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Species Distribution Models (SDMs) are statistical tools used to develop 

continuous predictions of species occurrence. ‘Integrated SDMs’ (ISDMs) are an 

elaboration of this approach with potential as useful tools that allow for the dual use of 

opportunistically collected presence-only (PO) data and site-occupancy (SO) data from 

planned surveys. These models also account for survey bias and imperfect detection 

through the use of a hierarchical modeling framework that separately estimates the species-

environment response and the detection process. This is particularly helpful for 

conservation applications and predictions for rare species, where data are often limited and 

prediction errors may have significant management consequences. Despite this potential 

importance, ISDMs remain largely untested under a variety of scenarios. 

I applied the ISDM framework to Baird’s tapir (Tapirus bairdii), an endangered 

large mammal that is found in Mesoamerica. The discrepancy between expert opinion and 

population estimates from the ISDM suggested further investigation was needed. Using a 

sensitivity analysis that tested modelling decisions, I found that site area had the strongest 

effect on the magnitude of population estimates and underlying intensity surface, which 

was driven by estimates of model intercepts. Selecting a site area that accounted for the 
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individual movements of the species within an average home range led to population 

estimates that coincided with expert estimates.  

I used the lessons learned from the sensitivity analysis to employ an ISDM in a 

Range-wide Conservation Plan (RWCP) for Baird’s tapir. The outputs from this model 

were combined with a hotspot analysis to delineate habitat patches for the species, and a 

graph network used to investigate the connectivity between these patches. In light of the 

results from this exercise, the following actions are recommended to facilitate the 

conservation of Baird’s tapir: 1) protect existing habitat by strengthening enforcement in 

areas already under protection, and working with indigenous territories to preserve and 

enforce their land rights; 2) re-establish connections between habitat patches; 3) conduct 

additional non-invasive surveys in patches with little or no data on species presence; 4) 

collect more telemetry data on the species to better estimate home range size and dispersal 

capabilities; and 5) further develop robust models to more accurately predict true 

probabilities of presence, connectivity, and viability. 
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CHAPTER 1: Current practices and future directions in modeling the 

distribution of species to inform conservation 

1.1 BACKGROUND 

Research and public attention on environmental conservation are growing rapidly 

as increasing amounts of evidence demonstrate a precipitous decline in biodiversity and 

ecosystem functioning, often due to land use change and other human-caused disturbances 

(Dirzo et al., 2014; Foley et al., 2005; Potts et al., 2010). Human influence on this dynamic 

requires the development of strategies to better manage natural resources, in order to 

preserve the immense benefit they provide to humanity (Millennium Ecosystem 

Assessment, 2005). The focus on species biodiversity is one of the central components of 

environmental conservation in general. 

Species conservation revolves around two basic pieces of information: what are 

they? and where are they? Despite the simplicity of this information, the vast multitude of 

species and the difficult environments in which they occur have led to huge gaps in 

knowledge about biodiversity. These gaps are widely recognized as the Linnaean and the 

Wallacean shortfalls. Named after Carl Linnaeus (1707 - 1778), the father of modern 

taxonomy, the Linnean shortfall refers to the large number of species which remain 

unknown to science (Raven & Wilson, 1992). Some estimates have shown that 

approximately 90% of species are still awaiting discovery (Mora, Tittensor, Adl, Simpson, 

& Worm, 2011). While the Wallacean shortfall, named after Alfred Russel Wallace (1823 

- 1913), refers to the limited information that exists about the distribution of species 

(Lomolino, 2004). This review will focus on issues surrounding the second problem - 

improving knowledge of species distributions. 
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Before diving into the specific concerns related to the study of species distributions 

for conservation purposes, it is important to note that there are other reasons to be interested 

in their study, including their use in examining biogeographic patterns and the 

macroecological theories that explain them. However, this review will seek to understand 

the science behind mapping the distribution of species as it relates to conservation. For this 

reason, the focus will often return to the challenges encountered when mapping rare 

species, or what to do in the case of limited information, as these scenarios are common 

when mapping the distribution of species for conservation. Species rarity can take many 

forms, with differing effects for how to understand and map species distributions (Gaston, 

1994; D. Rabinowitz, 1981).  

Several different strategies are used to map the spatial distribution of individual 

species. Range maps are one of the most basic of these methods. They are created by 

drawing a smooth outline around records of species occurrence, usually following expert 

opinion or boundaries of ecoregions (Lomolino, Riddle, Brown, & Whittaker, 2010). These 

range maps often grossly overestimate actual occupancy of the species (Hurlbert & Jetz, 

2007), while the raw point locations on which they are based underestimate this property 

(Hurlbert & White, 2005). This issue (range maps vs. point locations) is also described by 

the differences between extent of occurrence (EOO) and area of occupancy (AOO), which 

are two ways to conceptualize a species’ distribution (Gaston, 1991). EOO, the larger of 

the two, is generally delineated by drawing a minimum convex polygon (or some similar 

geometry) around the known populations of the species. This concept generally aligns with 

the process of creating range maps. On the other hand, AOO is defined as the area within 

the EOO that is occupied by the species (excluding cases of vagrancy) and is dependent on 

the resolution of the analysis (Figure 1.1). This delineation falls closer to a map based 

solely on point observations or confirmed locations of the species. 
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Figure 1.1: (A) Spatial distribution of presence points, (B) extent of occurrence and (C) 

area of occupancy delineated from the points (IUCN, 2001). 

Despite the inaccuracy of range maps, they are one of the main tools used in IUCN’s 

Red Listing process, which ranks species according to their threatened status. Two out of 

the five criteria for assessing species include variables related to geographic distributions 

(range size and fragmentation) (IUCN, 2016a), and range maps are often used to determine 

whether these criteria apply to the species being assessed. Another issue related to the Red 

List and species distributions, is that of species without enough information to form an 

assessment. These Data Deficient species represent nearly 20% of assessed species (IUCN, 

2016b). Though sometimes this designation revolves around issues of taxonomic 

uncertainty, related to the Linnean shortfall mentioned above, often this assessment is 

reached when the species is so rare that it has been observed only a handful of times. 

Occasionally, the only piece of information about the distribution of a species is the type 
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locality at which it was discovered (as is the case with many amphibians) (Stuart et al., 

2004).  

Species distribution models (SDMs) are spatially explicit statistical tools used to 

model species-environment relationships (Guisan, Antoine, & Zimmermann, 2000). SDMs 

developed out of earlier disciplines, including ecological gradient analysis, biogeography, 

and geographic information science (GIScience) (Franklin, 2010a). SDMs have been 

referred to by many different names throughout the course of their development, including 

habitat suitability models (HSMs), ecological niche models (ENMs), predictive habitat 

distribution models, and resource selection functions (Elith & Leathwick, 2009), with 

species distribution models emerging as the most commonly used descriptor amongst 

current practitioners. SDMs experienced an explosion in popularity starting during the 

early 2000s (Vaz, Cunha, & Nabout, 2015) with the increase in availability of freely 

available data on both species occurrences (e.g. Global Biodiversity Information Facility - 

GBIF) and environmental predictors (e.g. WorldClim), as well as increasing computing 

power and availability of open-source software programs to prepare data and run models 

(e.g. MAXENT).  

SDMs can be projected across geographic space to produce a spatial prediction of 

where the species occurs, often representing an improvement over expert range maps. 

However, SDMs cannot be implemented with insufficient data on the target species - ten 

to thirty records have been suggested as the minimum amount needed, depending on the 

modeling framework (Jiguet, Barbet-Massin, & Henry, 2010; Pearson et al., 2006; 

Stockwell & A. Townsend, 2002; Wisz et al., 2008). Deductive habitat models may be an 

option for species with too few observations to run an SDM (Rondinini et al. 2011). This 

challenge is sometimes referred to as the “Rare Species Paradox” in the SDM literature - 

the fact that those species which are most in need of conservation are sometimes the ones 
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for which SDMs cannot be effectively implemented (Lomba et al., 2010). Despite this 

challenge, when enough data do exist, SDMs represent a good compromise between range 

maps and point locations and are particularly appropriate for many conservation-related 

applications, such as projecting range expansions of invasive species, predicting species 

range shifts due to climate, and identifying suitable areas for translocations (Guisan et al., 

2013). The ability to make these projections to new locations or time periods is one of the 

key advantages of SDMs over simple range maps or even deductive models. 

1.2 METHODOLOGICAL CONSIDERATIONS 

SDMs have been implemented across a variety of different methodological 

frameworks, including environmental envelopes, generalized linear models (GLMs), 

general additive models (GAMs), maximum entropy (i.e. MAXENT), decision trees, and 

other machine learning algorithms (Franklin, 2010a; Vaz et al., 2015). The choice of 

statistical framework is usually one of the most important decisions a researcher makes 

when implementing SDMs. In their seminal review, Guisan et al. (2000) pointed out the 

lack of studies comparing frameworks. Since then, this type of comparison has become 

commonplace, and most SDM studies now include more than one type of statistical 

framework (Elith et al., 2006). In fact, ensemble forecasting, a method which combines the 

results from many different frameworks (Araújo & New, 2007; Thuiller, Lafourcade, 

Engler, & Araújo, 2009), is a new and rapidly growing strategy in SDMs introduced to 

reduce the risk associated with focusing on one framework, and to quantify uncertainty 

(Vaz et al., 2015).  

SDM research increasingly investigates the sensitivity of results to different 

modeling decisions, as these different user decisions (framework and settings) can lead to 

vastly different results (Elith & Graham, 2009). A major criticism levied against SDM 
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researchers in recent years is an unquestioning use of default settings, including a lack of 

awareness about model assumptions (Araújo & Peterson, 2012). Some of this 

misunderstanding revolves around the two main types of response data used in SDMs, 

presence-absence and presence-only (Jiménez-Valverde, Lobo, & Hortal, 2008; Soberón 

& Nakamura, 2009). For example, the most common type of data used in SDMs is 

presence-only, as it is readily available from digitized museum inventories or other sources. 

However, the most robust SDM methods are typically those that use presence-absence (PA) 

data. This has led to the ad hoc creation of pseudoabsences - points distributed (randomly 

or uniformly) across the study area that are used in place of absences in the model (Pearce 

& Boyce, 2006). In addition to the lack of agreement on the methodology for distributing 

these pseudoabsences (Barbet-Massin, Jiguet, Albert, & Thuiller, 2012; VanDerWal, Shoo, 

Graham, & Williams, 2009), their use has important implications for the interpretation of 

SDM outputs. 

1.2.1 Presence-absence Data 

Though presence-absence data are considered higher quality than presence-only 

data in many respects, there is a problem with absences related to their detectability. This 

issue is called imperfect detection (MacKenzie, Nichols, Hines, Knutson, & Franklin, 

2003), and must do with the fact that absences are difficult to confirm (Lobo, Jiménez-

Valverde, & Hortal, 2010). For example, just because a species was not observed at a time 

and place, does not mean the species does not occur in that area. It is possible the species 

was simply in a different area at that time (as with mobile animal species), or that it is hard 

to detect even when present (as with cryptic plant species). Occupancy models were 

developed to account for imperfect detection using a hierarchical framework (MacKenzie 

et al., 2006), also referred to as multilevel models, mixed models or random-effects models. 
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This hierarchical framework has separate levels for occupancy (the process of interest, i.e. 

the state variable) and probability of detection (the nuisance variable) (M. Kery & Royle, 

2015; J. A. Royle & Dorazio, 2008). These levels are linked through conditional 

probability; in this case, the detection of the species is conditioned on its presence (i.e. the 

species cannot be observed if it is not present). This type of modeling also allows for nested, 

non-independent data, and is thus a good fit for data collected under the repeat observation 

design described below. 

To estimate detectability, multiple observations at each sampling location are 

usually required. Camera traps are particularly useful for providing this type of data, as 

they can be set and left in the field for weeks or months at a time (O’Connell, Nichols, & 

Ullas Karanth, 2010). Whenever the motion sensor is tripped, a photo is taken. This data 

can then be separated into sampling occasions, usually periods that last multiple days, to 

avoid having too many non-detections and to ensure independence of detections within a 

site (Rovero and Zimmermann 2016). A 1 or a 0 is then assigned according to whether the 

species of interest was detected or not during that occasion. These sampling occasions 

combine to make a detection history at each sample location (i.e. a vector of 1’s and 0’s). 

For example, a camera may be deployed for a fifty-day period and split into sampling 

occasions of 10 days each. In this case, the detection history for a site might look like 0 0 

1 0 1, if the species went undetected on sampling occasions 1,2, and 4, while it was detected 

on sampling occasions 3 and 5. In a simple detection model without covariates in the 

detection process, the probability of detection for the species at this site is 2/5, or 40%. 

This implies that there is nearly an 8% chance that the species will go undetected across all 

five observations, even though it is present at the site. For this reason, SDMs that do not 

incorporate imperfect detection, often underestimate the true occupancy of the species 

across the study area. The length of the detection history is usually set to be long enough 
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to estimate detectability reliably, but also meet the assumption of site closure (no 

immigration or emigration from the site during sampling). 

The fitted occupancy model can be used to make predictions at unsampled sites 

across the study area. However, data collected for occupancy models are often limited to 

small study areas, since this type of sampling is costlier and time consuming than collecting 

presence-only data (which might only require downloading museum records from GBIF). 

Due to this limited spatial coverage, predictions from occupancy models are typically not 

used to project species distributions across larger unsampled regions (Marc Kery, Gardner, 

& Monnerat, 2010). Though it has been shown that failing to account for imperfect 

detection can lead to biased parameter estimates (Dorazio, 2012; Lahoz-Monfort, Guillera-

Arroita, & Wintle, 2014) among other issues (e.g. underestimation of occupancy), this type 

of framework is often not discussed in the SDM literature (Franklin, 2010a; Townsend 

Peterson et al., 2011), possibly due to their limited use in making spatial predictions, one 

of the main emphases of SDMs (Kéry, 2011). A Web of Science search (conducted 

February 6th, 2018) returned 5618 articles with “species distribution model*” or 

“ecological niche model*” in the topic, 1825 with “occupancy model*” or “imperfect 

detection”, and only 94 articles that are found in both searches. 

1.2.2 Presence-only Data 

Presence-only data have become one of the most commonly used response variable 

types, as they are easily collected or digitized from museum records. Multiple frameworks 

for modeling presence-only data in SDMs have been developed throughout the years. Early 

works found these models to be useful tools for conservation management, despite the 

limitations of PO methods in general (Pearce & Boyce, 2006). Some of these early 

presence-only frameworks (e.g. envelopes) are no longer used, following the introduction 
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of a presence-only algorithm based on maximum entropy (Phillips, Dudík, & Schapire, 

2004) that has often been found to perform well in terms of predictions (Elith et al., 2006; 

Vaz et al., 2015). This framework is most commonly implemented through the software 

MAXENT, and can fit complex response curves, yet it has been criticized as a “black box”. 

Despite concerns voiced by (Yackulic et al., 2013a) about the widespread misuse of 

MAXENT, including lack of accounting for spatially biased samples and misinterpretation 

of model outputs, this framework remains one of the most popular used in SDM studies 

today (Vaz et al., 2015). 

One issue with presence-only models is that they can only provide predictions about 

relative probability of presence, not absolute (i.e. actual) probability of presence (Hastie & 

Fithian, 2013). For example, in a presence-only model, a prediction of 0.5 does not mean 

that there is a 50% probability that the species occupies the site, it is instead analogous to 

the site being half as suitable as the most suitable site in the study area. Despite this 

challenge, some researchers have developed methods which claim to estimate absolute 

probability from models built on presence-only data (Christopher T. Rota et al., 2013). 

However, other authors have shown that these methods fail to adequately estimate true 

probability of presence, stating that there is “no panacea for lack of data on species 

prevalence” (p. 1409) (Phillips & Elith, 2013). Estimates of absolute probability of 

presence are more meaningful, therefore, researchers will continue to investigate ways to 

estimate this property with limited data. This is especially true of SDMs used for 

conservation, as estimates of absolute probability (or even density) are necessary for certain 

applications, including identification of sites for translocations and reintroductions, 

conservation planning, reserve system design, and integration with Population Viability 

Assessments (Townsend Peterson, 2006). 
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Method Advantages Disadvantages 

Maximum 

Entropy 

(MAXENT) 

-Often performs well in model 

comparisons that assess accuracy of 

predictions 

-“Black box” 

-Assumptions of the model are 

often ignored, and defaults setting 

used where inappropriate 

-No straightforward method to 

account for spatially biased 

sampling data 

Point Process 

Model 

-Provides well-developed diagnostic 

tools to assess models 

-Clear methods to follow for 

selection of quadrature points (i.e. 

pseudoabsences) 

-Does not account for imperfect 

detection  

Occupancy 

Models 

-Accounts for imperfect detection -Requires data collected from 

planned surveys (i.e. detection 

histories or point counts) that 

often cover limited geographic 

areas 

Integrated 

SDM 

-Combines all the advantages of 

PPMs and occupancy models, so that 

presence-only data and presence-

absence data can be analyzed 

together 

-Untested on real-world 

applications 

Table 1.1: Advantages and disadvantages of four SDM frameworks. The most common 

PO framework (i.e. Maxent), and the models which combine to create the 

Integrated SDM. 

1.2.3 Spatially Biased Sampling of Presence Data 

Another common issue in SDMs is spatial bias in the sampling of presence data, 

which violates the assumption of a random sample. This is not to be confused with spatial 

autocorrelation, which is a spatial pattern that can result from species interactions or 

spatially structured environmental data (J. Miller, 2012). Sampling for species can be 

difficult and costly, whether due to steep terrain, impassable swamps, or the inability to 

access private land. Often sampling occurs close to roads, due to the ease of access, or in 

protected areas sampling might be biased towards navigable rivers (the main method of 
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traveling in these environments). If sampling effort is well documented, most methods 

provide means to correct for the uneven sampling. However, this information is rarely 

recorded, often leading modelers to use ad hoc approaches to incorporate sampling bias in 

the model (Beck, Böller, Erhardt, & Schwanghart, 2014; Clements et al., 2012).  

Taking a global perspective, there is a spatial bias of data collection towards 

temperate zones and Western countries, and less effort in the Tropics and developing 

countries (Collen, Ram, Zamin, & Mc Rae, 2008; C. Meyer, 2015). This is particularly 

concerning because most of the World’s biodiversity and endangered species are found in 

Tropical regions. This exacerbates some of the challenges to SDM research which have 

already been mentioned, including working with limited presence data, and leads to a lack 

of SDM studies where they are needed the most (Cayuela et al., 2009; Feeley & Silman, 

2011). 

1.2.4 Model Thresholding 

SDMs typically generate a probability or suitability score which ranges from 0 to 

1. It is common practice to threshold this result to produce a binary presence-absence map 

for the species. This might be for practical reasons, such as creating a refined range map, 

or it might be to assess the accuracy of the model by comparing the prediction to presence-

absence test data (either withheld from the data set, or independently collected). When 

assessing the accuracy of a thresholded SDM, there are two types of errors which are 

possible: predicting the species as absent in an area when in fact it is present (i.e. false 

negative), and conversely, predicting the species as present when it is absent (i.e. false 

positive). Modelers try to balance these two types of errors, since focusing on lowering the 

incidence of one type of error usually causes the other to increase. 
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1.2.5 Accuracy Assessment 

When using SDMs for conservation, some papers suggest general rules to follow 

to prioritize the types of errors that are generated (Araújo & Peterson, 2012). For example, 

one could claim that false positives are costlier, to avoid wasting limited conservation 

resources on areas where the species is not found. On the other hand, false negatives could 

be costlier, if the species is so rare you cannot afford to lose any possible habitat. The 

general rule to follow, is that the costlier error depends on the context (Loiselle et al., 2003), 

possibly considering the rarity of the species and the availability of resources that can be 

used for conservation actions. 

Interestingly, if enough presence data are available, rare species can produce more 

accurate models than widespread species, possibly because they have narrow 

environmental niches (Hernandez, Graham, Master, & Albert, 2006; M. McPherson & Jetz, 

2007; Tsoar, Allouche, Steinitz, Rotem, & Kadmon, 2007). However, the increased 

accuracy from these studies may also be due to the properties of the data and the accuracy 

metric used, particularly the area under the receiver operating characteristic curve (AUC) 

(Jiménez-Valverde et al., 2008; Lobo, Jiménez-Valverde, & Real, 2008). The use of this 

measure has become common in SDM accuracy assessment because it is “threshold 

independent”, and thus does not require the user to make difficult decisions about which 

threshold to use (Liu, Berry, Dawson, & Pearson, 2005). Implicitly, rare species have lower 

prevalence (ratio of presences to absences) and relative area of occurrence (ratio of extent 

of occurrence to extent of study area), which leads to inflated AUC. Despite this and other 

problems (i.e. using pseudoabsences as test data), the frequent use of AUC in SDM studies 

has led to an unquestioning reliance on it to measure accuracy, when other metrics might 

be more appropriate. In fact, it is now recommended practice to include more than one 

measure of accuracy, as they can provide different perspectives (Lobo et al., 2008). 
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1.2.6 Virtual Species Approach 

Simulated data are becoming more popular in SDM studies to investigate the effects 

of modelling decisions and to test model assumptions (J. Miller, 2014; Zurell et al., 2010). 

This is especially true of models that implement new and novel methods to demonstrate 

their advantages over more traditional methods (Crase, Liedloff, & Wintle, 2012; Dorazio, 

2014a). Real species data present a challenge due to the multiple confounding effects of 

unknown sampling effort, complex species-environment relationships, unknown or 

unmodelable historical biogeographic contexts, and species interactions. Virtual species 

are useful in that the researcher knows all of the necessary information about the species 

and can change these settings to investigate the effect of issues that exist with real species 

data (e.g. spatially biased sampling effort, sparse data, or low species detectability). There 

are multiple considerations when generating virtual species for SDMs, including the 

complexity of virtual species responses to the environment, whether to include 

stochasticity (or randomness in the species response), and whether to use real 

environmental data (as opposed to simulated layers). The use of virtual species is now 

common in both SDM (Elith & Graham, 2009) and occupancy studies (Guillera-Arroita, 

Ridout, & Morgan, 2010). 

