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Abstract 

 

Applications of Phase-Field Modeling in Hydraulic Fracture 

 

Publication No.                         

 

Talal Eid Alotaibi, PhD 

The University of Texas at Austin, 2019 

 

Supervisor: Chad M. Landis 

 

Understanding the mechanisms behind the nucleation and propagation of cracks is 

of considerable interest in engineering application and design decisions. In many 

applications in the oil industry, complicated fracture geometries and propagation behaviors 

are encountered. As a result, the development of modeling approaches that can capture the 

physics of non-planar crack evolution while being computationally tractable is a critical 

challenge. The phase-field approach to fracture has been shown to be a powerful tool for 

simulating very complex fracture topologies, including the turning, splitting, and merging 

of cracks. In contrast to fracture models that explicitly track the crack surfaces, crack 

propagation and the evolution thereof arise out of the solution to a partial differential 

equation governing the evolution of a phase-field damage parameter. As such, the crack 
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growth emerges naturally from solving the set of coupled differential equations linking the 

phase-field to other field quantities that can drive the fracture process. In the present model, 

the physics of flow through porous media and cracks is coupled with the mechanics of 

fracture. Darcy-type flow is modeled in the intact porous medium, which transitions to a 

Stokes-type flow regime within open cracks. This phase-field model is implemented to 

gain insights into the propagation behavior of fluid-injected cracks. 

One outstanding issue with phase-field fracture models is the decomposition of the 

strain energy required to ensure that compressive stress states do not cause crack 

propagation and damage evolution. In the present study, the proper representation of the 

strain energy function to reflect this fracture phenomenon is examined. The strain energy 

is constructed in terms of principle strains in such a way that it has two parts; the tensile 

and the compressive. A degradation function only applies to the tensile part enforcing that 

the crack is driven only by that part of the strain energy. We investigated the split operator 

proposed by Miehe et al. [1], and then proposed a split approach based on masonry-like 

material behavior [2, 3]. We have found that when using Miehe’s form for the strain energy 

function, cracks can propagate under compressive stresses. In contrast, the approach based 

on a masonry-like materials constitutive model we proposed ensures that cracks do not 

grow under compressive stresses. 

To demonstrate the capabilities of phase-field modeling for fluid-driven fractures, 

four general types of problems are simulated: 1) interactions of fluid-driven, natural, and 

proppant-filled cracks, 2) crack growth through different material layers, 3) fluid-driven 

https://www.sciencedirect.com/topics/engineering/porous-medium
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crack growth under the influence of in-situ far-field stresses, and 4) crack interactions with 

inclusions. The simulations illustrate the capabilities of the phase-field model for capturing 

interesting and complex crack growth phenomena. 

To understand how fluid-driven cracks interact with inclusions, AlTammar et al. 

[4] performed experiments. Three tests with tough inclusions were performed to 

understand the effects of orientation angle, thickness, and material properties. Additionally, 

one test with a weak inclusion was performed to compare the results with those of the tough 

inclusion cases. The experiments show a clear tendency for the fluid-driven hydraulic 

fracture to cross thick natural fractures filled with materials weaker and softer than the 

matrix and to be diverted by thick natural fractures with tougher and stiffer filling materials. 

To replicate these experiments numerically and to gain a mechanistic understanding, in the 

present study, we ran simulations using phase-field modeling. Results from both the 

experiments and the simulations provide clear evidence that inclusion width, angle, 

material properties, and distance from the injection point affect the outcome of the crack 

evolution. Phase-field modeling was able to capture the trends of crack deflection/crossing 

in all the test cases. 

Finally, we extended the phase-field model has been extended to three dimensions 

and tested it on bench-mark problems. The first bench-mark problem is a compact test for 

a CT specimen. In this problem, the mechanical equations are only considered. The 

simulation shows that the CT specimen is split into two symmetric parts. The second 



ix 

 

bench-mark problem is a fluid-driven circular crack. The simulation for this problem shows 

that the crack grows in a radial direction. 
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Chapter 1.  Introduction 

 

Phase-field modeling is a powerful tool in simulating and understanding the 

evolution of microstructures with multi-phases, defects, and discontinuities. The approach 

utilizes a continuous phase-field parameter that smears discontinuities in diffuse zones. 

When applied to hydraulic fractures, the phase-field approach has been shown to be a 

powerful tool in simulating very complex fracture topologies, including the turning, 

splitting, and merging of cracks. In contrast to classical fracture models that explicitly track 

the crack surfaces, in the phase-field approach, crack evolution and propagation arise out 

of the solution to a partial differential equation governing the evolution of a phase-field 

damage parameter. As such, the crack growth emerges naturally from solving the set of 

coupled differential equations linking the phase-field to other field quantities that can drive 

the fracture process.  

Fluid-driven fractures have been of great interest in many engineering applications, 

including injecting waste disposal into underground formations [5, 6], the simulation of 

groundwater wells [7, 8], and the stimulation of geothermal reservoirs [9, 10]. More 

importantly, applications dealing with hydraulic fractures have great impact on the oil and 

gas industry, making the extraction of crude oil and gas from unconventional reservoirs 

feasible. In 2016, according to the U.S. Energy Information Administration, 670,000 wells 

were hydraulically fractured, representing about 69% of the producing wells [11]. The cost 
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of each fracturing job is about $4.9 to $8.3 million per well [12]. Optimizing the hydraulic 

fracture treatment is essential to making oil and gas production more economical.  

 

1.1  Scope of the Study 

In the present model, the physics of flow through porous media and cracks is 

coupled with the mechanics of fracture. Darcy-type flow is modeled in the intact porous 

medium, which transitions to a Stokes-type flow regime within open cracks. This phase-

field model is implemented to gain insights into the propagation behavior of fluid-injected 

cracks. 

One outstanding issue with phase-field fracture models is the decomposition of the 

strain energy that is required to ensure that compressive stress states do not cause crack 

propagation and damage evolution. The present study examines the proper representation 

of the strain energy function to reflect this fracture phenomenon is examined. The strain 

energy is constructed in terms of principal strains in such a way that it has two parts: tensile 

and compressive. A degradation function only applies to the tensile part, ensuring that the 

crack is driven only by that part of the strain energy. We found that the split operator 

proposed by Miehe et al. [1] creates an issue regarding allowing the fracture’s growth under 

compressive stresses. To solve this issue, we proposed a split approach based on the 

behavior of masonry-like material [2, 3] that ensures that the fracture cannot propagate 

under compressive stresses. In this regard, our approach is superior to the split operator 

proposed by Miehe that has been adopted in most of the literature. 

https://www.sciencedirect.com/topics/engineering/porous-medium
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To demonstrate the capabilities of phase-field modeling for fluid-driven fractures, 

four general types of problems are simulated: a) interactions of fluid-driven, natural, and 

proppant-filled cracks; b) fluid-driven crack growth under the influence of in-situ far-field 

stresses; c) crack interactions with inclusions; and d) crack growth through different 

material layers. The simulations illustrate the capabilities of the phase-field model for 

capturing interesting and complex crack growth phenomena. 

The problem of crack interaction with other cracks is relevant to underground 

reservoirs containing natural cracks. We simulated a fluid-driven fracture interacting with 

natural fractures at different angles. Another interesting problem is the interaction of 

multiple parallel fluid-driven fractures, a problem that is relevant to hydraulic fracture 

treatments and is essential to the design of the fracturing spacings. We use the phase-field 

approach to give some insights into the effect of varying the number of perforations within 

each stage on opening and stress shadowing, associated with the cracks.  

Another problem to be studied is how a crack interacts with layers made of different 

materials. This problem is relevant to the design of hydraulic fracturing jobs since the 

subsurface geologically consists of layers, raising questions as to what might cause a 

fracture to stay within a target layer or not. For example, this might significantly impact 

the environment with regard to the contamination of water reserves. Therefore, the present 

study investigates multiple factors that contribute to controlling a fracture’s propagation 

and orientation. 

 In-situ stresses are considered to be the dominant factor in crack propagation and 

orientation. In the design of fracturing jobs, the orientation of perforations in each stage 
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depends on the direction of the in-situ stresses. If an initial fracture misses the direction of 

favorable in-situ stresses, this might reduce the drainage area, resulting in reduced 

production and failure of the fracture treatment job. The present study examines the effect 

of fracture orientation and its evolution under the influence of in-situ stresses. We show 

that fractures suffer in their growth to the degree that their initial orientations deviate from 

the maximum stress direction. Besides, we show the influence of the in-situ stresses on the 

fluid-driven fracture when it encounters a layer of a different material. The aim is to see 

how the in-situ stresses compete with the tough-stiff layer in controlling the fracture growth 

orientation. 

The problem of a fracture filled with proppant is relevant to hydraulic re-fracturing 

treatments. Usually, the productivity of the wells decrease within months, and a successful 

way of increasing the productivity of the well is to re-fracture it. This can increase the well 

connectivity and thus its productivity. New cracks initiated by the re-fracturing treatment 

can interact or be influenced by the presence of old cracks filled with proppant, which can 

impact the drainage area. In the present study, we simulated this problem and examined 

the effect of the stress shadow produced by the opening of the fracture filled with proppant 

on the evolution of new fractures. 

Concerning natural cracks, some of them are believed to be closed, but others can 

be open and filled/cemented with different materials [13, 14]. Experiments have been 

performed by AlTammar et al. [4] to investigate the effect of the cemented natural fractures 

on the propagation of the fluid-driven fractures. Three tests with tough-stiff inclusions were 

performed to understand the effects of orientation angle, thickness, and material properties. 
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Additionally, one test with a weak-soft inclusion was performed to compare the results 

with those of the tough-stiff inclusion cases. In order to gain a mechanistic understanding 

of this problem, we simulated the four experiments using the phase-field approach. An 

additional simulation was run to show how the distance between the injection point and the 

inclusion affects the fracture growth.  

 

 

1.2  Outline of the Dissertation 

The dissertation is outlined as follows: 

1. Chapter reviews fracture modeling in general and phase-field modeling in greater 

detail. Also reviewed are relevant problems in the petroleum engineering field such 

as crack interactions, layer and inclusion problems, and the role of in-situ stresses, 

giving a clear rationale for studying such phenomena.  

2. Chapter 3 focuses on the development of the theory of phase-field modeling. It 

begins with phase-field modeling in quasi-static brittle materials. After that, an 

extension to a general theory is presented that accounts for the physics of the fluid 

injected in a porous medium. Two decomposition forms of the strain energy are 

presented, one proposed by Miehe [1] and one that we proposed, based on masonry-

like materials [2, 3]. 

3. Results and discussions are presented in Chapter 4. Two tension-compression split 

approaches are examined. Applications of phase-field modeling are presented 
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including a) interactions of fluid-driven, natural, and proppant-filled cracks; b) 

fluid-driven crack growth under the influence of in-situ far-field stresses; c) crack 

interactions with inclusions, and d) crack growth through different material layers. 

Additionally, the extension to three dimensions is presented through some bench-

mark problems, such as pressurized circular crack.  

4. In Chapter 5, conclusions are presented, and future work is discussed. 
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Chapter 2.  Background 

 

Hydraulic fracture models have been beneficial in many applications, and primarily 

for issues in the petroleum field. Such models have contributed to developing hydraulic 

fracturing techniques that significantly impact the economics of the oil and gas industries. 

A brief review will be given on some of the problems relevant to the petroleum field that 

can be simulated with the phase-field approach, including crack interactions with natural 

cracks, cracks under the influence of in-situ stresses, and cracks in a heterogeneous 

medium. The need to understand these problems has driven the development of the 

numerical approach applicable to hydraulic fracture, including the phase-field approach. 

 

2.1  Applications 

Unlike conventional reservoirs, some formations that contain gas or oil are tight, 

meaning that they have very low permeability, making it harder to produce oil or gas. As 

a result, unconventional techniques have been developed to increase the connectivity of the 

formation and the productivity of tight oil or gas wells. One technique that has been 

successful worldwide is hydraulic fracturing (see Figure 2.1). 
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Figure 2.1: Fracturing treatment for a horizontal well in a shale formation. (source [15]) 

 

In the fracture treatment, a well is drilled, and a targeted formation containing oil 

or gas is perforated [16]. After that, a specific chemically formulated fluid called the “pad” 

is injected at high pressure in the wellbore to create and propagate fractures in the 

formation. Then, a viscous fluid containing proppant agents (Figure 2.2) is injected to keep 

the cracks open after the pumping process is completed. Next, the fluid chemically breaks 
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down and flows back out of the well. The main object of the hydraulic fracture process is 

to create fractures as long as possible to maximize the drainage area and to effectively place 

the proppants to keep the fractures open during the production of the gas or oil. Usually, 

the production of the well declines over time, typically within months [17]. Reasons for 

this decline have attracted the interest of researchers. One of the solutions to extending the 

well life is to re-fracture the well to target a new drainage area [18]. Later in this chapter, 

an issue will be discussed that might arise when new fractures propagate within a region 

containing old-fractures filled with proppant. A summary of each problem studied in this 

dissertation will be given. 

 

 

Figure 2.2: Proppant agents in cracks. Their role is to keep the cracks open, thus 

enhancing the formation connectivity and the well productivity (source [19]).   
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2.1.1  PRE-EXISTING NATURAL CRACKS 

The presence of natural fractures in most shale reservoirs has been documented [20] 

(see Figure 2.3). Laboratory experiments and core analysis indicate a complex fracture 

network during hydraulic fracturing treatments [20]. Numerical models, such as the 

Discrete Element Method (DEM) and the Extended Finite Element Method (XFEM), have 

been developed to simulate the interaction between hydraulic fractures and pre-existing 

natural fractures [21]. Evidence suggests that the presence of natural fractures can influence 

the propagation of hydraulic fractures. The impact of natural fractures on fluid-driven 

fractures has both advantages and disadvantages [21]. Hydraulic fracture treatments 

activate the natural fractures and increase the connectivity of the overall fracture network, 

thus  increasing the drainage area, and improving the productivity of the well. However, 

the presence of natural fractures can also alter the orientation of the hydraulic fractures 

towards unfavorable directions and possibly terminate their growth, thus reducing the 

drainage area and the productivity of the well. This problem of how induced fractures 

interact with natural fractures is studied and presented in Chapter 4. 
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Figure 2.3: In a fractured reservoir, complex hydraulic fractures are influenced by the 

presence of natural fractures (source [20]). 

2.1.2  PARALLEL INDUCED FRACTURES 

In hydraulic fracture treatments, perforations are made in multiple stages using 

perforation gun tools (Figure 2.4). One of the keys to the success of the fracture treatment 

is the effective design of the fracture spacings throughout the multiple stages. Initiating 

multi-stage fractures has been found to introduce stress shadow effects and alter the local 

in-situ stresses [22, 23]. The stress shadow effect is associated with the stress induced in 

the region surrounding the fluid-driven fractures, and it depends on the net fluid pressure 

inside the cracks and their geometries [24]. The stress shadow increases as the spacing 
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between multiple fractures decreases [22, 23]. Increasing the number of fractures may 

increase the drainage area and thus increase the productivity of the well. However, shorter 

spacings between the perforations can produce a significant stress shadow that exerts 

resistance to the opening of the fractures, thus preventing them from propagating [25]. In 

addition, the stress shadow can also reduce the crack opening and consequently reduce the 

effectiveness of the proppant placement [25]. The challenge, therefore, is to find the 

optimal spacing between the perforations that gives the desired drainage area and improves 

proppant placement with an acceptable stress shadow. 

 

 

Figure 2.4: Schematic diagram of the perforation gun tool used in initializing multiple 

stages fractures (source [26]).  
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A study by Cheng et al. [27] drew the following conclusions: 1) the stress shadow 

created by multiple fractures significantly affects the fracture opening; 2) increasing the 

number of fractures within a stage does not necessarily increase the gas production, as it 

can inhibit the growth of the inner fractures within the stages; and 3) the productivity of 

the well depends on the number of effective fractures that survive the stress shadow, not 

on the number of initialized fractures. Hence, fracture treatment designers have to take into 

account the role of the stress shadow in fracture growth. In the present study, the fracture 

spacing effect on the behavior of the hydraulic induced fractures is investigated. 

 

2.1.3  IN-SITU STRESSES 

Geologically, the stresses that develop in underground formations are called in-situ 

stresses. In-situ stresses have three components: a) overburden stress caused by the weight 

of the overlying formation layers at a certain depth; b) the two maximum/minimum 

horizontal stresses developed because of the confinement and the tectonic forces [28] (see 

Figure 2.5). The magnitudes and orientations of these stresses are considered to be the 

dominant factor in fracture treatment design [20, 29]. The contrast ratio of the in-situ 

stresses has a significant impact on the fracture propagation orientation [30]. The fracture 

re-orients itself to be perpendicular to the minimum in-situ stress direction. Not only that, 

but the magnitude of the in-situ stresses also influence the fracture length. The greater the 

in-situ stresses are, the higher the injection pressure needed to extend the fractures to the 
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desired length [31-33]. Using the phase-field approach, the problem of induced fracture 

subjected to in-situ stresses is studied in this dissertation. This approach is able to show the 

re-orientation of the crack growth under the influence of the in-situ stresses. 

 

 

 

Figure 2.5: The orientation of the in-situ principal stresses: the overburden stress, the 

maximum principal stress in the horizontal direction, and the minimum principal stress in 

the horizontal direction. 
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2.1.4  LAYERS 

The heterogeneity in underground formations has attracted considerable interest in 

the oil and gas industries. It has been suggested that unconventional reservoirs are stratified 

with multiple layers of materials whose properties, such as elastic stiffness and fracture 

toughness differ [34-38], and hydraulic fractures are expected to propagate through 

multiple layers [39, 40] (see Figure 2.6). The fracture behavior across multiple layers has 

been a controversial topic. Some researchers have argued that a fracture could be arrested 

if it propagates from a layer with a low modulus of elasticity to a layer with a higher 

modulus of elasticity [41]. In this situation, layers with a high modulus of elasticity, as it 

has been argued, act as a barrier. Later, researchers performed experiments showing that 

the contrast in the moduli of elasticity across layers is not sufficient to prevent a fracture 

from extending into the stiff layer [42]. Recently, experiments have been conducted to 

investigate the crack growth across multiple layers with contrasts in both the moduli of 

elasticity and the fracture toughness [43]. These experiments showed that cracks prefer to 

propagate from a tough-stiff layer to a weak-soft layer in a relatively straight direction. In 

contrast, fractures growing in a weak-soft layer prefer to avoid tough-stiff layers. Using the 

phase-field approach, various factors have been investigated that contribute to controlling 

the fracture growth including, the layer’s thickness, the orientation of the layer, the contrast 

in material properties between the matrix and the layer, the injected fluid viscosity, and the 

distance between the injection point and the layer.  

 



 

 16 

 

Figure 2.6: Mineback photograph of a fracture propagating from low-modulus material to 

high-modulus material (source [39]). 
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2.1.5  INCLUSIONS 

 

Most of the previous studies on the natural fractures [20, 21] consider the crack to 

be closed and have frictional faces. However, natural fractures can have a finite width and 

be cemented/filled with different materials [13, 14]. Experiments were conducted to 

investigate how the hydraulic fractures interact with cemented natural fractures [44, 45]. 

Bahorich et al. [44] represent natural fractures with cement materials by embedding glass, 

sandstone, and cured plaster slides when casting their plaster blocks. Fu et al. [45] 

examined hydraulic fracture propagation across natural fractures with partially and fully 

bonded interfaces. In general, cemented natural fractures can have a higher or lower 

modulus of elasticity and fracture toughness than the surrounding rock. In this dissertation, 

the experiments conducted by Altammar et al. [4] are simulated using the phase-field 

approach. These experiments investigated how cemented natural fractures affect the 

propagation behaviors of the induced hydraulic fractures. Multiple factors were discussed: 

elastic and fracture properties, the orientation of the inclusions, and the distance between 

the injection point and the inclusion. 
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2.1.6  REFRACTURING TREATMENT AND PROPPANT PLACEMENT 

 

Production decline has been reported in most unconventional wells [17] (see Figure 

2.7). The reasons behind such production decline are open to debate. The decline may be 

caused by a poor selection of the proppant used in the fracture treatment, or it may be a 

result of a reorientation of the in-situ stresses that causes the cracks to close [29]. The 

depletion of the wells can alter the pore pressure and thus affect the magnitude and the 

orientation of the in-situ stresses [18]. One successful solution to enhancing production is 

re-fracturing treatment [46]. A well can be re-fractured in two possible ways of refracturing 

the well: a) re-fracturing the well to open the old fractures, or b) refracturing it with new 

perforations placed in different orientations [47]. The first approach generally does not last 

for long durations since it targets the same drainage area that has already been depleted. In 

contrast, the second approach targets a new drainage area, especially it the in-situ stresses 

have been re-orientated.  
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Figure 2.7: Production decline history for some Barnett Shale Wells (source [17]). 

