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Boundary integral methods (BIMs) solve constant coefficient, linear

partial differential equations (PDEs) which have been formulated as integral

equations. Implicit BIMs (IBIMs) transform these boundary integrals in a

level set framework, where the boundaries are described implicitly as the zero

level set of a Lipschitz function. The advantage of IBIMs is that they can work

on a fixed Cartesian grid without having to parametrize the boundaries. This

dissertation extends the IBIM model and develops algorithms for problems in

two application areas.

The first part of this dissertation considers nonlinear interface dynamics

driven by bulk diffusion, which involves solving Dirichlet Laplace Problems for

multiply connected regions and propagating the interface according to the so-

lutions of the PDE at each time instant. We develop an algorithm that inherits

the advantages of both level set methods (LSMs) and BIMs to simulate the

nonlocal front propagation problem with possible topological changes. Simu-
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lation results in both 2D and 3D are provided to demonstrate the effectiveness

of the algorithm.

The second part considers wave scattering problems in unbounded do-

mains. To obtain solutions at eigenfrequencies, boundary integral formulations

use a combination of double and single layer potentials to cover the null space

of the single layer integral operator. However, the double layer potential leads

to a hypersingular integral in Neumann problems. Traditional schemes involve

an interpretation of the integral as its Hadamard’s Finite Part or a compli-

cated process of element kernel regularization. In this thesis, we introduce

an extrapolatory implicit boundary integral method (EIBIM) that evaluates

the natural definition of the BIM. It is able to solve the Helmholtz problems

at eigenfrequencies and requires no extra complication in different dimensions.

We illustrate numerical results in both 2D and 3D for various boundary shapes,

which are implicitly described by level set functions.
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Chapter 1

Introduction

This thesis develops numerical algorithms for solving constant coefficient linear partial differ-

ential equations (PDEs) in the implicit boundary integral framework [Kublik et al. (2013)]. We

focus on two tasks: the Mullins-Sekerka flow simulation and the exterior Neumann Helmholtz

problem. The Mullins-Sekerka model is a Stefan-type free boundary problem, where the

boundary evolution is dynamically controlled by the solution of the Laplace equation from

both sides of the hypersurface. The exterior Neumann Helmholtz problem is to construct a

time harmonic wave outside a bounded region with prescribed normal derivatives as boundary

conditions. In both scenarios, one seeks the solution in the unbounded exterior of a bounded

domain. This leads to computational challenges and motivates boundary integral methods

(BIMs). We address motivations for using implicit boundary integral methods (IBIMs). We

explain simulation strategies and illustrate the effectiveness of these strategies with numerical

results. We also introduce an extension of IBIMs to tackle hypersingular-type integrals and

provide numerical results to demonstrate the effectiveness of this extension.

The motivation for studying free boundary problems with interface dynamics driven by

diffusion is a wide variety of applications, including dendritic growth in crystallization and

solidification [W. Kurz (1986); Flemings (2006)], phase separation and coarsening for melt-

ing alloy [Cahn & Hilliard (1959); Fornaro et al. (2006)], bacterial colony growth [Matsushita
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& Fujikawa (1990); Golding et al. (1998)], flame propagation [Caffarelli & Vázquez (1995);

Buckmaster & Ludford (2008)], and drying water films [Samid-Merzel et al. (1998)]. The

application we address is the Mullins-Sekerka flow [Mullins & Sekerka (1963)]. It was pro-

posed originally as an isotropic model for solidification and liquidation of materials in an un-

dercooling environment. The flow is a high order, nonlinear, nonlocal model, with boundary

(interface) evolution depending on the solution of the Dirichlet Laplace problem


∆u(x) = 0, x ∈ Rm \Γt ,

u(x) = κ(x), x ∈ Γt ,

where we use Γt to denote the C 2 boundary of an open bounded region Ωt at time t and κ to

denote its (mean) curvature.

The second problem we study is the exterior Neumann Helmholtz problem:


(∆+ k2)u(x) = 0, x ∈ Rm \ Ω̄.

∂u
∂n(x) = g(x), x ∈ ∂Ω.

The Helmholtz equation governs the steady state solution of wave equations in a homoge-

neous medium. Its applications include cloaking in aerospace engineering [Greenleaf et al.

(2008); Kohn et al. (2008)], geophysics and seismology [Burridge (1976); Shearer (2003)],

and medical imaging [Kuchment & Kunyansky (2008); Ammari et al. (2010)]. The exterior

Helmholtz problem with Neumann boundary conditions models a sound-hard acoustic wave

scattering or an electromagnetic wave scattering by a perfect conductor.

Many different methods have been proposed to solve a second order linear PDE in irregu-

lar domains, including finite difference methods (FDMs) [Johansen & Colella (1998); Gibou

& Fedkiw (2004); Bedrossian et al. (2010)], finite element methods (FEMs) [Babuska (1970);

Hansbo & Hansbo (2004); Dolbow & Harari (2009)], and immerse interface methods (IIMs)
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[Leveque & Li (1994); Li & Ito (2006)]. For a PDE with constant coefficients, boundary inte-

gral methods (BIMs) [Atkinson & Chandler (1990); Helsing (2009)] become a viable option.

This is due to the existence of free space Green’s function (fundamental solution) [Malgrange

(1956); Ehrenpreis (1960); Wagner (2009)]. That is, given a constant coefficient linear opera-

tor L , L u = h, we have the fundamental solution Φ that solves the inhomogeneous equation

with the Dirac δ

L Φ = δ (x).

A solution is then provided by the property of convolution and δ :

L (Φ∗h) = L Φ∗h = δ (x)∗h(x) = h(x).

Green’s identity can further be used to transform the integral in the domain into an integral

on the boundary. In the case of a PDE with Dirichlet boundary conditions, the strategy for

solving the PDE is a two step process:

1. Solve for β satisfying the following boundary integral equation:

∫
Γ

K(x,y(s))β (y(s))ds+λβ (x) = f (x), x ∈ Γ(= ∂Ω). (1.1)

2. To evaluate the solution u at any point x ∈ Rm \Γ, compute the boundary integral:

u(x) =
∫

Γ

K̃(x,y(s))β (y(s))ds, x ∈ Rm \Γ.

In the above equations, λ is a constant, K, K̃ (the kernels) are related to the fundamental

solution, and y(s) is a parametrization of the boundary Γ.

We refer interested readers to [Kress (2012)] for an extensive study on boundary integral
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methods for various problems.

In the simulation of Mullins-Sekerka flow and the solution to the exterior Helmholtz prob-

lem, there are two main advantages that make BIMs attractive:

1. The computation domain is restricted to the boundary, regardless of the boundedness of

the region where the solution is desired.

2. In many cases, the solution produced automatically satisfies the boundary condition at

infinity (for example, the Sommerfeld radiation condition for the exterior Helmholtz

problem).

These advantages do not come for free. One numerical complication is the discretization

of computation domain, which typically requires an explicit parametrization of the boundary.

