
 

 

 

 

 

 

 

 

 

Copyright 

by 

Lauren Patricia Redmond 

2016 

 

 



The Thesis Committee for Lauren Patricia Redmond 

Certifies that this is the approved version of the following thesis: 

 

 

Lithofacies, Depositional Systems, and Depositional Model of the 

Mississippian Barnett Formation in the Southern Fort Worth Basin 

 

 

 

 

 

 

 

 

APPROVED BY 

SUPERVISING COMMITTEE: 

 

 

 

Robert G. Loucks 

Harold D. Rowe 

Charles Kerans 

William Fisher 

 

Supervisor: 

 

 

Co-Supervisor: 



Lithofacies, Depositional Systems, and Depositional Model of the 

Mississippian Barnett Formation in the Southern Fort Worth Basin 

 

 

by 

Lauren Patricia Redmond, B.S.; B.A. 

 

 

Thesis 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Science in Geological Sciences 

 

 

The University of Texas at Austin 

August, 2016 

  



Dedication 

 

To my parents, sister, family, and friends. Thank you all for your support and love. 

 

 



 v 

Acknowledgements 

 

I would like to thank Dr. Robert Loucks, my supervisor, and Dr. Harold Rowe, 

my co-supervisor, for their knowledge, guidance, and support throughout this project. I 

would also like to thank Dr. Stephen Ruppel for helpful comments on this project and the 

other members of my committee, Dr. Charles Kearns and Dr. William Fisher, for edits 

that improved this work. Thank you to my fellow graduate students, especially my 

officemate Ningjie Hu, for support and friendship during our time together in graduate 

school. Thank you to all other faculty and staff members at the Jackson School of 

Geosciences and the Bureau of Economic Geology who helped to make this research 

move forward. Thank you to the staff of the Core Repository Center for all your 

assistance.  

This work was supported by the State of Texas Advanced Oil and Gas Resource 

Recovery program (STARR), led by William A. Ambrose (STARR-30), at the Bureau of 

Economic Geology, I very much appreciate being a part of this research consortium; and 

by Statoil through the University of Texas at Austin Statoil Fellows program. This work 

also received financial support from the Jackson School of Geosciences at the University 

of Texas at Austin. 

 

 

 



 vi 

Abstract 

 

Lithofacies, Depositional Systems, and Depositional Model of the 

Mississippian Barnett Formation in the Southern Fort Worth Basin 

 

Lauren Patricia Redmond, M.S. Geo. Sci. 

The University of Texas at Austin, 2016 

 

Supervisor:  Robert G. Loucks 

Co-Supervisor: Harold D. Rowe 

 

The Barnett Formation in the Llano Uplift region of the southern Fort Worth 

Basin of north-central Texas is an Osagean-Chesterian age siliciclastic mudrock whose 

deposition was influenced by the structurally stable Llano Uplift, topographic 

variabilities, and a long-term, second-order sea-level rise. Pervious work has mostly 

focused on the producing northern portion of the basin. The present study uses a group of 

29 cores to: (1) characterize the Barnett lithofacies, (2) define the depositional setting of 

each lithofacies and develop a coherent depositional model, (3) identify stacking patterns 

and correlative surfaces, and (4) establish a viable sequence stratigraphic framework for 

the succession.  

On the basis of core data, the Barnett strata are interpreted to have been deposited 

in a basinal setting, below storm-weather wave-base, under predominantly anoxic bottom 

waters. The analysis of core and thin sections revealed four dominant lithofacies: (1) 

laminated siliceous mudstone, (2) laminated calcareous siliceous mudstone, (3) skeletal 
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packstone, and (4) phosphatic packstone and grainstone. Facies stacking patterns were 

correlated using phosphatic packstone facies as regional marker beds. These beds 

coincide with changes in clay-mineral abundances, revealed by chemostratigraphic data, 

and their occurrences were used to subdivide the Barnett strata into lower, middle, and 

upper units.  

The lower Barnett is characterized by cyclic sedimentation of extrabasinal clays 

and has the greatest thickness variability related to accumulation of the calcareous 

siliceous mudstone facies in graben structures. The middle Barnett is characterized by an 

increase in extrabasinal clay abundance compared to the lower Barnett, and the upper 

Barnett is characterized by a decrease in the extrabasinal clay abundance compared to the 

lower and middle Barnett. The phosphatic packstone facies is sourced from the outer 

shelf/upper slope of the adjacent Chappel Shelf and is interpreted to represent cycle tops 

within the aggradational stacking pattern that characterized sediment accumulation style 

during the second-order sea-level rise that occurred throughout Barnett deposition. 

The findings contribute to the understanding of the stratal architecture and 

depositional history of the Barnett deep-water mudrocks and are used to refine the 

lithofacies variability of the Barnett Formation.  
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INTRODUCTION 

The Barnett Formation is a Mississippian (Osagean-Chesterian) age (Hass, 1953) 

siliciclastic mudrock succession (Figure 1) composed of laminated siliceous mudstone, 

laminated calcareous siliceous mudstone, skeletal packstone, and phosphatic packstone 

and grainstone. The Barnett accumulated along the southern margin of Laurussia prior to 

the late Paleozoic Ouachita orogeny as the Gondwana plate approached the Laurussian 

craton and created the Fort Worth Basin (FWB) (Figure 2) (Walper, 1982; Meckel et al., 

1992; Blakey, 2005).  

The Barnett strata in the northern FWB were commercially developed for gas 

production in 1981, and today the Newark East field (Figure 3) remains an active shale-

gas, shale-oil system (Curtis, 2002; Pollastro, 2007). Only recently, in 2013, the Barnett 

Formation was surpassed by the Marcellus Shale as the largest gas trend in the United 

States based on proven reserves, and because the Barnett Formation is a historically 

prolific gas reservoir, previous work has focused on the producing area of the FWB and 

many studies were related to the organic geochemistry of the strata. The present study 

investigates the low-thermal maturity, organic-rich mudrocks of the southern FWB using 

a series of shallow-subsurface cores (current burial depth: 93 to 2354 ft; 28 to 717 m) 

(Table 1; Figure 4). Specific works pertinent to the study include: Loucks and Ruppel 

(2007); Rowe et al., (2008); Hoelke (2011); Wood (2013); and Reed and Loucks (2015). 

Other relevant works include Papazis (2005); Monroe (2007); and Loucks et al., (2009).  
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Figure 1: Stratigraphic column of the Ordovician to Pennsylvanian section in the 

southern FWB. Cores used in this study are located in the southern FWB. 

Strata relationships are based on data from this study, Loucks and Ruppel 

(2007), Wood (2013), as well as Crosby and Mapel (1975), Kier (1980), 

Lovick et al. (1982), Namy (1982), Watson (1980), Pollastro (2003), Erlich 

and Coleman (2005), and Farrar and Breyer (2011). Eustasy curve is 

modified from Ross and Ross (1987).  
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Figure 2: Paleogeographic maps of North American southern mid-continent region in 

the (A) late Mississippian (325 Ma) (Blakey, 2005) and (B) middle 

Mississippian (Gutschick and Sandberg, 1983). Slightly modified by Loucks 

and Ruppel (2007).  
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Figure 3: Map of the FWB showing the general structural features affecting the basin 

and the location of the cores used in this study (black circles in red box). 

Map is modified from Montgomery et al. (2005) and Loucks and Ruppel 

(2007).  
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Figure 4: Map showing the distribution of the cores used in this study and the general 

outline of the Llano Uplift.  
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Well name 
Well 

code  
API County 

Thickness 

(ft) 

Current 

burial 

depth 

(ft) 

lower 

Barnett 

(ft) 

middle 

Barnett 

(ft) 

upper 

Barnett 

(ft) 

NEAL+o* A-1-1 4230730429 MCCULLOCH 0 eroded - - - 

JOHANSON+xo* MC-1 4230730487 MCCULLOCH 0 eroded - - - 

SIMPSON MC-2 4230730488 MCCULLOCH 0 eroded - - - 

WALKER+o D-1-1 4241130100 SAN SABA 37 1259 no core no core 37 

MOORE+o C-1-1 4241130096 SAN SABA 39 174 - 4 35 

ADAMSo B-1-1 4241130099 SAN SABA 40 93 - 9 31 

ADAMSo C-2-2 4241130107 SAN SABA 42 539 - 7 35 

RASCO D-4-1 4233330195 MILLS 44 1375 - 12 32 

EDWARDS C-2-5 4241130103 SAN SABA 47 545 - 25 22 

GLAZE C-2-3 4241130104 SAN SABA 47 308 - 16 31 

SMITH C-2-4 4241130106 SAN SABA 48 515 - 22 26 

HARLOWo* C-3-3 4241130102 SAN SABA 49 748 - 24 25 

BRADFORD C-2-1 4241130098 SAN SABA 50 696 - 19 31 

POWELLo B-3-1 4241130097 SAN SABA 51 766 - 25 26 

SCOGGINS+o A-2-1 4230730447 MCCULLOCH 61 735 11 21 29 

ECKERT A-3-1 4230730421 MCCULLOCH 78 962 26 19 33 

LEEx* C-5-1 4204931716 BROWN 82 1233 29 18 35 

HARDY+o LA-1 4228130192 LAMPASAS 83 618 25 20 38 

LOCKER+xo* B-2-1 4241130101 SAN SABA 84 555 32 20 32 

COPEo B-6-1 4204931746 BROWN 89 1581 23 24 42 

POSEYo* B-4-1 4204931786 BROWN 89 1077 34 21 34 

OLDo C-8-1 4204931787 BROWN 91 1880 26 29 36 

GODFREY+xo E-8-1 4204931815 BROWN 93 2354 33 19 41 

STEVENSo B-8-1 4204931646 BROWN 100 2047 19 25 56 

BECK+o* C-4-1 4233330194 MILLS 101 1182 41 24 36 

POTTER+o C-9-1 4204931769 BROWN 102 2345 20 24 58 

MULLIS+o A-4-1 4204931813 BROWN 105 1114 46 20 39 

MURRAY A-5-1 4204931745 BROWN 117 1282 50 26 41 

PETTY+xo* D-6-1 4204931785 BROWN 126 1672 51 29 46 

Table 1: Core dataset for the Barnett Formation in the southern FWB. The cores are 

arranged from thinnest to thickest Barnett interval. The Houston Oil and 

Mineral Co. was the operator for all the cores. Annotations indicate used of 

the cores in other studies: 
+
 used in Reed and Loucks (2015); 

x
 used in 

Hoelke (2011); 
o
 used in Wood (2013) study; * used for XRD analysis, this 

study; Bold used for XRF analysis, this study.  



 9 

Loucks and Ruppel (2007) published a depositional model for the Barnett 

Formation in the northern FWB based on core and thin-section observations as well as 

wireline logs. They identified three dominant lithofacies: (1) laminated siliceous 

mudstone, (2) laminated argillaceous lime mudstone, and (3) skeletal, argillaceous lime 

packstone; and several diagenetic features, including: (1) carbonate concretions, (2) 

abundant framboidal pyrite, and (3) phosphate grains. The skeletal fragments were 

interpreted to have been transported into the basin from the adjacent carbonate shelves or 

upper slopes and the biogenic silica as derived from overlying, oxygenated portions of 

the water column. In contrast to the high productivity in the photic zone, the bottom 

waters of the FWB are interpreted to have been euxinic and the basin water mass 

circulation restricted because of poor connectivity to the open ocean.  

Rowe et al. (2008) published a detailed chemostratigraphic study of the Texas 

United 1 Blakely core from Loucks and Ruppel (2007). The results indicated that the 

northern FWB was characterized by high-accumulation rates of organic matter, but was 

sediment starved. The study described the water column as anoxic to euxinic with 

estimated deep-water renewal times ranging from 8,000 to 20,000 years. Hoelke (2011) 

expanded the work in the southern FWB using five cores under investigation in the 

present study (Table 1), and concluded a maximum deep-water renewal time of 1,400 

years. The variability between the renewal times estimated from the two datasets (north 

and south Fort Worth Basin) indicates that the waters in the southern FWB were not as 

deep or as hydrographically restricted as the waters in the northern FWB.  

Reed and Loucks (2015) characterized the organic matter and investigated the 

pore systems of the low-thermal maturity, organic-rich mudrocks of the southern FWB 

using 12 cores that are also used in the present study (Table 1). Rock-Eval calculated 

TOC ranged from 3.08-7.57%, and samples were prepared for scanning electron 
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microscope (SEM) analysis using broad ion-beam milling with Ar ions. The study found 

that the ductile kerogen in low-thermal maturity, organic-rich mudrocks occluded the 

interparticle pores and limited much of the porosity to intraparticle pores, establishing 

that thermal maturity is an important factor in pore network development in some 

mudrocks. 

Wood (2013) investigated the overlying mixed carbonate-siliciclastic 

Pennsylvanian Marble Falls Formation using 20 of the cores used in the present study 

(Figure 1; Table 1). The study investigated the lithofacies and developed a sequence 

stratigraphic framework, taking into account the Pennsylvanian icehouse climate, sea-

level fluctuations, and the inherited FWB substratal topography. Wood (2013) interpreted 

the initiation of Marble Falls deposition to occur after the termination of the 

Mississippian sea-level rise and the deposition of the Pennsylvanian phosphatic 

glauconitic lime packstone condensed interval. 

The purpose of the present study is to further develop the geologic framework and 

the processes that affected the deposition of the Barnett strata in the southern FWB. 