 

If new fractures are created during a re-fracturing treatment, they may pass by and 

interact with old fractures that are filled with proppants. Fractures filled with proppant can 

exert a stress shadow effect that interferes with the local in-situ stresses in the vicinity of 

the new fractures. Using the phase-field approach, we study how proppant-filled fractures 

influence the new hydraulic fracture. Two factors are examined: a) crack opening and b) 

the distance between the fluid-driven fracture and the fracture filled with proppant.  
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2.2  Modeling in Fracture Mechanics 

Understanding the mechanisms behind the nucleation and propagation of cracks 

has been a significant interest in many engineering applications and design decisions, as 

discussed previously. Numerical approaches have been developed in the spirit of Griffith’s 

theory [48] for brittle materials and of Irwin [49], who extended the theory to ductile 

materials. Based on the Griffith criteria, a crack advances in materials if the energy release 

rate reaches a critical value. Due to the complexity of the specimen and crack geometries 

in engineering applications, the existence of analytic solutions is limited; they do, however, 

play an essential role in the validation of numerical solutions for simple geometries. For 

applications where a pressurized fluid drives the crack, analytical solutions have been 

developed [50-53]. In the early 1940s, a 2D analytical model was developed by Sneddon  

[50] and extended by Sneddon and Elliot [51]. It assumed that the fracture is circular and 

is subject to uniform internal pressure. Additionally, the well-known 2D analytical 

solutions denoted as PKN and  KGD were developed [52, 53]. In the PKN model, 

developed by Perkins, Kern, and Nordgren [52],  the crack height is assumed to be smaller 

than the crack length. The crack cross-section is assumed to be elliptical, and the crack 

grows while maintaining a constant height (see Figure 2.8 (a)). In the KGD model 

developed by Kristonovich, Geertsma, and Daneshy [53], the crack height is assumed to 

be much larger than the crack length while the crack width remains constant (see Figure 

2.8 (b)). All of these analytic solutions simplify the problem by assuming symmetric and 

planar crack geometries. Both PKN and KGD models have been modified to incorporate 
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the leak-off of fluid that is exuded from a pressurized crack into the surrounding porous 

medium [54-56]. Notable studies conducted by Detournay et al. [54-56] investigated the 

crack-tip behavior  during growth by fluid injection. They provided insights into the fluid-

driven crack behavior based on a dimensionless parameter 𝒦 that compares the material 

fracture toughness KIC to the fluid viscosity 𝑣𝑓, 

𝒦 = 4𝐾𝐼𝐶/√3𝜋3𝐸′3𝑄𝑣𝑓4
        (2.1) 

Where Q is the volumetric injection rate. Two regimes have been investigated; 1) a 

toughness-dominated regime, where the energy dissipated at the crack tip to propagate the 

fracture is large compared to the energy dissipated due to the flow of the viscous fluid 

(𝒦 → ∞), and 2) a viscosity-dominated regime, where the energy dissipated due to the 

flow of the viscous fluid is very large in comparison to the dissipation due to fracture 

propagation (𝒦 → 0). 
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Figure 2.8: Traditional models for pressurized crack. (a) PKN model, (b) KGD model 

(source [57]). 

 

In all of the problems discussed previously, the fracture propagates through 

permeable rocks that are filled with oil or gas. These fractures can be affected by the 

heterogeneity of materials found in the reservoir formations, by variations in the magnitude 

and orientation of in-situ stresses, and by the presence of pre-existing natural cracks [21, 

58-60]. Due to these complexities, generating analytic solutions for such cases is 

practically hopeless. This motivates the introduction of numerical approaches. Numerical 

methods for fracture problems can be divided into two main groups: a) models that treat a 

crack as a sharp interface and represent it explicitly with the formulation, which require 
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constitutive rules for how cracks propagate, turn, merge, branch, etc.; and b) diffuse crack 

models, which represent the crack implicitly by a variable, and the evolution of this 

variable is generated by partial differential equations [61].  

In the first group, Rungamornrat, Wheeler, and Mear [62] developed a fully three-

dimensional Galerkin boundary element method, which only requires a boundary element 

mesh on the surface of the crack. Taleghani and Olson [63] modified the extended finite 

element method (XFEM) for modeling crack propagation. Recently, a finite volume-based 

cohesive zone model was developed by Sharma et al. [64] to simulate fluid-driven fractures 

in poroelastic materials. Some of these types of models identify and track the crack faces 

where additional criteria are needed for the turning, branching, and merging of cracks. In 

some cases these models require remeshing techniques, including disconnecting or 

eliminating elements and moving nodes (see Figure 2.9).  This can become algorithmically 

tedious especially when accounting for the branching and merging of multiple cracks in 

three-dimensions. The need to deal with the discontinuities associated with the crack 

growth and interactions leads to the importance and power of second group of numerical 

solutions to fracture problems that smear the crack over a finite volume. 
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Figure 2.9: Classical FEM model tracing the faces of a crack (source [65]) and requiring 

remeshing techniques such as disconnecting, elements insertion, and moving nodes. 

 

A notable example of the diffuse crack approaches is peridynamics [66, 67]. 

Peridynamics theory is a nonlocal theory that deals with points of discrete materials 

allowed to interact with other material points that reside in a nearby horizon. This 

becomes a powerful tool when dealing with discontinuities like cracks. Another example 

of the diffuse models is the phase-field approach discussed in the present study and by 

others [1, 61, 68-91].  In the following section, a review is given of the phase-field 

approach to fracture.  
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2.3  Phase-Field Modeling 

Classic models that treat the discontinuities as sharp interfaces suffer from some 

numerical difficulties raised by the need for remeshing techniques and due to the 

requirement for constitutive rules for crack turning, branching, and intersection. 

Remeshing can be numerically tedious when simulating a fracture that might branch or 

merge with other fractures especially in three dimensions. These numerical obstacles 

highlight the power of the diffuse models including the phase-field approach. In general, 

the phase-field method is a mathematical modeling approach for physical problems 

involving the evolution of interfaces [92, 93]. Surfaces of discontinuity are not introduced 

into the body; instead, the interface is approximated by a phase-field parameter, which 

smears the interfacial region over a finite volume, and thus the transition in any property 

across the interface is continuous as opposed to a jump. This method has been used in many 

engineering applications [75, 94-97], including applications in fracture mechanics. In 

fracture mechanics, the crack is approximated by a phase-field function 𝜇(𝒙, 𝑡) ∈ [0,1] that 

smears the crack in a diffuse zone, as shown in Figure 2.10.  
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Figure 2.10: An arbitrary body V bounded by surface S  with a) an internal surface of 

discontinuity Sc representing the crack surfaces. b) An approximation of the internal 

surface Sc by the phase-field μ. The parameter l0 controls the width of the process zone. 

 

In the phase-field method applied to fracture mechanics that is used in this 

dissertation, the value 𝜇 = 0 represents the damage zone (inside the crack), and the value 

𝜇 = 1  represents the intact body (away from crack). The major advantage of using the 

phase-field is that the evolution of the fracture emerges naturally from the solution of a 

coupled system of partial differential equations. The numerical implementation does not 

require the tracking of fracture surfaces or remeshing techniques (see Figure 2.11). This 

approach becomes a powerful and convenient method for dealing with more complex 

fracture topologies including the branching and merging of cracks.  
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Figure 2.11: In the phase field methods, a crack propagates in a fixed mesh and does not 

require any remeshing techniques. The crack is represented by the μ function; the value 

μ=0 represents the damage zone (inside the crack), and the value μ = 1 represents the 

intact body (away from crack). 

 

2.3.1  PHASE-FIELD MODELING IN FRACTURE MECHANICS 

Bourdin et al. [98] were the first to implement the phase-field model to fracture 

mechanics. They developed a variational reformulation of Griffith’s theory for quasi-static 

brittle fractures, transforming Griffith criterion for fracture into a differential equation by 

minimizing the total energy of the system with respect to the phase-field and the 

displacements. It has been proven that this variational formulation recovers Griffith’s 

classical theory in the limit of 𝑙0 → 0 ( 𝑙0: phase-field process zone length) based on Γ-

convergence [99]. Miehe et al. [1, 84] proposed another way of formulating this phase-

field approximation based on continuum mechanics and thermodynamic considerations. 
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Additionally, they proposed a split operator that decomposes the strain energy function into 

two parts; tensile and compressive. The idea motivating this split is that damage should 

only evolve due to tensile stresses. Finally, Borden et al. [70] extend the phase-field model 

for brittle materials to dynamic cases. They provided an adaptive refinement technique that 

enhances the computational performance, especially when encountering problems in the 

three-dimensions. 

 

2.3.2  PHASE-FIELD MODELING IN HYDRAULIC FRACTURE   

Bourdin et al. [71] extended their work on the phase-field method to hydraulic 

fracturing. The problem of hydraulic fracture was simplified by assuming the following: 

1) all thermal and chemical effects are neglected; 2) the injection rate is slow enough that 

all inertial effects can be neglected (quasi-static); 3) the reservoir is made of an idealized 

impermeable medium; 4) the injected fluid is incompressible; 5) the fluid pressure is 

constant throughout the fracture system; 6) a perfectly brittle linear elastic material is 

considered. These simplifications lead to a small number of field equations, the 3-D 

equilibrium equations, and one phase-field equation. 

 Wheeler et al. [76, 85-87, 90, 100] extended the phase-field theory accounting for 

poroelasticity. They adopt the quasi-static single-phase Biot theory. They provided 

mathematical proof for the well-posedness and uniqueness of the solution of the phase-

field method in hydraulic fracture. Miehe et al. [1, 78, 82-84, 101] developed a similar 

variational approach to phase-field modeling. Lastly, Wilson and Landis [61] proposed a 
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general theory for phase-field modeling in hydraulic fracture incorporating finite 

deformation and non-linear material behavior. This dissertation is an extension of that 

work, and the theoretical formulation will be presented in Chapter 3. 
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Chapter 3.  Methodology 

The basic phase-field theory for fracture in brittle materials is presented in Section 

3.1. This will serve as preliminary to the more general theory of hydraulic fracture 

presented in Section 3.2. In Section 3.2, the governing balance law equations, kinematics, 

and constitutive equations for both the fluid and solid materials will be presented (for more 

details see [61]). The tension-compression split schemes, the degradation functions used to 

degrade the load-carrying capacity of the material, and the functions to transition from 

Darcy to Stokes flow will be described. The numerical methods used to solve the model 

will be then outlined. For the purpose of comparing simulations with experiments 

conducted by other researchers, the experimental setups and procedures are also briefly 

presented.  

 

3.1  Phase-Field Theory of Fracture in Brittle Materials 

Consider an arbitrary body V with boundary surface S containing the discrete, 

discontinuous surfaces Sc due to the presence of cracks. We assume those surfaces Sc are 

traction free. For elastic materials, Griffith’s theory is adopted. Griffith’s theory states that 

the total energy of the body is the sum of the strain energy stored in V and the fracture 

surface energy of Sc minus the work done by the applied traction (ti) on the part of the 

boundary S and body forces (bi)  on V: 
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 Φ = ∫ 𝜓(𝜀𝑖𝑗)𝑑𝑉
𝑉

+ ∫ 𝐺𝑐𝑑𝑆𝑐𝑆𝑐
− ∫ 𝑏𝑖𝑢𝑖𝑑𝑉

𝑉
− ∫ 𝑡𝑖𝑢𝑖𝑑𝑆

𝑆
     (3.1)  

where 𝜓 is the elastic strain energy density and 𝜀𝑖𝑗 is the strain tensor under the assumption 

of small deformation: 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)           (3.2) 

𝑢𝑖,𝑗 are the components of the deformation gradient. Gc is the fracture surface energy. Due 

to the numerical difficulties associated with tracking the evolution of cracks represented 

by Sc, a phase-field approximation of the surface fracture energy [102] is implemented: 

 ∫ 𝐺𝑐𝑑𝑆𝑐𝑆𝑐
≈ ∫ 𝐺𝑐 [

(1−𝜇)2

4𝑙0
+ 𝑙0 𝜇,𝑖 𝜇,𝑖] 𝑑𝑉

𝑉
≡ ∫ 𝜓𝜇𝑑𝑉

𝑉
      (3.3)  

where 𝑙0 is a process zone length-scale that represents the size of the region where the 

phase-field parameter transitions from 0 in a fully damaged region to 1 in an intact region. 

Since the discrete traction-free surfaces Sc have been removed, the strain energy is 

modified in such a way that at the damaged region where 𝜇~0 cannot carry strain energy: 

 ∫ 𝜓(𝜀𝑖𝑗)𝑑𝑉
𝑉

→ ∫ 𝑔𝑑(𝜇)𝜓(𝜀𝑖𝑗)𝑑𝑉
𝑉

        (3.4) 

The modified strain energy is then defined as follows: 

𝜓𝑑(𝜀𝑖𝑗, 𝜇) = 𝑔𝑑(𝜇)𝜓(𝜀𝑖𝑗)          (3.5) 

Where 𝑔𝑑(𝜇) is a degradation function that is equal to 0 when 𝜇 =0 and 1 when 𝜇 =1. It 

must also have its first derivative with respect to 𝜇 equal to zero when 𝜇 =0. A discussion 
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on the forms of this degradation function will be given later in this chapter. 

Then, (3.1) becomes: 

Φ = ∫ 𝜓𝑑(𝜀𝑖𝑗, 𝜇)𝑑𝑉
𝑉

+ ∫ 𝜓𝜇𝑑𝑉
𝑉

− ∫ 𝑏𝑖𝑢𝑖𝑑𝑉
𝑉

− ∫ 𝑡𝑖𝑢𝑖𝑑𝑆
𝑆

     (3.6) 

The first variation of (3.6) is: 

 𝛿Φ = ∫ [(
𝜕𝜓𝑑

ðℇ𝑖𝑗
)

,𝑗

+ 𝑏𝑖] 𝛿𝑢𝑖  𝑑𝑉
𝑉

 

   +∫ [
𝜕𝜓𝑑

ð𝜇
+

𝜕𝜓𝜇

ð𝜇
− (

𝜕𝜓𝜇

ð𝜇,𝑖
)

,𝑖

] 𝛿𝜇 𝑑𝑉
𝑉

       (3.7) 

          +∫ [(
𝜕𝜓𝑑

ðℇ𝑖𝑗
𝑛𝑗 − 𝑡𝑖) 𝛿𝑢𝑖 + (

𝜕𝜓𝜇

ð𝜇,𝑖
 𝑛𝑖) 𝛿𝜇]  𝑑𝑆

𝑆
= 0 

where ni is the unit vector normal to the surface S. Noting that (3.7) holds for arbitrary 

variations of ui and μ, we conclude that: 

 (
𝜕𝜓𝑑

ðℇ𝑖𝑗
)

,𝑗

+ 𝑏𝑖 = 0   in  V 

𝜕𝜓𝑑

ð𝜇
+

𝜕𝜓𝜇

ð𝜇
− (

𝜕𝜓𝜇

ð𝜇,𝑖
)

,𝑖

= 0 in  V          (3.8)  

 
𝜕𝜓𝑑

ðℇ𝑖𝑗
𝑛𝑗 = 𝑡𝑖    on S 

 
𝜕𝜓𝜇

ð𝜇,𝑖
 𝑛𝑖 = 0   on  S 
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A decomposition of the strain energy 𝜓𝑑  is usually implemented to make sure that 

the degradation of the load-carrying capacity only results from tensile stress. The total 

elastic strain energy 𝜓𝑑  is further modified as follows: 

𝜓𝑑(𝜀𝑖𝑗, 𝜇) = 𝑔𝑑(𝜇) 𝜓+(𝜀𝑖𝑗) + 𝜓−(𝜀𝑖𝑗)         (3.9) 

where 𝜓+ and 𝜓− are the parts of the strain energy due to tensile and compressive strains, 

respectively. Later in this dissertation, different tension-compression split approaches will 

be presented. 
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3.2  General Phase-Field Theory of Hydraulic Fracture 

The coupling nature of the continuum mechanics, different fluid regimes through 

intact porous solid and cracks, the evolution of the phase-field parameter identifying the 

cracks, will be presented. The crack is identified by a phase-field function 𝜇(𝑥𝑖); inside the 

crack 𝜇 = 0 and in the intact medium far from the crack 𝜇 = 1 . The fluid flow inside the 

crack is assumed to be Stokes flow, while the fluid in the intact material obeys Darcy flow. 

To account for the transition between these two regimes the theory requires the use of finite 

deformations to account for the opening of the crack into a finite volume where the stokes 

flow occurs. The general theory is presented in the reference configuration where the 

spatial domain 𝑉0 is surrounded by surface 𝑆0. It contains material points identified by the 

Cartesian coordinates 𝑋𝐼. However, in the current configuration, the spatial domain 𝑉 

surrounded by surface 𝑆 contains material points that are identified by Cartesian 

coordinates  𝑥𝑖. The deformation gradient 𝐹𝑖𝐽 relates the current and reference 

configurations as follows: 

𝐹𝑖𝐽 =
𝜕𝑥𝑖

𝜕𝑋𝐽
            (3.10)  

Throughout the theory, the uppercase indices refer to the reference configuration, the 

lowercase indices refer to the current configuration, and repeated indices indicate 

summation. Moreover, the subscript s refers to the solid, and  f refers to the fluid.  

The relations between the surface elements in the reference and current 

configurations are as follows: 
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𝑛𝑖𝑑𝑆 = 𝐽𝐹𝐽𝑖
−1𝑁𝐽𝑑𝑆0           (3.11)  

and the relationship between the volume elements in the reference and current 

configurations are: 

𝑑𝑉 = 𝐽𝑑𝑉0           (3.12)  

where 𝑛𝑖 and 𝑁𝐼 are unit normals to the surface in the current and the reference 

configurations, respectively and J is the determinant of the deformation gradient 𝐹𝑖𝐽.  

 

3.2.1  MASS BALANCES: 

Mass balances are developed individually for both solid and fluid materials. For the 

solid material; the conservation of the mass is as follows: 

𝐷

𝐷𝑡
[(1 − 𝜙)𝜌𝑠𝐽] = 0           (3.13)  

Where 𝜙 is the fraction of porosity in the aggregate in the reference configuration. The 

matrix is assumed to be filled with fluid at all times, 𝜌𝑠 is the mass density of the solid. For 

the fluid, the conservation of mass is as follows: 

𝐷

𝐷𝑡
[𝜙𝜌𝑓𝐽] +  [𝜌𝑓𝑤̃𝐼],𝐼 =  𝜌𝑓𝑚̃        (3.14)  

where 𝜌𝑓is the mass density of the fluid, 𝑤̃𝐼 is the nominal fluid flux that is related to the 

true flux, as 𝑤𝑖 = 𝑤̃𝐾𝐹𝑖𝐾/𝐽, and 𝑚̃ is the external source of fluid volume injected per unit 

of the reference volume. 
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3.2.2  MOMENTUM BALANCES 

 

The momentum balances equations are also developed individually for solid and 

fluid. The linear momentum balance equation for the solid is: 

(𝑃𝐽𝑖 − 𝜙𝑇𝐽𝑖),𝐽
+ 𝑏̌𝑖

𝑠 = (1 − 𝜙)𝐽𝜌𝑠𝑣̇𝑖        (3.15)  

where 𝑃𝐽𝑖  are the first Piola–Kirchhoff stress components in the aggregate, 𝑇𝐽𝑖  are the first 

Piola–Kirchhoff stress components in the fluid, 𝑏̌𝑖
𝑠 is the external body force acting on the 

solid per unit aggregate reference volume and [ ̇ ] is the time derivative. The relation 

between the first Piola–Kirchhoff stress 𝑃𝐽𝑖  and the nominal surface traction is 𝑡̃𝑖 = 𝑃𝐽𝑖𝑁𝐽 

on the surface 𝑆0. The first Piola–Kirchhoff stress 𝑃𝐽𝑖  and Cauchy stress 𝜎𝑗𝑖  are related as 

𝜎𝑗𝑖 =
𝐹𝑗𝐾𝑃𝐾𝑖

𝐽
 . 

The linear momentum balance equation for the fluid is: 

(𝜙𝑇𝐽𝑖)
,𝐽

+ 𝑏̌𝑖
𝑓

+ 𝑓𝑖
𝑠𝑓

= 𝜙𝜌𝑓𝐽 (𝑣𝑖 + 𝑣𝑖
𝑓/𝑠

)       (3.16)  

where 𝑏̌𝑖
𝑓

 is the external body force acting on the fluid per unit of an aggregate reference 

volume, and 𝑓𝑖
𝑠𝑓

is the body-force per unit of aggregate reference volume that the solid 

places on the fluid. The following relation between the first Piola–Kirchhoff stress 𝑇𝐽𝑖  and 

the fluid traction is adopted: 

  𝑡̃𝑖
𝑓

= 𝜙𝑇𝐽𝑖𝑁𝐽 = 𝜙(𝜏𝑗𝑖 − 𝑝𝛿𝑖𝑗)𝐽𝐹𝐽𝑗
−1𝑁𝐽 on    𝑆0       (3.17)  

 

 
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where 𝜏𝑗𝑖 is the deviatoric part of the Cauchy fluid stress, 𝛿𝑖𝑗 is the Kronecker delta, and 𝑝 

is the pressure. The fluid time  derivative ( ) is for an observer that moves with the fluid. 