For simulations of a front evolution problem, re-parametrization can be difficult and expensive

when there are topological changes, especially in higher dimensions. Another challenge is the

integrals involve singular kernels K and K̃, where the singularities come from the fundamen-

tal solution. The singularities are particularly severe for Neumann problems, where a normal

derivative is taken and a hypersingular integral is introduced to cover the null space of the sin-

gular integral operator [Burton & Miller (1971)]. In this case, the boundary integral does not

converge in the traditional Riemann sense. Even though the computation of Hadamard’s finite

part (HFP) has been introduced [Kutt (1975)], and numerical schemes have been researched

[Paget (1981); Liu & Rizzo (1992); Hackbusch & Sauter (1993); Frangi (1998); Aimi &

Diligenti (2002)], the regularization method to account for the quadrature at singularities is

geometrically specific and usually inconsistent in different dimensions.

We summarize the challenges this thesis deals with and the proposed strategies:

1. For interface dynamics, it is difficult for FDMs and FEMs to solve exterior problems,

whereas traditional BIMs have limitations on topological changes.

- Our strategy is to develop a BIM for level set methods (LSMs). These algorithms
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will inherit advantages from both methods; i.e. the capability to solve exterior domain

problems (from BIMs) without artificial boundary conditions and the ease in handling

irregular, evolving domains that change topology without the need of parametrization

(from LSMs).

2. For the exterior Neumann Helmholtz Problem, FDMs and FEMs have the same diffi-

culties solving exterior problems, and conventional BIMs have complicated inconsistent

regularization methods for hypersingular integrals.

- Our strategy is to use an extrapolatory, implicit BIM that evaluates the integral in its

natural definition. This method is consistent in all dimensions.

The structure of this thesis is as follows. Chapter 2 introduces the typical boundary integral

formulations, their theoretical background, and available numerical schemes. We restrict our

attention to the Dirichlet Laplace problem and the exterior Neumann Helmholtz problem, the

principal concerns of this thesis. Chapter 3 describes LSMs, the techniques in implement-

ing interface evolution in that context, and introduces the implicit boundary integral methods

(IBIMs) [Kublik et al. (2013)], which transforms a typical BIM (1.1) into a level set based

integral ∫
Rm

KΓ(x,y)β̄ (y)δε(y)dy+λβ̄ (x) = f̄ (x), x ∈ Γ,

where Γ is a C 2 boundary, the bar denotes a value extension from Γ (the zero level set) into

Rm, and the subscript KΓ denotes a weighted restriction of the kernel K to be evaluated on Γ.

In Chapter 4, we develop an IBIM for the high order nonlinear Mullins-Sekerka flow.

We describe implementation techniques including a connected component labeling (CCL) al-

gorithm [Rosenfeld & Pfaltz (1966); Samet & Tamminen (1988); Dillencourt et al. (1992);

Di Stefano & Bulgarelli (1999)] to identify components of a complicated topology. We

demonstrate the effectiveness of this method in simulating topological changes. To the best of

our knowledge, no BIM has been able to do this. The IBIM works for unbounded domains.
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To our best knowledge, no LSM has this capability.

In Chapter 5 we derive an extrapolatory implicit boundary integral method (EIBIM) for

Helmholtz problems, in particular for the exterior Neumann Helmholtz problem, which typi-

cally requires solving an integral equation with a hypersingular kernel K. Our method takes

advantage of extending the kernel from Γ (the zero level set) to Rm in each variable and takes

the following form:

∫
Rm

KΓ(dΓ(y)),Γ(x,y)β̄ (y)W (y)dy+λβ̄ (x) = f̄ (x), x ∈ Γ.

EIBIM provides a way to evaluate the natural definition of the relevant class of hypersingular

integrals. The algorithm is consistent in different dimensions for various geometries with

fewer complications than conventional finite part based BIMs.

We conclude and describe future directions in Chapter 6. As both IBIM and EIBIM rely on

closest points to a manifold, they have the potential to generalize to applications on manifolds

with boundaries. This thesis provides some of the necessary foundation for such applications.
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Chapter 2

Overview of Boundary Integral Methods

In this chapter, we summarize solving PDEs with boundary integral formulations and intro-

duce some relevant numerical methods. Although the derivations can easily be generalized to

a wide class of differential equations, we focus on Dirichlet Laplace Problems (for Mullins-

Sekerka Dynamics) and the exterior Neumann Helmholtz Problem (for wave scattering). We

go over the formulations for the interior Dirichlet Laplace Problem on simply connected re-

gions in Section 2.1, multiply-connected regions in Section 2.2, and the Helmholtz problems

in Section 2.3. Section 2.4 will be devoted to introduce numerical methods for BIMs.

Throughout this thesis we assume Ω ⊂ Rm, m = 2, 3 bounded, its boundary Γ = ∂Ω is

a (disjoint) collection of closed compact C 2 hyperinterfaces, the symbols n+(= n), n− de-

note the unit normal vectors directed into exterior and interior regions, and all boundaries are

parametrized with the element measure. The exterior is defined to be the unbounded domain.

The main problems of interest are:
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Definition 1. Interior Dirichlet Laplace Problem

Find u ∈ C 2(Ω)∩C (Ω̄) which satisfies the following equations:


∆u(x) = 0, x ∈ Ω.

u(x) = f (x), x ∈ Γ.

(2.1)

Definition 2. Exterior Dirichlet Laplace Problem

Find u ∈ C 2(Rm \ Ω̄)∩C (Rm \Ω) which satisfies the following equations:



∆u(x) = 0, x ∈ Rm \ Ω̄.

u(x) = f (x), x ∈ Γ.

lim|x|→∞ |u(x)|< ∞, m = 2.

lim|x|→∞ u(x) = u∞, m = 3.

(2.2)

The exterior Dirichlet problem has very different behavior in 2D and 3D. In 2D, we only re-

quire the far-field behavior to be bounded and the solution will be unique. In 3D, boundedness

is not enough and prescribing a far-field value is necessary to guarantee the uniqueness of the

solution.

We take the following sign convention for the fundamental solutions (free space Green’s

function) in Rm:

∆yΦ(x,y) = δ (|x−y|).

The fundamental solutions relative to this convention in R2 and R3 are

Φ(x,y) =


1

2π
ln(|x−y|), x,y ∈ R2.

1
4π

−1
|x−y| , x,y ∈ R3.
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With the fundamental solutions, we define the operators S ,D ,D∗,T : C∞(Γ) → C(R2) as

follows:

(S α)(x) : =
∫

Γ

Φ(x,y)α(y)dy(s).

(Dα)(x) : =
∫

Γ

∂Φ

∂ny
(x,y)α(y)dy(s).

(D∗
α)(x) : =

∫
Γ

∂Φ

∂nx
(x,y)α(y)dy(s).