Specific objectives are to: (1) characterize the Barnett lithofacies, (2) define the 

depositional setting of each lithofacies and produce a coherent depositional model, (3) 

identify stacking patterns and correlative surfaces, and (4) suggest a viable sequence 

stratigraphic interpretation of the succession. It is anticipated that the stratal relationships 

and interpretations developed here will aid in the assessment of unrecovered hydrocarbon 

in the Barnett Formation in other areas of the basin. 
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DATA AND METHODS  

The key data for the study are derived from 29 shallow, subsurface cores (Table 

1; Figure 4) that completely penetrate the Barnett strata. The cored sites are located north 

of the Llano Uplift and extend throughout McCullough, Brown, Mills, San Saba, and 

Lampasas counties of north-central Texas. They were taken during the 1970s by the 

Houston Oil and Minerals Company and are currently stored at the Bureau of Economic 

Geology, The University of Texas at Austin. The core based data set provided important 

insights on to the character and variability of the Barnett strata in the southern Fort Worth 

Basin. Current burial depths of the cores range from 93 to 2354 ft (28 - 717 m) (Table 1), 

with depth of burial generally increasing toward the northeast (Figure 4). 

CORE AND THIN-SECTION DESCRIPTIONS  

Twenty-two core descriptions were generated prior to the study by Dr. Robert 

Loucks (Bureau of Economic Geology at The University of Texas at Austin). The 

descriptions were revised when necessary for a more detailed characterization of the 

strata and the additional seven cores were described by the author in accordance with the 

methodology outlined in Bebout and Loucks (1984). For naming lithofacies, the Dunham 

(1962) classification system was used for the carbonate and phosphatic rocks (Trappe, 

1998), and the Folk (1980) classification system was used for siliciclastic mudrocks. 

Using slabbed cores, the investigation included the identification of sedimentary 

structures, allochems, and mineralogy. Two-hundred thirty polished thin sections were 

prepared and examined for rock fabric and texture, biotic content, and mineralogy using a 

petrographic microscope equipped with a Nikon DS-Ri1 digital camera. 
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X-RAY POWDER DIFFRACTION  

For eight wells (Table 1), a total of 250 fine-powder (<150 µm) samples were 

collected for bulk mineralogy by x-ray diffraction (XRD) analysis at the Bureau of 

Economic Geology, The University of Texas at Austin. Each sample (~15 mg) was 

analyzed from 5°-55° 2θ, for eight minutes with Co-Kα radiation using a Inxitu BTX308 

diffractometer. Raw diffraction patterns were semi-quantified using XPowder software 

and the ICDD PDF 2 database. To quantify the apatite wt% and clay types and 

abundances, a 26-sample subset was analyzed at K-T Geoservices (Durango, Colorado). 

The sample preparation was done in accordance to the ASTM Designation: C1365-06 

methodology.  

ENERGY-DISPERSIVE X-RAY FLUORESCENCE 

For eight cores (Table 1), energy-dispersive x-ray fluorescent (XRF) data were 

collected at a two-inch sampling interval throughout the Barnett strata and several feet 

into the bounding strata using a Bruker Tracer III handheld XRF unit equipped with an 

Rh x-ray tube. At each sample location both major and trace element spectra were 

collected (Table 2). The major element spectra were collected at 15 kV and 34.4 µA, for 

60-seconds under a vacuum, and the trace element spectra were collected at 40 kV and 25 

µA, for 90-seconds, under ambient conditions. Prior to data acquisition, quality 

assurance/control pressed powder pellets were scanned six times for 180-seconds in 

accordance with laboratory methodology. Raw sample spectra were calibrated according 

to Rowe et al. (2012).  
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Elements 

 
Major Minor 

Energy 
(Rh x-ray tube) 

15 kV  
34.4 uA 

40 kV  
25 uA 

Acquisition time 60-sec 90-sec 

Filter -  Al-Ti-Cu 

Vacuum Yes No 

Std. acquisition 
time 180-sec 180-sec 

 
Si Mo  

 
Ca  Zr  

 
P  Cu 

 
Ti  Zn 

 
Fe  Ni 

 
S  As 

 
K Pb 

 
V  Th 

 
Mg Rb 

 
Mn Co 

 
Al Sr 

 
Cr Y 

 
Na U 

 
Ba Nb 

  
Ga 

Table 2: XRF unit instrument settings for both major and trace elements data 

acquisition. The corresponding elements in each column indicate which 

elements are measure by which settings. Major elements concentrations are 

reported in wt% and trace element concentrations are reported in ppm. 

Bolded elements indicates use in this study.  
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TOTAL ORGANIC CARBON AND ROCK-EVAL PYROLYSIS 

This study utilizes total organic carbon (TOC) data from Hoelke (2011) and 

Rock-Eval calculated TOC from Reed and Loucks (2015). In Hoelke (2011), after 

acidifying prepared core samples with 6% H2SO3 to remove inorganic carbonates in 

accordance with Verardo et al. (1990), bulk TOC in wt% was measured using a Costech 

4010 elemental analyzer at the University of Texas at Arlington. In Reed and Loucks 

(2015) Rock-Eval calculated TOC sample depths correspond to SEM sample locations. 

The samples were analyzed at either Humble Geochemistry or GeoMark Research, Ltd.  
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GEOLOGIC SETTING 

The FWB is a foreland basin that is approximately 200 miles (322 km) in length, 

100 miles (161 km) wide in the north, and approximately 10 miles (16 km) wide in the 

south (Thompson, 1982; Thompson, 1988). It has an asymmetric profile with an overall 

deepening trend from the southwest to the northeast (Thompson, 1988; Loucks and 

Ruppel, 2007; Pollastro et al., 2007). It is bounded by the Muenster, Red River, Bend, 

and Lampasas arches, as well as the Llano Uplift (Figure 3). In areas adjacent to the 

Muenster Arch the Barnett strata are up to 1000 ft (304 m) thick (Pollastro, 2007), to the 

south of this area, in Wise County, strata average 550 ft (168 m) thick (Loucks and 

Ruppel, 2007), and in the southern FWB, adjacent to the Llano Uplift, strata range from 

37 to 126 ft (11 to 38 m) thick (this study). In some areas west of the Llano Uplift the 

Barnett Formation is not present because it was eroded (this study) during falls in sea-

level that may have been associated with Pennsylvanian glaciation (e.g. Fielding et al., 

2008). 

REGIONAL GEOLOGY OF THE FORT WORTH BASIN 

From Late Mississippian to Early Pennsylvanian time the Ouachita orogeny 

deformed Paleozoic strata over 2000 km along the southern extent of the Laurussia craton 

(Thompson, 1988). During the Mississippian the subduction complex had evolved to a 

thrust complex and the tectonic stresses from the Ouachita Fold Thrust Front generated 

the northeast-trending structural elements that influenced deposition in the FWB. As the 

front progressed westward, the basin downwarped and the depositional axis progressively 

shifted westward (Walper, 1982; Thompson, 1988; Grayson and Merrill, 1991). 

 The Llano Uplift, Precambrian in age, was a paleotopographic high in the 

southern FWB that formed a buttress to the advancement of the Ouachita Fold Thrust 
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Front limiting subsidence in the area (Figure 3) (Lovick et al., 1982; Grayson and Merrill, 

1991; Kier, 1980). To accommodate the compressional forces generated from the 

Ouachita Fold Thrust Front, horst blocks developed in the southern FWB as it abutted the 

structurally stable Llano Uplift (Grayson and Merrill, 1991; Erlich and Coleman, 2005). 

By the early Missourian movement along the faults was interpreted to have stopped 

(Roepke, 1970). 

CLIMATE AND OCEAN CIRCULATION  

The early Carboniferous was characterized by a greenhouse climate, and the late 

Visean has been interpreted as the warmest climate during Mississippian time based on 

foraminifera species diversity (Reitlinger, 1975). However, recent research demonstrates 

that several periods of glaciation occurred on Gondwana between the mid-Carboniferous 

(327 mya) and the early Late Permian (260 mya), each lasting from 1 to 8 million years 

(Fielding et al., 2008; Gradstein et al., 2012). This climatic variability could have been 

one cause of fluctuations in the overall second-order sea-level highstand expressed as 

third-order sequences that persisted throughout Barnett deposition (Figure 1) and also 

could have affected the sedimentary dynamics in the southern FWB.  

Paleogeographic reconstructions by Gutschick and Sandberg (1983) and Blakey 

(2005) (Figure 2) place the southern FWB adjacent to the shallower water Chappel shelf, 

to the west, and the Llano Uplift, to the south. Gutschick and Sandberg (1983) estimate 

water depths on the Chappel Shelf to have been <150 ft (<45.7 m) and water depths on 

the narrow, rapidly deepening slope adjacent to the FWB to have ranged from <150 to 

300 ft (<45.7 to 91.4 m). Adjacent to these environments was the area of Barnett 

deposition, which Gutschick and Sandberg (1983) estimate to have water depths 

exceeding 600 ft (183 m). These are their estimates based on anecdotal evidence and 
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should be revisited. These juxtaposed depositional environments affected sediment 

variability in the Barnett strata of the southern FWB (Loucks and Ruppel, 2007) and 

restricted water circulation because of the limited connectivity with the open ocean 

(Rowe et al., 2008).  
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STRATIGRAPHIC SETTING AND LITHOFACIES 

The present study focuses on the Barnett Formation, with comments provided on 

the adjacent formations in direct contact with the Barnett strata. In the study region the 

Barnett Formation is generally bounded by an unconformity of more than 90 m.y. at its 

base, variably overlying the Whites Crossing, Doublehorn Shale, Ives Breccia, or 

Ellenburger Group (Figures 1 and 5). The Forestburg limestone, which divides the 

Barnett strata in the northern FWB into upper and lower units, is absent from the southern 

FWB (Figure 1). The Barnett Formation is overlain by a very thin (1 to 3 ft; 0.3 to 0.9 m) 

Pennsylvanian age phosphatic glauconitic lime packstone unit which is overlain by the 

Pennsylvanian age Marble Falls (Figure 1). The erosion of the Lower Marble Falls 

Member west of the Llano Uplift was recognized by Erlich and Coleman (2005) and 

Wood (2013), and the present study recognizes the complete erosion of Barnett strata in 

the same area (Figure 1). 
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Figure 5: Block diagrams showing depositional setting of the preBarnett strata in the 

southern Fort Worth Basin. (A) Deposition of the Ellenburger Group in an 

open-marine, shallow-water environment; (B) Karsting of the Ellenburger 

Group; (C) Development of the Ives Breccia chert and limestone lag deposit 

over a long-ranging unconformity; (D) Deposition of the Doublehorn Shale 

during a marine transgression; (E) Erosion of the Doublehorn Shale, 

preserved in the grabens; (F) Deposition of the Whites Crossing in the 

graben structures. swwb = storm-weather wave base. 
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ORDOVICIAN ELLENBURGER GROUP 

The Ellenburger Group is a Lower Ordovician carbonate unit (Figure 6) that was 

deposited in an open-marine, shallow-water environment and was subjected to karsting 

and cave formation during subaerial exposure related to the Sauk-Tippecanoe 

unconformity (Morgan, 2012) (Figure 5A-B). The karsting is regionally extensive and is 

present in most of the cores in the dataset. In a few cores the Ellenburger Group 

unconformably underlies the Barnett Shale (e.g. Glaze C-2-3), but generally in most 

cores other units intercede. The dominant Ellenburger Group mineralogies are calcite and 

dolomite, with in situ chert clasts. The cave fill mineralogy is carbonate clasts and 

argillaceous carbonate sediment fill with quartz sand grains (Figure 6A-B). Thin section 

observations include compacted argillaceous clay seams infilling between two clasts, 

calcite-filled crackle breccia, and euhedral zoned dolomite (Figure 6A-D). These features 

indicate that the argillaceous infill occurred contemporaneous with clasts deposition.  

Quartz and feldspar grains are present in the karst fill, but are rare (Figure 5C-D). 

Common lithofacies include: chaotic breccia with argillaceous sediment fill and fractured 

and tilted massive blocks (Figure 6E-F). 
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Figure 6: Core and thin section photographs of the Ellenburger Group. (A) Compacted 

argillaceous clay seam filling between two clasts: Petty D-6-1, 1859.1 ft 

(566.7 m). (B) Same as A but under cross nicols. (C) Calcite-filled crackle 

breccia: Petty D-6-1, 1866 ft (568.8 m). (D) Euhedral zoned dolomite with 

sediment in remaining pore: Petty D-6-1, 1841 ft (561.1 m). (E) Chaotic 

breccia with argillaceous sediment fill: Harlow C-3-3, 797 ft (242.9 m). (F) 

Fractured and titled massive block: Beck C-4-1, 1295 ft (394.7 m).  
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DEVONIAN HOUY FORMATION 

The Houy Formation is a Devonian succession composed of the Ives Breccia 

member (Figure 7A), the Doublehorn Shale member (Figure 7B-O), and other unnamed 

units (Kier, 1979). The Ives Breccia member is a chert and limestone lag deposit that 

developed as a regolith from the underlying Ellenburger Group over a long-ranging 

unconformity (~90 million years) (Figure 5C). The member contains locally derived, 

eroded chert clasts within a fine-grained calcite matrix (Figure 7A). The member was 

only observed on top of the Ellenburger Group and was not seen in collapse features, 

indicating that the karsting and cave infilling was complete by this time. It is laterally 

discontinuous and occurs as isolated accumulations in wells (e.g. Neal A-1-1, Harlow C-

3-3, Beck C-4-1, and Lee C-5-1).  