For any field variable 𝑎, the fluid time derivative is, 

 (𝑎) = 𝑎̇ + 𝑎,𝑖𝑣𝑖
𝑓/𝑠

= 𝑎̇ + 𝑎,𝐾𝐹𝐾𝑖
−1𝑣𝑖

𝑓/𝑠
       (3.18) 

 Applying the angular momentum balance to the aggregate and the fluid separately 

implies that the Cauchy stresses are symmetric: 

𝑃𝐾𝑖𝐹𝑗𝐾 = 𝑃𝐾𝑗𝐹𝑖𝐾          (3.19) 

𝑇𝐾𝑖𝐹𝑗𝐾 = 𝑇𝐾𝑗𝐹𝑖𝐾       

 

  

 

 
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3.2.3  BALANCES OF MICRO-FORCES 

Following the work of Fried, Gurtin, and others [103], changes in the phase-field 

variable are associated with conjugate forces driving these changes. We introduce 𝑖̃ as an 

external surface micro-force per-unit area of athe ggregate reference surface , 𝛾̃ as an 

external body micro-force per-unit aggregate reference volume, and  𝜋̃ as an internal micro-

force per-unit aggregate reference volume. Analogous to the surface traction–stress 

relation, we postulate that the surface micro-force 𝑖̃ is related to the material micro-force 

vector 𝜉𝐼 as follows: 

𝑖̃ = 𝜉𝐼𝑁𝐼     on  𝑆0          (3.20)  

The net balance of these micro-forces is, 

 ∫ 𝑖̃ 𝑑𝑆0 +
𝑆0

∫ 𝛾̃̃ 𝑑𝑉0 +
𝑆0

∫ 𝜋̃ 𝑑𝑉0𝑆0
= 0       (3.21) 

Applying the divergence theorem to (3.21) leads to the point-wise micro-force balance 

equation as: 

𝜉𝐼,𝐼 + 𝛾̃ + 𝜋̃ = 0          (3.22) 
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3.2.4  ENERGY BALANCES 

Next, the energy balance of the solid/fluid aggregate is considered. The first law of 

thermodynamics for aggregate is: 

𝐷

𝐷𝑡
∫ [

1

2
(1 − 𝜙)𝜌𝑠𝑣𝑖𝑣𝑖 + (1 − 𝜙)𝜌𝑠𝑒𝑠]

𝑉0

𝐽𝑑𝑉0

+
𝐷

𝐷𝑡
∫ [

1

2
𝜙𝜌𝑓(𝑣𝑖 + 𝑣𝑖

𝑓/𝑠
)(𝑣𝑖 + 𝑣𝑖

𝑓/𝑠
) +

1

2
𝜙𝜌𝑓𝐴𝑣𝑖

𝑓/𝑠
𝑣𝑖

𝑓/𝑠
+ 𝜙𝜌𝑓𝑒𝑓]

𝑉0

𝐽𝑑𝑉0

= ∫ 𝑡̃𝑖
𝑆0

𝑣𝑖  𝑑𝑆0 + ∫ [𝑏̃𝑖𝑣𝑖 +  𝑏̃𝑖
𝑓

𝑣𝑖
𝑓/𝑠

]
𝑉0

𝑑𝑉0 + ∫ 𝑡̃𝑖
𝑓

𝑣𝑖
𝑓/𝑠

𝑆0

 𝑑𝑆0

+ ∫ 𝑚̃ 𝑝 
𝑉0

𝑑𝑉0 + ∫ 𝑖̃
𝑆0

𝜇̇ 𝑑𝑆0 + ∫ 𝛾̃
𝑉0

𝜇̇ 𝑑𝑉0 − ∫ 𝑞̃𝐽𝑁𝐽
𝑆0

𝑑𝑆0 + ∫ 𝑟̃ 
𝑉0

𝑑𝑉0

− ∫ 𝜌𝑓𝑤̃𝐾𝑁𝐾 [
1

2
 (𝑣𝑖 + 𝑣𝑖

𝑓/𝑠
)(𝑣𝑖 + 𝑣𝑖

𝑓/𝑠
) +

1

2
𝐴𝑣𝑖

𝑓/𝑠
𝑣𝑖

𝑓/𝑠
+ 𝑒𝑓]

𝑆0

𝑑𝑆0

+ ∫ 𝜌𝑓𝑚̃ [
1

2
 (𝑣𝑖 + 𝑣𝑖

𝑓/𝑠
)(𝑣𝑖 + 𝑣𝑖

𝑓/𝑠
) +

1

2
𝐴𝑣𝑖

𝑓/𝑠
𝑣𝑖

𝑓/𝑠
+ 𝑒𝑓]

𝑉0

𝑑𝑉0 

             (3.23) 

where 𝑞̃𝐽 are components of the net heat flux (𝑞̃𝐼 = 𝑞̃𝐼
𝑠 + 𝑞̃𝐼

𝑓
) traversing a unit reference 

area of the aggregate per time, 𝑟̃ is the total heat supply to the aggregate where 𝑟̃ = 𝑟̃𝑠 +

𝑟̃𝑓, 𝐴  is the tortuosity, and 𝑒𝑓 , 𝑒𝑠 are the internal energy per unit mass of fluid and solid 

respectively.  
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Using the mass balances (3.13), (3.14), momentum balances (3.15), (3.16) and 

micro-force balance (3.22) and then applying the divergence theorem, the pointwise form 

for the energy balance of the aggregate is as follows: 

(1 − 𝜙)𝜌𝑠𝑒̇𝑠 + 𝜙𝐽𝜌𝑓𝑒𝑓 + 𝜙𝐽𝜌𝑓 (1

2
𝐴𝑣

𝑖

𝑓

𝑠𝑣
𝑖

𝑓

𝑠) = (𝑃𝐽𝑖 − 𝜙𝜏̃𝐽𝑖)𝑣𝑖,𝐽 +  

𝜙𝜏̃𝐽𝑖(𝑣𝑖 + 𝑣
𝑖

𝑓

𝑠),𝐽 + 𝜙𝑝𝐽
𝜌𝑓

𝜌𝑓 + 𝑝(𝜙𝐽)̇ + [𝑝(𝜙𝐽𝐹𝐽𝑖
−1)

,𝐽
− 𝑓𝑖

𝑠𝑓
] 𝑣

𝑖

𝑓

𝑠 +  

𝜉𝐼𝜇̇,𝐼 − 𝜋̃𝜇̇ − 𝑞̃𝐼,𝐼 + 𝑟̃          (3.24) 

where 𝜏̃𝐽𝑖 is the first Piola–Kirchhoff deviatoric stress in the fluid, and is related to its 

Cauchy counterpart as follows: 𝜏̃𝐽𝑖 = 𝐽𝐹𝐽𝑘
−1𝜏𝑘𝑖 . For the solid, the energy balance is: 

𝐷

𝐷𝑡
∫ [1

2
(1 − 𝜙)𝜌𝑠𝑣𝑖𝑣𝑖 + (1 − 𝜙)𝜌𝑠𝑒𝑠]

𝑉0
𝐽𝑑𝑉0 = ∫ (𝑡̃𝑖 −

𝑆0
𝑡̃𝑖

𝑓
)𝑣𝑖 𝑑𝑆0 +  

∫ [𝑏̃𝑖
𝑠𝑣𝑖]𝑉0

𝑑𝑉0 + ∫ 𝑖̃
𝑆0

𝜇̇ 𝑑𝑆0 + ∫ 𝛾̃
𝑉0

𝜇̇ 𝑑𝑉0 − ∫ 𝑞̇𝐽
𝑠𝑁𝐽𝑆0

𝑑𝑆0 +  

∫ (𝑟̃𝑠 +  𝑟̃𝑓𝑠)
𝑉0

𝑑𝑉0 + ∫ 𝜛̇𝑓𝑠
𝑉0

𝑑𝑉0        (3.25)  

where 𝑟̃𝑓𝑠 is the heat transferred to the solid by the fluid, and 𝜛̇𝑓𝑠 is the mechanical power 

the fluid transfers to the solid. The relation between mechanical power and the forces the 

solid places upon the fluid and the pressure in the fluid is as follows: 

𝜛̇𝑓𝑠 = 𝑓𝑖
𝑓𝑠

𝑣𝑖 + 𝑝𝐽𝜙̇           (3.26 ) 

using equations (3.13), (3.15), (3.22) and (3.26) in (3.25), and applying the divergence 

theorem, the pointwise form for the first law of thermodynamics for the solid is as follows: 

 
 

 
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(1 − 𝜙)𝜌𝑠𝑒̇𝑠 = (𝑃𝐽𝑖 − 𝜙𝜏̃𝐽𝑖)𝑣𝑖,𝐽 + 𝑝(𝜙𝐽)̇ + 𝜉𝐼𝜇̇,𝐼 − 𝜋̃𝜇̇ − 𝑞̃𝐼,𝐼
𝑠 + 𝑟̃𝑠 −  𝑟̃𝑓𝑠   

             (3.27)  

Subtracting (3.27) from (3.24), the first law of thermodynamics for the fluid is then: 

𝜙𝐽𝜌𝑓𝑒𝑓 + 𝜙𝐽𝜌𝑓 (1

2
𝐴𝑣

𝑖

𝑓

𝑠𝑣
𝑖

𝑓

𝑠) = 𝜙𝜏̃𝐽𝑖(𝑣𝑖 + 𝑣
𝑖

𝑓

𝑠),𝐽 + 𝜙𝑝𝐽
𝜌𝑓

𝜌𝑓 +   

[𝑝(𝜙𝐽𝐹𝐽𝑖
−1)

,𝐽
− 𝑓𝑖

𝑠𝑓
] 𝑣𝑖

𝑓/𝑠
− 𝑞̃𝐼,𝐼

𝑓
+ 𝑟̃𝑓 +  𝑟̃𝑓𝑠      (3.28) 

 

  

 
 

 
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3.2.5  ENTROPY INEQUALITIES 

In developing the constitutive equations for both the fluid and solid materials, we 

must ensure that they do not violate the second law of thermodynamics. As a result, we 

will consider the entropy inequalities for both the solid and the fluid. The second law of 

thermodynamics for the solid is as follows: 

𝐷

𝐷𝑡
∫ (1 − 𝜙)𝜌𝑠𝑠𝑠

𝑉0
𝐽𝑑𝑉0 ≥ − ∫

𝑞̃𝐽
𝑠𝑁𝐽

𝜃𝑠𝑆0
 𝑑𝑆0 + ∫

𝑟̃𝑠− 𝑟̃𝑓𝑠

𝜃𝑠𝑉0
𝑑𝑉0     (3.29)  

The Helmholtz free energy density 𝜓𝑠  for the solid is: 

𝜓𝑠 = 𝑒𝑠 − 𝑠𝑠𝜃𝑠          (3.30)  

where 𝑠𝑠 is the specific entropy density of the solid and 𝜃𝑠 is the temperature in the solid. 

Using equations (3.13), (3.25), and (3.30) in equation (3.29) and applying the divergence 

theorem leads to the point-wise form of the second law of thermodynamics for the solid as 

follows: 

(1 − 𝜙)𝐽𝜌𝑠𝜓̇𝑠 ≤ [(1 − 𝜙) 𝑃𝐽𝑖
𝑠 − 𝜙𝐽𝐹𝐽𝑖

−1𝑝]𝑣𝑖,𝐽 + 𝑝(𝜙𝐽)̇ + 𝜉𝐼𝜇̇,𝐼 − 𝜋̃𝜇̇ −
𝑞̃𝐽

𝑠𝜃,𝐼
𝑠

𝜃𝑠
− 

(1 − 𝜙)𝐽𝜌𝑠𝑠𝑠𝜃̇𝑠           (3.31) 

It is assumed that the Helmholtz free energy of the solid can depend on the true 

porosity, the temperature of the solid, the temperature gradients, the phase-field parameter, 

the phase-field parameter gradient, and its time derivative, and the deformation gradient, 

as follows: 
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 𝜓𝑠 = 𝜓𝑠(𝐹𝑖,𝐽, 𝜃𝑠 , 𝜃,𝐼
𝑠, 𝜇, 𝜇,𝐼 , 𝜇̇, 𝜙𝐽)         (3.32) 

Such that, 

𝑑𝜓𝑠 =
𝜕𝜓𝑠

𝜕𝐹𝑖,𝐽
𝑑𝐹𝑖,𝐽 +

𝜕𝜓𝑠

𝜕𝜃𝑠
𝑑𝜃𝑠 +

𝜕𝜓𝑠

𝜕𝜃,𝐼
𝑠 𝑑𝜃,𝐼

𝑠 +
𝜕𝜓𝑠

𝜕𝜇
𝑑𝜇 +

𝜕𝜓𝑠

𝜕𝜇,𝐼
𝑑𝜇,𝐼 +

𝜕𝜓𝑠

𝜕𝜇̇
𝑑𝜇̇ + 

           
𝜕𝜓𝑠

𝜕(𝜙𝐽)
𝑑(𝜙𝐽)           (3.33) 

We make use of the time derivative of the deformation gradient, which is related to 

the velocity gradient as follows: 

𝐹̇𝑖𝐾 = 𝐹𝑗𝐾𝑣𝑖,𝑗            (3.34) 

Applying equations (3.33) and (3.34) to equation (3.31) yields the following: 

[(1 − 𝜙)𝐽𝜌𝑠 𝜕𝜓𝑠

𝜕𝐹𝑖,𝐽
− (1 − 𝜙) 𝑃𝐽𝑖

𝑠 + 𝜙𝐽𝐹𝐽𝑖
−1𝑝] 𝑣𝑖,𝐽  

+ [(1 − 𝜙)𝐽𝜌𝑠 𝜕𝜓𝑠

𝜕(𝜙𝐽)
− 𝑝] (𝜙𝐽)̇ + [(1 − 𝜙)𝐽𝜌𝑠 𝜕𝜓𝑠

𝜕𝜇,𝐼
− 𝜉𝐼] 𝜇̇,𝐼  

+ [(1 − 𝜙)𝐽𝜌𝑠 𝜕𝜓𝑠

𝜕𝜇
+ 𝜋̃] 𝜇̇ + [(1 − 𝜙)𝐽𝜌𝑠 𝜕𝜓𝑠

𝜕𝜇̇
] 𝜇̈  

+
𝑞̃𝐼

𝑠𝜃,𝐼
𝑠

𝜃𝑠 + (1 − 𝜙)𝐽𝜌𝑠 [
𝜕𝜓𝑠

𝜕𝜃𝑠 + 𝑠𝑠] 𝜃̇𝑠 + [(1 − 𝜙)𝐽𝜌𝑠 𝜕𝜓𝑠

𝜕𝜃,𝐼
𝑠 ] 𝜃̇,𝐼

𝑠  ≤ 0      

         (3.35) 
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Again, but now for the fluid material, the second law of thermodynamics is 

formulated as follows: 

𝐷

𝐷𝑡
∫ 𝜙𝜌𝑓𝑠𝑓

𝑉0
𝐽𝑑𝑉0 ≥ − ∫

𝑞̃𝐽
𝑓

𝑁𝐽

𝜃𝑓𝑆0
 𝑑𝑆0 + ∫

𝑟̃𝑓+ 𝑟̃𝑓𝑠

𝜃𝑓𝑉0
𝑑𝑉0 − ∫ 𝜌𝑓𝑤̃𝐽𝑁𝐽𝑠𝑓

𝑆0
 𝑑𝑆0 −  

∫ 𝜌𝑓𝑚̃ 𝑠𝑓
𝑉0

𝑑𝑉0          (3.36) 

The Helmholtz free energy density 𝜓𝑓 for the fluid materials is: 

𝜓𝑓 = 𝑒𝑓 − 𝑠𝑓𝜃𝑓          (3.37)  

where 𝑠𝑓 is the entropy density of the fluid and 𝜃𝑠 is the temperature in the fluid. Using 

equations (3.14), (3.28), and (3.37) in equation (3.36) and applying the divergence theorem 

leads to the point-wise form of the second law of thermodynamics for the fluid as follows: 

𝜙𝐽𝜌𝑓𝜓𝑓 ≤ 𝜙𝑝𝐽
𝜌𝑓

𝜌𝑓 − 𝜙 𝐽 𝜌𝑓𝑠𝑓𝜃𝑓 + 𝜙𝜏̃𝐽𝑖(𝑣𝑖 + 𝑣
𝑖

𝑓

𝑠),𝐽 − 𝜙𝐽𝜌𝑓 [1

2
 𝐴 𝑣

𝑖

𝑓

𝑠 + 𝐴 (𝑣
𝑖

𝑓

𝑠)] 𝑣
𝑖

𝑓

𝑠    

+ [𝑝(𝜙𝐽𝐹𝐽𝑖
−1)

,𝐽
− 𝑓𝑖

𝑠𝑓
] 𝑣𝑖

𝑓/𝑠
−

𝑞̃𝐽
𝑓

𝜃,𝐼
𝑓

𝜃𝑓           (3.38) 

Now, it is assumed that the Helmholtz free energy of the fluid, the fluid pressure, 

and the entropy density of the fluid can depend only on the fluid density, the temperature 

of the fluid, the temperature gradients, the fluid velocity gradient as follows: 

 𝜓𝑓 = 𝜓𝑓(𝜃𝑓 , 𝜃,𝐼
𝑓

, 𝜌𝑓 , 𝑣𝑖,𝐽
𝑓

)         (3.39 

 

 

 

 

    
 
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Such that, 

𝑑𝜓𝑓 =
𝜕𝜓𝑓

𝜕𝜃𝑓
𝑑𝜃𝑓 +

𝜕𝜓𝑓

𝜕𝜃,𝐼
𝑓 𝑑𝜃,𝐼

𝑓
+ +

𝜕𝜓𝑓

𝜕𝜌𝑓
𝑑𝜌𝑓 +

𝜕𝜓𝑓

𝜕𝑣
𝑖,𝐽
𝑓 𝑑𝑣𝑖,𝐽

𝑓
     (3.40) 

Applying equations (3.40) to equation (3.38) gives the following: 

𝜙𝐽 [𝜌𝑓 𝜕𝜓𝑓

𝜕𝜌𝑓 −
𝑝

𝜌𝑓] 𝜌𝑓 +
𝑞̃𝐼

𝑓
𝜃,𝐼

𝑓

𝜃𝑓 + 𝜙𝐽𝜌𝑓 [
𝜕𝜓𝑓

𝜕𝜃𝑓 + 𝑠𝑓] 𝜃𝑓 + [𝜙𝐽𝜌𝑓 𝜕𝜓𝑓

𝜕𝜃,𝐼
𝑓 ] 𝜃,𝐼

𝑓
+  

[𝜙𝐽𝜌𝑓 𝜕𝜓𝑓

𝜕𝑣
𝑖,𝐽
𝑓 ] (𝑣𝑖,𝐽

𝑓
) + 𝜙𝐽𝜌𝑓 [1

2
 𝐴 𝑣

𝑖

𝑓

𝑠 + 𝐴 (𝑣
𝑖

𝑓

𝑠)] 𝑣
𝑖

𝑓

𝑠 −  

[𝑝(𝜙𝐽𝐹𝐽𝑖
−1)

,𝐽
− 𝑓𝑖

𝑠𝑓
] 𝑣

𝑖

𝑓

𝑠 − 𝜙𝜏̃𝐽𝑖𝑣𝑖,𝐽
𝑓

 ≤ 0       (3.41) 

In the next section, we will make the use of equations (3.35) and (3.41) to obtain 

the restrictions on the constitutive relations that are proposed. 

 

3.2.6  SOLID AND FLUID FREE ENERGIES AND CONSTITUTIVE RELATIONS 

 

The solid free energy potential Ω𝑠 will be proposed that will be called the "poro-

enthalpy." It can be derived from the Helmholtz free energy using a Legendre 

transformation as follows: 

 (1 − 𝜙0)𝐽0𝜌0
𝑠Ω𝑠 = (1 − 𝜙0)𝐽0𝜌0

𝑠𝜓𝑠 − 𝐽𝑝𝜙       (3.42) 

 

 

   

  
 
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Substituting equation (3.42) in equation (3.35) leads to: 

(1 − 𝜙)𝐽𝜌𝑠Ω̇𝑠 ≤ [(1 − 𝜙) 𝑃𝐽𝑖
𝑠 − 𝜙𝐽𝐹𝐽𝑖

−1𝑝]𝑣𝑖,𝐽 − 𝜙𝐽 𝑝̇ 

+𝜉𝐼𝜇̇,𝐼 − 𝜋̃𝜇̇ −
𝑞̃𝐽

𝑠𝜃,𝐼
𝑠

𝜃𝑠 − (1 − 𝜙)𝐽𝜌𝑠𝑠𝑠𝜃̇𝑠       (3.43) 

We still have not made the use of equations (3.35), (3.41), and (3.43). These 

equations must hold for all admissible processes associated with the variables 

𝐹𝑖,𝐽, 𝜃𝑓 , 𝜃,𝐼
𝑓

, 𝜇, 𝜙, 𝜌𝑓 , 𝑣𝑖,𝐽
𝑓

,𝜃𝑠, 𝜃,𝐼
𝑠, 𝜇, 𝜇,𝐼 , 𝜇̇, and 𝜙𝐽 [104]. As a result, the constitutive relations 

for the solid are as follows: 

(1 − 𝜙0) 𝑃𝐽𝑖
𝑠 = (1 − 𝜙0)𝐽0𝜌0

𝑠 𝜕Ω𝑠

𝜕𝐹𝑖,𝐽
+ 𝜙𝐽𝐹𝐽𝑖

−1𝑝  

𝜉𝐼 = (1 − 𝜙0)𝐽0𝜌0
𝑠 𝜕Ω𝑠

𝜕𝜇,𝐼
  

𝜙𝐽 = −(1 − 𝜙0)𝐽0𝜌0
𝑠 𝜕Ω𝑠

𝜕𝑝
  

𝑠𝑠 = −
𝜕Ω𝑠

𝜕𝜃𝑠            (3.44) 

𝜕Ω𝑠

𝜕𝜇̇
=

𝜕Ω𝑠

𝜕𝜃,𝐼
𝑠 = 0  

𝜋̃ = −(1 − 𝜙0)𝐽0𝜌0
𝑠 𝜕Ω𝑠

𝜕𝜇
− 𝛽𝜇̇ − 𝜂𝐼𝜃,𝐼

𝑠  

𝑞̃𝐼
𝑠 =  −𝜂̃𝐼𝜇̇ − 𝜅𝐼𝐽

𝑠 𝜃,𝐼
𝑠  
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We make use of the fact that the mass balance for the solid is as follows: 

(1 − 𝜙)𝐽𝜌𝑠 = (1 − 𝜙0)𝐽0𝜌0
𝑠         (3.45)  

 

Similar to that for the solid, the fluid constitutive equations emerge from its entropy 

inequality as follows:  