(T α)(x) : =
∫

Γ

∂ 2Φ

∂nx∂ny
(x,y)α(y)dy(s). (2.3)

2.1 Simply Connected Region

2.1.1 Interior Dirichlet Problem

From the harmonicity of u and the property of Φ we have

χΩ(x)u(x) =
∫

Ω

u(y)∆yΦ(x,y)−∆yu(y)Φ(x,y)dy,

where χΩ is the indicator function of Ω. Using Green’s second identity,

χΩ(x)u(x) =
∫

Ω

u(y)∆yΦ(x,y)−∆yu(y)Φ(x,y)dy

=
(∫

Γ

(
u(y)

∂Φ(x,y)
∂n+y

− ∂u(y)
∂n+y

Φ(x,y)
)

dS(y)
)

=
∫

Γ

(
−u(y)

∂Φ(x,y)
∂n−y

+
∂u(y)
∂n−y

Φ(x,y)
)

dS(y). (2.4)
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In order to obtain a formulation using only the values of u on the boundary (Dirichlet condi-

tions), we seek a function v ∈ C 2(Rm \ Ω̄)∩C (Rm \Ω), satisfying


∆v(x) = 0, x ∈ Rm \ Ω̄.

∂v
∂n+ (x) =

∂u
∂n+ (x), x ∈ Γ.

lim|x|→∞ v(x) = 0.

(2.5)

The solution to this exterior Neumann problem is unique. Pick R sufficiently large such that

Ω ⊂ BR(x), where BR(x) is a ball of radius R centered at x. Similar derivation gives

χBR(x)\Ω̄
(x)v(x) =

∫
Rm\Ω̄

v(y)∆yΦ(x,y)−∆yv(y)Φ(x,y)dy

=
(∫

Γ

(
v(y)

∂Φ(x,y)
∂n−y

− ∂v(y)
∂n−y

Φ(x,y)
)

dS(y)
)

+
∫

∂BR(x)

(
v(y)

∂Φ(x,y)
∂n+y

− ∂v(y)
∂n+y

Φ(x,y)
)

dS(y). (2.6)

We consider the behavior of the last term on the right hand side when R → ∞. In three dimen-

sions, we have the following estimate:

|
∫

∂BR(x)

(
v(y)

∂Φ(x,y))
∂n+y

− ∂v(y)
∂n+y

Φ(x,y)
)

dS(y)|

<
1

4πR2

∫
∂BR(x)

max |v(y)|dS(y)+
1

4πR

∫
Γ

| ∂v
∂n+

|dS(y)

<
4πR2ε

4πR2 +
C

4πR
→ 0 as R → ∞,

where we use the fact that
∫

Γ
∂v
∂n +

∫
BR(x)

∂v
∂n = 0 because v is harmonic in Ω+∩BR(x) and that

|Γ| is finite. In two dimensions, we have a similar estimate:

|
∫

∂BR(x)

(
v(y)

∂Φ(x,y)
∂n+y

− ∂v(y)
∂n+y

Φ(x,y)
)

dS(y)|

<
1

2πR

∫
∂BR(x)

|maxv(y)|dS(y)+
1

2π
lnR

∫
Γ

| ∂v
∂n+

|dS(y).
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The first term goes to zero as in 3D. For the second term, although lnR → ∞ as R → ∞, we

have the following lemma that is only valid in 2D:

Lemma 1. Let Ω be a bounded region in R2,


∆v(x) = 0, x ∈ R2 \ Ω̄,

supx∈R2\Ω |v(x)| < ∞,

then we have the compatibility condition

∫
∂Ω

∂v
∂n

= 0.

Proof. Without loss of generality, 0 ∈ Ω. Pick r, R sufficiently large such that Ω− ⊂ Br(0)⊂

BR(0). Since v, Φ(0,y) are both harmonic in the annulus, we have from Green’s identity of v

and Φ(0,y) on the annulus r < |y|< R, we have

1
r

∫
∂Br(0)

vds− lnr
∫

∂Br(0)

∂v
∂n−

ds =
1
R

∫
∂BR(0)

vds− lnR
∫

∂BR(0)

∂v
∂n+

ds.

But v is harmonic in (Rm \ Ω̄)∩BR(0), or (Rm \ Ω̄)∩Br(0) respectively, we can then change

the above to

1
r

∫
∂Br(0)

vds− lnr
∫

Γ

∂v
∂n+

ds =
1
R

∫
∂BR(0)

vds− lnR
∫

Γ

∂v
∂n−

ds. (2.7)

Now the left hand side and the first term on the right hand side is bounded, since lnR → ∞, we

must have
∫

Γ
∂v
∂n ds = 0.

Remark 1. In 3D, the fundamental solution 1
4πR → 0 as R → ∞ hence the above argument does

not work. The integral
∫

Γ
∂v
∂n dS(y) is not necessarily 0.

Also notice that the second term is then zero in (2.7) as well, since the lemma is valid for
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any far-field condition (though for the double layer formulation with respect to the interior

Dirichlet problem v → 0 as |x| → ∞), we have the mean value property for the far field that is

only true for 2D:

v∞ =
1

2πr

∫
∂Br(0)

vds for Ω
− ⊂ Br(0).

From the above lemma, we have that in both 2D and 3D, the last integral in (2.6) will go

to zero as R → ∞. Summing up (2.4) and (2.6), we have the boundary integral formulation for

2D and 3D:

∫
Γ

(
u(y)− v(y)

)∂Φ(x,y)
∂n+y

dS(y) =


u(x) , x ∈ Ω.

v(x) , x ∈ Rm \ Ω̄.

(2.8)

This integral is usually termed double layer potential in the potential theory. The normal

derivative of the fundamental solution is referred to as the kernel, whereas the jump between

the interior solution and its adjoint solution across the boundary u− v is called the double

layer density function. The integral is not yet defined for x ∈ Γ because of the singularity in

Φ. We need the next lemma for x ∈ Γ:

Lemma 2. Let β ∈ C (Rm)∩C 2(Rm \Γ). For x ∈ Γ, we have

lim
h→0

∫
Γ

β (y)
∂Φ(x±hn+x ,y)

∂n+y
dS(y) =

∫
Γ

β (x)
∂Φ(x,y)

∂n+y
dS(y)∓ 1

2
β (x). (2.9)
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Use the Dirichlet data u on the boundary, we have the double layer boundary integral formu-

lation for interior Dirichlet problems.

Double Layer Formulation for the Interior Dirichlet (Laplace) Problem:

1. Solve the density β (= u− v) from the integral equation

∫
Γ

∂Φ(x,y)
∂n+y

β (y)dS(y)+
1
2

β (x) = f (x), x ∈ Γ. (2.10)

2. The solution u at any x ∈ Ω is expressed in integral form:

u(x) =
∫

Γ

∂Φ(x,y)
∂n+y

β (y)dS(y), x ∈ Ω. (2.11)

The double layer potential is not the only boundary integral formulation we can obtain

from the Green’s identities. Instead of matching the normal derivative of the interior solution

as in (2.5), we can choose to match the solution itself on the boundary to obtain a different

adjoint exterior problem:


∆v(x) = 0, x ∈ Rm \ Ω̄.

v(x) = u(x), x ∈ Γ.

lim|x|→∞ v(x) = 0.

(2.12)

We follow the same procedures as in the derivation of double layer potential and get

∫
Γ

( ∂v
∂n+y

(y)− ∂u
∂n+y

(y)
)
Φ(x,y)dS(y) =


u(x) , x ∈ Ω.

v(x) , x ∈ Rm \ Ω̄.

