

Copyright

by

Prateek Burman

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/322356985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Prateek Burman
Certifies that this is the approved version of the following report:

Quadcopter stabilization with Neural Network

APPROVED BY
SUPERVISING COMMITTEE:

Christine Julien

William (Bill) Bard

Supervisor:

Quadcopter stabilization with Neural Network

by

Prateek Burman, B.S.E.E

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin
December 2016

 Dedication

This report is dedicated to my parents, my sister and memory of my grandparents.

 v

Acknowledgements

I would like to extend my utmost sincere gratitude to Dr. Christine Julien, without

her guidance I would have strayed away from the objective not been able to finish the

project.

I also express my gratitude to Prof. William (Bill) Bard for being the reader for my

report. Prof. Bard’s class on Advanced Embedded Systems was the inspiration for this

report.

Finally, I would also like to thank my parents, my sister Priyanka Burman and

Anjana Parandhaman for believing in me and for all the support.

 vi

Abstract

Quadcopter stabilization with Neural Network

Prateek Burman, M.S.E

The University of Texas at Austin, 2016

Supervisor: Christine Julien

UAVs (Unmanned Aerial Vehicle), also known as drones, are becoming attractive

in the consumer space due to their relatively low cost and their ability to operate

autonomously with minimal human intervention. A user could program the drone with GPS

coordinates, and the drone would comply with utmost precision. In order for the drone to

operate a preprogrammed flight path, it requires a host of sensors for it to gather data and

operate on that data in real time. For instance, a consumer drone typically has obstacle

avoidance sensors, a GPS sensor for routing and navigation, and an IMU (Inertial

Measurement Unit) for tracking position and orientation. These sensors play a crucial role

in both stabilization and navigation of the drone. This report aims to investigate, analyze

and understand the complexity involved in designing and implementing an autonomous

quadcopter; specifically, the stabilization algorithms. In general, stabilization is achieved

using some form of control algorithm. The report covers a popular approach for

stabilization (PID Control) found with many open source libraries and contrasts it with an

alternative machine learning approach (Neural Networks). Finally, a machine learning

 vii

based algorithm is implemented and evaluated on a prototype quadcopter, and its results

are presented.

 viii

Table of Contents

	

List of Figures .. ix

List of Tables ...x	

Introduction ..1	

Literature Review ...3	

Approach ..6	
Sensors ..6

Inertial Measurement Unit (IMU) ..6	
Barometer ...6	

Sensor Fusion ..7
Flight dynamics ...8
Control algorithm ..11

PID Control ..11	
Neural Network Control ..13	

Implementation ..15
High Level Design ..15
Neural Network Controller ...17

Results and Observations ...20
Conclusion ...23
Bibliography ..25

 ix

List of Figures

Figure 1:	 Example	of	output	from	an	IMU	measurement6

Figure 2:	 DCM visual explanation ..8	

Figure 3:	 Sample quadcopter view from the top ...9

Figure 4:	 A block diagram of a PID controller ...12

Figure 5:	 A crazy2fly quadcopter frame ...15	

Figure 6:	 Overall architecture of the system ...16

Figure 7:	 Architecture	of	the	implemented	Neural	Network.18

Figure 8:	 Calculating	the	RMSE	for	NN	controller. ..19

	

 x

List of Tables

Table 1: Input layer weights for NN. ...20	

Table 2: Hidden layer weights for NN. ..21	

 1

INTRODUCTION

The application of unmanned aerial vehicles (UAV) has been gaining popularity

due to the ease with which the aerial vehicle (quadcopters for instance) can perform tasks

such as obstacle avoidance without collision, vertical take-off and landing (VTOL), and

maneuvering without any direct human involvement. If a quadcopter is operating in an

indoor environment, it needs to do so with agility and snap responses without going out of

control. In an outdoor environment, the drone needs to stabilize itself against external

forces. For both scenarios, drone’s ability to operate a space stable flight is extremely

important to their functionality; it can also prevent the quadcopter from crashing in the

event of heavy external disturbance such as a strong wind.

All of these applications require drones to be equipped with a host of sensors like

an accelerometer, magnetometer, gyroscope, and depth-camera to allow UAVs to perform

stabilization and navigation.

Multirotor UAVs tend to be unstable mainly due to two reasons; the first being, the

sum of the moments generated by all the rotors has to equal zero during the hover state, to

avoid aerial device from spinning about its access. The second reason being not all rotors

will respond exactly to the same input. Hence, a control algorithm is used to constantly

adjust the output based on the current state as described by the sensors.

