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ABSTRACT 

Hexapod systems (6 legged Stewart Platforms), offer advantages in accuracy over other positioning systems and are 
finding applications in numerous telescopes.  However, instruments with increased sophistication for modern telescopes 
continue to grow in size and required positioning accuracy.  This paper details an alternative hexapod configuration and 
design approach, particularly focused on relatively large, high precision hexapod systems supporting high mass 
payloads.   The new configuration improves accuracy, reduces actuator mass, simplifies design, and reduces system cost 
but requires modest additional control algorithm sophistication. 
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1. INTRODUCTION  
Conventional hexapod design focuses on optimizing design and placement of the six actuator-sensor units.  Essentially, 
the actuators “define” the hexapod.  For high mass payloads, maximum deflections occur in and around the powerful 
actuators, placing high emphasis on stiffness in and around actuators and their mounts (u-joints, spherical joints, etc.)  
This is particularly true for actuators that employ rotary sensors on shafts of screw or worm drives, a common topology 
because of complications associated with integrating true linear sensors into high force linear hexapod actuators.   The 
alternative configuration and control system described in this paper decouples the sensor from the actuator.  Linear 
sensors are positioned independent of actuator location, allowing independent optimization of actuator design/placement 
and sensor design/placement.  Actuators are controlled with a force control strategy to yield precise sensor lengths.  
Truly optimized sensor design/placement yields improved correlation between sensor readings and payload 
configuration for improved accuracy with less reliance on compensation tables.  The sensor “defines” the hexapod, 
substantially alleviating actuator stiffness requirements and reducing their mass and cost. 

The hexapod system shown in Figure 1 is an example of the object of this paper.  The six force actuators in Figure 1 are 
configured in a conventional arrangement, typical of many hexapod systems found across a wide assortment of 
applications, including high precision high payload telescope systems.  These actuators can be configured in any stable 
arrangement devoid of singularities, as for any useful hexapod system.  Note that the actuators are relatively slender, 
atypical of stiff actuators employed by hexapods with high precision, high accuracy, and large payload mass 
requirements.  As will be described later, measuring length of these actuators is not relevant to hexapod controls, which 
greatly reduces their stiffness requirement and mass – these actuators are two force members that are controlled to output 
time dependant specified forces rather than specified lengths.  Six linear displacement sensors are also shown in Figure 
1.  Note that these sensors are slender, as are their mounting hardware components.  Although these sensors have high 
accuracy requirements, they bear negligible load so stiffness requirements can be met with minimal mass.  As shown, the 
configuration and placement of these sensors meet certain requirements that are described later in the paper.  The sensor 
configuration requirements, although quite flexible, are driven by control algorithm issues that are discussed later in the 
paper.  Also note that Figure 1 shows that one plane contains upper joints for actuators and sensors and, similarly one 



plane contains lower joints for actuators and sensors.  For the controls described in Section 3 of this paper, upper/lower 
sensor mounts must be in their respective planes.  It is not necessary for actuator joints to also be in these planes, or even 
to be in planes at all, but it is more convenient. 

 

Figure 1.  Hexapod design concept that separates sensor and actuator functions 

The remainder of this paper is organized to first provide historical context and motivation for this hexapod design 
approach in Section 2.  Section 3 provides in depth development of the analysis and control approach that enables this 
hexapod design approach.  This is then followed by a brief discussion of sensor requirements (Section 4) and a very brief 
indication of benefits of the design approach (Section 5). 

 

2. HISTORICAL CONTEXT AND MOTIVATION FOR NEW DESIGN APPROACH 
2.1 Historical Context in Astronomy 

The Stewart platform, or hexapod, has been used in a variety of applications since its invention in the 1950s, from flight 
simulators to spinal surgery platforms.  It is commonly used today in large research telescopes to support and actively 
position secondary mirror assemblies to maintain optical alignment.  When a large telescope is pointed at a sequence of 
different astronomical objects, which may appear anywhere from the zenith to near the horizon, the gravity vector on the 
primary mirror can change radically from one object to the next.  The massive primary mirror can shift and tilt slightly in 
its mounting as a result, and the secondary end of the telescope can bend or sag slightly. 

In older, optically slower telescopes built several decades ago, the effect of primary-secondary misalignment was less 
pronounced due to the much greater optical tolerances at large f/ratios.  But for a modern primary mirror, which can 
have an f/ratio of 1.5 or less, primary-secondary misalignment can be a dominant source of misalignment and image 
quality degradation, and a means of positioning the secondary mirror in tip/tilt and the two lateral axes becomes 
necessary. 