The Doublehorn Shale variably overlies the Ives Breccia and is present in two 

cores in the dataset (Petty D-6-1 and Posey B-4-1). The member is composed of coarser 

grains than the Barnett strata and common lithofacies include: dark brown to black, 

finely-laminated to fissile mudrock facies and burrowed packstone facies, with some 

grainstone gravity flows punctuating the strata (Figure 7B-D). The dominant 

mineralogies are calcite, dolomite, quartz, and feldspar grains, with argillaceous material 

and common fauna including agglutinated foraminifera and Tasmanites steinkerns 

(Figure 7D-G). It has been interpreted by Kier (1972) to be the offshore equivalent to the 

Ives Breccia (Figure 5D). Erosion removed the member from most of the study area, 

preserving it only in interpreted graben structures (Figure 5E). 
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Figure 7: Core and thin section photographs of the Ives Breccia (A) and Doublehorn 

Shale (B-G). (A) Siliceous cave-sediment fill with eroded chert clasts: 

Harlow C-3-3, 796 ft (242.6 m). (B) Finely-laminated mudrock showing a 

tectonic fracturev: Posey B-4-1, 1178 ft (359.1 m). (C) Burrowed packstone 

facies showing doomed pioneer burrows: Posey B-4-1, 1174 ft (357.8 m). 

(D) Argillaceous mudrock with compacted agglutinated foraminifera and 

Tasmanites steinkerns with some phosphate grains and pyrite: Petty D-6-1, 

1804.1 ft (549.9 m). (E) Fine-sand sized calcite grains and dolomite rhombs: 

Petty D-6-1, 1827.3 ft (557 m). (F) A variety of coarse- to medium-sand-

sized grains including quartz, polycrystalline quartz, calcite grains, and 

dolomite rhombs under cross nicols: Petty D-6-1, 1806.8 ft (550.7 m). (G) 

Fine- to medium-sand-sized grains with a higher abundance of argillaceous 

material and slightly compacted Tasmanites steinkerns: Petty D-6-1, 1806.8 

ft (550.7 m).  

  



 27 

MISSISSIPPIAN WHITES CROSSING 

The Whites Crossing is a late Kinderhook to early Osage age (Hass, 1959) 

crinoid-bearing, fine- to very coarse grained lime rudstone (Figure 8). In core and thin 

sections the lime rudstone has inclined bedding and is poorly sorted. It is interpreted to be 

sourced from the Chappel Shelf to the west and transported into the basin via gravity 

flow that preferentially preserved strata in the lows (Figure 5F). The flow is composed of 

crinoid stems and spines, ostracod fragments, echinoid plates, bryozoans, and rare sponge 

spicules and trilobites in a micritic matrix (Figure 5R-T). In some cores it unconformably 

overlies the Ellenburger Group (e.g. Johanson MC-1, Locker B-2-1, and Godfrey E-8-1), 

unconformably underlies the middle Marble Falls (Simpson MC-2, Johanson MC-1, and 

Neal A-1-1) and conformably underlies the Barnett Formation (e.g. Locker B-2-1, Beck 

C-4-1, and Petty D-6-1). 
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Figure 8: Core and thin section photographs of the Whites Crossing. (A) Very coarse-

grained crinoid-bearing limestone: Beck C-4-1, 1280 ft (390.1 m). (B-D) 

Debris flow composed of crinoid stems and spines, ostracods, echinoid 

plates, bryozoans, rare sponge spicules, and trilobite fragments in a micritic 

matrix: (B) Petty D-6-1, 1791 ft (545.9 m); (C-D) 1796.3 ft (547.5 m).  
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MISSISSIPPIAN BARNETT FORMATION 

The Barnett Formation is an Osagean-Chesterian age (Hass, 1953) siliciclastic 

mudrock that was deposited in the northern FWB over 25 my (Loucks and Ruppel, 2007). 

Using the core dataset and thin-section observations, four dominate lithofacies were 

identified as the rock-forming facies of the Barnett Formation in the southern FWB. 

These include: (1) siliceous mudstone, (2) calcareous siliceous mudstone, (3) skeletal 

packstone, and (4) phosphatic packstone to grainstone. Facies were further analyzed via 

XRD (Table 3) and XRF analyses. Other notable features in the strata include carbonate 

concretions and cone-in-cone structures.  
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 Siliceous 

mudstone 

Calcareous 

siliceous 

mudstone 

Skeletal 

packstone 

Phosphatic 

packstone 

Phosphatic 

grainstone 

Phosphatic 

glauconitic 

lime 

packstone 

Carbonate 

concretion 

Calcite 9.1 22.3 41.3 16.3 36.4 35.1 93.6 

Dolomite/ 

ankerite 

2.7 8.9 2.2 0 0.7 3.6 0 

Quartz 49.2 37.0 28.0 27.4 6.4 11.6 1.5 

Feldspar 7.6 6.4 5.4 1.3 0 0 0 

Pyrite 3.8 2.5 2.3 3.1 0.6 1.9 0.5 

Phosphate 0.7 3.2 4.6 35.7 51.1 33.6 0 

Clays 27.1 19.8 16.1 15.1 4.8 14.4 4.4 

Illite and 

mica 

14.1 12.0 8.7 8.1 2.7 7.4 4.4 

Illite/ 

smectite 

10.3 4.1 5.3 4.9 0 7.0 0 

Chlorite 1.9 2.7 1.4 1.1 1.4 0 0 

Kaolinite 0.8 1.1 0.7 1.0 0.7 0 0 

Total 100 wt% 100 wt% 100 wt% 99 wt% 100 wt% 100 wt% 100 wt% 

Table 3: XRD mineralogy in wt% from the 26 sample subset analyzed at KT 

Geoservices (Durango, Colorado).  
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Siliceous Mudstone 

The siliceous mudstone (Figure 9) facies is the most common lithofacies in the 

Barnett Formation. It is a dark brown color in core (Figure 9A-B) and common 

components are silt-sized peloids and silt-sized quartz grains, with lesser abundances of 

silt-sized carbonate grains and argillaceous material. The fabric ranges from 

nonlaminated to laminated (Figure 9A-D), and postdepositional compaction flattened the 

peloids and enhanced the laminae, which are emphasized by differential compaction 

around rigid grains and early diagenetic carbonate concretions (Figure 9B). The facies is 

rich in organic matter with an average TOC value of 4.5% (Hoelke, 2011; Reed and 

Loucks, 2015; Appendix A). The organic material is dispersed throughout the 

argillaceous matrix in the form of compacted peloids, flakes, and particles (Figure 9E-K). 

The accumulation of organic matter enriched the argillaceous matrix with organic 

phosphorus and sporadically formed an apatite grain (Figure 9K). The XRD mineral 

composition for the siliceous mudstone facies (Table 3) is primarily quartz (average 49%, 

range 43%-59%) with lesser amounts of feldspars, pyrite, and phosphate. Calcite and 

dolomite average 9% and 3%, respectively (range 0%-15% and 0% - 6%, respectively) 

and clay minerals make up an average of 27% (range 21%-32%) with decreasing 

abundances of illite and mica, illite and smectite mixed layer clays, chlorite, and 

kaolinite.  

Thin-section observations reveal that both detrital and biogenic quartz contribute 

to the total quartz abundance in the form of agglutinated foraminifera (Figure 9E) and 

sponge spicules (Figure 9F-H), respectively, with differing importance at various 

stratigraphic intervals within the formation (for details see: Subdivision of the Siliceous 

Mudstone Facies Using XRF Data). Radiolarians are observed in this facies but are rare 

(Figure 9G). Burrows are not observed in this facies. Major textural variations of the 



 32 

lithofacies include broken brachiopod and filibranch mollusk shells (Figure 9H), pyrite 

framboids (size ranges from <5 um to less than 10 um) (Figure 9J-K), and authigenic 

phosphate grains (Figure 9I-K).  

Phosphate grains are rare in this lithofacies, but when observed occur as isolated 

grains within the dark, organic-rich matrix (Figure 9J-K). The grains are not well 

rounded, nor do they exhibit concentric banding as is seen in the phosphatic packstone to 

grainstone facies. They do not have distinct grain edge boundaries, but instead, the grain 

boundaries grade into the argillaceous matrix. 
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Figure 9: Core and thin-section photographs of the Barnett Formation siliceous 

mudstone facies. (A) Early carbonate concretions in the siliceous mudstone 

matrix with phosphatic packstone and skeletal wackestone laminae 

compacted around the concretion. Glaze C-2-3, 316 ft (96.3 m). (B) Sample 

showing the uniform color and grain size characteristic of the siliceous 

mudstone facies. The lighter layers are starved ripples composed of a higher 

abundance of carbonate silt. Lee C-5-1, 1293 ft (394.1 m). (C) Massive, 

dark brown argillaceous matrix with little grain-size or grain-type 

variability. Beck C-4-1, 1209 ft (368.5 m). (D) Starved ripples emphasize 

the laminated nature of the facies and indicate bottom-water reworking of 

sediments. Godfrey E-8-1, 2374 ft (723.6 m). (E) An agglutinated 

foraminifera with pyrite precipitated in the body cavity preserving its 

original morphology. Extrabasinal, detrital silt-sized quartz grains is 

common, with some silt-sized skeletal fragments and framboidal pyrite 

dispersed throughout the argillaceous material. Clusters of silt-sized quartz 

grains are attributed to foraminifera growth (arrow). Petty D-6-1, 1750.4 ft 

(533.5 m). (F) Abundant, calcite-replaced, sponge spicules (arrows) within 

an argillaceous matrix with lacking skeletal fragments and displaying 

compacted fabric (undulated parallel bedding). Petty D-6-1, 1698.7 ft (517.8 

m). (G) A rare radiolarian (arrow) with an abundance of calcite-replaced 

sponge spicules, and argillaceous material with pyrite framboids dispersed 

throughout. Petty D-6-1, 1698.7 ft (517.8 m). (H) Broken filibranch mollusk 

shells aligned into laminae within the siliceous mudstone matrix that also 

contains calcite-replaced sponge spicules (arrow). Petty D-6-1, 1773.3 ft 

(540.4 m). (I) In situ authigenic phosphate grains with a mottled internal 

structure that do not display concentric banding or evidence of sediment 

reworking (i.e. rounding or grain amalgamation). Locker B-2-1, 597 ft (182 

m). (J) An Ar-ion milled, electron backscatter SEM image showing an 

abundance of silt-size quartz grains (qtz), clays, euhedral and framboidal 

pyrite (py), and argillaceous material (arg) squeezed between the ridged 

grains. An in situ, authigenic phosphate grain (arrow) has indistinct grain 

boundaries with the argillaceous matrix. SEM photo from Luci Tingwei Ko, 

UT Austin. (K) SEM energy dispersive x-ray image of the same field of 

view as J, highlighting elemental phosphate dispersed throughout and the in 

situ phosphate grains. 
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Calcareous Siliceous Mudstone 

Calcareous siliceous mudstone facies (Figure 10) varies from light to dark brown 

color in core and is composed of a subequal abundance of silt-sized quartz grains and 

carbonate grains with lesser abundances of silt-sized peloids and argillaceous material. It 

is characterized by abundant calcite-replaced, and some dolomite-replaced, sponge 

spicules (Figure 10E-F). The XRD mineral composition (Table 3) averages 37% quartz 

(range 35%-39%), 22% calcite (range 21% - 24%), and 9% dolomite (7%-11%), clay 

minerals average 20% (range 14%-26%) with decreasing abundances of illite and mica, 

illite and smectite mixed layer clays, chlorite, and kaolinite.  

The calcareous siliceous mudstone is the only Barnett facies that is weakly 

bioturbated (Figure 10C-D). The burrows were identified as Nereites ichnofacies, 

specifically Cosmorhaphe and only disturbed a few laminae. A Cosmorhaphe burrow is a 

grazing structure found in fully marine deep-sea environments (Pemberton et al., 2009). 

Commonly the burrows are infilled by the siliceous mudstone facies (Figure 10D). In the 

absence of burrowing the fabric ranges from laminated to nonlaminated (Figure 10A-B). 

The facies also commonly contains fragmented mollusk shells that are dispersed 

throughout the mudstone matrix and postdepositional compaction has reshaped the 

peloids and aligned the shells into poorly defined laminae (Figure 10A-B).



 37 

 

Figure 10: Core and thin-section photographs of the Barnett Formation calcareous 

siliceous mudstone facies. (A) Core photograph showing the facies 

variability of the calcareous siliceous mudstone facies with mollusk shells 

dispersed throughout the matrix at the bottom of the core and no visible 

features at the top. Posey B-4-1, 1159 ft (353.3 m). (B) Sharp contact 

between the calcareous siliceous mudstone facies (top) and the siliceous 

mudstone facies (bottom). Lee C-5-1, 1304.1 ft (397.5 m). (C-D) Weakly 

bioturbated sediment with siliceous mudstone infilling Cosmorhaphe 

burrows (arrow). Petty D-6-1, 1769 ft (539.2 m); Locker B-2-1, 635 ft (194 

m). (E) Abundant calcite-replaced sponge spicules. Petty D-6-1, 1757.1 ft 

(535.6 m). (F) Same as E but in cross nicols. 
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Skeletal Packstone 

Skeletal packstone facies (Figure 11A) is a light gray color in core and is 

composed of compacted, broken filibranch mollusk and brachiopod shells within a 

siliceous mudstone matrix displaying chaotic orientation with a large range in grain size 

(Figure 11B-E). It could be classified as a sublithofacies of the siliceous mudstone but 

instead is addressed separately because it is a significant feature in the strata and indicates 

a distinct sedimentary process that is different than the background sedimentation. . The 

XRD mineral composition (Table 3) averages 28% quartz (range 18% - 40%), 41% 

calcite (range 34% - 52%), and 16% clays (range 13% - 20%) with decreasing 

abundances of illite and mica, illite and smectite mixed layer clays, chlorite, and 

kaolinite. The facies occurs as millimeter- to centimeter-thick deposits except in sections 

where multiple flow deposits stack (Figure 11A). The facies contains rare occurrences of 

subrounded to rounded, fine sand-sized phosphate grains (Figure 11C-E), and in some 

samples phosphatic intraclasts occur (Figure 11C). Phosphatic ooids are not observed in 

this facies. Calcite-replaced radiolarians are also observed in this facies but are rare.  
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Figure 11: Core and thin-section photographs of the Barnett Formation skeletal 

packstone facies. (A) Core photograph of the skeletal packstone facies 

punctuating the siliceous mudstone facies, note the low angle of the 

deposits. Beck C-4-1, 1224 ft (373.1 m). (B) Shows rapid lithofacies 

variability with a contact between the calcareous siliceous mudstone facies 

(top), the skeletal packstone facies (middle and bottom), and a siliceous 

mudstone facies laminae (lower middle). Petty D-6-1, 1729.4 ft (527.1 m). 