1.3 THEORETICAL CONSIDERATIONS 

Methodological decisions made by the SDM user have important implications for 

the interpretation of model results. These interpretations have a statistical basis, but also a 

theoretical one. For example, is the mapped prediction from the model the true distribution 

of the species? Below I discuss the different theoretical frameworks that impact the 

understanding and implementation of SDMs. This includes the BAM framework, niche 

theory, potential vs. actual distributions, and indirect vs. direct predictors.  
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1.3.1 Distributions and Niches 

Species occupy geographic space through the movements and locations of 

individuals, and these individuals combine to make up the species’ distribution, an abstract 

representation of where the species can be found. This spatial configuration is generally 

determined by the ecological requirements of the species, also referred to as the species’ 

niche. Much has been written about ecological niches in general (Chase & Leibold, 2003; 

Elton, 1927; Grinnell, 1917; Hutchinson, 1957), as well as their relation to species 

distributions (Soberón, 2007; Townsend Peterson et al., 2011). The niche is determined by 

a variety of factors, including climate, resource availability (i.e. food, etc.), predators, 

competitor or facilitator species, and even parasites and diseases. Considering the many 

different definitions of the ecological niche, from simple to complex, it is convenient to 

focus on two definitions when thinking about SDMs: the Grinnellian and the Eltonian. The 

Grinnellian niche is determined by “non-interactive”, abiotic variables (e.g. climate) at 

coarse environmental resolution (also sometimes referred to as scenopoetic variables), 

while the Eltonian niche includes biotic interactions which act at local scales (Soberón, 

2007). These two niche definitions form the basis of the BAM framework (for Biotic, 

Abiotic and Movement). 

The BAM framework was developed to better understand the theory behind SDMs 

(Soberón & Peterson, 2005). This conceptual model shows that species distributions are 

determined by three main categories of factors: Biotic, Abiotic, and Movement. Abiotic 

variables include climate, topography, and other physical environmental factors which 

determine the potential distribution of a species. Biotic variables include competitive or 

symbiotic relationships with other species, while movement variables determine if a region 

is accessible to the species in question, either due to distance or dispersal barriers. These 
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last two factors, biotic and movement, in combination with abiotic factors, determine the 

actual distribution of a species. 

It is important to understand niche theory when conducting SDMs, as the species’ 

niche determines the environmental space occupied by the species, which in turn is 

manifested in geographic space. It is this back and forth interplay between geographic and 

environmental space (also known as “Hutchinson’s Duality”) which allows us to model 

species distributions using SDMs (Colwell & Rangel, 2009). Despite the importance of 

niches, SDM researchers have generally focused on species distributions, as opposed to 

niches, because the latter are harder to define and there is ongoing debate about what a 

“niche” means (McInerny & Etienne, 2012). 

1.3.2 Potential vs Realized Niche 

Niches have three nested realizations which help elucidate the relationship between 

environmental and geographic space. The fundamental niche represents the entire 

environmental space that a species could utilize (Hutchinson, 1957), while the potential 

niche includes those parts of the fundamental niche which exist in the study area at any 

given time (Jackson & Overpeck, 2000). Finally, the realized niche is the environmental 

space occupied by the species at that time (Hutchinson, 1957). As with the BAM diagram 

(Figure 1.2) there are several reasons why a species may not be able to access or utilize the 

full extent of its potential niche. With the fundamental niche, though more abstract, it is 

possible to imagine a scenario where a species could utilize environmental conditions that 

do not currently occur in the study area. For example, a species may have evolved to 

tolerate environmental conditions that occurred in the past, and due to niche conservatism 

(Peterson, Soberón, & Sanchez-Cordero, 1999), retained the ability to occupy that portion 

of environmental space for some later amount of time during which those conditions no 
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longer occurred (see Figure 3.2 in Colwell & Rangel (2009)). Understanding niche 

conservatism, and its converse niche evolution (Holt & Gaines, 1992), will have important 

implications for species’ ability to adapt or persist in the face of climate change. 

Though there is no analog with distributions for the fundamental niche, the potential 

and actual (i.e. realized) distribution are two concepts often used in SDMs. The duality 

between environmental space and geographic space is one-to-many, such that a single point 

in environmental space may correspond to several locations in geographic space (Colwell 

& Rangel, 2009). For this reason, the potential and actual niche are not exactly equivalent 

to the potential and actual distributions. For example, a species might occupy its entire 

potential niche, but not the complete potential distribution (if similar conditions occur in a 

far away, inaccessible location). Despite this inequality, potential and actual are very 

important distinctions to remember when using SDMs. 
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Figure 1.2: BAM Diagram (Soberón & Nakamura, 2009). A represents the regions in 

geographic space that have abiotically suitable conditions for the species, 

corresponding to the potential, or Grinnellian, niche. B represents the 

regions that have biotically suitable conditions (e.g. competitors, predators, 

diseases, etc.), corresponding to the Eltonian niche. M represents the regions 

that the species can access. G0 is the actual distribution of the species, while 

G1 is the potential distribution which could be occupied if the structure of M 

changes. 

Whether the SDM predicts the potential or the actual distribution is generally 

determined by the type of presence data and environmental layers used in the analysis. 

Presence-only (PO) data can only provide information about the potential distribution, 

because they indicate only where the species can be, not where it cannot exist. Meanwhile, 

presence-absence (PA) data can be used to model the actual distribution of the species, 

because they provide information about the areas not occupied by the species.  

For environmental layers, the Grinnellian and Eltonian definitions provide a useful 

framework to explain the difference between potential and actual niches. The Grinnellian 

niche is most analogous to the potential niche described above, and is thus determined by 

coarse grained abiotic predictors, while the Eltonian niche is closest to the actual or realized 

niche, and thus is modeled using fine-grained biotic variables. This generalization fits well 

for most examples, though the effect of micro-climates on plant species is an important 

exception, as abiotic variables (e.g. light, water, temperature) can act at very fine scales to 

determine plant distributions. In truth, the results from SDMs fall somewhere along a 

gradient between actual and potential distribution (Jiménez-Valverde et al., 2008). The 

terms indirect (e.g. latitude, elevation), direct (e.g. temperature), and resource (e.g. food 

source, soil nutrients) are also used to describe the predictors used in SDMs (M. P. Austin, 

2002). 
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When developing SDMs it is important to keep these distinctions and their 

frameworks in mind. The most commonly available response data are presence-only, and 

often the only available predictor variables (especially in the tropics), are coarse grained 

abiotic variables determined using remotely sensed products (e.g. MODIS-derived land 

cover) or interpolated from sparsely located weather stations (e.g. BioClim). In this 

situation, the SDM is most likely producing a distribution close to the potential, as opposed 

to the actual. This has important implications for how the results of the SDM are applied 

for conservation. For example, if the potential distribution is modeled, not all areas 

predicted as suitable will contain the species, and the areas that are occupied might receive 

higher priority for some conservation action. Or, the unoccupied potential areas could be 

targeted as possible sites for species relocations. One difficulty is determining which parts 

of the modeled potential distribution are occupied, which can be determined using expert 

opinion or the available data (including that used to create the model). 

Another complication is how to identify species observations that are from vagrant 

or dispersing individuals. If these observations are included in the model, the model results 

may be biased and unable to identify the true core habitat and niche of the species. One 

strategy to deal with this issue is to use expert opinion to remove these records from the 

data. Another option is to determine if the individuals are breeding. Theoretically, if the 

species is not breeding in that area, whether due to low suitability or the allee effect 

(inability to find mates due to low density (Stephens, Sutherland, & Freckleton, 1999)), 

then the area represents a sink that should not be considered part of the niche. This type of 

information could be gleaned from camera trap photos or direct observations, or more 

reliably from captured individuals. Other detailed health data from captured individuals 

may also help determine if the species has a healthy population in that area. If observations 

could be tagged as breeding/non-breeding, dispersing, and sink/source populations, this 
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information could be used in modeling context to model the niche of the species more 

accurately, as well as its dispersal capability. Occupancy models have already been 

developed to include breeding versus nonbreeding observations (L. L. Bailey, MacKenzie, 

& Nichols, 2014; MacKenzie, Nichols, Seamans, & Gutiérrez, 2009). 

1.4 POINT PROCESS MODELS 

New and novel methods are frequently introduced to address the challenges 

outlined above. Many of these will be passed over as too complex or not general enough, 

but some have the potential to be picked up and help move the field of SDM forward. One 

with particularly interesting potential is the framework introduced as a solution to the 

“presence-only problem” in SDMs (Warton & Shepherd, 2010). These spatial point process 

models (PPMs) have been used in several different applications, including astronomy, 

forestry, medicine, and ecology (Illian, Penttinen, Stoyan, & Stoyan, 2008). They were 

more recently used in spatial capture-recapture (SCR) models used to estimate species 

abundance (Borchers & Efford, 2008; Chandler & Andrew Royle, 2013; Chandler & Clark, 

2014; M. Efford, 2004; Gardner, Reppucci, Lucherini, & Royle, 2010; J. A. Royle, 

Chandler, Sollmann, & Gardner, 2013), and even occupancy models based on point counts 

(J. Andrew Royle, 2004). 

The property estimated by the Poisson point process is intensity, or a count of the 

object of interest per unit area. As applied to SDMs, the object of interest is individuals of 

a species, and thus PPMs can be used to estimate abundance (i.e. intensity), or converted 

to probability of occurrence (Dorazio, 2014a). PPMs are statistically equivalent to the 

maximum entropy algorithm implemented through MAXENT (Renner & Warton, 2013) 

and logistic regression that utilizes pseudoabsences (Warton & Shepherd, 2010), yet there 

are several advantages of PPMs: a clear framework for choosing quadrature points 
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(equivalent to pseudoabsences), well developed tools for assessing model fit, ability to 

handle spatial dependence, consistency of estimates in the face of changing units or spatial 

resolution, and clear avenues for improvements, i.e. marked point processes to incorporate 

species interactions, etc. (Renner et al., 2015). These advantages suggest PPMs may play 

an important role in the improvement of SDMs methods. 

However, PPMs by themselves are insufficient as SDMs because they do not 

account for imperfect detectability (Kéry, 2011). For this reason, what is modeled is the 

intensity of species observations, not the actual intensity of the species distribution. A 

solution to this issue is to implement an occupancy-like framework with a PPM, as 

developed in Integrated SDMS by Dorazio (2014a) and Koshkina et al. (2017). Using this 

Integrated framework, presence-only data and presence-absence data can also be analyzed 

together. In this way, even a small amount of presence-absence data can be used to leverage 

information in presence-only data, and thus provide models with broad spatial coverage 

and unbiased coefficients. Since this model is based on a PPM, it can be used to estimate 

population size, as well as absolute probability of presence. 

1.5 FRONTIERS IN SDMS 

The research around SDMs is extremely active, and so it can be difficult to pinpoint 

specific avenues of development that will persist moving forward. Up to this point, I have 

covered the background of SDMs, their methodological and theoretical underpinnings, 

along with some challenges that apply to both realms (methods and theory), and some 

current solutions. Inevitably, the field will continue to address some of the challenges and 

shortcomings already mentioned above, as there is still much room improvement. In 

general though, the future of SDMs will be driven by four main efforts: 1) creating more 

realistic models that incorporate ecological knowledge (M. Austin, 2007; Higgins, O’Hara, 
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& Römermann, 2012), 2) unifying disparate theories and multiple methods that address the 

same (or related) questions (McDonald, 2013; McGill, 2010), 3) working with big data to 

develop not only the tools that can handle large quantities of data, but also how to use these 

new datasets to ask questions that simply were not possible before (Stephens-Davidowitz, 

2017), and 4) open access and democratization of research (e.g. citizen science, Map of 

Life SDM interface Jetz, McPherson, & Guralnick (2012)).  

These developments are not unique to SDMs, as they apply across ecology, and 

even scientific research in general. Within each of these broader efforts fall more specific 

research agendas, some of which I have yet to discuss in detail, including dynamic models 

(i.e. spatio-temporally explicit), the incorporation of movement data and theory (J. Miller 

& Holloway, 2015), formalizing connections between SDMs and other relevant ecological 

models which are often used in an iterative fashion (e.g. population viability analysis, 

connectivity studies) (Keith et al., 2008; Zeller & Rabinowitz, 2011), and using models 

which can combine different data types (Dorazio, 2014a; Koshkina et al., 2017).  

In the previous section, I introduced PPMs as a solution to many of the current 

challenges facing SDMs, yet they are also a useful framework to contribute to the frontiers 

in SDM research. For example, point process models can be extended to incorporate spatio-

temporal patterns (Diggle, 2013). Thus far, some studies have sought to include the 

temporal dimension in their models through more ad hoc methods, including using weather 

variables matched to the time of species observation, as opposed to climate averaged over 

decades (Reside, Vanderwal, Kutt, & Perkins, 2010), creating separate SDMs for different 

months (Gschweng, Kalko, Berthold, Fiedler, & Fahr, 2012), and averaging models trained 

on different spatial and temporal regions (Fink et al., 2010). Each of these three studies 

uses interesting ideas which may be useful to include in the development of spatio-temporal 

models, yet PPMs, and hierarchical models as well, appear to provide more model-based 



 22 

approaches to tackling this challenge (Cressie & Wikle, 2015; Hefley & Hooten, 2016; 

Snow, Jarzyna, & VerCauteren, 2017).  

Another advantage of PPMs is the ability to incorporate spatial dependence (i.e. 

autocorrelation) using several types of point or area interaction processes (Renner et al., 

2015). Thus far in SDMs, the standard approach to account for spatial autocorrelation is 

through an autoregressive model, which uses a spatial lag of the response in a specified 

neighborhood around each observation as an additional variable in the model (Crase et al., 

2012; F. Dormann et al., 2007; J. Miller & Franklin, 2002; J. Miller, Franklin, & Aspinall, 

2007), or a bias grid when using Maxent (Clements et al., 2012; Elith, Jane, Michael, & 

Steven, 2010). PPMs offer multiple interaction processes that allow the models to 

incorporate attraction or repulsion between points, and the tools to determine the 

appropriate settings (Renner et al., 2015; Renner & Warton, 2013). These interaction 

processes can be used to account for both intra- and inter-species interactions. Thus far, 

very few studies exist which attempt to include species interactions in an SDM, and those 

that do simply add the presence or absence of a competitor as an additional variable in the 

model (Anderson, Peterson, & Gómez-Laverde, 2002; Leathwick & Austin, 2001). Though 

these studies showed that the predictive power of SDMs are significantly increased by 

incorporating species interactions in this way, there is no way to prove that this is due to 

actual competition, and not just the additional information about physical conditions that 

may be correlated with the presence-absence of the competitor.  

Hierarchical models (HMs) appear to be a flexible way to incorporate both spatial 

dependence (Gelfand et al., 2006; Latimer, Wu, Gelfand, & Silander, 2006) and a spatially 

biased sample (Dorazio, 2014a; Koshkina et al., 2017). Though HMs are also the basis of 

occupancy models, which have become quite common, it is interesting to notice the lack 

of studies that use HMs to address the issues of spatial dependence and biased sampling. It 
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is possible these methods have been underutilized because they are relatively more difficult 

to use (than Maxent), or because they are typically based on a Bayesian approach (less than 

6% of SDM or ENM papers returned from a Web of Science search used Bayesian 

methods). A new package introduced to R called hSDM (i.e. hierarchical SDMs) may help 

advance the use of these models. It is also important to note that the two frameworks can 

be used together, PPMs and HMs. In fact, there appears to be some support for SDMs to 

move in this direction (Hefley & Hooten, 2016). However, there is healthy skepticism 

about the excitement behind PPMs (M. Kery & Royle, 2015), and HMs appear to be the 

more general solution. 

Species conservation is a high-stakes endeavor. When a species is lost, it is lost 

forever. That is why it is so important for SDMs used in conservation applications to use 

the most appropriate methods whenever possible. The frameworks proposed above are 

designed to address the issues with real world data and answer flexible questions. The early 

surge in SDMs was related to growth in computing and access to data. Now the use of HMs 

and a Bayesian approach (which enables more complex models) could be viewed as a 

second stage of growth in SDMs. Where widely-recognized deficiencies are addressed, 

producing more realistic models and predictions, that allow conservation managers to make 

better decisions. 

1.6 RESEARCH OBJECTIVES 

The main research objective for this dissertation is to apply a new SDM model, the 

Integrated SDM (Dorazio 2014a, Koshkina et al., 2017), to a real species, Baird’s tapir 

(Tapirus bairdii). Thus far, this model has been applied to real species and environments 

in a very limited number of cases (Fletcher et al. 2016; Koshkina et al., 2017). More 

specifically, this research will address the following objectives in the research chapters that 
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follow: 1) identify how the ISDM performs compared to more traditional SDM methods 

and expert opinion, 2) investigate the sensitivity of the ISDM to different user decisions, 

and 3) use the results from the ISDM to inform a Range-Wide Conservation Plan (RWCP) 

for Baird’s tapir. 

1.6.1 Baird’s tapir as a case study species 

Baird’s tapir is a species of significant conservation interest due to its globally 

endangered status, genetic uniqueness, role in ecosystem function, and increasing threat to 

its habitat (Brooks, Bodmer, & Matola, 1997; Garcìa et al., 2016; Isaac, Turvey, Collen, 

Waterman, & Baillie, 2007). Tapir play an important ecological role as ecosystem 

engineers, primarily through seed dispersal and extensive selective browsing. Baird’s tapir 

are the largest terrestrial mammals in the Neotropics and are therefore the sole effective 

dispersers of most large seeds, especially over long distances (O’Farrill, Galetti, & 

Campos-Arceiz, 2013). The loss of megaherbivores like the Tapir can lead to cascading 

detrimental effects on other species, ecological processes, and overall ecosystem function 

(Ripple et al., 2015). For this reason, Baird’s tapir could be considered a keystone species 

in the environments in which it occurs (Mills, Soulé, & Doak, 1993). In addition, as a wide-

ranging, large and charismatic megafauna, Tapir have the potential to act as both an 

umbrella and a flagship species for conservation (Caro & O’Doherty, 1999; Cove et al., 

2014). 

Baird’s tapir (Tapirus bairdii) is an ideal candidate to test new SDM methods 

applied to conservation. Though the species is relatively rare with a low detectability rate, 

it is easily identifiable from camera trap photos and other tracks or signs left by the species. 

Also, Tapir have relatively small and well-defined home ranges, limited dispersal 

movements, and distinct habitat preferences. Other large mammal species, such as top 
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predators like the Jaguar (Panthera onca), have much larger home ranges and dispersal 

abilities, leading to observations in a wide range of habitats, which can cause poor model 

fit (Franklin, Wejnert, Hathaway, Rochester, & Fisher, 2009). Tapirs also live mostly 

solitary lives, as opposed to another endangered species which occupies similar habitats, 

the White-lipped Peccary (Tayassu pecari) (Brooks, Bodmer, & Matola, 1997; Oliver, 

1993). Species that form large groups, such as peccaries, may require models which 

account for this grouping behavior (i.e. the ability to account for spatial autocorrelation). 

Spatial mark-resight (SMR) and spatial capture-recapture (SCR) models which 

require individual identification can be applied to camera trap data for some species with 

unique markings (e.g. stripes or spots), including Jaguar, Tigers, Ocelots, and some other 

cat species (McClintock, White, Antolin, & Tripp, 2009; Royle, Chandler, Sollmann, & 

Gardner, 2013). Though these models have been applied to species without such markings, 

including Tapir and Puma, many researchers question the ability to accurately identify 

individuals (Oliveira-Santos, Zucco, Antunes, & Crawshaw, 2010/7). This makes the 

ISDM a good choice for Baird’s tapir, as SMR or SCR have the potential to produce more 

robust results, yet are difficult to apply to this species. It is possible to ID individuals by 

collecting DNA or capturing and tagging individuals, but collecting this data is costly. 

Finally, there are large coverage gaps in high quality (i.e. site-occupancy) data for Baird’s 

tapir in Honduras and Guatemala, making the ISDM a good choice to fill in these gaps with 

lower quality (i.e. presence-only) data. 

1.6.2 Developing an international collaboration 

The International Union for the Conservation of Nature (IUCN) is a membership 

union composed of government and non-governmental institutions working together to 

provide the knowledge and tools necessary to promote human progress, economic 
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development and nature conservation (www.iucn.org). The Species Survival Commission, 

one of the six commissions that make up the IUCN, is a science-based network of volunteer 

experts, specialist groups, Red List Authorities, and Task Forces 

(https://www.iucn.org/ssc-groups). This network provides an excellent infrastructure to 

enable the collaboration which is necessary to facilitate research and conservation planning 

for a species like Baird’s tapir.  

In the early stages of this research, I contacted the Tapir Specialist Group (TSG) to 

introduce myself and get connected with Tapir experts. This specialist group is especially 

collaborative and welcoming to new members (including non-PhD holders). I was also 

fortunate to contact them at a time when they were already planning to conduct the first 

range-wide SDM for Baird’s tapir. I volunteered to help with this effort, and it was not 

long before I was leading the analysis. Within a year, this research was published in the 

journal of the TSG, Tapir Conservation (Schank et al., 2015). I grew the collaboration that 

started with this project to include additional researchers and data so that we could test the 

Integrated SDM on Baird’s tapir, assess the results, and conduct a Range-wide 

Conservation Plan for the species. 

