t) terms. We

now can write

U±(ω) = UN
Q0Q

±(ω)

Q−(0)(α∓ iω)
. (1.61)

This completes the solution for U(ω). The numerical techniques we present in

Chapter 3 to evaluate the displacement u(t) in the triangular lattice can also

be applied to this one-dimensional model.

We can also compute the load ∆ as a function of the crack velocity v.

This is done by checking that the bond along the crack line does in fact break

at the right time, which mathematically speaking is the condition

u(t) = uf at t = 0 (1.62)

since the spring between atoms u0,+ and u0,− is supposed to break at t = 0.

We usually set uf = 1 in our numerical calculations, so the only parameter left

to determine is the boundary condition UN . Equation (1.62) fixes its value,

and therefore also the load ∆ given in Eq. (1.44). Eq. (1.62) may be written

as

lim
t→0−

∫
dω

2π
e−iωtU−(ω) = uf . (1.63)

We can evaluate this integral by inspection. For t > 0 we have∫
dω e−iωtU−(ω) = 0 (1.64)
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and we know that any function decaying as 1/ω for large ω has a step function

discontinuity at the origin when Fourier transformed. Therefore Eqs. (1.63)

and (1.61) give

uf = UNQ0
Q−(∞)

Q−(0)
. (1.65)

From the definition of Q in Eq. (1.55), it follows that Q(∞) = 1, and from the

definition of Q± in Eq. (1.59) we get

Q−(∞) = Q+(∞) = 1. (1.66)

Using the definition of ∆ in Eq. (1.44), and Eq. (1.65), we get an expression

for the load

∆ =
Q−(0)√
Q0

. (1.67)

We can write this result solely in terms of Q(ω). Using Eq. (1.59) for Q− and

the fact that Q(−ω) = Q(ω), we get

Q−(0) = exp

[∫
dω′

2π

1

2

[
lnQ(ω′)

ε− iω′ +
lnQ(−ω′)
ε+ iω′

]]
(1.68)

= exp

[∫
dω′

2π

[
1

−2iω′

{
lnQ(ω′)− lnQ(ω′)

}
+

ε

ε2 + ω′2
lnQ(0)

]]
(1.69)

=
√
Q0 exp

[
−
∫
dω′

2π

1

2iω′

{
lnQ(ω′)− lnQ(ω′)

}]
. (1.70)

Finally, plugging Eq. (1.70) into Eq. (1.67) gives

∆ = exp

[
−
∫
dω′

2π

1

2iω′

{
lnQ(ω′)− lnQ(ω′)

}]
. (1.71)

Eqs. (1.61) and (1.71) complete the formal solution of the one-dimensional

model, giving the displacement along the crack line u(t) and the load ∆ nec-

essary to drive the crack motion at a velocity v.
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Figure 1.4 shows a plot of ∆(v) made using Eq. (1.71). All steady

states occur for ∆ > 1, which means that not all energy stored to the right of

the crack tip is used to snap bonds along the crack line. As the dissipation b

tends to zero, the remaining energy is carried off by traveling waves as shown

in Figure 1.5, which depicts a solution for v = 0.5, N = 9 and b = 0.01.

For nonzero b, these traveling waves decay, and the extra energy is lost to

dissipation.

Not all states along the ∆ curve in Figure 1.4 are physical. It was

shown by Marder [22] that states are linearly unstable when v decreases as ∆

increases. This eliminates many of the states in the jagged lower portion of

the curve. Another problem occurs for states in the range 0 < v < 0.3 (the

exact upper bound depends on b and N). They have the unphysical character

shown in Figure 1.6. The atom rises above the height uf before t = 0 and the

bond does not snap. It then falls back down and the bond snaps at t = 0.

This violates the original equation of motion Eq. (1.47), therefore states in

this velocity range are unphysical.

1.5 Outline of this work

In this work, we have three aims. The first is to present for the first

time analytical solutions for every atom in a two-dimensional lattice where

a crack moves in plane. The algebra is extremely lengthy, and is presented

in full in this work. Then, as an application of these exact solutions, we

turn to the transition between subsonic and supersonic cracks. We examine
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Figure 1.4: Crack velocity v versus load ∆ for N = 100 and b = 10−4.
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Figure 1.5: Height of u0,+ versus time for v = 0.5, N = 9 and b = 0.01.
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Figure 1.6: Height of u0,+ versus time for v = 0.3, N = 9 and b = 0.01.

the precise way that the stress intensity factor vanishes across the transition

point, and show what the cracks look like once they pass the Rayleigh wave

speed. Because the methods produce solutions very rapidly, we are also able to

discuss how these phenomena depend upon system size. Finally, we calculate

the energy flux vector in the lattice and study its behavior for subsonic and

supersonic cracks.
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Chapter 2

Analytical in-plane solution

We present a description of the lattice used in our analysis of the in-

plane crack, the starting equations, all analytical steps and finally the full

algebraic expressions of the solution1.

2.1 Lattice description

We carry out our computations in a triangular lattice of atoms with

2(N + 1) rows. The motion of each atom is described by the displacement

um,n from its equilibrium position, with m the column and n the row. The

index m takes integer values while n takes values of the form (k + 1/2), with

k an integer ranging from −(N + 1) to N .

The atoms in the lattice interact linearly with their nearest neighbors.

The interaction is a function of both parallel and perpendicular displacements,

with two spring constants k‖ and k⊥. We must make the restriction k⊥ = 0

along the crack line, otherwise the mathematical formalism fails. We can

make up for this by setting k‖ = kI‖ for the two rows along the crack. The

1This chapter uses material from the paper [3] by Chris Behn and Michael Marder, titled
‘The transition from subsonic to supersonic cracks’ and published in the journal Phil. Trans.
R. Soc. A in 2015. Michael Marder edited the text.
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bonds between atoms snap when they are displaced a distance 2uf , and the

interaction becomes zero.

We note that in the long-wavelength limit, the motions of atoms in our

lattice is described by isotropic continuum elasticity. In particular longitudinal

and transverse wave speeds are given, for unit mass and lattice spacing a, by

cl =

√
3(3k‖ + k⊥)a2

8
(2.1a)

ct =

√
3(k‖ + 3k⊥)a2

8
. (2.1b)

In turn, this correspondence implies that crack motion in this lattice contains

all results of dynamic linear elastic fracture mechanics as a special case.

To study crack motion, one must impose loading on the system. We do

this by displacing the top row of atoms in our strip by a fixed vertical amount

UN . The crack consists in a separation between the middle rows of the lattice,

where n = ±1/2. We study the system when the crack moves at constant

speed, in a steady state. Steady crack motion at velocity v in the continuum

means that elastic fields are functions of x − vt. For cracks in a lattice, one

cannot employ this definition. However, there is a related symmetry, which is

that in a lattice of spacing a

um,n(t) = um+1,n(t+ a/v). (2.2)

This means that what an atom at some height does now, its neighbor to the

right will repeat exactly at a time a/v later. Employing this relation lets us
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eliminate the m index and relate the components of different columns in the

lattice to each other by a simple time symmetry. In particular, since

um,n(t) = u0,n(t−ma/v) (2.3)

we will be able to drop the index m and set about finding un(t).

∆1 ∆2

∆4∆3

∆5 ∆6

m m+ 1m− 1

n

n+ 1

n− 1

Figure 2.1: Diagram of the triangular lattice. Columns are indexed by m, rows are indexed
by n. The ∆j are the six different displacement vectors.

2.2 Starting force equations

The lattice in which we solve for crack motion is shown in Figure 2.1.

The displacement, for example, in the first direction is ∆1 = um−1,n+1−um,n.

To find the force on an atom, define e‖j and e⊥j to be unit vectors in the

unstretched lattice. The unit vectors e‖j point from atom 0 to atoms j =

1 . . . 6 in Figure 2.1. Each of the unit vectors e⊥j is perpendicular to the

corresponding e‖j. That is,

e‖j · e⊥j = 0. (2.4)
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The total force on any given atom, except those along the crack line where

some bonds may be broken, is

F =
6∑
j=1

∑
q=‖,⊥

kqeqj (∆j · eqj) , (2.5)

and the motion of atoms, of unit mass, is given by

F = ü + bu̇. (2.6)

The addition of Stokes dissipation through the second term on the right hand

side is necessary to break time reversal invariance and tell the crack whether

it should advance or retreat as time runs forward.

Define x to be the horizontal direction (the direction along which the

crack moves) and y to be the vertical direction (along the width of the strip).

The forces on atoms above the crack line, n > 1/2, take the explicit component

form

F x
n (t) =

1
4
(k‖ + 3k⊥)[uxn+1(t− (gn+1 − 1)a/v) + uxn+1(t− gn+1a/v)

+uxn−1(t− (gn−1 − 1)a/v) + uxn−1(t− gn−1a/v)− 4uxn(t)]

+
√
3
4

(k⊥ − k‖)[uyn+1(t− (gn+1 − 1)a/v)− uyn+1(t− gn+1a/v)
−uyn−1(t− (gn−1 − 1)a/v) + uyn−1(t− gn−1a/v)]
+k‖[u

x
n(t+ a/v) + uxn(t− a/v)− 2uxn(t)]

(2.7)

F y
n (t) =

1
4
(k⊥ + 3k‖)[u

y
n+1(t− (gn+1 − 1)a/v) + uyn+1(t− gn+1a/v)

+uyn−1(t− (gn−1 − 1)a/v) + uyn−1(t− gn−1a/v)− 4uyn(t)]

+
√
3
4

(k⊥ − k‖)[uxn+1(t− (gn+1 − 1)a/v)− uxn+1(t− gn+1a/v)
−uxn−1(t− (gn−1 − 1)a/v) + uxn−1(t− gn−1a/v)]
+k⊥[uyn(t+ a/v) + uyn(t− a/v)− 2uyn(t)].

(2.8)

The number gn helps keep track of location on the triangular lattice.
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It is defined by

gn =


0 if n = 1/2, 5/2 . . .

1 if n = 3/2, 7/2 . . .

mod(n− 1/2, 2) in general.

, (2.9)

2.3 Analytical steps

Much of the algebra needed to solve this system appears in detail in [22].

There is a missing factor of 12 in the equations of motion (VI.21, p. 48) that

appear in [22], although the results reported in the body of the paper are

correct. The corrected forces along the crack line are

F x =

1
4
(k‖ + 3k⊥)[ux3/2(t) + ux3/2(t− a/v)− 2ux1/2(t)]

+
√
3
4

(k⊥ − k‖)[uy3/2(t)− u
y
3/2(t− a/v)]

+k‖[u
x
1/2(t+ a/v) + ux1/2(t− a/v)− 2ux1/2(t)]

−
√
3
2
kI‖[U(t)θ(−t)− U(t− a/(2v))θ(a/(2v)− t)]

(2.10)

F y =

1
4
(k⊥ + 3k‖)[u

y
3/2(t) + uy3/2(t− a/v)− 2uy1/2(t)]

+
√
3
4

(k⊥ − k‖)[ux3/2(t)− ux3/2(t− a/v)]

+k⊥[uy1/2(t+ a/v) + uy1/2(t− a/v)− 2uy1/2(t)]

−3
2
kI‖[U(t)θ(−t)− U(t− a/(2v))θ(a/(2v)− t)]

(2.11)

where U(t) is a linear combination of ux(t) and uy(t) multiplying the Heaviside

θ(t) functions:

U(t) =
−1

2
√

3

[
ux1/2(t+ a/(2v))− ux1/2(t)

]
+

1

2

[
uy1/2(t+ a/(2v)) + uy1/2(t)

]
.

(2.12)
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Fourier transforming the equations of motion gives

−(ω2 + ibω)ux1/2(ω) =

1
4
(k‖ + 3k⊥)[ux3/2(ω)(1 + eiωa/v)− 2ux1/2(ω)]

+
√
3
4

(k⊥ − k‖)[uy3/2(ω)(1− eiωa/v)]
+2k‖u

x
1/2(ω)[cos(aω/v)− 1]

−
√
3
2
kI‖U

−(ω)(1− eiωa/(2v))

(2.13)

−(ω2 + ibω)uy1/2(ω) =

1
4
(k⊥ + 3k‖)[u

y
3/2(ω)(1 + eiωa/v)− 2uy1/2(ω)]

+
√
3
4

(k⊥ − k‖)[ux3/2(ω)(1− eiωa/v)]
+2k⊥u

y
1/2(ω)[cos(aω/v)− 1]

−3
2
kI‖U

−(ω)(1 + eiωa/(2v))

(2.14)

where

U±(ω) =

∫
dt eiωtθ(±t)U(t). (2.15)

These equations can be combined and rearranged to give finally

Q(ω)U+(ω) + U−(ω) = Q0UN

{
1

α + iω
+

1

α− iω

}
. (2.16)

Here the function Q(ω) can be calculated explicitly from the Fourier trans-

formed equations of motion for the lattice. We compute it from MAXIMA or

Mathematica scripts, and for purposes of rapid numerical evaluation find it in

Fortran. In addition Q0 = Q(0), and α is a small positive constant introduced

when rewriting the boundary condition as UNe
−α|t|. The Fourier transform

of this function is easier to deal with than δ(ω). We let α tend to zero at

the end of the calculation. This is the same procedure as was used in the

one-dimensional model in Section 1.4.

The Wiener-Hopf technique [24] lets us write:

Q(ω) =
Q−(ω)

Q+(ω)
(2.17)

29



where Q− is analytic in the lower half-plane, and Q+ is analytic in the upper

half-plane. This decomposition is given by the explicit formula:

Q±(ω) = exp

[
∓
∫
dt eiωtθ(±t)

∫
dω′

2π
e−iω

′t lnQ(ω′)

]
. (2.18)

We can split Eq. (2.16) into two pieces, one which is analytic only in

the upper half-plane, and one which is analytic only in the lower half-plane:

U+(ω)

Q+(ω)
− Q0UN
Q−(0)(−iω + α)

=
Q0UN

Q−(0)(iω + α)
− U−(ω)

Q−(ω)
. (2.19)

The left and right hand sides of the above equation are analytic in opposite

sections of the complex plane, therefore they must both equal a polynomial

P (ω). We must have P (ω) = 0, otherwise U−(t) and U+(t) will include

unphysical δ(t) terms. This lets us write

U±(ω) = UN
Q0Q

±(ω)

Q−(0)(α∓ iω)
. (2.20)

From the two functions U+(ω) and U−(ω) one can obtain the linear combina-

tion of horizontal and vertical motions defined in Eq. (2.12) from

U(ω) = U−(ω) + U+(ω). (2.21)

Finally, one can obtain the horizontal and vertical motion of any atom in the

system from

uxn(ω) = Cx
n(ω)U(ω) (2.22)

uyn(ω) = Cy
n(ω)U(ω) + UN

(n− 1/2)

N
δ(ω). (2.23)

The functions Cx
n(ω) and Cy

n(ω), like Q(ω) are very lengthy, but can be ob-

tained from essentially straightforward algebra resulting from the equations
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of motion. Again, we obtain explicit expressions using symbolic algebra pro-

grams, and implement the results for rapid evaluation in Fortran.