𝑝 = (𝜌𝑓)2 𝜕𝜓𝑓

𝜕𝜌𝑓   

𝑠𝑓 = −
𝜕𝜓𝑓

𝜕𝜃𝑠   

𝜕𝜓𝑓

𝜕𝑣
𝑖,𝐽
𝑓 =

𝜕𝜓𝑓

𝜕𝜃,𝐼
𝑓 = 0           (3.46) 

𝜏̃𝐽𝑖 = 𝜈𝑖𝐽𝑘𝐿(𝑤𝑘,𝐿 + 𝜙𝑣𝑘,𝐿) + 𝜏̂𝐽𝑖   

𝑞̃𝐼
𝑓

=  −𝜅𝐼𝐽
𝑓

𝜃,𝐽
𝑓

+ 𝑞̂𝐼  

𝑓𝑖
𝑠𝑓

= 𝑝(𝜙𝐽𝐹𝐽𝑖
−1)

,𝐽
− 𝜙,𝐽𝜏̃𝐽𝑖 − 𝜒𝑖𝑗𝑣

𝑖

𝑓

𝑠 − 𝜙𝐽𝜌𝑓 (1

2
 𝐴 𝑣

𝑖

𝑓

𝑠 − 𝐴 ( 𝑣
𝑖

𝑓

𝑠)) + 𝑓𝑖
𝑠𝑓

  

Where, 𝜈𝑖𝐽𝑘𝐿 is the positive definite material tensors of the fluid viscosity, 𝜅𝐼𝐽
𝑓

 the thermal 

conductivity of the fluid, and 𝜒𝑖𝑗 is the fluid impermeability of the porous solid. Next, we 

propose a poro-enthalpy for reversible, hyper-elastic, isothermal materials as follows: 

(1 − 𝜙0)𝐽0𝜌0
𝑠Ω𝑠 = 𝜓(𝐹𝑖,𝐽, 𝜇) − [𝛼 + (1 − 𝛼)𝑔𝑚(𝜇)](𝐽 − 1)𝑝 −  

[1 − 𝑔𝑚(𝜇)]
𝑝2

2𝑁
− 𝜙0𝑝 +

𝐺𝑐

4𝑙0
[(1 − 𝜇)2 + 4𝑙0

2𝜇,𝐼𝜇,𝐼]      (3.47) 

 

 
 
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where 𝜓(𝐹𝑖,𝐽, 𝜇) is the strain energy density, which includes a degradation function that 

will be discussed later in more detail. As for the material constants, 𝛼 is the Biot coefficient, 

N is the Biot tangent modulus, and 𝐺𝑐 is Griffith’s critical energy release rate. The relation 

between N,  𝛼, and 𝜙0 [105] is as follows: 

1

𝑁
=

(𝛼−𝜙0)(1−𝛼)

𝐾
           (3.48) 

Where K is the bulk modulus of the aggregate. The linear momentum equation for the fluid 

(3.16) will be modified by the assumption of isothermal creepy Newtonian flow. The 

following constitutive relations are proposed to reproduce Stokes flow in the crack and 

Darcy flow in intact regions: 

𝜏𝑖𝑗 = 𝑔𝑆(𝜇)𝜈𝑓[𝑤𝑖,𝑗 + 𝑤𝑗,𝑖 − 2

3
𝑤𝑘,𝑘𝛿𝑖,𝑗 + 𝜙(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖 − 2

3
𝑣𝑘,𝑘𝛿𝑖,𝑗)]    (3.49) 

𝑓𝑖
𝑠𝑓

= 𝑝(𝜙𝐽𝐹𝐽𝑖
−1)

,𝐽
− 𝜙,𝐽𝜏̃𝐽𝑖 − 𝑔𝐷(𝜇)𝜙𝐽

𝜈𝑓

𝜅
𝑤𝑖       (3.50) 

where 𝜈𝑓 is the fluid viscosity and 𝜅 is the isotropic intrinsic permeability for the intact 

material. Two indicator functions have been introduced into the constitutive relations: 

𝑔𝑆(𝜇) for Stokes flow and 𝑔𝐷(𝜇) for Darcy flow. The structure of these functions and what 

conditions must be satisfied will be discussed in the following section.  

 The free energy 𝜓𝑓 for the fluid is proposed in such a way that we allow for the 

fluid to be compressible, as follows: 

𝜓𝑓 =
1

𝑐𝑓 (
𝜌0

𝑓

𝜌𝑓 + 𝑙𝑛(𝜌𝑓))          (3.51) 
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A linearized relationship between the density and the pressure is derived from 

(4.46) and (3.51) as follows: 

𝜌𝑓 = 𝜌0
𝑓

+ 𝑐𝑓𝑝           (3.52) 

In the absence of the micro-force balance governing the phase-field parameter, and 

the Stokes flow for the fluid in the cracks, the formulation presented above recovers non-

linear poroelastic theories that agree with the Biot’s classical theory [106-108]. 

 

3.2.7  SCHEMES FOR TENSION-COMPRESSION SPLITS 

As motivated by the fact that only tensile stresses should derive damages, the strain 

energy is decomposed into two parts: 𝜓− and 𝜓+. These two parts of the strain energy 

represent the compressive and the tensile parts of the strain energy, respectively. The idea 

is that a crack should not develop under purely compressive principal stresses. Therefore, 

the phase-field degradation function 𝑔𝑑(𝜇)  will be applied only to the tensile part of the 

strain energy as follows: 

𝜓(𝜀𝑖𝑗, 𝜇) = 𝑔𝑑(𝜇) 𝜓+(𝜀𝑖𝑗) + 𝜓−(𝜀𝑖𝑗)         (3.53) 

As discussed previously, two approaches to the tension/compression splits will be 

investigated here. The first is based on the work of Miehe et al. [1] and is expressed in 

terms of the principal strains 𝜀1, 𝜀2 (for 2D plane strain) as follows: 

 𝜓+(𝜀𝑖𝑗) =
𝐸𝑣

2(1+𝑣)(1−2𝑣)
〈𝜀𝑘𝑘〉2 +

𝐸

2(1+𝑣)
(〈𝜀1〉2 + 〈𝜀2〉2) 

 𝜓−(𝜀𝑖𝑗) =
𝐸𝑣

2(1+𝑣)(1−2𝑣)
〈−𝜀𝑘𝑘〉2 +

𝐸

2(1+𝑣)
(〈−𝜀1〉2 + 〈−𝜀2〉2) 

 (3.54) 
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where the bracket〈 .. 〉is the Macaulay bracket defined as: 

〈𝑥〉 =
𝑥+|𝑥|

2
           (3.55) 

Another approach is based on the behavior of masonry-like materials. This type of 

material exhibits no resistance to tension. For such behavior, constitutive models have been 

constructed that prohibit tensile stress states. Among these, those of Del Piero and of 

Angelillo et al. proposed a constitutive model that reflects such phenomena and ensures 

the existence of the strain energy density [2, 3]. By assuming that 𝜀1 ≥ 𝜀2, the tensile and 

compressive parts of the strain energy are decomposed as follows: 

If (𝜀2 ≥ 0), then  

 𝜓+(𝜀𝑖𝑗) =
𝐸𝑣

2(1+𝑣)(1−2𝑣)
(𝜀𝑘𝑘)2 +

𝐸

2(1+𝑣)
[(𝜀1)2 + (𝜀2)2] 

 𝜓−(𝜀𝑖𝑗) = 0 

If (𝜀1(1 − 𝑣) + 𝜀2𝑣 ≥ 0), then 

𝜓+(𝜀𝑖𝑗) =
𝐸 (𝜀1(1−𝑣)+𝜀2𝑣)2

2(1−𝑣)(1+𝑣)(1−2𝑣)
         (3.56) 

 𝜓−(𝜀𝑖𝑗) =
𝐸 (𝜀2)2

2(1−𝑣)2 

If (𝜀1(1 − 𝑣) + 𝜀2𝑣 < 0), then 

 𝜓+(𝜀𝑖𝑗) = 0 

 𝜓−(𝜀𝑖𝑗) =
𝐸𝑣

2(1+𝑣)(1−2𝑣)
(𝜀𝑘𝑘)2 +

𝐸

2(1+𝑣)
[(𝜀1)2 + (𝜀2)2] 
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For both schemes, plane-strain is assumed. The constants E and 𝑣 are the modulus 

of elasticity and the Poisson ratio, respectively. 

 

3.2.8  DEGRADATION AND INDICATOR FUNCTIONS 

 

 The form of a degradation function 𝑔𝑑(𝜇) and must, at least, satisfy the following 

conditions [68, 83]: 

𝑔𝑑(0) = 0 ,    𝑔𝑑(1) = 1 , and    𝑔𝑑
′ (0) = 0        (3.57) 

The form of the degradation function 𝑔𝑑(𝜇) that predominates in the literature is: 

𝑔𝑑
𝑞(𝜇)  = 𝜇2            (3.58)  

This quadratic form [102] has the advantage that it is simple to implement in the 

“staggered” solution scheme (i.e. solve ui with fixed μ, then solve μ with fixed ui, and 

alternate until certain convergence criteria are achieved) because both sets of equations are 

linear for the simplest manifestation of the theory. Another form that has some attractive 

features was proposed by Borden et al. [71]:  

𝑔𝑑
𝑐 (𝜇) = 𝜇2[𝑠(𝜇 − 1) − 2𝜇 + 3]        (3.59)  

where s is the slope at μ = 1. For 0 ≤ s ≪1 , it is called the cubic degradation function. In 

equation (3.47), we also introduced a phase-field function 𝑔𝑚(𝜇) . This function aims to 

cause the porosity to approach unity inside the crack. Its requirements are as follows: 
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𝑔𝑚(0) = 1, 𝑔𝑚(1) = 0,  𝑔𝑚
′ (0) = 0 and 𝑔𝑚

′ (1) = 0      (3.60) 

 

Thus, a simple function that satisfies (3.60) is: 

𝑔𝑚(𝜇) ≡ {     
1

1 − 3𝜇2 + 2𝜇3

0
     

:
:
:
       0 

𝜇 < 1
≤ 𝜇 ≤ 1

𝜇 > 1
      (3.61) 

The indicator functions 𝑔𝑆 and 𝑔𝐷 are introduced to the constitutive relations in 

such a way that Stokes flow occurs inside the crack and Darcy flow in the intact material. 

As a result, two requirements must be satisfied: 

𝑔𝑆(0) = 1 and 𝑔𝑆(1) = 0         (3.62) 

𝑔𝐷(0) = 0 and 𝑔𝐷(1) = 1         (3.63) 

A simple Stokes indicator function satisfying (3.62) is proposed: 

𝑔𝑆(𝜇) = (1 − 𝜇)2          (3.64) 

For Darcy flow in the intact material, a specific power-law form is used: 

𝑔𝐷(𝜇) = 𝜇𝑛           (3.65) 

The exponent n is chosen in such a way that the impermeability is degraded rapidly 

within the crack. In the simulations, n = 6 is chosen. This value for n is further discussed 

in [61]. 

 



 

 53 

3.3  Summary for Strong and Weak Forms 

To implement the finite element methods, a weak form is derived. In this section, 

we will summarize the governing equations in both strong and weak forms. 

 

3.3.1  STRONG FORM: 

The aggregate equilibrium equation: 

𝑃𝐽𝑖,𝐽 + 𝑏𝑖̃ = 0           in 𝑉0 

𝑃𝐽𝑖𝑁𝐽 = 𝑡̃𝑖              on 𝑆𝑡         (3.66) 

𝑢𝑖 = 𝑢̂𝑖                   on 𝑆𝑢 

 

Kinematics: 

𝐹𝑖𝐽 = 𝛿𝑖𝐽 + 𝑢𝑖,𝐽          (3.67) 

 

Micro-force balance equation: 

𝜉𝐼,𝐼 + 𝛾̃ + 𝜋̃ = 0        in 𝑉0 

𝜉𝐼𝑁𝐼 = 𝑖̃   on 𝑆𝑖         (3.68) 

𝜇 = 𝜇̂    on 𝑆𝜇 
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The fluid mass balance: 

1

𝜌𝑓

𝐷

𝐷𝑡
(𝜙𝜌𝑓𝐽) + (𝐽𝐹𝐽𝑖

−1𝑤𝑖),𝐽
+

𝜌,𝐽
𝑓

𝜌𝑓 𝐽𝐹𝐽𝑖
−1𝑤𝑖 − 𝑚̃ = 0  in 𝑉0      (3.69) 

Linear momentum equations for the fluid: 

  (𝜏𝑗𝑖𝐽𝐹𝐽𝑗
−1)

,𝐽
− 𝐽𝐹𝐽𝑖

−1𝑝,𝐽 − 𝑔𝐷(𝜇)
𝜈𝑓

𝜅
𝐽𝑤𝑖 = 0   in 𝑉0 

(𝜏𝑗𝑖 − 𝑝𝛿𝑖𝑗)𝐽𝐹𝐽𝑗
−1𝑁𝐽 = 𝑡̃𝑖

𝑓
     on 𝑆𝑓     (3.70) 

𝑤𝑖 = 𝑤̂𝑖       on 𝑆𝑤 

𝑝 = 𝑝̂        on 𝑆𝑝 

 

3.3.2  WEAK FORM 

 

The following equation serves as a weak form for the finite element 

implementation: 

∫ [𝑃𝐽𝑖𝛿𝐹𝑖𝐽 + 𝜉𝐼̃𝛿𝜇,𝐼 − 𝜋̃𝛿𝜇]
𝑉0

𝑑𝑉0 + ∫ [(𝜏̃𝐽𝑖 − 𝑝𝐽𝐹𝐽𝑖
−1)𝛿𝑤𝑖,𝐽 + 𝑔𝐷(𝜇)

𝜈𝑓

𝜅
𝐽𝑤𝑖𝛿𝑤𝑖]

𝑉0

𝑑𝑉0 

+ ∫ [− (
1

𝜌𝑓

𝐷

𝐷𝑡
(𝜙𝜌𝑓𝐽) + 𝐽𝐹𝐽𝑖

−1𝑤𝑖,𝐽 +
𝜌,𝐽

𝑓

𝜌𝑓
𝐽𝐹𝐽𝑖

−1𝑤𝑖) 𝛿𝑝]
𝑉0

𝑑𝑉0  

= ∫ [𝑏𝑖̃𝛿𝑢𝑖 + 𝛾̃𝛿𝜇 − 𝑚̃𝛿𝑝]
𝑉0

𝑑𝑉0 + ∫ [𝑡𝑖̃𝛿𝑢𝑖 + 𝑖̃𝛿𝜇 + 𝑡𝑖
𝑓̃

𝛿𝑤𝑖]𝑆0
𝑑𝑆0      (3.71) 
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The constitutive relations are: 

𝑃𝐽𝑖 = 𝑔𝑑(𝜇)
𝜕𝜓+

𝜕𝐹𝑖𝐽
+

𝜕𝜓−

𝜕𝐹𝑖𝐽
− [𝛼 + 𝑔𝑚(𝜇)(1 − 𝛼)]𝐽𝐹𝐽𝑖

−1𝑝 + 𝜙𝜏̃𝐽𝑖     (3.72) 

𝜋̃ = −𝑔𝑑
′ (𝜇)𝜓+(𝐹𝑖𝐽) +

𝐺𝑐

2𝑙0
(1 − 𝜇) + 𝑔𝑚

′ (𝜇) [(1 − 𝛼)(𝐽 − 1)𝑝 −
1

2𝑁
𝑝2]    (3.73) 

𝜉𝐼̃ = 2𝐺𝑐𝑙0𝜇,𝐼          (3.74)  

𝜙 =
1

𝐽
{𝜙0 + [𝛼 + 𝑔𝑚(𝜇)(1 − 𝛼)](𝐽 − 1) + [1 − 𝑔𝑚(𝜇)]

𝑝

𝑁
}   (3.75)  
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3.4  Numerical Implementations 

A continuous Galerkin finite element method is used to solve the partial differential 

equations. We used the so-called Taylor hood (TH) [109] element that satisfies the LBB 

conditions [110, 111]. For two dimensional analyses, a quadrilateral TH element is used 

with biquadratic interpolations for the fluid velocity and bilinear interpolations for the 

pressure, the displacements and the phase-field variable. For three dimensional analyses, 

the hexahedral TH element is used with triquadratic interpolations for the fluid velocity 

and trilinear interpolations for the pressure, the displacements, and the phase-field variable.  

The partial differential equations are coupled and solved using standard Newton–Raphson 

methods with an implicit backward Euler integration scheme. For matrix inversion, a 

parallel, sparse, direct solver from the MUMPS/PETSc library is used [112]. 
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3.5  Experimental Method 

It is imperative to compare the model simulations with experimental results where 

possible. This will not only validate the model but also provide insights into the 

experimental observations. To accomplish this, we will compare the model with 

experiments carried by AlTammar [4]. 

 

 

 

Figure 3.1: Schematic of fracture cell (a & b) and layout of experimental setup (c) (source 

[43]). 

 

 a  b 

 c 
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Figure 3.1 shows the experimental layout. A test specimen with the dimensions of 

152 mm x 52 mm x 5.1 mm has a hole with 3.2 mm diameter at its center. The far-field 

stress is applied on the two opposite-parallel sides via pneumatic jacks. Glycerin is injected 

at the center hole to initiate the crack. On the top and the bottom surfaces of the specimen, 

two thin flexible adhesive layers are used to prevent fluid leakage. The fracture growth is 

monitored using a high-resolution digital camera. These experiments aim to study the effect 

of the inclusions on the crack growth. Therefore, an oblique inclusion with a 25 mm length 

and a variable thickness is cast and placed at a variable distance away from the injection 

port (see Figure 3.2). 

 

Figure 3.2: Configuration of test specimen as used in the fracturing tests (source [43]). 

 

x 

y 
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 Four tests were performed to study four factors that can influence the crack growth: 

1) the tough-stiffness of the inclusions, 2) the thickness, 3) the distance, and 4) the oblique 

angle. The matrix of the test specimens is made of plaster. The tough-stiff inclusions are 

cast using Hydrostone, while weak-soft inclusions are cast using a mixture of 80% plaster 

and 20% talc by weight. The far-field stress, the material proprieties, the fluid viscosity, 

and the inclusion dimensions/orientation are listed and discussed in Chapter 4. 
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Chapter 4.  Results and Discussions 

In this Chapter, phase-field modeling simulations of hydraulic fractures are 

presented and compared to experimental observations. However, before detailing these 

calculations, we first address an outstanding issue regarding the proper representation of 

the strain energy that does not allow for damage under purely compressive principal 

stresses. Two approaches are investigated: Miehe’s split approach [1], and an approach 

based on the masonry-like materials constitutive model [2, 3]. 

Thereafter, the phase-field simulations that are related to applications that are 

relevant to fracture treatments in the oil and gas industries are presented. The behavior of 

multiple fluid-driven fractures has attracted interest in optimizing the design of the fracture 

spacing in hydraulic fracture treatments. Additionally, it is vital to understand the behavior 

of fluid-driven fracture growth in the presence of natural cracks. Hydraulic fracture 

treatments can activate natural fractures and increase the connectivity of the overall 

fracture network. However, the presence of natural fractures can also alter the orientation 

of the hydraulic fractures toward unfavorable directions and possibly terminate their 

growth. Furthermore, with regard to optimizing the re-fracturing treatment, it of interest to 

consider how old fractures filled with proppant can influence the crack path of the induced 

fractures. In addition, the influence of heterogeneities on fracture growth is studied. The 

problem of an induced fracture interacting with a layer of different material is studied. As 

in-situ stresses are considered to have a significant impact on the entire fracture treatment, 

the problem of a fluid-driven crack under the influence of different far-field stresses is 
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studied. Finally, some natural fractures can have a finite opening and are filled/cemented 

with different materials. To understand how the induced fracture interacts with such 

inclusion-like cemented natural fractures, a list of experiments performed by Altammar [4] 

is presented, discussed, and simulated using the phase-field approach. The simulation 

results are in close agreement with the experimental results. Lastly, the phase-field model 

is extended to three-dimensions, and two benchmark problems are simulated: 1) a compact 

tension CT test specimen, and 2) a circular crack is driven by pressurized fluid. 
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4.1  Tension-Compression Split Schemes 

From a phenomenological point of view, it is necessary to formulate a constitutive 

model that is consistent with the fact that fracture should not propagate under compression. 