Large collaborations which involve data sharing between many different 

researchers and organizations are necessary to conduct range-wide assessments for widely-

distributed species like Tapir. To facilitate this type of collaboration, it is necessary to give 

proper attribution to data providers, and extend invitations for co-authorship in any 

resulting publications. This was enforced by a written data agreement developed for the 

initial research published in Tapir Conservation. Multi-author publications are now the 

dominant paradigm in science (Barlow et al., 2018), but there is still some concern for how 

to handle these situations when such collaboration is used in a dissertation. I hope this 

dissertation can serve as an example for future researchers to follow on similar projects. 
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CHAPTER 2: Using a novel model approach to assess the distribution 

and conservation status of the endangered Baird’s tapir1 

2.1 INTRODUCTION 

Determining current species distributions and assessing change over time are 

necessary for conservation management aimed at reducing species loss in ecosystems. 

Species Distribution Models (SDMs) provide continuous spatial predictions about species 

habitat preferences, and thus are useful tools for conservation management (Franklin, 

2010a). However, building useful models for rare species can be challenging for many 

reasons, including that data on rare species are typically scarce and vary in quality and type 

(Aitken, Roberts, & Shultz, 2007; Wisz et al., 2008). The fact that species most in need of 

conservation attention are often the most difficult to model has been labeled the “rare 

species modelling paradox” (Lomba et al., 2010).  

 In general, SDMs use one of two types of data as the response (i.e. dependent) 

variable: presence-only (PO) or presence-absence (PA) 2. PO data contain only information 

about where a species has been observed, while PA data also provide information about 

where the species has not been found despite survey efforts. 

 Presence-only data are generally more available than presence-absence data, but 

the modelling options appropriate for use with them are limited and can lead to 

overestimates of distribution. Despite this, modelling methods for presence-only data have 

                                                 
1 Version of Record (VoR) of this manuscript has been published and available in Diversity and 

Distributions (2017) http://onlinelibrary.wiley.com/doi/10.1111/ddi.12631/abstract. Some amendments to 

the VoR have been made. CJS was the lead author on this article, developing the research question, 

methodology, analysis, and results. As such there is no conflict for the content of this manuscript to 

constitute part of this dissertation. 

 
2 Throughout this chapter I refer to presence-absence (PA) data. In later chapters, this data type is referred 

to as site-occupancy (SO) data. For this research, these data consist of detection histories from camera 

traps. 
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advanced, albeit slowly. For over a decade, the most common method across all SDMs has 

been Maxent (Phillips et al., 2004; Vaz et al., 2015), likely due to its more accurate 

predictions compared to other frameworks (Elith et al., 2006). Despite its heavy use, 

Maxent has been criticized for several reasons. These criticisms include its use of vague 

indices to determine probability of occurrence (Royle, Chandler, Yackulic, & Nichols, 

2012), lack of accounting for spatial sampling bias, which is common in presence-only 

data (Yackulic et al., 2013b), and difficulty in interpreting results (Renner & Warton, 

2013). 

 Other methods developed to address deficiencies in SDMs include occupancy 

models (MacKenzie et al., 2002) and point process models (PPMs) (Warton & Shepherd, 

2010). Occupancy models account for imperfect detection, or the fact that a species is not 

always detected despite its presence. Failing to account for imperfect detection can lead to 

biased parameter estimates (Dorazio, 2012; Lahoz-Monfort et al., 2014). In occupancy 

modeling, if detection probability is affected by the same set of covariates that affect 

occurrence probability, bias in the model is inevitable (Royle et al., 2012). To solve this 

issue, these models require repeated observations of either presence-absence or point-count 

(PC) data to estimate and account for detectability (Kéry, Guillera-Arroita, & Lahoz-

Monfort, 2013). 

 Some researchers have attempted to work around the weaknesses of using PO data 

in SDMs by including pseudo-absences, or artificially compiled absences, in models. 

Pseudo-absences are used with methods that require PA data when only PO data are 

available (Zaniewski, A. Elizabeth, Anthony, & Overton, 2002). Maxent uses a similar 

construct called background points. Regardless of the term, there are no clear 

recommendations on the number of points to use or how to distribute those points across 

the area of inference (Barbet-Massin et al., 2012). PPMs solve the pseudo-absence problem 
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through a reformulation of the basic model structure for SDMs. In PPMs, pseudo-absences 

are viewed as equivalent to quadrature points used to estimate integrals. Following this 

conceptualization, the number of background points is increased until the likelihood 

stabilizes (Warton & Shepherd, 2010). 

 An additional advantage of PPMs is that the response variable modeled is 

‘intensity’, or individuals per unit area. This is different from Maxent, which models 

occurrence on a per-pixel basis, and thus is dependent on the scale chosen for the analysis 

(Renner & Warton, 2013). The model-estimated intensity can also be summed across 

spatial units (e.g. a specific protected area) to obtain an estimate of population size in that 

area, a useful tool for conservation management. 

 For most rare species, PO data remain the most readily available because they are 

easiest to collect (Engler, Guisan, & Rechsteiner, 2004a). However, over the past decade 

PA data have become increasingly common due to analytical developments that have 

promoted their collection (MacKenzie et al., 2002) and the rapid expansion of camera-

trapping, which enables this data collection (Lesmeister, Nielsen, Schauber, & Hellgren, 

2015). Given that data on rare species are often scarce by nature, methods to integrate both 

PO and PA data on rare species into the same model have the potential to improve the 

capacity to model rare species effectively. A new model combines the two frameworks of 

occupancy models and point process models, allowing for the use of both PO and PA data 

(Dorazio, 2014b). Thus far, there have been no real-world applications of this model 

(Fletcher, McCleery, Greene, & Tye, 2016), leaving conservation biologists unable to 

assess the full potential of this integrative approach of combining PO and PA data. 
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2.2 METHODS 

2.2.1 Study Area 

The study area for this research ranges from Veracruz and Oaxaca states in 

Southern Mexico to the Department of Chocó in Northern Colombia (approximate 

coordinates: 22°N to 3.6°S, 98° to 76°W), excluding islands. All analysis was conducted 

at a spatial resolution of one kilometer, in a global equal area projection. 

2.2.2 Model Formulation 

Four modeling frameworks were tested in this analysis, including 1) Maxent 

(Phillips et al., 2004), 2) a presence-only (PO) SDM based on a point process model (PPM), 

3) a presence-absence SDM (PA), also based on a PPM, and 4) the Integrated SDM 

framework that combines both 2 and 3 (Dorazio, 2014b). Imperfect detectability is 

incorporated in both the PO (2) and PA (3) SDMs. In the PO model, probability of detection 

is modeled as a thinning of the point process describing the species distribution, using a 

Bernoulli distribution (Dorazio, 2014b). In the PA model, detectability is estimated as in 

an occupancy model using a zero-inflated formulation (J. A. Royle & Dorazio, 2008). 

Models were fit using the ‘dismo’ package (Hijmans, Phillips, Leathwick, & Elith, 2016) 

and custom code developed in R (R Development Core Team, 2016). 

 Nineteen candidate models were formulated to test different hypotheses about the 

factors that affect the distribution of Baird’s tapir (Table 2.1). All four model frameworks 

were fit using these candidate models (except the null model, model 0, for Maxent, as there 

is no way to run the software without predictor variables). To facilitate the creation of the 

candidate models, predictor variables were grouped into categories related to influential 

processes including climate, land cover and protected status, human pressure, slope, and 

sampling variables (Table 2.2). All continuous variables were scaled to have a mean of 
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zero and standard deviation of one, thus the magnitudes of the coefficients are comparable 

(except distance to/within protected areas, which was not centered, to preserve negative 

values as within protected areas, and positive values outside of these areas). 

 

Model Climate Landcover Human Pressure Slope Sampling 

Model0 
     

Model1 y 
    

Model2 
 

y 
   

Model3 
  

y 
  

Model4 y y 
   

Model5 y 
 

y 
  

Model6 
 

y y 
  

Model7 y y y 
  

Model8 
 

y y y 
 

Model9 y y y y 
 

Model10 y 
   

y 

Model11 
 

y 
  

y 

Model12 
  

y 
 

y 

Model13 y y 
  

y 

Model14 y 
 

y 
 

y 

Model15 
 

y y 
 

y 

Model16 y y y 
 

y 

Model17 
 

y y y y 

Model18 y y y y y 

Table 2.1: Categories of variables included in the candidate models. 

2.2.3 Description of Modeling Frameworks 

Maxent is a popular SDM software that minimizes the entropy between two 

probability distributions based on a vector, z, of environmental covariates used in modeling 

(Elith et al., 2011). The first distribution, f1(z), is based on presence-only (PO) locations, 

while the second, f(z), is based on a random sample of the background environment. The 

goal of most SDMs is to estimate the probability of presence, or Pr(y = 1 | z), where y = 1 
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denotes presence (y = 0 denotes absence). However, without absence data, this property 

can only be estimated up to a constant. The missing piece of information is Pr(y = 1), or 

the prevalence of the species in the study area. By default, the Maxent software assumes 

prevalence is 0.5 to create a logistic output which ranges from 0 to 1. I adjusted this setting 

to 0.2 to match the prevalence in the presence-absence test data. Maxent settings were also 

adjusted to include only linear and quadratic terms (when included in other models). 

Default settings in Maxent include more complex parameters, which can lead to model 

overfitting, and would not provide a reasonable comparison to the other frameworks used 

in this research. 

 

Category Variables Citation 

Climate temp_seasonality*, precip_seasonality*, 

max_temp_warmest_month*, 

annual_precip* 

(Hijmans, Cameron, Parra, Jones, & 

Jarvis, 2005) 

Landcover forestcover2000, distancePA, EVI* (Google Earth Engine Team, 2015; 

Hansen et al., 2013; UNEP-WCMC, 

2014) 

Human 

Pressure 

forestloss_focal, road_length_focal (Eugster & Schlesinger, 2010; 

Hansen et al., 2013) 

Terrain Slope (Hijmans et al., 2005) 

PO 

Sampling 

forest, protected, road_distance* (Arino et al., 2012; Eugster & 

Schlesinger, 2010; UNEP-WCMC, 

2014) 

PA 

Sampling 

forestcover2000, distancePA, 

road_distance* , slope 

(Eugster & Schlesinger, 2010; 

Hansen et al., 2013; Hijmans et al., 

2005; UNEP-WCMC, 2014) 

Table 2.2: Predictor variables in each category (* indicates quadratic term used in the 

model). 
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 The Poisson point process model (PPM) is the foundation of the SDM framework 

(Dorazio, 2014b). In this model, λ(s) is the expected density (number of individuals per 

unit area) of individuals at location s, for a Poisson point process. In the context of the 

SDM, λ(s) is formulated as a log-linear function of unknown parameters and location-

specific regressors x(s) (i.e. log(λ(s)) = β0 + β'x(s)). The presence-only (PO) model 

formulated incorporates spatial bias in PO data through an independent thinning of the 

point process. This thinned point process, is the product of the original point process and 

ppo(s), the probability that the site is surveyed, and the species is detected. ppo(s) is 

formulated as a logistic function of unknown parameters and location-specific regressors 

wpo(s):  

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑝𝑜(𝑠)) =  𝛼0.𝑝𝑜 + 𝛼𝑝𝑜
′ ∙ 𝑤𝑝𝑜(𝑠) 

I adjusted the planned survey model, which used point count data, to accommodate 

detection/non-detection) data (Dorazio, 2014b; Koshkina et al., 2017). The model used 

here follows an occupancy framework based on a zero-inflated binomial distribution. The 

presence or absence (i.e. occupancy) of the species at a site, i, follows a Bernoulli 

distribution. In this case, the detection histories at each site, yi, have additional non-

detections (i.e. zeros) due to imperfect detectability, the fact that an individual may go 

undetected even when present. This relationship is modeled as a Binomial distribution with 

J trials, and the probability of success (i.e. species detection) equal to the product of zi (the 

occupancy state, zi = I(Ni > 0)) and ppa, the probability of detection at the site. Occupancy 

(φ) and intensity (λ) are linked following the equation below (Koshkina et al., 2017), 

𝜑 = Pr(𝑁(𝐶𝑖) > 0) = 1 − exp (− ∫ 𝜆(𝑠) ∙ 𝑑𝑠
𝐶𝑖

) 

As with detectability in the PO model, ppa(s) is formulated as a logistic function of 

unknown parameters and location-specific regressors wpa(s):  
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𝑙𝑜𝑔𝑖𝑡 (𝑝𝑝𝑎(𝑠)) =  𝛼0.𝑝𝑎 + 𝛼𝑝𝑎
′ ∙ 𝑤𝑝𝑎(𝑠) 

 Though their models of detectability differ, the PO and PA frameworks share the 

same SDM model based on a Poisson point process. In the Integrated SDM, the PO and 

PA models are estimated simultaneously, such that one set of parameters for the SDM is 

created (i.e. the β’s), while separate detectability parameters are estimated (i.e. the α’s) for 

the PO and PA models. 

2.2.4 Presence Data 

Presence data for Baird’s tapir were compiled from several sources (Appendix 1), 

including planned surveys conducted using camera traps (presence-absence data), and 

collections of opportunistic observations or published sightings (presence-only data), 

which may originate from cameras, track, or signs of the animal, or direct observations of 

the animal. Though PA data are generally more clustered across the study area than the PO 

data (Figure 2.2), they do provide similar coverage of environmental gradients (min-mean-

max percent overlap between background/PO: 0.36-0.63-0.80, background/PA:0.46-0.60-

0.75, PO/PA:0.50-0.67-0.90, (Pastore, 2017)). 

 I used presence-absence data collected by camera traps to construct 100-day long 

detection histories at each site, establishing ten sampling occasions that span ten days each 

(tapir appear to cycle through their home range every 10-12 days; (Jordan, 2015)). Cameras 

at some sites malfunctioned or were removed before the 100-day sampling period was 

complete. In this case, I used data only from complete sampling 10-day occasions. 

 Due to the nature of modeling the entire distribution of a wide-ranging species like 

Baird’s tapir, data must be combined from several sources which are often collected during 

different years. In this case, the data spans primarily the period from 2000-2015 (with few 

exceptions), thus the detection histories across sites are not from the same 100-day span. 
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For this reason, occupancy and density estimates represent the species presence during that 

time span (i.e. over 15 years). 

2.2.5 Spatial Subsampling 

A random spatial subsampling procedure was performed to thin the presence data 

prior to model fitting. The algorithm starts by randomly choosing one observation point 

and removing any other observation points within a given radius. The chosen observation 

is added to the subset, and the steps repeated until no observations are left in the original 

data. The effect of this procedure is to enforce a minimum distance between sampling 

points. A similar type of subsampling is sometimes used to remove survey bias in 

observation data (Beck et al., 2014), however, this grid-based approach can lead to samples 

that remain close in space, if they fall just across a boundary in an adjacent grid cell. 

 This subsampling process was used to maintain independence of observations. In 

occupancy models, the population at each site is assumed to be constant, with no 

immigration or emigration (MacKenzie et al., 2006). This assumption is known as closure, 

violations of which can lead to biased parameter estimates. For both types of data (PO and 

PA), a minimum distance of five kilometers was selected to avoid duplicate observations 

of the same individual. Data on home range sizes vary from 1.25 km2 reported in Costa 

Rica (Foerster & Vaughan, 2002) to 8-10 km2 in Nicaragua (C. Jordan personal 

observation, 2016), and 23.9 km2 in Mexico (Reyna-Hurtado, Sanvicente-López, Pérez-

Flores, Carrillo-Reyna, & Calmé, 2016a). Thus the 5-km spacing should ensure that 

detections are from different individuals given the tapir’s home range size. 

2.2.6 Model averaging 

Model fit was repeated 100 times for each combination of candidate model and 

model framework to capture the variation in the random spatial subsampling. Parameters 
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were averaged across candidate models for each framework and point sample using Akaike 

weights (Symonds & Moussalli, 2011), 

�̅� =
∑ 𝑤𝑖 ∙ 𝛽�̂�

𝑅
𝑖=1

∑ 𝑤𝑖
𝑅
𝑖=1

 

where β is the parameter estimate for a given model i, and w is the Akaike weight 

of the model. The parameters were then averaged across these replicates to create one 

prediction and set of parameter estimates for each model framework (Table 2.2). In 

Maxent, calculation of AIC is not straightforward, thus for this framework I averaged 

across model iterations for candidate Model 9 (full model without sampling covariates). 

There are questions about the validity of model averaging using Akaike weights (Cade, 

2015), however, for this research only the PO and PA models are affected, since this 

method is not used with the Maxent results, and model 18 has all the support in the 

Integrated framework (Table 2.2).  

2.2.7 Identification of habitat cores 

Using the predicted intensity from the Integrated model, I calculated the Getis-Ord 

Gi* (i.e. local G) spatial statistic (Getis & Ord, 1992) to identify clustered areas both above 

(i.e. hot spots) and below (i.e. cold spots) the global mean (Nelson & Boots, 2008). The 

estimated intensity was then summed within each statistically significant (α = 0.05) 

hotspot, and those with values above 200 were selected as habitat cores. It is estimated that 

200 adult individuals of Tapirus terrestris were required to constitute a minimum viable 

population in the Atlantic Forest of Brazil (Medici & Desbiez, 2012). I assumed the same 

to be true for Tapirus bairdii although if inbreeding and genetic variability were 

considered, this number would likely need to be considerably higher, especially given that 

Baird’s tapirs are known to have very low levels of heterozygosity and allelic diversity 

(Norton & Ashley, 2004). 
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2.3 RESULTS 

2.3.1 Coefficient Estimates 

The reciprocal of the condition number, the ratio of the smallest to the largest 

eigenvalues in the Fisher information matrix, can be used to determine if the parameters of 

the SDM are identifiable (Dorazio, 2014b). Following these criteria, coefficient standard 

errors were almost never estimated for the PO models, and thus this framework is not 

included in most of the discussion. This trouble with identifiability could be due to very 

low detectability in the PO data. For comparison, PO models were estimated with standard 

errors in less than 1% of models, while PA models were able to estimate these measures 

100% of the time, and the Integrated model 80% of the time. 

Slope was the only variable in the PA model that had a 95% confidence interval 

that did not overlap zero (Table 2.3). It is likely that establishing important relationships 

with environmental variables was difficult in the PA model because of reduced sample size 

(the PA model does not include any background information, while the other three models 

do). This was also evident in the Akaike weights (Table 2.4), as there was no clear top/best 

model. The different random samples that resulted from the spatial subsampling of the 

presence data appear to have a strong effect on which model has the best fit. In contrast, 

for the Integrated framework, the full model (model 18) had nearly all the support in all 

iterations. 

In the Integrated framework, the only climate variables with 95% confidence 

intervals that did not overlap zero were annual precipitation (positive), and temperature 

seasonality (negative), both also had non-linear relationships (i.e. quadratic terms 

important). Meanwhile, nearly all non-climate variables had 95% confidence intervals that 

did not overlap zero. The modelled relationships for these variables were mostly as 

expected, showing a positive relationship between Baird’s tapir occurrence and forest 
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cover, and negative relationships with roads and slope (Table 2.3). Among all of these, the 

effect of forest cover had the largest magnitude, followed by roads. This is not surprising, 

as deforestation and hunting are widely recognized as the two largest threats to the species 

(Garcìa et al., 2016; Medici et al., 2005). Interestingly, Enhanced Vegetation Index (EVI), 

had a negative and linear relationship with Baird’s tapir occurrence in the model. 

There were also several significant relationships among the sampling variables in 

the Integrated framework. With these, a positive relationship existed with protected status 

in the PO data, possibly indicating the positive sampling bias towards these areas. Also, 

with the PO data, there was a significant negative and non-linear effect with distance to 

roads, which could indicate the increased difficulty in sampling far from road networks. In 

the PA data, none of the sampling variables had a 95% confidence interval that did not 

overlap zero. It is important to note that the sampling variables in the PO data are meant 

mostly to account for sampling bias, while those in the PA model should reveal more about 

what affects the detectability of the species. For this reason, I used slightly different 

sampling variables for the two data sets. 

It is also interesting to note that distance to/within a protected area was significant 

in the Integrated models without sampling variables (β = -0.51, SE = 0.0806, p < 0.001), 

but was not significant in the Integrated models with sampling variables (β = -0.0379, SE 

= 0.118, p 0.761). Thus, accounting for survey bias by including variables in the detection 

process reduced the effect of a variable that was expected to have a significant influence 

on Baird’s tapir distribution. 