2.4 Kelvin dissipation

The solution we have described so far includes Stokes dissipation −bu̇,

which was present in Eq. (2.6). However, it is not physically realistic in the

lattice. It acts as though atoms are embedded in some sort of ether that slows

them down according to the magnitude of their velocity in some arbitrarily

chosen reference frame. A better form of dissipation from the physical point

of view is Kelvin dissipation, which produces a force opposing atomic motion

according to the relative motion of adjacent atoms. To preserve generality, we

keep both Stokes and Kelvin dissipation in the equations of motion. The mod-

ification of our equations to include Kelvin dissipation is as follows. Suppose

we have already solved

~̈ui = Li {~u} , (2.24)

where Li is the operator producing the acceleration ~̈ui after acting on all

positions ~u. The Fourier transform of this equation is

−ω2~Ui = L̃i

{
~U
}
, (2.25)

where U(ω) is the Fourier transform of u(t). If we want to include Kelvin

dissipation, we can almost write

~̈ui =

(
1 + β

∂

∂t

)
Li {~u} . (2.26)
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This expression is not quite right in that when bonds break the time derivative

produces unphysical discontinuities on the right hand side. A solution of this

problem was laid out in [21]. The solution is to define

w(t) ≡
(

1 + β
∂

∂t

)
u(t). (2.27)

The correct equation to solve is

~̈ui = Li {~w} (2.28)

so that the θ functions multiply displacements after the time derivative has

been taken. The Fourier transform is

W (ω) =

∫
dt eiωtw(t) = (1− iβω)U(ω), (2.29)

and therefore we get

− ω2

1− iβω
~Wi = L̃i

{
~W
}
. (2.30)

The equation for W is then given by making the following substitution in the

equation for U :

ω2 → ω2

1− iβω . (2.31)

The equations of motion on the crack line are then modified to read

−(ω2 + ibω)ux1/2(ω) =

(1− iωβ) 1
4
(k‖ + 3k⊥)[ux3/2(ω)(1 + eiωa/v)− 2ux1/2(ω)]

+ (1− iωβ)
√
3
4

(k⊥ − k‖)[uy3/2(ω)(1− eiωa/v)]
+ (1− iωβ) 2k‖u

x
1/2(ω)[cos(aω/v)− 1]

−
√
3
2
kI‖W

−(ω)(1− eiωa/(2v))
(2.32)

32



−(ω2 + ibω)uy1/2(ω) =

(1− iωβ) 1
4
(k⊥ + 3k‖)[u

y
3/2(ω)(1 + eiωa/v)− 2uy1/2(ω)]

+ (1− iωβ)
√
3
4

(k⊥ − k‖)[ux3/2(ω)(1− eiωa/v)]
+ (1− iωβ) 2k⊥u

y
1/2(ω)[cos(aω/v)− 1]

−3
2
kI‖W

−(ω)(1 + eiωa/(2v)).

(2.33)

The functions W± are defined just like U± in Eq. (2.15). From this

point the analysis proceeds as before, finding a new function Q(ω) that is not

appreciably more complicated because of the presence of β. From this function

one determines W using the Wiener-Hopf technique as

W±(ω) = UN
Q0Q

±(ω)

Q−(0)(α∓ iω)
(2.34)

U(ω) =
W−(ω) +W+(ω)

1− iβω . (2.35)

Once U(ω) is in hand, the motion of every atom can again be determined.

There is also a compact result relating the velocity v of a crack (which goes

into the computation of Q) and the boundary extension UN . In the trian-

gular lattice, the boundary extension UN can be expressed in terms of the

dimensionless load ∆:

UN = 2uf∆/
√

3Q0. (2.36)

Then, defining ω0 = 1/β, ∆ can be computed from Q(ω) directly as

∆ = exp

[
−
∫
dω

4π

(
ω2
0

iω′(ω2
0 + ω′2)

[lnQ(ω′)− lnQ(ω′)] +
ω0 ln |Q(ω′)|2
ω2
0 + ω′2

)]
.

(2.37)

This is a modification of the ∆ from Section 1.4 to include Kelvin dissipation.
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2.5 Full in-plane algebra

In Section 2.3, we wrote down the Fourier transformed equations of

motion for atoms along the crack line. Here, we present the more general

equations for atoms anywhere on the lattice and show the full algebra for the

in-plane solution.

First, we apply the Fourier transform to the components above the

crack line in Eqs. (2.7) and (2.8) to get

F x
n (ω) =

1
4
(k‖ + 3k⊥)[uxn+1(ω)(eiω(gn+1−1)a/v + eiωgn+1a/v)

+uxn−1(ω)(eiω(gn−1−1)a/v + eiωgn−1a/v)− 4uxn(ω)]

+
√
3
4

(k⊥ − k‖)[uyn+1(ω)(eiω(gn+1−1)a/v − eiωgn+1a/v)
−uyn−1(ω)(eiω(gn−1−1)a/v − eiωgn−1a/v)]
+k‖u

x
n(ω)(eiωa/v + e−iωa/v − 2)

(2.38)

F y
n (ω) =

1
4
(k⊥ + 3k‖)[u

y
n+1(ω)(eiω(gn+1−1)a/v + eiωgn+1a/v)

+uyn−1(ω)(eiω(gn−1−1)a/v + eiωgn−1a/v)− 4uyn(ω)]

+
√
3
4

(k⊥ − k‖)[uxn+1(ω)(eiω(gn+1−1)a/v − eiωgn+1a/v)
−uxn−1(ω)(eiω(gn−1−1)a/v − eiωgn−1a/v)]
+k⊥u

y
n(ω)(eiωa/v + e−iωa/v − 2).

(2.39)

Let (
uxn
uyn

)
= yneiωgn/(2v)

(
Ux
Uy

)
. (2.40)

Substituting Eq. (2.40) into Eqs. (2.38) and (2.39) gives

−(mω2 + iωb)Ux =
[(k‖ + 3k⊥) cos(ωa/(2v))1

2
(y + y−1)

+2k‖ cos(ωa/v)− 3(k⊥ + k‖)]Ux
−
√

3i(k⊥ − k‖) sin(ωa/(2v))1
2
(y − y−1)Uy

(2.41)

−(mω2 + iωb)Uy =
[(k⊥ + 3k‖) cos(ωa/(2v))1

2
(y + y−1)

+2k⊥ cos(ωa/v)− 3(k⊥ + k‖)]Uy
−
√

3i(k⊥ − k‖) sin(ωa/(2v))1
2
(y − y−1)Ux.

(2.42)
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We can solve for y by letting the determinant of this system vanish. First,

write

z =
1

2
(y + y−1). (2.43)

The determinantal equation gives

A = 3(k⊥ − k‖)2 + 16k⊥k‖ cos2(ωa/(2v)) (2.44)

B =
cos(ωa/(2v))[2(3k2‖| + k‖k⊥ + 3k2⊥) cos(ωa/v)

+4(k⊥ + k‖)(mω
2 + iωb− 3(k‖ + k⊥))]

(2.45)

C =
[mω2 + iωb− (k‖ + k⊥)(3− cos(ωa/v))]2

−(k‖ − k⊥)2[cos2(ωa/v) + 3 sin2(ωa/(2v))]
(2.46)

z± =
−B ±

√
B2 − 4AC

2A
. (2.47)

There are four values of y that satisfy Eqs. (2.43) and (2.47), two of which are

y± = z± +
√

(z±)2 − 1, (2.48)

and the other two are given by the inverse of these, or subtracting the square

root. Next, define

D± =
mω2 + iωb+ (k‖ + 3k⊥) cos(ωa/(2v))1

2
(y± + y−1± )

+2k‖ cos(ωa/v)− 3(k⊥ + k‖)
(2.49)

E± = −
√

3i(k⊥ − k‖) sin(ωa/(2v))1
2
(y± − y−1± ). (2.50)

The general solution of Eqs. (2.38) and (2.39) is

(
uxn
uyn

)
=

e−iωgna/(2v)

 y
n−1/2
+

(
E+

−D+

)
u1+ + y

−n+1/2
+

(
E+

D+

)
u2+

+y
n−1/2
−

(
E−
−D−

)
u1− + y

−n+1/2
−

(
E−
D−

)
u2−


+UN

(n−1/2)
N

(
0
1

)
.

(2.51)
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The four variables u1± and u2± are determined from the boundary conditions

for the components

uxN+1/2 = uyN+1/2 − UN = 0 (2.52)

and Eq. (2.51) with n = 1/2(
ux1/2
uy1/2

)
=

(
E+

−D+

)
u1+ +

(
E+

D+

)
u2+

(
E−
−D−

)
u1− +

(
E−
D−

)
u2−. (2.53)

Once u1± and u2± are found, we can use Eq. (2.51) to write ux3/2 and uy3/2

in terms of ux1/2 and uy1/2. These can be inserted into the crack line Eqs. (2.13)

and (2.14), and we can then find expressions for ux1/2(ω) and uy1/2(ω) in terms

of U−(ω).

The section of the Fortran script used to calculate Q(ω) is given below.

It shows every step and every expression used to numerically evaluate Q(ω), as

well as the formulas for the components uxn(ω) and uyn(ω) in terms of U−(ω).

It is useful to see all the algebra to understand the complexity of the problem.

The full script for calculating the time components uyn(t) and uyn(t) is shown

in Appendix A.

diss=ii*w*b

w0=1.d0/bk

kdiss=1.d0/(1.d0-w/w0*ii)

eia2=exp(-a*ii*w/v/2.d0)

eia=eia2**2

eiai=1.d0/eia

eia2i=1.d0/eia2

caw=cos(a*w/v)

caw2=cos(0.5d0*a*w/v)

saw=sin(a*w/v)

36



saw2=sin(0.5d0*a*w/v)

kkr=0.75d0*kr+0.25d0*kp

kkp=0.25d0*kr+0.75d0*kp

krmkp=kr-1.d0*kp

aa=16.d0*kp*kr*cos(0.5d0*a*w/v)**2+3.d0*(kr-1.d0*kp)**2

bb=cos(0.5d0*a*w/v)*(2.d0*(3.d0*kr**2+

$ 2.d0*kp*kr+3.d0*kp**2)*cos(a*w/v

$ )+4.d0*(kr+kp)*(m*w**2*kdiss+diss-3.d0*(kr+kp)))

cc=((-1.d0*kr-1.d0*kp)*(3.d0-1.d0*

$ cos(a*w/v))+m*w**2*kdiss+diss)**2-

$ 1.d0*(kp-1.d0*kr)**2*(cos(a*w/v)**2+3.d0*sin(0.5d0*a*w/v)**2)

z_p=0.5d0*(sqrt(bb**2-4.d0*aa*cc)-1.d0*bb)/aa

z_m=0.5d0*(-1.d0*sqrt(bb**2-4.d0*aa*cc)-1.d0*bb)/aa

y_p=sqrt(z_p**2-1.d0)

y_m=sqrt(z_m**2-1.d0)

if(real(y_p)*real(z_p).gt.0.d0) then

y_p=1.d0/(z_p+y_p)

else

y_p=1.d0/(z_p-y_p)

end if

if(real(y_m)*real(z_m).gt.0.d0) then

y_m=1.d0/(z_m+y_m)

else

y_m=1.d0/(z_m-y_m)

end if

if(abs(y_p).gt.1.d0) y_p=1.d0/y_p

if(abs(y_m).gt.1.d0) y_m=1.d0/y_m

y_pn=y_p**n

y_mn=y_m**n

d_p=caw2*(3.d0*kr+kp)*z_p+

$ m*w**2*kdiss-3.d0*(kr+kp)+2.d0*caw*kp+diss

d_m=caw2*(3.d0*kr+kp)*z_m+m*w**2*kdiss-

$ 3.d0*(kr+kp)+2.d0*caw*kp+diss

e_p=0.5d0*ii*(kp-1.d0*kr)*saw2*sqrt3*(y_p-1.d0/y_p)

e_m=0.5d0*ii*(kp-1.d0*kr)*saw2*sqrt3*(y_m-1.d0/y_m)
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v1=d_p**2

v2=e_m**2

v3=v1*v2

v4=-2.d0*d_m*d_p*e_m*e_p

v5=d_m**2

v6=e_p**2

v7=v5*v6

v8=-v1*v2

v9=-d_m*d_p*e_m*e_p

v10=y_m**(n+1)

v11=-v5*v6

v12=y_mn**2

v13=y_pn**2

v14=1.d0/((6.d0*d_m*d_p*e_m*e_p*y_m*y_mn+

$ 2.d0*d_m*d_p*e_m*e_p*v10)*y_p*

$ y_pn+((v11+v9)*y_m*v12+(v9+v8)*v10*

$ y_mn+(v7+v4+v3)*y_m)*y_p+((v

$ 7+v9)*y_m*v12+(v9+v3)*v10*y_mn+(v11+v4+v8)*y_m)*y_p*v13)

v15=-eia2*v1*v2

v16=d_m*d_p*eia2*e_m*e_p

v17=y_m**2

v18=y_m**n

v19=d_m*d_p*eia2*e_m*e_p*v12

v20=-eia2*v5*v6

v21=d_m*d_p*eia2*e_m*e_p*v10*y_mn

v22=y_p**2

v23=-d_m*d_p*eia2*e_m*e_p*v10

v24=-d_m*d_p*eia2*e_m*e_p*y_m*y_mn

v25=v5*eia2*v6

v26=v1*eia2*v2

v27=d_p*eia2*v2*e_p

v28=-d_m*eia2*e_m*v6

v29=-d_p*eia2*e_p*v18*v2*y_mn

v30=-d_p*eia2*e_p*v2

v31=d_m*eia2*e_m*v6

v32=d_p*eia2*v2*e_p*v10*y_mn
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v33=d_m*v1*eia2*e_m

v34=-d_p*eia2*e_p*v5

v35=v5*d_p*eia2*e_p*v12

v36=-d_m*eia2*e_m*v1

v37=v5*d_p*eia2*e_p

v38=-d_p*eia2*e_p*v12*v5*y_m

v39=-d_m*d_p*eia2*e_m*e_p

v40=-d_m*d_p*eia2*e_m*e_p*v18*y_mn

v41=-d_m*d_p*eia2*e_m*e_p*v12*y_m

v42=d_m*d_p*eia2*e_m*e_p*v10

v43=d_m*d_p*eia2*e_m*e_p*y_m*y_mn

f=-v14*(((-2.d0*d_m*d_p*eia2*e_m*e_p*v17-

$ 2.d0*d_m*d_p*eia2*e_m

$ *e_p)*y_mn*y_p+v24+v23+(v24+v23)*v22)*

$ y_pn+v13*((-eia2*v1*v

$ 18*v2*y_mn+v19+(v16+v26)*v17)*y_p-eia2*v12*v5*v6*y_m+(v25+v

$ 16)*y_m+v21)+(v19+v1*eia2*v2*v18*y_mn+(v16+v15)*v17

$ )*y_p+(v5*ei

$ a2*v6*y_m*v12+v21+(v20+v16)*y_m)*v22)

g=v14*(((2.d0*d_p*eia2*e_p*v2-

$ 2.d0*d_p*eia2*e_p*v17*v2)*y_mn*y_p+v

$ 22*(-d_m*eia2*e_m*v6*y_m*y_mn-d_m*eia2*e_m*v10*v6)+d_m*

$ eia2*e_m*v6*y_m*y_mn+d_m*eia2*e_m*v6*v10)*

$ y_pn+v13*((d_m*eia2*e

$ _m*v6*v12+v29+(v31+v27)*v17)*y_p-d_m*eia2*e_m*v12*v6*y_m+(v

$ 28+v30)*y_m+v32)+(-d_m*eia2*e_m*v12*v6+v29+(v28+v27)*v17)*y

$ _p+(d_m*eia2*e_m*v6*y_m*v12+v32+(v31+v30)*y_m)*v22)

hh=-v14*(((2.d0*d_p*eia2*e_p*v17*v5-

$ 2.d0*d_p*eia2*e_p*v5)*y_mn

$ *y_p-d_m*eia2*e_m*v1*y_m*y_mn+(d_m*v1*eia2*e_m*y_m*y_mn+d_m

$ *v1*eia2*e_m*v10)*v22-d_m*eia2*e_m*v1*v10)*y_pn+v13*((-

$ d_m*eia2*e_m*v1*v18*y_mn+v35+(v34+v36)*v17)*y_p+d_m*

$ v1*eia2*e_m

$ *v10*y_mn+(v37+v33)*y_m+v38)+

$ (v35+d_m*v1*eia2*e_m*v18*y_mn+(v34

$ +v33)*v17)*y_p+v22*(-d_m*eia2*e_m*v1*v10*y_mn+(v37+v36)*y_m
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$ +v38))

i=v14*(((2.d0*d_m*d_p*eia2*e_m*e_p*v17+

$ 2.d0*d_m*d_p*eia2*e_m*e_p)*

$ y_mn*y_p+v43+v42+(v43+v42)*v22)*y_pn+(-eia2*v12*v5*v6+v40+(

$ v25+v39)*v17)*y_p+v22*(-eia2*v1*v10*v2*y_mn+(v39+v26)*y_m+v

$ 41)+((v5*eia2*v6*v12+v40+(v20+v39)*v17)*

$ y_p+v41+v1*eia2*v2*v10*

$ y_mn+(v39+v15)*y_m)*v13)

j=0.25d0*(4.d0*m*w**2*kdiss+

$ (1.d0-eiai)*hh*krmkp*sqrt3+(8.d0*caw-8.d0)*k

$ p+((4.d0*eiai+4.d0)*f-8.d0)*kkr+4.d0*diss)

k=-0.25d0*((eiai-1.0)*i*krmkp*sqrt3+(-4.d0*eiai-4.d0)*g*kkr)

l=-0.25d0*((eiai-1.d0)*f*krmkp*sqrt3+(-4.d0*eiai-4.d0)*hh*kkp)

mm=0.25d0*(4.0*m*w**2*kdiss+

$ (1.d0-1.d0*eiai)*g*krmkp*sqrt3+(8.d0*caw-8.d0)*k

$ r+((4.d0*eiai+4.d0)*i-8.d0)*kkp+4.d0*diss)

q=-(2.d0*j*mm-2.d0*k*l)/((ii*kpi*l-ii*k*kpi)