By using a hexapod mechanism to support the secondary mirror, combined with feedback from an optical wavefront 
sensor, small angular (e.g., tip and tilt) and lateral motions may be imparted to the mirror to maintain its optical 
alignment with the primary mirror.  A hexapod has the additional advantage that it can position the secondary mirror 
about any arbitrary point in space.  If the vertex of the secondary mirror is chosen as a rotation point, for instance, no 
lateral translation or "swing" of the mirror occurs when tip/tilt is adjusted, which was a problem for older trunnion 
designs.  Active control of the secondary mirror to counteract the effects of a changing gravity vector also allows the 
telescope designer to minimize structural mass to support the sky end of the telescope, which can have structural 
stiffness and cost benefits as well. 



In the case of the Hobby-Eberly Telescope (HET) at McDonald Observatory in West Texas, the telescope uses a tracking 
device with a payload capacity of approximately 600 kg which incorporates a constantly moving hexapod to effect tip, 
tilt, and focus motions.  The telescope differs from most astronomical research telescopes in that during an observation 
the primary mirror doesn't move, and stars are actively tracked using the tracking device.  The telescope will soon be 
outfitted with a new tracker of much greater payload capacity (> 5,000 kg), and which will incorporate a robust, high 
capacity hexapod to support and precisely position this large mass.  During design of the new HET hexapod, the 
hexapod configuration described in this paper was conceived, albeit too late to be incorporated into the HET upgrade. 

2.2 Motivation for the New Design Approach 

Large scale hexapods suitable for new telescope designs typically consist of a drive screw and nut assembly serving as 
the final drive, with either the screw shaft itself or the nut being driven by a geared-down motor.  The gearing is 
introduced to increase torque available to drive the hexapod leg, and to make the assembly self-locking in the powered-
down condition.  Because of the bulk of the hexapod leg and the often complicated and bulky end joints for precision 
hexapods that support large payloads, it can be difficult or impossible to integrate a precision linear encoder that attaches 
to actuator end joints and is near the centerline of the leg to reduce mechanical flexure not seen by the encoder.  
Consequently, rather than employing direct linear measurements, actuator length determination is often estimated from 
rotary encoders on the free end of the motor shaft.  For many applications this may be good enough, but the information 
provided by the rotary encoder about the length of the hexapod extension will be degraded by the various interfaces 
between the encoder and the actual length change along the hexapod centerline.  These will include coupling windup 
between the encoder and the motor, between the motor and the driven assembly, screw windup, play between the nut and 
the screw, and bearing and joint flexure throughout the strain path of the mechanical system.  For high precision 
applications such as HET wide field upgrade and other large telescopes, this much motion, "unseen" by the encoder, can 
be well beyond typical tolerance requirements of a few microns.  If using a rotary encoder, it is better to mount it directly 
on the final screw shaft, as this will eliminate/reduce many of the above sources of error.  Nevertheless, estimating linear 
displacement can accomplished with higher accuracy by employing today’s high performance linear sensors than by 
using rotary encoders that indirectly determine displacement estimates.  The hexapod design approach described in this 
paper is motivated by a desire to enable simple mechanical integration of linear sensors into high precision, high 
accuracy hexapod systems that support heavy payloads. 

Retrofit:  There is another potential advantage to the concept presented here of linear encoders being geometrically 
independent of the hexapod force actuators, and that is in the case of an existing under-performing hexapod assembly.  If 
the existing assembly has inadequate linear encoders, or rotary encoders but insufficient stiffness to achieve the desired 
overall performance, linear encoders could be added to the assembly in the manner described here to upgrade the device 
at considerably less cost than that of a complete assembly replacement. 
 

3. ENABLING CONTROLS APPROACH 
3.1 Control Approach Overview 

Conventional approaches for controlling hexapod systems exploit actuator designs with imbedded/collocated sensors to 
determine actuator length (for example, see [1].  The sensed length is intended to be close to directly along the line of 
action of the actuator.  For a desired pose of the upper hexapod frame relative to the lower frame (i.e., desired position 
and orientation of the upper frame with respect to the lower frame), desired hexapod actuator/leg lengths are easily 
determined with simple geometrical considerations.  Deviations from the 6 desired leg lengths are read directly from the 
actuator imbedded sensor at each controller timestep to determine leg length errors.  Simple Proportional-Integral-
Derivative (PID) feedback controllers then seek to drive leg length errors to zero, thereby resulting in placing the upper 
frame in the desired pose.  This process requires calculation of desired leg lengths for a given desired upper frame pose, 
a calculation that is referred to as the inverse kinematics problem.  For this process, it is not necessary to actually 
determine pose of the upper frame relative to the lower frame from given leg lengths, a calculation that is labeled the 
forward kinematics problem. 