(C) Fragmented, transported shells with phosphate grain included in the 

flow. Some calcite-recrystallization of the argillaceous matrix. Locker B-2-

1, 590 ft (180 m). (D-E) Broken mollusk shells with chaotic grain 

orientation and some rounded phosphate grain inclusions and less common 

occurrences of rounded glauconite grains. Petty D-6-1, 1729.4 ft (527.1 m); 

Petty D-6-1, 1724.6 ft (525.7 m). 
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Phosphatic Packstone to Grainstone 

Phosphatic packstone to grainstone facies is a tan color in core (Figures 12 and 

13) and is composed of well-rounded, very fine sand- to sand-sized phosphatic ooids and 

grains (Figures 12G-H and 13B-D). The phosphatic packstone facies is characterized by 

sparse carbonate cements and a low abundance of dark argillaceous material between the 

phosphatic ooids and grains (Figure 12E-H). The XRD mineral composition of the 

phosphate packstone facies (Table 3) averages of 36% apatite (range 22%-49%), 27% 

quartz, 16% calcite, and 15% clays with decreasing abundances of illite and mica, illite 

and smectite mixed layer, chlorite, and kaolinite. The phosphatic grainstone facies is 

characterized by blocky carbonate cements and does not contain nonphosphatized shell 

fragments (Figure 13B-D). The XRD mineral composition (Table 3) averages 51% 

apatite, 36% calcite, 6% quartz, and 5% clays with decreasing abundances of illite and 

mica, chlorite, and kaolinite. 

The phosphatic ooids and grains that characterize the facies are all well-rounded, 

with moderate to high sphericity and have distinct grain edge boundaries. They are 

moderately well-sorted and are generally less than 250 µm in diameter (Figures 12G-H 

and 13B-D). The phosphatic ooids have one to three concentric rings around a 

subrounded to rounded phosphate core. The oolitic coatings are primary in origin because 

the coatings make the grain-to-grain contacts, they are of uniform thickness and 

continuity, and no relict carbonate minerals or any other minerals are present that would 

suggest diagenetic replacement with phosphate. The rounded oolitic coatings indicate that 

the grains have experienced multiple episodes of phosphogenesis. Evidence of soft-

sediment deformation is illustrated by offset of phosphate grain laminae (Figure 12C-D).  

Nonphosphatized, broken mollusk shells are sporadically observed in association 

with the packstone facies and can serve as a nucleation site for a phosphate ooid or grain 
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(Figure 12G); other fossils, such as crinoids, cephalopods, gastropods, and foraminfera 

are observed as the nucleus, but are rare. Most commonly the phosphatic ooids and grains 

have an internally structureless phosphatic core. Modern phosphate accumulations are 

strongly coupled with bacterial biogeochemical cycling of phosphorus (Schulz and 

Schulz, 2005; Goldhammer et al., 2010) and the studies that have evaluated internally 

structureless phosphate grains attributed their nucleation sites to microbes, including: 

fungi, bacteria, and cyanobacteria (e.g. Dahanayake and Krumbein, 1986; Schulz and 

Schulz, 2005; Bailey et al., 2007).  
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Figure 12: Core and thin-section photographs of the Barnett Formation phosphatic 

packstone facies. (A-D) Core photos of rapid alteration of the phosphatic 

packstone facies with the siliceous mudstone facies, cone-in-cone structures, 

and soft-sediment deformation (arrow); Glaze C-2-3, 318 ft (96.9 m); Glaze 

C-2-3, 351 ft (107 m); Smith C-2-4, 552 ft (168 m); Harlow C-3-3, 785 ft 

(239 m);. (E-F) Thin section scans showing phosphatic packstone and 

siliceous mudstone facies alternations with scoured contacts; Harlow C-3-3, 

774 ft (236 m); Petty D-6-1, 1714.7 ft (522.6 m). (G-H) Condensed deposit 

showing well rounded phosphatic grains and ooids; Petty D-6-1, 1677.5 ft 

(511.3 m); Petty D-6-1, 1687.5 ft (514.4 m).  
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Figure 13: Core and thin-section photographs of the Barnett Formation phosphatic 

grainstone facies. (A) Phosphatic grainstone present at the top of the Harlow 

C-3-3, 748 ft (228 m) in the absence of the phosphatic glauconitic lime 

packstone facies.  (B-D) Phosphatic grainstone facies with well-rounded 

phosphate grains and ooids with carbonate cements; Locker B-2-1, 590 ft 

(180 m); Petty D-6-1, 1744.5 ft (531.7 m); Petty D-6-1, 1744.5 ft (531.7 m).  
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Associated Diagenetic Features 

Two other common diagenetic features observed throughout the Barnett strata are 

carbonate concretions (Figures 9A and 14A-B) and bedding-parallel fibrous calcite beef 

veins exhibiting cone-in-cone structures (Figures 12A and 14C-F).  

Carbonate Concretions 

Carbonate concretions (Figure 9A) are interpreted early diagenetic features that 

form in the upper few centimeters of the sediment-water interface under sulfidic, 

reducing conditions, with low sedimentation rates (e.g. Folk and Land, 1975; Coleman et 

al., 1993). In core they range in vertical thickness from 1 to 3 inches (2.54 to 7.62 cm) 

and most commonly occur in the upper portions of the Barnett strata. In thin sections the 

features display uncompacted fabric and have pyrite dispersed throughout (Figure 14A-

B). They are commonly fractured, especially in cores near the Llano uplift, which may be 

related to fault movement. The XRD mineral composition, Table 3, averages 94% calcite, 

2% quartz, 4% illite, and mica clay minerals 20%.  

Cone-in-Cone Structures 

The bedding-parallel fibrous calcite beef veins exhibiting cone-in-cone structures 

are nucleated on thin-walled pelecypods (Figure 14C-F), visible as the central suture line, 

with radial growth perpendicular to the shell fragment. They are generally between 250 

µm – 2 mm in length and are found in close stratigraphic association with the phosphatic 

packstone to grainstone facies (Figures 12A).  

Cobbold et al. (2013) compiled a worldwide catalogue of beef and cone-in-cone 

occurrences and noted that they are most commonly found within marine shale. It is a 

very common feature in the Vaca Muerta Formation (e.g. Parnell et al., 2000; Rodrigues 
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et al., 2009), and have been interpreted by Rodrigues et al. (2009) to be a product of 

differential shear. Rodrigues (2008) used carbon and oxygen isotopes and fluid inclusion 

work to show that these are late diagenetic features linked to high overpressures and 

hydrocarbon generation.  
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Figure 14: Thin-section photographs of the associated diagenetic features of the Barnett 

Formation. (A-B) Carbonate concretion showing uncompacted fabric and 

pyrite framboids; Petty D-6-1, 1684.3 ft (513.4 m) under plane light and 

reflected light, respectively. (C-E) Bedding-parallel fibrous calcite beef 

veins exhibiting cone-in-cone structures are nucleated on thin-walled 

pelecypods and recrystallization of the argillaceous matrix; Beck C-4-1, 

1200 ft (365.8 m). (F) Phosphate grains found in association with the cone-

in-cone structures; Locker B-2-1, 575 ft (175 m). 
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PENNSYLVANIAN PHOSPHATIC GLAUCONITIC LIME PACKSTONE 

The phosphatic glauconitic lime packstone facies (Figure 15) is a Chesterian to 

Morrowan age (Liner et al., 1978) unit that occurs throughout the southern FWB after the 

deposition of the Mississippian Barnett Formation and before the deposition of the 

Pennsylvanian Marble Falls Formation. It ranges in thickness from 1 to 3 ft (0.3 to 0.9 m) 

across the study area and is pronounced in cores both proximal and distal to the Llano 

Uplift. It is composed of a subequal abundance of well-rounded, fine- to medium-sand-

sized glauconite grains, phosphatic ooids, and intraclasts with common chert grains in a 

dark argillaceous matrix (Figure 15A-F). The high abundance of glauconite grains gives 

the facies a characteristic blue-green color in core (Figure 15G). The XRD mineral 

composition (Table 3) averages 34% apatite (range 23%-44%), 12% quartz (range 9%-

15%), 35% calcite (range 25%-45%), and 14% clays with decreasing abundances of illite 

and mica,  and illite and smectite mixed layer clays. 

The facies is characterized by convoluted bedding and is weakly bioturbated 

(Figure 15G). Fish bone fragments (Figure 15C) are observed in the facies and contribute 

to its phosphate abundance. Some occurrences of glauconite overgrowths on phosphate 

grains and conversely phosphatic overgrowths on glauconite grains are documented 

(Figure 15C-D). Chert and sponge spicules are common, however, fossil fragments, such 

as brachiopods and bivalves, crinoids, echinoids, cephalopods, gastropods, and 

Endothyra foraminifera, are observed but are rare (Figure 15A-F).  

The unit has a scoured basal contact with the siliceous mudstone or phosphatic 

packstone facies of the Barnett Formation (Figure 15G) and a gradational upper contact 

(Figure 15H-I) with the Marble Falls Formation. The gradational upper contact is 
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characterized by an increase in carbonate content, a corresponding increase of 

argillaceous matrix as well an increase in sponge spicule abundance, and a decrease in 

the phosphatic and glauconite grain abundances (Figure 15H-I). Thus the unit is 

interpreted to have an unconformable contact with the Mississippian Barnett Formation 

and a conformable contact with the Pennsylvanian Marble Falls.  
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Figure 15: Core and thin-section photographs of the Pennsylvanian phosphatic 

glauconitic lime packstone facies. There are an abundance of well-rounded, 

fine- to medium-sand-sized glauconite grains and phosphatic grains and 

ooids. (A) Subequal mixture of phosphate (dark brown to black) and 

glauconite (green) grains with chert (white arrow). Godfrey E-8-1, 2353.5 ft 

(717.3 m). (B) Packstone fabric with a dark argillaceous seam. Fractures 

shown are an artifact. Petty D-6-1, 1673.2 ft (509.9 m). (C) Phosphatic 

overgrowth on a glauconite grain (red arrow). Bone fragment (yellow 

arrow). Petty D-6-1, 1672.5 (509.8 m). (D) A glauconite overgrowth on a 

phosphate grain (red arrow). Abundant sponge spicules in the dark 

argillaceous matrix. Petty D-6-1, 1672.5 (509.8 m). (E) Higher abundance of 

skeletal fragments with Endothyra foraminifera (orange arrow). Lee C-5-1, 

1233.8 ft (376.1 m). (F) Argillaceous matrix, similar to the matrix found in 

association with the bedding parallel fibrous calcite beef veins. Abundant 

skeletal fragments and a phosphatic intraclasts (green arrow). Locker B-2-1, 

554 ft (168 m). (G) Core photograph showing convoluted bedding, large 

intraclasts (green arrow), and a sharp erosional lower contact with the 

Barnett strata, specifically a remnant of the isolated phosphatic grainstone 

flow deposit (cream colored bar) and then the siliceous mudstone facies 

(brown colored bar) below. Lee C-5-1, 1233 ft (375.8 m). (H-I) Thin-section 

scans showing a gradational contact with the overlying Marble Falls 

burrowed sponge spicule packstone facies, as defined by Wood (2013). 

Beck C-4-1, 1182.7 ft (360.5 m); Beck C-4-1, 1181.7 ft (360.2 m).  
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PENNSYLVANIAN MARBLE FALLS 

The Marble Falls Formation is a Morrowan to Atokan age (Manger and 

Sutherland, 1984; Groves, 1991) mixed carbonate-siliciclastic unit that is formally 

subdivided into the Lower Marble Falls Member (Morrowan stage) and the Upper Marble 

Falls Member (Atokan stage) based on fusulinid biostratigraphy (Groves, 1991). Its 

facies were deposited in the southern FWB on a platform setting, with facies tract 

geometry controlled by both subsidence and second-order sea-level changes, and with 

sequence development and unconformities controlled by third-order sea-level change 

(Erlich and Coleman, 2005). 