Maxent estimates parameters that are not directly comparable to the coefficients 

discussed above, but that can provide some context for comparison (Table 2.5). Forest 

cover, distance to/within protected areas, and presence of roads were the three variables 

with the most importance and contribution to Maxent (in model 9). This was like the results  
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Coefficient PO PA Integrated 

beta0 0.102 (0.55) -1.99 (1.6) -1.22 (0.27)* 

x.temp_seasonality 0.0781 (0.00586)* 0.0225 (0.534) 0.106 (0.112) 

x.precip_seasonality -0.0541 (0.00616)* -0.241 (0.553) -0.0556 (0.118) 

x.max_temp_warmest_month 0.191 (0.00639)* 0.362 (0.73) 0.129 (0.131) 

x.annual_precip 0.404 (0.0078)* -0.0488 (1.02) 0.497 (0.152)* 

x.temp_seasonality_sq -0.254 (0.00472)* -0.18 (0.343) -0.284 (0.0905)* 

x.precip_seasonality_sq -0.144 (0.00531)* 0.375 (0.349) -0.115 (0.0957) 

x.max_temp_warmest_month_sq 0.0337 (0.0018)* 0.436 (0.292) 0.0548 (0.0278)* 

x.annual_precip_sq -0.198 (0.00442)* -0.381 (0.452) -0.297 (0.0881)* 

x.forestcover2000 1.39 (0.0126)* 1.63 (1.23) 1.45 (0.18)* 

x.distancePA -0.147 (0.00841)* 0.11 (0.359) -0.0379 (0.118) 

x.EVI -0.348 (0.00955)* -0.942 (0.729) -0.426 (0.138)* 

x.EVI_sq 0.0423 (0.00448)* 0.285 (0.334) 0.0206 (0.0629) 

x.forestloss_focal -0.155 (0.00414)* -0.0492 (0.156) -0.167 (0.0561)* 

x.road_length_focal -0.837 (0.0128)* -0.499 (0.329) -0.691 (0.142)* 

x.slope -0.172 (0.000956)* -0.834 (0.405)* -0.358 (0.0904)* 

alpha0.po -1.03 (0.55) 0 (0) -7.58 (0.301)* 

alpha0.pa 0 (0) -1.45 (0.622)* -1.38 (0.644)* 

w.po.forest -1.79 (0.0147)* 0 (0) 0.0117 (0.208) 

w.po.protected 6.71 (0.0145)* 0 (0) 1.47 (0.203)* 

w.po.road_distance -3.79 (0.00934)* 0 (0) -0.752 (0.128)* 

w.po.road_distance_sq 0.673 (0.00208)* 0 (0) 0.123 (0.0301)* 

w.pa.forestcover2000 0 (0) 0.392 (0.453) 0.24 (0.57) 

w.pa.distancePA 0 (0) -0.0539 (0.182) -0.0141 (0.273) 

w.pa.road_distance 0 (0) -0.383 (0.248) -0.665 (0.373) 

w.pa.road_distance_sq 0 (0) 0.0558 (0.109) 0.0768 (0.162) 

w.pa.slope 0 (0) 0.146 (0.0762) 0.204 (0.12) 

Table 2.3: Mean of model-averaged coefficient estimates for each model framework, 

with mean standard errors in parentheses. Symbols indicate estimates 

greater than 1.96 standard errors from zero (i.e. 95% confidence intervals). 

Standard error estimates for PO model are not provided. 

with the Integrated model discussed above. Though it would have been possible to include 

the sampling variables in the Maxent model, there was no ability to differentiate between 
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variables that affect the sampling process versus those that affect the species distribution 

directly. 

 

Model PO PA Integrated 

Model0 
 

0.0166 (0.0687) 
 

Model1 
 

0.0178 (0.053) 
 

Model2 
 

0.017 (0.0542) 
 

Model3 
   

Model4 
 

0.0292 (0.0738) 
 

Model5 
 

0.0179 (0.0478) 
 

Model6 
   

Model7 
 

0.022 (0.0802) 
 

Model8 
   

Model9 0.0354 (0.174) 0.233 (0.306) 
 

Model10 
 

0.093 (0.172) 
 

Model11 
 

0.0361 (0.0768) 
 

Model12 
 

0.0444 (0.112) 
 

Model13 
 

0.0453 (0.0871) 
 

Model14 
 

0.0537 (0.0945) 
 

Model15 0.124 (0.331) 0.021 (0.0453) 
 

Model16 0.359 (0.478) 0.0294 (0.0515) 
 

Model17 0.0625 (0.242) 0.0679 (0.17) 
 

Model18 0.472 (0.493) 0.238 (0.295) 0.998 (0.00421) 

Table 2.4: Mean of Akaike weights for each candidate model and model framework. 

Standard deviation of estimates in parentheses. Calculation of AIC is not 

straightforward for Maxent, thus we focus here on the other three 

frameworks. Cells left blank have no support (i.e. Akaike weight = 0). 

2.3.2 Spatial Predictions 

Spatial predictions for probability of occurrence were strikingly similar for two of 

the model frameworks: Maxent and Integrated (Figure 2.1). These predictions match well 

with the expected distribution for the species, though the probabilities may be too high 

across the landscape overall. Both the PO and the PA models had even higher probabilities 
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across the study area, and the PA model had probabilities close to one in regions that have 

not maintained Baird’s tapir presence in recent history (e.g. Southern Guatemala and 

Northwestern Nicaragua). The PO model may have a similar pattern to the Integrated 

model, but high estimated probabilities covered too much of the distribution for the species. 

 

Variable Contribution Importance Lambda 

temp_seasonality 0.5 1.38 0.727 

precip_seasonality 0.0158 0.0268 -0.0628 

max_temp_warmest_month 0.0367 0.249 0.428 

annual_precip 1.06 6.86 3.42 

temp_seasonality_sq 4.45 3.67 -1.45 

precip_seasonality_sq 3.13 0.352 -0.759 

max_temp_warmest_month_sq 0.141 0.122 0.941 

annual_precip_sq 1.2 6.75 -6.16 

forestcover2000 59.7 53.3 4.05 

distancePA 19.8 10.1 -4.36 

EVI 0.531 2.78 -2.38 

EVI_sq 0.00703 0.031 0.205 

forestloss_focal 1.68 1.8 -1.23 

road_length_focal 4.74 7.96 -15.1 

slope 3.03 4.61 -2.32 

Table 2.5: Mean contribution, importance, and lambda values for each environmental 

variable. used in Maxent Model 9. 

Inspecting the coefficient estimates (Table 2.3), the difference between the PO and 

Integrated model was largely due to the intercept (β0), while the difference between the PA 

and Integrated models could be attributed to the difference in coefficient estimates for 

climate variables. The advantage that the Integrated model has over Maxent is the ability 

to estimate intensity (i.e. abundance), which I utilize below to identify viable habitat cores. 
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Figure 2.1: Predicted probability of presence for each model framework, (a) Maxent, (b) 

PO, (c) PA, and (d) Integrated. 

2.3.3 Assessment of habitat cores and population estimates 

A hotspot analysis using Gi* and a circular neighborhood with radius of 10 km 

(Getis & Ord, 1992) identified 25 habitat cores in the Integrated model framework (Figure 

2.2), with the two largest cores (the Yucatán Peninsula and the Honduras-Nicaragua 

border) comprising roughly 61% of core habitat for Baird’s tapir. In general, the cores 

matched well with the expected distribution of the species. However, some small cores 

were predicted that have no tapir observations and likely do not harbor any individuals 

(e.g. La Encrucijada, México; Laguna de Términos, Mexico; North and West of 

Lacandona, Mexico; Pixvae, Panama). It is probable that tapirs historically occurred in 

these areas yet went locally extinct due to small core size and distance from larger cores 
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that act as population sources. There were also areas with confirmed tapir populations that 

did not appear in the prediction of viable cores (e.g. La Sepultura Biosphere Reserve and 

Frailescana Natural Protected Area, Mexico). 

 

Figure 2.2: Map of habitat cores for the Integrated model. Purple lines represent the 

proposed Nicaragua canal path and the Panama Canal, black points are 

presence-only sample locations, red points are detection history sample 

locations, and the area shaded light brown is the study area. Yellow points 

are study areas for independent abundance estimates (1. Corcovado, 2. 

Triunfo, 3. Los Katíos, 4. Oaxaca, and 5. Talamanca). Black circles are 

cores overestimated by the model (a. Encrucijada, b. Laguna de Términos, c. 

N and W of Selva Lacandona and d. Pixvae). 

According to model estimates, there are approximately 175,000 individual tapirs 

spread across these 25 core areas. This is more than an order of magnitude higher than 
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expert estimates for the species that suggest there may be fewer than 6,000 individuals left 

in the wild (Garcìa et al., 2016). 

It is possible that model results would more closely approximate global experts 

expected state of the population with the addition of more proximate or more detailed 

environmental variables, such as differing management regimes among protected areas, 

more detailed habitat types, distance to villages, and improved hunting/poaching variables. 

Hunting has been reported as a widespread and substantial threat to the survival of Baird’s 

tapirs due to their slow reproduction (Dunn, Estrada, & Smith, 2012; Garcìa et al., 2016; 

Jordan, Galeano, & Alonzo, 2014; Koster, 2006; McCann, Wheeler, Coles, & Bruford, 

2012). Although hunting does not seem to drive tapirs to local extinction in all sites where 

the phenomenon has been studied, hunting could maintain tapir populations at extremely 

low densities. The human invasion of protected areas throughout significant portions of the 

Baird’s tapir range has increased drastically in past decades, which has likely resulted in 

increased access for hunters in arguably all of Baird’s tapir range countries both inside and 

outside of protected areas. Thus, substantially lower densities than would be expected in 

the absence of hunting might exist throughout the species’ range. However, hunting data 

in a format compatible with PA and PO data on tapirs is not available on a range-wide basis 

for the species. Thus, to evaluate this, hunting data would need to be collected using a 

uniform methodology across the range of Baird’s tapir, which would entail substantial time 

and economic investment. 

Another factor that might explain the apparent overestimation of population from 

the ISDM is the detectability of the species in fragmented habitat. Tapir detection can be 

negatively related to increasing forest cover, such that tapirs were more detectable in small 

forest patches (Cove et al., 2014). The interpretation of intensity (from camera trap 

detections) correlating with true abundance could be misleading if tapir detection increases 
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in small forest patches. This detection phenomenon is another factor that might explain the 

disparity in the population estimate from the ISDM and expert opinions. 

To verify the intensity estimates from this model, abundance estimations derived 

from other methods should be used as a comparison (i.e. via capture-recapture). Ideally, 

these abundance estimates should be summed up across intact cores to see how they 

compare to the summed intensity from this research. Interestingly, intensity values at a 

location do not appear to be outside the estimates of experts, it is only when summing the 

intensity across a wider region, including those areas not surveyed, that the model tends to 

disagree with expert opinion. 

2.3.4 Comparison with other studies 

The maximum intensity from the Integrated SDM was 4.4 individuals/ km2 

(Talamanca Mountains, Costa Rica) which is about 50% more than the highest reported 

estimates for the species (2.92 individuals/ km2) using capture-recapture methods 

(González-Maya et al., 2012). Though some researchers question the ability to use capture-

recapture methods with camera traps on a species such as Baird’s tapir due to lack of natural 

markings (Oliveira-Santos, Zucco, Antunes, & Crawshaw, 2010), others disagree with the 

validity of the methodology for different reasons (Tobler, Hibert, Debeir, & Richard-

Hansen, 2014). Mark-resight models (McClintock, White, Antolin, & Tripp, 2009) or 

spatially-explicit models for presence-absence data (Ramsey, Caley, & Robley, 2015) 

could be good alternatives for estimating density but, have not yet been applied to tapir 

data. 

Estimates from the ISDM are also relatively consistent with other studies that 

estimated Baird’s tapir density in other parts of Central America. One study estimated 0.6 

individuals/ km2 in Corcovado National Park in Costa Rica using transects (Naranjo, 1995), 
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while the ISDM estimated a mean of 0.81 individuals/ km2 in the same protected area. 

Another study found 0.12 individuals/ km2 in the core area of El Triunfo Biosphere Reserve 

(though the estimates range up to 0.49 using different assumptions) (Carbajal-Borges, 

Godínez-Gómez, & Mendoza, 2014), while the ISDM estimated a mean of 0.40 

individuals/ km2 across the core area of the reserve. It was also estimated that 1.02 

individuals/ km2 occurred in Los Katíos National Park of Colombia (Mejía-Correa, Diaz-

Martinez, & Molina, 2014), while the ISDM estimated a mean of 0.65 individuals/ km2 in 

the same protected area. Finally, 0.32 individuals/ km2 were estimated using capture-

recapture methods with camera traps in cloud forest in Oaxaca state Mexico (Botello et al., 

2017), while the ISDM estimated a mean of 0.63 individuals/ km2 in the same study area. 

None of these differences are on the order of the difference between expert estimates of the 

population for the entire species, compared to the total population estimate across viable 

cores using the ISDM. 

2.3.5 Habitat connectivity 

Regardless of the estimated population size, there are clearly areas with potential 

obstructions to connectivity. This was partly a result of the shape of Central America, as 

the land mass narrows between Nicaragua and Colombia, limiting the amount of land 

available for Baird’s tapirs, but also due to widespread forest loss in several countries, 

particularly in central Nicaragua and northern Honduras/Southern Guatemala. The Panama 

Canal and the proposed Nicaragua Canal (Fig. 2) also pose significant potential genetic 

barriers. The Panama Canal already presents a substantial barrier to connectivity between 

habitat cores for Baird’s tapir (N. Meyer et al., 2015) although there are anecdotal data of 

tapirs crossing the canal zone (N. Meyer, Moreno, & Jansen, 2013). The proposed 

construction of the larger Nicaragua Canal would further fragment the species distribution 
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and almost certainly pose a permanent genetic barrier because the areas with the highest 

density of canal related infrastructure coincide with the only remaining areas of viable 

Baird’s tapir habitat in the vicinity of the proposed canal zone (Jordan et al., 2016). 

Therefore, the proposed Nicaragua Canal would isolate populations in the two major cores 

to the north, from several substantial cores to the south, including the Talamanca as 

discussed above, and a large habitat core in the Darién of Panama, which extends into the 

Chocó of Colombia. These two areas represent two of the largest cores for Baird’s tapir, as 

the fifth and third largest cores, respectively. It is unclear to what extent this could affect 

the long-term survival of Baird’s tapirs given their previously reported low genetic 

diversity (Norton & Ashley, 2004). 

2.4 CONCLUSION 

The main advantage of the integrated SDM framework tested here is the ability to 

use both presence-only and presence-absence data in estimating an SDM. This is especially 

advantageous for wide-ranging, but relatively rare, species such as the Baird’s tapir. 

Modeling the entire distribution of these species requires the combination of several 

independently collected data sets, some of which may not include absence data. 

One of the most exciting possibilities of the Integrated SDM, and point process 

models in general, is the ability to estimate species population size by summing intensities. 

This can be done because the expected number of individuals in each area is equal to the 

sum of the estimated intensities across that area (Diggle, 2013). However, care should be 

taken when interpreting a fitted PPM and what is being modelled (Renner et al., 2015). The 

Integrated SDM used in this research includes the observation process as a latent variable, 

and thus it should estimate the true species abundance (not relative patterns in species 

abundance). However, this research highlights the need for further work to validate the 
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population estimates from the model due to discrepancies between estimated intensity and 

expert opinion on total population size for the species. 

It is possible that the seemingly high population estimates from this model for 

Baird’s tapir are due to missing proximate (i.e. causal) environmental variables, meaning 

the model is closer to the potential (i.e. carrying capacity) than the actual distribution of 

the species (M. P. Austin, 2002). In other words, areas identified as suitable may not 

actually be occupied by the species due to movement constraints (e.g. dispersal barriers), 

competition with other species, disease, hunting pressure, or other variables not included 

in the model. 

It is also possible that duplicate records of single individuals exist in the data used 

to fit the model, despite efforts to reduce this possibility using spatial subsampling with a 

minimum allowable distance of 5 km. Future research using simulated data should 

investigate the impact of duplicate records on the modelled intensity. Though it is possible 

some duplicates remain in the data used to fit the model after subsampling, this number 

should be small, and the effect on estimated intensity minimal. Simulated data could be 

ideal for testing the magnitude of this effect. 

A sensitivity analysis of the Integrated SDM framework using the same Baird’s 

tapir data used in this research found that the spatial resolution of the analysis has a strong 

effect on the magnitude of intensity and total population estimates (Schank et al., in prep). 

It is suspected that this is due to the effective sample area being expanded by the individual 

movements of the species, and the way area is included in the model formulation. Thus, 

any simulation that seeks to understand the model better should incorporate animal 

movement. 
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CHAPTER 3: A sensitivity analysis of Integrated Species Distribution 

Models (ISDMs): Investigating the effect of multiple spatio-temporal 

scales3 

3.1 INTRODUCTION 

Species Distribution Models (SDMs) are a widely applied and rapidly developing 

statistical tool used in the study of wildlife, with new methods regularly proposed as 

solutions to various challenges encountered during modelling (Elith & Leathwick, 2009; 

Franklin, 2010a). A deficiency of most SDMs is the failure to account for imperfect 

detection, the possibility that a species may go undetected even when it is present (Lahoz-

Monfort et al., 2014). Occupancy models, a similar but distinct field of research from 

SDMs, account for this scenario by separating the species-environment response from that 

of the detection process using a hierarchical modeling framework (MacKenzie et al., 2003). 

Another challenge for most SDMs is how to appropriately use presence-only (PO) data, 

which are often the most common type of data used in SDMs, due to their ease of 

collection. This type of data is sometimes also referred to as presence-background (PB), 

for the class of models that combine PO data with the background environment to estimate 

species-environment responses. Recently, the challenge of using PO data in SDMs has 

been addressed using point process models (Renner et al., 2015; Warton & Shepherd, 

2010). Integrated SDMS (ISDMs) represent a new development that uses both approaches, 

combining opportunistic (e.g. PO) and higher quality site-occupancy (SO) data in the same 

model (Dorazio, 2014a; Koshkina et al., 2017). ISDMs have potential as useful tools, but 

they require further investigation (i.e. sensitivity analyses), as there are few applied 

examples to follow.  

                                                 
3 The manuscript written for this chapter is under review with Ecological Applications. 
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Data simulation is a powerful tool used to answer questions about how models react 

to various user decisions (J. Miller, 2014; Zurell et al., 2010). However, the design of 

simulated studies sometimes assumes data conditions that are unrealistic for many rare or 

cryptic species. The assumptions of the simulations used in the two studies that introduced 

ISDMs (Dorazio, 2014a; Koshkina et al., 2017), include a larger and more even sample 

than is typically available for most species. Simulation studies that do not mirror reality 

are especially problematic for a species like Baird’s tapir (Tapirus bairdii), which is wide-

ranging and relatively rare, leading to wide gaps in spatial coverage of high quality 

presence data. Schank et al. (2017) applied an ISDM to approximately 800 presence-only 

(PO) observations and 1600 camera trap detection histories (created from SO data) for 

Baird’s tapir. This research estimated a total population size of approximately 200,000 

individuals for the species, more than an order of magnitude higher than expert estimates 

(which range from 3000 mature adults, to 16500 total individuals). There are a variety of 

reasons that could explain this discrepancy, including violations of model assumptions and 

sensitivity of the model to various modelling decisions. I focused on two assumptions: 

independence between sites and population closure. As with most statistical models, 

occupancy models require independent observations. In this case, observations would not 

be independent if the same individual was detected at more than one site during the same 

observation period. To avoid this possibility, Schank et al. (2017) used a spatial 

subsampling procedure to enforce a minimum distance between sites, as many of the sites 

were so close together that independence would be violated. Occupancy models also 

assume population closure, which states that no immigration or emigration of individuals 

from the site occurs during the sampling period (MacKenzie et al., 2006). Violation of the 

closure assumption can originate from a sampling period that is too long (C. T. Rota, 

Fletcher, & Dorazio, 2009).  
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This research investigated the effect of user decisions on model outputs and 

population estimates when using ISDMs, focusing on how issues of spatial and temporal 

scale relate to the model assumptions above. Specifically, I investigated the effect of 

different settings for site area, subsampling radius, and sampling period length, using data 

from prior Baird’s tapir analysis (Schank et al. 2017). ISDMs have great potential as useful 

tools for conservation, however, researchers using these tools need clear recommendations 

for how to apply them. The results of this research sheds light on how these models can be 

applied appropriately to species of conservation concern. 

3.2 METHODS 

The complete sensitivity analysis covered three model formulations (PB, SO, and 

Integrated), four site area sizes, and three sampling period lengths, with 100 spatially 

subsampled iterations -- a total of 3600 models. Custom R code was adapted from Dorazio 

(2014) and Royle and Dorazio (2008) to run the models. 

3.2.1 Model Descriptions 

With ISDMs, two separate models are formulated to accommodate the two types 

of data used (PB and SO), both based on a Poisson point process model. In these models, 

λ(s) is the expected intensity (number of individuals per unit area) at location s. In the 

context of the SDM, λ(s) is formulated as a log-linear function of unknown parameters and 

location-specific regressors x(s), 

log(𝜆(𝑠)) =  𝛽0 + 𝛽′𝑥(𝑠) 

The general class of models used here are hierarchical models, which have separate 

levels for abundance (the process of interest), and detection (the nuisance process). Though 

they share the same SDM based on a point process model, the two types of data use 

different model formulations to account for imperfect detection, including that which 



 52 

results from spatially biased survey effort. With opportunistic data, spatial bias and 

imperfect detection are incorporated through an independent thinning of the point process. 

This thinned point process is the product of the original point process and ppb(s), the 

probability that the site is surveyed, and the species is detected. ppb(s) is formulated as a 

logistic function of unknown parameters and location-specific regressors wpb(s), 

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑝𝑏(𝑠)) =  𝛼0.𝑝𝑏 + 𝛼𝑝𝑏
′ ∙ 𝑤𝑝𝑏(𝑠) 

With data from planned surveys (SO), imperfect detection is modeled following a 

zero-inflated binomial distribution (Koshkina et al., 2017). Under this model, the presence 

or absence of the species at a site, i, follows a Bernoulli distribution. In this case, the 

detection histories at each site, yi, have non-detections (i.e. zeros) due to both species 

absence and imperfect detectability, the fact that an individual may go undetected even 

when present (MacKenzie et al., 2003). This relationship is modeled as a Binomial 

distribution with J trials, and the probability of success (i.e. species detection) equal to the 

product of zi (the occupancy state, zi = I(Ni > 0) ) and pso, the probability of detection at the 

site. As with detectability in the PB model, pso(s) is formulated as a logistic function of 

unknown parameters and location-specific regressors wso(s), 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑠𝑜(𝑠)) =  𝛼0.𝑠𝑜 + 𝛼𝑠𝑜
′ ∙ 𝑤𝑠𝑜(𝑠) 

In ISDMs, the PB and SO models are estimated simultaneously, such that one set 

of parameters for the SDM is created (i.e. the β’s), while separate detectability parameters 

are estimated (i.e. the α’s) for the two models. 