(2.13)
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The integral and the jump β (y) = ∂v
∂n+y

(y)− ∂u
∂n+y

(y) are called the single layer potential and

the single layer potential density. In this case, kernel singularity is weak and the integral is

well defined in the Riemann sense. We summarize the single layer formulation for the interior

Dirichlet Laplace problem.

Single Layer Formulation for the Interior Dirichlet (Laplace) Problem:

1. Solve the density β (= ∂v
∂n+y

− ∂u
∂n+y

) from

∫
Γ

Φ(x,y)β (y)dS(y) = f (x), x ∈ Γ. (2.14)

2. The solution u at x ∈ Ω can be obtained using the integral

u(x) =
∫

Γ

Φ(x,y)β (y)dS(y), x ∈ Ω. (2.15)

Remark 2. Although the single layer formulation (2.14) for Dirichlet problems has only a

weak singularity in the boundary integral, it is hard to invert this integral operator numerically

because the condition number of the discretized operator is large. The double layer formula-

tion controls the condition number with its dominant diagonal 1
2 . Therefore, it is more popular

to use a more singular double layer formulation (2.10) to solve Dirichlet problems. Creating a

good numerical quadrature near this singularity is the main theme in this research direction.

2.1.2 Neumann Problem

For Neumann problems, we are given the normal derivatives on the boundary. For the scope

of this thesis, we focus on the exterior Neumann problem, which has a unique solution once

the prescribed Neumann data satisfy the compatibility condition
∫

Γ
∂u
∂n = 0. Intuitively, we
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take the normal derivative of the previous formulations (for Dirichlet problems) to obtain the

formulations for Neumann problems. We need the following lemma:

Lemma 3. Let β ∈ C (Rm)∩C 2(Rm \Γ). For x ∈ Γ, we have

lim
h→0

∫
Γ

β (y)
∂Φ(x±hn+x ,y)

∂n+x
dS(y) =

∫
Γ

β (x)
∂Φ(x,y)

∂n+x
dS(y)± 1

2
β (x). (2.16)

With Lemma 3 and the single layer formulation (2.14)(2.15), exterior Neumann problems

with ∂u
∂n(x) = g(x) on the boundary can be solved.

Single Layer Formulation for the Exterior Neumann (Laplace) Problem:

1. Solve the density β (= ∂v
∂n+y

− ∂u
∂n+y

) from

∫
Γ

∂Φ(x,y)
∂n+x

β (y)dS(y)+
1
2

β (x) = g(x), x ∈ Γ. (2.17)

2. The solution u at any x ∈ Rm \ Ω̄ can be obtained using the integral

u(x) =
∫

Γ

Φ(x,y)β (y)dS(y), x ∈ Rm \ Ω̄. (2.18)
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Analogously, we take the normal derivative of (2.8) on x and obtain the double layer formula-

tion for the exterior Neumann Laplace problem.

Double Layer Formulation for the Exterior Neumann (Laplace) Problem:

1. Solve the density β (= u− v) from

∂

∂n+x

∫
Γ

∂Φ(x,y)
∂n+y

β (y)dS(y) = g(x), x ∈ Γ. (2.19)

2. The solution u at any x ∈ Ω can be obtained using the integral

u(x) =
∫

Γ

∂Φ(x,y)
∂n+y

β (y)dS(y), x ∈ Rm \ Ω̄. (2.20)

For the exterior Laplace Neumann problem, the single layer formulation is a more popular

choice. The double layer inversion (2.19) for the Neumann Problem contains a second deriva-

tive of the fundamental solution. The integral (2.19) is hypersingular and does not converge in

the Riemann sense. We discuss more in depth why we are interested in this integral for wave

scattering problems in Chapter 5.
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2.2 Formulations on a Multiply-Connected Region

In this section, we focus on the more popular double layer formulation for the Dirichlet

Laplace problem. For the exterior problem of one component, the derivation is similar to

the previous section with two complications:

1. The far-field value u∞ (for Rm, m ≥ 3).

2. Unlike D + 1
2I , the operator D − 1

2I has nontrivial null space. The null space is one

dimensional generated by ψ0, where
∫ ∂ψ0

∂n = 0.

It can be shown that
〈

1
|r|m−2 ,ψ0

〉
̸= 0 for Rm. With a modified kernel to cover the null space,

the double layer formulation for the exterior (of one component) Dirichlet Laplace problem

takes a similar form as (2.10)(2.11).

Double Layer Formulation for the Exterior Dirichlet (Laplace) Problem:

1. Solve the density β from

∫
Γ

β (y)
(∂Φ(x,y)

∂n+y
− 1

|x−y|m−2

)
dS(y)− 1

2
β (x) = f (x)−u∞, x ∈ Γ. (2.21)

2. The solution u at any x ∈ Ω+ can be obtained using the integral

u(x) =
∫

Γ

β (y)
(∂Φ(x,y)

∂n+y
− 1

|x−y|m−2

)
dS(y)+u∞, x ∈ Rm \ Ω̄, (2.22)

where u∞ = 0 for m = 2.

For a multiply-connected region with L holes {Ωi}L
i=1, the null space of the operator be-

comes more complicated and functions perpendicular to the image (or inside the null space) of
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the integral operator need to be added to the layer formulations. In short, one can use the span

of {Φ(x− zi)} (i = 1 . . .L) to cover the null space of the integral operator, where zi is inside

each hole Ωi. For an extensive justification of the formulation, we refer interested readers to

[Mikhlin et al. (1964); Greenbaum et al. (1993)]. We list the three categories for a general

multiply connected region and summarize the double layer formulations for each respective

Dirichlet Laplace problem.

General Double Layer Formulation for the exterior Dirichlet (Laplace) Problem in 2D:

Let R2 \ Ω̄ be a region with boundary Γ = ∪L
i=1Γi, where each Γi is C 2. Namely, R2 \ Ω̄ has L

holes, each denoted Ωi. Then the Dirichlet Laplace problem can be solved with the following

procedure

1. Solve β , Ai (i = 1 . . .L) for x ∈ Γ from the following system:



∫
Γ

(
∂Φ(x,y)

∂ny
−1
)
β (y)dS(y)− 1

2β (x)+∑
L
i=1 AiΦ(x− zi) = f (x).

∑
L
i=1 Ai = 0.∫

Γi
β (y)dS(y) = 0, i = 1 . . .L−1.

(2.23)

2. The solution for x ∈ R2 \ Ω̄ is represented by

u(x) =
∫

Γ

β (y)
∂Φ(x,y)

∂ny
dS(y)+

L

∑
i=1

AiΦ(x− zi), (2.24)

where zi ∈ Ωi are arbitrary points in the holes.
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For an interior (bounded) region with L holes, we do not need the sum of coefficients to

guarantee the boundedness of the solution as in the exterior case. But we need compatibility

conditions for all the holes 1 . . .L, since we have L+1 boundary pieces for L holes. The result

is summarized as follows.