It is well known that the forward kinematics solution for the general hexapod is very difficult to solve analytically and, 
depending on symmetry conditions for the hexapod configuration being analyzed, will generally have 8 to 40 [2,3] 
solutions.  While some of these roots will be complex and some will represent unrealistic configurations (e.g., upper 



hexapod frame located below the lower hexapod frame), generally there will be multiple real and meaningful roots.  This 
means that a given set of leg lengths will be associated with multiple possible poses.  How does the PID control process 
described above ensure that driving the leg length errors to zero will place the upper frame in the desired pose rather than 
one of the other realistic possible poses?  In practice this is not a problem for well-controlled hexapods.  For well-
controlled hexapods, in which leg-length errors are never allowed to grow unreasonably large during planned motions 
(e.g., tracking a trajectory), errors in pose of the upper frame do not overlap other realistic solutions.   

For the conventional control approach described above, high accuracy hexapod systems require highly accurate 
measurement of leg lengths.  For hexapod systems designed for high payloads, with sensors embedded/collocated with 
actuators so that the displacement measurement is close to being directly along the line of action of the actuator, 
compliance of the actuator, actuator joints, actuator mounting blocks and the upper and lower frame in the vicinity of the 
actuator mounting locations all compromise measurement accuracy.  This leads to a requirement for a high degree of 
stiffness in these components.  Furthermore, for displacement sensors in close proximity to the associated actuator, 
intended to remain parallel to the actuator so it accurately represents actuator length, additional errors such as alignment, 
can exacerbate the stiffness issue.  Decoupling the sensor from the actuator by moving the sensor elsewhere on the 
hexapod system can alleviate the stiffness issue and improve system accuracy if properly accommodated in the control 
system.  To achieve this objective, the control system must not need to know the length of the actuator, but must operate 
on the length of the sensors only.  The sensors are light and present negligibly small loads to the hexapod compared to 
the payload loads.  Consequently, designing sensor mounting and joint hardware that exhibits very small deflections 
does not require substantial masses.  The general control strategy to accommodate the new sensor configuration will be 
described in the next paragraph and the remaining subsections in this controls section will develop the necessary math to 
enact the strategy. 

The new control strategy treats the sensors as virtual ideal actuators with embedded displacement sensors.  Displacement 
measurements for each of the six sensors are obtained at each controller timestep and compared with displacements 
associated with the desired pose of the upper frame to determine leg length errors, just as in the conventional hexapod 
control system.  A PID feedback control algorithm then determines virtual forces required to drive errors toward zero, in 
the same manner as is done with the conventional hexapod control system.  (Note that this process determines required 
force output from the virtual actuators.  For the reader that tries to discriminate between “force control” and “position 
control,” especially the reader that thinks about hexapod controllers as position control, please see the next paragraph).  
At this point, it is necessary to determine force outputs from the six real actuators that will produce the same effect on 
the upper frame as would be obtained from the six virtual actuators.  This calculation relies on the forward kinematic 
solution (determining upper frame true pose from outputs from the six displacement sensors).  Once the pose of the 
upper frame is known, the line of action of the six real actuators can be determined from their known upper and lower 
joint locations on the upper and lower frames.  Then a linear set of six equations for the six unknown real actuator force 
outputs can be obtained by summing and comparing virtual forces and moments to forces and moments developed by the 
real actuator forces (real actuator forces are unknowns in the system of equations).  Inverting this linear system of 
equations produces the required force output from the real actuators for the current timestep.  Details are presented in the 
following sections. 

Some readers may think that hexapods are being used to position the payload at the desired pose and, therefore, refer to 
their PID controller as a position controller.  However, most hexapod systems, especially those designed for large 
payloads employ conventional rotary or linear actuators, often rotary permanent magnet motors driven by servo-
amplifiers and acting through a gear system or screw to produce linear motion.  In these systems, servo-amplifiers output 
specified currents to actuator motors, which in turn create torques across the air gap (i.e., the gap between the rotor and 
stator).  The hexapod PID controller outputs fully graduated current commands to the servo-amplifiers.  Unless the 
actuators specifically employ stepper motors (uncommon for high force actuators), actuator output is ultimately achieved 
via current control through the servoamp, which is the equivalent of torque control on the motor and effectively force 
control on the actuator (for example, see [1]).   