$ *sqrt3*saw2+(j*kpi*sqrt3**2-kpi*mm)*caw2

$ +j*kpi*sqrt3**2+(kpi-2.d0*j)*mm+2.d0*k*l)

uxumw=(3.d0*(1.d0+eia2)*k*kpi+

$ sqrt3*kpi*(mm-eia2*mm))/(2.d0*eia2*(k*l-j*mm))

uyumw=-(3.d0*(1.d0+eia2)*j*kpi+

$ sqrt3*kpi*(l-eia2*l))/(2.d0*eia2*(k*l-j*mm))

c system for components above crack line

if(h.gt.1.d0) then

w1=y_m**n

w2=y_p**n

w3=w1**2

w4=w2**2

w5=y_m**(h-0.5d0)

w6=y_p**(h-0.5d0)

w7=y_m**(n-h+0.5d0)

w8=y_p**(n-h+0.5d0)

w9=w1*w7
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w10=w2*w8

w11=y_p**(n-h-0.5d0)

w12=y_m**(n+h-0.5d0)

w13=(-(d_m*e_p*(1.d0+w1)*(-1.d0+w2))+

$ d_p*e_m*(-1.d0+w1)*(1.d0+w2))*

$ (d_p*e_m*(1.d0+w1)*(-1.d0+w2)-d_m*e_p*(-1.d0+w1)*(1.d0+w2))

uxumw=-((uxumw*v5*v6*(-1.d0+w3)*(-w10+w6)+

$ d_p*v2*(d_p*uxumw*(-1.d0+w4)*(w5-w9)+

$ e_p*uyumw*(w10+2.d0*w12*w2-(1.d0+w4)*w5+w6-w3*(w10+w6)-

$ 2.d0*w2*w7+(1.d0+w4)*w9))+

$ d_m*e_m*e_p*(-(e_p*uyumw*

$ (-w10+(-1.d0+w4)*w5+w6+(-1.d0+w4)*w9+

$ (-w10+w6)*y_m**(2.d0*n)-2.d0*w1*w11*(-y_p+y_p**(2.d0*h))))+

$ d_p*uxumw*(w10-2.d0*w12*w2+(1.d0+w4)*w5+w6+w3*(w10+w6)-

$ 2.d0*w2*w7+(1.d0+w4)*w9-2.d0*w1*w11*(y_p+y_p**(2.d0*h)))))/

$ (exp((ii*gn*w)/(2.d0*v))*w13))

uyumw=-((uyumw*v1*v2*(-1.d0+w3)*(-w10+w6)+

$ e_p*v5*(e_p*uyumw*(-1.d0+w4)*(w5-w9)+

$ d_p*uxumw*(w10+2.d0*w12*w2-(1.d0+w4)*w5+w6-w3*(w10+w6)-

$ 2.d0*w2*w7+(1.d0+w4)*w9))+

$ d_m*d_p*e_m*(-(d_p*uxumw*

$ (-w10+(-1.d0+w4)*w5+w6+w3*(-w10+w6)+(-1.d0+w4)*w9-

$ 2.d0*w1*w11*(-y_p+y_p**(2.d0*h))))-

$ e_p*uyumw*(-w10+2.d0*w12*w2-(1.d0+w4)*w5-w6-w3*(w10+w6)+

$ 2.d0*w2*w7-(1.d0+w4)*w9+2.d0*w1*w11*(y_p+y_p**(2.d0*h)))))/

$ (exp((ii*gn*w)/(2.d0*v))*w13))

end if
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Chapter 3

Numerical evaluation

We present the methods used to numerically evaluate the quantities

presented in the previous chapter at each step in the analytical solution of the

in-plane problem. We also show example results for a few systems obtained

using these techniques1.

3.1 Load calculation

The first step to numerically evaluate the components for the in-plane

(Mode I) problem is calculating the load ∆ as presented in Section 2.4. The

load is important because it gives the boundary condition UN that drives the

crack motion. The exact relation between the two quantities in the triangular

lattice is UN = 2uf∆/
√

3Q0. The ∆ formula is reproduced here

∆ = exp

[
−
∫
dω

4π

(
ω2
0

iω′(ω2
0 + ω′2)

[lnQ(ω′)− lnQ(ω′)] +
ω0 ln |Q(ω′)|2
ω2
0 + ω′2

)]
.

(3.1)

This calculation has been done before by Marder[22]. First we make the change

of variables ω = s/
√

1− s2. This makes the bounds of the integral [0,1].

1This chapter uses material from the paper [3] by Chris Behn and Michael Marder, titled
‘The transition from subsonic to supersonic cracks’ and published in the journal Phil. Trans.
R. Soc. A in 2015. Michael Marder edited the text.
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Figure 3.1: Scaled crack velocity v/c versus load ∆ for N = 10, k‖ = 1, k⊥ = 0. Stokes and
Kelvin dissipation are b = 0.1 and β = 0.01.

Romberg integration is then used to evaluate this integral numerically. The

iterative process is stopped when the ∆ error is less than 10−5. Figure 3.1

shows ∆ calculated for a range of crack velocities v in this manner.

The integration is performed in a Fortran script, part of which can be

seen at the end of the full component calculation script in Appendix A.

3.2 Fourier transform approximation

There are many Fourier transforms that need to be evaluated to com-

pute the components. Evaluating these analytically is impossible, as the alge-

braic expressions are too large (see Section 2.5). We are forced to use numerical

approximations to do the Fourier transforms. Most continuous Fourier trans-

forms (CFT) can be approximated by a discrete Fourier transform (DFT). The
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steps to do so can be found in [2]. We give a quick overview of them here.

First, the CFT of a complex function f(t) and its inverse are:

F [f ](ω) =

∫ ∞
−∞

dt f(t)e−itω (3.2a)

F−1[f ](t) =
1

2π

∫ ∞
−∞

dω f(t)eitω. (3.2b)

The DFT of an n-long sequence z and its inverse are:

Dk(z) =
n−1∑
j=0

zje
−2πijk/m (3.3a)

D−1k (z) =
1

m

n−1∑
j=0

zje
2πijk/m. (3.3b)

DFTs can be evaluated quickly by using a variant of the Fast Fourier

Transform (FFT) algorithm. We use the freely available FFTW2 algorithm,

well known for its speed and accuracy. Its Fortran implementation is easily

added to all our Fortran scripts.

CFTs are approximated using DFTs as follows. Assume the function

f(t) that is being Fourier transformed is zero outside the interval (−L/2, L/2).

We want to sample f(t) m times, with m being a power of 2 (a requirement for

using the FFTs). The time difference between sampled points in the interval is

β = L/m. The time values are given by tj = (j−m/2)β, with 0 ≤ j < m. The

frequency values in the output are ωk = 2π(k−m/2)/L = 2π(k−m/2)/(mβ),

2Fastest Fourier Transform in the West, (www.fftw.org)
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with 0 ≤ k < m. Now write the CFT as

F (ωk) =

∫ ∞
−∞

dt f(t)e−itωk

=

∫ L/2

−L/2
dt f(t)e−itωk

≈
m−1∑
j=0

f(tj)e
−itjωkβ

= β
m−1∑
j=0

f(tj)e
−2πi(j−m/2)(k−m/2)/m

= βeπi(k−m/2)
m−1∑
j=0

f(tj)e
πije−2πijk/m

= (−1)kβDk[(−1)jf(tj)].

(3.4)

This form can be rapidly evaluated using an FFT algorithm.

3.3 Component calculation

All atomic positions in time can be evaluated from rapid numerical

operations involving nothing but algebra and Fourier transforms. First we

sample the function Q(ω) n = 2p times over an interval of width 2ωmax and

use Fourier transforms to compute U−(ω) and un(ω) from Eq. (2.18). Be-

fore taking the inverse Fourier transform, any singular behavior of the form

1/(iω) must be subtracted from uyn(ω). The coefficient is determined from the

asymptotic behavior of uyn(t) and is given by

lim
ω→0

[(iω)uyn(ω)] = (Q0 − UN)

(
1− (n− 1/2)

N

)
. (3.5)

The subtracted function is then added back analytically after the in-
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verse Fourier transform. This completes the numerical calculation of un(t).

We can check the accuracy of the components knowing the exact asymptotic

behavior along the crack line:

lim
t→±∞

ux1/2(t) = 0, lim
t→−∞

uy1/2(t) = Q0, lim
t→+∞

uy1/2(t) = UN . (3.6)

Also, in the β → 0 limit, the load is given by ∆ = Q−(0)/
√
Q0. This

can be compared to direct numerical integration of Eq. (2.37). We can choose

a cutoff frequency ωmax that minimizes the difference between these two ∆

values. Figure 3.2 shows an example of this minimization. For a given system,

we can find the value of ωmax that minimizes the error in ∆ by running our

script at a low sampling resolution n = 2p, then using it to find ωmax for higher

resolutions. The cutoff frequency increases by a factor of
√

2 each time the

resolution increases by a factor of 2. For higher resolutions than those shown

in Figure 3.2, the error in ∆ becomes very small. At n = 219, the error is

about 1%, and up to n = 223, the error decreases to roughly 0.5%. The time

cutoff tmax and interval ∆t between output points are given in terms of ωmax

by

tmax =
nπ

2ωmax

(3.7a)

∆t = π/ωmax. (3.7b)

Figure 3.3 shows the horizontal and vertical components of atomic po-

sition calculated in this fashion. Figure 3.4 shows the vertical components for

three different rows calculated using the equations of motion above the crack
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Figure 3.2: Difference in load ∆ values obtained from direct integration and analytical
component solutions in a system with 10 rows. As the resolution n=2p increases by a factor
of 2, the cutoff frequency ωmax increases by a factor of

√
2. At n = 219, the error is about

1%, and up to n = 223, the error decreases to roughly 0.5%.

line written down in Section 2.5. We choose the boundary condition UN in

such a fashion that at the moment bonds break they have increased in length

by uf = 1. Thus we say that all displacements in the plots are measured

in units of uf . Keeping the breaking length fixed means in turn that all the

computations correspond to physical systems with the same fracture energy.

As the number of rows 2(N + 1) increases, the extension UN needed to bring

the system to the point of fracture increases as
√
N . For supersonic cracks,

the extensions become large multiples of uf .

It is worth pausing to ask how Figure 3.3 might be produced were one

not using the Wiener-Hopf technique. It would be possible. It would require

integrating the equations of motion for a crack in a system 1002 rows high.
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In order for atomic motions to reach steady state, the crack would need to

run for a distance around ten times the height of the system [15]. Although

this could be sped up with a cutting and pasting procedure, accurate results

would require a system 3000 columns long. Thus one would have to run

to steady state a system with around 3 million atoms; this would require a

supercomputer. By contrast, producing Figure 3.3 required just a bit over a

second using a single processor on a laptop.

Originally, a Mathematica3 script was used to numerically evaluate the

lengthy algebraic expressions in Section 2.5, and perform the Fourier trans-

forms. We found that the former section of the code took up over 90% of

the total computing time of the script. It was decided that we would convert

the Mathematica script to Fortran, given its ability to do numerical calcula-

tions quickly. For example, the Mathematica script took over 15 minutes to

evaluate the solutions in Figure 3.3, while the Fortran script takes roughly 2

seconds for the same calculation on the same computer, a 2012 MacBook Pro.

Converting the script to Fortran provided the necessary speed boost to finish

the calculations presented in the next chapters.

3Wolfram, (www.wolfram.com/mathematica)
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Figure 3.3: Horizontal and vertical components for the displacement of an atom versus time.
The atom sits on the crack line in a system with 1002 rows (N = 500), crack speed v/c = 0.7,
where c is the Rayleigh wave speed, k‖ = 1, k⊥ = 0, and Stokes and Kelvin dissipation of
b = 10−4, β = 10−2. The dashed line indicates the asymptotic vertical displacement of the
atom, UN . All displacements are measured in units of uf , the extension at which bonds
break. The atom is nearly motionless until the crack arrives at t = 0. The horizontal
component oscillates slightly, then returns to zero. The vertical component approaches
the boundary condition UN , with high frequency, small amplitude oscillations lasting for a
time on the order of 1/β. The high frequency oscillations are phonons that result from the
periodic snapping of atomic bonds.
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Figure 3.4: Vertical components for the displacements of three different rows of atoms versus
time. Shown are rows 1, 100 and 300 above the crack line in a system with 1002 total rows
(N = 500). The crack speed is v/c = 0.7, k‖ = 1, k⊥ = 0, and Stokes and Kelvin dissipation
are b = 10−4, β = 10−2. The dashed line indicates the asymptotic vertical displacement of
the atom, UN . Note how higher rows tend toward this vertical boundary condition for all
time. Row 500 above the crack line has this displacement for all t.
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Chapter 4

Behavior of the lattice solutions

We examine the behavior of in-plane solutions for a range of subsonic

speeds and for a few low supersonic speeds. We find that subsonic solutions

exhibit familiar high frequency, small amplitude oscillations. The shape of

the vertical displacement near the crack tip is in agreement with continuum

results for subsonic speeds. We find that supersonic solutions exhibit new

low frequency, large amplitude oscillations. This behavior appears in subsonic

speeds close to the Rayleigh wave speed. Finally, we present the results of an

experiment that validate some of these calculations1.

4.1 Supersonic transition

Having developed a tool that allows us very quickly to find the time

history of atoms in the vicinity of a running crack, we now turn to the question

with which we began. We ask what happens near a crack tip as the motion

of the crack moves from subsonic to supersonic motion. The important wave

speed is the Rayleigh wave speed c. For central forces (k⊥ = 0), it is given

1This chapter uses material from the paper [3] by Chris Behn and Michael Marder, titled
‘The transition from subsonic to supersonic cracks’ and published in the journal Phil. Trans.
R. Soc. A in 2015. Michael Marder edited the text.
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explicitly in our model by

c =

√
2(1−

√
3/3)ct, (4.1)

which is the root of the denominator in Eq. (1.35), and the limiting speed for

cracks in continuum fracture mechanics.

Supersonic solutions in the lattice model look very different from sub-

sonic solutions. Figures 4.1 and 4.2 show how the vertical displacement uy1/2(t)

of an atom on the crack line varies as the crack speed increases through the

Rayleigh wave speed from v = 0.9c to v = 1.05c. We can see two distinct be-

haviors for subsonic and supersonic cracks. In both cases, the atom is nearly

motionless until the crack approaches. After the crack passes, in subsonic so-

lutions, the vertical displacement approaches the boundary condition UN with

small amplitude, high frequency oscillations that continue for a time on the

order of 1/β as shown in Figure 4.1a. These are phonons carrying energy left

over after the bonds along the crack line have snapped [9].