The onboard processor uses the fused data from the sensors to build a control

system using a Proportional-Integral-Derivative (PID) controller. This is a closed loop

controller, which works by applying gains to an error signal to steer the UAV towards the

desired goal location. The simplicity of PID control makes it a popular choice for

implementing in multirotor UAVs. PID control algorithm requires parameter tuning;

engineers generally use trial and error for determining parameter values. This process is

 2

time consuming and prone to errors. The alternative to manual tuning is to use Ziegler-

Nichols rule for tuning; however, even this method is not ideal, as it yields aggressive gains

and overshoot. Ziegler-Nichols method is not very robust and can also lead to instability.

Since we want a stable hovering and navigation for our multirotor, we have to be able to

minimize overshoot without dampening the system too much. A well designed and

implemented hover stabilization algorithm will allow the quadcopter to hover at fixed

altitude, regardless of the changes introduced by external forces.

Hence, a Neural Network (NN) based approach for quadcopter stabilization is

presented as an alternative, which offers a more robust stabilization over PID controller to

unseen inputs and noisy sensor data. The NN is trained with PID control system and the

learnt weights are applied to the quadcopter during the test flight. Finally, the results are

contrasted against the PID controller output.

 3

LITERATURE REVIEW

Quadcopters are non-holonomic underactuated systems with six degrees of

freedom (translation along x, y, z axis and rotation around x, y, z axis) and only four rotors

to make use of the controllable degrees of freedom (roll, pitch, yaw, altitude). These

systems are also dynamically unstable and nonlinear. The quadcopter algorithm structure

is typically implemented as two control algorithms in a cascade arrangement, where the

inner-loop controls the attitude and the outer-loop performs position control. The cascade

architecture allows quadcopter to address multiple disturbances and recover immediately.

Different control methods can be used to implement the cascade architecture such as, PID

control, H control, predictive control, sliding mode control, neural network control. Despite

the advancements in control theory, traditional and most common approach to quadcopter

stabilization remains PID control [1] or some combination of PID such as PD controller

[2], mainly due to its simplicity and effectiveness.

The PID controllers work by acting on each of the quadcopter states: roll, pitch,

yaw, altitude and position. However, PID controllers require tuning and setting of

Proportional, Integral and Derivative multipliers. The process of optimizing these

controllers is a time-consuming and laborious process with limited success (stability), if

tuned incorrectly. The authors of [3] have used Ziegler-Nichols Rules to determine PD

parameters for their quadcopter control, however, the system is still prone to high overshoot

values. Regardless, PID controllers in general have trouble operating in conditions that are

too far from the optimal hover point, especially in the case of micro aerial vehicles as

disturbances due to wind can be large [4].

Therefore, neural network based solutions have been an attractive alternative [6, 7,

8], as they can provide a higher level of robustness and adaptability with equal or less effort

 4

on training. Neural networks create a non-linear mapping from inputs to outputs that can

capture quadrotor dynamics to create a robust controller.

The amount of literature for neural network based control is vast and wide ranging.

For instance, the authors of [7] propose an adaptive neural network control based on

mammalian cerebellum called CMAC (Cerebellar Model Articulation Controller) for

stabilization especially during considerable wind disturbance. However, CMAC algorithm

can require huge amounts of memory, hence those may not be feasible to implement on an

embedded system. Researchers have also proposed self-tuning adaptive control using

neural networks in [8].

Another approach includes combining genetic algorithm with neural networks to

create neuro-evolutionary algorithms, which ranks each controller based on some cost

function [9]. Higher performing cost functions are mutated, with some probability, in order

to search for optimal solution. This approach as demonstrated by Shepherd and Tumer in

[7] is impressive as the system should be capable of designing an optimum solution on its

own. However, in practice these are hard to implement and debug. Also, to reach an

optimum solution could take many generations.

On the other hand, Lower and Wroclaw contrast a classic PID controller with a

neural network based controller in [10]. The neural network is taught by control system

with a standard PD controller. The simulation results of the neural controller and PID

controller are then compared. A similar setup is done by the authors of [11] for a

hexacopter. Both of these approaches are much simpler, yet can yield effective results.