3.2 Forward Kinematics I:  Determining Angular Orientation of Upper Frame From The Six Displacement 
Sensors 

Attesting to the difficulty in solving the forward kinematics problem, a literature survey did not find any analytical 
solutions for the completely general hexapod configuration.  Even several typical configurations, such as those used 



in many flight simulators, or the hexapod system design for the Hobby Eberly Telescope (HET) or the HET Wide 
Field Upgrade do not have known analytical solutions.  Consequently, options are to rely on numerical solutions or 
choose a configuration for the displacement sensors (the virtual actuators) with known analytical solutions.  
Numerical solutions for the general hexapod configuration requires solution of six simultaneous non-linear 
equations.  For large scale hexapods with large payloads, the upper and lower frame are typically separated by a 
meter or more and desired accuracy for telescope applications are a few microns or less.  Intuition, confirmed by 
numerical experimentation, resulted in the conclusion that it is not realistic to expect adequate accuracy from 
numerical solutions of the general hexapod forward kinematic problem with relevant dimensions spanning 6 orders 
of magnitude or more.  Again relying on literature surveys, the most useful sensor (virtual actuator) configuration 
and solution approach was described by Ji and Wu [2].  A general observation from the literature search is that we 
were not able to replicate the solution techniques described by many journal articles and we also found it necessary 
to modify the approach by Ji and Wu in order to develop a computationally reliable approach.  Nevertheless, the 
formulation from Ji and Wu serves as the basis for this section. 

We start by summarizing problem setup from Ji and Wu [2].  Figure 2, reproduced from Ji and Wu, describe 
(virtual) actuator joint locations on the lower frame (B1-B6) in coordinate system O (X,Y,Z) and joint locations on 
the upper frame (A1-A6) in coordinate system O’(X’,Y’,Z’).  Although not necessary, for most practical hexapods 
origins O and O’ are at the geometric center of the lower and upper joint locations, respectively.  Origins O and O’ 
are connected by position vector P, as shown.  The hexapod configuration addressed by Ji and Wu and in this paper 
are limited to systems such that the coordinates (X’,Y’) for joints A1-A6 are related by a positive real constant, µ, to 
the coordinates (X,Y) for joints B1-B6 when the upper and lower frames are parallel and O is directly over O’ (e.g., 
P=[0,0,Z]).  Furthermore, upper and lower joints are required to be in individual upper and lower planes 
respectively.   

 

Figure 2.  Hexapod configuration and variables 

Consequently, representing upper joint locations by vectors in O’ as An and lower joint locations by vectors in O as 
Bn for n=1,2,3,4,5,6; we have the following: 

 An = µ Bn  (1) 
 Bn = Bx i + By j + 0 k  (2) 
 An = Ax i’ + Zy j’ = µ ( Bx i’ + By j’)  (3) 

where i, j, k and i’, j’, k’ represent unit vectors in O or O’, respectively. 

The vectors representing each leg, Ln can be formed as: 

 Ln = R An + P – Bn = (µ R – I) Bn + P  (4) 



where R is a rotation matrix (also called the direction cosine matrix) and I is the identity matrix.  There are many choices 
for the rotation matrix and this topic will be discussed later.  In the forward kinematics solution, the leg lengths are 
given, Bn are known, and R and P must be determined.  An equation for leg lengths becomes: 

 Ln
2 =[ (µ R – I) Bn + P]T  [ (µ R – I) Bn + P] (5) 

 where T designates transpose. Using equation 2, this can be formatted as: 

 Ln
2  = PT P + 2 Bx_n [ iT (µ RT P – P)] + 2 By_n [ jT (µ RT P – P)] 

  - 2 µ [ Bx_n
2 (iT R i ) + Bx_n By_n (iT R j  +  jT R i ) 

+  By_n
2 (jT R j ) ] + (1+ µ2 ) ( Bx_n

2  +  By_n
2 ) 

for n = 1,2,3,4,5,6  (6) 

Equation (6) can be formatted as: 

 Q W = d  (7) 

where W = [W1, W2, W3, W4, W5, W6]T  with 

 W1 = PT P  (8) 

 W2 = iT (µ RT – I) P (9) 

 W3 = jT (µ RT – I) P (10) 

 W4 = iT R i (11) 
 W5 = iT R j  +  jT R i (12) 
 W6 = jT R j (13) 

Q is a 6x6 matrix with rows n=1,2,3,4,5,6 as: 