General Double Layer Formulation for the interior Dirichlet (Laplace) Problem in 2D:

Let Ω ⊂ R2 be a region with boundary Γ = ∪L
i=0Γi, where each Γi is C 2 and Γ0 denote the

boundary adjacent to the unbounded region. Namely Ω has L holes, each denoted Ωi. Then

the Dirichlet Laplace problem can be solved with the following procedure

1. Solve β , Ai (i = 1 . . .L) for x ∈ Γ from the following system:


∫

Γ

∂Φ(x,y)
∂ny

β (y)dS(y)+ 1
2β (x)+∑

L
i=1 AiΦ(x− zi) = f (x).∫

Γi
β (y)dS(y) = 0, i = 1 . . .L.

2. The solution for x ∈ Ω is represented by

u(x) =
∫

Γ

β (y)
∂Φ(x,y)

∂ny
dS(y)+

L

∑
i=1

AiΦ(x− zi),

where zi ∈ Ωi are arbitrary points within the holes.
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The fundamental solution in 3D guarantees the boundedness of the extra terms ∑
L
i=1 AiΦ(x−

zi). Therefore the formulation for an interior or an exterior region in 3D is almost identical.

General Double Layer Formulation for the Dirichlet (Laplace) Problem in 3D:

Let Ω be a region with boundary Γ = ∪L
i=0Γi, where each Γi is connected and Γ0 is the bound-

ary adjacent to the unbounded region, if such boundary exists. Namely, Ω has L holes, each

denoted Ωi. Then the Dirichlet Laplace problem can be solved with the following procedure

1. Solve β , Ai (i = 1 . . .L) for x ∈ Γ from the following system:


∫

Γ

(
∂Φ(x,y)

∂ny
− 1

|x−y|
)
β (y)dS(y)− 1

2β (x)+∑
L
i=1 AiΦ(x− zi) = f (x)−u∞.∫

Γi
β (y)dS(y) = 0, i = 1 . . .L.

(2.25)

2. The solution for x ∈ Ω is represented by

u(x) =
∫

Γ

β (y)
∂Φ(x,y)

∂ny
dS(y)+

L

∑
i=1

AiΦ(x− zi)+u∞, (2.26)

where zi ∈ Ωi are arbitrary points within the holes. If Ω is an interior region, then

u∞ = 0.

To show these linear integral systems are uniquely solvable, we cite some of the results

from potential theory and boundary integral equations in [Kress (2012)]. We begin with prop-

erties of a compact linear operator.

Lemma 4. Let K : X → X be a compact linear operator on a normed linear space X, then

I −K is injective iff it is surjective.

Therefore, we only need to show the operators we deal with is linear, compact, and is either

injective or surjective. Furthermore, we have the characteristic of the spectrum of compact
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linear operators.

Lemma 5. Let K : X → X be a compact linear operator. The spectrum σ(K) consists of only

point spectrum, 0 ∈ σ(K) and σ(K) is at most countable.

This tells us that once we can confirm the linear integral equation consist of a compact

linear integral operator, we only need to make sure the eigenspace is {0} for the system to

be uniquely solvable. Since linearity is readily established, we only need to worry about

compactness. However, from the usual derivations in Fredholm Theory, one has the following

result:

Theorem 1. Integral operator with continuous or weakly singular kernel is a compact opera-

tor on C (Γ) if Γ is of class C 1.

Using this theorem, one can show compactness for S , D , D∗and the modified kernels

for exterior and multiply connected regions since all the kernels are at most weakly singular.

Because linear combination of compact operators are again a compact operator, one can verify

that the previous formulations consist of compact operators on C (Γ). We only need to worry

about covering the eigenspaces. We refer the details of how the eigenspaces are covered by

modified Laplace kernels for exterior problems to [Kress (2012)], and for multiply connected

regions to [Mikhlin et al. (1964)]. We will use the formulations (2.23)(2.24)(2.25)(2.26) as

part of the simulations of the Mullins-Sekerka flow in Chapter 4.

2.3 Helmholtz Problem

The Helmholtz operator differs the Laplace operator by a constant:

∆u+ k2u = 0. (2.27)
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Its fundamental solution Φ takes a very different form

Φ(x,y) =


− i

4H(1)
0 (k|x− y|), if n = 2.

− eik|x−y|

4π|x−y| , if n = 3.
(2.28)

However, the derivation is identical formally to that of Laplace equation since the terms with

constant coefficients cancel out:

∫
Ω

(u(y)(k2 +∆y)Φ(x,y)−Φ(x,y)(∆y + k2)u(y))dy

=
∫

Ω

(u(y)∆yΦ(x,y)−Φ(x,y)∆yu(y))dy

=
∫

Γ

(
u(y(s))

∂Φ(x,y(s))
∂n−y

−Φ(x,y(s))
∂u(y(s))

∂n−y

)
ds.

Therefore formally we obtain the same formulations as the Laplace problems and we shall not

repeat the derivations. The null space of the integral operators, however, are very different.

While the integral operator in the single layer formulation for the exterior Neumann Laplace

problem has trivial null space, the integral operator in the single layer formulation for exterior

Neumann Helmholtz problem is nonempty. Furthermore, its null space is generally infinite

dimensional and the basis is domain specific. Hence, there is no easy way to modify the

kernel as in the case of the exterior Dirichlet Laplace problem. We leave the discussion of the

solution to this problem and its numerical challenges in Chapter 5.

2.4 Numerical Methods

2.4.1 Discretization of Operator

With the derived analytic boundary integral formulations, it is natural to ask for a numerical

solution. The validity of most numerical methods are based on having a discretized operator
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that approximates the analytic operator, as the following theorem in [Kress (2012)]:

Theorem 2. Let X, Y be Banach spaces and K : X → Y a bounded linear operator with

bounded inverse K−1 : Y → X. Assume the sequence of bounded linear operators Kn : X →Y

converges to K in operator norm, ||Kn −K|| → 0 as n → ∞. Then for sufficiently large n, the

inverse operators K−1
n : Y → X exist and for the solutions of the equations

Kβ = f , Knβn = fn,

we have

||βn −β || ≤ ||K−1||
1−||K−1(Kn −K)||

(
||Kn −K|| ||β ||+ || fn − f ||

)
.

Proof. Take n so that ||K−1(Kn−K)||< 1, the inverse of I−K−1(K−Kn) =K−1Kn exists and

we have K−1
n =

(
I −K−1(K −Kn)

)−1
K−1 from the results of Neumann series. The operator

norm of K−1
n can also be bounded by taking this series expansion. The error result then follows

from the usual splitting argument βn −β = K−1
n

(
( fn − f )+(K −Kn)β

)
.

The constraints on the operator can be relaxed to a compact, injective linear operator with

compactness of the set {Kn}. Since we already established the compactness of the integral

operators of interest in Theorem 1, the numerical solution is justified provided the integral

operator is well approximated.

Many numerical methods have been proposed to discretize the operators. Some of the

most common methods are

1. Nyström Methods;

2. Collocation Methods;

3. Boundary Element Methods.

The Nystöm methods assumes the knowledge of an explicit parametrization of the boundary.