The motivation behind the paper is to showcase an alternative approach which can

overcome the of shortcomings of the PID control algorithm. A PID control algorithm is

susceptible to large oscillations and disturbances, causing the system to go out of balance

easily and not recover from such states. In this paper a neural network based approach is

 5

presented for quadcopter stabilization. Finally, the output of the NN based controller is

contrasted against the PID controller.

 6

APPROACH

Sensors

INERTIAL MEASUREMENT UNIT (IMU)

The quadcopter uses a Sensor Hub BoosterPack containing a

microelectromechanical (MEMs) sensor which internally has a 3-axis gyroscope, a 3-axis

accelerometer and a 3-axis digital compass; thus allowing 9 degrees of motion tracking.

As discussed later in the paper that the accelerometer yields noisy data and the

gyroscope is prone to drifting. Hence, there is a need for data fusion to generate a more

consistent, accurate, and reliable representation of quadcopter’s attitude from disparate

sensors, which are less accurate individually.

Figure 1: Example of output from an IMU measurement.

BAROMETER

The Sensor Hub BoosterPack also includes a BMP180 pressure sensor. Since we

know pressure changes with altitude, I used BMP180 as an altimeter. By applying the

following formula, I was able to obtain the altitude (in meters), where P0 is the average

pressure at sea level (101325 Pa) and P is the pressure obtained from the sensor. The

altitude of the quadcopter is used to evaluate its current state for hovering. By monitoring

 7

the rate of change in altitude, I was also able to evaluate the stability of the quadcopter for

a given environment.

𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 = 44330 ∗ 1 −
𝑝
𝑝0

1
2.422

Equation 1: Calculating altitude from temperature and pressure.

Sensor fusion

The MEMs based gyroscopes are lightweight and have low power consumption,

however, they also have the disadvantage of having a high level of measurement noise and

bias. Over time the measurement will drift, mainly due to accumulation of integration error

and it will not return to zero, when the system is back to its original position. Hence, the

gyroscopic data is only reliable only in the short term.

Similarly, the accelerometer measures forces acting on the body; these forces are

not limited to the ones applied intentionally, but can be gravity, vibrations at high

frequencies or external disturbances (such as wind). The accelerometer data can be very

volatile in the short term, hence, a low pass filter can be used to only look at reliable long

term data.

Accelerometers can only be used to measure tilt and not heading; therefore, I

filtered out the low frequency gyroscopic bias and high frequency accelerometer vibration

when combining the data together. Typically, an algorithm such as Kalman filter is used to

fuse the data from multiple sensors in order to create a more accurate estimation of the

quadcopter orientation in space [10].

 8

In my case I fused 9 axis measurements into a set of Euler angles (roll, pitch, yaw).

The fusion mechanism used is complementary-filtered direction cosine matrix (DCM)

algorithm, provided as part of the Sensor library. A complementary-filter is

computationally more efficient and is simpler to understand compared to Kalman filter.

Figure 2: DCM visual explanation.

I used a complementary-filter to get data from gyroscope in the short term, as it is

not susceptible to external forces like an accelerometer. For the long term I used

accelerometer data, as it does not drift over time.

The filtered readings from the sensor are fed to the DCM algorithm to calculate the

orientation of a rigid body relative to the earth’s magnetic field and direction of gravity

expressed in Euler angles (roll, pitch and yaw).

Finally, the results from the DCM algorithm determine the current state of the

system. These values are fed into the controller for stabilization and navigation.

Flight dynamics

A quadcopter is a four rotor multicopter capable of altering its position and

orientation in 3D space by altering its moment on the rotor. The change in moment is

achieved by altering the power supplied to the rotor (using Pulse Width Modulation

 9

technique) to change the engine speed in order to generate a different balance of forces;

thereby altering the orientation of the quadcopter. All the rotors contribute to the upward

thrust, however, they also contribute towards rotational torque. Hence, half of the rotors

are programmed to spin clockwise (CW) and the other half to spin counter-clockwise

(CCW). In my case, I configured the quadcopter in a plus (+) configuration where the front

and the back rotors spin in CW direction, while the left and right spin in CCW motion;

thereby having a net torque of zero during hover configuration.

Figure 3: Sample quadcopter view from the top.

The controller algorithm determines the current state of the quadcopter based on

the sensor readings and compares against a desired set-point. It is then, the controller will

evaluate a change of state to achieve the desired state. The main objective of the controller

is to achieve the set-point as quickly as possible without overshooting the target or causing

the system to go out of balance.