3.2.2 Model Convergence and Parameter Identifiability 

There are two levels of model convergence. First, the optim function in R was used 

to estimate model parameters from the model likelihood. Occasionally this function failed 

to return an optimized set of parameters. Next, if estimates were returned from this 
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function, I determined whether they were correctly identified using the reciprocal of the 

condition number. This number is the ratio of the smallest to the largest eigenvalues in the 

Fisher information matrix and can be used to determine whether the parameters of the SDM 

are identifiable (Dorazio, 2014a). The reciprocal of the condition number falls between 0 

and 1, with values near zero indicating ill-conditioning (Golub & Van Loan, 2012). If this 

number fell below a certain threshold (in this case 1 x 10-6), the results for that model were 

not used in the subsequent analysis. 

3.2.3 Presence Data 

The species presence data used here consisted of 784 presence-only observations 

compiled from eleven data sources, and 1595 camera trap detection histories from nineteen 

sources. These data came from a multinational collaboration examining Baird’s tapir 

occurrence and distribution (Schank et al., 2017). 

3.2.4 Spatial Subsampling 

I processed the presence data prior to model fitting using a random spatial 

subsampling procedure to help preserve independence among sites. The algorithm began 

by randomly choosing one observation point and removing any other observation points 

within a given radius. I added the chosen observation to the subset and repeated the steps 

until no observations were left in the original data. A similar type of subsampling is 

sometimes used to remove survey bias in observation data (Beck et al., 2014), however, 

this grid-based approach can lead to samples that remain close in space, if they fall just 

across a boundary in an adjacent grid cell. 

The effect of this procedure was to enforce a minimum distance between sampling 

points. This minimum distance was matched to the site area to ensure that no site contained 

more than one data point. For example, I used a subsampling radius of 5657m for a site 
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area of 16km2 (the diagonal length of a square that size). This process was repeated one 

hundred times for each radius to capture the variability introduced by the randomness of 

the sampling. Model parameters were then averaged across iterations. A set of models also 

were fit on the complete (non-subsampled) presence data to investigate the effect of 

violating the independence assumption. 

3.2.5 Predictor Variables 

Environmental variables were grouped into five classes: climate, land cover, 

anthropogenic, topographic, and sampling variables (i.e. the variables used in the detection 

process). Climate variables at 1-kilometer resolution were downloaded from CHELSA 

(Karger et al., 2017), and included annual precipitation, maximum temperature of the 

warmest month, temperature seasonality, and precipitation seasonality. Land cover 

variables consisted of percent forest cover for the year 2000 at 30-meter resolution (Hansen 

et al., 2013), distance to/within protected areas (IUCN & UNEP-WCMC 2014) and mean 

enhanced vegetation index (EVI) from MODIS for years 2000 to 2015 downloaded using 

Google Earth Engine. Anthropogenic variables included forest loss between 2000 and 2014 

(Hansen et al., 2013) road density (Eugster & Schlesinger, 2010), and density of fires 

between 2001 and 2014 (NASA, 2017). Anthropogenic variables were then converted to 

focal averages using a moving circular window and a ten-kilometer radius (centered on 

each one-kilometer pixel in the study area), to account for the fact that humans are mobile, 

and presence in one area means access is likely within a reasonable distance (Barber, 

Cochrane, Souza, & Laurance, 2014). Slope was calculated from 90-meter resolution 

elevation data downloaded from the ‘raster’ package in R (Hijmans, van Etten, et al., 2016).  

Sampling variables (i.e. those used in the detectability process) for the PB data 

included binary indicators for forest (Arino et al., 2012) and protected status (IUCN & 
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UNEP-WCMC 2014), and distance to roads (Eugster & Schlesinger, 2010), while sampling 

variables for SO data were the same forest cover and distance to/within protected areas 

used in the land cover group, as well as distance to roads, and maximum slope. With the 

PB data, these variables were meant to capture sampling bias in presence-only data, which 

I believe heavily favors forested and protected areas that are reasonably accessible by road. 

I included a quadratic term for distance to roads, as there could be optimal locations that 

are far enough from roads to minimize anthropogenic factors, but close enough to facilitate 

sampling. With SO data, the sampling variables were chosen as variables which might 

influence the detectability of the species. For example, tapir detectability might decrease 

as distance from protected areas increases, due to likely increased levels of hunting outside 

of protected areas, and thus increased response by the species to avoid humans (de la Torre, 

Rivero, Camacho, & Álvarez-Márquez, 2017; Ferreguetti, Tomás, & Bergallo, 2017). 

All variables were scaled to have a mean of zero and standard deviation of one, 

except distance to/within protected areas (zero represents the border of the protected area). 

The models also incorporated quadratic terms for all climate variables, EVI, and distance 

to road, to account for their suspected non-monotonic relationships with tapir occurrence 

(aided by single-variable response curves created in early stages of the modelling process). 

I resampled all environmental variables to four spatial resolutions: 1, 2, 4, and 8 

kilometers. These resolutions correspond to site areas of 1, 4, 16, and 64 km2. Estimates of 

home range size for Baird’s tapir vary from 1.25 km2 reported in Costa Rica (Foerster & 

Vaughan, 2002) to 8-10 km2 in Nicaragua (C. Jordan personal observation, 2016), while 

estimates of maximum distance traveled range up to 10.5 km in Mexico, from camera trap 

data on a marked individual over four years (Reyna-Hurtado, Sanvicente-López, Pérez-

Flores, Carrillo-Reyna, & Calmé, 2016b). From this information, it is possible that an 
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individual could be detected at more than one site, but the likelihood of this is probably 

small, especially for the larger site areas used in this analysis. 

3.2.6 Sampling Period Length 

When creating camera trap detection histories, researchers can adjust their data 

structure by defining: 1) the length of each sampling occasion, and 2) the number of 

sampling occasions to use in a discretized season. Since camera traps operate continuously, 

there is some flexibility in determining the sampling occasion and sampling period length. 

These decisions can be made (and adjusted) after the data is collected and will determine 

the balance of detections and non-detections. It is also important to consider the behavior 

of the target species. For sampling occasion length, one suggestion is to select a length of 

time during which an individual will visit all or most of its home range, and GPS telemetry 

data suggest Baird’s tapir cycle through their home ranges about once every 10-12 days 

(Jordan, 2015). For this reason, I used a sampling occasion length of 10 days. 

With sampling period length (i.e. number of sampling occasions), it is important to 

consider the assumption of closure, and choose a length of time during which 

immigration/emigration at a site is unlikely. As the sampling period length length 

increases, it becomes more likely that the assumption of closure will be violated. On the 

other hand, it is crucial to include enough sampling occasions to estimate detectability 

reliably. Some recommendations suggest three as the minimum number of occasions to 

use, though this number should be higher for species with low detectability (Mackenzie & 

Royle, 2005). Baird’s tapir is unsurprisingly a species with low detection probability (range 

of 0.2-0.3) (Cove et al., 2014; Jordan, 2015). Considering a detectability in this range, there 

is about a 4-13% chance a present individual will go undetected after 9 sampling occasions. 

With the SO data, I tested sampling period lengths of 30, 60 and 90 days (three, six, and 
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nine samples). The PB data contain only one sample, as there are not repeat observations 

at each site for this data set. 

3.2.7 Accuracy Assessment 

I used two presence-only (PO) accuracy measures to assess the spatial predictions 

of each model: the Boyce Index (Boyce, Vernier, Nielsen, & Schmiegelow, 2002) and the 

minimum predicted area (Engler, Guisan, & Rechsteiner, 2004b). I did not use 

detection/non-detection data with accuracy measures that require presence-absence data 

given the difficulty of properly defining absences (Lobo et al., 2010), and given the bias of 

these measures when test data are missing from large portions of the study area (Bean, 

Stafford, & Brashares, 2012). After the spatial subsampling step, the retained PO data were 

randomly split following a 75/25 training/testing ratio (Fielding & Bell, 1997). For both 

accuracy measures, intensity was converted to occupancy, ψ, which ranges from 0 to 1, 

using the formula from Dorazio (2014), where N is the number of individuals in the spatial 

unit, C: 

Pr(𝑁(𝐶) > 0) =  ψ = 1 − exp (−𝜇(𝐶)) 

𝜇(𝐶) = ∫𝜆(𝑠) ∙ 𝑑𝑠
𝐶

 

To calculate the Boyce Index, I partitioned the occupancy surface into bins (i.e. 0.0 

< ψ < 0.1, ...0.9 < ψ < 1.0), and calculated the percentage of test data occurring in each bin 

(Pi). I then compared the proportion of the area covered by the bin with respect to the study 

area (Ei). Finally, I converted these two measures to a ratio Fi = Pi / Ei. If the model 

correctly predicts low suitability areas, the low suitability classes should contain fewer test 

points than expected by chance (i.e. Fi < 1), and the graph of Fi versus average suitability 

of each bin should be monotonically increasing. The Boyce Index is the correlation 

between the average suitability of each bin and its respective Fi, with values greater than 0 
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indicating a model whose predictions are consistent with the test data, and negative values 

indicating an incorrect model. The continuous version of this measure uses overlapping 

bins (Hirzel, Le Lay, Helfer, Randin, & Guisan, 2006). 

The minimum predicted area (MPA) is the smallest possible area covered by a 

thresholded prediction map which contains at least 90% of the test PO points. The smaller 

the MPA, the more parsimonious the model, and the less likely there are errors of 

commission in the predictions (Rupprecht, Oldeland, & Finckh, 2011). 

3.3 RESULTS 

The ISDM converged (with estimated standard errors) in more than 97% of model 

iterations, while the PB model had low convergence rates across site areas, and the SO 

model exhibited a sharp drop-off in convergence at 16km2 and above (Table 3.1). Both 

measures of model accuracy showed that the ISDM was the most accurate framework, a 

relationship that was consistent across site area and number of samples (Figure 3.1). 

Focusing on the ISDM, estimates of total population decreased exponentially as site area 

increased (Figure 3.2). The number of samples used, and whether the data had been 

subsampled, had a much smaller effect on population estimates.  

The decrease in population estimates across site areas was driven by estimates of 

model intercepts, primarily β0, while the coefficients representing species-environment 

relationships remained relatively stable (Table 3.2). Annual precipitation (+), forest cover 

(+), and road density (-) were the three most important environmental variables in the 

model. Temperature seasonality (-), precipitation seasonality (+), maximum temperature 

of the warmest month (+), EVI (-), forest loss (-), and maximum slope (-) also appeared as 

significant environmental predictors. Annual precipitation was the only environmental 

variable with a clearly significant quadratic term. In the PB detectability process, presence 
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in a protected area (+) was the most important variable. Distance to roads (-) was significant 

in both detectability components (PB and SO). Maximum slope (+) was also a significant 

variable in the SO detectability process. 

 

 

Figure 3.1: Model accuracy using Boyce Index (BI) and Minimum Predicted Area 

(MPA). The difference calculated from the maximum (i.e. most accurate) 

Boyce Index, and from the minimum (i.e. most accurate) Minimum 

Predicted Area, within each combination of model settings. The greater the 

difference (from zero), the less accurate the result. MPA differences have 

been rescaled to positive numbers and are represented in units of 100,000 

square kilometers. 



 60 

 

Figure 3.2: Population estimates from the Integrated SDM framework. Horizontal lines 

are placed at expert population estimates for the species, 3000 (current Red 

List assessment: Garcia et al 2017) and 16500 (Population Viability 

Assessment report: Medici et al 2005). Black triangles are the estimates for 

models run on the complete (not sub-sampled) set of presence data. 

  



 61 

Model Site Area Samples Rate 

PB 1 1 0.03 

PB 4 1 0.03 

PB 16 1 0.41 

PB 64 1 0.08 

SO 1 3 1 

SO 1 6 1 

SO 1 9 1 

SO 4 3 0.99 

SO 4 6 1 

SO 4 9 0.98 

SO 16 3 0 

SO 16 6 0.06 

SO 16 9 0.1 

SO 64 3 0 

SO 64 6 0 

SO 64 9 0 

ISDM 1 3 1 

ISDM 1 6 1 

ISDM 1 9 1 

ISDM 4 3 1 

ISDM 4 6 1 

ISDM 4 9 1 

ISDM 16 3 0.9 

ISDM 16 6 0.99 

ISDM 16 9 1 

ISDM 64 3 0.87 

ISDM 64 6 0.95 

ISDM 64 9 0.97 

Table 3.1: Model Convergence and Standard Estimation Rates for each model 

framework and combination of site area and number of samples. 
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Coefficient 1 4 16 64 

beta0 -1.403 (0.214) -2.66 (0.258) -3.8 (0.416) -4.654 (0.812) 

temp_seasonality -0.527 (0.092) -0.458 (0.109) -0.438 (0.131) -0.338 (0.163) 

precip_seasonality 0.448 (0.134) 0.382 (0.16) 0.394 (0.195) 0.302 (0.24) 

max_temp_warmest_month 0.291 (0.129) 0.236 (0.156) 0.204 (0.191) 0.115 (0.244) 

annual_precip 1.448 (0.252) 1.398 (0.298) 1.428 (0.356) 1.41 (0.43) 

temp_seasonality_sq -0.651 (0.09) -0.557 (0.105) -0.41 (0.123) -0.285 (0.148) 

precip_seasonality_sq -0.18 (0.089) -0.164 (0.108) -0.147 (0.13) -0.129 (0.16) 

max_temp_warmest_month_sq 0.066 (0.026) 0.05 (0.032) 0.023 (0.041) -0.006 (0.055) 

annual_precip_sq -1.045 (0.202) -1.1 (0.247) -1.213 (0.312) -1.225 (0.379) 

forestcover2000 1.692 (0.166) 1.568 (0.193) 1.496 (0.223) 1.309 (0.27) 

distancePA -0.005 (0.103) -0.041 (0.119) -0.099 (0.141) -0.095 (0.172) 

EVI -0.554 (0.111) -0.567 (0.14) -0.649 (0.168) -0.6 (0.229) 

EVI_sq -0.025 (0.051) -0.09 (0.071) -0.09 (0.078) -0.176 (0.119) 

forestloss_focal -0.217 (0.056) -0.179 (0.066) -0.104 (0.078) -0.04 (0.095) 

road_length_focal -1.147 (0.201) -1.185 (0.244) -1.314 (0.322) -1.426 (0.411) 

fire_density_focal 0.061 (0.091) 0.035 (0.112) -0.032 (0.142) -0.031 (0.163) 

max_slope -0.395 (0.08) -0.357 (0.095) -0.312 (0.117) -0.215 (0.146) 

alpha0.pb -7.353 (0.243) -6.31 (0.297) -5.405 (0.465) -5.05 (0.884) 

alpha0.so -1.326 (0.335) -1.839 (0.526) -2.316 (0.751) -1.913 (0.858) 

pb.forest 0.043 (0.183) 0.164 (0.224) 0.177 (0.271) 0.44 (0.35) 

pb.protected 1.614 (0.18) 1.462 (0.203) 1.28 (0.235) 1.186 (0.281) 

pb.road_distance -0.792 (0.107) -0.751 (0.127) -0.721 (0.157) -0.744 (0.207) 

pb.road_distance_sq 0.146 (0.024) 0.137 (0.03) 0.125 (0.042) 0.116 (0.056) 

so.forestcover2000 0.301 (0.298) 0.751 (0.469) 0.954 (0.652) 0.348 (0.726) 

so.distancePA -0.043 (0.178) -0.01 (0.232) -0.162 (0.354) -0.193 (0.468) 

so.road_distance -0.565 (0.222) -0.811 (0.298) -1.309 (0.469) -1.59 (0.798) 

so.road_distance_sq 0.103 (0.082) 0.166 (0.108) 0.211 (0.201) -0.08 (0.607) 

so.max_slope 0.316 (0.087) 0.307 (0.11) 0.344 (0.168) 0.412 (0.224) 

Table 3.2: Coefficient estimates and standard errors for the Integrated SDM (samples = 

6) averaged across 100 model iterations fit on randomly subsampled 

presence data. 
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3.4 DISCUSSION 

In the SO model, convergence decreased for larger site areas possibly due to 

reduced sample sizes following the subsampling step (mean sample sizes, 1 km2: 663, 

4km2: 370, 16km2: 182, 64km2: 93). The ISDM could maintain convergence at these larger 

site areas possibly because of the added information from the PB data. However, there was 

a detectable decline in convergence with shorter sampling period lengths at these larger 

site areas. Clearly sample size is affected by both number of sites, and number of repeated 

observations at those sites (Mackenzie & Royle, 2005). In addition to higher rates of 

convergence, the ISDM was consistently the most accurate model. Taken together, these 

results demonstrate the importance of this new modeling framework. The ability to 

combine two types of presence data in the same model leads to better results. 

In the ISDM, any of the species-environment relationships exhibited the expected 

outcome for this species (e.g. a preference for forest and avoidance of humans) (Cove et 

al., 2014; Jordan et al., 2016). However, there are two results which contradicted 

expectations. As in Schank et al. (2017), EVI had a negative relationship with tapir 

intensity. However, tapir intensity should be positively associated with increasing 

vegetation (higher EVI) because vegetation is both a food source and it provides cover 

(Brooks et al., 1997; Pettorelli, Ryan, Mueller, & Bunnefeld, 2011). Also surprising was 

the positive relationship with maximum slope in the detectability of the SO data. This 

variable was included in this part of the model as it was suspected to either have a negative 

effect on sampling effort, because steep terrain is harder to sample, or actual detectability 

of tapirs due to the same constraints, as difficult terrain is an impediment to wildlife 

movement as well (D. W. Bailey, Gross, & Laca, 1996; Mair & Ruete, 2016).  

Clearly, the most important factor driving estimated population (and underlying 

magnitude of intensity) was the assumption about the size of a sampling unit, or site area. 
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The number of sampling occasions and whether the presence data had been subsampled to 

preserve site independence, had a much smaller effect, with no discernible patterns. The 

models developed in Dorazio (2014) and Koshkina et al. (2017) explicitly incorporate site 

area in a way that is different than in traditional occupancy models. This likely explains 

the behavior of total population changing proportional to the area of a grid cell used in the 

analysis. In the traditional formulation of an occupancy model (see Panel 3.8 in Royle & 

Dorazio (2008)), site area is not included anywhere in the model likelihood. The important 

question that remains is what exactly constitutes a site? For sessile species, or species that 

have small home ranges relative to the survey method, the site is easily defined as the area 

covered during the survey (i.e. a quadrat). However, when the species is relatively mobile, 

with a home range much bigger than the area covered in the survey, the concept of the site 

is less straightforward (M. G. Efford & Dawson, 2012).  

For example, when using camera traps, the cone of detection (i.e. the area in which 

a species can trigger the camera), is often very small in relation to the movements of the 

target species, which are typically large and mobile. The Effective Sampling Area (ESA) 

is the area that contains the activity centers of any individuals that could come in contact 

with this cone of detection (Figure 3.3) (White, 1982). This area should be approximately 

equal to the average home range of the species. Original estimates of the home range for 

Baird’s tapir were about one square kilometer (Foerster & Vaughan, 2002), surprisingly 

small for a species of its size. More recent estimates put the home range size closer to 10 

km2 (C. Jordan personal observation, 2016). The differences in reported estimates of home 

range size could be due to differences in the methodology used, and differences in 

topography and the availability of resources, specifically regarding the availability of 

water. In mountainous sites with complex topography and permanent availability of quality 

water throughout the year, the home range could be much smaller than in flat sites with 
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very marked seasonality (Botello et al., 2017). Interestingly, using a site area of 16km2, 

provides a total population estimate that is within the range of expert estimates for the 

species (Figure 3.2). 

 

Figure 3.3: Effective Sampling Area. A simplified diagram of two individuals with 

overlapping home ranges, and a camera trap in the area of their intersection. 

The effective sampling area is equal to the area that incorporates the activity 

centers of all individuals detected at the camera. 

In Schank et al. (2017), the model was implemented using a site area of 1km2. To 

contextualize the population estimates from that model, the results were compared to 

multiple independent studies that focused on estimated abundance of Baird’s tapir. The 

estimates from those studies were similar to the estimates using the ISDM, which provided 

a conflicting story, as the total population estimates were thought to be an overestimate by 

at least an order of magnitude. Most of these independent studies used Capture-Recapture 
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methods, and did control for the ESA, however, they used the old estimate of home range 

size from Foerster and Vaughan (2002). Clearly, accounting for the size of a species’ home 

range, and the variability in those estimates, has a huge effect on abundance and population 

estimates using the ISDM (Figure 3.2). 

In fact, some authors have called into question the ability to use Capture-Recapture 

on a species like Baird’s tapir, which does not have obvious and distinct markings by which 

individuals can be identified (Foster & Harmsen, 2012). In the case of Baird's tapirs, 

sexually immature subadults lose their juvenile pelage before one year of age and develop 

very quickly. In addition to making individual adults difficult to identify, this makes older 

juveniles effectively indistinguishable from mature adults in camera traps. This means that 

sexually immature individuals have likely been included into prior population estimates 

using Capture-Recapture methods and puts into doubt whether those studies accurately 

estimate the effective population size.  

In addition to problems with misidentification of individuals, Capture-Recapture 

can overestimate species abundance due to the ad hoc correction of ESA (Noss et al., 2012), 

which can also lead to large errors in population estimates due to extrapolation (Foster & 

Harmsen, 2012). These critiques recommend the use of the newer Spatial Capture-

Recapture (Royle et al., 2013), which explicitly accounts for species movement using an 

additional scaling parameter in the model. 