Once the parametrization is available, we can discretize the parametric space as we discretize
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the iterated rectangular integral in m − 1 dimensions (for example, a trapezoidal rule or a

Gaussian quadrature method). The advantage of the Nyström method is that the inversion and

evaluation of the discretized integral can be computed with high order accuracy. However, it is

usually very difficult to obtain the explicit parametrization of the boundary in high dimensions

and complicated geometry.

The collocation methods pick a collection of points (collocation points) on the boundary

and assumes the solution (in this case the density) lies a finite dimensional space with unde-

termined coefficients. The space can be chosen to be polynomials or truncated trigonometric

functions among other candidates, and the collocation points are also at the discretion of the

solver. Common choices include equidistant points and the Gauss-Legendre methods. Once

the model solution and the quadrature points are chosen, the collocation method then solves

the parameters to fit the solution.

Boundary element methods (BEM) partition the boundary into meshes. The interaction

between each boundary element is then computed numerically to fit the given boundary data. It

is usually necessary to devise a mechanism to deal with singularities of fundamental solutions

for close elements. For polygonal mesh, analytic computations are available. But it is usually

quite costly to do a numerical computation for more general meshes.

2.4.2 Other Relevant Methods

Two main challenges arise in boundary integral methods. One is that the discretized integral

operator is usually a dense matrix and can be costly to compute and store. The other difficulty

is the singularity of the kernel from the Green’s function.

A number of fast summation methods are developed for computational efficiency. Among

the popular choices are evaluation using tree structures [Barnes & Hut (1986)] and the fast

multipole methods (FMMs) [Greengard & Rokhlin (1987)], where one takes advantage of the

weaker interaction of the far elements and the accumulation of each layered interaction. The
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method is widely used in BEM and the computation cost at each evaluation point can be as

fast as O(N), where N is the number of elements. FMMs have been widely researched to

generalize to a wider class of elliptic kernels [Ying et al. (2004)] and oscillatory kernels with

high frequencies [Engquist & Ying (2007)].

For the second problem, popular methods include the cancellation of singularities, the

regularization of the kernels, and taming the singularity of the kernel with density functions

using integration by part. With the assumption of a smooth expansion of the potential on

either side of the boundary, a quadrature by expansion (QBX) method [Klockner et al. (2013)]

is developed recently to evaluate the singular integrals.

Finally, we note that there is a BIM in the level set framework simulating front propagation

problems [Beale & Strain (2008)]. However, it should be considered as an explicit interface

method, since the algorithm operates on line segments extracted from the level set functions.
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Chapter 3

Level Set Methods

3.1 Introduction

Given an interface Γ of codimension one in Rm bounding an open region Ω, the level set

method [Osher & Sethian (1988)] represents Γ by the zero level set of a real-valued Lipschitz

continuous function φ . We ask that the level set function φ satisfy the following properties:


φ(x)> 0 , x ∈ Ω.

φ(x) = 0 , x ∈ Γ = ∂Ω.

φ(x)< 0 , x ∈ Rm \ Ω̄.

Then φ embeds the interface as its zero level set Γ = {x ∈ Rm|φ(x) = 0}. Geometric informa-

tion, such as interface normal n or curvatures κi, can be obtained from the derivatives of this

function. Furthermore, by including a time dependency φ = φ(x, t), dynamics of an interface

can be modeled with the natural extended embedding Γt = Γ(t) = {x ∈ Rm|φ(x, t) = 0}.

In the level set framework, the motion of an interface is analyzed by convecting the level

set values with the velocity field v = ∂x
∂ t or a normal velocity (scalar) field on the interface
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Vn = v · (−n) = v · ∇φ

|∇φ | . Take the full derivative of the level set, this advection equation is

φt +∇φ ·v = 0.

or

φt +Vn|∇φ |= 0. (3.1)

Theoretical justification for the robustness of (3.1), where the velocity field is related to the

geometry of the interface, follows the theory of viscosity solutions for scalar, time-dependent

PDEs [Chen et al. (1991); Evans & Spruck (1991)]. With the theory of viscosity solutions

[Crandall et al. (1992); Barles & Da Lio (2004)], which applies to a more general array of

equations, researchers of level set methods are able to design numerical algorithms converging

to the unique analytic solutions. The motion of the interface is then modeled by evolving the

function φ and tracking the zero level set of φ at any given time t.

There are three main advantages of using level set methods on front propagation prob-

lems. First, the formulation is independent of the dimensions of the modeled problem. Sec-

ond, evolving the function φ in one higher dimension naturally permits cusps, corners, and

topological changes in its zero level set describing the interface Γ. Third, the common flows

with normal speed Vn related to geometric properties such as unit normal vector and mean

curvature can be conveniently computed from level set values. For example, the unit normal

vector is

n =− ∇φ

|∇φ |
,

and the mean curvature κ has level value representation

κ = ∇ · ∇φ

|∇φ |
.

These advantages make the level set method a competitive and popular choice for analyzing
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interface dynamics in various physical and mathematical models [Chen et al. (1991); Osher &

Fedkiw (2000)].

3.2 Distance Re-initialization and Value Extension

3.2.1 Distance Re-initialization

The level set function φ is not unique: Any product with a positive function (for example, ec|x|

for any c ∈ R) gives another nontrivial way of describing the same zero set. It is possible that

solution to a level set equation (for example, (3.1)) is not suitable for subsequent numerical

computations. Therefore, it is a legitimate question to ask for a “best” level set function for

numerical algorithms.

We should seek a level set function that produces the smallest error during numerical com-

putations. When we simulate interface dynamics, errors can come from numerically solving

the time dependent PDE and extracting the interface location at each time t. On the one hand,

solving a PDE usually prefers a smaller ∇φ (in each direction) because of its presence in the

Taylor’s expansion errors when we discretize functions on a grid. On the other hand, locat-

ing the interface usually implies a small value of 1
(∇φ) j

(in each direction) is more desirable

because it is related to the error terms when we try to find the roots of φ in a cell using inter-

polation algorithms. Following these discussions, it is intuitive to see that the signed distance

function to the zero level set dΓ is a good representation because |∇dΓ|= 1 almost everywhere.

We give a formal definition of the signed distance function to an interface Γ:

Definition 3. The signed distance function of an interface Γ which encloses bounded region

Ω takes the following values:

dΓ(x) =


miny∈Γ ||x−y||, x ∈ Ω.

−miny∈Γ ||x−y||, x ∈ Rm \ Ω̄.
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The analytic formula of a signed distance function does not exist except in very special

cases. Given a level set function, the process of reshaping the level set function into a signed

distance function is called distance re-initialization or redistancing. Studies for redistancing

level set functions began with the works of [Dervieux & Thomasset (1980, 1981); Sussman

et al. (1994); Adalsteinsson & Sethian (1995)]. There are two main categories of redistancing

algorithms: one directly works on the static boundary value problem characterizing the dis-

tance function, whereas the other designs a flow to obtain the distance function in its steady

state. Examples of the former group include fast marching [Tsitsiklis (1995); Helmsen et al.

(1996); Sethian (1996)] and fast sweeping [Tsai et al. (2003); Zhao (2004)] methods.