For brittle materials, compressive stresses should not cause the evolution of damage, but 

rather only contribute to the material’s deformation. In contrast, tensile stresses are drivers 

for fracture and crack growth. Therefore, within the phase-field framework, the strain 

energy must be decomposed in such a way as to take this seemingly obvious behavior into 

account. To do this, the strain energy is decomposed into tensile and compressive parts, 

and only the tensile part is degraded as follows: 

𝜓(𝜀𝑖𝑗, 𝜇) = 𝑔𝑑(𝜇) 𝜓+(𝜀𝑖𝑗) + 𝜓−(𝜀𝑖𝑗)      (4.1)  

Note that the phase-field degradation function 𝑔𝑑(𝜇)  is applied only to the tensile part of 

the strain energy 𝜓+. Two approaches are studied: 1) Miehe’s approach [1], and 2) an 

approach introduced based on a masonry-like material constitutive model [2, 3]. In general, 

principal strains at a point can be in one of three states: all tensile strains (extension), all 

compressive strain (contraction), and mixed tensile and compressive strains. In two-

dimensional analyses, three states are used throughout this discussion: case ++, case+-, and 

case --.  The first, case ++ is for both principal strains greater than zero, and the degradation 

function is applied to the total strain energy. The case -- is when both principal strains are 

negative, and no degradation function is applied at all to the strain energy density. Finally 

case +- is for one positive and one negative principal strains, and the degradation function 

is only applied to the tensile part of the strain energy density.  
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For Miehe’s approach, the criterion used to split the strain energy into the tensile 

and compressive parts is: 

 𝜓+(𝜀𝑖𝑗) =
𝐸𝑣

2(1+𝑣)(1−2𝑣)
〈𝜀𝑘𝑘〉2 +

𝐸

2(1+𝑣)
(〈𝜀1〉2 + 〈𝜀2〉2)         

 𝜓−(𝜀𝑖𝑗) =
𝐸𝑣

2(1+𝑣)(1−2𝑣)
〈−𝜀𝑘𝑘〉2 +

𝐸

2(1+𝑣)
(〈−𝜀1〉2 + 〈−𝜀2〉2)       

Where, 

〈𝑥〉 =
𝑥+|𝑥|

2
        (4.3)  

 

Figure 4.1 (a) shows the three cases; case ++, case +-, and case -- for the strain 

energy based on this split. An illustration is provided in terms of stresses, rather than strain, 

to give a better sense of the issues that arise in this approach. The size of the circle has no 

meaning, but the sectors represent the relative ratios of the principal stresses. Note that the 

regions for cases ++ and +- will be damaged. Now it becomes apparent that splitting the 

strain energy with this method can result in damage evolution under purely compressive 

stresses, as shown in the hatched yellow sector in Figure 4.1 (c). This non-physical situation 

for Miehe's split is due to the effect of Poisson’s ratio. The material can reside in purely 

compressive stress state even if it is subjected to both tensile and compressive principal 

strains. Thus, Miehe’s approach allows damage to develop under purely compressive 

stresses, which is not consistent with brittle material behavior. This suggests that it is 

necessary to remove the Poisson’s effect found in the mixed tensile-compressive state. This 

can be achieved by implementing the constitutive model for masonry-like materials 

 (4.2) 
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presented in [2, 3]. Using the ordered principal strains 𝜀1 ≥ 𝜀2, the strain energy is 

decomposed as follows: 

If (𝜀2 ≥ 0), then  

 𝜓+(𝜀𝑖𝑗) =
𝐸𝑣

2(1+𝑣)(1−2𝑣)
(𝜀𝑘𝑘)2 +

𝐸

2(1+𝑣)
[(𝜀1)2 + (𝜀2)2] 

 𝜓−(𝜀𝑖𝑗) = 0 

If (𝜀1(1 − 𝑣) + 𝜀2𝑣 ≥ 0), then 

𝜓+(𝜀𝑖𝑗) =
𝐸 (𝜀1(1−𝑣)+𝜀2𝑣)2

2(1−𝑣)(1+𝑣)(1−2𝑣)
      (4.4)  

 𝜓−(𝜀𝑖𝑗) =
𝐸 (𝜀2)2

2(1−𝑣)2 

If (𝜀1(1 − 𝑣) + 𝜀2𝑣 < 0), then 

 𝜓+(𝜀𝑖𝑗) = 0 

 𝜓−(𝜀𝑖𝑗) =
𝐸𝑣

2(1+𝑣)(1−2𝑣)
(𝜀𝑘𝑘)2 +

𝐸

2(1+𝑣)
[(𝜀1)2 + (𝜀2)2] 

 

Figure 4.1 (b) shows how the approach based on masonry-like materials identifies 

the three cases based on the principal strains. In Figure 4.1 (d), the three possible cases are 

mapped from the principal strains to the principal stresses for a Poisson's ratio of 0.25. As 

seen in Figure 4.1 (d), this approach ensures that purely compressive stress states do not 

cause damage evolution, i.e., the hatched sector is now part of the case -- which is not 

degraded in any aspect. 



 

 65 

 

Figure 4.1: Comparison of the Miehe and the masonry-like approaches: Case ++ means 

the degradation function is applied to the total strain energy. The case -- means the 

degradation function is not applied at all. Case +- means the degradation function is only 

applied to the tensile part of the strain energy. (a) and (b) show the criteria for deciding 

which part of strain energy is degraded using principal strains arguments. (c) and (d) are a 

mapping of (a) and (b) to the principal stresses. 
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Another difference between the two approaches arises as a result of removing the 

Poisson’s ratio effect from the part of the strain energy that is degraded. This changes the 

quantity of the driving force 𝜂 that drives the damage evolution. Recall that the micro-force 

driving the crack propagation is calculated as follows: 

𝜋 =
𝜕𝜓𝑑

𝜕𝜇
         (4.5) 

The relative difference in the amount of the driving force between the two 

approaches can be quantified as follows:  

𝜋𝑑 =
𝜋𝑀𝑖𝑒ℎ𝑒−𝜋𝑚𝑎𝑠𝑜𝑛𝑟𝑦

𝜋𝑀𝑖𝑒ℎ𝑒
 %       (4.6) 

Figure 4.2 shows the relative difference in the driving forces between the Miehe 

approach and the approach based on masonry-like materials. As seen in the figure, the 

driving force is the same for both the Miehe approach and the masonry-like material 

approach in the case of purely tensile strains (case ++), as expected. In the case of purely 

compressive principal strains (case --), the driving force is zero for both approaches. 

However, the difference appears in the case of mixed tensile and compressive principal 

strains (case +- ). The differences observed are due to the removal of the Poisson’s ratio 

effect, which is achieved in the masonry-like material approach. In general, the amount of 

the driving force in Miehe’s approach is equal to or larger than the driving force in the 

masonry-like material approach. The driving force in Miehe’s approach becomes higher as 

the larger principal stress approaches zero (𝜀1 → 0+). When the material is subjected to a 

loading state that is “case +-“ for Miehe’s approach and “case --" for the masonry-like 
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materials approach, then the difference is 100% (see the dashed triangle in Figure 4.1 (c) 

and (d) ). This implies that Miehe’s approach predicts that damage will evolve, whereas 

the masonry-like material approach would predict no change in the damage state. 

Interestingly, loading conditions that reside in this dashed triangle can be encountered 

underground where the formation is under highly compressive stress states. 

 

Figure 4.2: Relative difference in the driving force  associated with phase-field μ 

between Miehe’s approach and approach based on masonry-like materials. When 1 > 0 

or 2 < 0, the difference in the driving forces between the two approaches is zero. When 

1 < 0 and 2 > 0, the relative difference in the driving force can vary from 0 (close to 

case ++) to 100% (inside the dashed triangle). In this triangle, the crack can grow 

according to Miehe’s approach, but not according to the masonry-like material approach. 
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To illustrate the effects of these differences on the crack calculations, three load 

scenarios are studied: 1) shear-load, 2) purely compressive load, and 3) mixed shear-

compression load scenarios. The first load scenario shows the difference in the predicted 

crack length between the two approaches. The last two load scenarios show the problems 

that arise with Miehe’s approach regarding the damage evolution driven by purely 

compressive stresses state. 

 

4.1.1  SHEAR-LOAD SCENARIO 

 

Here, the differences in the magnitude of the driving force associated with the 

phase-field evolution are studied. To illustrate this difference, a square domain of 2000𝑙0 

X 2000𝑙0 is simulated with a crack of length 150𝑙0 placed horizontally at the center of the 

domain. Note that the crack faces are imposed by the mesh and not by setting the phase-

field in a row of elements to zero. The phase-field at the crack tip nodes is set to zero 

(damaged), as seen in Figure 4.3 (a). The domain is subjected to a far-field shear strain 

applied at the boundaries (displacement control). Displacement control is used in order to 

produce stable crack growth. The boundaries are displaced incrementally to simulate a 

shear loading condition with u1 (x,y = ±1000𝑙0) = ±u0 on the top and bottom boundaries 

and u2 (x = ±1000𝑙0,y) = ±u0  on the right and left boundaries, as shown in Figure 4.3 (a). 

This ensures that the loading condition places the far-field stress state within the case +- 

where the Miehe and masonry-like approaches differ. Note that the strain states near the 
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crack tips will take on a wide range of ratios and will be inhomogeneous. Figure 4.3 (b,c) 

show that the difference in the crack length between the two approaches is about ~ 30% 

longer using Miehe’s split than with the masonry-like material approach.  

 

Figure 4.3: (a) A square domain of 2000l0 x 2000l0 and a real center crack of 150l0 

undergoes far-field-shear displacements u1 ( ±1000l0 , ±1000l0 ) = ±u0 , u2 ( ±1000l0 , y ) 

= ±u0. (b) Crack growth at u0/0l0  = 7.51  using the Miehe’s approach. (c) Crack growth 
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at u0/0l0  = 7.51 using the masonry-like materials approach. Poisson’s ratio  = 0.25, 0 = 

0.001 . 

 

Recall that the main advantage of the approach proposed here over Miehe’s 

approach is that Miehe’s approach predicts fracture growth under purely compressive stress 

states while the masonry-like material approach does not. The following two cases 

illustrate this issue with a purely compressive and a compression-shear load case. 

 

4.1.2  PURE COMPRESSION LOAD SCENARIO 

In this case, the far-field principal stresses are both compressive, as shown in Figure 

4.4 (a). Simulations were performed on a square domain of 2000𝑙0 X 2000𝑙0 with a 100𝑙0 

phase-field crack placed horizontally at the center. The compression loading condition is 

chosen to be 𝜎1̅̅̅ 𝜎2̅̅ ̅⁄ = 7. This far-field stresses ratio places the domain in the conflicting 

triangle (case +- in Miehe’s approach and case -- in the masonry-like materials approach). 

As shown in Figure 4.4 (b), even though the domain is only subjected to compressive 

stresses, the phase-field continues to grow using Miehe’s split approach. In this loading 

and structural state, the fracture is closed, and the phase-field should not evolve. However, 

as is seen in Figure 4.4 (b), the phase-field evolves around the crack. This is not physically 

justifiable and is an artifact of being poorly modeled by this tension-compression split. 

This behavior is avoided by using the masonry-like materials approach, where all strain 

energy goes solely to deformation for purely compressive stress states. In that approach, 
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the crack does not evolve, as shown in Figure 4.4 (c). These types of far-field loading 

conditions are pervasive during the application of fracture treatments underground. 

Fractures found underground are usually under compressive in-situ stresses, and thus the 

issues with Miehe's split will limit the capability of the phase-field model for addressing 

these types of problems. With the approach based on masonry-like materials, this issue is 

resolved.  

 

Figure 4.4: (a) A square domain of 2000l0 x 2000l0 and center crack of 100l0 undergoes 

far-field-compression (displacement-control) at an initial state. (b, c) Crack state at 
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1/0E = 2.42, 1/2 = 7 , using Miehe’s split and the split based on masonry-like 

materials, respectively. The Poisson’s ratio  = 0.25, 0 = 0.001. 

 

4.1.3  SHEAR COMPRESSION LOAD SCENARIO 

 

Finally, another load scenario is considered where the domain is subjected to far-

field compression and shear stresses. The results lead to the same conclusion as the 

previous case. In Miehe’s approach, the phase-field spreads in every direction and grows 

from both ends of the crack. The crack is closed, but part of the strain energy of the system 

flows into the phase-field evolution. This evolution of the phase-field is avoided with the 

masonry-like material approach. 
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Figure 4.5: (a) A square domain of 2000l0 x 2000l0 and center crack of 100l0 undergoes 

far-field shear compression (displacement control). (b, c) Crack state at load step, 11/0E 

= 1.492, 22/0E = -0.626 , 12/0E = 0.75, principal stresses ratio 1/2 =10, using Miehe’s 

split and the masonry-like split respectively. The Poisson’s ratio  = 0.25, 0 = 0.001. 
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In conclusion, an outstanding issue regarding the proper representation of the strain 

energy in the phase-field model has been studied and resolved. The strain energy is split 

into tensile and compressive parts. Miehe's approach based on a split of the principal strains 

was compared to a new formulation based on masonry-like materials that are elastic in 

compression but are unable to support any tensile stress. It has been found that Miehe’s 

approach allows damage to evolve under purely compressive stress states. However, such 

behavior is avoided by the approach based on masonry-like materials. This new strain 

energy decomposition extends the effectiveness of phase-field modeling for hydraulic 

fracture, especially in regard to applying it to fracture growth under the influence of in-situ 

stresses.  

Throughout the remainder of this chapter, the approach proposed based on 

masonry-like materials will be used. In the following sections, problems relevant to 

applications in the treatment of fractures in the oil and gas industries are studied. The main 

goal herein is to show how phase-field modeling can be applied to investigate various 

interesting problems and contribute to the understanding of fluid-driven crack propagation 

phenomena.  
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4.2  Multi-Crack Interactions 

The problem of induced fractures interacting with other fractures is considered to 

be critical in optimizing hydraulic fracture treatments. In this section, three types of 

problems are studied: 1) fluid-driven parallel cracks and their application to fracturing 

treatments, 2) fluid-driven cracks interacting with pre-existing natural cracks, and 3) fluid-

driven cracks interacting with cracks filled with proppants.  

 

4.2.1  INDUCED PARALLEL CRACKS 

The problem of fluid-driven parallel cracks is relevant to fracture treatment design. 

In fracture treatments, the fractures are initiated using perforation tools. The fracture 

spacing is essential, as well as determining how many stages or “groups of fractures” there 

should be (see Figure 4.6). The ultimate goal in the fracture treatment design is to maximize 

the drainage area, as this increases the productivity of the well. One aspect of the fracture 

design is to choose an optimal spacing between the fractures themselves as well as between 

multiple stages. It seems intuitive that more fractures might result in a greater drainage area 

being targeted. However, an issue arises when the spacing between the fractures is small 

enough that initiated fractures that are longer than their neighbors exert excessive stress 

shadow that inhibits the shorter cracks from propagating, which would then reduce the 

drainage area. Therefore, studying the appropriate spacing is essential to optimizing 

fracturing jobs. Here, phase-field modeling can provide some insights into this problem 

through quantitative analysis of the stresses and fracture opening. 
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Figure 4.6: Schematic of a multi-stage fracture well. Here there is a horizontal well in a 

shale reservoir. Fractures are initiated and separated by a regular spacing (source [113]). 

 

 First, the most straightforward problem of multi-parallel cracks is studied. A large 

square domain with the dimensions of 2000𝑙0 X 2000𝑙0 is assumed. The advantage of any 

symmetries the problem contains has been taken into account.  The normal displacements 

and normal fluid fluxes on the outer boundaries are imposed to zero (see Figure 4.7). On 

the centerline faces, symmetry boundary conditions are applied: the normal displacement 

and the shear traction are zero. Multiple cracks 90𝑙0 long are initialized at the center with 

20𝑙0 spacings. In this problem, the Biot coefficient  is 0.45, the initial porosity is 𝜙0 = 

0.1, and the normalized permeability is 𝜅̅ =10−14 (see Figure 4.8). Fluid is injected in the 

center of the cracks at a constant rate. This problem has been simulated in the literature and 

is considered to be a benchmark problem. Here, it is first studied to check the proposed 
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tension-compression split approach discussed in the previous section. It also serves as the 

baseline for further investigations targeting the optimization of the fracture spacing in the 

fracture treatment. 

 

 

Figure 4.7: A Demonstration of boundary conditions: normal displacements, normal fluid 

velocities, shear stresses are zero. 
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 Two cases are studied with this geometry: 1) the first case with two cracks and 2) 

a second case with four cracks. In the first case (as seen in Figure 4.8 (a)), the cracks 

propagate by deflecting away from each other. The angle of the deflection depends on the 

spacing distance [24]. For the second case (as seen in Figure 4.8 (b)), the outer cracks 

propagate by deflecting outward. However, the inner cracks are inhibited in their growth 

by the outer cracks. This is known to be the effect of the stress shadow mentioned 

previously. Recall that the stress shadow describes the stress induced in the region 

surrounding the fluid-driven fractures, and it depends on the net fluid pressure inside the 

cracks and their geometries [24].The propagation of the outer cracks introduces a larger 

stress shadow on the inner fractures, confines them, and inhibits their opening.  
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Figure 4.8: A square domain of 2000l0 x 2000l0 and center cracks of 90l0 (a) initial state 

for two parallel cracks → Fracture evolution for load step, V/l0
3 = 0.64 . (b) Initial state of 

four parallel cracks → Fracture evolution for load step V/l0
3 = 0.624 . In this problem, the 

Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1014,  = 0.45, 0 = 0.1, c f / 0 

f = 0.01364, and 

 f/E0 t0 = 5 x 10-12. 

 

Next, the problem of how the fracture spacing influences the propagation of the 

hydraulic fractures will be studied. For a considerable number of fracture stages, the 

domain can be divided into periodic sections. So, instead of simulating a large problem of 

multiple stages, only one section ”Cell” can be simulated (Figure 4.9), and the 

computational time of the simulations will be significantly reduced.  
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Figure 4.9: (a) Schematic of multi-stage fractures where s is the distance separating each 

stage and c is the spacing between cracks within a stage. (b) Schematic of the periodic 

section that will be simulated with symmetry boundary conditions. 

 

The ‘cell’ domain with the dimensions of 135𝑙0 X 1000𝑙0 is assumed.  The cell 

domain is subjected to far-field stresses (displacement control). The surface normal 

displacements are then fixed. The stresses are: 𝜎𝑉 = 0.1 and 𝜎𝑉/𝜎𝐻 = 6. The surface 

normal fluid flux on the outer boundaries is zero. On the symmetry faces, the normal 

displacement is fixed, and the shear traction is zero. Multiple cracks 75𝑙0 long are 

initialized. In this problem, the Biot coefficient  is 0.6, the initial porosity is 𝜙0 = 0.2, and 
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the normalized permeability is 𝜅̅ =10−12 (see Figure 4.8). The fluid is injected at the lower 

end of the cracks at a constant rate. Two cases are considered: 1) four cracks per stage and 

2) six cracks per stage. For both cases, the stage spacing S is fixed at 130𝑙0 . For the case 

of four cracks per stage, the fracture spacing C is 50𝑙0. For the case of six cracks per stage, 

the fracture spacing is C is 30𝑙0.  

In Figure 4.10, the two problems are subjected to the same far-field stresses and the 

same fluid injection rate. For Figure 4.10, the calculation of the stresses field for the two 

cases is reported just before the fractures propagate. With regard to the stress shadow effect, 

it is observed that 𝜎11 (stress component that is normal to the fracture faces) in the case of 

six fractures per stage is more significant than 𝜎11  in the case of four fractures per stage. 

 

Figure 4.10: The stress field for two cases: (a) four fractures per stage; (b) six fractures per 

stage. 11 (stress component that is normal to the fracture faces) in the case of six fractures 

per stage is larger than 11 in the case of four fractures per stage. 
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Next, the influence of the fracture spacing on the crack aperture is studied. A large 

domain with the dimensions of 2000𝑙0 X 2000𝑙0 is assumed and subjected to far-field 

stresses (displacement control): 𝜎𝑉 = 0.1 and 𝜎𝑉/𝜎𝐻 = 6.  On the outer boundaries, the 

surface normal fluid flux and the shear traction are zero. Multiple cracks 150𝑙0 long are 

initialized. In this problem, the Biot coefficient  is 0.6, the initial porosity is 𝜙0 = 0.2, and 

the normalized permeability is 𝜅̅ =10−12 (see Figure 4.8). The fluid is injected at the center 

of cracks, and the pressure at the injection points is controlled. As before, two cases are 

considered: 1) four cracks, and 2) six cracks. As seen in Figure 4.11, the outer fractures 

have greater crack openings than the inner fractures. Also, the crack aperture increases as 

the spacing c increases. It is interesting to note that the number of fractures per stage does 

not significantly influence the crack aperture for outer versus inner cracks. 
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Figure 4.11: Multiple parallel fractures with different spacing c between cracks. In both 

cases, the outer fractures have a larger opening than the inner fractures. Also, the crack 

aperture increases as the fracture spacing increases. 

 

Returning to the problem in Figure 4.9, the influence of the fracture spacing on the 

local stresses is studied. The local ratio 𝑅 = 𝜎𝑉,𝑎𝑣𝑒/𝜎𝐻,𝑎𝑣𝑒 of the average stress 𝜎𝑉,𝑎𝑣𝑒 to 

the average stress 𝜎𝐻,𝑎𝑣𝑒 on the boundary of the subdomain shown in Figure 4.12 (a)) is 

investigated. Note that this ratio R is only calculated for the square subdomain (135𝑙0 x 

135𝑙0) that encloses the fractures. Our goal here is to study how the local stresses contrast 

changes from the far-field stress to the region near the wellbore. As expected, the far-field 

stress field that is very far from the induced fractures is not affected by the opening of the 

fracture. However, near the wellbore, the stress normal to the fracture faces increases as 

the injected pressure increases. This suggests that the stresses near the wellbore change as 
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the fractures propagate. As shown in Figure 4.12 (b), the local stress ratio R near the 

wellbore drops as the fluid is injected into the fractures. The local maximum and minimum 

stresses near the injection site switch orientation, causing the fractures to propagate towards 

undesirable directions, which affect the volume of the drainage area targeted.  In Figure 

4.12 (c) multiple kinks in the ratio ‘R’ curve-line are observed, which appear to be caused 

by the sequential opening of the fractures, with the outer fracture opening first, then the 

inner cracks as shown in the dashed lines. 

 

 

Figure 4.12: a) A schematic of the subdomain (135l0 x135l0) that encloses the fractures. 

The local stresses ratio R = V.ave/H.ave is calculated at the boundary of this subdomain 

only. b) The local stresses ratio R near the wellbore drops as the fluid is injected into the 

fractures. c) Multiple kinks in the ratio ‘R’ curve-line are observed which appear to be 

caused by the sequential opening of the fractures, with the outer fracture opening first, 

then the inner cracks as shown in the dashed lines. 
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To investigate the effect of crack spacing on the propagation of hydraulic fractures, 

the simulations in Figure 4.10 are extended in time to observe the evolution of the cracks. 