3.5 CONCLUSION 

This research has demonstrated the potential connection between ISDMs and the 

Effective Sampling Area (ESA). Yet, the methods used in this research include ad hoc 

procedures that should be replaced by formal incorporation into the statistical model. In 

the models, accounting for the ESA is done in a way that matches site area with the best 
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information about average movements for the species. Spatial Capture-Recapture provides 

an example for properly scaling the model to incorporate animal movement (Royle et al., 

2013). Rather than approximating this effect through the selection of an appropriate site 

area, it would be better to combine concepts from Spatial Capture-Recapture with the 

ISDMs used here.   

Second, sometimes additional ad hoc steps must be taken to “fix” the data. In this 

case, a spatial subsampling approach was used to avoid duplicate observations of the same 

individual at more than one site. Here Spatial Capture-Recapture can provide some 

guidance as well. These models require that sites be close enough to ensure individuals are 

observed at more than one site and uses this information to help estimate the spatial scalar 

of movement for the species. Thus, combining concepts from Spatial Capture-Recapture 

with ISDMs may allow for the use of all data possible, though some alterations may be 

necessary for sites that have data covering more than one sampling period (as the tapir data 

used here does). 

A significant contribution of this research is the linkage between the ESA and 

estimating abundance using ISDMs (or any other SDM/occupancy model). It is unclear 

why the discussion of ESA is almost entirely tied to Capture-Recapture models that use 

marked individuals. However, there is at least one study which addresses this issue as it 

relates to occupancy models (M. G. Efford & Dawson, 2012). 

The issue created by incorrectly accounting for the ESA only becomes apparent in 

a small number of situations: when studying mobile species, estimating their abundance, 

and extrapolating these estimates to produce population estimates. With Baird’s tapir, these 

steps made it clear that something could be incorrect in the model. While it is possible to 

hypothesize multiple reasons for this disparity (see Conclusion Schank et al. 2017), the 

most straightforward answer is that ESA was not properly accounted for.  
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The incorporation of ESA into SDMs and occupancy models could use additional 

research. Failure to account for this properly could lead to inaccurate estimation of 

occupancy or abundance. Although, as seen in this research, species-environment 

relationships might remain the same. To answer these questions, a future study using a 

detailed simulation (incorporating the movement of individuals) is needed. Future 

modeling efforts for this species should also explore unexpected species-environment 

relationships in more detail (e.g. negative association between species presence and EVI, 

and positive association between species detectability and slope). It is possible that there 

is some interaction with other variables which caused these unexpected results. Finally, the 

reciprocal of the condition number used to determine parameter identifiability is new to 

species distribution modeling and should be investigated further. 
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CHAPTER 4:  Population status, connectivity, and conservation action 

for Baird’s Tapir 

4.1 INTRODUCTION 

Approximately a quarter of all mammal species are under threat, and in need of 

some action to decrease their risk of extinction (Schipper et al., 2008). This is especially 

true of large mammals, which require greater amounts of habitat, are often slow 

reproducers, and face threats from hunting or conflict with humans (Dirzo et al., 2014). 

Within this group, large herbivores play a vital role in seed dispersal and other ecosystem 

functions (O’Farrill, Calmé, Sengupta, & Gonzalez, 2012; Ripple et al., 2015). Therefore, 

the loss of these species across landscapes can have cascading effects on the environment 

and can even decrease carbon storage of forests (Bello et al., 2015; Osuri et al., 2016). In 

addition to habitat loss, increasing habitat fragmentation leads to isolated populations that 

face an increased risk of extinction, threatening the overall viability of a species (Reed, 

2004). Decreased genetic diversity can also result in negative impacts on species’ viability, 

due to susceptibility to inbreeding or disease (Frankham, 2005). 

To facilitate species conservation in response to these threats, it is necessary to 

create range-wide conservation plans to prioritize and direct actions to specific areas 

(Sanderson et al., 2002). These plans consider both habitat patches and their connectivity, 

identifying the most important patches and corridors in need of conservation attention at 

both national and international levels. In most cases, this planning involves collection of 

expert knowledge on the species of concern (A. Rabinowitz & Zeller, 2010). However, 

many tools exist to make inferences about species distributions and connectivity from 

existing presence data, and these have been shown to be more effective than expert 

information alone (Zeller, McGarigal, & Whiteley, 2012). Regardless of the information 
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used in the planning process, a range-wide perspective is important if the overall 

conservation of the species is the goal (Sanderson et al., 2002). 

Baird’s tapir (Tapirus bairdii) is the largest terrestrial herbivore native to 

Mesoamerica and plays an important role in ecosystems as a browser and seed disperser 

(Brooks et al., 1997; O’Farrill et al., 2012). However, this species is highly threatened by 

habitat destruction, habitat fragmentation and poaching (Cove et al., 2014; Naranjo, 2009; 

Naranjo, Alcalá, Briones, & Hurtado, 2015). As a result, it is classified as Endangered by 

the IUCN Red List (Garcìa et al., 2016). Additionally, tapirs are relatively unique 

evolutionarily, thus their extinction would represent a greater loss of genetic lineage 

compared to a species with closer genetic relatives (Isaac et al., 2007). It is estimated that 

the distribution of Baird’s tapir has been reduced drastically, possibly by as much as 50% 

in the past 30 years (Garcìa et al., 2016). 

This research combined an Integrated Species Distribution Model (ISDM) with 

connectivity analyses to identify suitable habitat patches for Baird’s tapirs and the critical 

areas required to maintain connectivity across its distributional range from Mexico to 

northern Colombia. Previous research modeled the range-wide distribution for Baird’s 

tapir using an ISDM (Schank et al., 2017), yet no effort has been made to assess the 

connectivity of the habitat patches identified, or a prioritization plan for conservation action 

based on such an analysis. This research addresses these gaps, using best practices for 

ISDMs (Schank et al., 2018), then applying a network analysis to habitat patches to 

calculate the contribution of each patch to overall network integrity (i.e. connectedness), 

and isolation from other patches. These measures are combined with others, including 

population size, protection status, and forest loss, to develop separate indices of ecological 

importance and vulnerability. This research balances these two aspects of extinction risk 

when developing a conservation plan, similar to others that previously conducted range-



 71 

wide assessments (Altrichter et al., 2012; Zeller & Rabinowitz, 2011). Common SDM 

methods have been combined with graph networks in several instances (Dilts et al., 2016; 

Foltete, Clauzel, Vuidel, & Tournant, 2012), yet this work represents a first step in 

combining ISDMs with networks and using the results to develop basic indices for 

conservation prioritization. The results are used to develop a set of spatially explicit 

conservation actions for Baird’s tapirs, in addition to suggestions for improvements to the 

models and methods used. This approach may be useful for many species that have not yet 

been assessed in a similar manner. 

4.2 DATA AND METHODS 

4.2.1 Presence Data and Environmental Predictors 

The presence data used in the ISDM were from an international collaboration 

among more than 30 researchers across Mexico, Central America, and Colombia. These 

data included approximately 800 presence-only (PO) points and 1600 sites with site-

occupancy (SO) data from camera traps. Details and sources of this data can be found in 

previous publications (Schank et al., 2017, 2018). 

Due to the clustered nature of the presence data, a random spatial subsampling (pre-

modeling) step was used to enforce a minimum distance between the presence locations 

used in the model (Schank et al., 2017). The distance selected for this step was based on 

an estimate of the effective sampling area (ESA) around each site, using knowledge about 

the average home range for the species, which ranges from 1 to 24 km2 (Foerster & 

Vaughan, 2002; Reyna-Hurtado et al., 2016a). To maintain a consistent spatial scale, the 

pixel size of environmental predictors was matched to the estimated ESA (i.e. 4 km 

resolution for an ESA of 16 km2), and a subsampling radius of 5.7 km was used to ensure 

that no two presence points could fall in the same pixel. The ISDM was trained separately 
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on 1000 random samples generated by this process to capture the variability introduced by 

this step. Parameter estimates were then averaged across these iterations. 

Environmental predictors used in the model included climate, land cover, 

anthropogenic disturbance, and terrain. Temperature and precipitation seasonality, 

maximum temperature of the warmest month, and annual precipitation were used as 

climate variables in the model. These variables were selected as a subset of important 

predictors based on earlier modeling efforts for the species (Mendoza et al., 2013; Schank 

et al., 2015). Climate layers were downloaded from CHELSA (Karger et al., 2017) at 1 km 

resolution (all subsequent variables were resampled to match this resolution and extent). 

Percentage forest cover from the year 2000 (Hansen et al., 2013), distance to/within 

protected areas (IUCN & UNEP-WCMC 2014), mean Enhanced Vegetation Index (EVI) 

from years 2000-2015 (Google Earth Engine Team, 2015), and water occurrence (Pekel, 

Cottam, Gorelick, & Belward, 2016) were used as land cover variables. Forest loss between 

2000 and 2016 (Hansen et al., 2013), fire frequency for approximately the same years 

(NASA, 2017), and road density (Eugster & Schlesinger, 2010) were used as indicators of 

anthropogenic disturbance. Finally, slope was used to incorporate the effect of terrain. This 

variable was calculated from 90 m resolution elevation data (i.e. SRTM) downloaded from 

the ‘raster’ package in R (Hijmans, van Etten, et al., 2016). 

The ISDM also incorporated variables that could influence the detectability of the 

species, which allowed a separate set of detectability variables for the two different types 

of presence data used in the model (i.e. PO and SO). For the PO data, these variables 

included binary indicators for forest (Arino et al., 2012) and protected status (IUCN & 

UNEP-WCMC 2014), distance to roads (Eugster & Schlesinger, 2010), and slope. 

Variables for SO data incorporated land cover and anthropogenic disturbance, as well as 

distance to roads, slope, and dummy variables for different sampling methods (on- vs off-
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trail and surveys targeting either tapirs, large cats, or general biodiversity inventories). 

These last variables were included to control for the different sampling regimes used by 

the various sources of presence data. Variables used with PO data were meant to capture 

sampling bias in presence-only data, which heavily favors forested and protected areas that 

are reasonably accessible by road. A quadratic term for distance to roads was also used, as 

there could be optimal locations that are far enough from roads to minimize anthropogenic 

factors, but close enough to facilitate sampling. With SO data, the sampling variables were 

chosen as variables that might influence the detectability of the species. For example, tapir 

detectability might decrease as distance from protected areas increases, due to avoidance 

of humans as result of heightened levels of hunting outside of protected areas (de la Torre 

et al., 2017; Ferreguetti et al., 2017). 

All variables were resampled to a resolution of four km, scaled (SD=1) and centered 

on zero, except for distance to/within protected areas, which was scaled but not centered. 

This was done to preserve zero as the boundary between inside (negative values) versus 

outside (positive values) of the protected area. Quadratic terms for all climate variables, 

EVI, water occurrence, and distance to road were used in the model to account for their 

suspected non-monotonic relationships with tapir presence and detectability (aided by 

single-variable response curves created in the early stages of the modelling process). 

4.2.2 Integrated SDM 

This research utilized an Integrated SDM (ISDM) to incorporate both 

opportunistically collected presence-only (PO) data and site-occupancy (SO) data from 

planned surveys. The ISDM uses a hierarchical framework to estimate separately species 

occurrence and detectability. Species occurrence is modeled as the intensity of a Poisson 

point process, λ(s), which is the expected density (number of individuals per unit area) at 
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location s. The intensity is formulated as a log-linear function of unknown parameters and 

location-specific regressors x(s), 

log(𝜆(𝑠)) =  𝛽0 + 𝛽′𝑥(𝑠) 

In the ISDM, separate detectability formulations were used for the two types of 

data. For the PO data, spatial bias and imperfect detection are incorporated through an 

independent thinning of the point process. This thinned point process is the product of the 

original point process and ppo(s), the probability that the site is surveyed, and the species is 

detected. ppo(s) is formulated as a logistic function of unknown parameters and location-

specific regressors wpo(s), 

𝑙𝑜𝑔𝑖𝑡 (𝑝𝑝𝑜(𝑠)) =  𝛼0.𝑝𝑜 + 𝛼𝑝𝑜
′ ∙ 𝑤𝑝𝑜(𝑠) 

  With the SO data, imperfect detection is modeled following a zero-inflated 

binomial distribution (Koshkina et al., 2017). Under this model, the presence or absence of 

the species at a site, i, follows a Bernoulli distribution. In this case, the detection histories 

at each site, yi, have non-detections (i.e. zeros) due to either species absence or imperfect 

detectability, when an individual may go undetected despite being present (MacKenzie et 

al., 2003). This relationship is modeled as a Binomial distribution with J trials (i.e. the 

number of repeated observations at a site), and the probability of success (i.e. species 

detection) equal to the product of zi (the occupancy state, zi = I(Ni > 0) ) and pso, the 

probability of detection at the site. As with detectability in the PO model, pso(s) is 

formulated as a logistic function of unknown parameters and location-specific regressors 

wso(s), 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑠𝑜(𝑠)) =  𝛼0.𝑠𝑜 + 𝛼𝑠𝑜
′ ∙ 𝑤𝑠𝑜(𝑠) 

In ISDMs, the PO and SO models are estimated simultaneously, such that one set 

of parameters for the SDM is created (i.e. the β’s), while separate detectability parameters 

are estimated (i.e. the α’s) for the two models. Starting values for both detectability 
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intercepts (i.e. α0.po and α0.so) were set to the naive detectability for each respective data 

type to help solve issues with model convergence. All other parameters in the model used 

a starting value of 0.  

The intensity estimates from the ISDM can be integrated across a spatial unit to 

estimate the expected number of individuals in that area. This property is used to estimate 

population sizes in the habitat patches identified by the analysis. 

4.2.3 Quantifying Habitat Connectivity 

The estimated intensity surface was converted to a map of habitat patches using a 

hotspot analysis. Specifically, the Getis-Ord Gi* (i.e. local G) spatial statistic (Getis & Ord, 

1992) was calculated using a 10 km radius, and statistically significant hotspots designated 

as habitat patches for the species. This threshold was selected as the maximum distance 

traveled by an individual tapir (Reyna-Hurtado et al., 2016a), thus accounting for a level 

of interactivity between individuals that could be representative of a habitat patch.  

The estimated intensity was then summed within these patches, and those with an 

estimated population of 10 or more were retained for the next stages of the analysis. 

Researchers in the Atlantic Forest of Brazil estimated that 200 adult individuals of Tapirus 

terrestris are needed to constitute a minimum viable population (Medici & Desbiez, 2012). 

Rather than use 200 individuals as the cut off for these habitat patches, I used the minimum 

population from different test scenarios carried out in a Population Viability Assessment 

for Baird’s tapir (Medici et al., 2005) in order to maximize the number of vertices in the 

network (within reason), while considering that some patches may act as population sinks 

(i.e. they harbor less than a viable population, and thus are reliant on immigration of 

individuals from adjacent patches to prevent a local extinction). In the PVA, in nearly all 
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scenarios, a population of ten individuals had a greater than 50% probability of going 

extinct within 100 years. However, these scenarios did not consider immigration. 

An estimate of flow between patches was created by first calculating the least-cost 

distance between pixels using the intensity surface as a conductance layer (van Etten, 

2017). Only those connections with distances less than an estimated maximum dispersal 

distance were retained, calculated as 40 times the linear dimension of the home range 

estimate (Bowman, Jaeger, & Fahrig, 2002). Due to the variability in home range estimates, 

three maximum dispersal distances were tested: 40, 80, and 160 km (corresponding to 

home ranges of 1, 4, and 16 km2). The least-cost distance was then used in a negative 

exponential dispersal kernel (Nathan, Klein, Robledo-Arnuncio, & Revilla, 2012): 

 
1

2𝜋𝑎2
∙ exp (−

𝑟

𝑎
) 

Where a is two times the mean dispersal distance and r is the distance between 

pixels. The median dispersal distance was used in place of the mean, which was estimated 

as seven times the linear dimension of the home range (Bowman et al., 2002). Finally, this 

dispersal probability was multiplied by the square root of the estimated intensity in the 

source pixel (Estrada & Bodin, 2008) (see Figure 4.1 for a zoomed in map documenting 

this step). For each pair of adjacent patches, the corresponding flow between their 

respective pixels was summed. This flow matrix was used to create a weighted and directed 

graph network of vertices (i.e. patches) and edges (i.e. corridors) with the R package 

‘igraph’ (Csardi & Nepusz, 2006). 

Using this graph network, two measures of vertex centrality were calculated: 

farness and betweenness. Farness (i.e. the inverse of closeness) was defined as the average 

length of the shortest paths from all other vertices in the graph. This measure was then used 
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to represent the isolation of individual patches in the indices calculated. Vertex 

betweenness is roughly defined as the number of shortest paths going through a given 

vertex. This measure was used to represent the importance of a given patch to the overall 

connectivity of the network. Each vertex was then removed from the graph one at a time, 

and the number of components (i.e. isolated subgraphs) recorded. This was done to identify 

when new components were created by removing the vertex, indicating a new break in the 

graph. 

 

Figure 4.1: Example of flow calculation for one source pixel going from patch 23 to 

patch 21. The source pixel (blue dot) contains 0.758 individuals. Black dots 

are additional pixels that fall within range of the destination patch, and will 

subsequently have LCPs and flow calculated. Blue lines are LCPs. Purple 

line is the Panama Canal. 
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4.2.4 Prioritization Criteria 

To prioritize the different patches for conservation, the goal was to balance 

vulnerability to local extinctions and importance to the survival of the species. For this 

reason, two separate indices were calculated for each patch and then combined for an 

overall index of conservation priority.  

Before calculating these indices, some initial measures were created and used in the 

subsequent calculations: 1) the percentage of each patch that was not under protection 

(IUCN & UNEP-WCMC 2014), 2) a population index that converted the estimated 

population in each patch to a scale of 0 to 1, 3) evidence of occupation by the species using 

both PO and SO data (binary: 0 or 1), and 4) an index of forest loss occurring in the patch 

(Hansen et al., 2013). Population size provides information about both the vulnerability 

and ecological importance of a patch, while level of protection and amount of forest loss 

occurring in the patch are informative about vulnerability. Confirming the species presence 

in a patch provides more confidence in its ecological importance, as there are likely some 

patches (especially small ones) that are predicted to contain species, which do not. These 

patches do have value for species conservation (e.g. for translocations, or re-establishment 

of connectivity), but perhaps less than if they were already occupied. 

The vulnerability index was calculated to represent the relative risk of a local 

extinction for a given habitat patch. Less protection, more deforestation, smaller 

populations, and greater distance from other patches in the network should lead to cores 

that are more vulnerable. Thus, this index was created as the sum of the following: 

% unprotected + deforestation +(1 / population index) + farness 

The importance index was created to represent the relative importance of a given 

habitat patch to the overall survival of the species. Larger estimated populations, confirmed 

presence of the species, and importance to the overall network connectivity should indicate 
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patches that had greater importance. Thus, this index was calculated as the sum of the 

following: 

population index +confirmed presence + betweenness + components created 

Both indices were rescaled to have a maximum value of 1, before they were 

summed in a combined index of conservation priority; the population measures used in 

these two indices will cancel each other out when combined. However, they are useful to 

include when considering vulnerability and importance separately. Similarly, the centrality 

measures will have some counteracting effect when combined, but the relationship between 

these is not exactly reciprocal. 

4.3 RESULTS 

Significant environmental variables to model the intensity of Baird’s tapir (i.e. 95% 

CI not overlapping 0; Table 4.1) included water occurrence (1.44, SE=0.45), forest cover 

(1.33, SE=0.20), annual precipitation (1.20, SE=0.34), EVI (-0.56, SE=0.17), and 

temperature seasonality (-0.44, SE=0.13). Significant quadratic terms for water occurrence 

(-0.84, SE=0.34), temperature seasonality (-0.39, SE=0.12) and annual precipitation (-0.81, 

SE=0.26) indicated possible non-monotonic relationships for those variables. A 3-

dimensional response curve for the interaction between forestcover and EVI demonstrated 

highest lambda values when high forest cover was combined with low EVI (Figure 4.2). 

Significant variables to model the detectability of tapir using presence-only (PO) data 

(Table 4.1) included presence in a protected area (1.35, SE=0.24) and distance to roads (-

0.43, SE=0.15). With the SO data, the dummy variable for surveys targeting tapir was 

significant (1.03, SE=0.44), while forest loss was nearly significant (-0.30, SE=0.15). 
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Coefficient Estimate SE z-score p-value 

beta0 -3.237 0.316 10.252 0.000 

x.chelsa_temp_seasonality -0.444 0.127 3.500 0.000 

x.chelsa_precip_seasonality 0.282 0.192 1.472 0.141 

x.chelsa_max_temp_warmest_month 0.194 0.187 1.037 0.300 

x.chelsa_annual_precip 1.202 0.344 3.490 0.000 

 x.chelsa_temp_seasonality_sq -0.392 0.119 3.287 0.001 

x.chelsa_precip_seasonality_sq -0.208 0.127 1.637 0.102 

x.chelsa_max_temp_warmest_month_sq 0.042 0.038 1.103 0.270 

x.chelsa_annual_precip_sq -0.815 0.255 3.189 0.001 

x.forestcover2000 1.335 0.202 6.591 0.000 

x.distancePA -0.088 0.155 0.570 0.569 

x.EVI -0.564 0.168 3.357 0.001 

x.EVI_sq -0.126 0.129 0.972 0.331 

x.water_occurence 1.441 0.450 3.199 0.001 

x.water_occurence_sq -0.842 0.338 2.495 0.013 

x.forestloss -0.095 0.071 1.329 0.184 

x.road_length -0.287 0.207 1.388 0.165 

x.fire_density -0.211 0.224 0.941 0.347 

x.mean_slope -0.181 0.229 0.794 0.427 

x.forestcover2000_EVI 0.133 0.179 0.745 0.456 

alpha0.po -5.410 0.367 14.748 0.000 

alpha0.so -2.373 0.673 3.526 0.000 

w.po.forest 0.276 0.262 1.056 0.291 

w.po.protected 1.352 0.245 5.525 0.000 

w.po.road_distance -0.434 0.153 2.833 0.005 

w.po.road_distance_sq 0.057 0.049 1.166 0.243 

w.po.mean_slope -0.106 0.216 0.490 0.624 

w.so.forestcover2000 0.469 0.518 0.905 0.366 

w.so.distancePA -0.043 0.325 0.131 0.895 

w.so.road_distance -0.667 0.475 1.406 0.160 

w.so.road_distance_sq -0.017 0.207 0.083 0.934 

w.so.mean_slope -0.002 0.171 0.011 0.991 

w.so.forestloss -0.296 0.155 1.908 0.056 

w.so.road_length 0.165 0.553 0.298 0.766 

w.so.fire_density 0.453 0.852 0.532 0.595 

w.so.sampling.Tapir 1.027 0.444 2.313 0.021 

w.so.sampling.Cat 0.544 0.546 0.996 0.319 

w.so.sampling.OnTrail 0.129 0.399 0.323 0.746 

Table 4.1: Coefficient estimates, standard errors, z-scores, and p-values. 
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Figure 4.2: 3D response plot of intensity to EVI and forest cover. 