 Qn = [1, 2 Bx_n ,  2 By_n ,  - 2 µ  Bx_n
2 ,   - 2 µ  Bx_n   By_n ,  - 2 µ  By_n

2 ] (14) 

and d = [d1, d2, d3, d4, d5, d6]T  with  

 dn = Ln
2 - (1+ µ2 ) ( Bx_n

2  +  By_n
2 )  for n=1,2,3,4,5,6 (15) 

Equations (1) through (15) were obtained from Ji and Wu and then verified.  Since Q and d consist entirely of known 
values, equation (7) can directly be inverted to obtain W as Q-1 d.  Then W can be used to solve for the components of R 
and P.  Ji and Wu format R in terms of quaternions for this solution and present a numerical example so the reader can 
validate/compare results.  However, the example used for validation by Ji and Wu is not of practical interest for hexapod 
configurations.  Applying their solution to practical configurations resulted in complex results for quaternion 
components, which are not meaningful.  Consequently, we developed an alternative approach for solving for R and P, 
which is described below.  The approach uses direct algebra and results in complicated rather long equations that are, 
nevertheless, easily handled by today’s processors. 

First a form of the rotation matrix is selected to represent the rotational pose of the upper frame.  Euler developed 12 
options with well-studied characteristics that represent net rotations as three successive rotations by angles in sequence 
of φ, θ, ψ.  The 12 options relate these three angles to different combinations and sequences about axis X, Y, and Z. All 
twelve options have ambiguity arising from the second rotation.  The options are categorized as type I or type II.  Type I 
sequences have this ambiguity (singularity) for θ = +/- 90 degrees and type II exhibit the ambiguity at θ = 0 and 180 
degrees [4].  Since hexapods typically operate with the upper frame between 0 and +/- some angle less than 90 degrees, 
the type I Euler sequences are most relevant to avoid issues when θ is zero (e.g., when the upper frame is parallel to the 
lower frame).  We arbitrarily selected the 1-3-2 sequence, also referred to as the X-Z-Y sequence.  This means that the 
first rotation is through angle φ about the X axis; the second rotation is through angle  θ about the new Z axis; and the 



third rotation is through angle ψ  about the final Y axis.  Since our rotation operation represents an actual vector rotation 
(sometimes referred to as an alibi rotation) rather than a rotational change of the frame of reference for a vector fixed in 
space (an alias rotation), R can be obtained from Appendix E-2 of Wertz [4] by placing a negative sign in front of each 
angles shown.  Consequently R is: 

 R = [  cψcθ  −cψsθcφ + sψsφ  cψsθsφ + sψcφ 
  sθ  cθcφ   −cθsφ 
  −sψcθ  sψsθcφ + cψsφ  −sψsθsφ + cψcφ  ]    (15) 

where c = cos and s=sin. 

R has three unknowns: φ, θ, ψ.  Equations (11) through (13) exclusively involve R without the vector P and can be used 
to develop 3 equations for the three unknown angles since an expression such as ( iT R i ) picks off an individual element 
of R.  Specifically, the 3 equations become: 

 W4 = R11 = cψcθ (16) 
 W5 = R12 + R21 = −cψsθcφ + sψsφ + sθ (17) 
 W6 = R22 =  cθcφ  (18) 

The algebra becomes less involved if the following substitutions are made (for these equations, x1, x2 and x3 are simply 
labels and have no relation to the x axis): 

 cψ = x1    (then sψ = sqrt (1 – x12)   (19) 
 cθ = x2    (then sθ = sqrt (1 – x22) (20) 
 cφ = x3    (then sφ = sqrt (1 – x32) (21) 

Consequently, equations (16) – (18) can be reformatted as: 

 W4 = x1 x2   so   x2 = W4 / x1 (22) 
 W6 = x2 x3   so  x3 = W6 / x2 = W6 x1 / W4 (23) 
 W5 = -x1 sqrt (1 – x22) x3 + sqrt (1 – x12) sqrt (1 – x32) + sqrt (1 – x22) (24) 

Equation (24) becomes: 

      0  = - W5  -x1 sqrt (1 – (W4 / x1)2) (W6  x1/W4) 
 + sqrt (1 – x12) sqrt (1 – (W6  x1/W4 )2) + sqrt (1 – (W4/x1)2) (25) 

Equation (25) has one unknown, x1, and can be easily solved by a symbolic solver such as the solve function in 
MATLAB.  The result is 8 solutions that are too long to include in this paper, but are easily cut and pasted into computer 
codes such as a MATLAB script file saved as a .m file.  Once x1 is known, equations (22) and (23) determine x2 and x3 
and then the arcos function determines φ, θ, ψ and the entire rotation matrix follows.  Of course, since cos(ψ) equals 
cos(-ψ), there are really 16 solutions to equation (25). 