As seen in Figure 4.13 (a), where the spacing c between fractures is 50𝑙0, all of the 

initialized cracks propagate at essentially the same pace, with the outer fractures deflecting 

outward while the inner fractures grow ahead. For the second case shown in Figure 4.13 

(b), where the spacing c between fractures is 50𝑙0, the inner fractures are retarded from 

propagation. This suggests that increasing the number of fractures per stage by reducing 

the fracture spacing does not necessarily increase the drainage area and the effectiveness 

of hydraulic fracture treatment. In this simulation, it results in excessive stress shadowing 

that inhibits the internal fractures from propagating. 
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Figure 4.13: The propagation of four fractures per stage with an initial length of 150l0; a 

distance of 120l0 separates each stage a) fracture spacing of 50l0 within the stage. b) 

fracture spacing of 30l0 within the stage. The cell is subjected to in-situ stresses: V/0E = 

0.1, V/H = 6. Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1012,  = 0.6, 0 = 0.2, c f / 0 

f 

= 0.001364, and  f/E0 t0 = 5 x 10-10.  
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In conclusion, a model of multi-stage fracture propagation under the effect of in-

situ stresses is simulated to understand the effect of the fracture spacing on the propagation. 

Decreasing the fracture spacing to maximize the drainage area can result in undesirable 

growth behavior. Reducing the fracture spacing might increase the drainage area, but only 

if the fractures can propagate effectively. Decreasing the fracture spacing can increase the 

stress shadow effect, which can prevent internal fractures from propagating, and decrease 

the fracture opening in general. This can negatively affect the proppant placement and well 

productivity.  

 

4.2.2  THE EXISTENCE OF NATURAL CRACKS 

Natural cracks are an integral part of underground formations, as has been discussed 

previously. Induced hydraulic fractures can activate the natural fractures and as a result, 

enhance the fracture network. However, natural fractures can also disturb the induced 

fracture growth toward undesirable directions [21]. Here, the problem of an induced 

hydraulic fracture interacting with natural fractures at different orientations is studied. A 

natural crack that is initially closed with frictionless faces is assumed. Three positions of a 

natural fracture placed away from the injection point are presented, as shown in Figure 

4.14 (a), (b), and (c). 

A large rectangular domain with the dimensions of 1000𝑙0 X 2000𝑙0 is simulated. 

The surface normal displacements and surface normal fluid flux on the outer boundaries 

are set to zero (see Figure 4.7). In this problem, the Biot coefficient  is 0.45, the initial 
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porosity is 𝜙0 = 0.1, and the normalized permeability is 𝜅̅ =10−14. A fluid is injected into 

the left side of the horizontal crack at a constant rate. Note that this could be considered as 

the center of the horizontal crack for a symmetric problem. 

As seen in Figure 4.14 (a), a vertical natural crack 90𝑙0 long is placed 130𝑙0 away 

from the injection point. The induced crack propagates and interacts with the natural crack. 

The natural fracture fills with fluid until it starts to propagate from both ends, deflecting 

away from vertical. In Figure 4.14 (b), a 450-oblique natural crack 90𝑙0 long is placed 

130𝑙0  away from the injection point. As before, the induced crack propagates and interacts 

with the natural crack and fills it with fluid. After the two cracks intersect, the fracture 

propagates only from the upper end in this case. The opening of the induced crack exerts a 

compressive stress on the lower part of the natural crack and inhibits the opening near the 

bottom crack tip. Finally as in Figure 4.14 (c), a vertical crack 90𝑙0 long is placed 130𝑙0 

away. The difference between this case and the first one in Figure 4.14 (a) is that the center 

of the crack is shifted to 25𝑙0 above the induced crack axis. In this case, the induced crack 

propagates until it interacts with the natural crack and then the system propagates from the 

lower end. In this case, the opening of the induced crack exerts a greater driving force on 

the lower crack tip than on the upper one, and so the fracture propagates from the lower 

tip. 
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Figure 4.14: A rectangular domain of 1000l0 x 2000l0  is used with induced crack 

interacting with a natural closed frictionless crack is simulated. (a) Evolution of a centered 

vertical natural fracture. (b) Evolution of a 45°-oblique natural fracture. (c) Evolution of 

an off-center vertical shifted natural fracture. Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 

1014,  = 0.45, 0 = 0.1, c f / 0 
f = 0.01364, and  f/E0 t0 = 5 x 10-12. 

 

From all of the cases considered, it appears that the induced crack does not cross 

through the natural cracks, at least in these conditions. This suggests that natural cracks 

will produce more complex deflected fracture geometries. This feature may be useful for 

increasing the volume of the fracture network and the well conductivity, but it can also 

raise an issue regarding deflecting the induced fractures from their must favorable growth 
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directions. In any case, these preliminary investigations illustrate how natural fractures 

interfere with fluid-driven fractures, and that multiple mechanisms dictate the resulting 

crack path evolution due to these interactions. 

 

4.2.3  ENTANGLED CRACKS 

 

In the last section, the simulations indicate that parallel fluid-driven fractures tend 

to deflect away from one another where possible. However, it is not clear what may happen 

when parallel cracks are not centered above one another. In this section, to demonstrate the 

complexity of different fracture phenomena, parallel cracks are displaced both vertically 

and interact via their approaching crack tips, as shown in Figure 4.15. The aim is to see 

what happens when two induced fractures are heading toward each other. This type of 

problem might be encountered when the stress shadow effect near the wellbore disturbs the 

local in-situ stresses near the fractures and alters their propagation direction. It can also 

arise when cracks from different stages interact with each other. Here, two opposing fluid-

driven cracks are initialized. A large rectangular domain with the dimensions of 600𝑙0 X 

2000𝑙0 is simulated. Two cracks are separated by a vertical distance of 40𝑙0. The surface 

normal displacements and surface normal fluid flux on the outer boundaries are set to zero. 

In this problem, the Biot coefficient  is 0.45, the initial porosity is 𝜙0 = 0.1, and the 

normalized permeability is 𝜅̅ =10−14 (see Figure 4.15). A fluid is injected at both the far 
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sides of both cracks at a constant rate. As seen in Figure 4.15, the two cracks propagate 

and deflect toward each other. The stress field near the cracks’ tips is in compressive states. 

 

 

Figure 4.15: a) A rectangular domain of 600l0 x 2000l0 with two cracks each 275l0 long 

and vertically displaced by 40l0. b) The configuration at an injected volume of V/l0
3 = 

2.133. The Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1014,  = 0.45, 0 = 0.1, c f / 0 

f = 

0.01364, and  f/E0 t0 = 5 x 10-12. 
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4.3  Cracks Filled with Proppants 

Oil production decline over time is reported in most unconventional wells [17]. One 

successful solution to enhancing production is a re-fracturing treatment [46]. There are two 

possible ways of refracturing the well: 1) refracturing the well to open the old fractures, or 

2) refracturing it with new perforations placed in different orientations [47]. The second 

approach targets a new drainage area, especially when the in-situ stresses have been re-

orientated. The propagation of new fractures can be disturbed by the presence of old 

fractures filled with proppant. Therefore, how these propped cracks affect the propagation 

of new fractures is studied here. Two factors are investigated: 1) the separation distance 

between the new induced fracture and the propped fracture, and 2) the crack aperture of 

the propped fracture. A large rectangular domain with the dimensions of 1000𝑙0 X 2000𝑙0 

is simulated with the configuration of an induced fracture propagating towards a propped 

fracture placed 100𝑙0  away from the injection point (as in Figure 4.16). The surface normal 

displacements and surface normal fluid flux on the outer boundaries are set to zero. In this 

problem, the Biot coefficient  is 0.45, the initial porosity is 𝜙0 = 0.1, and the normalized 

permeability is 𝜅̅ =10−14 (see Figure 4.16). A fluid is injected at the left center of the 

induced fracture at a constant rate.  
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To simulate the cracks filled with proppants, a free strain 𝜀𝑓 is introduced only to 

the damaged elements that are meant to be filled with proppant. Throughout the 

formulations in Chapter 3, the strain tensor is modified as follows: 

𝜀𝑖𝑗 ⇒ 𝜀𝑖𝑗 − 𝜀𝑓ℛ𝑖𝑗        (4.7) 

where ℛ𝑖𝑗 is a tensor that dictates the shape of the opening profile of the fracture. In this 

problem, the following form is used: 

ℛ𝑖𝑗 = [
 0
0 1

]        (4.8) 

The motivation behind this form is to open the crack in mode I (opening mode) 

only and to prevent contraction in the lateral direction due to the Poisson’s ratio effect (see 

Figure 4.16 b). As seen in Figure 4.16 (c), opening the crack, to simulate the propped 

fracture, will produce a stress shadow effect in its vicinity. The free strain 𝜀𝑓 is chosen to 

have a quadratic form in terms of the crack location ‘’c’’ from its center as follows: 

𝜀𝑓 = 𝑑(1 − [
𝑐

𝐿
]

2

)       (4.9) 

where d is the amplitude that controls the maximum opening at the center of the crack, and 

L is the half-length of the crack filled with proppant. As a result, the shape of the opening 

appears, as shown in Figure 4.16 (b). In this problem, a 40𝑙0 long crack filled with proppant 

(as described above) is placed 100𝑙0 away from the injection point at different vertical 

positions.  
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Figure 4.16: (a) A rectangular domain of 1000l0 x 2000l0  and two fractures. The distance 

x equals 100l0 throughout the simulations of this problem. The y distance varies for 

different cases. The length of the propped crack is 40l0 throughout all cases for this 

problem. (b) The profile of the crack opening for the free strain has a quadratic form in 

terms of the crack location ‘’c’’ from its center (See Equation 4.9). (c) The resulting stress 

field caused by the opening of the propped crack. 

 

The effect of the opening of the propped fracture on the propagation of the fluid-

driven fracture is shown in Figure 4.17. Three different values of nominal opening of the 

crack are considered. As shown in Figure 4.17, when the opening of propped fracture is 

𝛿 𝜀0𝑙0⁄ = 5.4, the propagation path of the induced fracture is not noticeably affected. 

However, the length of fracture, in this case, is 10𝑙0 shorter than in the case when the 

opening of the crack filled with proppant is zero (see Figure 4.18). So, the crack filled with 

proppant, in this case, appears not to affect the induced fracture path, but it does slow it 
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down. When the opening increases to 𝛿 𝜀0𝑙0⁄ = 8, the propped fracture disturbs the 

induced fracture path, but not enough to fully attract it. Finally, if the opening is further 

increased to 𝛿 𝜀0𝑙0⁄ = 11.8, the propped fracture disturbs the orientation of the in-situ 

stresses to the extent that the induced fracture is attracted to it until they merge. After the 

intersection, the fluid fills the propped fracture and it propagates. 

 

Figure 4.17: Three different proppant openings are tested for the same vertical separation 

distance equal to 20l0: a) d = 10, and /0l0 = 5.4 b) d = 15, and /0l0 = 8.0  and c) d = 22, 

and /0l0 = 11.8 . The Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1014,  = 0.45, 0 = 0.1, 

c f / 0 
f = 0.01364, and  f/E0 t0 = 5 x 10-12. For variable d, please see equation (4.9). 
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Figure 4.18: Two different proppant openings are tested for the same vertical separation 

distance equal to 20l0: a) d = 10, and /0l0 = 5.4 , and b) d = 0, and /0l0 = 0.0 . These 

two cases are compared at the same load step, V/l0
3 = 1.1, to shows the effect of the crack 

filled with proppant on the length of the induced fracture. Poisson’s ratio  = 0.25, 0 = 

0.001, l0
2/ = 1014,  = 0.45, 0 = 0.1, c f / 0 

f = 0.01364, and  f/0 l0
3 = 5 x 10-12. For 

variable d, please see equation (4.9). 
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Next, the effect of different vertical distances of the propped crack on the behavior 

of the induced crack growth is shown in Figure 4.19. Three different distances are studied 

with the same opening of the propped crack 𝛿 𝜀0𝑙0⁄ = 5.4. As seen in Figure 4.19, the 

fracture is attracted to the propped fracture when it is closest to the induced fracture plane. 

As the vertical displacement increases, as the effect of the propped fracture fades. For a 

vertical separation equal to 40𝑙0, the propagation path of the induced fracture is not affected 

by the propped fracture. 

 

Figure 4.19: Three different vertical spacings are tested for the same opening of the 

propped fracture to d = 10, and /0l0 = 5.4: a) y = 10l0 , b) y = 20l0 and c) y = 40l0. The 

Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1014,  = 0.45, 0 = 0.1, c f / 0 

f = 0.01364, and 

 f/E0 t0 = 5 x 10-12. For variable d, please see equation (4.9). 
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Lastly, Figure 4.20 shows the pressure as a function of the volumetric fluid 

injection. Also, the figure shows the configuration of the fracture evolution in terms of the 

injection pressure and the injection flow. The pressure first increases until it completely 

fills the induced crack. Then, the pressure drops as the induced fracture propagates. Once 

the induced fracture encounters the propped crack, the pressure begins to increase until 

both cracks merge. Finally, the fluid begins to fill the propped crack, pressurize it and 

propagate it.  
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Figure 4.20: The fracture propagation trajectories: (a) the fracture state at load step V/l0
3 = 

0.38, (b) the fracture state at load step V/l0
3 = 0.73, (c) the fracture state at load step V/l0

3 = 

1.1, and (d) the fracture state at load step V/l0
3 = 1.2. The Poisson’s ratio  = 0.25, 0 = 

0.001, l0
2/ = 1014,  = 0.45, 0 = 0.1, c f / 0 

f = 0.01364, and  f/E0 t0 = 5 x 10-12. 
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In conclusion, these model simulations illustrate that propped cracks disturb the 

local stresses in their vicinity that disturb the path of the induced fractures passing by them. 

The propped fracture with a greater opening can disturb the propagation path of the induced 

fracture, slow it down, and attract them until they merge. Moreover, the induced fracture 

is attracted to the propped fracture when it is closest to the induced fracture plane. This 

illustrates a problem associated with the influence of old propped cracks on the re-

fracturing treatment when a new drainage area is targeted.  
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4.4  Crack Growth Through Multiple Layers 

Unconventional reservoirs are stratified with multiple layers of materials with 

contrasting properties [34-38], and induced hydraulic fractures are expected to propagate 

thought multiple layers [39, 40]. Here, the problem of how a fluid-driven crack behaves as 

it encounters a different layer is investigated and limited to a single layer placed at a 

particular distance away from the injection point. The following factors are investigated: 

(a) the thickness of the layer; (b) the orientation of the layer; (c) the contrast of material 

proprieties between the matrix and the layer; and (d) the viscosity of the injected fluid. 

Regarding the material contrast, only the contrast in the modulus of elasticity E and the 

critical energy release rate Gc between the matrix and the layer are allowed to differ. For 

the modulus of elasticity contrast: 

𝑅𝐸 =
𝐸𝐿

𝐸𝑀
        (4.10) 

Where 𝑅𝐸 is the ratio between the modulus of elasticity of the layer 𝐸𝐿 to the modulus of 

elasticity of the matrix 𝐸𝑀. Similarly, for the material toughness contrast: 

𝑅𝐺𝑐
=

𝐺𝑐,𝐿

𝐺𝑐,𝑀
        (4.11) 

Where 𝑅𝐺𝑐
 is the ratio between the critical energy release rate of the layer 𝐺𝑐,𝐿 to the critical 

energy release rate of the matrix 𝐺𝑐,𝑀. When R appears without subscripts, this means that 

𝑅 = 𝑅𝐸 = 𝑅𝐺𝑐
. Regarding a qualitative description of the layer stiffness and toughness, the 

layer can be in four states: 

• 𝑅𝐸 > 1 → The layer is ‘stiffer’ than the matrix. 
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• 𝑅𝐸 < 1 → The layer is ‘softer’ than the matrix. 

• 𝑅𝐺𝑐
> 1 → The layer is ‘tougher’ than the matrix. 

• 𝑅𝐺𝑐
< 1 → The layer is ‘weaker’ than the matrix. 

 

Throughout the simulations of these layer problems, the layer and the matrix are 

assumed to be fully bonded on their interfaces. A large rectangular domain with the 

dimensions of 1000𝑙0 X 2000𝑙0 is simulated. As shown in Figure 4.21, the center of the 

layer is placed at a distance x away from the injection point. The thickness of the layer is 

𝑤. The surface normal displacements and surface normal fluid flux on the outer boundaries 

are set to zero. Throughout the layer simulations, the Biot coefficient  is 0.45, the initial 

porosity is 𝜙0= 0.1, the normalized permeability is 𝜅̅ =10−14. A fluid is injected into the 

left edge of the crack at a constant rate. 
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Figure 4.21: Schematic diagram of the layers problem. A rectangular domain of 1000l0 x 

2000l0 with a left-center crack. A layer of thickness w is placed at distance x.   is the angle 

of the orientation of the layer relative to the horizontal direction. Throughout the layer 

problems, the Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1014,  = 0.45, 0 = 0.1, c f / 0 

f 

= 0.01364. 
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4.4.1  DEMONSTRATION EXAMPLES OF THE LAYER INFLUENCE 

 

 First, examples of different cases are shown to demonstrate the effect of the 

following: (a) the layer orientation, (b) 𝑅𝐸 , and 𝑅𝐺𝑐
 ratios of the layer stiffness and 

toughness relative to the matrix, (c) a comparison between the effect of the toughness of 

the layer 𝑅𝐺𝑐
 versus the effect of the stiffness of the layer 𝑅𝐸 , and (d) a nearly rigid vertical 

layer. Thereafter, mappings of the layer orientation for different factors are presented. In 

this mapping, critical material contrast ratios are reported that separate two behaviors: 1) 

interface crossing and 2) crack deflection. In addition to the orientation mappings, the 

influence of the distance between the layer and the injecting point on the fracture evolution 

is studied. 

Layer Orientation Effect 

Here, the same contrast ratio R for both the stiffness and the toughness is used. The 

layer with a thickness of 15𝑙0 is placed 100𝑙0 away from the injection point. For the 

material contrast, R=1.5 for the stiff-tough layer and R=1/1.5 for the weak-soft layer. Two 

layer orientations studied, 330 and 780. This results in four cases to study, as shown in 

Figure 4.22 (a), (b), (c) and (d): 

• Case (a): R =1.5, 𝜃 = 330 

• Case (b): R =1.5, 𝜃 = 780 

• Case (c): R =1/1.5, 𝜃 = 330 

• Case (d): R =1/1.5, 𝜃 = 780 
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For the stiff-tough layer in Figure 4.22 (a), the induced fracture prefers to deflect 

in the matrix and propagate along the interface when the angle is low. b) When the layer 

in (a) is reoriented to 780, the layer is not able to deflect the crack. For the weak-soft layer 

as in (c), the induced fracture prefers to enter the layer zone and propagate through the 

layer when the angle is low. When the layer in (c) is reoriented to 780, the layer is unable 

to contain the crack, as shown in Figure 4.22 (d). These cases suggest that the layer 

orientation angle controls the fracture behavior.  

 

 

Figure 4.22: A demonstration of the effect of the layer orientation on the behavior of the 

fracture. The thickness of the layer is 15l0:  (a) a tough-stiff layer with ratio R = 1.5 for 

both E and Gc at  = 330 (b) a tough-stiff layer with ratio R = 1.5 for both E and Gc at  = 

780; (c) a weak-soft layer with ratio R = 1/1.5 for both E and Gc at  = 330; and (d) a weak-

soft layer with ratio R = 1/1.5 for both E and Gc at  = 780.  The fluid viscosity,  f/E0 t0 

= 5 x 10-12 . 
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Modulus of Elasticity and Critical Energy Release Rate Contrast Ratios  

Here again, four cases are studied, with the orientation of the layer is held to be 

780. The layer has a thickness of 15𝑙0 and placed 100𝑙0 away from the injection point.  The 

four cases are: 

• Case (a): R =3. 

• Case (b): R =3/2. 

• Case (c): R =2/3. 

• Case (d): R =1/3. 

For the case shown in Figure 4.23 (a), the layer is tougher and stiffer than the matrix 

with R =3. The fracture is deflected away from the layer preferring to propagate along the 

layer interface, and a secondary fracture is observed. (b) As the material contrast ratio R is 

decreased to 3/2, the fracture crosses through the layer. (c) Then the ratio R is lowered 

again to 2/3, making the layer weaker and softer than the matrix, and yet the crack crosses 

the layer. (d) When the layer is weakened and softened again to ratio R equal to 1/3, the 

crack prefers to propagate within the layer, and a secondary crack branch observed as seen 

in the case (a). These cases show that the ratio R has a significant influence on the 

propagation of the fracture. Layers that are very stiff and tough or very soft and weak are 

more likely to deflect the crack from its initial orientation. 
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Figure 4.23: A demonstration of the effect of the R ratio of the E and Gc of the layer relative 

to the matrix on the induced fracture behavior at a fixed  = 780. The thickness of the layer 

is 15l0. (a) A tough-stiff layer with ratio R = 3. (b) A tough-stiff layer with ratio R = 3/2. 

(c) A weak-soft layer with ratio R = 2/3. (d) A weak-soft layer with ratio R= 1/3. The fluid 

viscosity,  f/E0 t0 = 5 x 10-12 . 
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The Effect of Stiffness Versus Toughness Contrasts 

Two cases are studied to see which has more influence, the modulus of elasticity 

contrast or the critical energy release rate contrast, on the crack propagation path. For both 

cases, the angle of the layer orientation is fixed at 450. The two cases are: 

• Case (a): 𝑅𝐺𝑐
= 2, 𝑅𝐸 = 1, (the layer is only tougher than the matrix). 

• Case (b): 𝑅𝐺𝑐
= 1, 𝑅𝐸 = 2, (the layer is only stiffer than the matrix). 