The advantages of direct methods include are their near optimal time complexity and their

stability in maintaining the location of the interface, while the main drawback is the difficulty

to achieve high order accuracy. Flow based methods are flexible in implementing different

orders of accuracy and can be conveniently parallelizable. However, the location of the in-

terface can be excessively perturbed without a sacrifice of convergence speed to steady state.

Examples of flow based methods include the works of [Sussman et al. (1994); Peng et al.

(1999)].

Various approaches [Russo & Smereka (2000); Chopp (2001); Cheng & Tsai (2008)] at-

tempt to achieve high order accuracy of the interface location while controlling the sacrifice

of speed. The topic of redistancing remains an active research field.
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3.2.2 Standard Redistancing

A standard flow based redistancing method as in the original work of [Sussman et al. (1994)]

is as follows:

Given a level set function φ0, propagate the following flow to steady state:


ψt(x, t)+ sgnε(x)

(
|∇ψ(·, t)|−1

)
= 0,

ψ(x,0) = φ0(x),
(3.2)

where sgnε(x) =
φ0(x)√

φ 2
0 (x)+ε2

is a regularized signum function of the initial data φ0.

We note that if we use a usual discretization for the Hamiltonian, the method will not converge,

as discussed in [Osher & Fedkiw (2000)]. Instead, we need to use the upwinding Godunov

Hamiltonian as in [S. Osher (1991); Tsai & Osher (2003, 2005)]. In 2D,

HG(p−, p+,q−,q+) =
√

max{p+−, p−+}2 +max{q+−,q
−
+}2,

where p± = Dx
±φi, j, q± = Dy

±φi, j, and x+ = max(x,0), x− =−min(x,0). In 3D, the Godunov

scheme follows analogously:

ĤG(p−, p+,q−,q+,r−,r+) =
√

max{p+−, p−+}2 +max{q+−,q
−
+}2 +max{r+−,r

−
+}2,

where r±=Dz
±φi, j. In the simulations of this thesis, we take a WENO-3 [Jiang & Peng (1997)]

approach on the spatial finite difference operation D±. Equation (4.5) is then propagated with

a TVD-RK3 scheme [Gottlieb & Shu (1998)]. Namely, for each time step n, we sequentially
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compute

ψ̃
(1) = ψ

n +∆tL (ψn),

ψ̃
(2) =

3
4

ψ
n +

1
4

ψ̃
(1)+

1
4

∆tL (ψ̃(1)),

ψ
n+1 =

1
3

ψ
n +

2
3

ψ̃
(2)+

2
3

∆tL (ψ̃(2)), (3.3)

where ∆t is the mesh size of the time dimension and L in the standard redistancing case is as

in (4.5), L (ψ) := ψ0√
ψ2

0+ε2
(1−|∇ψ|).

The regularization parameter ε for the signum function affects the convergence speed and

the stability of the interface location. If we take ε to be zero (unregularized case), the coeffi-

cient of the PDE is discontinuous and numerical approximations will move the zero level set

from the original interface. If we take ε to be large, however, the coefficient will be smooth

for numerical approximation but the characteristics traveling at speed sgnε(x) will make the

convergence slow. In practice, ε is often taken to be a multiple of the mesh size. Common

choices include cH [Sussman et al. (1994)] and c|∇φ0|H [Peng et al. (1999)], where H = ∆x

is the mesh size. However, convergence results of the flow PDE using these choices are un-

known. [Cheng & Tsai (2008)] circumvents the dilemma of regularization by propagating

the standard time dependent eikonal equation ψt + |∇ψ|= 0 while keeping record of the time

traveled. This method can also be used for value extension, as briefed in the following section.

3.2.3 Value Extension

When we simulate front propagation problems using level set methods, the embedding of the

interface requires the definition of velocity values on not only the interface, but at least also

on the grid points in a tubular neighborhood of the interface in order to apply a full Eulerian

approach as in (3.1). For consistency, we should require the velocity defined off interface to

smoothly approach the velocity on interface as one approaches the zero level set. That is, for
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a smooth normal velocity field on the boundary Γ and a point x∗ ∈ Γ, we should require

lim
x→x∗

Vn(x) =Vn(x∗).

The work of [Malladi et al. (1995)] introduced the idea of defining an extension velocity

at each point as the velocity value at its closest point on the interface. When the level sets and

the velocity field are both smooth, it can be shown [Zhao et al. (1996)] that the signed distance

function is maintained after propagation in (3.1). This constructed velocity field satisfies

∇Vn ·∇φ = 0.

Similar to the redistancing algorithm, one way to construct the extended velocity field is to

propagate velocity information outward from the boundary with the above characteristics:

∂Vn

∂ t
+ sgnε(φ)

∇φ

|∇φ |
·∇Vn = 0.

This flow inherits the advantages and drawbacks of the standard redistancing. The time de-

pendent flow based method [Cheng & Tsai (2008)] on each side of the interface is proposed

to avoid the dilemma of picking a proper regularization parameter ε .

We note that front propagation problems using level set methods usually do not require

redistancing or velocity extension in the whole space. Since the zero level set is where the

interface lies, the computation domain is often confined to a thin tubular neighborhood of the

interface for efficiency.

3.3 Implicit Boundary Integral Method (IBIM)

The implicit boundary integral method (IBIM) [Kublik et al. (2013)] solves PDEs with bound-

ary integral formulations (as discussed in Chapter 2) using a level set approach. Assuming the
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Figure 3.1: Parametrization from parallel interface.

boundary ∂Ω = Γ is C 2, the main task is to compute a boundary integral with only a level set

description (instead of an explicit parametrization) of the boundary Γ. We briefly describe this

method below, as it plays a crucial role in the simulations and subsequent derived formulations

in this thesis. Without the loss of generality, we discuss the case where the level set function

is readily redistanced as in Section 3.2 to focus on the gist of this method.

The IBIM contains three main ingredients. First, we need a quadrature to embed the inte-

grand function into the neighborhood of the boundary. Second, once we can assign integrand

values to each level set within the neighborhood, we need an effective way to average across

all level sets within the computation domain in the normal direction to approximate original

boundary integral. Third, for a singular kernel, which is usually the case for BIMs, we need a

regularization scheme.

3.3.1 Integrand Embedding

Given a boundary integral
∫

Γ
U(y(s))dS(y), we can apply the idea of velocity extension seen

in level set methods and embed the integrand into the neighborhood of Γ. Denote the ε tubular

neighborhood T[−ε,ε]. For a C 2 boundary Γ, ε can be as large as minm
i=1

1
κi

, where κi denotes

each principal curvature of the interface Γ. For y /∈ Γ, the function F(y) takes the value of its
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closest point on the boundary F(y∗), where the star operation denotes the projection onto the

boundary Γ:

y∗ = y−dΓ(y)∇dΓ(y). (3.4)

As [Kublik et al. (2013)] shows, the value extension can be understood as a parametrization

from a parallel interface Γη = ∂Ωη for level set η as illustrated in Figure 3.1. That is,

∫
Γ

U(y(s))ds =
∫

Γη

U(y∗(sη))Jη dsη . (3.5)

The Jacobian Jη for using this parametrization from a parallel boundary Γη ∈Rm is computed

to be

Jη = J(sη) =


1+ηκη , if m = 2,

1+2ηHη +η2Gη , if m = 3,

where κη denotes the curvature at y(sη) on the level set η , and Hη , Gη denote the mean

curvature and Gaussian curvature respectively. Using a level set representation, we can define

the Jacobian as a function in the space

J(y) :=


1−dΓ(y)∆dΓ(y), ifm = 2.