Average estimated intensity from the model was 1.8 individuals/ 100 km2, with a 

maximum of 46.4 individuals/100 km2. The hotspot analysis identified 28 habitat patches 

with an estimated population of 10 or more individuals (Figure 4.3). These patches covered 

23.1% of the land in the study area, and contained an estimated total of 10,343 individuals, 

roughly 61.3% of the total population estimated across the entire study area.  

The three dispersal scenarios showed varying levels of connectivity (Figure 4.4). 

In the most restrictive case (max dispersal = 40 km), the network contains several 

disruptions in connectivity, with ten separated graph components. While the most generous 

dispersal scenario (max dispersal = 160 km), shows greater connectivity, though even it 

has breaks, as it contains three distinct components. Across all cases, a low degree of 

connectivity occurred at the extreme northwestern edge of the distribution, with completely 

isolated patches in Oaxaca (ID 3) and Chiapas (ID 4,5) Mexico. In the moderate scenario 

(max dispersal = 80 km), breaks in connectivity emerged across Honduras and at the 

Panama Canal. 
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Figure 4.3: Map of habitat patches. Green areas are habitat patches. Brown areas are 

protected areas. Purple lines represent the Panama Canal and the planned 

path of the Nicaragua Canal. (a) - Santa Rosa, (b) - La Sepultura, (c) - El 

Triunfo, (d) - La Muralla. 

Focusing on the indices calculated using the most generous dispersal scenario (to 

consider the impact of potential connections), the most vulnerable habitat patch was found 

in the northern Yucatan Peninsula (ID 1). This patch had a small estimated population (~11 

individuals), is completely unprotected, and had a high level of isolation (i.e. farness) from 

other patches (Table 4.2). The top four most vulnerable patches also had low importance 

values, with small estimated populations (mean = 18.5 individuals), no confirmed tapir 

presence, and low contribution to connectivity. The two patches with the highest estimated 
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population also had the highest combined scores, Maya Forest (ID 12) and Nicaragua (ID 

18). These patches also had an important role in connectivity. 

 

 

Figure 4.4: Maps of network connectivity. Thickness of edges indicates strength of flow 

between nodes. Size of nodes indicates estimated population size. 

About half (~49.3%) of the total area covered by the habitat patches is under some 

form of protected status. Much of the remaining area occurs in indigenous territories with 

some level of authority over their lands. This includes Selva Zoque (ID 5), Nicaragua (ID 

18), and between Chagres and Darien National Parks in Panama (ID 28). This last patch 

includes the Darien region of northern Colombia, a significant area that is unprotected and 

not under indigenous control. However, this area has remained largely undeveloped due to 

the difficulty of the environment and armed conflict between the government and 

paramilitary groups (Girot, 2002; Grajales, 2013).  

IUCN recently produced a map of indigenous territories in Central America (IUCN-

ORMACC, 2016). Focusing on these countries (i.e. excluding Colombia and Mexico), 

88.1% of tapir patches are either protected or in an indigenous area. Of the 41.0% of area 

that is not protected, 71.0% falls within indigenous areas. This includes the Qeqchi 

(Kekchi) in Guatemala, Miskito-Miskitu and Ulwa in northern Nicaragua (Wawashang), 
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Ngabe and Bugle in Golfo de los Mosquitos Panama, and Kuna and Embera-Wounaan near 

Chagres and Darien, Panama. 

 

ID Occu Pop Bet Comp Impor %Unp F. loss Far Vuln Comb 

18 1 3515 0.93 0.67 0.97 0.36 0.87 0.12 0.41 1.37 

12 1 3322 0.76 1.00 1.00 0.53 0.47 0.12 0.35 1.35 

8 1 762 0.40 0.67 0.62 0.64 0.61 0.17 0.66 1.28 

23 1 724 1.00 0.67 0.77 0.43 0.15 0.12 0.45 1.23 

25 1 240 0.00 0.00 0.29 0.57 0.24 0.72 0.74 1.03 

1 0 11 0.00 0.00 0.00 1.00 0.68 0.64 1.00 1.00 

28 1 1098 0.14 0.33 0.48 0.68 0.12 0.12 0.48 0.97 

5 1 147 0.00 0.00 0.28 1.00 0.19 0.00 0.65 0.93 

7 1 34 0.93 0.00 0.52 0.06 0.12 0.12 0.39 0.91 

26 0 28 0.00 0.00 0.00 0.99 0.87 0.12 0.90 0.90 

22 1 11 0.27 0.00 0.34 0.62 0.08 0.12 0.55 0.89 

24 0 16 0.00 0.00 0.00 0.74 1.00 0.12 0.86 0.86 

11 1 28 0.00 0.00 0.27 0.09 0.67 0.12 0.56 0.83 

9 1 13 0.18 0.00 0.32 0.22 0.30 0.12 0.49 0.81 

6 0 19 0.00 0.00 0.00 1.00 0.33 0.31 0.79 0.80 

21 1 60 0.27 0.00 0.35 0.11 0.10 0.12 0.40 0.74 

2 0 81 0.00 0.00 0.01 0.32 0.14 1.00 0.73 0.74 

20 1 25 0.00 0.00 0.27 0.29 0.04 0.13 0.44 0.71 

17 0 34 0.09 0.00 0.03 0.64 0.45 0.12 0.66 0.69 

27 0 21 0.00 0.00 0.00 0.94 0.08 0.23 0.68 0.68 

13 0 28 0.00 0.00 0.00 0.87 0.19 0.17 0.67 0.67 

10 0 16 0.00 0.00 0.00 0.70 0.06 0.44 0.67 0.67 

15 0 11 0.64 0.00 0.17 0.07 0.23 0.12 0.43 0.60 

4 1 10 0.00 0.00 0.27 0.00 0.06 0.00 0.32 0.59 

3 0 16 0.00 0.00 0.00 0.85 0.10 0.00 0.59 0.59 

14 0 12 0.20 0.00 0.06 0.26 0.26 0.12 0.49 0.55 

16 0 16 0.00 0.00 0.00 0.18 0.38 0.17 0.52 0.52 

19 0 55 0.00 0.00 0.00 0.53 0.08 0.12 0.52 0.52 

Table 4.2: Vulnerability, importance, and combined indices for conservation 

prioritization in the maximum dispersal = 160 km scenario. 
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4.4 DISCUSSION 

All the significant parameter estimates from the model (and even those that were 

close to significant), had the expected relationship with tapir intensity. In previous studies, 

the negative relationship with EVI was unexpected (Schank et al., 2017). However, 

showing the interaction between EVI and forest cover, it was clear that the model 

demonstrates evidence of tapir preference for secondary forest, as these are areas which 

would show up with high forest cover, but relatively lower biomass. The hump-shaped 

relationship with annual precipitation is likely what drives the low estimates of tapir 

presence in the Chocó, where rainfall is much higher than the rest of the study area (mean 

rainfall twice as high as any other portion of the study area). The Chocó is one of the wettest 

areas globally (Schwerdtfeger, 1976).  

The results from this research almost certainly represent a best-case scenario in the 

distribution and extent of habitat patches for Baird’s tapirs. Though there are a few 

underestimated areas that do not show up as suitable despite confirmed tapir occurrence 

(e.g. dry forests of Santa Rosa Costa Rica, and all of the Sierra Madre de Chiapas in S 

Mexico, between La Sepultura in the N and El Triunfo in the S), the overall estimated 

intensity and resulting habitat patches likely represent an overestimate of the species’ true 

distribution. This can be attributed to multiple factors, including that forest cover from the 

year 2000 is used in the model (even though forest loss in the intervening years is also 

used), and land cover is changing rapidly across much of Mexico and Central America.  

In addition, the connectivity between cores is likely overestimated in many cases. 

Very little is known about the long-distance dispersal capabilities for this species. The 

ability of Baird’s tapir to disperse even 40 km is questionable, especially across the low 
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suitability habitat it would encounter moving between most patches. Even in the most 

optimistic scenario, there is an alarming lack of connectivity and suitable habitat, with 

tenuous connections across Honduras, and a clear break in Mexico. Genetic data from 

jaguars revealed limited connectivity between La Selva Maya and Honduras (Wultsch et 

al., 2016), and these large carnivores likely have much greater dispersal capacity compared 

to tapirs. In addition, this analysis does not incorporate potential barriers to dispersal, such 

as the Panama Canal Zone and the increasing numbers of highways across southern Mexico 

and Central America. The planned Nicaragua Canal could present an additional dispersal 

barrier for the species (Jordan et al., 2016). Assuming this canal is built, and both it and 

the Panama Canal act as barriers to dispersal, while also including the breaks in the network 

that already exist, there is a potential for five major areas of tapir habitat to become isolated 

from one another. This would have significant adverse impacts on the long-term survival 

of the species. Isolating populations makes local extinctions more likely, due to reduced 

genetic diversity and interruption of source-sink/meta-population dynamics (Pardini, 

Bueno, Gardner, Prado, & Metzger, 2010). 

Considering these results, the following conservation actions for the species are 

recommended: 1) protect existing habitat, 2) re-establish and strengthen habitat 

connectivity, 3) conduct additional surveys on tapir occurrence, and 4) collect additional 

telemetry data. 

1) Protect existing habitat  

The results showed that about half of the remaining habitat for Baird’s tapir can be 

found in protected areas. Though these areas are protected (at least on paper), many of 

them still experience substantial deforestation inside park boundaries (Bray et al., 2008; 

Joppa, Loarie, & Pimm, 2008; Watsa, 2014). In fact, even when deforestation is not evident 

from satellite imagery, these protected areas still experience significant levels of poaching 
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and smaller scale deforestation that can have a strong negative impact on endangered 

wildlife (Peres, Barlow, & Laurance, 2006). Of the nearly 312 protected areas that intersect 

tapir habitat, 37 have experienced 5% or more deforestation over the last 13 years, with 

almost half of these found in Guatemala (Table 4.3). This could help explain why distance 

to/within protected areas was not a significant variable in the model (Table 4.1). 

The government agencies tasked with monitoring and enforcing laws within 

protected areas often have too little money or power to do their jobs effectively (Balmford 

& Whitten, 2003; Bruner, Gullison, & Balmford, 2004). Working with these agencies to 

provide the training, support, and resources to improve their effectiveness should be a 

priority. High-level lobbying by nationals to encourage governments to prioritize protected 

area management and the sentencing of environmental criminals is needed in most 

countries across Baird’s tapir range. In Nicaragua, for example, anecdotal data suggests 

that multiple tapirs trafficked in the capital city of Managua in 2017 were not confiscated 

despite the Ministry of Natural Resources being made aware of this environmental crime. 

Likewise, environmental criminals destroying core protected areas have not been held 

legally accountable in Nicaragua (Salazar, 2018). The Spatial Monitoring and Report Tool 

(SMART) is an open-source software program designed to facilitate the collection, 

analysis, and communication of data from protected area monitoring and vigilance efforts, 

which has proven a useful tool in many countries globally (Critchlow et al., 2017). 

In addition to protected areas, much of the remaining habitat for Baird’s tapir also 

occurs in indigenous areas, where indigenous communities often are more effective at 

conserving wildlife habitat than State government agencies (Bray et al., 2008; Porter-

Bolland et al., 2012). The exclusionary practices of protected areas are based on the 

“pristine myth” (Denevan, 1992), or the misconception that displacing people from 

“natural” areas is good for conservation (Schwartzman, Moreira, & Nepstad, 2000).  
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ID Name Forest Loss Area km2 Location 

18 Cerro Bana Cruz 0.16 270.30 NI-AN 

12 Santa Rosa 0.16 5.08 GT-IZ 

18 Cerro Wawashang 0.16 2244.64 NI-AS 

12 Mountain Pine Ridge 0.13 432.74 BZ-CY 

12 Yaxhá 0.13 1.98 GT-PE 

18 Punta Gorda 0.12 636.94 NI-AS 

12 Candilejas 0.12 0.70 GT-IZ 

18 Cerro Silva 0.10 2921.97 NI-AS 

18 Laguna de Bacalar 0.10 72.70 Not Reported 

12 Parque Nacional Yaxhá-Nakum-Naranjo 0.09 4874.45 GT-PE 

8, 12 Maya 0.09 20382.32 GT-PE 

12 Mischner & Bowen Reserve 0.08 6.97 BZ-BZ 

12 Cástulo 0.08 3.59 GT-IZ 

18 Cerro Cola Blanca 0.08 104.91 NI-AN 

12 Laguna del Tigre 0.08 2895.07 GT-PE 

12 Cerro San Gil 0.08 437.53 GT-IZ 

8, 12 Maya 0.08 7549.04 GT-PE 

12 El Higuerito 0.08 6.78 GT-IZ 

8 Laguna Lachuá 0.07 512.17 GT-AV 

18 Sierra de Río Tinto 0.07 880.71 HN-CL 

12 Grants Works 0.07 32.01 BZ-SC 

18 Patuca 0.07 3755.98 HN-OL 

18 Cerro Saslaya 0.07 631.09 NI-JI 

28 Canglón 0.07 320.87 PA-5 

12 Montañas Mayas Chiquibul 0.07 615.07 GT-PE 

18 Tawahka Asangni   0.07 2508.79 HN-OL 

12 Caracol 0.06 103.19 BZ-CY 

8 Sierra del Lacandón 0.06 2002.87 GT-PE 

8 Empalme Santa Felícitas 0.06 42.72 MX-CHP 

12 Swasey Bladen 0.06 59.81 BZ-TOL 

18 Sureste de Nicaragua 0.06 18315.05 NI-AS 

12 Laguna Ik 0.06 287.82 MX-CAM 

12 Río Sarstun 0.06 324.13 GT-IZ 

18 Fortaleza la Inmaculada Concepción de María 0.06 35.82 NI-SJ 

12 Otoch Ma'ax Yetel Kooh 0.06 53.72 MX-ROO 

13 Buenos Aires 0.05 8.75 GT-RE 

12 Santa Elena 0.05 1.41 GT-IZ 

Table 4.3: Forest loss rates (2000-2014), protected status, area, and location of 

protected areas that intersect tapir habitat patches. 



 89 

Indigenous people are possibly the most important allies that conservationists have in 

protecting habitat for endangered species (Schwartzman, Nepstad, & Moreira, 2000). 

In some high priority patches, State governments have also granted legal tenure and 

certain levels of legal autonomy to indigenous communities, including in the Honduran 

Moskitia where 11 indigenous territories were granted titles to approximately 1.4 million 

hectares in 2016 and the 23 indigenous territories that cover nearly the entirety of 

Nicaragua’s Caribbean Coast. However, despite legal recognition of their rights to their 

ancestral lands, these communities are often under pressure from illegal colonists driving 

cattle ranching and agricultural frontiers, lack adequate support from State governments, 

and lack the necessary resources to monitor and enforce their land rights (Stocks, 

McMahan, & Taber, 2007). Thus, similar strategies that would enhance funds, staff, 

technology, and training for indigenous territories will be crucial to protecting these areas. 

In many cases, protected areas and indigenous communities overlap. In this case, some 

suggest that management responsibilities should be passed from federal institutions to local 

communities (Bonham, Sacayon, & Tzi, 2008).  All strategies implemented in indigenous 

territories must abide by international instruments designed to protect the traditions, 

cultures, languages, and self-determination of indigenous peoples (i.e. ILO Convention 

169). 

Another strategy to maintain existing habitat for Baird’s tapir is through Payments 

for Ecosystem Services (PES) in communities that maintain tapir habitat or critical areas 

for connectivity. PES is a conservation scheme that provides economic compensation to 

local communities for conserving their land with natural forest, and studies have shown 

that this conservation scheme plays a crucial role in protecting the habitat and corridors of 

other emblematic species of Central America, such as the jaguar (de la Torre et al., 2017).  

2) Re-establish and strengthen connectivity 
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Areas with poor connectivity include southwestern Mexico and Honduras, where 

the distance between patches is too far, as well as areas with major dispersal barriers (e.g. 

Panama Canal). Strategies to promote connectivity could include the purchase of private 

land to preserve or restore habitat that can act as stepping stones for the species dispersing 

between the larger patches (Worboys, Francis, & Lockwood, 2010). Another strategy is to 

work with large agricultural or forestry operations that may lie along movement corridors 

(Meijaard et al., 2005). To plan for both of these actions, detailed information on land 

ownership and concessions is necessary (K. Miller, Chang, & Johnson, 2001).  

The path of the proposed Nicaragua Canal could create another disruption in 

connectivity for the species and destroy a large portion of an important habitat patch (ID 

26). Some strategies have been suggested to reduce the impact of this canal (Jordan et al., 

2016). Even if such strategies were employed, the canal would present a major barrier to 

dispersal, as evidence suggests the Panama Canal already does for tapir (N. F. V. Meyer et 

al., 2015/7; N. Meyer et al., 2013; Moreno, 1993). Major roads also act as dispersal barriers 

for large mammals like the tapir, with potential negative genetic effects and influences on 

overall species health (Holderegger & Di Giulio, 2010). To improve the connectivity across 

the species range, it is necessary that major roads that interrupt the connectivity for Baird’s 

tapir populations include mitigation measures to avoid wildlife collisions. Some projects 

have focused specifically on tapir-mortality when dispersing across roads (e.g. The Belize 

Tapir Project, Lowland Tapir Conservation Initiative). Wildlife under- and overpasses, 

installation of road signs and speed bumps, are potential strategies to promote connectivity 

for tapir populations that require further investigation, however even the best mitigation 

efforts will not overcome massive road development, meaning that conservationists must 

be engaged with development plans at the local level to discourage road construction in 

highly vulnerable or important tapir patches (Glista, DeVault, & DeWoody, 2009). 
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3) Conduct additional surveys to estimate tapir occupancy and abundance 

Ten of the patches identified in this analysis have no confirmed tapir presence. Most 

of these patches are small (mean estimated population size = 30, max = 61), and several of 

them are very close to larger patches, suggesting a low level of importance. However, 

surveys in some small patches should be prioritized due to their location in highly 

fragmented landscapes where maintaining connectivity is critical. First, there are several 

small patches throughout Honduras that should be prioritized (IDs 7, 12, 13, 21, & 22). 

Although presence data exist in some of these patches, this area is so crucial to the 

connectivity of the species due to its central location in the network that all these patches 

could represent important stepping stones. There also are several nearby smaller patches ( 

< 10 individuals) and protected areas that could serve this purpose, and that have confirmed 

tapir presence, including La Muralla, where a recent survey of limited effort detected the 

species (Sagastume-Espinoza & Romero, 2017).  

The second area of focus for future tapir surveys should be the fragmented 

landscape of northern Costa Rica (e.g. IDs 24 & 27). As with Honduras, there are smaller 

patches (< 10 individuals) that were not identified in the hotspot analysis, but which could 

act as stepping stones for the species dispersing between larger patches. This includes 

Volcan Barva, which was the subject of an extensive camera trap survey over almost a 

decade and carried out by the Tropical Ecology Assessment and Monitoring (TEAM) 

Network (Ahumada, Hurtado, & Lizcano, 2013). Roughly 25% of the 400 camera trap 

histories from this study had tapir detections. These areas need surveys not just to confirm 

or deny presence of the species, but also to assess the size of their populations, potentially 

using Spatial Capture-Recapture for unmarked populations (Ramsey et al., 2015). 

In addition to surveys to confirm presence in important patches, the distribution 

model would benefit from surveys conducted in habitats that are underrepresented in the 
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presence data. Most of the available presence data is from the fringe of habitat patches. 

There are few surveys from low suitability areas, because researchers targeting tapir or 

other endangered species often want to ensure they have some detections. On the other 

hand, there are also few surveys from deep within habitat cores, likely due to problems 

with accessibility. Targeting surveys to these two types of habitats, would likely improve 

model accuracy and precision. 

4) Collect additional telemetry data 

This research was based on limited knowledge about the dispersal capability of 

Baird’s tapir. Small changes in home range size and long-distance dispersal would have a 

large impact on the results. Estimates of home range size for the species range anywhere 

from 1 to 24 km2, though these are based on very small sample sizes (i.e. 1-5 individuals) 

and simple methods (Foerster & Vaughan, 2002; Reyna-Hurtado et al., 2016a). Changes 

to the home range estimate would impact estimates of species density, which would alter 

the patches that are included in the analyses. More accurate population estimates could also 

be used in population viability assessments. The estimate of maximum dispersal distance 

uses a method of extrapolation based on home range size and would also be affected by 

more accurate home range estimates. However, it would be best to incorporate high 

resolution GPS telemetry data to directly estimate maximum dispersal for the species. 