In supersonic solutions, the vertical displacement also approaches the

boundary displacement, but with large amplitude, low frequency oscillations

as seen in Figure 4.2d. The phonons of the subsonic solutions are no longer

present in supersonic solutions. Interestingly, the subsonic phonons and su-

personic large oscillations appear simultaneously in the subsonic solutions just

below the Rayleigh wave speed, as we see in Figures 4.1c-d and Figure 4.2a.

The continuum solutions for in-plane fracture are graphed in [4]. Using
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Figure 4.1: Vertical component uy1/2(t) along the crack line in a system with 1002 rows

(N = 500) as the crack speed v increases through the Rayleigh wave speed c. Displacements
are measured in units of uf , the extension for which bonds break. Note the small amplitude,
high frequency oscillations for subsonic solutions (a), compared to the large amplitude, low
frequency oscillations for supersonic solutions. Subsonic solutions close to c exhibit both
these behaviors (d).For all computations, k‖ = 1, k⊥ = 0, Stokes and Kelvin dissipation are
b = 10−4 and β = 10−2. The dashed line indicates the asymptotic vertical displacement of
the atom, UN .
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Figure 4.2: Vertical component uy1/2(t) along the crack line in a system with 1002 rows

(N = 500) as the crack speed v increases through the Rayleigh wave speed c. Displacements
are measured in units of uf , the extension for which bonds break. Note the large amplitude,
low frequency oscillations for supersonic solutions (d), compared to the small amplitude,
high frequency oscillations for subsonic solutions. In panel (c) the atom passes below its
original height after time t = 0. Thus this computation is only consistent for a model where
a bond that breaks never reforms. For all computations, k‖ = 1, k⊥ = 0, Stokes and Kelvin
dissipation are b = 10−4 and β = 10−2. The dashed line indicates the asymptotic vertical
displacement of the atom, UN .
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the same notation as Eq. (1.35), the vertical displacement is:

uy =
2α√
2πµR

[2− (1 + β2)]
√
vtKI (4.2)

where R = 4αβ − (1 + β2)2, and x = vt is the horizontal position of the

crack tip as it moves in steady state. This same
√
t behavior of uy is present

in the subsonic lattice solutions shown in Figures 3.3b and 4.1a. We could

use this square root displacement to extract a stress intensity factor KI from

the discrete system, as a complement to methods involving energy balance

used in the past. However, as the crack speed increases toward the Rayleigh

wave speed, the square root profile becomes increasingly indistinct, and it is

is completely lost at the Rayleigh speed and above.

As an illustration of the difference between subsonic and supersonic

solutions, in Figure 4.3 we plot the asymptotic behavior of subsonic and su-

personic solutions for atomic motion near the crack tip. For the subsonic

solutions, the displacement rises as
√
t as expected. For supersonic solutions,

it rises instead as
√
t
3
.

4.2 Varying the system size

The subsonic lattice solutions have a vertical displacement uy1/2(t) that

matches the continuum result Eq. (4.2), superposed with small amplitude, high

frequency oscillations that result from periodic bond breaking, and carry off

all the energy flux to the crack tip not absorbed by the bond breaking process.

The supersonic solutions feature large amplitude, low frequency oscil-
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Figure 4.3: Comparison of subsonic and supersonic solutions for atoms near the crack tip.
Both systems are of height 2(N + 1) with N = 800.

lations. There is a simple explanation for these oscillations, which take place

at what we call the supersonic block frequency ωb. This frequency is what

we find if the lattice oscillates vertically as a block, with the top row held

fixed. We can solve for this frequency using the equations of motion along

the crack line Eqs. (2.10) and (2.11). These oscillations occur after the crack

has passed, so we can eliminate the θ(t) functions multiplying U−(t). Fourier

transforming these gives Eqs. (2.13) and (2.14) with U−(ω) replaced by zero.

The components u3/2(ω) can be written as linear combinations of the u1/2(ω)

components, which gives us a system to solve. The determinant of this system

for u1/2(ω) must vanish, which lets us solve for ωb, the lowest normal mode

frequency. The coefficients Ck
n(ω) in Eqs. (2.22) and (2.23) are so lengthy that

this procedure is extremely cumbersome and not very informative.

It is more useful to consider the lattice as a continuous block and use
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Figure 4.4: Diagram of the isotropic elastic block. It is held fixed at y = H and is free to
oscillate at y = 0.

the equations of linear elasticity [10]. The top of the block is fixed while the

bottom is free to oscillate, as shown in Figure 4.4. If the relaxed height of the

block is H, the lowest normal mode frequency can be shown to be

ωb = (π/H)cl. (4.3)

We can derive Eq. (4.3) as follows. Consider an isotropic elastic block held

fixed at y = H and free to oscillate at y = 0. The boundary conditions are:

u(x,H) = 0 (4.4)

σxy(x, 0) = σyy(x, 0) = 0. (4.5)

The linear elasticity equations are:

ρ
∂2u

∂t2
= µ∇2u + (λ+ µ)∇(∇ · u) (4.6)

σij = λδijuk,k + µ(ui,j + uj,i). (4.7)

The displacement u can be decomposed into longitudinal and transverse

components u = uL + uT . The components are derived from the potentials
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φL = −iAei(kx+kLy−ωt) and φT = −iBei(kx+kT y−ωt) such that:

uL = ∇φL = Aei(kx+kLy−ωt)(kx̂ + kLŷ) (4.8)

uT = −φTy x̂ + φTx ŷ = Bei(kx+kT y−ωt)(−kT x̂ + kŷ). (4.9)

Written like this, we can set them to be real. The wave numbers are also real

since we are looking for oscillatory solutions.

The full expression for the displacement is

u = ei(kx−ωt)[(AkeikLy −BkT eikT y)x̂ + (AkLe
ikLy +BkeikT y)ŷ]. (4.10)

Boundary condition (4.4) gives:

Ak cos(kLH)−BkT cos(kTH) = 0 (4.11)

AkL cos(kLH) +Bk cos(kTH) = 0. (4.12)

The determinantal equation of this system is

(k2 + kLkT ) cos(kLH) cos(kTH) = 0. (4.13)

We are looking for solutions with nonzero A and B, therefore we must have

cos(kLH) = 0 and cos(kTH) = 0.

The Navier-Cauchy equation (4.6) gives two possible frequencies:

ω2
T = (k2 + k2T )c2T (4.14)

ω2
L = (k2 + k2L)c2L (4.15)
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with cT =
√
µ/ρ and cL =

√
(λ+ 2µ)/ρ. Similarly, the second boundary

condition (4.5) gives

k2 − k2T
2kkL

=
2µkkT

λ(k2 + k2L) + 2µk2L
. (4.16)

The solution that best matches the supersonic block frequency obtained

from the numerical calculations in the triangular lattice is ωL in Eq. (4.15) and

kT = kL = π/(2H) in Eq. (4.13). Eq. (4.16) then gives

k2 =
λ+ 2µ

λ
k2L =

k2L
1− 2c2T/c

2
L

. (4.17)

In the triangular lattice cT/cL = 1/
√

3, so k2 = 3k2L. Also kL = π/(2H),

H = N
√

3/2 and cL = 3
√
K/8 (K is the spring constant) so the supersonic

block frequency is

ωb = 2kLcL =
2
√

3π

N

√
K

8
. (4.18)

This expression is approximate to the extent that our lattice system is not

actually a continuum, and because the waves are not infinite in horizontal

wavelength. Figure 4.5 shows how the vertical displacement along the crack

line for a fixed supersonic speed varies with the system size. As the system

grows from 402 rows high to 3202 rows high, the oscillation frequency decreases

in proportion. A fit to the calculated results gives ωb ∼ 3.1742/N . This result

agrees with the result in Eq. (4.3) within 5%. Figure 4.6 shows the vertical

displacements for three different rows above the crack line at the supersonic

speed v/c = 1.01. Note that they all share the same low frequency, high
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Figure 4.5: Vertical component uy1/2(t) along the crack line for supersonic crack speed

v/c = 1.03 as the number of atomic rows 2(N+1) increases. Displacements are measured in
units of uf , the extension for which bonds break. Note that the large amplitude oscillation
frequency depends inversely on the system size as ωb ∼ 3.1742/N . In panels (a) and (b),
the oscillations take atoms below their original height. Thus these computations are only
correct for a model in which bonds that once break never reform. For all computations,
k‖ = 1, k⊥ = 0, Stokes and Kelvin dissipation are b = 10−4 and β = 10−2. The dashed line
indicates the asymptotic vertical displacement of the atom, UN .
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Figure 4.6: Vertical components for the displacements of three different rows of atoms versus
time. Shown are rows 1, 100 and 300 above the crack line in a system with 1002 total rows
(N = 500). The crack speed is v/c = 1.01, k‖ = 1, k⊥ = 0, and Stokes and Kelvin dissipation
are b = 10−4, β = 10−2. The dashed line indicates the asymptotic vertical displacement of
the atom, UN . Note how higher rows tend toward this vertical boundary condition for all
time. Row 500 above the crack line has this displacement for all t. The low frequency, high
amplitude oscillations are consistent with the lattice oscillating as a continuous block after
the crack has passed.
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amplitude oscillations. This is consistent with the idea of the lattice oscillating

as a continuous block after the crack has passed.

We have seen how the vertical displacement along the crack line changes

as the crack speed becomes supersonic for a fixed system size (Figures 4.1 and

4.2). The subsonic solutions just below the Rayleigh wave speed have both

small amplitude, high frequency oscillations as well as large amplitude, low

frequency oscillations. The low frequency oscillations as seen in Figure 4.2d

begin to appear in Figures 4.1c and 4.1d alongside the high frequency ones,

which disappear completely at the Rayleigh speed (Figure 4.2b) and above.

In Figure 4.7 we examine the vertical motion of atoms along the crack

line for a fixed subsonic speed as the system size varies. For the small system

with 202 rows (N = 100) the solution shares the character of both subsonic

and supersonic solutions. Phonon oscillations are visible, but at the same time

there is a long-wavelength oscillation with the frequency of the supersonic block

frequency ωb. Now we increase the system size and monitor the location of the

first long-wavelength peak. As one can see in Figure 4.7 it slides to the right

and diminishes in amplitude. The location of the peak is given approximately

by tb ∼ 0.7150N , just as the period of the large amplitude oscillations goes

as T ∝ N in Figure 4.5. The height of the peak decreases slower than 1/
√
N

and approaches the boundary condition UN asymptotically from above as seen

in Figure 4.7d. Thus for any given subsonic crack speed below Rayleigh wave

speed, there exists a system size sufficiently large to produce behavior like the

continuum solution Eq. (4.2), and make it possible to find a stress intensity
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factor.

4.3 Convergence for large systems

Considering again the subsonic solutions for large N , it is important to

note that there is a convergence near the origin, or close to the crack tip. This

can be seen as an overlap in Figure 4.8 near t = 0 of solutions for the systems

N = 800 and N = 1600.

We run into convergence issues with the computation of the load ∆

using the Romberg technique mentioned in Section 3.1 for systems with N >

3000. However, this convergence near the origin suggests that very large N

solutions can be approximated by smaller N solutions.

4.4 Fineberg experiment

Boué, Livne and Fineberg conducted an experiment2 to measure the

shape change of the supersonic crack tip opening displacement in an effectively

infinite strip. These measurements in the strip geometry showed a “tadpole”

like shape around the crack tip as seen in Figure 4.9. The near tip form of the

crack tip has a parabolic shape due to a stress singularity, and far from the

tip the crack displacement transitions to a constant ∆, but the displacement

first overshoots ∆ before converging far from the crack tip.

Both of these features are present in our analytical solutions. The

2J. Fineberg, private communication (2015)
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Figure 4.7: Vertical component uy1/2(t) along the crack line for subsonic crack speed

v/c = 0.9 as the number of horizontal rows of atoms 2(N + 1) increases. Displacements are
measured in units of uf , the extension for which bonds break. Note how the small peak seen
in (a) diminishes and approaches the boundary condition UN asymptotically from above for
larger N , and its position in time varies as t ∼ 0.7150N . For all computations, k‖ = 1,
k⊥ = 0, Stokes and Kelvin dissipation are b = 10−4 and β = 10−2. The dashed line
indicates the asymptotic vertical displacement of the atom, UN .
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Figure 4.8: Convergence near the crack tip for large lattices. Each system has a height
2(N + 1).

Figure 4.9: Experiment by Boué, Livne and Fineberg showing “tadpole” form around the
crack tip in an effectively infinite strip.
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overshoot or “tadpole” is present in the solutions in Figure 4.7. The overshoot

is a feature of the long wavelength oscillations characteristic of the supersonic

solutions. Its height diminishes as the system size N increases. After the

overshoot, the vertical displacement approaches the boundary condition UN

asymptotically from above, as seen in the experimental snapshots in Figure 4.9.
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Chapter 5

Energy flux in the lattice

Continuum fracture mechanics tells us that the energy flow into the

crack tip becomes negative or imaginary for supersonic cracks, which would

allow us to conclude that supersonic cracks are unphysical. This result is

shown in Eq. (1.35). Supersonic cracks do in fact exist experimentally and in

the lattice solutions presented in Chapter 4. Therefore, motivated by the con-

tinuum energy result, we study energy flow in the lattice. First, we construct

an energy flux vector for the triangular lattice inspired by the Poynting vector

in electromagnetic theory, then we make vector plots at each lattice point for

the subsonic and supersonic solutions calculated in the previous chapter.

5.1 Poynting vector

We want to construct an energy flux vector for our lattice to look at

the energy flow. Before doing so, we can think about the Poynting vector from

electromagnetism. Here is a quick derivation of it [12]. We start with the total

energy stored in electromagnetic fields in a volume V

U =
1

2

∫
V

(
εE2 +

1

µ
B2

)
dV. (5.1)
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This can be derived by considering energy conservation in electrodynamics.

Consider a charge and current configuration producing fields E and B at a

time t. We want to find the work dW done by the electromagnetic forces on

a charge q in a time interval dt. The Lorentz force law says

dW = F · dL = q(E + v ×B) · vdt = qE · vdt. (5.2)

Let q = ρdV and J = ρv. The time derivative of the work done on all charges

in a volume V is

dW

dt
=

∫
V

(E · J)dV. (5.3)

The quantity E · J is the power per unit volume. We can eliminate J using

the Maxwell-Ampère law (µJ + µε∂E/∂t = ∇×B) to get

E · J =
1

µ
E · (∇×B)− εE · ∂E

∂t
. (5.4)

We use the vector relation

∇ · (E×B) = B · (∇× E)− E · (∇×B) (5.5)

and Faraday’s law (∂B/∂t = −∇× E) to get

E · (∇×B) = −B · ∂B

∂t
−∇ · (E×B). (5.6)

Using

E · ∂E

∂t
=

1

2

∂

∂t
(E2), B · ∂B

∂t
=

1

2

∂

∂t
(B2) (5.7)

we get

E · J = −1

2

∂

∂t

(
εE2 +

1

µ
B2

)
− 1

µ
∇ · (E×B). (5.8)
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Finally, plugging this into Eq. (5.3) and using the divergence theorem for the

second term gives

dW

dt
= − d

dt

∫
V

1

2

(
εE2 +

1

µ
B2

)
dV −

∫
A

1

µ
(E×B) · dA (5.9)

where A is the surface boundary of the volume V . Equation (5.9) is a statement

of Poynting’s theorem, which says that the work done by the electromagnetic

forces on charges in a volume is equal to the change in energy stored in the

electromagnetic fields, minus the energy flowing out of the volume’s surface.

The vector inside the area integral is the Poynting vector:

S ≡ 1

µ
(E×B). (5.10)

It is an energy flux density vector, with units of energy per time, per area.

The product S ·dA is the energy flowing through the surface dA per unit time.