With 16 solutions for ψ, how can the “correct” solution be selected? This is really the same question we asked above 
with respect to the PID controller when we asked “How does the PID control process ensure that driving the leg length 
errors to zero will place the upper frame in the desired pose rather than one of the other realistic possible poses?”  The 
answer now is essentially the same as the answer suggested with respect to the PID controller.  Although multiple 
solutions of the 16 will be physically possible, if the hexapod is under good control the actual pose of the upper frame 
will be relatively close to the desired pose and, just like the PID controller, the “correct” solution will be the one closest 
to our desired pose.   

3.3 Forward Kinematics II:  Determining Displacement Vector P From the Lower Frame To The Upper Frame 
From The Six Displacement Sensors  

Now that R is determined, the 3 unknown components of P = (x i + y j + z k) can be determined from the three 
equations (8), (9), and (10).  Again, although we had difficulties with the results from Ji and Wu [2], we found it 



convenient to use their nomenclature and pursue a straight-forward algebraic approach.  Equations (8), (9), and (10) can 
be re-written as follows: 

 x2 + y2 + z2 = W1  (26) 
 U1  x + U2  y  + U3  z = W2  (27) 
 V1  x + V2  y  + V3  z = W3  (28) 

where U and V are defined by: 

 U = iT (µ RT – I) (29) 
 V = jT (µ RT – I)  (30) 

First solving (27) and (28) simultaneously for x and y as a function of z and W, and then substituting into (26) yields the 
following quadratic equation for z: 

 0 = z2 (B2 + D2 +1) + z (2 B C + 2 D G) – W1 + C2 + G2   (31) 

where 
 B = (U3 V2  - U2  V3 )/A 
 C = (U2 W3  - V2  W2 )/A 
 D = (U1 V3  - U3  V1 )/A 
 G = (V1 W2  - U1  W3 )/A 
 A = 1/(U2 V1  - U1  V2 ) 

Once z is determined, x and y are easily determined from the simultaneous solution of (27) and (28).  Of course there are 
two solutions for z and therefore two possibilities for P.  It is easy to develop a set of rules that first seeks to eliminate a 
negative answer for z (which would put the upper frame below the upper frame) and, if both solutions for z are positive, 
select the P solution closest to the desired pose of the upper frame (again assuming good hexapod control). 

3.4 Determining Control Forces Required From Real (non-Virtual) Force Actuators 

Although Sections 3.2 and 3.3 seem rather involved, in reality the results are straight forward and suitable to integrate 
with the PID algorithms targeted for moderate controller hardware running at 500 to 1000 Hz (more than fast enough for 
good control of processes much more dynamic than telescope systems).  With the results of Sections 3.2 and 3.3, the 
pose of the upper frame is known from the output of the six displacement sensors.  Additionally, desired force output 
from the virtual actuators (collinear with the 6 displacement sensors) is determined from simple PID control algorithms 
acting on errors determined by comparing sensor output with desired sensor lengths (Ln for n=1,2,3,4,5,6).  These PID 
control algorithms do not require the forward kinematic solutions developed in Sections 3.2 -3.3.  However, now the 
force commands for the real actuators must be determined such that the real actuators effect the upper frame in the same 
manner as would the virtual actuators applying the forces specified by the PID control algorithms.  For this 
determination, the line of action for the real actuators must be known and this requires the pose of the upper frame to be 
known as solved in sections 3.2-3.3. 

The equations developed in this section refer to an origin centered on the lower frame, O (X,Y,Z).  For this section the 
following nomenclature applies: 

Fv_n  for n = 1,2,3,4,5,6: Desired force output from virtual actuator ‘n’ that is collinear with the displacement 
sensor ‘n’ 
Fa_n  for n = 1,2,3,4,5,6: Force output from real actuator ‘n’; the goal is for these actuators to have the 

equivalent result on the upper frame as would be obtained from the virtual actuators 
Fv_n. 

rs_n  for n = 1,2,3,4,5,6:  Vector from origin to upper frame joint for the sensor ‘n’ (and virtual actuator ‘n’);  
rs_n = R An + P - Bn 

ra_n  for n = 1,2,3,4,5,6:  Vector from origin to upper frame joint for the real actuator ‘n’ 
us_n  for n = 1,2,3,4,5,6:  Unit vector along displacement sensor ‘n’; us_n = us_nx i + us_ny j + us_nz k 
ua_n  for n = 1,2,3,4,5,6:  Unit vector along real actuator ‘n’; us_n = ua_nx i + ua_ny j + ua_nz k 