Altitude change:

To change the altitude of the quadcopter, I either increase or decrease the speed

equally among all four motors; thereby moving the quadcopter along the vertical axis

without changing the orientation of the quadcopter.

 10

Yaw change in hover state:

To change the yaw (the angle along the z axis) without changing altitude I increase

the speed of two opposite rotors, while decreasing the speed on complementary pair of

rotors by the same proportion. In order to yaw clockwise, I increase the speed on front and

back rotors while subtracting the same offset from counter-clockwise pair. To spin CCW

(when viewed from top) a desired CCW yaw would have an offset subtracted from both

CW motors and the same offset added to both CCW motors, in order to maintain altitude.

Pitch change in hover state:

To alter the pitch (the angle along the y axis) without altering the altitude I increase

the speed on one of the rotors on the y axis while decreasing the speed by the same offset

on the complimentary rotor on the y axis. The motor speed for both motors on the y axis

must be changed in order to pitch without changing the altitude; thus changing pitch; but

not changing the overall throttle of the system.

Roll change in hover state:

Rolling the quadcopter is similar to pitching in hover configuration; I increase the

speed of one of the motors along x axis, while decreasing the speed by the same offset on

the complementary motor on x axis. Again, I maintain the overall throttle of the system, as

I increased the speed on one motor by the same value as that decreased on the other motor;

thereby, maintaining a hover state.

 11

Control algorithm

PID CONTROLLER:

Control algorithms monitor and alter the operating conditions of a dynamic system,

with the goal of bringing the system to a desired state. The controller evaluates the error

e(t) in the system from the difference between the setpoint w(t) and the measured output

of the system y(t). The system then applies a change in the system to drive the error towards

zero. A Proportional-Integral-Derivative controller (PID controller) is a closed control loop

applying gains to an error signal and feeding the result back as input to the plant. It is most

commonly used in the industry mainly due to its simplicity, effectiveness and it can be

tuned even when plant is not available [12].

The error value is calculated as the difference between the desired setpoint and

measured value. The controller works by minimizing the error over time by adjusting the

power to the rotors. There are 3 types of gain which are calculated on every run.

The proportional gain is directly proportional to the error; it is the main driver of

the system and works directly to bring the system to the target setpoint. The larger the

proportional gain, the faster the system responds to the error. However, this can lead to

overshooting the target setpoint and lead to oscillation and possibility of an unstable

system. The integral gain is the running sum of the error over a period. This term attempts

to account for the steady state error in the system. Finally, the derivative gain is the change

in error. This term accounts for the rate of change of error and prevents the system from

overshooting its target. Each of the gains is amplified with a coefficient multiplier and

together the sum of each of the gains is what drives the change in valve (power to the rotor).

 12

Figure 4: A block diagram of a PID controller.

𝑢 𝑡 = 	𝐾7 ∗ 𝑒 𝑡 + 	𝐾9 ∗ 	𝑑𝑡 𝑒(𝑡)
<

=
	+ 𝐾> ∗

𝑑𝑒 𝑡
𝑑𝑡

Equation 2: PID equation.

PID controller require tuning of the three coefficients of the model to meet the

needs of the underlying system. PID controller is evaluated in terms of its responsiveness,

the overshoot and the system oscillation. Each of these features can be altered by picking

the kp, kd and ki terms. Typically, empirical method such as trial and error is used to derive

the coefficient values. This of course can be a tedious and a time consuming process and

do not always yield optimal results. Later in the report I evaluate an alternative approach

for quadcopter stabilization.

In my design I used a PD controller to steer the quadcopter towards a desired goal

altitude and attitude. I use the altitude, position and velocity estimates from DCM and I

apply a PD control to steer it towards a desired goal. The quadcopter has four controllable

degrees of freedom (altitude, roll, pitch, yaw); therefore, I employ a separate PD control

per dimension to drive the quadcopter to stability. The PD coefficients were picked using

trial and error by monitoring the stability of the quadcopter over a 10 second test flight.

 13

NEURAL NETWORK CONTROLLER:

The alternative approach to PID controller proposed in this paper is using Neural

networks (NN). NN is a computation approach representing a generalized mathematical

model of the human neuron collection and inter-connection between them. NN aims to

provide the same approach as a human brain to solve a given problem. Since, NN can non-

linearly map inputs to the outputs, they can be used to replace our PD controller.