5.2 Lattice energy flux vector

e1 e2

e3

e5 e6

e4

A

B

Figure 5.1: Diagram of the triangular lattice. Lines A and B are rows above and below
the crack line. The ej are the six different displacement vectors along the lattice: e1 =
(−1/2,

√
3/2), e2 = (1/2,

√
3/2), e3 = (−1/2,−

√
3/2), e4 = (1/2,−

√
3/2), e5 = (−1, 0),

e6 = (1, 0).
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We now want to construct an energy flux vector in the lattice. First,

consider the lattice geometry shown in Figure 5.1. Lines A and B are rows

along the crack line. The ej are the six displacement vectors for the triangular

lattice. Atoms along rows A and B are eventually separated by the traveling

crack.

Let us work with an atom on line A. The rate at which work is done,

or power, by the atom in the direction e1 is given by F1 · vA, where vA is

the velocity of the atom on A. The result for the atom in the direction e2 is

F2 · vA. The power in the vertical direction is the sum of these two values,

and should equal the y-component of the energy flux vector P in the lattice

Py,A = (F1 + F2) · vA. (5.11)

This represents the energy flow through the atom across the line A. Similarly,

we can show for an atom on line B that

Py,B = −(F3 + F4) · vB. (5.12)

The average of these two values can be taken as the y-component of a general

energy flux vector in the lattice. Another way to get this result is by defining

the energy flux vector at each lattice site to be

P =
6∑
j=1

(Fj · v)ej (5.13)

where v is the velocity of the atom at the lattice site. The y-component of

this vector is the same, with a
√

3 factor. We can think of this formula as
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the sum of the six directional vectors ej, each weighted by the power (Fj · v)

along their respective direction. We will use the energy flux vector P defined

in Eq. (5.13) in the rest of this work.

The forces Fj and the full expressions for the components of the energy

flux vector P are given in this portion of the Fortran script shown below for

the atoms above the crack line. The full script is shown in Appendix B.

c displacements along all six directions

d1x=above(c+(col-gn)*nt,1)-above(c,1)

d1y=above(c+(col-gn)*nt,2)-above(c,2)

d2x=above(c+(col-gn+1)*nt,1)-above(c,1)

d2y=above(c+(col-gn+1)*nt,2)-above(c,2)

d3x=above(c-(col+gn)*nt,1)-above(c,1)

d3y=above(c-(col+gn)*nt,2)-above(c,2)

d4x=above(c-(col+gn-1)*nt,1)-above(c,1)

d4y=above(c-(col+gn-1)*nt,2)-above(c,2)

d5x=above(c-1*nt,1)-above(c,1)

d5y=above(c-1*nt,2)-above(c,2)

d6x=above(c+1*nt,1)-above(c,1)

d6y=above(c+1*nt,2)-above(c,2)

c displacement dot products dj.ej

c force along each direction

d1e1=d1x*e1x+d1y*e1y

f1x=kp*e1x*d1e1

f1y=kp*e1y*d1e1

d2e2=d2x*e2x+d2y*e2y

f2x=kp*e2x*d2e2

f2y=kp*e2y*d2e2

d3e3=d3x*e3x+d3y*e3y

f3x=kp*e3x*d3e3

f3y=kp*e3y*d3e3

d4e4=d4x*e4x+d4y*e4y

f4x=kp*e4x*d4e4

f4y=kp*e4y*d4e4
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d5e5=d5x*e5x+d5y*e5y

f5x=kp*e5x*d5e5

f5y=kp*e5y*d5e5

d6e6=d6x*e6x+d6y*e6y

f6x=kp*e6x*d6e6

f6y=kp*e6y*d6e6

c velocity components

vx=above(c,3)

vy=above(c,4)

c dot products fj.v

c energy flux components in each direction

f1v=f1x*vx+f1y*vy

p1x=e1x*f1v

p1y=e1y*f1v

f2v=f2x*vx+f2y*vy

p2x=e2x*f2v

p2y=e2y*f2v

f3v=f3x*vx+f3y*vy

p3x=e3x*f3v

p3y=e3y*f3v

f4v=f4x*vx+f4y*vy

p4x=e4x*f4v

p4y=e4y*f4v

f5v=f5x*vx+f5y*vy

p5x=e5x*f5v

p5y=e5y*f5v

f6v=f6x*vx+f6y*vy

p6x=e6x*f6v

p6y=e6y*f6v

c total energy flux

px=p1x+p2x+p3x+p4x+p5x+p6x

py=p1y+p2y+p3y+p4y+p5y+p6y
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5.3 Vector plots

Given the lattice energy flux vector, we can now make vector plots of

the energy flow in the lattice around the the crack tip. The procedure to

generate such plots is as follows. First, we compute the displacements and

velocities of all atoms in a region around the crack tip. We use the analytical

procedure presented in Chapter 2 to find the solution for each row, and the

results are computed using a Fortran script similar to the one presented in

Appendix A. The position and velocity components are then fed into another

script that computes the energy flux vector P at each atom, averages it over

a period T = a/v, and outputs its components and the positions of each atom

so we can make a vector plot. The full energy flux Fortran script is shown in

Appendix B. The Mathematica script used to make the vector plots is shown

in Appendix C.

For every vector plot, the position of each atom is indicated by a black

dot, with the corresponding energy flux vector P centered on it. The vector

magnitude is indicated by color, not length on the plot. We use the “Rainbow”

color scheme from Mathematica, which goes (purple → blue → green →

yellow → orange → red) as the vector magnitude varies along (0, 1). The

vector magnitudes are scaled first logarithmically, then linearly along (0, 1)

with 0 and 1 being the minimum and maximum magnitudes in the lattice

region, respectively.

Figure 5.2 shows a vector plot generated in such a way. The system

size is N = 500 and the crack speed is subsonic with v/c = 0.6. The crack
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tip is shown moving to the right in the positive x-direction. We set the bond

breaking length to be uf = 1 like all the plots in Chapter 4. This leads to

large values of the boundary condition UN , which makes the lattice difficult

to visualize after the crack has passed. For all other vector plots, we will set

the boundary condition to be UN = 1.

Figures 5.3-5.10 show vector plots for various crack speeds above and

below the Rayleigh wave speed c for a system with N = 500 and UN = 1. It is

useful to look at the corresponding vertical component plots in Figures 3.3b,

4.1 and 4.2 when examining these vector plots. We know from our discussions

in Chapter 4 that subsonic solutions feature high frequency, small amplitude

oscillations, while supersonic solutions feature low frequency, large amplitude

oscillations. The first peak of the supersonic oscillations is present in subsonic

solutions close to the Rayleigh wave speed. Figures 5.3-5.8 show energy flows

around the crack opening to the left of tip that drive the small amplitude

oscillations in the subsonic solutions. The energy flow is strongest right at the

crack tip where the crack is opening just after t = 0. Figures 5.9 and 5.10

show similar energy flows on a different time scale, driving the large amplitude

oscillations in the supersonic solutions.

We can approximate the total energy flux out of the crack in the lattice

in a way analogous to the result Eq. (1.35) from continuum fracture mechanics.

The total energy flow out of a row above the crack line is

∑
c

P · n̂ =
∑
c

Py (5.14)
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Figure 5.2: Vector plot for v/c = 0.6 with N = 500 and uf = 1.

where the index c runs over a number of columns on both sides of the crack

tip, and n̂ is an outward unit vector normal to the row. Above the crack line

n̂ = ŷ, and below the crack line n̂ = −ŷ. Figure 5.11 shows the total flux out

of 200 columns as a function of the row n. The result is a positive outward

flow for both subsonic and supersonic solutions.
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Figure 5.3: Vector plot for v/c = 0.7 with N = 500 and UN = 1.
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Figure 5.4: Vector plot for v/c = 0.9 with N = 500 and UN = 1.
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Figure 5.5: Vector plot for v/c = 0.95 with N = 500 and UN = 1.
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Figure 5.6: Vector plot for v/c = 0.99 with N = 500 and UN = 1.
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Figure 5.7: Vector plot for v/c = 0.995 with N = 500 and UN = 1.
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Figure 5.8: Vector plot for v/c = 0.999 with N = 500 and UN = 1.
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Figure 5.9: Vector plot for v/c = 1 with N = 500 and UN = 1.
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Figure 5.10: Vector plot for v/c = 1.01 with N = 500 and UN = 1.
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(b) v/c = 1.01

Figure 5.11: Total energy flux in the y-direction out of 200 columns of atoms around the
crack tip for a number of rows.
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Chapter 6

Conclusion

We have presented the full analytical solution for atomic motions ac-

companying steady state in-plane crack motion in a brittle triangular lattice.

This solution allows rapid numerical evaluation of atomic motion for very large

systems, which is necessary to make comparisons with results from continuum

fracture mechanics.

Eq. (1.35) has been interpreted to mean that cracks cannot propagate

faster than the Rayleigh wave speed. However supersonic solutions do exist in

lattice systems. Subsonic solutions are characterized by small amplitude, high

frequency oscillations in the time dependence of the vertical displacement of

an atom along the crack line. The overall envelope of the displacement agrees

with the continuum result in Eq. (4.2). Supersonic solutions are characterized

by large amplitude, low frequency oscillations, which can be attributed to the

lattice oscillating as a block after the crack has passed. We call this frequency

the supersonic block frequency ωb, and show that its value can be approxi-

mated using linear elasticity. We have also shown that subsonic solutions close

to the Rayleigh wave speed exhibit small amplitude, high frequency and large

amplitude, low frequency oscillations at the same time. This mixing of the

81



character of subsonic and supersonic solutions can be eliminated by increasing

the system size N sufficiently.

There are three natural objections to what we have presented. The first

is that systems 2000 atoms high are computationally challenging, but they are

a far cry from macroscopic systems 1012 atoms high. Thus we have not really

reached the macroscopic limit. The second is that we are drawing general

conclusions about crack behavior, but we have solved only a particular atomic

model with very special and particularly simple interatomic forces. The third

is that since the experiments of Schardin [29] it has been known that cracks

do not reach the Rayleigh wave speed, let alone exceed it, so discussions of

supersonic cracks are not relevant.

In response to the first objection, we have focused on scaling our so-

lutions in such a fashion that the large N behavior becomes apparent. For

example, in Figure 4.7 we assert that in a system with N = 1012 the plot of

vertical displacement versus time for an atom just above the crack tip would

look indistinguishable from 4.7d. This can be seen in Figure 4.8. In Figure 4.5,

we assert that in a system with N = 1012, the period of the large oscillations

would continue to increase in proportion to N , and in order for the oscillations

to remain visible the dissipation would need to decrease accordingly.

In response to the second objection, we invoke the universality of frac-

ture mechanics. Although our atomic force laws are much simpler than any

forces that genuinely would arise from the quantum mechanics of interactions,

they capture the essence of brittle solids, and include all of dynamic linear
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elastic fracture mechanics as a special case in the long-wavelength limit. Thus

we believe that conclusions we draw about the continuum (large N) limit of

our theory should have general validity. The details of what happens on small

scales should be indicative of what would happen in real brittle systems, but

would ultimately depend upon realistic microscopic details. For examples of

what more realistic systems might look like, see for example [15].

In response to the third objection, we note that cracks in brittle isotropic

materials are usually limited by dynamic instabilities to terminal velocities

below the Rayleigh wave speed [9]. However, in some cases the instabilities

are suppressed and supersonic cracks become possible. Rubber provides one

instance [25], and materials with highly anisotropic fracture energy might pro-

vide others. Supersonic cracks are not inevitable just because instabilities have

been suppressed [17]: sufficient energy must be supplied to drive cracks above

the Rayleigh wave speed. But they do become possible.

The calculations presented here are just the first application of this

method. There are some additional questions still pending. Because the stress

intensity factor stops being defined as the crack passes the Rayleigh wave

speed, the conventional continuum view of energy flux stops applying. This

observation provides an unsatisfying answer to the question of why the crack

speed is not limited by energy flux. Once the crack travels faster than the

Rayleigh wave speed, it is clear that it must extract the energy needed for

bond breaking from a local environment of finite size.

We have begun to answer some of these questions by looking at the
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energy flow in our lattice solutions. We constructed an energy flux vector to

make plots of the energy flow over a region including the crack tip. The vector

plots show energy flows around the crack tip that drive oscillations in both the

subsonic and supersonic solutions. An estimate of the total energy flux out of

a rows around the crack line shows that the energy flowing into the crack tip

is positive for both subsonic an supersonic crack speeds.
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Appendix A

Component script

This is the Fortran script we wrote to compute the components of the

in-plane solution solved analytically in Chapter 2, and numerically evaluated in

Chapters 3 and 4. The input parameters are the system sizeN , the dissipations

b and β, spring constants k‖, k⊥, and kI‖, the crack speed ratio v/c and the

row number. The sample resolution n = 2p sufficient to make accurate plots

increases with the crack speed. For subsonic plots with v/c < 1, p = 19. For

supersonic plots with v/c between 1 and 1.05, p ranges from 20 to 23.

program mode1

implicit complex*16 (a-h,o-z)

common/a/n,m,a,b,bk,kp,kr,kpi,v

external qcomp

include "fftw3.f"

real*8 n,m,a,b,bk,kp,kr,kpi,v

real*8 uf,Un,Q0,h,vr,w,kkr,kkp,krmkp

complex*16 ii,i,j,k,l,mm,kdiss

real*8 smin,smid,smax,ans1,ans2,ans,delta,dtest

c number of sample points np=2^p2

c number of plotted points nplot

integer p,p2,np,nplot

parameter(p2=19,np=2**p2,nplot=2**17)
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real*8 wmax,tmax,dt,dw,t0

integer gn,n0

c fftw arrays/plans

complex*16 lnQ(np),uxum(np),uyum(np),lnQt(np),Qm(np)

complex*16 Um(np),ux(np),uy(np),uxt(np),uyt(np)

integer*8 planLNQT,planQM,planUXT,planUYT

c lattice parameters

n=500.d0

m=1.d0

a=1.d0

b=0.0001d0

bk=0.01d0

kp=1.d0

kr=0.d0

kpi=1.d0

Q0=1.d0/(1.d0+2.d0*n)

c rayleigh velocity

vr=sqrt((2.d0/3.d0)*(3.d0-sqrt(3.d0)))*

$ a*sqrt(3.d0*kp/(8.d0*m))

c crack velocity in terms of rayleigh velocity;

c h-th row height=h+0.5, h=0 on crack line

v=0.7d0*vr

h=0.5d0

c triangular lattice factor

gn=mod(int(h-0.5d0),2)

c constants

pi=3.1415926535897931

ii=cmplx(0.d0,1.d0)

sqrt3=sqrt(3.d0)

c fourier transform parameters
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wmax=60.d0*sqrt(2.d0)**(p2-15)

tmax=pi*np/(2.d0*wmax)

dt=(2.d0*tmax)/np

dw=(2.d0*pi)/(np*dt)

c load integration

smin=0.d0

smid=0.2d0

smax=0.95d0

call qromb(qcomp,smin,smid,ans1)

call qromb(qcomp,smid,smax,ans2)

ans=ans1+ans2

delta=exp(ans*2.d0)

write(*,*) "delta=",delta

c boundary condition, Un=1 or uf=1

c Un=1.d0

c uf=Un*sqrt(3.d0*Q0)/(2.d0*delta)

uf=1.d0

Un=2.d0*uf*delta/sqrt(3.d0*Q0)

c calculate ln(Q(w)), uxh(w)/Um, uyh(w)/Um arrays

do p=1,np

w=(p-1-np/2)*2*wmax/np

if(p.eq.(np/2+1)) then

lnQ(p)=log(Q0)

uxum(p)=0.d0

uyum(p)=0.d0

cycle

end if

diss=ii*w*b

w0=1.d0/bk

kdiss=1.d0/(1.d0-w/w0*ii)

eia2=exp(-a*ii*w/v/2.d0)
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eia=eia2**2

eiai=1.d0/eia

eia2i=1.d0/eia2

caw=cos(a*w/v)

caw2=cos(0.5d0*a*w/v)

saw=sin(a*w/v)

saw2=sin(0.5d0*a*w/v)

kkr=0.75d0*kr+0.25d0*kp

kkp=0.25d0*kr+0.75d0*kp

krmkp=kr-1.d0*kp

aa=16.d0*kp*kr*cos(0.5d0*a*w/v)**2+3.d0*(kr-1.d0*kp)**2

bb=cos(0.5d0*a*w/v)*(2.d0*(3.d0*kr**2+

$ 2.d0*kp*kr+3.d0*kp**2)*cos(a*w/v

$ )+4.d0*(kr+kp)*(m*w**2*kdiss+diss-3.d0*(kr+kp)))

cc=((-1.d0*kr-1.d0*kp)*(3.d0-1.d0*

$ cos(a*w/v))+m*w**2*kdiss+diss)**2-

$ 1.d0*(kp-1.d0*kr)**2*(cos(a*w/v)**2+3.d0*sin(0.5d0*a*w/v)**2)

z_p=0.5d0*(sqrt(bb**2-4.d0*aa*cc)-1.d0*bb)/aa

z_m=0.5d0*(-1.d0*sqrt(bb**2-4.d0*aa*cc)-1.d0*bb)/aa

y_p=sqrt(z_p**2-1.d0)

y_m=sqrt(z_m**2-1.d0)

if(real(y_p)*real(z_p).gt.0.d0) then

y_p=1.d0/(z_p+y_p)

else

y_p=1.d0/(z_p-y_p)

end if

if(real(y_m)*real(z_m).gt.0.d0) then

y_m=1.d0/(z_m+y_m)

else

y_m=1.d0/(z_m-y_m)

end if

if(abs(y_p).gt.1.d0) y_p=1.d0/y_p

if(abs(y_m).gt.1.d0) y_m=1.d0/y_m

y_pn=y_p**n

y_mn=y_m**n
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d_p=caw2*(3.d0*kr+kp)*z_p+