Wood (2013) analyzed 20 of the cores used in the present study (Table 1) to 

subdivide the Marble Falls into 3 depositional sequences: lower, middle, and upper 

Marble Falls.  The lower Marble Falls is time equivalent to the Lower Marble Falls 

Member and the beginning deposition of the middle Marble Falls is time equivalent to the 

beginning deposition of the Middle Marble Falls Member (Erlich and Coleman, 2005; 

Wood, 2013). Wood (2013) interprets the lower Marble Falls to be an aggradational ramp 

deposit with deposition terminated by a major sea-level fall, the middle Marble Falls to 

be deposited after a sea-level lowstand followed by a marine transgression, and the upper 

Marble falls deposition to be influenced by increased accommodation space related to 

tectonic subsidence. Both Erlich and Coleman (2005) and Wood (2013) recognized the 

erosion of Lower Marble Falls Member strata to the west of the Llano Uplift and 

interpreted this to be related to a glacio-eustatic sea-level lowstand subsequent to the 

deposition of the Lower Marble Falls Member and prior to the deposition of the Middle 

Marble Falls Member (e.g. Johanson MC-1 and Neal A-1-1, (Wood, 2013), and Simpson 

MC-2 (present study)).  
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REGIONAL STRATIGRAPHIC VARIABILITY 

The analysis of both lateral and vertical Barnett lithofacies distribution helps to 

identify depositional trends characteristic of Barnett strata. In the southern FWB specific 

stratigraphic intervals of phosphatic packstone facies abruptly alternate with the siliceous 

mudstone facies at the centimeter scale over several vertical feet (less than one meter) 

(Figure 12A-D; Figures 16 and 17), and outside of these intervals the phosphatic 

packstone facies is much less likely to occur. The intervals are separated by much thicker 

deposits (>3 meters) of the siliceous mudstone facies which is punctuated by laminated 

occurrences of the skeletal packstone facies. The incorporation of XRF curves revealed 

that the phosphatic packstone intervals and the phosphatic glauconitic lime packstone 

unit align with notable changes in the trend of the clay proxy curves (e.g. Ti) (Figures 16 

and 17). The tops of the phosphatic packstone facies at these localities and the top of the 

phosphatic glauconitic lime packstone unit were thus used to subdivide the Barnett strata 

into lower, middle, and upper units (Figure 1).  
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Figure 16: Idealized depositional stacking pattern of the Barnett lithofacies of the Petty 

D-6-1 core. The red arrows indicate trends in the clay mineral proxies (Ti 

curve). The lower Barnett shows four clay pluses with sharp bases and linear 

decay, the middle Barnett is characterized by higher clay content, and the 

upper Barnett shows lower clay content. The phosphatic packstone facies is 

characterized by the P curve, which in the lower and middle Barnett is 

largely restricted to the phosphatic packstone facies at the top of each unit. 

The upper Barnett, however, has many more occurrences of the facies, the 

increase in the phosphatic packstone facies in the upper Barnett was not 

used as a subdivision because there was no apparent change in the Ti curve. 

The argillaceous siliceous mudstone facies is characterized by a high Ti 

concentration and low Ca concentration as well as a high Mo concentration. 

The Mo concentration fluctuates throughout the Barnett strata, somewhat 

mimicking the Ti curve, and shows it highest concentration in the middle 

Barnett. The argillaceous siliceous mudstone facies is observed at the high 

Ti concentrations and the biogenic siliceous mudstone facies is observed at 

the low Ti concentrations. 
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Figure 17: Idealized depositional stacking pattern of the Barnett lithofacies of the Lee 

C-5-1 core. The same geochemical trends are observed as they are described 

in Figure 16.  
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USE OF XRF DATA TO INTERPRET REGIONAL LITHOFACIES VARIABILITY 

For interpretation purposes, it is important to understand the Barnett lithofacies 

before evaluating the XRF results. With lithofacies characteristics in mind, the most 

important curves used for the characterization of the Barnett strata in this study are P, Ca, 

Ti, Si, Si/Ti, and Mo. The P curve was used to identify intrabasinal, phosphorus-rich 

sections and helped to subdivide the Barnett strata into depositional units. The Ca curve 

was variably used to identify intrabasinal, phosphate-rich intervals, skeletal and carbonate 

silt laminae, and carbonate concretions. Instead of the Al, the Ti curve was used as an 

extrabasinal clay proxy (Calvert and Pederson, 2007) because highly elevated P 

concentrations affected the calibration corrections, and ultimately the Al concentration 

(Figure 18A), but elevated phosphorous concentrations do not affect the calibration 

corrections and measurement accuracy of Ti concentrations. Figure 18B demonstrates 

that Ti and Al have a strong correlation illustrating that Ti is a viable primary proxy for 

extrabasinal clay content. The Si curve is a proxy for all silica-bearing phases, and in 

place of the Si/Al ratio, the Si/Ti ratio was used to evaluate excess silica attributed to 

biogenic silica (Calvert and Pederson, 2007). In Figure 18C the circled data cluster above 

the linear trendline are attributed to excess (biogenic) silica. The Mo curve was used to 

assess the redox potential of the water column because Mo precipitates from the water 

column and accumulates in sediments in euxinic (sulphidic) waters (Calvert and 

Pederson, 2007; Emerson and Huested, 1991). 
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Figure 18: XRF elemental cross-plots: (A) Cross-plots of %Al versus %P showing 

increasingly negative %Al with increasing %P (red outline); (B) Cross-plots 

of %Al versus %Ti illustrating the strong correlation between the elements 

(red line) and positive %Ti where %Al is negative (black outline); (C) 

Cross-plots of %Si versus %Ti showing a strong correlation (red line) with a 

large clustering of data (red oval) falling off the correlation time. The points 

plotted in and around the red oval are excess silica and is attributed to 

biogenic silica. 
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Subdivision of the Siliceous Mudstone Facies Using XRF Data 

By coupling XRF results with thin-section observations, the siliceous mudstone 

lithofacies was subdivided in six cores (Locker B-2-1, Harlow C-3-3, Beck C-4-1, Lee C-

5-1, Petty D-6-1, and Godfrey E-8-1) into (1) biogenic siliceous mudstone and (2) 

argillaceous siliceous mudstone facies (Figures 16 and 17). In cores without XRF results 

the siliceous mudstone facies could not be subdivided with confidence. The argillaceous 

siliceous mudstone facies corresponds with the high Ti and the presence of abundant 

agglutinated foraminifera, and the biogenic siliceous mudstone facies corresponds with 

low Ti and the presence of sponge spicules with lesser amounts of agglutinated 

foraminifera. 

 

Argillaceous Siliceous Mudstone 

Detrital, silt-sized quartz is interpreted as the dominant source of silica where 

agglutinate foraminifera are observed in high abundance with an absence of calcite-

replaced sponge spicules and radiolarians. Some of the agglutinate foraminifera tests are 

flattened, enhancing laminae in the dark, organic-rich matrix, and other tests have their 

original morphology preserved via pyrite precipitation in the test cavities (Figure 9E). 

Clusters of silt-sized quartz grains were observed in association with agglutinated 

foraminifera. Pike and Kemp (1996) interpreted these to be discarded “detritic covers” 

associated with foraminifera growth.  

Biogenic Siliceous Mudstone 

Biogenic quartz also contributes a significant portion of silica to the formation. 

Sponge spicules (common) and radiolarians (rare) (Figure 9F-G) are concentrated in the 
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facies. Most of the sponge spicules and radiolarians are completely or partially replaced 

by calcite, thus it is interpreted that the microcrystalline quartz observed and measured 

with XRF in the mudstone matrix is the authigenic product of the calcite replacement.  

Geochemical Trends of the Lower Barnett Section using XRF Data  

The lower Barnett strata record cyclic inputs of extrabasinal sediments (Figures 

16 and 17). The Ti curve reflects the cyclicity with sharp basal increases in Ti 

concentration followed by linear decay. The Si curve mimics the Ti curve, and indicates 

that cyclic pulses of detrital quartz and extrabasinal clays were transported into the basin. 

The low Si/Ti ratio suggests that the majority of the rock forming silica in the lower 

Barnett originate from extrabasinal sources. The variations of Ca concentration show the 

opposite trend to the Ti and Si curves. When extrabasinal quartz and clays are low, the 

intrabasinal carbonate minerals are high, suggesting that there is background 

sedimentation composed of intrabasinal sediments (carbonate silts and biogenic silica) 

that contributed sediment throughout the deposition of the lower Barnett but its overall 

contribution to the strata was diminished by the more dominant influx of the extrabasinal 

sediments. The trends terminate at the occurrence of the phosphatic packstone interval, 

represented by the P curve. The Mo curve does not covary with the other elements, nor 

does it show concentration trends. Overall it remained elevated during the lower Barnett 

deposition with some fluctuations of increased concentration.  

Geochemical Trends of the Middle Barnett Section using XRF Data  

The middle Barnett does not record cyclic inputs of extrabasinal sediments, rather 

it shows an elevated influx of extrabasinal sediments throughout the interval (Figures 16 

and 17). The Ti is elevated, with rare dips in concentration associated with carbonate silt 

beds. The Si curve mimics the Ti curve, and indicates that detrital quartz and extrabasinal 
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clays were transported into the basin. The low Si/Ti ratio suggests that the majority of the 

rock-forming silica in the middle Barnett is from extrabasinal sources. The Ca curve 

shows low concentrations except at rare occurrences of the skeletal packstone facies, 

suggesting that intrabasinal sediments (skeletal debris, carbonate minerals, and biogenic 

silica) contributed to the sediment supply throughout the deposition of the middle 

Barnett, but to a lesser amount than the extrabasinal sediments. The trends terminate at 

the occurrence of the phosphatic packstone interval, represented by the P curve. The Mo 

does not covary with the other elements; overall it shows elevated concentrations in the 

middle Barnett with a significant concentration increase near the top of the middle 

Barnett.  

Geochemical of the Upper Barnett Section using XRF Data  

The upper Barnett is characterized by a decreased influx of extrabasinal sediments 

throughout the interval (Figures 16 and 17). The Ti concentration in the upper Barnett is 

low compared to the lower and middle Barnett. The Si curve mimics the Ti curve in 

shape but remains at the same concentration as the middle Barnett. This indicates that 

detrital quartz and extrabasinal clays are contributing less sediment to the basin than was 

the case in the middle Barnett. The high Si/Ti ratio suggests that more of the silica in the 

upper Barnett originated from intrabasinal, biogenic sources rather than extrabasinal, 

detrital sources. The highly variable Ca concentrations are associated with occurrences of 

the skeletal packstone and phosphatic packstone facies, as well as carbonate concretions. 

This also suggests that intrabasinal sediments contributed more to the sediment supply of 

the upper Barnett than extrabasinal sediments, and the association of carbonate 

concretions with the upper Barnett suggests slower sedimentation during upper Barnett 

deposition than during the deposition of the lower and middle Barnett intervals. The 
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trends terminate at the occurrence of the phosphatic glauconitic lime packstone interval, 

represented by the P curve. The Mo does not covary with the other elements, the 

concentration at the base of the upper Barnett is sharply lower than the concentration at 

the top of the middle Barnett, and throughout the upper Barnett the Mo concentration 

gradually increases returning to the elevated concentration observed at the top of the 

middle Barnett in the phosphatic glauconitic lime packstone unit. The Mo concentration 

however sharply drops in this unit as it grades into the Pennsylvanian Marble Falls facies.  

USE OF CORE DATA IN INTERPRETING REGIONAL LITHOFACIES VARIABILITY 

The regional stratigraphic cross sections (Figures 19-22) are hung on the top of 

the phosphatic glauconitic lime packstone unit because it makes an excellent regional 

marker bed.  

The Llano Uplift was a regional structural control on the deposition of the Barnett 

strata, limiting subsidence of the southern FWB during the approach of Gondwana 

toward Laurussia. The tectonic stresses generated by the fold-thrust front activated faults 

prior to and during Barnett deposition, and the horst and graben structures partially 

controlled lithofacies distribution during the deposition of the lower Barnett. Evidence for 

syndepositional fault movement includes the preservation of the Devonian Doublehorn 

Shale in graben structures, a thickened lower Barnett section in graben structures, and the 

offset of the phosphate bed correlations across the study area. Strata on the Llano Uplift 

show increased variability because of the horst and graben structures that created a 

paleotopographic profile which controlled initial sediment distributions (Figures 19 - 20). 

Cores more distal to the Llano Uplift show less thickness variability than cores proximal 

to the Llano Uplift (Figures 21 and 22). 
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Figure 20: Northwest-southeast cross section (B-B’) emphasizing the strata differences 

between cores located in graben structures (Posey B-4-1) and cores located 

on horst blocks (Harlow C-3-3). This cross section shows sediment bypass 

of calcareous siliceous mudstone. 
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Figure 21: South-north cross section (C-C’) depicting the facies architecture of the 

Barnett away from the influence of the Llano Uplift to the south. The Rasco 

D-4-1 area was bypassed during the deposition of the lower Barnett because 

it was a high area.  
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Figure 22: Southeast-northwest cross section (D-D’) depicts the facies architecture of 

the Barnett where there was a strong influence from the Llano Uplift. This is 

shown by the lower Barnett deposited in the lows of the graben (Locker B-

2-1 and Mullis A-4-1) but bypassed the horst block highs (Moore C-1-1, 

Glaze C-2-3, and Powell B-3-1).  
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Interpretation of the Lower Barnett Section using Core Data  

Proximal to the Llano Uplift, the lower Barnett strata consist of the calcareous 

siliceous mudstone facies (Figures 19 and 20). The rocks are 15 to 20 ft (4.6 to 6.1 m) 

thick and are laterally discontinuous unit that was preferentially deposited in graben 

structures. In cores more distal to the Llano Uplift the lower Barnett strata undergo a 

lithology change and consist of the siliceous mudstone facies with occurrences of the 

phosphatic packstone facies prior to the top of the lower Barnett (Figures 21 and 22). 

Above the initial depositional phase, the remainder of the lower Barnett consists of the 

siliceous mudstone facies (Figures 19 – 22). The phosphatic packstone facies most 

commonly interrupts the siliceous mudstone deposition (Figure 22), but is less prevalent 

in cores containing the calcareous siliceous mudstone basal rock (Figures 19 and 20). 

Where XRF data are available, the lower Barnett is defined by cyclic sedimentation of 

the argillaceous siliceous mudstone facies and the biogenic siliceous mudstone facies 

(Figure 19). These rocks alternate as thin (<10 ft) deposits that are highly correlative 

from cores proximal to the Llano Uplift to cores distal to the Llano Uplift, with continuity 

only disrupted by the horst blocks (Figure 19).  