As seen in Figure 4.24 (a) when the layer is only tougher than the matrix (𝑅𝐺𝑐
= 2), 

the crack is deflected in the matrix along the layer interface. However as in (b), when the 

layer is only stiffer than the matrix (𝑅𝐸 = 2) , the crack crosses the layer. These simulations 

show that the toughness contrast has a greater influence than the stiffness contrast on the 

fracture growth.   

 

Figure 4.24: A demonstration of the effect of the toughness and stiffness contrast on the 

induced fracture behavior at a fixed interface angle of  = 450. The thickness of the layer 

is 15l0 . a) RGc = 2, RE = 1 , b) RGc = 1, RE = 2 . The fluid viscosity,  f/E0 t0 = 5 x 10-12 . 
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Nearly-Rigid Vertical Layer 

A layer with very high toughness and stiffness relative to the matrix should act as 

a rigid barrier against the propagation of the fracture. Figure 4.25 shows a fluid-driven 

crack encountering an extremely tough and stiff vertical layer with ratio R equal to 100 for 

both the critical energy release rate contrast and the modulus of elasticity contrast. As is 

expected, the induced fracture branches into two fractures in a symmetric manner and 

propagates within the matrix material along the layer interface.  

 

 

Figure 4.25: A demonstration of the effect of a very tough and stiff vertical layer on the 

induced fracture behavior. The thickness of the layer is 15l0. The fracture branches 

symmetrically once it encounters the stiff layer. The fluid viscosity,  f/E0 t0 = 5 x 10-12 . 
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4.4.2  MECHANISM MAPS 

 

In this section, detailed calculations have been carried out to quantify the effect of 

four factors: 1) layer thickness, 2) stiffness and toughness contrasts, 3) the distance between 

the layer and the injection point, and 4) the viscosity of the injected fluid. The goal here is 

to find the critical values of the material property contrast ratios that separate the three 

crack propagation modes: 1) deflecting in the matrix along the layer, 2) crossing the layer, 

and 3) deflecting within the layer as demonstrated in Figure 4.26. 
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Figure 4.26: Three modes have been observed throughout the layer problems: a) the 

induced fracture is deflected in the matrix along the layer, b) the induced fracture crosses 

the layer, and c) the induced fracture deflects within the layer. 

 

Layer Hardness 

A layer with a finite thickness of 15𝑙0 is held 200𝑙0 away from the injection point, 

and the ratios of 𝑅𝐸 and 𝑅𝐺𝑐
 are equal and vary together. As seen in Figure 4.27, a layer 

with a shallow angle is more likely to deflect the induced fracture than a layer with a steep 

angle. The critical contrast ratio that separates the crossing and the deflection modes nearly 

doubles from an angle of 220 to an angle of 780. This suggests that the propagation 

mechanism depends strongly on the layer orientation.  
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Figure 4.27: The mapping of critical values that separate two fracture behaviors: crossing 

and deflecting. The layer thickness is held fixed at 15l0 . The fluid viscosity,  f/E0 t0 = 5 

x 10-12 . 

 

Layer Thickness 

Two thicknesses are chosen: a finite one of 15𝑙0 (Figure 4.28 (a)) and a semi-

infinite thickness (Figure 4.28 (b)), where the domain is split into two sub-domains. Figure 

4.28 (c) shows the dependence of the propagation mechanism on the materials contrast as 

a function of the interface angle for these two layer thicknesses.  Notice that the fracture is 

more likely to cross a thinner layer than a thicker layer for all interface angle and contrast 

ratios. This shows the sensitivity of the propagation behavior to the layer thickness. 
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Figure 4.28: The mapping of critical values that separate two fracture behaviors: crossing 

and deflecting. Two thicknesses are considered: a) a finite thickness of 15l0 and b) a semi-

infinite thickness. The fluid viscosity,  f/E0 t0 = 5 x 10-12 . 

 

Material Contrast Ratios 

In this section, three different material contrasts are studied: 

• Case (a): The layer is tougher and stiffer than the matrix (R > 1). 

• Case (b): The layer is tougher than the matrix, and both the layer and the matrix 

have the same stiffness (𝑅𝐺𝑐
 > 1, 𝑅𝐸=1). 

• Case (c): The layer is stiffer than the matrix, and both the layer and the matrix have 

the same toughness (𝑅𝐸 > 1, 𝑅𝐺𝑐
=1). 
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As shown in Figure 4.29, the fracture behavior in case (a) and case (b) shows a strong 

dependence on the layer orientation, as discussed previously. The fracture is more likely to 

cross a layer with a low orientation angle as well as a layer with low toughness and stiffness 

contest ratios. Additionally, the difference between case (a) and case (b) regarding contrast 

ratios R versus 𝑅𝐺𝑐
 as a function on the orientation angle is observed. The fracture is more 

likely to cross a layer with only toughness contrast ratio and to be deflected by a layer that 

is both tougher and stiffer than the matrix. In this situation, the stiffness contrast increases 

the layer tendency to deflect the fracture. However, as in case (c), when the layer is only 

stiffer than the matrix, and both the layer and the matrix have the same toughness, the layer 

cannot act as a barrier, and the fracture crosses through for all orientations. In summary: 

• A layer with the modulus of elasticity contrast ratio only cannot act as a barrier. 

This is consistent with studies by Daneshy [42] who performed experiments 

showing that the contrast in modulus of elasticity across layers is not sufficient to 

prevent a fracture from growing into the stiff layer. 

• Among the material properties contrasts, the toughness of the layer is the dominant 

factor in controlling the fracture behavior. 

• Cases (a) and (b) show that the modulus of elasticity contrast ratio has a secondary 

effect compares to the toughness effect. However, when the layer and the matrix 

have the same toughness, stiffness contrast alone does not appear to affect the 

fracture behavior. 
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Figure 4.29: The mapping of the regimes for layer: crossing versus crack deflection. Two 

scenarios are considered: a) varying RGc ratio with RE =1 and b) varying both ratios R = RGc 

= RE. The fluid viscosity is  f/E0 t0 = 5 x 10-12 . 

Injected Fluid Viscosity 

In this section, the effect of the injected fluid viscosity is studied. Regarding the 

effects of the fluid viscosity versus the material toughness on fluid-driven crack behavior, 

Detournay et al. [54-56] provided insights based on a dimensionless parameter 𝒦 that 

compares the material fracture toughness KIC to the fluid viscosity 𝑣𝑓. Recall that: 
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𝒦 = 4𝐾𝐼𝐶/√3𝜋3𝐸′3𝑄𝑣𝑓4
          (4.12) 

Where Q is the volumetric injection rate. Two regimes are investigated; 1) the toughness-

dominated regime, where the energy dissipated at the crack tip to propagate the fracture is 

large compared to the energy dissipated due to the flow of the viscous fluid, and 2) the 

viscosity-dominated regime, where the energy dissipated due the viscous fluid is very large 

compared to the dissipation due to fracture propagation. Here, two fluid viscosities are 

investigated:  

• Case (a): 𝜐𝑓 𝐸𝜀0𝑡0⁄ = 5 × 10−12, 𝒦 = 19.42 . 

• Case (b): 𝜐𝑓 𝐸𝜀0𝑡0⁄ = 10−9, 𝒦 = 2.9 . 

Detournay [54-56] concluded that when 𝒦 < 1, the solution can be approximated on 

the assumption that the material has zero toughness (viscous-dominant regime), and when 

𝒦 > 4, the solution can be approximated on the assumption that the injected fluid is inviscid 

(toughness-dominant regime). Based on 𝒦 calculations, case (a) resides in the toughness-

dominant regime while case (b) is in a transition regime that is between the toughness-

dominant and the viscous-dominant regimes. The relative difference in these fluid 

viscosities that are chosen is similar to the difference between slickwater and glycerin fluid. 

For both cases, the distance between the layer and the injection point is fixed at 200𝑙0 and 

the layer thickness is 15𝑙0. As seen in Figure 4.30, the crack is more likely to cross the 

layer when a very viscous injection fluid is used. However, the dependence of the 

mechanism on the viscosity appears to be weak.  
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Figure 4.30: The mapping of critical values that separate layer crossing versus crack 

deflection. Two injected fluid viscosities are considered: a)  f/E0 t0 = 5E10-12 , 𝒦 = 19.42 

, b)  f/E0 t0 =10-9, 𝒦 = 2.9. 

 

Distance Between the Injection Point and the Layer 

 

The influence of the distance between the injection point and the layer on the 

fracture behavior is investigated. The layer orientation is fixed at 670 and the distance is 

varied. As seen in Figure 4.31 and for two values of the injected fluid viscosity, it appears 

that the distance between the injection point and the layer does not significantly influence 

the fracture behavior. In addition, it appears that viscous fluids tend to drive the fracture 
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through layers more readily than low viscous fluid. However, as for the cases studied in 

Figure 4.31, the dependence of the mechanism on the viscosity is mild.  

 

Figure 4.31: Dependence of the fracture mechanism on the injection point distance. Two 

injected fluid’s viscosities are considered: a)  f/E0 t0 = 5E10-12 , 𝒦 = 19.42 , b)  f/E0 t0 

=10-9, 𝒦 = 2.9. 

 

In conclusion, several factors influence the fracture behavior when a fluid-driven 

fracture encounters a layer. A comprehensive study of all the dependencies is beyond the 

scope of this dissertation. However, some factors have been investigated. A stiff and tough 

layer tends to deflect the fracture. However, modulus of elasticity contrast alone is not 
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sufficient to make the layer act as a barrier if the toughness of the layer is low. Furthermore, 

a layer at a steep inclination relative to the crack direction always has less ability to deflect 

the fracture than a layer with a shallow inclination. This demonstrates the sensitivity of the 

propagation behavior to the layer orientation. Additionally, a thicker layer has a greater 

tendency to deflect the crack than a thinner layer. The distance between the injection point 

and layer does not appear to have a significant impact on the fracture behavior. Finally, the 

fracture behavior is weakly dependent on the fluid viscosity. 
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4.5  Crack Growth Under the Influence of In-Situ Stresses 

 

The in-situ stress magnitudes and orientations are considered to be the dominant 

factor in fracture treatment design [20, 29]. The contrast ratio of the in-situ stresses has a 

significant impact on the fracture propagation orientation [30]. Moreover, an induced 

fracture tends to orient itself to be perpendicular to the minimum principal in-situ stress 

[31-33]. Here, the problem of an induced fracture subjected to far-field stress is studied 

(see Figure 4.32 (a)). The goal is to show how the induced fracture at an oblique angle 

behaves under the influence of the far-field stresses. In addition, the kink angle of the crack 

defined in Figure 4.32b has been investigated for different induced fracture orientations as 

well as for different far-field stress magnitudes. Lastly, additional simulations are shown 

where multiple factors compete together in controlling the crack growth.  
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Figure 4.32: a) Schematic of a square domain of 2000l0 x 2000l0 with a central crack with 

length of 150l0 oriented at angle  . Horizontal far-field stresses H are applied to both left 

and right sides, and both top and bottom surfaces are traction free. b) The kink angle  of 

the induced fracture. Throughout the in-situ stress problems, the Poisson’s ratio  = 0.25, 

0 = 0.001, l0
2/ = 1012,  = 0.45, 0 = 0.1, c f / 0 

f = 0.01364, and  f/E0 t0 =10-11. 

 

Here, a large square domain with the dimensions of 2000𝑙0 X 2000𝑙0 is simulated 

(see Figure 4.32(a)), where a crack 150𝑙0 long is placed at the center of the domain and 

oriented with angle 𝜃. A horizontal far-field stress 𝜎𝐻̅̅̅̅  is applied on right and left 

boundaries. Top and bottom surfaces are traction free. The surface normal fluid flux on the 

outer boundaries is set to zero (see Figure 4.7). The Biot coefficient  is 0.45, the initial 

porosity is 𝜙0= 0.2, and the normalized permeability is 𝜅̅ =10−12. A fluid is injected at the 

center of the crack at a constant rate 𝑄̅ = 0.005.  
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As seen in Figure 4.33, an induced fracture 150𝑙0 long is initially oriented at 450 

relative to the direction of the maximum far-field stress (𝜎𝐻̅̅̅̅ = 0.1). As expected, the 

fracture reorients itself to be perpendicular to the minimum in-situ stress. This shows that 

the far-field stress forces the fracture to reorient itself during the propagation to be aligned 

with the maximum principal stress direction. This behavior of the fracture turning towards 

the maximum principal stress direction is in agreement with what has been discussed in the 

literature previously.  

 

Figure 4.33: The evolution of a crack that is initially 150l0 long and oriented at 450 relative 

to the maximum far-field stress direction. The stress field for the trajectory of the crack 

growth is shown for load step V/l0
3 = 0.38 . The horizontal far-field stress is H/E0 = 0.1. 
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Next, the fracture kink angle is studied for different initial crack orientations and 

different in-situ stress magnitudes. The kink angle 𝜑 is the angle between the initial 

orientation of the fracture and the extension of the propagated fracture, as demonstrated in 

Figure 4.32 (b). This angle can depend on many factors; the initial fracture length, the in-

situ stresses, and initial fracture orientation, etc. Here, the influence of the in-situ stresses 

and the initial fracture orientation on the kink angle are investigated. Figure 4.34 (a) shows 

the kink angle 𝜑 for different in-situ stress. The kink angle increases as the in-situ 

maximum stress increases. In Figure 4.34 (b), the kink angle also increases as the initial 

orientation of the crack deviates from the maximum in-situ stress direction. This 

emphasizes the strong influence of the in-situ stresses on the fracture growth, as discussed 

previously. 
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Figure 4.34: a) The kink angle  of a fluid-driven fracture for different initial orientations. 

The horizontal in-situ stress is H/0l0 = 0.1, b) The kink angle  of a fracture for different 

initial crack orientation. 

 

In summary, the phase-field approach was applied to show the influence of the in-

situ stresses on the fracture evolution. As expected, the fracture should be aligned with the 

maximum in-situ stress direction as opposed to the minimum in-situ stress direction. If the 

initial orientation is not the direction perpendicular to the minimum stress direction, the 

crack reorients itself during the growth to become perpendicular to the minimum in-situ 

stress direction. The kink angle increases as the fracture orientation angle increases as well 

as the far-field stress increases. All the simulations in this section suggested that the 

fracture growth is strongly dependent on the far-field stresses applied.  
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DEMONSTRATION EXAMPLES OF THE FAR-FIELD STRESS EFFECT 

 

In the following section, three previous problems will be revisited: 

• Two parallel fluid-driven cracks as in section 4.2 but will be subjected to far-field 

stress. 

• A domain with crack filled with proppant as in section 4.3 but will be subjected to 

far-field stress. 

• A domain with a single layer as in section 4.4 but will be subjected to far-field 

stress. 

The goals of these simulations are 1) to provide examples that illustrate how far-field stress 

can change the fracture behavior in more complex topologies, and 2) to demonstrate the 

capabilities of the phase-field approach to tackling such complicated problems. 

 

In section 4.2, the behavior of two parallel fluid-driven fractures was shown in 

Figure 4.8 (a). The parallel induced fractures deflect away from each other due to the 

stress shadow effect. However, the far-field stresses tend to drive the fracture towards 

the direction perpendicular to the minimum principal stress direction. In this section, the 

parallel fluid-driven fractures will be investigated again, where the domain will be 

subjected to far-field stress. The normalized horizontal far-field stress 𝜎𝐻̅̅̅̅   = 0.1 is applied 

to both left and right sides as shown in Figure 4.35 (a). Top and bottom boundaries are 

traction free. In the absence of far-field stresses, the induced fractures deflect away from 

each other as shown in Figure 4.35 (b). However, when a far-field stress is applied, the 
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tendency to grow parallel to the maximum in-situ stress can overwhelm the stress shadow 

effect and forces the fractures to propagate in a straight direction. 

 

Figure 4.35: (a) Schematic of parallel fractures. (b) The fracture evolution in the absence 

of in-situ stresses. (c) The fracture evolution under the influence of the in-situ stresses 

H/0l0 = 0.1. The Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1012,  = 0.45, 0 = 0.1, c f / 

0 
f = 0.01364, and  f/E0 t0 = 5 x 10-12. 

 

Another demonstration example of the effect of the far-field stress will be shown 

by revisiting the problem of a fracture filled with proppants studied in section (4.3) where 

the domain is subjected to far-field stresses. Recall that the crack filled with proppants 

can disturb the new induced fracture growth path. It has been seen that the new induced 

fracture would be attracted to fractures filled with proppants depending on the opening 
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of crack filled with proppants as well as their separation distance. As seen in Figure 4.36 

(b), a case where the fracture was slightly disturbed by the opening of the fracture is 

chosen. However, when the domain of the problem is subjected to a normalized 

horizontal far-field stress 𝜎𝐻̅̅̅̅  = 0.1 as in (c), the far-field stress overcomes the effect of 

the propped fractures and maintains the fracture path in a straight direction.  

 

 

 

Figure 4.36: (a) Schematic of the propped fracture and induced fracture. (b) The fracture 

evolution in the absence of in-situ stresses. (c) The fracture evolution under the influence 

of in-situ stresses H/0l0 = 0.1. The Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1012,  = 

0.45, 0 = 0.1, c f / 0 
f = 0.01364, and  f/E0 t0 = 5 x 10-12. 
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The last example here will show the competition between the effect of the presence 

of a tough layer and the effect of far-field stress (Figure 4.37 (a)) on the fracture growth. 

Previously, it has been shown, as in section 4.4, that the tough layer tends to deflect the 

fracture into the matrix along the layer interface. However, the far-field stress will always 

drive the fracture during growth to propagate in the direction perpendicular to the minimum 

in-situ principal stress. As seen in Figure 4.37 (b), in the absence of in-situ stresses, the 

fracture deflected in the matrix and propagated along the layer interface. However, in the 

presence of far-field stress subjected horizontally as in Figure 4.37 (c), the fracture 

deflected by the layer, and then the far-field stress overcomes the layer effect and forces 

the fracture to cross the layer interface. All these simulations show that the far-field stress 

can cause crack behavior to change. They emphasized the sensitivity of the fracture growth 

towards the in-situ stresses. They also demonstrated the capabilities of the phase-field 

approach to tackle complicated problems. 
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Figure 4.37: (a) Schematic of the layer problem. (b) The fracture evolution in the absence 

of in-situ stresses. (c) The fracture evolution under the influence of in-situ stresses H/0l0 

= 0.15 . The Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1012,  = 0.45, 0 = 0.1, c f / 0 

f = 

0.01364, and  f/E0 t0 = 5 x 10-12. 
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4.6  Inclusion Problems 

In this section, the phase-field approach is used to simulate a set of inclusion 

problems and compared them to experimental observations. Many studies in the literature 

consider natural fractures to be closed and have frictional faces [20, 21]. However, natural 

fractures can also have a finite width and be cemented with different materials [13, 14]. 

Experiments were recently conducted to investigate how hydraulic fractures interact with 

cemented natural fractures [44, 45]. Cemented natural fractures can have higher or lower 

moduli of elasticity and fracture toughness, and the resulting crack growth behavior will 

depend on these properties. To understand how induced fractures interact with cemented 

natural fractures or what we are calling “inclusions’’, sets of experiments have been 

conducted by Altammar [4]. Here, those experiments are simulated using the phase-field 

approach.  

In Chapter 3, the setup of the inclusion experiments carried out by Altammar [4] 

was presented. Three different materials were used in the experiments: plaster was chosen 

for the matrix, hydrostone was chosen for a tough-stiff inclusion, and a mixture of 80% 

plaster with 20% talc was constructed to represent a weak-soft inclusion. The tough-stiff 

inclusion has higher material contrast ratios relative to the matrix: 𝑅𝐸 = 3.4 for the modulus 

of elasticity contrast ratio and 𝑅𝐺𝑐
= 1.63 for the critical energy release rate contrast ratio. 

For a weak-soft inclusion, the ratio for the modulus of elasticity relative to the matrix is 

𝑅𝐸 = 0.51 and the ratio for the critical energy release rate contrast is 𝑅𝐺𝑐 = 0.82 (see Table 

4-1). 
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Table 4-1: Normalized material properties for three materials; plaster, hydrostone, and a 

combination 80% plaster-20% talc for matrix, tough-stiff, and weak-soft inclusions, 

respectively. 

Mixture Used as 𝑬̅ 𝑮𝒄
̅̅ ̅ 

Porosity, 

𝝓 (%) 

Permeability, 

𝒌̅ (10-6) 

Hydrostone 

Tough-stiff 

Inclusion 

3.4 1.63 28.38 1.87 

Plaster Matrix 1 1 53.76 4.67 

80% Plaster-

20% Talc 

Weak-soft 

Inclusion 

0.51 0.82 59.73 5.15 

 

 

To simulate the experiments, a domain of 1000𝑙0 X 1219.2𝑙0 is used to simulate 

only half of the specimen that has the inclusion (see Figure 4.38). The Poisson’s ratio is 

0.25, the process zone length 𝑙0 is chosen to be 125 𝜇𝑚, and the characteristic strain 𝜀𝑜 =

√𝐺𝑐 𝐸𝑙0⁄   used for normalization is 0.011. A normalized far-field stress 𝜎𝐻̅̅̅̅  = 0.03578 is 

applied on the left boundary using displacement control, while the normal displacement on 

the right side is set to zero (see Figure 4.38). The top and bottom boundaries are traction-

free. The surface normal fluid flux on the entire outer boundary is set to zero. The Biot 

coefficient  for the matrix and the weak-soft inclusion is 0.8, and for the tough-stiff 
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inclusion is 0.6. Glycerin, with a normalized viscosity 𝜐𝑓̅̅ ̅ = 7.5E-8, is used as the 

fracturing fluid. The initial porosity and the normalized permeability are reported in Table 

4-1. A fluid is injected at the left-center of the crack at a constant rate.  