$ m*w**2*kdiss-3.d0*(kr+kp)+2.d0*caw*kp+diss

d_m=caw2*(3.d0*kr+kp)*z_m+m*w**2*kdiss-

$ 3.d0*(kr+kp)+2.d0*caw*kp+diss

e_p=0.5d0*ii*(kp-1.d0*kr)*saw2*sqrt3*(y_p-1.d0/y_p)

e_m=0.5d0*ii*(kp-1.d0*kr)*saw2*sqrt3*(y_m-1.d0/y_m)

v1=d_p**2

v2=e_m**2

v3=v1*v2

v4=-2.d0*d_m*d_p*e_m*e_p

v5=d_m**2

v6=e_p**2

v7=v5*v6

v8=-v1*v2

v9=-d_m*d_p*e_m*e_p

v10=y_m**(n+1)

v11=-v5*v6

v12=y_mn**2

v13=y_pn**2

v14=1.d0/((6.d0*d_m*d_p*e_m*e_p*y_m*y_mn+

$ 2.d0*d_m*d_p*e_m*e_p*v10)*y_p*

$ y_pn+((v11+v9)*y_m*v12+(v9+v8)*v10*

$ y_mn+(v7+v4+v3)*y_m)*y_p+((v

$ 7+v9)*y_m*v12+(v9+v3)*v10*y_mn+(v11+v4+v8)*y_m)*y_p*v13)

v15=-eia2*v1*v2

v16=d_m*d_p*eia2*e_m*e_p

v17=y_m**2

v18=y_m**n

v19=d_m*d_p*eia2*e_m*e_p*v12

v20=-eia2*v5*v6

v21=d_m*d_p*eia2*e_m*e_p*v10*y_mn

v22=y_p**2

v23=-d_m*d_p*eia2*e_m*e_p*v10

v24=-d_m*d_p*eia2*e_m*e_p*y_m*y_mn

v25=v5*eia2*v6

v26=v1*eia2*v2
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v27=d_p*eia2*v2*e_p

v28=-d_m*eia2*e_m*v6

v29=-d_p*eia2*e_p*v18*v2*y_mn

v30=-d_p*eia2*e_p*v2

v31=d_m*eia2*e_m*v6

v32=d_p*eia2*v2*e_p*v10*y_mn

v33=d_m*v1*eia2*e_m

v34=-d_p*eia2*e_p*v5

v35=v5*d_p*eia2*e_p*v12

v36=-d_m*eia2*e_m*v1

v37=v5*d_p*eia2*e_p

v38=-d_p*eia2*e_p*v12*v5*y_m

v39=-d_m*d_p*eia2*e_m*e_p

v40=-d_m*d_p*eia2*e_m*e_p*v18*y_mn

v41=-d_m*d_p*eia2*e_m*e_p*v12*y_m

v42=d_m*d_p*eia2*e_m*e_p*v10

v43=d_m*d_p*eia2*e_m*e_p*y_m*y_mn

f=-v14*(((-2.d0*d_m*d_p*eia2*e_m*e_p*v17-

$ 2.d0*d_m*d_p*eia2*e_m

$ *e_p)*y_mn*y_p+v24+v23+(v24+v23)*v22)*

$ y_pn+v13*((-eia2*v1*v

$ 18*v2*y_mn+v19+(v16+v26)*v17)*y_p-eia2*v12*v5*v6*y_m+(v25+v

$ 16)*y_m+v21)+(v19+v1*eia2*v2*v18*y_mn+(v16+v15)*v17

$ )*y_p+(v5*ei

$ a2*v6*y_m*v12+v21+(v20+v16)*y_m)*v22)

g=v14*(((2.d0*d_p*eia2*e_p*v2-

$ 2.d0*d_p*eia2*e_p*v17*v2)*y_mn*y_p+v

$ 22*(-d_m*eia2*e_m*v6*y_m*y_mn-d_m*eia2*e_m*v10*v6)+d_m*

$ eia2*e_m*v6*y_m*y_mn+d_m*eia2*e_m*v6*v10)*

$ y_pn+v13*((d_m*eia2*e

$ _m*v6*v12+v29+(v31+v27)*v17)*y_p-d_m*eia2*e_m*v12*v6*y_m+(v

$ 28+v30)*y_m+v32)+(-d_m*eia2*e_m*v12*v6+v29+(v28+v27)*v17)*y

$ _p+(d_m*eia2*e_m*v6*y_m*v12+v32+(v31+v30)*y_m)*v22)

hh=-v14*(((2.d0*d_p*eia2*e_p*v17*v5-

$ 2.d0*d_p*eia2*e_p*v5)*y_mn

$ *y_p-d_m*eia2*e_m*v1*y_m*y_mn+(d_m*v1*eia2*e_m*y_m*y_mn+d_m
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$ *v1*eia2*e_m*v10)*v22-d_m*eia2*e_m*v1*v10)*y_pn+v13*((-

$ d_m*eia2*e_m*v1*v18*y_mn+v35+(v34+v36)*v17)*y_p+d_m*

$ v1*eia2*e_m

$ *v10*y_mn+(v37+v33)*y_m+v38)+

$ (v35+d_m*v1*eia2*e_m*v18*y_mn+(v34

$ +v33)*v17)*y_p+v22*(-d_m*eia2*e_m*v1*v10*y_mn+(v37+v36)*y_m

$ +v38))

i=v14*(((2.d0*d_m*d_p*eia2*e_m*e_p*v17+

$ 2.d0*d_m*d_p*eia2*e_m*e_p)*

$ y_mn*y_p+v43+v42+(v43+v42)*v22)*y_pn+(-eia2*v12*v5*v6+v40+(

$ v25+v39)*v17)*y_p+v22*(-eia2*v1*v10*v2*y_mn+(v39+v26)*y_m+v

$ 41)+((v5*eia2*v6*v12+v40+(v20+v39)*v17)*

$ y_p+v41+v1*eia2*v2*v10*

$ y_mn+(v39+v15)*y_m)*v13)

j=0.25d0*(4.d0*m*w**2*kdiss+

$ (1.d0-eiai)*hh*krmkp*sqrt3+(8.d0*caw-8.d0)*k

$ p+((4.d0*eiai+4.d0)*f-8.d0)*kkr+4.d0*diss)

k=-0.25d0*((eiai-1.0)*i*krmkp*sqrt3+(-4.d0*eiai-4.d0)*g*kkr)

l=-0.25d0*((eiai-1.d0)*f*krmkp*sqrt3+(-4.d0*eiai-4.d0)*hh*kkp)

mm=0.25d0*(4.0*m*w**2*kdiss+

$ (1.d0-1.d0*eiai)*g*krmkp*sqrt3+(8.d0*caw-8.d0)*k

$ r+((4.d0*eiai+4.d0)*i-8.d0)*kkp+4.d0*diss)

q=-(2.d0*j*mm-2.d0*k*l)/((ii*kpi*l-ii*k*kpi)

$ *sqrt3*saw2+(j*kpi*sqrt3**2-kpi*mm)*caw2

$ +j*kpi*sqrt3**2+(kpi-2.d0*j)*mm+2.d0*k*l)

uxumw=(3.d0*(1.d0+eia2)*k*kpi+

$ sqrt3*kpi*(mm-eia2*mm))/(2.d0*eia2*(k*l-j*mm))

uyumw=-(3.d0*(1.d0+eia2)*j*kpi+

$ sqrt3*kpi*(l-eia2*l))/(2.d0*eia2*(k*l-j*mm))

c system for components above crack line

if(h.gt.1.d0) then

w1=y_m**n

w2=y_p**n

w3=w1**2
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w4=w2**2

w5=y_m**(h-0.5d0)

w6=y_p**(h-0.5d0)

w7=y_m**(n-h+0.5d0)

w8=y_p**(n-h+0.5d0)

w9=w1*w7

w10=w2*w8

w11=y_p**(n-h-0.5d0)

w12=y_m**(n+h-0.5d0)

w13=(-(d_m*e_p*(1.d0+w1)*(-1.d0+w2))+

$ d_p*e_m*(-1.d0+w1)*(1.d0+w2))*

$ (d_p*e_m*(1.d0+w1)*(-1.d0+w2)-d_m*e_p*(-1.d0+w1)*(1.d0+w2))

uxumw=-((uxumw*v5*v6*(-1.d0+w3)*(-w10+w6)+

$ d_p*v2*(d_p*uxumw*(-1.d0+w4)*(w5-w9)+

$ e_p*uyumw*(w10+2.d0*w12*w2-(1.d0+w4)*w5+w6-w3*(w10+w6)-

$ 2.d0*w2*w7+(1.d0+w4)*w9))+

$ d_m*e_m*e_p*(-(e_p*uyumw*

$ (-w10+(-1.d0+w4)*w5+w6+(-1.d0+w4)*w9+

$ (-w10+w6)*y_m**(2.d0*n)-2.d0*w1*w11*(-y_p+y_p**(2.d0*h))))+

$ d_p*uxumw*(w10-2.d0*w12*w2+(1.d0+w4)*w5+w6+w3*(w10+w6)-

$ 2.d0*w2*w7+(1.d0+w4)*w9-2.d0*w1*w11*(y_p+y_p**(2.d0*h)))))/

$ (exp((ii*gn*w)/(2.d0*v))*w13))

uyumw=-((uyumw*v1*v2*(-1.d0+w3)*(-w10+w6)+

$ e_p*v5*(e_p*uyumw*(-1.d0+w4)*(w5-w9)+

$ d_p*uxumw*(w10+2.d0*w12*w2-(1.d0+w4)*w5+w6-w3*(w10+w6)-

$ 2.d0*w2*w7+(1.d0+w4)*w9))+

$ d_m*d_p*e_m*(-(d_p*uxumw*

$ (-w10+(-1.d0+w4)*w5+w6+w3*(-w10+w6)+(-1.d0+w4)*w9-

$ 2.d0*w1*w11*(-y_p+y_p**(2.d0*h))))-

$ e_p*uyumw*(-w10+2.d0*w12*w2-(1.d0+w4)*w5-w6-w3*(w10+w6)+

$ 2.d0*w2*w7-(1.d0+w4)*w9+2.d0*w1*w11*(y_p+y_p**(2.d0*h)))))/

$ (exp((ii*gn*w)/(2.d0*v))*w13))

end if

lnQ(p)=log(Q)
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uxum(p)=uxumw

uyum(p)=uyumw

end do

c inverse FT of ln(Q(w))

do p=1,np

lnQ(p)=lnQ(p)*(-1)**(p-1)

end do

call dfftw_plan_dft_1d_(planLNQT,np,lnQ,lnQt,

& FFTW_FORWARD,FFTW_ESTIMATE)

call dfftw_execute_(planLNQT)

do p=1,np

lnQt(p)=lnQt(p)*dw/(2.d0*pi)*(-1)**(p-1)

end do

c Qm(w) calculation

do p=(np/2+2),np

lnQt(p)=0.d0

end do

do p=1,np

lnQt(p)=lnQt(p)*(-1)**(p-1)

end do

call dfftw_plan_dft_1d_(planQM,np,lnQt,Qm,

& FFTW_BACKWARD,FFTW_ESTIMATE)

call dfftw_execute_(planQM)

do p=1,np

Qm(p)=exp(Qm(p)*dt*(-1)**(p-1))

end do

c W(-i/bk) for Kelvin dissipation

pole=bk*Un*sqrt(Q0)/delta
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c Um(w) calculation

do p=1,np

if(p.eq.(np/2+1)) then

Um(p)=0.d0

cycle

end if

w=-wmax+(p-1)*dw

Um(p)=(-pole-(ii*Un*Q0*Qm(p))/(Qm(np/2+1)*w))/(1.d0-ii*bk*w)

end do

c ux(w), uy(w) arrays

do p=1,np

ux(p)=Um(p)*uxum(p)

uy(p)=Um(p)*uyum(p)

end do

c coefficient of 1/(iw) behavior of uy(w) at w=0

uyw0=(Q0-Un)*(1.d0-(h-0.5d0)/n)

c subtraction of of 1/(iw) behavior

do p=1,np

if(p.eq.(np/2+1)) cycle

w=-wmax+(p-1)*dw

uy(p)=uy(p)-uyw0/(ii*w*(1.d0+ii*w))

end do

c correction at w=0 using quadratic approximation

ux(np/2+1)=(-ux(np/2-1)+3.d0*ux(np/2)+ux(np/2+2))/3.d0

uy(np/2+1)=(-uy(np/2-1)+3.d0*uy(np/2)+uy(np/2+2))/3.d0

c inverse FT of ux(w), uy(w)

do p=1,np

ux(p)=ux(p)*(-1)**(p-1)

uy(p)=uy(p)*(-1)**(p-1)

end do
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call dfftw_plan_dft_1d_(planUXT,np,ux,uxt,