Interpretation of the Middle Barnett Section using Core Data  

The middle Barnett is primarily composed of the siliceous mudstone facies 

(Figures 19 – 22). The skeletal packstone facies is present in the middle Barnett, but the 

deposits cannot be correlated because they are generally less than 1 mm thick. Some 

stacked deposits of the skeletal packstone were observed, commonly found in 

stratigraphic association with laminae of the phosphatic packstone facies (Figure 20). 

The stacked phosphatic packstone facies that marks the top of the middle Barnett 

strata is thicker, ~5 ft (1.5 m), in cores proximal to the Llano Uplift, and thinner, <1 ft 

(<0.3 m) in cores distal to the Llano Uplift (Figures 19-22). The trend of decreasing 
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thickness of the phosphatic packstone facies is likely related to phosphate grain 

deposition from the gravity flows, which transported less material to the distal areas. In 

the middle Barnett this facies is very rarely found outside this interval.  

Where XRF data are available, the middle Barnett is defined by thickly bedded, 

~15 ft (4.6 m) argillaceous siliceous mudstone facies (Figure 19). These rocks are highly 

correlative across the study area, regardless of proximity to the Llano Uplift. The trend 

suggests an increase in basin sediment supply and that bottom water condition remained 

stable across the study area.  

Interpretation of the Upper Barnett Section using Core Data  

On the Llano Uplift the upper Barnett is commonly composed of the siliceous 

mudstone facies, with strata thickening in cores distal to the Llano Uplift (Figures 19, 21 

and 22), indicating increased accommodation space toward the north. Carbonate 

concretions are commonly observed in the upper Barnett and their abundances are 

interpreted to indicate net low sedimentation rates (e.g. Folk and Land, 1975; Coleman et 

al., 1993). Also, very common in the upper Barnett are occurrences of the phosphatic 

packstone facies (Figures 19-22); however, their common occurrence make the facies a 

challenge to correlate because of the resolution of the core description and distance 

between cores (Figure 21).Where XRF data are available (Figure 19) the phosphatic 

packstone facies was correlated using the elemental curves. This revealed highly 

correlative rock units showing a slight overall thickening trend in cores distal to the Llano 

Uplift. It also revealed evidence of erosion of the upper Barnett on a horst block (Harlow 

C-3-3) where as much as 10 ft (3.0 m) of strata were removed.  

The Pennsylvanian phosphatic glauconitic lime packstone unit that overlies the 

upper Barnett strata ranges from 1 to 3 ft (0.3 to 0.9 m), but does not show thickness 



 71 

trends (Figures 19-22). This suggests that the facies was reworked by bottom currents and 

distributed evenly over the area.  

BARNETT FORMATION EROSION WEST OF THE LLANO UPLIFT 

In the northwestern FWB, White (1948) and Henry (1982) both noted the removal 

of Barnett strata on the Bend Arch in Baylor, Archer, and Clay counties, Texas, related to 

erosion on the paleohigh. In the southern FWB, Erlich and Coleman (2005) recognized 

the complete erosion of the Lower Marble Falls Member to the west of the Llano Uplift 

(33-66 ft; 10-20 m); Wood (2013) also recognized erosion of lower Marble Falls strata in 

the area by the regional presence of the green illite claystone facies.   The current study 

simplified the depositional history of the area through the recognition of the erosion of 

the lower, middle, and upper Barnett strata in association with the erosion of the lower 

Marble Falls (see Figure 28). 

Unpublished core descriptions, logged prior to the present study, identified 24 feet 

of section (7.3 meters) in the Neal A-1-1 and approximately 38 feet of section (11.6 

meters) in the Johanson MC-1 cores as Barnett strata. However, the facies identified did 

not have similar sedimentological characteristics or geochemical attributes of Barnett 

facies. In addition, no phosphate beds were observed, and the phosphatic glauconitic lime 

packstone facies was absent at the top of the presumed logged Barnett strata. At first this 

was explained as a lateral facies shift, but no other such facies shift is observed in the 

dataset. During the present study, the presumed Barnett strata in the Johanson MC-1 and 

Neal A-1-1 cores, as well as the Simpson MC-2 core, were reevaluated and reclassified as 

middle Marble Falls facies and placed into the sequence stratigraphic framework 

established by Wood (2013) (Figure 23).  
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Figure 23: South to north cross section (E-E’) displaying eroded Barnett strata to the 

west of the Llano Uplift. The Marble Falls facies are reconstructed to show 

the sequence stratigraphic framework established by Wood (2013). 
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The revised core observations of the section in the Neal A-1-1 noted 19 feet (5.8 

meters) of the fissile calcareous argillaceous clay shale, described in Wood (2013) as a 

deep-water facies deposited under low-energy, restricted anaerobic conditions during 

low-sedimentation rates. In core it is dark gray color and fissile, containing abundant 

bryozoans, ostracods, and thin-walled brachiopods. No thin sections were taken in the 

facies because it is to fissile. The bottom 5 feet (1.5 meters) were identified as 

disaggregated chunks of the green illite claystone (Figure 23), described in Wood (2013) 

as either a paleosol formed during a sea-level lowstand or a transgressive marine 

claystone. In core it is gray-green in color and is used as a contact between the lower and 

middle Marble Falls facies. 

Upon review of the Johanson MC-1 core, 19 feet (5.8 meters) of the argillaceous 

calcareous mudstone, 10 feet (3.0 meters) of the green illite claystone, 5 feet (1.5 meters) 

of the conglomeratic wackestone to mud-dominated packstone, and 4 feet (1.2 meters) of 

the skeletal foraminiferal wackestone to grainstone, (as described by Wood, 2013), were 

identified (Figure 23). The argillaceous calcareous mudstone is not fissile, is dark gray to 

black in core, and is a deep-water mudrock that was deposited as part of the middle 

Marble Falls transgressive system tract. The deposition was interrupted by debris-flow of 

a conglomeratic wackestone to packstone facies, which is light gray to cream color in 

core and is composed of skeletal fragments including bryozoans, crinoids, brachiopods, 

and ostracods. The facies occurs in the middle Marble Falls, in close association with the 

green illite claystone (Wood, 2013). The green illite claystone was found in association 

with the interval and also the argillaceous calcareous mudstone. Finally, the skeletal 

foraminiferal wackestone to grainstone characterized by Eostaffella, fusulinids, and 
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millerelids, as well as peloids, coated grains, and superficial ooids occurs above these 

facies and, according to Wood (2013), is present in the upper Marble Falls.  

The Simpson MC-2 core was not previously described because it was not slabbed. 

The present study logged the core from the Ellenburger Group through the Marble Falls, 

but no Barnett strata were observed. The Marble Falls argillaceous calcareous mudstone 

was observed to unconformably overlie the Whites Crossing (Figure 23). It was 

interpreted to be equivalent to the argillaceous calcareous mudstone found in the middle 

Marble Falls of the Johanson MC-1 core.  

Aside from the identification of Marble Falls facies, the cores also lack phosphate 

grains, which are characteristic of the Barnett strata in the region, and the Pennsylvanian 

phosphatic glauconitic lime packstone unit. The description of the facies and thin section 

observations differed from the Barnett lithofacies. The other 26 cores in the dataset 

display Barnett lithofacies, correlative phosphate beds, and contain the Pennsylvanian 

phosphatic glauconitic lime packstone unit; they do not display the facies that were 

misclassified as Barnett outside of the Marble Falls Formation.  

The erosional event that occurred during the Pennsylvanian removed at least 40 

feet (12.2 meters) of lower Marble Falls strata, 2 feet (0.6 meters) of the phosphatic 

glauconitic lime packstone unit, and 30 feet (9.1 meters) of the Barnett Formation from 

the area (Figure 23). The erosion of the Barnett strata is restricted to the west of the Llano 

Uplift where accommodation space was less than that north of the Llano Uplift and 

further from the influence of the paleohigh. These cores are also located near or on other 

paleohighs, such as the Hall Uplift (Turner, 1970), whereas cores to the north were buried 

more deeply and the strata were not eroded. 
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PHOSPHOGENESIS DEPOSITIONAL MODEL 

Phosphate ooids, grains, and intraclasts are important components of the Barnett 

strata in the southern FWB in both abundance and use for correlations. For these reasons 

a phosphogenesis model is discussed before a depositional model for the Barnett 

Formation is presented. A literature review is presented here that identifies a 

phosphogenesis model applicable to the facies relationships, grain types, and grain-to-

grain relationships of the phosphatic packstone facies in the Barnett strata and the 

Pennsylvanian phosphatic glauconitic lime packstone unit.  

In modern environments phosphogenesis occurs at continental margins affected 

by upwelling which brings phosphorous-enriched waters to the surface, promoting 

primary productivity in the photic zone, leading to the development of suboxic to anoxic 

bottom waters and the supersaturation of pore waters with dissolved phosphate (Burnett, 

1977; Föllmi, 1993; Glenn et al., 1994a; Föllmi, 1996). With an abundant phosphorous 

supply, a zone of phosphogenesis (ZOP) develops on the outer shelf/upper slope at the 

upper boundary of the oxygen minimum zone (Figure 24) (Wignall, 1994; Föllmi 2016). 

In this zone the phosphorous is removed from the biologic cycling and concentrated in 

the sediment by an Fe-redox pumping mechanism that promotes the precipitation of 

apatite (Figure 25A) (Baturin, 1972; Föllmi, 1996; Trappe, 1998; Hiatt et al., 2015; 

Föllmi, 2016).  
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Figure 24: Idealized phosophgenesis model. Phosphate forms on the outer-shelf/upper-

slope at the oxygen-minimum zone. Vertical migration of the redox 

boundary in the sediment allows for multiple episodes of phosphosgensis at 

the outer-shelf/upper-slope and lateral transport downslope producing 

interbedding of the phosphate grains and organic-rich mudrocks. Glauconite 

genesis occurs on the inner shelf. Modified from Follmi (1996) and Suan et 

al. (2011). 

  



 77 

This mechanism creates a chemical gradient in the sediment that promotes 

phosphate mineral precipitation by the adsorption of organic phosphorous onto Fe-

oxyhydroxides in oxic bottom waters, and upon burial the phosphorous is released in the 

suboxic to anoxic interface where it becomes concentrated and precipitates as apatite 

(Jarvis et al. 1994; Föllmi, 1996). The pumping mechanism inhibits phosphorous from 

escaping from the sediments into the overlying water column by readsorption onto the 

Fe-oxyhydroxides (Jarvis et al., 1994). This zone is restricted to the upper 5 to 20 cm of 

sediment (Pufahl and Grimm, 2003) where phosphorous and other elements are readily 

available from seawater and alkaline elements are abundant (Figure 25A) (Glenn et al., 

1994b; Trappe, 1998).  

Apatite grain nucleation and crystallization occurs on existing mineral surfaces 

and biologic material (Föllmi, 1996), and some studies have attributed apatite 

precipitation to bacteria nucleation sites (e.g. Dahanayake and Krumbein, 1986; Schulz 

and Schulz, 2005; Bailey et al., 2007). Once nucleated, precipitation preferentially occurs 

on an existing apatite grain until phosphorous concentrations are too low (Van Cappellen, 

1991) or alkaline concentrations are too high (Baturin and Savenko, 1985; Glenn et al., 

1988). Pufahl and Grimm (2003) recognized that phosphatic ooids form by two 

mechanisms: (1) phosphogenesis, sediment reworking, reburial, and continued 

phosphogenesis, and (2) phosphogenesis, vertical migration of the redox boundary in the 

sediment, and continued phosphogenesis (Figure 25B).  

In sediment, a phosphate accumulation could remain pristine, as a single 

phosphate generation, undisturbed by bottom-water currents; it could become condensed 

through sediment winnowing and erosion; or it could become allochthonous re-exposing 

the deposit at the sediment-water interface through sediment reworking, lateral transport, 

and winnowing (Figure 25C) (Föllmi et al., 1991 and Föllmi, 1996). The phosphate 
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stratification type and energy intensity of the basin are interpreted based on the grain-to-

grain relationships, internal boundaries separating phosphate accumulation layers, 

internal microstratigraphic relationships, and sharp and erosive basal contacts (Föllmi, 

1996). 

In the Barnett strata the phosphatic packstone facies is interbedded with the 

organic-rich siliceous mudstone facies (Figure 12A-D), the phosphatic ooids show 

concordant concentric phosphate laminae (Figures 12G-H and Figure 13C), and 

condensed (Figures 12G-H and Figure 13C) to allochthonous deposits (Figure 15H-I). 

  



 79 

 



 80 

Figure 25: Phosphate grain accumulation schematics and stratification types. (A) 

Schematic diagram of the Fe-redox cycle. The phosphorous from the 

organic matter is taken up by the Fe-oxyhydroxy complexes. These 

complexes are buried and release the phosphorous in the sediment where it 

accumulates until high concentrations promote the precipitation of apatite. 

The upward migration of phosphorous is recycled back into the sediment by 

readsorption onto the Fe-oxyhydroxy complex (Trappe, 1998). (B) 

Mechanism of phosphatic ooid accretion from Pufahl and Grimm (2003). 