 

 

 

Figure 4.38: Schematic diagram of the domain used for simulating the inclusion Tests 1, 

2, 3, and 4. 
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The first three experimental tests studied the tough-stiff inclusions, and the last test 

was performed to compare the weak-soft inclusion case. The experimental results for each 

test will be presented first, followed by the phase-field simulation. Additional simulation 

is performed to investigate the differences between Test 1 and Test 2. 

 

4.6.1  TEST 1 

The aim of Test 1 is to determine how an induced fracture interacts with a thin 

tough-stiff inclusion placed at a relatively close distance of 19 mm. The orientation of the 

inclusion has an angle of 610 with respect to the horizontal direction. The tough-stiff 

inclusion has a thickness of 2 mm. As seen in Figure 4.39, the fracture propagates until it 

reaches the inclusion. After that, it deflects and propagates along the inclusion interface. 

Once the fracture climbs the inclusion, it reorients itself to be aligned with the direction of 

the maximum far-field applied stress.  
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Figure 4.39: Fluid-driven fracture evolution in Test 1 (top) and a magnified view of the 

deflected section of fracture (bottom) (source [4]). 
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In the experiment, it was observed that the propagation of the fracture did not align 

with what presumably should have been the direction of the far-field stress. A probable 

explanation is that there was an imperfection in the direction of the applied far-field stress 

during the experiment. Hence, for the purpose of comparison, the axis of the specimen is 

rotated in the simulation to be aligned with the crack growth direction. Figure 4.40 shows 

that the crack growth path simulated using the phase-field approach agrees well with the 

experimental observation. As seen in Figure 4.40, the induced fracture propagates and then 

is deflected by the tough-stiff inclusion. After it propagates along the inclusion interface 

and reaches the inclusion edge, it reorients itself to be aligned with the maximum far-field 

applied stress. Figure 4.40 (b), (c), and (d) show the distribution of the stresses. Stress 

concentrations can be observed at the fracture tip as well as in the inclusion region near the 

location of the first turning of the crack. 
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Figure 4.40: A simulation of Test 1 using the phase-field approach. (a) The phase-field 

solution shows the fracture path. Figures (b), (c), and (d) show the distribution of the 

stresses. The crack growth path simulated agrees well with the experimental observation 

shown in Figure 4.39.  
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4.6.2  TEST 2 

 

The goal of Test 2 is to investigate how an induced fracture interacts with a thin 

tough-stiff inclusion placed at a relatively large distance of 28 mm from the injection point, 

as compared to 19 mm in Test 1. The orientation of the inclusion has an angle of 800 to 

the horizontal direction and a thickness of 2 mm. As seen in Figure 4.41, the fracture 

propagates until it reaches the inclusion, then deflects along the interface and then crosses 

the inclusion.  
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Figure 4.41: Fluid-driven fracture evolution in Test 2 (top) and a magnified view of the 

deflected section of the fracture (bottom) from (source [4]). 
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Test 2 has been simulated using the phase-field approach and shows a good 

agreement with the experimental observation. As seen in Figure 4.42, the induced fracture 

is deflected by the tough-stiff inclusion, and then finally crosses through the inclusion. 

Figure 4.42 (b), (c), and (d) show the distribution of the stresses. Stress concentrations can 

be observed at the fracture tip and on the inclusion interfaces. 

 

 

Figure 4.42: A simulation of Test 2 using the phase-field approach. (a) The phase-field 

solution shows the fracture path. Figures (b), (c), and (d) show the distribution of the 

stresses. The crack growth path simulated agrees well with the experimental observation 

shown in Figure 4.41.  



 

 140 

 

There are two main differences between Test 1 and Test 2: the distance between 

the inclusion and the injection point, and the orientation of the inclusion. To investigate 

which factor causes this difference in the crack path behavior, an additional simulation has 

been carried out: the same distance to the injection point as in Test 1, and the same inclusion 

orientation as in Test 2 are chosen. As seen in Figure 4.43, when the inclusion in Test 1 is 

reoriented to have a steep angle as in Test 2, the fracture crosses the inclusion. This suggests 

that the inclusion orientation is the leading cause of the fracture mechanism in these tests. 

This does not necessarily preclude the role of the distance. However, based on the contrast 

of the properties of the materials used and the structural conditions in these cases, it is 

surmised that the orientation of the layer is the main factor in deflecting the fracture.  
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Figure 4.43: An additional simulation is carried out to investigate the difference between 

Test 1, shown in Figure 4.39, and Test 2, shown in Figure 4.41. In Test 1/2, the same 

distance to the injection point as in Test 1 and the same inclusion orientation as in Test 2 

are chosen. This additional simulation shows that the orientation of the layer is the main 

factor in deflecting the fracture. 
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4.6.3  TEST 3 

 

Test 3 studies how an induced fracture interacts with a tough-stiff inclusion but 

with a larger thickness of 6 mm, as compared with the 2 mm thickness in Test 1. The 

orientation of the inclusion has an angle of 810 relative to the horizontal direction, and is 

27 mm from the injection site. As seen in Figure 4.44, the fracture propagates until it 

reaches the inclusion, then it deflects and propagates along the inclusion interface. Once 

the fracture runs past the inclusion, it reorients itself to be aligned with the direction of the 

maximum far-field applied stress. The difference between Test 2 and Test 3 is the thickness 

of the inclusion. The angle of the inclination of the inclusion is a steep 800 as in Test 2,  

but the thicker inclusion deflects the fracture, while the thinner inclusion allows the crack 

to pass through. 
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Figure 4.44: Fluid-driven fracture’s evolution in Test 3 (top) and a magnified view of the 

deflected section of the fracture (bottom) (source [4]). 
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Again as in Test 1, it was observed that the propagation of the initial fluid-driven 

fracture was not aligned with what presumably should have been the direction parallel to 

the maximum far-field stress. An imperfection in the direction of the applied far-field stress 

likely occurred during the experiment. As such, the axis of the specimen is again rotated to 

be aligned with the crack growth direction for the phase-field calculation. The simulation 

results for Test 3 again produced a good agreement with the experimental observation. As 

seen in Figure 4.45, the induced fracture propagates and then is deflected by the tough-stiff 

inclusion. When fracture reaches the inclusion edge, it reorients itself to be parallel to the 

maximum far-field stress applied. Figure 4.45 (b), (c), and (d) show the distribution of the 

stresses. Stress concentrations can be observed at the fracture tip as well as the region near 

the fracture kinks. 
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Figure 4.45: A simulation of Test 3 using the phase-field approach. (a) The phase-field 

solution shows the fracture path. Figures (b), (c), and (d) show the distribution of the 

stresses. The crack growth path simulated agrees well with the experimental observation 

shown in Figure 4.44. 
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4.6.4  TEST 4 

 

The goal of Test 4 is to investigate how an induced fracture interacts with a weak-

soft inclusion, as compared to the tough-stiff inclusion in Test 3. The orientation of the 

inclusion has an angle of 810 to the horizontal direction and placed at 27 mm from the 

injection site. As seen in Figure 4.46, the fracture propagates and crosses the inclusion in 

a fairly straight direction towards direction parallel to the maximum far-field stress 

direction. The difference in the behavior between Test 2 and Test 3 illustrates that the 

tough-stiff inclusion has a greater tendency to deflect the fracture than does the weak-soft 

inclusion. 
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Figure 4.46: Fluid-driven fracture evolution in Test 4 (top) and a magnified view of the 

deflected section of the fracture (bottom) (source [4]). 
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Test 4 is simulated using the phase-field approach and again shows good agreement 

with the experimental observations. As seen in Figure 4.47, the induced fracture propagates 

and crosses the inclusion. Figure 4.47 (b), (c), and (d) show the distribution of the stresses. 

Stress concentrations are observed at the fracture tip and on the inclusion interfaces. 

 

Figure 4.47: A simulation of Test 4 using the phase-field approach. (a) The phase-field 

solution shows the fracture path. Figures (b), (c), and (d) show the distribution of the 

stresses. The crack growth path simulated agrees well with the experimental observation 

shown in Figure 4.46. 
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In conclusion, the phase-field approach was used to simulate a set of inclusion 

problems and compared them to experimental observations. Simulations for all four tests 

using the phase-field approach produced a good agreement with the experimental 

observations. The goal of these experiments is to understand how induced fractures interact 

with cemented natural fractures or what we are calling “inclusions’’. Both experiments and 

simulations show that a tough-stiff inclusion with a shallow orientation with respect to the 

maximum far-field stress direction has a greater tendency to deflect the fracture than does 

an inclusion with a steeper orientation. The thicker tough-stiff inclusion acts as a barrier 

that deflects fracture more so than a thinner inclusion.   



 

 150 

4.7  Implementation in Three Dimensions  

This section describes the extension of the phase-field model for the hydraulic 

fracture to three dimensions (3D). First, the extension to 3D has been validated against the 

analytic solution for the phase-field for a completely separated surface. The simulation 

domain is a very long rectangular beam with a length of 200𝑙0. The nodes on the z–y plane 

with x = 0 are taken to be damaged with 𝜇 = 0. The analytic solution for the phase-field for 

this problem is as follows:  

𝜇(𝑥) = 1 − 𝑒
−|

𝑥

2𝑙0
|
       (4.12) 

As seen in Figure 4.48, the numerical and the analytic solutions for the phase-field 

are in agreement. This serves as the first basic validation for the 3D implementation.  

 

Figure 4.48: A comparison of the analytic solution with the numerical solution for a 

separated surface. 
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Next, two benchmark problems will be tested as additional validation cases: 1) a 

mechanical fracture problem, and 2) a hydraulic fracture problem. For the mechanical 

problem, a compact tension CT specimen is simulated. For the hydraulic fracture problem, 

a fluid-driven circular crack is tested. 

 

4.7.1  COMPACT TENSION SPECIMEN TEST 

 

The theory for phase-field modeling of fracture in brittle materials is presented in 

Chapter 3. In this example, only the mechanical drivers for fracture are considered, and no 

fluid flow is simulated. The benchmark problem simulated is a compact tension CT 

specimen, where the dimensions of specimen are shown in Figure 4.49. The boundary of 

the circular holes is displaced 𝑢0 in an opening mode. All other surfaces are traction free. 
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Figure 4.49: (a) Compact tension CT specimen b) The dimensions of the specimen are 

200l0 x 210l0 x 16l0. 

 

As seen in Figure 4.50, as the displacement 𝑢0 increases, the crack grows. 

Eventually when the 𝑢0/𝜀0𝑙0 = 15, the fracture grows until the specimen splits into two 

parts. In the figure, the deformed shape is presented with a magnification scale factor of 

150 to make the deformation more obvious. 
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Figure 4.50: Fracture growth trajectories in a deformed shape with a scale factor of 150 

for compact tension CT specimen: (a) initial state; (b) fracture state at applied 

displacement u1/0l0 = 25 ; and (c) final state at applied displacement u1/0l0 = 52 for the 

specimen when it split into two parts. 

 

4.7.1  PRESSURIZED CIRCULAR CRACK 

 

Here, the benchmark problem of a fluid-driven circular fracture is performed (see 

Figure 4.51). A domain with dimensions 2000𝑙0 x 2000𝑙0 x 2000𝑙0 is assumed, but only 

one quarter is simulated. A phase-field circular crack with a radius of 25𝑙0 is initialized at 

the center on the domain. On the symmetry planes, normal displacements are set to zero, 
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and the surfaces are traction-free in the tangential directions. On the outer boundaries, the 

surface normal displacements and the surface normal fluid flux are set to zero. The Biot 

coefficient  is 0.45, the initial porosity is 𝜙0= 0.1, and the normalized permeability is 𝜅̅ 

=10−14. A fluid is injected at the center of the crack at a constant rate 𝑄̅= 0.005. 

 

 

Figure 4.51: A rectangular domain of 2000l0 x 2000l0 x 2000l0 has a central circular crack 

of radius = 25l0. Only one-quarter of the domain is simulated, and symmetry boundary 

conditions are applied on symmetrical faces. 
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As seen in Figure 4.52, the crack propagates in a symmetrical radial direction, as is 

expected. When the injected pressure 𝑝/𝐸𝜀0 reaches 0.15, the fracture starts to propagate 

until the simulation is terminated when V/l0
3 reaches 1.12. 

 

 

Figure 4.52: Fracture growth: (a) initial state; (b) the fracture propagates radially at load 

step V/l0
3 = 1.12 . Top figures are cross-sections at the center of the fracture. The bottom 

figures are three dimensional views. The Poisson’s ratio  = 0.25, 0 = 0.001, l0
2/ = 1012, 

 = 0.45, 0 = 0.1, c f / 0 
f = 0.01364, and  f/E0 t0 = 5 x 10-12. 
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Chapter 5.  Conclusion and Future Work 

The phase-field approach for the fracture has been shown to be a powerful tool for 

simulating very complex fracture topologies, including the turning, branching, and 

merging of cracks. In contrast to fracture models that explicitly track the crack surfaces, 

crack propagation and the evolution thereof arise out of the solution to a partial differential 

equation governing the evolution of a phase-field damage parameter. In the present model, 

the physics of flow through porous media and cracks is coupled with the mechanics of 

fracture. Darcy-type flow is modeled in the intact porous medium, which transitions to a 

Stokes-type flow regime within open cracks. This phase-field model is implemented to 

gain insights into the propagation behavior of fluid-driven cracks. 

One outstanding issue with phase-field fracture models is the decomposition of the 

strain energy that is required to ensure that compressive stress states do not cause damage 

evolution. The proper representation of the strain energy function to reflect this fracture 

phenomenon is studied. The strain energy is constructed in terms of principal strains in 

such a way that it has two parts: tensile and compressive, where the degradation function 

only applies to the tensile part. It has been shown that Miehe’s decomposition [1] of the 

strain energy function allows damage to evolve under purely compressive stress states. 

This issue is resolved using an approach based on the behavior of the masonry-like 

materials [2, 3]. This approach ensures that cracks do not grow under compressive stresses 

states, which is actually of critical importance for hydraulic fracture where the far-field 

stresses are primarily compressive. 

https://www.sciencedirect.com/topics/engineering/porous-medium
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To demonstrate the capabilities of phase-field modeling for fluid-driven fractures, 

four general types of problems have been simulated: 1) interactions of fluid-driven, natural, 

and proppant-filled cracks; 2) crack growth through different material layers; 3) fluid-

driven crack growth under the influence of in-situ far-field stresses; and 4) crack 

interactions with inclusions. The simulations illustrate the capabilities of the phase-field 

model to capture interesting and complex crack growth phenomena. They also give some 

insight into some of the issues related to fracture treatments in the oil and gas industries.  

For fracture interactions with other fractures, three main problems were studied. 

The first problem was on the interactions of parallel induced fractures and the effect of the 

fracture spacing on the crack propagation behavior. Decreasing the fractures spacing does 

not necessarily increase the drainage area because of the stresses shadow effect that retards 

the propagation of internal fractures. Additionally, a shorter fracture spacing reduces the 

crack aperture of the induced fractures which can cause problems with proppant placement. 

The interaction between fluid-driven fractures and natural fractures has also been 

investigated. It was demonstrated that pre-existing natural fractures can deflect the induced 

fractures toward unfavorable growth directions. Finally, the problem of induced fracture 

interacting with a fracture filled with proppants was studied. Like natural fractures, 

proppant filled cracks can disturb the propagation of the induced fracture. Two factors were 

investigated: the aperture of the propped fracture and the distance separating the induced 

fracture from a propped fracture. The simulations indicated that a fracture filled with 

proppants alters the in-situ stresses around its location causing the fluid-driven fracture to 

slow down and divert from its original path. 
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To investigate how fluid-driven crack interacts with material interfaces, the 

problem of an induced fracture interacting with a layer of different fracture and/or elastic 

properties was studied. Several factors that could influence the fracture behavior when 

encountering a layer were included in the simulations. A very tough layer has the ability to 

deflect the induced fracture. The contrast in the modulus of elasticity of the layer relative 

to the matrix was not sufficient to make the layer act as a barrier in the absence of an 

increase in the layer toughness. Additionally, a layer with a steep orientation relative to the 

crack direction has less of a tendency to deflect the fracture. Also, a thicker layer has a 

greater tendency to deflect the induced crack than a thin layer. Finally, it appears that the 

distance between the injection point and the layer does not play a significant role in 

deflecting the fracture. 

In section 4.5, the role of in-situ stresses on the crack paths was studied. It was 

shown that in all of the problems investigated that with a sufficient stress level, the induced 

fracture will grow to orient itself to be aligned with the direction perpendicular to the 

minimum in-situ principle stress. The fracture kink angle was also studied for different 

initial crack orientations and in-situ stresses. The kink angle 𝜑 is the angle between the 

initial orientation of the fracture and the extension of the propagated fracture. The kink 

angle increases as the in-situ maximum stress increases. The kink angle also increases as 

the initial orientation of the crack deviates from the maximum in-situ stress direction 

Experiments have recently been performed by Altammar [4] to understand how 

fluid-driven cracks interact with inclusions. Three tests with high toughness and high 

stiffness inclusions have been carried out to understand the effects of the orientation angle, 
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the thickness, and the material properties. Additionally, one test with high toughness and 

high stiffness inclusion has been conducted to compare this case to the tough inclusion 

cases. To replicate these experiments numerically and to gain a mechanistic understanding 

of the behaviors, simulations of these configurations were performed using phase-field 

modeling. All of the simulations had good agreement with the experimental observations 

and were able to capture the trends of crack deflection versus interface or inclusions 

crossing in all four test cases. Both the experiments and simulations showed a clear 

tendency for the induced hydraulic fracture to cross thick natural fractures filled with 

materials weaker and softer than the host rock and to be diverted by thick natural fractures 

with tougher and stiffer filling materials. Lastly, in addition to these two-dimensional 

analyses, the phase-field model was extended to three-dimensions. Two benchmark 

problems were simulated: a compact tension CT specimen test and a fluid-driven circular 

crack. 

 In regard to future work, recall that in the layer problems, only two fluid viscosities 

were investigated. The two viscosities were chosen to reside in different regimes of 

toughness versus viscosity dominance. The results suggested a weak dependence of the 

crack growth modes (deflection/crossing the layer) on the injected fluid viscosity. 

However, it would be of interest in the applications of hydraulic fracture treatment 

processes to more thoroughly study the fracture behaviors over a wider range of viscosities 

that might demonstrate the sensitivity of the behavior on the viscosity. Additionally, in the 

inclusion problem simulations, the inclusion and the matrix have been assumed to be 

perfectly bonded. However, it was observed two of the experiments: Test 1 and Test 3, that 
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the fracture had been directed along an interface near the top side of the inclusion. In 

contrast to the perfectly bonded interface condition assumed in the phase-field simulations, 

the inclusion and the matrix may be, for example, partially or weakly bonded. In this 

situation, the crack will prefer to grow along the weak interface, and the behavior of the 

fracture observed in the experiments may then be even more accurately captured by the 

phase-field simulations. This observed difference between the phase-field simulations and 

the experimental observations suggests that the interface condition, ranging from strongly 

bonded to weakly bonded, can also play role in the fracture growth behavior. 
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Appendix: Dimensionless Form of the Model Equations 

The normalizations for the model parameters are as follows: 

Normalized quantity Form Comments 

Energy release rate, 𝐺𝑐
̅̅ ̅ =  

𝐺𝑐

𝐺𝑐,𝑚
 

The Gc is normalized by the Gc of the matrix. In 

homogenous materials 𝐺𝑐
̅̅ ̅ = 1. 

Stiffness tensor, 𝑐𝑖̅𝑗𝑘𝑙 =  
𝑐𝑖𝑗𝑘𝑙

𝐸
 E is Young’s Modulus. 

Characteristic strain, 𝜀0 =  √
𝐺𝑐

𝐸𝑙0
 𝑙0 is the process zone length. 

Dimensionless coordinate, 

𝑥̅𝑖 = 

𝑥𝑖

𝑙0
  

Dimensionless 

displacements, 𝑢̅𝑖 = 

𝑢𝑖

𝜀0𝑙0
  

Normalized strain, 𝜀𝑖̅𝑗 = 
𝜀𝑖𝑗

𝜀0
  

Dimensionless stresses, 

𝜎𝑖𝑗 = 

𝜎𝑖𝑗

𝐸𝜀0
  

Normalized body forces, 

𝑏̅𝑖 = 

𝑏𝑖𝑙0

𝐸𝜀0
  

Normalized traction, 𝑡𝑖̅ = 
𝑡𝑖𝑙0

𝐸𝜀0
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Normalized pressure, 𝑝̅ = 
𝑝

𝐸𝜀0
  

Normalized intrinsic  

 permeability, 𝜅̅ = 

𝜅

𝑙0
2  

Normalized fluid velocity, 

𝑤̅𝑖 = 

𝑤𝑖𝑡0

𝑙0
 𝑡0 is a characteristic time scale. 

 Normalized fluid 

viscosity, 𝜈̅𝑓 = 

𝜈𝑓

𝑡0𝐸𝜀0 
  

Normalized deviatoric 

fluid stress, 𝜏𝑖̅𝑗 = 

𝜏𝑖𝑗

𝐸𝜀0
  

Normalized internal 

micro-force, 𝜋̅ = 

𝜋

𝐸𝜀0
2  

Normalized external body 

micro-force, 𝛾̅ = 

𝛾

𝐸𝜀0
2  

Normalized micro-force 

vector, 𝜉𝑖̅ = 

𝜉𝑖

𝑙0𝐸𝜀0
2  

Normalized injection rate 

𝑄̅ = 

𝑄𝑡0

𝑙0
3   
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