4.5 CONCLUSION 

The methods and approach used in this analysis can be applied to other endangered 

large mammals, with little adjustment, when sufficient data are available to run the ISDM, 

and there is some knowledge of species movements or home ranges. However, data 

limitations regarding predictors used in the ISDM or telemetry to make inferences about 
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ESA and dispersal, will lead to biased results. Despite these concerns, even relative 

rankings of habitat patches are useful for range-wide conservation planning.  

There are several similar studies that combine knowledge of species distributions 

with connectivity analyses to develop a set of priority areas for conservation (A. 

Rabinowitz & Zeller, 2010). Yet, the approach developed in this analysis paves the way 

for more accurate and rigorous range-wide conservation plans. This can be achieved by 

building on existing methods, collecting better (i.e. more proximal and/or more accurate) 

predictors, and additional presence data from under-sampled habitats. Specifically, the 

ISDM used in this research would benefit from an additional parameter to account for 

species movement, corresponding with the sigma parameter in Spatial Capture-Recapture 

models (J. A. Royle et al., 2013; Schank et al., 2018). This would eliminate the need to 

determine the ESA through ad hoc methods. If the model is formulated in a Bayesian 

framework, telemetry data could also be used as prior information for the movement 

parameter. Ideally, this parameter should be allowed to vary across the landscape, perhaps 

through a linkage with the intensity estimated by the model, which would allow for more 

accurate estimates of density from the ISDM. 

The methods used in this research would also benefit from estimation of actual 

dispersal probability, rather than using relative measures of flow between patches. 

However, this would require a spatiotemporal dispersal kernel that could provide an 

estimate of dispersal probability over time. Combining more accurate population estimates 

with dispersal probabilities would facilitate using these methods with population viability 

assessments. These methods could then be designed to create probabilities of extinction for 

each patch, and the resulting impact on the overall viability of the species. This would 

represent an improvement over this analysis, which creates only relative rankings between 

habitat patches.  
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CHAPTER 5: Next steps - Linking SDMs, Connectivity analyses, and 

PVAs 

5.1 INTRODUCTION 

By investigating new SDM methods and linking those outputs with a connectivity 

analysis in a range-wide conservation plan for Baird’s Tapir, this research established a 

path forward, and outlines some future steps to take in developing the methods for these 

types of plans. In conducting this research, I uncovered multiple questions that could use 

more interrogation, and here I outline these issues in more detail, while also proposing 

some possible solutions and how to achieve them. I also reflect on the overall process, and 

what could be improved from that standpoint. This research and the future steps follow 

well from the frontier’s in SDM research outlined in the conclusion of Chapter 1 (here I 

list them again and how they are addressed by this dissertation and final chapter): 

1) Creating more realistic models that incorporate ecological knowledge (M. 

Austin, 2007; Higgins et al., 2012) 

a. I propose strategies to test ISDMs on more realistic data simulations (i.e. 

by simulating individual movements of species) 

b. I propose combining hotspot analysis with biologically relevant 

thresholds to determine habitat patches for species more realistically 

2) Unifying disparate theories and multiple methods that address the same (or 

related) questions (McDonald, 2013; McGill, 2010) 

a. ISDMs as a framework combine aspects of Species Distribution Models 

(SDMs), Occupancy Models, and Point Process Models (PPMs) 

b. I propose further incorporating a spatial scale parameter in ISDMs 

(following the example of Spatial Capture-Recapture models) 
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3) Working with big data to develop not only the tools that can handle large 

quantities of data, but also how to use these new datasets to ask questions that 

simply were not possible before (Stephens-Davidowitz, 2017) 

a. Data integration (through ISDM) is one way to utilize big data 

4) Open access and democratization of research (Jetz et al., 2012) 

a. I propose implementing these workflows in Map of Life 

5.2 LINKING SDMS, CONNECTIVITY ANALYSES, AND PVAS 

The end vision of developing this research is to create a chain of analyses where an 

SDM feeds into a connectivity analysis, which both then are used to provide inputs to a 

Population Viability Analysis (PVA)4. PVAs are models which estimate the probability of 

extinction for a population over a certain number of years, under various conditions, and 

require inputs on population size and immigration from outside the population, among 

other demographic parameters. Ideally, in a RWCP context, we would know the probability 

of extinction for each habitat patch, and how that affects the overall survivability of the 

species, which could then be tested under different scenarios (e.g. climate change 

predictions, forest loss projections, or potential reintroduction scenarios). However, before 

this can be done, we first need to be more confident in the estimates that feed into the 

PVA5. 

                                                 
4 Research combining both SDMs with graph theory, and SDMs with PVAs, has already been underway 

for over a decade (Foltete, Clauzel, Vuidel, & Tournant, 2012; Franklin, 2010b), but the combination of all 

three is less explored. 

 
5 Would also be useful to have the ability to run PVA in R so that sensitivity analysis of the models could 

be more easily conducted. 
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5.2.1 Improving ISDM estimates 

In Chapter 2, the ISDM produced total population estimates which were much 

higher than expected using expert opinion as a baseline. Though it is true that expert 

opinions can be inaccurate, the distance between these estimates (ISDM and expert) was 

more than an order of magnitude, which raised a red flag. The reviewers of this manuscript 

when it was submitted to Diversity & Distributions, and the developer of the ISDM 

framework, suggested that duplicated observations could be the reason for the inflated 

population estimate. Thus, I developed a spatial thinning process to reduce the possibility 

that an individual could be detected at more than one site. However, the population 

estimates did not change significantly after thinning the data. For this reason, I investigated 

the sensitivity of the ISDM to some of the modelling decisions which were easily 

controllable.  

In the sensitivity analysis of Chapter 3, the relationship between site area and the 

total population estimate was striking. I found that the determination of the site area6 in the 

model is what drives the magnitude of the population estimate. Because the ISDM is based 

on a Poisson point process model (PPM), unlike typical occupancy models, the sampling 

area is explicitly included as an input in the model. Rereading the original paper that 

introduced the model, there is one sentence about how the model assumes that individuals 

are detected near their activity centers (Dorazio, 2014b): 

“I assume that individuals are detected at their activity centers, recognizing that 

this assumption is likely to be violated if individuals are highly mobile or possess large 

territories (that is, large relative to the size of region B).” (p.1474) 

                                                 
6 In Chapter 2, I used a site area of 1 km2 to match the resolution of the environmental predictors used in 

the model. There was always some anxiety about this decision, because it seemed arbitrary. However, my 

mind was somewhat at ease, since 1 km2 was generally the accepted home range size for the species 

(though new data that contradicted this was starting to emerge). 
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When considering how this would affect the model estimates, the concept of 

Effective Sampling Area (ESA) from Capture-Recapture (CR) provided some insight. 

Because CR models explicitly estimate species density, they have focused on the issue of 

sample area. Using camera traps (or other point sample techniques) to study mobile species, 

it is recognized that the actual area sampled is unknown (M. Kery & Royle, 2015; J. A. 

Royle & Dorazio, 2008). There are two ways to deal with this: 1) consider that the estimates 

from the model are relative indices of abundance, 2) use an ad-hoc correction method by 

adding a buffer around the sites that is equivalent to the mean distance moved during 

sampling (or sometimes the radius of a home range, if data on the movement is not 

available). In the latter option, the modeler is correcting for the ESA. 

Spatial Capture-Recapture (SCR), a variation of the CR model that utilizes a PPM, 

has an additional model parameter that accounts for individual movements of the species 

(i.e. known as the spatial scale parameter, σ). This parameter is estimated by having 

cameras placed close enough to get detections of the same individual at multiple sites (the 

same issue I was trying to avoid by using the thinning process7). In this way, the model 

uses the spatial autocorrelation of detections to estimate the spatial scale parameter. It is 

possible that adding this parameter to the ISDM model could allow for more accurate 

estimates of intensity, by directly estimating the effective sampling area. 

Typically, in both SCR and CR, it is necessary to identify at least some individuals 

of the population (hence “capture-recapture” or “mark-resight”). For a species like Tapir, 

some have tried to use CR techniques (González-Maya et al., 2012), but the identifications 

are difficult due to the lack of markings which can help identify individuals in photos 

(which is possible with Tigers or Jaguars) (Oliveira-Santos et al., 2010; Tobler et al., 2014). 

                                                 
7 So, if this same structure could be implemented in an ISDM, we wouldn’t need to throw out any data. 
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However, adaptations to SCR have been developed which do not require any individual 

identification (Ramsey et al., 2015), and some are currently being developed for partial 

identification (Augustine et al., 2017). These unmarked SCR models do have a problem 

with convergence, and are not yet developed to use environmental predictors, which would 

be needed to make predictions.  

When thinking about implementing a similar structure in the ISDM, we must ask: 

Why not just use the SCR? In these previous chapters, it became obvious that there was 

some benefit of including PO data in the ISDM, not just in that it filled in geographic 

sampling gaps, but also that it provided additional information to estimate model 

parameters (when there was some problem with convergence after thinning and reducing 

the data). This was because additional information was added by using the PO data, and 

also including the background environment in the model. That’s thousands and thousands 

of background points, which improved parameter precision. However, as with other models 

that use this kind of background or pseudo-absence framework, it is necessary to be careful 

how to interpret the model estimates. Ideally, the use of SO data reduces this issue, in that 

there is some idea of the species prevalence. 

To implement this combination of ideas from the ISDM and SCR models, the first 

step is to convert the ISDM to a Bayesian framework. This will allow more flexibility and 

ease of coding additional structure to the model, as well as allowing for prior information 

(such as from telemetry data), and more easily giving estimates of model uncertainty. 

It is also increasingly important to do a test of the ISDM, and any development 

thereof, with a simulated dataset. However, it is crucial to do the simulation in a way that 

uses a realistic sample (i.e. how many data points, and how biased), and realistically 

portrays individual movements. As was seen in this research, movement has a very strong 

effect on model estimates. Two R packages have functions that could be useful to simulate 
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this type of data: adehabitatLT and moveHMM (Calenge, 2011; Michelot, Langrock, & 

Patterson, 2016). 

It became clear during this research that species do not exhibit consistent movement 

patterns across space (or even across sex and age, for that matter). A model which 

incorporates movement through a spatial scale parameter should allow this parameter to 

vary across space. Perhaps this could be done by linking the parameter to the relative 

suitability based on the environmental predictors (irrespective of the intensity, and the 

intercept, which will rely on the ESA)8. 

5.2.2 Improving connectivity analyses 

Similar to the challenges with the ISDM, there were issues with the connectivity 

analysis implemented in Chapter 4. In that analysis, a dispersal kernel was used to 

transform distances between patches into probability of dispersal. This was done because 

it was assumed that an individual is more likely to disperse closer to the origin, as distance 

increases it becomes less likely that the individual will disperse that far (up to some 

maximum dispersal distance9). However, this kernel was purely spatial, and did not have 

any information about time. If spatio-temporal kernels exist, we could estimate a rate of 

dispersal over time. As it was done in this research, the flow is interpreted simply as a 

relative estimate, so it could only be used to calculate relative indices of flow between 

patches, not as an input to PVA. 

                                                 
8 As seen in Chapter 3, estimates of coefficients that describe the species response to the environment do 

not vary across changes in the site area, it is only the intercepts of the model which change. 

 
9 This is not necessary but does speed up the calculations by eliminating the need to do the flow calculation 

for some pixels. Same could be said for taking a patch approach. We ignore all those pixels outside of the 

patches. 
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Another issue with the connectivity analysis is that I did not have good data for the 

dispersal capabilities of the species. At first, I used a method of extrapolating from the 

home range size (Bowman et al., 2002), but this seemed to vastly overestimate what experts 

expected for the species, and what limited data showed. For this reason, I tried three 

different dispersal scenarios, and even the most generous scenario showed isolated habitat 

patches. Dispersal data for juveniles is especially lacking, and these individuals will likely 

disperse greater distances as they seek to establish a new home range. This data is harder 

to collect, because juveniles are still growing, and thus the collars could cause health 

problems (including death) unless they are designed to be expandable.  

Finally, rather than using least cost distances, it would be better to use an 

accumulated cost distance. This would account for variation in dispersal with habitat 

quality or a movement cost surface (including dispersal barriers), as some landscapes will 

be more or less stressful to move through. In between many of the patches identified in this 

research, the matrix habitat appears to be of very poor quality. It is unlikely to expect a 

tapir to disperse dozens of kilometers across highly disturbed habitat, with multiple road 

crossings, etc. However, there are challenges with how to relate this accumulated distance 

to maximum dispersal or use it in a dispersal kernel (i.e. what are the units of the 

accumulated cost?). Related to these challenges with cost distance, it is necessary to do 

more research on the best way to convert the ISDM intensity surface into a conductance or 

resistance surface used in connectivity analysis (in Chapter 4, untransformed intensity was 

used as a conductance surface). 

It is possible that some methods already exist to solve these problems. So, the first 

step is a literature review to identify those solutions if they exist. If not, it will be necessary 

to develop new methods. In addition, additional telemetry data will provide valuable prior 
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information on how to parameterize the dispersal kernel10. Genetic data would also be 

incredibly useful to verify connectivity analyses, and see which patches are connected by 

individuals dispersing between them. The most recent range-wide genetic analysis for 

Baird’s tapir was completed almost 15 years ago (Norton & Ashley, 2004) - an update 

would be helpful. Collecting both types of data is costly, which partially explains the lack 

of data available so far. However, there are good projects to follow in Brazil and Costa 

Rica that are focused on studying the road ecology of tapirs and collecting DNA samples 

from tapir that are killed in collisions with vehicles. As well as studies in Brazil and 

Nicaragua which are focused on collecting both DNA and telemetry data of tapir tagged 

with GPS collars. The results of these studies should become available soon, which will 

greatly inform the RWCP effort for Baird’s tapir. 

5.2.3 Converting ISDM outputs to habitat patches 

One requirement of the methods used in this research, is to convert the resulting 

intensity surface to a map of habitat patches. Normally this would be done by converting 

the continuous prediction to a binary map using some threshold that is determined from an 

accuracy metric (Liu et al., 2005). Often accuracy is calculated on some test data withheld 

from fitting the model. However, if the data we start with is spatially biased (as we admit 

when designing models that can account for this), then how can we expect this very same 

data to adequately address model accuracy? In fact, I saw this issue when trying to assess 

the ISDM accuracy in Chapter 2. In the end, I decided to average the models and simply 

assess their accuracy visually. In Chapter 3, I discovered that some accuracy metrics 

designed for PO data might be less susceptible to sampling bias. However, even if we have 

the right data to assess accuracy, is there a more biologically meaningful threshold we 

                                                 
10 In addition to being useful prior information for the spatial scale parameter in an SCR model. 
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could select? If can accurately estimate intensity by making some adjustments suggested 

earlier, then we can simulate a point pattern from that intensity surface. This would 

essentially be a map of all individuals on the landscape. From this, and some information 

about species movements and biology, we could use a clustering analysis like hotspots (i.e. 

Getis-Ord Gi*, or local G, statistic) to come up with biologically meaningful habitat 

patches. 

5.3 CONCLUSION 

This dissertation was heavily focused on the methods, and so this chapter largely 

covers how the methods could be improved. However, it is important to not lose sight of 

the process-based goals, and how they could be also be enhanced. In the sections below, I 

outline a few important considerations to improve the process of conducting this type of 

research. 

5.3.1 Including Stakeholders 

This research was meant to inform conservation. Yet all too often, SDM exercises 

such as this one can fall short if they do not incorporate the appropriate stakeholders 

(Guisan et al., 2013). This research did include input and guidance from the Tapir Specialist 

Group, who could be seen as the conservation practitioners for which this analysis was 

intended. Indeed, the outputs from the process will go on to inform the Baird’s Tapir 

Survival Initiative11. However, I could have done a better job reaching out to a wider 

network of government officials, local communities, and other stakeholders. Admittedly, 

                                                 
11 This project will create a regional team of researchers and conservationists working together to ensure 

the survival of Baird’s tapir through capacity building, research, direct conservation, and a coordinated 

awareness-building campaign in Panama, Costa Rica, Nicaragua, Honduras, and Guatemala. 
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this would have increased the scope of the dissertation, and the continuation of this work 

provides more opportunity to fulfill this goal. 

5.3.2 Public outreach, engagements, and sci-comm 

In a similar sense, I could have done better reaching out to the public at large. We 

are entering a new era in science communication, with an important focus on achieving 

broader dissemination of research findings. Engaging the public keeps our research 

relevant, and can even provide additional funding, as it did for me with a Kickstarter 

Campaign I used to raise funds for field work during the summer of 2014 in Nicaragua. I 

regret that I did not do a better job of keeping these funders informed of the ongoing 

research, and even growing that community12. Focusing on the methods is great, they need 

improvement, but we can’t lose sight of why the work is being done, and what is necessary 

to achieve the desired outcomes - the long-term survival of endangered species. In all 

honesty, this goal is unachievable without broad support and continued funding. 

5.3.3 Expanding this research – applying these methods to other species 

The Map of Life is a project which seeks to bring together disparate data sets on 

species distributions so that they can be analyzed together. One of the goals of this project 

is to provide modeling tools and biodiversity products for a wide variety of uses, including 

academic research and conservation planning (Jetz et al., 2012). The model used in this 

dissertation is well-suited for this goal, as it combines two common data types13, and the 

methods used in this dissertation could be applied to many species. Even though tapirs are 

                                                 
12 For example, by using Twitter more frequently to share my research (see #SciComm). Twitter is also a 

great way to find collaborators, build a research network, and keep up to date with current research trends. 

 
13 Another model combines PO data with expert range maps (Merow, Wilson, & Jetz, 2017). 
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large megafauna, they are relatively understudied. The pieces of information needed to run 

this model include: 

1) PO data: which are widely available. 

2) SO data: the costs of collecting this data are decreasing (due to sampling 

methods like camera traps and citizen science sites like eBird). 

3) Some idea of habitat preferences: which can be garnered from databases like 

the IUCN Red List, so that we know what environmental predictors to use in 

the model. 

4) Some idea of home range size and dispersal abilities: which, if no data exist, 

could be inferred from allometric relationships or sister species. 

5) Delineation of a study area14: arguably includes some of the most difficult 

decisions but could be automated based on presence data. 

For all of this to happen, researchers need to feel more comfortable sharing data. 

The proper systems need to be in place to adequately recognize and motivate researchers 

to share data when it makes sense to do so (i.e. after they have published their analysis on 

it). There are already several options for publishing data sets (e.g. Zenodo, ESA’s 

Ecological Archives). As well, Map of Life is not the only system seeking to democratize 

SDMs: see the R packages ‘zoon’ for reproducible and shareable SDMs (Golding et al., 

2017) and ‘sdm’ (Naimi & Araújo, 2016), and the Biodiversity and Climate Change Virtual 

Library (http://www.bccvl.org.au/). This is an exciting time to be a modeler, but we must 

be careful and disciplined to extract the signal from the noise in the era of big data (Silver, 

2012). 

  

                                                 
14 The delineation of the study area matters due to the background environment included in the model. 

 



 105 

Appendix 

Type Provider Locations Country Citation 

PO Francisco 

Botello 

15 MX 2015-2016: (Vazquez-Camacho et al., in prep); 

1991-2006: (Colección de Fotocolectas 

Biologicas, IBUNAM 

http://unibio.unam.mx/minero/.) 

PO Chris Jordan 186 NU Jordan et al., 2015 

PO Eduardo 

Mendoza 

159 MX Mendoza et al., 2013 

PO Joel 96 CS 
 

PO Juan Carlos 

Cruz Diaz 

41 CS 
 

PO Diego 

Lizcano 

3 CO Jordan et al., 2015 

PO Manolo 

Garcia 

173 GT Jordan et al., 2015 

PO Nereyda 

Estrada 

125 HO 
 

PO Ninon Meyer 26 PM Meyer et al., 2013 

PO Celso Poot 28 BH Jordan et al., 2015 

PO Jan Schipper 7 CS Gonzalez-Maya et al., 2012 

PO Victor 

Montalvo 

66 CS 
 

PA Angelica 

Diaz-Pulido 

77 CO Diaz-Pulido, A. 2016 (Unpublished) 

PA Antonio de la 

Torre & 

Marina 

Rivero 

39 MX 
 

PA Carolina 

Saenz 

Bolanos 

21 CS 
 

PA LaRoy Brandt 8 CS 
 

PA Chris Jordan 195 NU Jordan et al., 2016 

PA Cody Schank 24 NU 
 

PA Mike Cove 38 CS Cove et al., 2014 

PA Michael 

Dobbins 

12 BH 
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PA Eduardo 

Mendoza 

17 MX Carbajal-Borges et al., 2014 

PA Esteban 

Brenes-Mora 

27 CS 
 

PA Francisco 

Botello 

8 MX Botello et al., in review 

PA Jess Fort 55 PM Fort, 2016 

PA Jose 

Gonzalez-

Maya 

42 CS González-Maya et al., 2012 

PA Marcella 

Kelly 

269 BH Kelly & Rowe, 2014 

PA Ninon Meyer 70 PM Meyer et al., 2015, 2016 

PA Ninon Meyer, 

Clayton, 

Andrew 

Carver 

45 PM Meyer et al 2015,2016 

PA G. Pozo-

Montuy 

37 MX Pozo-Montuy et al., 2014,2015, 2016 

PA Rafael Reyna 87 MX 
 

PA Sebastian 

Mejia 

27 CO Mejía-Correa et al., 2014 

PA TEAM 436 CS Hurtado, 2014 

PA Margot Wood 

and Jessica 

Gilbert 

113 CS Wood, Gilbert et al. in prep 
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