Each neural node sums the incoming signal and generates an output signal based

on a predefined function, also known as activation function. The activation function allows

the network to generate non-linearity between the inputs and outputs. In our case the

predefined function is a sigmoid function. Each neuron is connected by weight with many

others to form input of an adjacent neuron of the next layer, thereby forming a network of

neurons. This processing of input through the hidden layer to the output nodes is called

feedforward network.

𝑆 𝑥 =
1

1 + 𝑒AB

Equation 3: Sigmoid function.

A NN learns from the training samples, thereby, updating the weight associated

with each of the neural nodes. With every training sample each of the weights are updated

by either inhibiting or enforcing the incoming signal based on the result.

In order for the NN to learn and compare system output with the desired output a

technique called backpropagation is used. It is one of the more common techniques used

to (learn) update the weights of the network, that is, train our network. With

backpropagation, error (desired output is subtracted from calculated output) is propagated

 14

backwards from the output towards the input; and the weights are updated in the process

to reflect the error.

Once the network learns the pattern between the input and the output, it is then used

as a replacement for the PID controller to evaluate the new inputs in real-time.

 15

IMPLEMENTATION

High Level Design

The frame of the quadcopter is built from Crazy2Fly Hardware kit [13]. The design

of the quadcopter uses four 12 Amp Electronic Speed Controller (ESC) to drive four

respective 1000kv brushless motors for generating thrust. The ARM Cortex based

TM4C123G microcontroller is the brain controlling the brushless motors by providing the

appropriate signal using pulse width modulation (PWM) technique to the ESC. The

duration of the high (on) signal period over the low signal (off) period using PWM

determines the power supplied to the load, this is also known as duty cycle. Higher duty

cycle results in more power to the motors, which is converted to motor rotations and

thereby, thrust (by the propellers) for the system. By controlling the rotations per minute

(RPM), the thrust can be controlled for individual motors; and with varying PWM signal,

a quadcopter can be maneuvered in one of the six degrees of freedom available to it.

Figure 5: A crazy2fly quadcopter frame.

The microcontroller unit collects sensor readings from the Sensor Hub BoosterPack

over I2C port. The Sensor Hub has BMP180 barometer which provides the current

 16

temperature and pressure of the environment. Altitude is then calculated from pressure and

temperature using the formula [10] as described earlier in the background section. The

Sensor Hub also has MPU9150 which provides acceleration and orientation information;

this information is fused using the DCM algorithm (described earlier) to obtain the Euler

angles roll, pitch and yaw values.

The control system algorithm is implemented in the controller module of the

embedded system using a PD controller. The PD algorithm compares the output (roll, pitch,

or yaw values) from the DCM algorithm with the set point to calculate an error value e(t).

The algorithm then applies a correction based on the kp, ki and kd values. These corrections

are calculated per controllable degrees of freedom (roll, pitch, yaw and altitude) and are

called offset. These roll, pitch and yaw offsets are then scaled to appropriate duty cycle and

applied to the motor.

Figure 6: Overall architecture of the system.

 17

motor_1Power = map(throttle + pitch_offset + yaw_ffset);
motor_2Power = map(throttle + roll_offset - yaw_ffset);
motor_3Power = map(throttle - pitch_offset + yaw_ffset);
motor_4Power = map(throttle - roll_offset - yaw_offset);

Equation 4: The general throttle equation for a quadcopter.

One of the disadvantages of PID controllers is that they are not very robust against

external disturbances. Thus if a system will encounter challenges from the environment,

i.e. a big set point and measure point difference, then PID may not be the ideal approach.

The next section describes how the system was changed to use Neural Networks as the

controller.

Neural network controller

For the second approach we replace PD controller with a NN controller using back

propagation. The same inputs from the sensor as the PD controller is sent to the NN

directly. The output generated by the NN is sent to the PWM module for the motors. The

number of hidden layer and neurons per hidden layer was determined experimentally, as

too many would cause overfitting to the training input and too few will not map the entire

solutions space.

Data for the training is generated from the flight when the quadcopter was

controlled using the PD controller. This process of offline tuning is called general training

of the NN. The general training can be a CPU intensive process, depending on the size of

NN and the volume of training samples. Due to the constraint of limited processing power

on embedded systems, this process was implemented on a laptop. Once the network is

trained (i.e. the weights optimized), the weights matrix can be copied over to the inflight

 18

controller on the microcontroller, where it’ll become a simple feed forward network to the

inputs; thereby, replacing the PD controller utilized earlier.

𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤 → 𝑁𝑁 → 𝑚M,𝑚N,𝑚O,𝑚P ;𝑤ℎ𝑒𝑟𝑒	𝑚M − 𝑚P𝑎𝑟𝑒	𝑚𝑜𝑡𝑜𝑟	𝑜𝑢𝑡𝑝𝑢𝑡𝑠

Equation 5: NN transformation.

Figure 7: Architecture of the implemented Neural Network.

The raw, pitch, yaw inputs and corresponding controller outputs from the PD

controller is collected and split into two set, 80% for training and 20 % for the testing. A

normalized set of roll, pitch, yaw values are fed into the input layer; multiplied initially

with random weights and the sigmoid activation is applied.

𝐹 𝑥 = 𝑆(𝑤MM𝑥M + 𝑤MN𝑥N + ⋯)

Equation 6: Function of a Neuron node.

 19

The same step is repeated for between the hidden and the output layer. Finally, the

error is calculated between the expected and the calculated values. A training set is used to

train the NN by propagating the error backwards from the output towards the input;

modifying weights such that the error is minimized. The output values from the neural

network are the normalized value for the motors; which are then scaled and fed directly to

the PWM module to control the motors.

Figure 8: Calculating the RMSE for NN controller.

 20

RESULTS AND OBSERVATIONS

In order to validate the claim made in this paper, this section the two control

methods are contrasted. There were two experiments performed. The first being the

implementation of PD controller for a brief test flight of 10 seconds.

The first experiment itself required manual tuning of proportional and differential

coefficients before a stable flight could be established. Once the 𝑘7 and 𝑘> offsets which

seem to stabilize the quadcopter are determined, the motor outputs values are collected for

a given roll, pitch and yaw values as training data for the NN.

The stability data collected was split in two, training and test set in ratio of 80 to 20

respectively. The training set is then used for the second experiment where a NN based

controller was trained offline. The training dataset is used to calculate the weights of the

connections between neurons in the network. The strength of the connection determines to

either amplify or dampen the incoming signal to generate a desired output. The final weight

determined from the training set are listed in Table 1 and Table 2.

The final NN design had seven neurons in the hidden layer, four in the output

representing the four motors of the quadcopter and three neurons in the input layer for roll,

pitch and yaw.

-7.091	 15.993	 1.945	 2.158	 -14.016	 -1.860	 -0.053	
-2.258	 15.664	 -42.185	 -17.561	 -4.011	 1.592	 -7.793	
-11.474	 -5.076	 -15.877	 -1.275	 -2.368	 -3.425	 -18.953	

Table 1: Input layer weights for NN.

 21

4.612	 6.288	 -4.612	 -6.288	
-1.724	 -1.471	 1.724	 1.471	
0.365	 -2.125	 -0.365	 2.125	
1.902	 -0.830	 -1.902	 0.830	
0.238	 3.385	 -0.238	 -3.385	
-3.827	 -1.334	 3.827	 1.334	
-4.188	 -5.432	 4.188	 5.432	

Table 2: Hidden layer weights for NN.

The output of the PD controller (𝑌9	– expected value) is compared with the output

of the NN (𝕪9 − actual value) for the same input in the test set and the difference is captured

as root-mean-square-error (RMSE). It is important to mention a zero value for RMSE

represents no difference between PD controller and a NN controller.

𝑅𝑀𝑆𝐸 =
1
𝑛 ∗ 𝑌9 − 𝕪9 N

]

9^M

	

	

 Equation 7: RMSE equation.

The number of neurons in the hidden layer in NN had a direct impact on the RMSE

of the output for the motors. The number of neurons in the hidden layer was determined

experimentally, by selecting the number of neurons that minimizes the RMSE. The RMSE

value for the test set was 0.0837; which tells us that NN is able to mimic the PD controller

very accurately.

As we can see from the experiment the quadcopter that both PD and Neural

Network are good at stabilizing. The NN is able to mimic the behavior of the PD controller.

 22

This is mainly because we used PD controller to train the NN. However, in the scenario

where the external disturbance is high, the NN based quadcopter should perform better.

 23

CONCLUSION

In this paper I proposed, built and analyzed the behavior of a quadcopter with two

different types of controller. The first controller being the traditional and popular approach

of using PID controller. Given the popularity of the PID controller in the industry, it is no

doubt a simple and default approach for most control problems. During testing I found PID

controller to be better at removing steady state error; however, it would more frequently

lead to an unstable quadcopter system. The instability was mainly due to the build-up from

the Integral part of the PID controller. If the error between the set point and the measured

point was ever large, the quadcopter controller was not able to recover quickly, and the

error would persist in from of Integral error for the time period; thus leading to eventual

crash. In order to simplify the controller, I decided to use PD controller.