& FFTW_FORWARD,FFTW_ESTIMATE)

call dfftw_execute_(planUXT)

call dfftw_plan_dft_1d_(planUYT,np,uy,uyt,

& FFTW_FORWARD,FFTW_ESTIMATE)

call dfftw_execute_(planUYT)

do p=1,np

uxt(p)=uxt(p)*dw/(2.d0*pi)*(-1)**(p-1)

uyt(p)=uyt(p)*dw/(2.d0*pi)*(-1)**(p-1)

end do

c add back analytical subtraction

do p=1,(np/2+1)

uyt(p)=uyt(p)+Un+uyw0*(1.d0-exp(-tmax+(p-1)*dt))

end do

do p=(np/2+2),np

uyt(p)=uyt(p)+Un

end do

c check that U(0)=uf=1

c t0=a/(2.d0*v)

c n0=floor(t0/dt)+(np/2+1)

c ux0=uxt(n0)+(uxt(n0+1)-uxt(n0))*(t0/dt-floor(t0/dt))

c uy0=uyt(n0)+(uyt(n0+1)-uyt(n0))*(t0/dt-floor(t0/dt))

c u0=-(ux0-uxt(np/2+1))/(2.d0*sqrt3)+(uy0-uyt(np/2+1))/2.d0

c compare delta estimate with direct integration

c dtest=Un*sqrt(3.d0*Q0)/(2.d0*realpart(u0))

c write(*,*) "dtest=",dtest

c write(*,*) "%diff=",100*(delta-dtest)/delta

c print t,ux,uy to a text file

open(unit=10,file="t.txt",action="write")

open(unit=20,file="ux.txt",action="write")
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open(unit=30,file="uy.txt",action="write")

do p=1,np,np/nplot

write(10,*) -tmax+(p-1)*dt

write(20,*) realpart(uxt(p))

write(30,*) realpart(uyt(p))

end do

c boundary condition Un

write(30,*) Un

close(10)

close(20)

close(30)

call dfftw_destroy_plan(planLNQT)

call dfftw_destroy_plan(planQM)

call dfftw_destroy_plan(planUXT)

call dfftw_destroy_plan(planUYT)

end

c qcomp from kelvin_integrate

real*8 function qcomp(s)

implicit complex*16 (a-h,o-z)

common/a/n,m,a,b,bk,kp,kr,kpi,v

real*8 n,m,a,b,bk,kp,kr,kpi,v

real*8 s,w,kkr,kkp,krmkp,dw_ds,wfac

complex*16 ii,i,j,k,l,mm,kdiss,logq,ln_q_diff

pi=3.1415926535897931

ii=cmplx(0.d0,1.d0)

sqrt3=sqrt(3.d0)

if(s.eq.0) s=1.d-05
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wfac=10.d0

w=wfac*s/dsqrt(1.d0-s*s)

dw_ds=wfac/dsqrt(1.d0-s*s)/(1.d0-s*s)

diss=ii*w*b

w0=1.d0/bk

kdiss=1.d0/(1.d0-w/w0*ii)

eia2=exp(-a*ii*w/v/2.d0)

eia=eia2**2

eiai=1.d0/eia

eia2i=1.d0/eia2

caw=cos(a*w/v)

caw2=cos(0.5d0*a*w/v)

saw=sin(a*w/v)

saw2=sin(0.5d0*a*w/v)

kkr=0.75d0*kr+0.25d0*kp

kkp=0.25d0*kr+0.75d0*kp

krmkp=kr-1.d0*kp

aa=16.d0*kp*kr*cos(0.5d0*a*w/v)**2+3.d0*(kr-1.d0*kp)**2

bb=cos(0.5d0*a*w/v)*(2.d0*(3.d0*kr**2+

$ 2.d0*kp*kr+3.d0*kp**2)*cos(a*w/v

$ )+4.d0*(kr+kp)*(m*w**2*kdiss+diss-3.d0*(kr+kp)))

cc=((-1.d0*kr-1.d0*kp)*(3.d0-1.d0*

$ cos(a*w/v))+m*w**2*kdiss+diss)**2-

$ 1.d0*(kp-1.d0*kr)**2*(cos(a*w/v)**2+3.d0*sin(0.5d0*a*w/v)**2)

z_p=0.5d0*(sqrt(bb**2-4.d0*aa*cc)-1.d0*bb)/aa

z_m=0.5d0*(-1.d0*sqrt(bb**2-4.d0*aa*cc)-1.d0*bb)/aa

y_p=sqrt(z_p**2-1.d0)

y_m=sqrt(z_m**2-1.d0)

if(real(y_p)*real(z_p).gt.0.d0) then

y_p=1.d0/(z_p+y_p)

else

y_p=1.d0/(z_p-y_p)

end if

if(real(y_m)*real(z_m).gt.0.d0) then

y_m=1.d0/(z_m+y_m)

else
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y_m=1.d0/(z_m-y_m)

end if

if(abs(y_p).gt.1.d0) y_p=1.d0/y_p

if(abs(y_m).gt.1.d0) y_m=1.d0/y_m

y_pn=y_p**n

y_mn=y_m**n

d_p=caw2*(3.d0*kr+kp)*z_p+

$ m*w**2*kdiss-3.d0*(kr+kp)+2.d0*caw*kp+diss

d_m=caw2*(3.d0*kr+kp)*z_m+m*w**2*kdiss-

$ 3.d0*(kr+kp)+2.d0*caw*kp+diss

e_p=0.5d0*ii*(kp-1.d0*kr)*saw2*sqrt3*(y_p-1.d0/y_p)

e_m=0.5d0*ii*(kp-1.d0*kr)*saw2*sqrt3*(y_m-1.d0/y_m)

v1=d_p**2

v2=e_m**2

v3=v1*v2

v4=-2.d0*d_m*d_p*e_m*e_p

v5=d_m**2

v6=e_p**2

v7=v5*v6

v8=-v1*v2

v9=-d_m*d_p*e_m*e_p

v10=y_m**(n+1)

v11=-v5*v6

v12=y_mn**2

v13=y_pn**2

v14=1.d0/((6.d0*d_m*d_p*e_m*e_p*y_m*y_mn+

$ 2.d0*d_m*d_p*e_m*e_p*v10)*y_p*

$ y_pn+((v11+v9)*y_m*v12+(v9+v8)*v10*

$ y_mn+(v7+v4+v3)*y_m)*y_p+((v

$ 7+v9)*y_m*v12+(v9+v3)*v10*y_mn+(v11+v4+v8)*y_m)*y_p*v13)

v15=-eia2*v1*v2

v16=d_m*d_p*eia2*e_m*e_p

v17=y_m**2

v18=y_m**n
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v19=d_m*d_p*eia2*e_m*e_p*v12

v20=-eia2*v5*v6

v21=d_m*d_p*eia2*e_m*e_p*v10*y_mn

v22=y_p**2

v23=-d_m*d_p*eia2*e_m*e_p*v10

v24=-d_m*d_p*eia2*e_m*e_p*y_m*y_mn

v25=v5*eia2*v6

v26=v1*eia2*v2

v27=d_p*eia2*v2*e_p

v28=-d_m*eia2*e_m*v6

v29=-d_p*eia2*e_p*v18*v2*y_mn

v30=-d_p*eia2*e_p*v2

v31=d_m*eia2*e_m*v6

v32=d_p*eia2*v2*e_p*v10*y_mn

v33=d_m*v1*eia2*e_m

v34=-d_p*eia2*e_p*v5

v35=v5*d_p*eia2*e_p*v12

v36=-d_m*eia2*e_m*v1

v37=v5*d_p*eia2*e_p

v38=-d_p*eia2*e_p*v12*v5*y_m

v39=-d_m*d_p*eia2*e_m*e_p

v40=-d_m*d_p*eia2*e_m*e_p*v18*y_mn

v41=-d_m*d_p*eia2*e_m*e_p*v12*y_m

v42=d_m*d_p*eia2*e_m*e_p*v10

v43=d_m*d_p*eia2*e_m*e_p*y_m*y_mn

f=-v14*(((-2.d0*d_m*d_p*eia2*e_m*e_p*v17-

$ 2.d0*d_m*d_p*eia2*e_m

$ *e_p)*y_mn*y_p+v24+v23+(v24+v23)*v22)*

$ y_pn+v13*((-eia2*v1*v

$ 18*v2*y_mn+v19+(v16+v26)*v17)*y_p-eia2*v12*v5*v6*y_m+(v25+v

$ 16)*y_m+v21)+(v19+v1*eia2*v2*v18*y_mn+(v16+v15)*v17

$ )*y_p+(v5*ei

$ a2*v6*y_m*v12+v21+(v20+v16)*y_m)*v22)

g=v14*(((2.d0*d_p*eia2*e_p*v2-

$ 2.d0*d_p*eia2*e_p*v17*v2)*y_mn*y_p+v

$ 22*(-d_m*eia2*e_m*v6*y_m*y_mn-d_m*eia2*e_m*v10*v6)+d_m*
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$ eia2*e_m*v6*y_m*y_mn+d_m*eia2*e_m*v6*v10)*

$ y_pn+v13*((d_m*eia2*e

$ _m*v6*v12+v29+(v31+v27)*v17)*y_p-d_m*eia2*e_m*v12*v6*y_m+(v

$ 28+v30)*y_m+v32)+(-d_m*eia2*e_m*v12*v6+v29+(v28+v27)*v17)*y

$ _p+(d_m*eia2*e_m*v6*y_m*v12+v32+(v31+v30)*y_m)*v22)

hh=-v14*(((2.d0*d_p*eia2*e_p*v17*v5-

$ 2.d0*d_p*eia2*e_p*v5)*y_mn

$ *y_p-d_m*eia2*e_m*v1*y_m*y_mn+(d_m*v1*eia2*e_m*y_m*y_mn+d_m

$ *v1*eia2*e_m*v10)*v22-d_m*eia2*e_m*v1*v10)*y_pn+v13*((-

$ d_m*eia2*e_m*v1*v18*y_mn+v35+(v34+v36)*v17)*y_p+d_m*

$ v1*eia2*e_m

$ *v10*y_mn+(v37+v33)*y_m+v38)+

$ (v35+d_m*v1*eia2*e_m*v18*y_mn+(v34

$ +v33)*v17)*y_p+v22*(-d_m*eia2*e_m*v1*v10*y_mn+(v37+v36)*y_m

$ +v38))

i=v14*(((2.d0*d_m*d_p*eia2*e_m*e_p*v17+

$ 2.d0*d_m*d_p*eia2*e_m*e_p)*

$ y_mn*y_p+v43+v42+(v43+v42)*v22)*y_pn+(-eia2*v12*v5*v6+v40+(

$ v25+v39)*v17)*y_p+v22*(-eia2*v1*v10*v2*y_mn+(v39+v26)*y_m+v

$ 41)+((v5*eia2*v6*v12+v40+(v20+v39)*v17)*

$ y_p+v41+v1*eia2*v2*v10*

$ y_mn+(v39+v15)*y_m)*v13)

j=0.25d0*(4.d0*m*w**2*kdiss+

$ (1.d0-eiai)*hh*krmkp*sqrt3+(8.d0*caw-8.d0)*k

$ p+((4.d0*eiai+4.d0)*f-8.d0)*kkr+4.d0*diss)

k=-0.25d0*((eiai-1.0)*i*krmkp*sqrt3+(-4.d0*eiai-4.d0)*g*kkr)

l=-0.25d0*((eiai-1.d0)*f*krmkp*sqrt3+(-4.d0*eiai-4.d0)*hh*kkp)

mm=0.25d0*(4.0*m*w**2*kdiss+

$ (1.d0-1.d0*eiai)*g*krmkp*sqrt3+(8.d0*caw-8.d0)*k

$ r+((4.d0*eiai+4.d0)*i-8.d0)*kkp+4.d0*diss)

q=-(2.d0*j*mm-2.d0*k*l)/((ii*kpi*l-ii*k*kpi)

$ *sqrt3*saw2+(j*kpi*sqrt3**2-kpi*mm)*caw2

$ +j*kpi*sqrt3**2+(kpi-2.d0*j)*mm+2.d0*k*l)

logq=zlog(q)
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ln_q_diff=logq-conjg(logq)

ctmp=-dw_ds/(2.0*pi)*

$ (

$ ln_q_diff*

$ (

$ 1.d0/(2.d0*ii*w)+ii*w/(2.d0*(w0**2+w**2))

$ )

$ +w0*zlog(q*conjg(q))/(2.d0*(w0**2+w**2))

$ )

qcomp=realpart(ctmp)

return

end
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Appendix B

Energy flux script

This is the Fortran script we wrote to compute the lattice energy flux

vector from Chapter 5. It takes the components at each atom in a region of the

lattice and returns the energy flux vectors averaged over a period. The input

parameters are the number of rows and columns in the region, and the number

of time points to be averaged. Another version of the component script from

Appendix A is used to find the components at each atom in the region.

program energy

implicit real*8 (a-z)

integer i,j,r,c,t,nrow,ncol,nt,col,natom,atom,nl

parameter(nrow=20,ncol=100,nt=20,col=2*ncol+1,

& natom=(nrow+1)*col*nt,atom=2*nrow*(col-2)*nt,

& nl=2*nrow*(col-2))

real*8 above(natom,4),below(natom,4)

real*8 atoms(atom,4),latt(nl,4),olat(nl,4)

real*8 len(nl),loglen(nl)

c read coordinates, velocities

open(unit=10,file="above.txt",action="read")

open(unit=20,file="below.txt",action="read")

do i=1,natom

read(10,*) above(i,1),above(i,2),above(i,3),above(i,4)
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read(20,*) below(i,1),below(i,2),below(i,3),below(i,4)

end do

close(10)

close(20)

c lattice constants

sqrt3=sqrt(3.d0)

a=1.d0

a2=0.5d0*a

ah=0.5d0*sqrt3*a

kp=1.d0

c atom array index

j=1

c six direction unit vectors (parallel only)

e1x=-0.5d0

e1y=sqrt3/2.d0

e2x=0.5d0

e2y=sqrt3/2.d0

e3x=-0.5d0

e3y=-sqrt3/2.d0

e4x=0.5d0

e4y=-sqrt3/2.d0

e5x=-1.d0

e5y=0.d0

e6x=1.d0

e6y=0.d0

c loop over crack line n=1/2

do c=nt+1,2*ncol*nt

c displacements along all six directions

d1x=above(c+col*nt,1)-above(c,1)

d1y=above(c+col*nt,2)-above(c,2)

d2x=above(c+(col+1)*nt,1)-above(c,1)

d2y=above(c+(col+1)*nt,2)-above(c,2)
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d3x=below(c,1)-above(c,1)

d3y=below(c,2)-above(c,2)

d4x=below(c+1*nt,1)-above(c,1)

d4y=below(c+1*nt,2)-above(c,2)

d5x=above(c-1*nt,1)-above(c,1)

d5y=above(c-1*nt,2)-above(c,2)

d6x=above(c+1*nt,1)-above(c,1)

d6y=above(c+1*nt,2)-above(c,2)

c set broken bond displacments to 0

if(c.le.ncol*nt) then

d3x=0.d0

d3y=0.d0

d4x=0.d0

d4y=0.d0

end if

c displacement dot products dj.ej

c force along each direction

d1e1=d1x*e1x+d1y*e1y

f1x=kp*e1x*d1e1

f1y=kp*e1y*d1e1

d2e2=d2x*e2x+d2y*e2y

f2x=kp*e2x*d2e2

f2y=kp*e2y*d2e2

d3e3=d3x*e3x+d3y*e3y

f3x=kp*e3x*d3e3

f3y=kp*e3y*d3e3

d4e4=d4x*e4x+d4y*e4y

f4x=kp*e4x*d4e4

f4y=kp*e4y*d4e4

d5e5=d5x*e5x+d5y*e5y

f5x=kp*e5x*d5e5

f5y=kp*e5y*d5e5

d6e6=d6x*e6x+d6y*e6y

f6x=kp*e6x*d6e6

f6y=kp*e6y*d6e6

c velocity components

vx=above(c,3)