The process is a simple force and moment summation.  For example summing forces in the x direction yields: 

 Fa_1 ua_1x + Fa_2 ua_2x + Fa_3 ua_3x + Fa_4 ua_4x + Fa_5 ua_5x + Fa_6 ua_6x =  
                       Fv_1 us_1x + Fv_2 us_2x + Fv_3 us_3x + Fv_4 us_4x + Fv_5 us_5x + Fv_6 us_6x (32) 

with similar results for the y and z directions.  Summing moments about the x axis yields equations of the form: 

 Fa_1 ( ra_1y ua_1z  - ra_1z ua_1y) + . . . + Fa_6 ( ra_6y ua_6z  - ra_6z ua_6y) =  
                         Fv_1 ( rs_1y us_1z  - rs_1z us_1y) + . . . + Fv_6 ( rs_6y us_6z  - rs_6z us_6y) (33) 

The result is 6 linear equations with six unknowns that can be configured as : 

 C Fa = D  (34) 

where Fa = [Fa_1,   Fa_2,   Fa_3 ,  Fa_4,   Fa_5,   Fa_6]T and C is the matrix of coefficients on Fa_n from the left hand side of 
equations (32) and (33) and their counterparts in/about the ‘y’ and ‘z’ axis.  D is a vector formed from the right hand side 
of equations (32) and (33) and their counterparts in/about the ‘y’ and ‘z’ axis.  For example the first of the six 
components of D is (Fv_1 us_1x + Fv_2 us_2x + Fv_3 us_3x + Fv_4 us_4x + Fv_5 us_5x + Fv_6 us_6x).  Equation (34) is quickly solved 
for the six unknown force magnitudes Fa_n by inverting C. 

3.5 Hexapod Singularities and Other Considerations 

The hexapod configuration shown in Figures 1 and 2, illustrates the general concept and one configuration that has 
several advantages and one note of caution.  First the note of caution. 

As mentioned before, numerical solutions for the forward kinematics problem are not accurate enough for most 
telescope applications.  In order to allow analytical solutions to the forward kinematic problem, we focused on a system 
such that the coordinates (X’,Y’) for upper frame sensor joints A1-A6 are related by a positive real constant, µ, to the 
coordinates (X,Y) for lower frame sensor joints B1-B6.  However, any sensor configuration is acceptable that is either 
(1) analytically solvable or, (2) sufficiently symmetric that the non-linear numerical solution can be configured into a 
single equation (or very small number of equations) with a single unknown (or very small number of unknowns) that can 
be numerically solved with high accuracy.  For the sensor configuration shown in Figure 2, the sensors need not be 
symmetrically or evenly distributed around the origins.  In fact, care must be taken to ensure that the sensor joint patterns 
are not distributed on a circle (or other two-function quadratic curves) because the Q matrix, equation (14), is then 
singular [5].  The matrix condition number for Q serves as an indicator of how close Q is to being singular.  For 
example, numerical experiments show that for the hexapod in Figure 2,  if the sensor lower joints are offset from a circle 
by 0.5 mm in an alternating pattern (e.g., B1, B3, and B5 lies on one circle and B2, B4, B6 lie on another concentric 
circle with the differences in radii being 1 mm) the condition of Q is adequate for good computational accuracy.  
Additionally, µ, the constant relating the lower sensor joint pattern to the upper sensor joint pattern should not be 1 or 
too close to 1.  When µ is 1, the sensors will be parallel, eliminating constraints represented by the 6 sensors to less than 
6 and leading to singularities in the forward kinematics solution. 

Now for some advantages.  The primary advantages stem from design freedoms offered by sensor and actuator 
configurations, the cautions of the previous paragraph not withstanding.  The fact that sensor upper joint pattern is a 
scaled version of lower sensor joint pattern still allows the sensors to be located with uneven spacing and non-
symmetrical patterns to exploit characteristics of the application or payload.  Furthermore, the configuration of real 
actuators shown in Figure 1 is very common and versatile.  Most importantly, optimization studies by Ma and Angeles 
[6] show this general configuration to have good stability characteristics. However, there is no requirement to use the 
actuator configuration shown in Figure 1.  Any stable actuator configuration is acceptable.  