However, the second approach was using neural network controller for stabilization

which can achieve set point quicker with lower oscillation (instability) than a PID

controller. I was unable to deploy the NN controller on the micro-controller to see whether

a NN based quadcopter is better able to cope with input noise and external disturbances

while improving on stability. This is something I would like to continue to validate in

future. We know from prior research [10] that NN based controller can be more stable to

measurement and external noise than a PID based controller.

In this paper, we did see that NN performs very similar to PD controller, since NN

is trained with PD controller output. Hence, NN despite being more complicated than PID

based controller, they give us the flexibility to add more robustness later down the road.

For example, we could expand the neural network to include altitude sensor values or

include the rate of change of roll, pitch and yaw values. The other added advantage of NN

based controller is that we can use a single controller for multiple dimensions (roll, pitch,

 24

yaw) and completely get rid of Equation 4. With NN controller we can calculate all four

motor values, instead of having a separate controller per dimension in case of our first

approach with PID controller and then formulating them into motor outputs.

A PID controller based implementation, also limits user from making improvement

after the initial selection of the coefficients. One can only make it better by selecting a

better set of coefficients, which again can be tiring process.

In the future the ideal next step would be to expand on the neural network work and

instead of training the network using PD control, an unsupervised approach for a self-

tuning quadcopter stabilization can be utilized such as recurrent neural networks. This

approach would allow NN to become completely independent from PID based tuning and

possibly allow us to better stabilize the quadcopter. Even though NN are more process

intensive compared to PID controller; the availability of faster and resource efficient

processors on embedded devices these day, it is completely possible to train the NN on the

fly.

 25

Bibliography

[1] Cowling, I. Yakimenko, O. Whidborne, J. and Cooke, A. A prototype of an autonomous
controller for a quadrotor UAV. European Control Conference, 2007.

[2] Erginer, B. and Altug, E. Modeling and PD control of a quadrotor VTOL vehicle. IEEE
Intelligent Vehicles Symposium, pages 894–899, Jan 2007.

[3] He, Z. Zhao, L. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-
Nichols Rules for Tuning PD Parameters. The Scientific World Journal, 2014.

[4] Shepherd III, J. F. and Tumer, K. Robust neuro-control for a micro quadrotor. In
Proceedings of the 12th annual conference on Genetic and evolutionary
computation, GECCO ’10, pages 1131–1138, 2010.

[5] Das, A. Lewis, F and Subbarao, and K. Backstepping approach for controlling a
quadrotor using lagrange form dynamics. Journal of Intelligent and Robotic
Systems, pages 127–151, 2009.

[6] Madani, T. and Benallegue, A. Adaptive control via backstepping technique and neural
networks of a quadrotor helicopter. Proceedings of the 17th World Congress of The
International Federation of Automatic Control, 2008.

[7] Nicol, C. Macnab, C. and Ramirez-Serrano, A. Robust neural network control of a
quadrotor helicopter. Canadian Conference on Electrical and Computer
Engineering, Jan 2008.

[8] Fu-Chuang, C. Back-Propagation Neural Networks for Non-linear Self-Tuning
Adaptive Control. IEEE Control Systems Magazine, Volume 10, Issue 3. Apr 1990.

[9] Stanley, K. O. and Miikkulainen, R. Evolving neural networks through augmenting
topologies. Evolutionary Computation, pages 99–127, 2002.

[10] Lower, M. and Tarnawski, W. Quadrotor Navigation Using the PID and Neural
Network Controller. University of Technology, Wybrzeże Wyspiańskiego 27,
pages 50-370 Wrocław, Poland.

[11] Artale, V. Collotte, M. Milazzo, C. Pau, G. and Ricciardello, A. Real-Time System
based on a Neural Network and PID Flight Control. Applied Mathematics &
Information Sciences. Mar 2016.

[12] Ang, K. H. Chong, G. Yun, L. PID control system analysis, design, and technology.
IEEE Transactions on Control Systems Technology, pages 559- 576. July 2005.

[13] “Crazy2Fly,” [Online] Available: http://www.lynxmotion.com/p-901-crazy2fly-
quadcopter-base-combo-kit.aspx.