(C) Diagram depicted the different stratification types found in sedimentary 

phosphate accumulations. Modified from Follmi (1996).  
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BARNETT FORMATION DEPOSITIONAL MODEL 

Based on lithofacies, sedimentary structures, flora and fauna, organic and 

inorganic geochemistry, as well as the regional setting, a depositional model is presented 

for the Barnett Formation in the southern FWB that suggests the Barnett facies 

accumulated at the base of a deep-water slope to basinal setting between two widely 

separated paleotopographic highs, the Chappel Shelf to the west and the Llano Uplift to 

the south (Figure 26).  
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Figure 26: Generalized depositional model for the Barnett Formation that shows 

depositional processes that affected the strata. Highly modified from Loucks 

and Ruppel (2007).  
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DEPOSITIONAL SETTING AND PROCESSES 

The Barnett Formation was deposited in the FWB, a foreland basin that had 

limited connectivity to the open ocean which contributed to a stratified water column, 

shown by high phosphorous content, high organic matter content (average TOC 4.5%; 

Appendix A), elevated concentrations of Mo, and pyrite framboids throughout the 

section. During its deposition, basin upwelling along the Chappel Shelf, as well as 

terrigenous phosphorous inputs, brought phosphorous to the photic zone of the overlying 

water column and promoted primary productivity. Organic matter accumulations on the 

seafloor led to the high concentrations of organic phosphorous in the sediments. The high 

phosphorous concentrations promoted the formation of a ZOP at the outer-shelf/upper-

slope near the oxic-suboxic redox boundary.  

In the northern FWB the Barnett was deposited over a 25-m.y. period that had an 

average sediment accumulation rate of 14 μm/yr (Loucks and Ruppel, 2007). The 

biostratigraphic age controls in the southern FWB are not refined enough to calculate a 

precise sedimentation rate for different intervals, but because the observed lithofacies and 

depositional processes of the northern FWB are very similar to those of the southern 

FWB we suggest the southern FWB had a similar sedimentation rate. The significantly 

thicker strata in the northern FWB (550-1000 ft, 168-1000 m; Loucks and Ruppel, 2007; 

Pollastro, 2007) than the southern FWB (37-126 ft; 11-38 m) would suggest a lower 

sedimentation rate in the southern FWB, however, deposition of the Barnett strata in the 

northern FWB is interpreted to have begun earlier (Ruppel, 1989) than the Barnett 

deposition in the southern FWB based on the times constrained by conodont data from 

Barnett outcrops in the hill country of Texas. Therefore we suggest a maximum sediment 
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accumulation rate of the southern FWB to be 14 μm/yr with the possibility that it was less 

than that.  

The extremely low sedimentation rates and the high organic matter content 4.5% 

(Hoelke, 2011; Reed and Loucks, 2015; Appendix A) preserved in the Barnett strata 

indicates anaerobic bottom waters. In an aerobic environment bacteria rapidly consume 

organic matter, so the high TOC content in a starved basin suggests anoxic bottom waters 

persisted throughout Barnett deposition. Sedimentological evidence such as rare 

bioturbation, laminated sediments, fine pyrite framboids, and phosphates, also support 

this interpretation. 

All lithofacies show laminations that have been enhanced by postdepositional 

compaction; in the northern FWB the siliceous mudstone facies is estimated to show 65% 

compaction and the skeletal packstone facies is estimated to be compacted by 90% 

(Loucks and Ruppel, 2007). The laminated sediments are composed of compacted 

peloids, extrabasinal clays, and quartz and feldspar silt, which are likely sourced from the 

Caballos Arkansas island chain to the east, and intrabasinal carbonate shell fragments and 

phosphatic ooids and grains, which are sourced from the Chappel Shelf to the west. All 

these sediments indicate transport and the fine-grain size of the clays, quartz, and 

feldspars suggest a long-distance transport mechanism, such as turbidity currents, brought 

these sediments into the basin. Turbidity currents can transport material for hundreds of 

miles (Mulder and Alexander, 2001) and deposit a dilute turbidite in the basin because all 

the coarser material had already deposited before reaching the basin. 

Sediment composing the siliceous mudstone facies and the calcareous siliceous 

mudstone facies was sourced from (1) fine-grained material suspended in the water 

column (clays,  quartz, and feldspar grains) (2) pelagic skeletal material from the 

overlying water column (rare radiolarians were observed), and (3) from material shed off 
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the thrust front to the east and the Chappel Shelf to the west. Evidence of more proximal 

sediment sources include abundant sponge spicules which are transported into the basin 

from the adjacent slopes. Accumulation of fine-grained particles of clay, organic-matter, 

etc. is attributed to clay-flocculation in the water column, which forms larger, peloidal 

grains (Boggs, 1987) that can settle at a faster rate than clay-sized particles. The siliceous 

mudstone and calcareous siliceous mudstone lithofacies are interpreted to be deposited by 

settling from gravity flows and hemipelagic settling and later reworking by bottom 

currents on the basis of the fine-grain size, uniform mineralogical composition, lack of 

faunal diversity and in situ fauna, as well as starved ripples that were observed 

throughout the strata which are evidence of higher energy bottom-water currents that 

reworked sediment.  

Detrital, silt-sized quartz is a dominant source of silica where agglutinate 

foraminifera are dispersed throughout the argillaceous matrix. Studies investigating 

modern agglutinated foraminifera have found that they can survive short periods of 

anoxia (e.g. Bernhard and Reimers, 1991). Where they are present the bottom waters are 

interpreted to have had very low oxygen concentrations (e.g. ~0.05 ml/L or less; Bograd 

et al., 2002) and there could have been periods of anoxia that lasted for several months at 

a time (Schieber, 2009). The association of the agglutinated foraminifera with the 

framboidal pyrite (Figure 9E) is a strong indicator for anoxia in the overlying water 

column, and suggests that the gravity flows bringing in the sediment transported oxygen 

into the basin creating an opportunistic environment for the agglutinated foraminifera. 

However, once the flow stopped the waters became oxygen depleted and halted their 

proliferation as anoxic waters returned in the basin.  

The significant increase in the carbonate content of the calcareous siliceous 

mudstone facies (31.2% compared to 11.8% in the siliceous mudstone facies) is attributed 
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to mudflows originating from the Chappel Shelf and transporting fine-grained carbonate 

material into the basin during the initial Barnett deposition. These mudflows are 

expressed in the rock by the weakly laminated thin-shelled filibranch mollusk and weakly 

bioturbated sediments identified to be Cosmorhaphe burrows. These burrows are made 

by vermiform organisms in low-oxygen, fully marine, deep-sea environments (Pemberton 

et al., 2009) so doomed pioneer surfaces of these burrows suggests that the waters in the 

southern FWB were anoxic to euxinic during initial Barnett deposition, and once the 

oxygen transported into the basin was metabolized the vermiform organisms perished.  

The presence of the skeletal packstone facies in the strata is evidence of event 

deposits that interrupt the background sedimentation. The skeletal packstone is 

interpreted to be deposited by gravity flows of the downslope transport of filibranch 

mollusk and brachiopod skeletal fragments. The skeletal material was supported by both 

buoyancy and fluid pressure (Mulder and Alexander, 2001) and as the flow moved 

downslope phosphate grains were incorporated into the debris flow as an accessory 

grains. The phosphate grains observed in this facies are interpreted to represent the grains 

formed at the uppermost limit of the ZOP that became exposed at the sediment surface by 

bottom-water currents and were not reburied, thus easily being picked up by the flows 

moving across the area. The skeletal packstone facies occurs as millimeter thick deposits 

except in sections where multiple flows stack, where they are up to one inch (2.54 cm) in 

thickness. The thin laminae support long-distant transport of these sediments and are 

interpreted to be sourced from the upper slope of the Chappel Shelf. The initiation of the 

gravity flows is likely related to episodic storm events because no discernable 

depositional pattern was noted.  

The phosphatic packstone facies that subdivides the lower and middle Barnett 

strata are composed mainly of phosphatic ooids and occur at stratigraphic intervals that 
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correspond with major changes in clay mineral abundances. The phosphatic ooids are 

interpreted to have formed at the outer shelf/upper slope by a redox-aggradation 

mechanism, where phosphatic oolitic coatings are attributed to vertical migration of the 

redox boundary within the sediment evidenced by the concordant concentric phosphate 

laminae (Pufahl and Grimm, 2003). The ooids are not observed in any other lithofacies 

and are interpreted to have remained buried in the sediment while bottom water currents 

reworked the sediment above the ZOP and gravity flows transported other sediment into 

the basin. The accumulation of condensed deposits of the phosphatic packstone facies in 

abrupt alternation with the siliceous mudstone facies is therefore interpreted to be a result 

of downslope transport of ooids from the outer shelf/upper slope. Because these ooids are 

not seen in any other facies and because their occurrence correlates with major changes in 

clay mineral abundances we interpret that the ooids are transported into the basin as a 

result of an allocyclic change that initiated gravity flow transport of sediment from the 

outer shelf/upper slope.  

Though the phosphatic glauconitic lime packstone facies is of Pennsylvanian age 

it is discussed in the Barnett depositional model because it occurs at the top of the final 

change in clay mineral abundances, marking the top of the upper Barnett, and signals the 

end of Barnett deposition. The phosphatic ooids in this facies are also interpreted to have 

formed at the outer shelf/upper slope by a redox-aggradation mechanism, because of the 

concordant concentric phosphate laminae (Pufahl and Grimm, 2003), however the high 

abundance of glauconite grains suggests that sediment was also sourced from inner shelf 

where there was also a high Fe and K input to create the glauconite grains (Odin & 

Matter, 1981; Föllmi, 2016). The accumulation of allochthonous phosphatic glauconitic 

lime packstone facies is thus interpreted to be a result of downslope transport via gravity 

flows of phosphatic ooids from the outer shelf/upper slope and glauconite grains from the 
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inner shelf and subjected to subsequent reworking, during a period of sedimentary 

condensation related to an allocyclic change. This interpretation is supported because a 

high abundance of glauconite grains in the facies strongly suggests changes in 

paleoceanographic and paleogeographic conditions of the basin (e.g. Föllmi, 2016) and 

the presence of both phosphatic ooids and glauconite grains indicates long-term, low-

sedimentation rates, and sediment reworking (Föllmi, 2016). 

As discussed earlier, the cone-in-cone structures in the Vaca Meurta are late 

diagenetic features that are linked to hydrocarbon generation and high overpressures 

interpreted to be a product of differential shear (Rodrigues, 2008; Rodrigues et al. 2009). 

In the low-thermal maturity Barnett strata of the southern FWB the cone-in-cone 

structures are interpreted to be generated by differential shear between the siliceous 

mudstone matrix and the phosphatic packstone facies related to overpressure during 

hydrocarbon generation and migration. The thermally immature Barnett strata (Appendix 

A) in the southern FWB could explain why these features did not develop to the large 

scale as seen in the Vaca Muerta (e.g. Parnell et al., 2000; Rodrigues et al., 2009) and 

instead are small, few, and isolated.  

SEQUENCE STRATIGRAPHY SUMMARY 

Sequence stratigraphy applies a chronostratigraphic framework to a depositional 

model in order to understand facies response to changes of sediment supply and/or in 

accommodation related to sea-level changes and/or tectonic movements. It is difficult to 

apply these concepts to basinal mudrocks because of the limited facies variability and 

also because changes in sea level may not be reflected by the sediment deposited in a 

basin, for example Ross and Ross (1987) show a possible 12 third order sea level changes 

during Barnett deposition (Figure 1), but they are not recognizable in the southern FWB. 
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In this study I apply some sequence stratigraphic concepts to this data set because the 

phosphatic packstone facies and the phosphatic glauconitic lime packstone unit used to 

subdivide the Barnett strata are reliable chronostratigraphic marker beds.  

In other studies the occurrence of phosphates reflect major climate signal 

feedbacks and represent major changes in the depositional environment of the strata (e.g. 

Föllmi et al., 1994; Hiatt and Budd, 2001; Pufahl et al., 2003; Soudry et al., 2004), 

phosphates have been related to periods of sea-level rise (e.g. Sheldon, 1980; Arthur and 

Jenkyns, 1981; Baturin, 1982; Riggs, 1984; Cook et al., 1990; Glenn and Arthur, 1990; 

Riggs and Sheldon, 1990), and the comixing of the phosphates and glauconite grains has 

previously been related to a sea-level highstand (Amorosi, 1995)..  

In this study the occurrence and distribution of the phosphatic packstone facies is 

not random, other studies have noted this as well (e.g. Föllmi, 1996). The distribution of 

phosphate-rich intervals have been linked with marine transgression, periods of net low-

sedimentation rates, and condensed sections that can persist for several million years 

(e.g., Krajewski, 1984 and 1989; Hesselbo et al., 1990; Föllmi, 1996; Schutter, 1996; 

Proust et al., 1998; Trela, 1998; Siegmund et al., 2002; Pufahl et al., 2003; Shields et al, 

2004; Brett et al., 2004; Suan et al., 2011). For these reasons the phosphatic packstone 

facies and the phosphatic glauconitic lime packstone facies are used to define the tops of 

depositional cycles in the Barnett strata that relate to changes in sea-level.  

In this study a cycle is defined as a repeatable large scale pattern of deposition 

occurring over several million years. It is assumed that the cycles are on the million year 

time scale because the Barnett strata was deposited over 25-my in the northern FWB 

(Loucks and Ruppel, 2007). It is likely that there are many other depositional cycles in 

nearshore facies that record much shorter time frames, but in the basinal setting of the 
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Barnett strata the deposition rate is so slow that the sea-level fluctuations shown by Ross 

and Ross (1987) (Figure 1) cannot be defined in the rocks.  