105



vy=above(c,4)

c dot products fj.v

c energy flux components in each direction

f1v=f1x*vx+f1y*vy

p1x=e1x*f1v

p1y=e1y*f1v

f2v=f2x*vx+f2y*vy

p2x=e2x*f2v

p2y=e2y*f2v

f3v=f3x*vx+f3y*vy

p3x=e3x*f3v

p3y=e3y*f3v

f4v=f4x*vx+f4y*vy

p4x=e4x*f4v

p4y=e4y*f4v

f5v=f5x*vx+f5y*vy

p5x=e5x*f5v

p5y=e5y*f5v

f6v=f6x*vx+f6y*vy

p6x=e6x*f6v

p6y=e6y*f6v

c total energy flux

px=p1x+p2x+p3x+p4x+p5x+p6x

py=p1y+p2y+p3y+p4y+p5y+p6y

c coordinates of current atom

x=(ceiling(1.d0*c/nt)-ncol-1)*a+above(c,1)

y=above(c,2)

c fill atoms array with coordinates, flux vector components

atoms(j,1)=x

atoms(j,2)=y

atoms(j,3)=px

atoms(j,4)=py

j=j+1

end do

c loop over crack line n=-1/2

do c=nt+1,2*ncol*nt
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c displacements along all six directions

d1x=above(c-1*nt,1)-below(c,1)

d1y=above(c-1*nt,2)-below(c,2)

d2x=above(c,1)-below(c,1)

d2y=above(c,2)-below(c,2)

d3x=below(c+(col-1)*nt,1)-below(c,1)

d3y=below(c+(col-1)*nt,2)-below(c,2)

d4x=below(c+col*nt,1)-below(c,1)

d4y=below(c+col*nt,2)-below(c,2)

d5x=below(c-1*nt,1)-below(c,1)

d5y=below(c-1*nt,2)-below(c,2)

d6x=below(c+1*nt,1)-below(c,1)

d6y=below(c+1*nt,2)-below(c,2)

c set broken bond displacments to 0

if(c.le.ncol*nt) then

d1x=0.d0

d1y=0.d0

d2x=0.d0

d2y=0.d0

end if

c displacement dot products dj.ej

c force along each direction

d1e1=d1x*e1x+d1y*e1y

f1x=kp*e1x*d1e1

f1y=kp*e1y*d1e1

d2e2=d2x*e2x+d2y*e2y

f2x=kp*e2x*d2e2

f2y=kp*e2y*d2e2

d3e3=d3x*e3x+d3y*e3y

f3x=kp*e3x*d3e3

f3y=kp*e3y*d3e3

d4e4=d4x*e4x+d4y*e4y

f4x=kp*e4x*d4e4

f4y=kp*e4y*d4e4

d5e5=d5x*e5x+d5y*e5y

f5x=kp*e5x*d5e5

f5y=kp*e5y*d5e5
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d6e6=d6x*e6x+d6y*e6y

f6x=kp*e6x*d6e6

f6y=kp*e6y*d6e6

c velocity components

vx=below(c,3)

vy=below(c,4)

c dot products fj.v

c energy flux components in each direction

f1v=f1x*vx+f1y*vy

p1x=e1x*f1v

p1y=e1y*f1v

f2v=f2x*vx+f2y*vy

p2x=e2x*f2v

p2y=e2y*f2v

f3v=f3x*vx+f3y*vy

p3x=e3x*f3v

p3y=e3y*f3v

f4v=f4x*vx+f4y*vy

p4x=e4x*f4v

p4y=e4y*f4v

f5v=f5x*vx+f5y*vy

p5x=e5x*f5v

p5y=e5y*f5v

f6v=f6x*vx+f6y*vy

p6x=e6x*f6v

p6y=e6y*f6v

c total energy flux

px=p1x+p2x+p3x+p4x+p5x+p6x

py=p1y+p2y+p3y+p4y+p5y+p6y

c coordinates of current atom

x=(ceiling(1.d0*c/nt)-ncol-1)*a-a2+below(c,1)

y=-ah+below(c,2)

c fill atoms array with coordinates, flux vector components

atoms(j,1)=x

atoms(j,2)=y

atoms(j,3)=px

atoms(j,4)=py
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j=j+1

end do

c loops over atom rows above crack line

do r=1,nrow-1

h=0.5d0+r

gn=mod(int(h-0.5d0),2)

c loop over columns

do c=(1+r*col)*nt+1,(2*ncol+r*col)*nt

c displacements along all six directions

d1x=above(c+(col-gn)*nt,1)-above(c,1)

d1y=above(c+(col-gn)*nt,2)-above(c,2)

d2x=above(c+(col-gn+1)*nt,1)-above(c,1)

d2y=above(c+(col-gn+1)*nt,2)-above(c,2)

d3x=above(c-(col+gn)*nt,1)-above(c,1)

d3y=above(c-(col+gn)*nt,2)-above(c,2)

d4x=above(c-(col+gn-1)*nt,1)-above(c,1)

d4y=above(c-(col+gn-1)*nt,2)-above(c,2)

d5x=above(c-1*nt,1)-above(c,1)

d5y=above(c-1*nt,2)-above(c,2)

d6x=above(c+1*nt,1)-above(c,1)

d6y=above(c+1*nt,2)-above(c,2)

c displacement dot products dj.ej

c force along each direction

d1e1=d1x*e1x+d1y*e1y

f1x=kp*e1x*d1e1

f1y=kp*e1y*d1e1

d2e2=d2x*e2x+d2y*e2y

f2x=kp*e2x*d2e2

f2y=kp*e2y*d2e2

d3e3=d3x*e3x+d3y*e3y

f3x=kp*e3x*d3e3

f3y=kp*e3y*d3e3

d4e4=d4x*e4x+d4y*e4y

f4x=kp*e4x*d4e4

f4y=kp*e4y*d4e4

d5e5=d5x*e5x+d5y*e5y
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f5x=kp*e5x*d5e5

f5y=kp*e5y*d5e5

d6e6=d6x*e6x+d6y*e6y

f6x=kp*e6x*d6e6

f6y=kp*e6y*d6e6

c velocity components

vx=above(c,3)

vy=above(c,4)

c dot products fj.v

c energy flux components in each direction

f1v=f1x*vx+f1y*vy

p1x=e1x*f1v

p1y=e1y*f1v

f2v=f2x*vx+f2y*vy

p2x=e2x*f2v

p2y=e2y*f2v

f3v=f3x*vx+f3y*vy

p3x=e3x*f3v

p3y=e3y*f3v

f4v=f4x*vx+f4y*vy

p4x=e4x*f4v

p4y=e4y*f4v

f5v=f5x*vx+f5y*vy

p5x=e5x*f5v

p5y=e5y*f5v

f6v=f6x*vx+f6y*vy

p6x=e6x*f6v

p6y=e6y*f6v

c total energy flux

px=p1x+p2x+p3x+p4x+p5x+p6x

py=p1y+p2y+p3y+p4y+p5y+p6y

c coordinates of current atom

x=(ceiling(1.d0*c/nt)-ncol-1-r*col)*a-gn*a2+above(c,1)

y=r*ah+above(c,2)

c fill atoms array with coordinates, flux vector components

atoms(j,1)=x

atoms(j,2)=y
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atoms(j,3)=px

atoms(j,4)=py

j=j+1

end do

end do

c loops over atom rows below crack line

do r=1,nrow-1

h=0.5d0+r

gnn=mod(int(h+0.5d0),2)

c loop over columns

do c=(1+r*col)*nt+1,(2*ncol+r*col)*nt

c displacements along all six directions

d1x=below(c-(col+gnn)*nt,1)-below(c,1)

d1y=below(c-(col+gnn)*nt,2)-below(c,2)

d2x=below(c-(col+gnn-1)*nt,1)-below(c,1)

d2y=below(c-(col+gnn-1)*nt,2)-below(c,2)

d3x=below(c+(col-gnn)*nt,1)-below(c,1)

d3y=below(c+(col-gnn)*nt,2)-below(c,2)

d4x=below(c+(col-gnn+1)*nt,1)-below(c,1)

d4y=below(c+(col-gnn+1)*nt,2)-below(c,2)

d5x=below(c-1*nt,1)-below(c,1)

d5y=below(c-1*nt,2)-below(c,2)

d6x=below(c+1*nt,1)-below(c,1)

d6y=below(c+1*nt,2)-below(c,2)

c displacement dot products dj.ej

c force along each direction

d1e1=d1x*e1x+d1y*e1y

f1x=kp*e1x*d1e1

f1y=kp*e1y*d1e1

d2e2=d2x*e2x+d2y*e2y

f2x=kp*e2x*d2e2

f2y=kp*e2y*d2e2

d3e3=d3x*e3x+d3y*e3y

f3x=kp*e3x*d3e3

f3y=kp*e3y*d3e3

d4e4=d4x*e4x+d4y*e4y
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f4x=kp*e4x*d4e4

f4y=kp*e4y*d4e4

d5e5=d5x*e5x+d5y*e5y

f5x=kp*e5x*d5e5

f5y=kp*e5y*d5e5

d6e6=d6x*e6x+d6y*e6y

f6x=kp*e6x*d6e6

f6y=kp*e6y*d6e6

c velocity components

vx=below(c,3)

vy=below(c,4)

c dot products fj.v

c energy flux components in each direction

f1v=f1x*vx+f1y*vy

p1x=e1x*f1v

p1y=e1y*f1v

f2v=f2x*vx+f2y*vy

p2x=e2x*f2v

p2y=e2y*f2v

f3v=f3x*vx+f3y*vy

p3x=e3x*f3v

p3y=e3y*f3v

f4v=f4x*vx+f4y*vy

p4x=e4x*f4v

p4y=e4y*f4v

f5v=f5x*vx+f5y*vy

p5x=e5x*f5v

p5y=e5y*f5v

f6v=f6x*vx+f6y*vy

p6x=e6x*f6v

p6y=e6y*f6v

c total energy flux

px=p1x+p2x+p3x+p4x+p5x+p6x

py=p1y+p2y+p3y+p4y+p5y+p6y

c coordinates of current atom

x=(ceiling(1.d0*c/nt)-ncol-1-r*col)*a-gnn*a2+below(c,1)

y=-(r+1)*ah+below(c,2)
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c fill atoms array with coordinates, flux vector components

atoms(j,1)=x

atoms(j,2)=y

atoms(j,3)=px

atoms(j,4)=py

j=j+1

end do

end do

c initialize latt, olat arrays

do j=1,nl

latt(j,1)=0.d0

latt(j,2)=0.d0

latt(j,3)=0.d0

latt(j,4)=0.d0

olat(j,1)=0.d0

olat(j,2)=0.d0

olat(j,3)=0.d0

olat(j,4)=0.d0

end do

c fill latt array with time averages

do j=1,nl

do t=1,nt

latt(j,1)=latt(j,1)+atoms(j*nt-(nt-t),1)/nt

latt(j,2)=latt(j,2)+atoms(j*nt-(nt-t),2)/nt

latt(j,3)=latt(j,3)+atoms(j*nt-(nt-t),3)/nt

latt(j,4)=latt(j,4)+atoms(j*nt-(nt-t),4)/nt

end do

end do

c fill len array with flux vector magnitudes

do j=1,nl

len(j)=sqrt(latt(j,3)**2+latt(j,4)**2)

end do

c fill loglen array

113



do j=1,nl

loglen(j)=log10(len(j))

end do

c minimum, maximum log magnitudes

minlen=minval(loglen)

maxlen=maxval(loglen)

c scale log magnitudes between [0,1]

do j=1,nl

loglen(j)=(loglen(j)-minlen)/(maxlen-minlen)

end do

c scale flux vector magnitudes

do j=1,nl

latt(j,3)=latt(j,3)*loglen(j)/len(j)

latt(j,4)=latt(j,4)*loglen(j)/len(j)

end do

c reorder latt array rows for output

c from 1/2,-1/2,3/2,...,N+1/2,-3/2,...,-N-1/2

c to N+1/2,...,3/2,1/2,-1/2,-3/2,...,-N-1/2

do c=1,col-2

c n=1/2 row

olat(c+(nrow-1)*(col-2),1)=latt(c,1)

olat(c+(nrow-1)*(col-2),2)=latt(c,2)

olat(c+(nrow-1)*(col-2),3)=latt(c,3)

olat(c+(nrow-1)*(col-2),4)=latt(c,4)

c n=-1/2 row

olat(c+nrow*(col-2),1)=latt(c+col-2,1)

olat(c+nrow*(col-2),2)=latt(c+col-2,2)

olat(c+nrow*(col-2),3)=latt(c+col-2,3)

olat(c+nrow*(col-2),4)=latt(c+col-2,4)

c n>1/2 and n<-1/2 rows

do r=1,nrow-1

c n>1/2

olat(c+(r-1)*(col-2),1)=latt(c+(nrow+1-r)*(col-2),1)
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olat(c+(r-1)*(col-2),2)=latt(c+(nrow+1-r)*(col-2),2)

olat(c+(r-1)*(col-2),3)=latt(c+(nrow+1-r)*(col-2),3)

olat(c+(r-1)*(col-2),4)=latt(c+(nrow+1-r)*(col-2),4)

c n<-1/2

olat(c+(nrow+r)*(col-2),1)=latt(c+(nrow+r)*(col-2),1)

olat(c+(nrow+r)*(col-2),2)=latt(c+(nrow+r)*(col-2),2)

olat(c+(nrow+r)*(col-2),3)=latt(c+(nrow+r)*(col-2),3)

olat(c+(nrow+r)*(col-2),4)=latt(c+(nrow+r)*(col-2),4)

end do

end do

c output file for energy flux components

open(unit=30,file="flux.txt",action="write")

c write atom coordinates, flux vector magnitudes

do r=1,2*nrow

c do c=1,col-2-mod(r,5),5

c j=mod(r,5)+c+(r-1)*(col-2)

do c=1,col-2

j=c+(r-1)*(col-2)

write(30,*) olat(j,1),olat(j,2),olat(j,3),olat(j,4)

end do

end do

close(30)

end
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Appendix C

Plotting scripts

C.1 Component plots

The Mathematica script used to make the plots of the horizontal and

vertical components from Chapters 3 and 4 is given below.

(** Import t, ux, uy lists **)

SetDirectory[];

SetDirectory["Desktop/mode1"];

t = Import["t.txt", "List"];

(*ux=Import["ux.txt","List"];*)

uy = Import["uy.txt", "List"];

Np = Length[t];

Un = uy[[Np + 1]];

(*uxt=Table[{t[[i]],ux[[i]]},{i,1,Np}];*)

uyt = Table[{t[[i]], uy[[i]]}, {i, 1, Np}];

(* plotting options *)

width = 500;

pad = {{65, 10}, {60, 10}};

plot = Directive[Black, Thickness[0.004]];

frame = Directive[Black, Thickness[0.002]];

line = Directive[Black, Thickness[0.003], Dashed];
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(** ux(t) plot **)

(*ListPlot[uxt,Joined->True,PlotRange->{{-2250,2250},{-20,5}

},Frame->True,Axes->False,LabelStyle->(FontFamily

->"CMU Serif"),BaseStyle->{FontSize->20},PlotStyle

->plot,FrameStyle->frame,ImageSize->width,ImagePadding

->pad,FrameLabel->{"t","Subsuperscript[u, 1/2, x](t)"}]*)

(** uy(t) plot **)

tmin = -150;

tmax = 350;

umin = -15;

umax = 65;

ListPlot[uyt, Joined -> True,

PlotRange -> {{tmin, tmax}, {umin, umax}}, Frame -> True,

Axes -> False, LabelStyle -> (FontFamily -> "CMU Serif"),

BaseStyle -> {FontSize -> 20}, PlotStyle -> plot,

FrameStyle -> frame, ImageSize -> width, ImagePadding -> pad,

FrameLabel -> {"t", "uy1/2(t)"},

Epilog -> {line, Line[{{tmin, Un}, {tmax, Un}}]}]

C.2 Vector plots

The Mathematica script used to make the vector plots of the lattice

energy flux vector from Chapter 5 is given below.

(** Import atom coordinates, energy flux vectors from "flux.txt" **)

SetDirectory[];

SetDirectory["Desktop/energy"];

(* vector plot lists *)
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flux = Import["flux.txt", "Table"];

n = Length[flux];

vec = Table[{{flux[[i]][[1]], flux[[i]][[2]]}, {flux[[i]][[3]],

flux[[i]][[4]]}}, {i, 1, n}];

dots = Table[{flux[[i]][[1]], flux[[i]][[2]]}, {i, 1, n}];

(*mag=Table[{flux[[i]][[1]],flux[[i]][[2]],Sqrt[flux[[i]][[3]]^2+flux[\

[i]][[4]]^2]},{i,1,n}];*)

x = 25;

y = 10;

vec = ListVectorPlot[vec, VectorPoints -> All,

VectorScale -> {0.006, 6, None},

VectorColorFunction -> "Rainbow"];

dots = ListPlot[dots, PlotStyle -> Black];

(*mag=ListDensityPlot[mag,ColorFunction->"Rainbow"];*)

Show[vec, dots, PlotRange -> {{-x, x}, {-y, y}}, AspectRatio -> 1/2,

ImageSize -> Large, LabelStyle -> (FontFamily -> "CMU Serif"),

BaseStyle -> {FontSize -> 15}, FrameStyle -> Black]
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