4. SENSOR CONSIDERATIONS 
The hexapod configuration and control approach presented in this paper is most beneficial for relatively large, high 
precision hexapod systems supporting high mass payloads. Implementation requires use of high precision external linear 
sensors and custom mounting system.  The linear sensor and mounting system typically requires the following: 



• Absolute position feedback 
• Micron accuracy and sub-micron resolution 
• High-stiffness sensor mount 
• Appropriate degrees of freedom in the integration and mounting scheme 

Each linear sensor should be housed in an extendable structure (e.g., telescoping tube) and attached to the hexapod upper 
and lower frames with mounts that resemble typical hexapod actuator mounts, although on a much smaller scale.  
Typically the upper end of the sensor tube will be attached to the upper frame with a ball style joint (u-joint, heim joint, 
etc) and a rotary joint to allow necessary rotation about the sensor longitudinal axis.  Similarly the other end of the 
sensor tube will be attached to the lower frame with a ball style joint, but there is not a need to include a rotary joint 
since the upper joint already allows this degree of freedom.  Internally, one end of the telescoping tube will retain the 
body of the linear sensor while the other end attaches to the read head.  The tube includes linear bearings to ensure that 
the read head properly maintains alignment and is not subjected to inappropriate loads.  Bellows with purged dry air may 
also be needed. 

Loads transmitted to/through the sensor upper and lower joints are very low since actuator force loads are managed 
elsewhere in the upper and lower frames.  Consequently, although the joints for this custom sensor mount must be highly 
stiff, the mass can be small.   

A suitable baseline sensor is the LC183 from Heidenhain corporation.  Figure 3 shows a version of this sensor: 

 
Figure 3. Heidenhain enclosed linear sensor 

Specifications for the LC183: 
• Accuracy grade: +/- 3 microns 
• Measuring Length: 140 mm to 4240 mm 
• Resolution: 0.005 microns 
• Communication Protocol: EnDat 2.2 

 

5. BENEFITS OF NEW DESIGN APPROACH 
The primary benefit derived from this new design approach depends on what it is used for comparison.  If compared 
against hexapod design approaches that use linear encoders within or directly adjacent to hexapod actuators to estimate 
actuator displacement for use in controls (typical of applications with low payload requirements), the new approach 
affords the designer greater freedom in the placement of hexapod sensors remote and independent from the actuator legs 
and likely results in improved control accuracy coupled with some mass reduction (especially in mounting hardware and 
joints).  If compared against hexapod designs that employ rotary encoders on the final screw shaft or somewhere further 
back in the drive train to estimate actuator displacements, (typical of many applications with high payload requirements) 
then this approach can yield substantial actuator mass savings by reducing stiffness requirements, which reduces the 
necessary cross sectional area of load-bearing parts of the hexapod leg.  This is because critical displacement 
information needed to effect accurate and precise hexapod motion is no longer dependant on actuator or joint stiffness.  
The real actuator’s mission is simply to apply a specified force between its upper and lower mounts; controlling or 



knowing the length of the real actuators is not relevant.  Actuator length is only relevant for virtual actuators, collocated 
with the sensor. 

Preliminary assessments of potential hexapod actuator weight savings indicate that designing actuators based on material 
survival limits (e.g., no yield, adequate fatigue life, etc.) will likely allow actuator mass reduction of approximately 50% 
compared to actuators that also must be stiff enough to serve as a highly accurate, high resolution displacement sensors.  
This design approach will also likely meet requirements that actuator shape does not become so distorted under load that 
its line of action (defined as being between the actuator end mounts) adequately represents a two-force member. 
Alternatively, if stiffness concerns still exist but can be reduced by a factor of 2 compared to conventional (stiff) designs, 
actuator weight savings will be approximately 25%.  The 25% to 50% mass reductions result from things such as 
reducing end mount mass substantially and reducing size of actuator load-path components (e.g., roller screw and nut 
diameters, common components for high precision, high accuracy hexapod actuators). 

6. CONCLUSION 
A new method of configuring a hexapod positioning device has been developed that increases the design degrees of 
freedom with which the hexapod designer has to work.  The method makes possible the physical separation of the 
hexapod linear encoders from the set of force actuators, allowing much greater geometric freedom in the placement of 
the linear encoders.  In certain cases this can enable the use of linear encoders where it was previously impossible, and in 
other cases it can provide a means of achieving significant mass reduction by reducing the stiffness requirement 
associated with the use of rotary encoders.  Finally, it may also allow inexpensive accuracy upgrades to existing hexapod 
systems. 
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