The Barnett strata were deposited as a second-order sea-level rise (Figure 1) and 

the phosphatic packstone facies and phosphatic glauconitic lime packstone facies mark 

three cycle tops that show an aggradational stacking pattern. In the basin The lower 

Barnett cycle shows cyclic sedimentation of the distal, argillaceous siliceous mudstone 

facies and the proximal, biogenic siliceous mudstone facies, terminated at the phosphatic 

packstone facies cycle top; the middle Barnett cycle shows an increase in the distal, 

argillaceous siliceous mudstone facies terminated by the phosphatic packstone facies 

cycle top; and the upper Barnett cycle shows a decrease of the distal, argillaceous 

siliceous mudstone facies and an increase in the proximal, biogenic siliceous mudstone 

facies, terminated by the phosphatic glauconitic lime packstone facies cycle top. The 

cyclic stacking pattern shows an overall aggradational trend because the cycles show 

minimal facies variability and the same facies stacking pattern, and the sea-level curve 

(Figure 1) shows high sea-level persisted throughout Barnett deposition. The phosphatic 

glauconitic lime packstone facies is also interpreted to be the condensed section 

associated with the maximum flooding surface between the aggradational Barnett 

Formation and the progradational Marble Falls mudrocks. This interpretation is supported 

by the high abundance of glauconite grains which strongly supports changes in 

paleoceanographic and paleogeographic conditions of the basin and both the phosphatic 

ooids and glauconite grains observed in this unit indicates long-term, low-sedimentation 

rates (Föllmi, 2016). 
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STRATIGRAPHIC ARCHITECTURE 

In order to better understand the variability and distribution of the Barnett facies, 

the identified facies relationships were used to create an idealized depositional model 

(Figure 27) for the lower, middle, and upper Barnett Formation. 

LOWER BARNETT DEPOSITIONAL SUCCESSION 

Early Barnett sedimentation in the southern FWB was dominated by fine-grain 

carbonate-rich argillaceous sediments, derived from the adjacent Chappel Shelf, which 

were transported into the study area via mudflows and dilute turbidites (Figure 27A-C). 

Its geographic distribution was controlled by the horst and graben topography associated 

with the Llano Uplift and sediment preferentially accumulated in the graben structures. 

The resulting strata, calcareous siliceous mudrock facies, are interpreted to record 

deposition of the shallowest water Barnett sediment in a below storm-wave base, anoxic 

setting (Figure 27A).  

Continued deposition of the lower Barnett was dominated by peloids and an 

increase in fine-grained quartz sediments and clay minerals, and a corresponding 

decrease in the carbonate-rich sediments. The resulting strata, siliceous mudstone facies, 

are interpreted to record the deposition of dilute turbidites that originated from the distal 

structural highs bounding the basin (Figure 27B). Deposits of well-rounded, phosphate 

ooids were deposited throughout the study area and are interpreted to be an expression of 

a depositional cycle top (Figure 27C). The interpreted depositional environment of the 

lower Barnett strata is below storm-wave base, lower energy, anoxic setting with oxygen 

transported into the basin during the initial Barnett deposition.   
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MIDDLE BARNETT DEPOSITIONAL SUCCESSION 

Overlying the cycle top, the middle Barnett depositional succession shows less 

lithologic variability than the lower Barnett (Figure 27D). Sediments were dominated by 

peloids, fine-grained quartz, and clay minerals. The resulting strata, siliceous mudstone 

facies, are interpreted to record the deposition of a dilute turbidite that originated from 

the distal structural highs bounding the basin. Fragmented filibranch mollusks composed 

the only lithofacies variability in the middle Barnett. The resulting strata, skeletal 

packstone facies, are interpreted to be sourced from the adjacent Chappel Shelf and 

transported into the southern FWB via debris flows. Deposits of well-rounded, phosphate 

ooids at the end of the deposition of the siliceous mudstone facies are interpreted to be an 

expression of a depositional cycle top (Figure 27E). The interpreted depositional 

environment of the middle Barnett strata is below storm-wave base, lower energy, anoxic 

setting. 

UPPER BARNETT DEPOSITIONAL SUCCESSION 

Overlying the cycle top, the upper Barnett depositional succession shows greater 

lithologic variability than the middle Barnett (Figure 27F). As was the case for the lower 

and middle Barnett, sediments for the upper Barnett were dominated by peloids, fine-

grained quartz, and clay minerals. The resulting strata, siliceous mudstone facies, 

however are interpreted to have a greater intrabasinal sediment contribution attributed to 

hemipelagic settling and less frequent dilute turbidites entering the basin compared to the 

lower and middle Barnett mudrocks. Evidence for slower sedimentation rates is shown by 

the common occurrence of carbonate concretions and the common phosphatic packstone 

facies punctuating the siliceous mudstone facies. Deposits of well-rounded, fine-sand 

sized glauconite grains and phosphate ooids are interpreted to be the expression of a 

depositional cycle top and also the maximum flooding surface (Figure 27G), which 
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marks a transition from anoxic bottom waters of the Barnett strata to shallower, better 

oxygenated waters characteristic of the Marble Falls. The interpreted depositional 

environment of the upper Barnett strata is below storm-wave base, lower energy, anoxic 

setting. 
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Figure 27: Block models showing the depositional setting and facies patterns during the 

(A-C) lower Barnett, (D-E) middle Barnett, and (F-G) upper Barnett. (A) 

Deposition of the calcareous siliceous mudstone; (B) deposition of the 

siliceous mudstone; (C) deposition of the phosphatic packstone; (D) 

deposition of the siliceous mudstone and skeletal packstone; (E) deposition 

of the phosphatic packstone; (F) deposition of the siliceous mudstone, 

skeletal packstone, and carbonate concretion generation; (G) deposition of 

the phosphatic glauconitic lime packstone. 
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Figure 28: Block models showing the depositional setting of the lower Marble Falls to 

the middle Marble Falls. (A) The lower Marble Falls was deposited across 

the basin after the cessation of sedimentary condensation recognized by the 

phosphatic glauconitic packstone facies, (B) a sea-level fall caused the the 

lower Marble Falls and the lower, middle, and upper Barnett strata to erode 

to the west of the Llano Uplift and on isolated horst blocks (e.g. Harlow C-

3-3), (C) the green illite claystone was deposited as sea-level transgressed 

(Wood, 2013) and the middle Marble Falls was deposited across the region. 
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DISCUSSION 

The data in this study suggest an anoxic, deep-water, below storm-weather wave 

base, depositional setting for the Barnett strata in the southern FWB. Evidence supporting 

this interpretation includes depositional processes and fauna that suggest downslope 

transport from shallower water areas and distal sediment sources. Laminated sediments, 

rare bioturbation, elevated Mo concentrations, and high TOC percentages also suggest 

anoxic bottom waters. On a regional scale, there are many similarities between the 

Barnett mudrocks of the southern FWB and those of the northern FWB. The general 

lithofacies identified are similar and the sedimentary processes acted on Barnett strata in 

both the northern and southern FWB. Major differences include the much more common 

occurrence of radiolarians in the northern FWB and the less frequent occurrence of 

phosphate grains (Papazis, 2005; Loucks and Ruppel, 2007), as well as increased clay 

mineral abundances in the southern FWB (Figure 29; data from northern FWB from 

Loucks and Ruppel, 2007). These differences suggest that the Barnett mudrocks of the 

southern FWB are more proximal to a shoreline and the Barnett mudrocks of the northern 

FWB are more distal to a shoreline.  
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Figure 29: XRD analysis comparing the clay mineral abundances of the northern and 

southern FWB. 
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In addition to these differences the northern FWB shows an increase in pyrite 

framboids (Loucks and Ruppel, 2007) compared to the southern FWB (pyrite abundance 

by facies in northern FWB vs. southern FWB: (1) siliceous mudstone facies: 9.4% vs. 

3.8%, (2) skeletal packstone facies: 10.5% vs. 2.3%, and (3) carbonate concretion: 8.5% 

vs. 0.5%). The fine pyrite framboids found in the northern FWB Barnett strata are 

attributed to precipitation in a euxinic water column (Wilkin et al., 1997) and settling to 

the sea bottom (Loucks and Ruppel, 2007), the lower abundance in the southern FWB 

suggests an anoxic, rather than euxinic, water column. The longer deep-water renewal 

times of the northern FWB (8,000 to 20,000 years; Rowe et al. 2008) compared to the 

southern FWB (1,400 years; Hoelke, 2011) support a less restricted water mass in the 

southern FWB. These lines of evidence indicate that the waters of the southern FWB 

were less restricted than the waters of the northern FWB and indicate anoxic bottom-

waters, rather than the more restricted euxinic bottom-waters in the northern FWB.  

Monroe (2009) mapped the Barnett Formation in the southern FWB using 171 

wells from Johnson, Hill, Hood, and Somervell, and Bosque Counties TX and used the 

phosphatic intervals to correlate cycles in the Barnett Formation. The characteristics 

identified from wireline logs and thin section observations subdivided the Barnett into 

three cycles deposited in an aggradational stacking pattern and identified a phosphatic 

and glauconite rich condensed zone at the top of the formation as the maximum flooding 

surface. The wireline logs used in Monroe (2009) support the subdivision of the Barnett 

into lower, middle, and upper units made in this study using the phosphatic packstone, 

phosphatic glauconitic lime packstone, and XRF clay proxy curves.   
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CONCLUSION 

The Mississippian Barnett Formation in the southern FWB is composed of four 

lithofacies: (1) siliceous mudstone, (2) calcareous siliceous mudstone, (3) skeletal 

packstone, and (4) phosphatic packstone to grainstone. Also noted are carbonate 

concretions and bedding-parallel fibrous calcite beef veins exhibiting cone-in-cone 

structures. The Pennsylvanian phosphatic glauconitic lime packstone facies marks the 

transition from the deposition of the aggradational Mississippian Barnett mudrocks to the 

deposition of the progradational Pennsylvanian Marble Falls mudrocks.  

The Barnett Formation was deposited in a foreland basin that was poorly 

connected to the open ocean and had a stratified water column. Phosphogenesis occurred 

throughout Barnett strata deposition. The laminated sediments, high organic matter 

preservation, diagenetic pyrite framboids and rhombs as well as carbonate concretions, 

and the lack of infauna all indicate anoxic bottom waters throughout its deposition. The 

rare bioturbation is confined to the basal calcareous siliceous mudstone facies and is 

attributed to oxygen transport into the basin by gravity flow processes. The phosphatic 

packstone facies as well as the starved ripples observed throughout the section are 

indicative of reworked strata via bottom-water currents. Grain flocculation in the 

shallower water column is interpreted to have contributed to sediment deposition.  

Deposition of the strata is largely a result of dilute turbidites and other gravity 

flow processes that transported argillaceous and terrigenous sediments from the structural 

highs bounding the basin. The consistently fine grain size supports the concept that the 

sediment was transported for a long distance before reaching the FWB, or fine-grained 

sediment sources were available. The skeletal material and the phosphate grains were 

sourced from the adjacent Chappel Shelf by gravity flows. Hemipelagic and pelagic 
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sedimentation expressed in the sediment by peloids and rare radiolarians, contributed 

sediment from the oxygenated mixed layer of the water column.  

In the southern FWB the Barnett Formation was deposited over inherited basin 

topography related to the karsting of the Ordovician Ellenburger Group and 

syndepositional fault movement reacting to the tectonic forces generated by the approach 

of the Gondwanna towards Laurussia. Strata thickening in the graben structures, as well 

as offset of the phosphatic packstone facies provide some evidence of the inherited basin 

topography.  

The Barnett Formation was deposited during a long-term, second-order sea-level 

rise. The phosphatic packstone intervals used to subdivide the Barnett strata and the 

phosphatic glauconitic lime packstone unit are interpreted as cycle tops and the 

phosphatic glauconitic lime packstone is additionally interpreted as the maximum 

flooding surface.  To the west of the Llano Uplift the Barnett strata have been eroded, 

along with the lower Marble Falls, as a result of horst activation and a Pennsylvanian 

glacioeustatic sea-level fall.  

The present study was undertaken to complete the depositional model of Barnett 

strata in the FWB of north-central Texas by investigating the strata in the southern FWB 

and comparing it to the strata of the northern FWB. A depositional model was presented 

that incorporated the vertical and lateral lithofacies variability observed in cores, thin 

sections, and organic and inorganic geochemical results. The interpretations presented in 

the present study can be applied to other areas of the basin to better understand the 

regional depositional history of the Barnett Formation. 
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Appendix A – TOC Data 

 

Table A1: TOC data (wt%) from Hoelke (2011). 
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Table A1 continued: TOC data (wt%) from Hoelke (2011). 
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Well 
Name 

Well 
Code 

Depth 
(ft) 

LECO 
TOC 

Lee C-5-1 1240 4.78 

Lee C-5-1 1250 7.88 

Lee C-5-1 1258 4.60 

Lee C-5-1 1263 4.20 

Lee C-5-1 1265 4.55 

Lee C-5-1 1278 8.19 

Lee C-5-1 1281 5.52 

Lee C-5-1 1289 5.86 

Lee C-5-1 1301 5.42 

Lee C-5-1 1305 1.60 

Lee C-5-1 1306 1.66 

Petty D-6-1 1675 6.21 

Petty D-6-1 1678 5.56 

Petty D-6-1 1685 5.24 

Petty D-6-1 1715 9.00 

Petty D-6-1 1720 8.76 

Petty D-6-1 1735 2.95 

Petty D-6-1 1746 3.80 

Petty D-6-1 1769 3.82 

Petty D-6-1 1778 5.62 

Scoggins* A-2-1 767 7.57 

Scoggins* A-2-1 789 3.89 

Scoggins* A-2-1 793 4.21 

Locker* B-2-1 603.1 3.75 

Locker* B-2-1 628.25 7.07 

Beck* C-4-1 1254.33 3.75 

Beck* C-4-1 1270 3.08 
 

Table A2: Leco TOC data (wt%).  * indicate data from Reed and Loucks, 2015. 
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Table A3: Rock-Eval pyrolysis of samples in Table A2 showing the Barnett Formation 

in the southern FWB is thermally immature.  
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Appendix B – Core Descriptions 
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