1−dΓ(y)∆dΓ(y)+d2
Γ
(y)⟨∇dΓ(y),ad j(Hess(dΓ))∇dΓ(y)⟩ , if m = 3.

(3.6)

3.3.2 Averaging Over Different Parametrizations

For a boundary integral
∫

Γ
U(y(s))dS(y), one can analytically write down

∫
Γ

U(y(s))ds =
∫
Rm

U(y)δ (dΓ(y))dy, (3.7)
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where δ is the Dirac delta distribution. The traditional approach is to approximate (3.7) by

replacing the Dirac δ with a smeared out bump function. As [Tornberg & Engquist (2004)]

points out, it is a non-trivial task to regularize the δ function on a thin tubular neighborhood

of size ε without producing O(1) error. Various approaches [Engquist et al. (2005); Smereka

(2006); Towers (2007); Zahedi & Tornberg (2010)] have been proposed to numerically ap-

proximate this delta function in a consistent manner. However, even with these attempts, they

can introduce an analytical error of O(ε).

The IBIM introduced by [Kublik et al. (2013)] is an analytically exact formulation. Once

the value extension is available for different level sets, the boundary integral can be trans-

formed into an exact tubular integral by averaging over all the level sets with a regularized

Diracδ and the correct weight for each value extension, as shown in Figure 3.2. We define

UΓ := U(y∗)J(y) to be the weighted restriction to its zero level set (the boundary Γ). The

transformation of BIM into the IBIM takes the following form:

∫
Γ

U(y(s))ds

=
∫

ε

−ε

δε(η)
∫

Γη

UΓ(y(sη))dsηdη

=
∫
Rm

UΓ(y)δε(dΓ(y))dy

=
∫

T[−ε,ε]

UΓ(y)δε(dΓ(y))dy, (3.8)

where we use T[−ε,ε] to denote the tube of width ε centered at the interface Γ. This integral

can be viewed as a weighted average of the value extensions on all neighboring level sets. We

summarize the theorem from [Kublik et al. (2013)]:

Theorem 3. Consider a C 2 compact hyper-surface Γ ⊂Rm with principal curvatures denoted

κi. Let dΓ be the signed distance function of Γ, δε : R→R be a regularized Dirac δ , compactly

supported on [−ε,ε]. If U is a continuous function defined on Γ, UΓ := U(y∗)J(y) where J
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Figure 3.2: Averaging with a regularized Dirac delta function over level sets.

defined as in (3.6), then for all ε , min1≤i≤m−1 | 1
κi
|> ε > 0, we have

∫
Γ

U(y(s))ds =
∫
Rm

UΓ(y)δε(dΓ(y))dy.

The higher order derivatives of the distance function in this formulation can cause nu-

merical inaccuracy. We note that a cleaner and more accurate formulation for computing the

Jacobian using singular value decomposition has been developed [Kublik & Tsai (2015)].

3.3.3 Kernel Regularization

As illustrated in Figure 3.3, the fundamental solution Φ(x,y) usually has singularity at x = y.

Even though the boundary integral exists, regularization schemes must be applied for accurate

numerical approximations. In the paper of [Kublik et al. (2013)], the method used is to pick

an interface with second order contact and compute the near field quadrature analytically,

as shown in Figure 3.4. For singular kernels, the method computes the regularized integral

analytically and take the average value on the element as its quadrature. Therefore, this method

can be applied to both weakly singular kernels, where the integrand limit exists, and singular

kernels where the integral values exist. For hypersingular kernels, where the integral does not

exist in the Riemann sense, we discuss our regularization scheme in 5.

36



x-h
x
x+h

(|x-y|)

Ω

x

y

Figure 3.3: Kernel singularity for close points.

The regularization quadrature in [Kublik et al. (2013)] for the normal derivative of the

fundamental solution of the Laplace equation is

(
∂Φ

∂ny
(x∗,y∗)

)
reg

=


κ(y∗)

4π
, m = 2,

1
4πτ

H(y∗)− τ

π

( 5
256H(y∗)(4H2(y∗)−G(y∗))+ 25

768H(y∗)G(y∗)
)
, m = 3,

(3.9)

where τ is the radius of the regularization patch. κ , H, G denote the curvature, mean curva-

ture, and Gaussian curvature respectively. With this regularization scheme, implicit boundary

integrals in the formulation of the interior Dirichlet Laplace problem can achieve at least sec-

ond order accuracy in both two and three dimensions. For the Neumann Helmholtz problem

in (5), the regularization quadrature of the singular kernel can be calculated following similar

approximation process. See Appendix A for the derivation details.
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S with a second order contacting curve.

3.3.4 Discretization on Cartesian Grids

We illustrate the numerical procedures for solving a differential equation under IBIM. Take

the double layer formulation (2.10)(2.11) for example. By plugging the kernel into (3.8),

U(y) := ∂Φ

∂n+y
(x,y)β (y), we obtain the analytic form of the double layer formulation (for inte-

rior Dirichlet Laplace Problem) under IBIM:

Double Layer Formulation for the Interior Dirichlet (Laplace) Problem using IBIM

1. Obtain the density β with the Dirichlet boundary condition

∫
T[−ε,ε]

∂Φ

∂ny
(x∗,y∗)β (y∗)J(y)δε(dΓ(y))dy+

1
2

β (x∗) = u(x∗) = f (x∗) x∗ ∈ Γ. (3.10)

2. For any point x ∈ Ω, the solution can be evaluated with the boundary integral

u(x) =
∫

T[−ε,ε]

∂Φ

∂ny
(x,y∗)β (y∗)J(y)δε(dΓ(y))dy x ∈ Ω. (3.11)

Now we describe how we discretize (3.10) to invert the integral operator and obtain β .

Recall that the star operation (3.4) is a projection onto the interface Γ. For each grid point
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xi on a standard uniform Cartesian grid discretizing [a,b]m ⊂ Rm with mesh size ∆x = H, we

define

x∗i = xi −di∇Hdi,

where di := dΓ(xi) denotes the signed distance of xi,

∇Hdi := (Dc
1,Hdi, ...,Dc

m,Hdi)

is the discrete gradient operator, which uses central finite differencing

Dc
j,Hdi :=

di+e j −di−e j

2H
=

di1,··· ,i j+1,··· ,im −di1,··· ,i j−1,··· ,im
2H

(3.12)

in each coordinate direction, 1 ≤ j ≤ m. For computing the Jacobian J, we use the standard

discrete Laplacian operator

∆Hdi :=
m

∑
j=1

D+
j,HD−

j,Hdi,

where

D+
j,Hdi :=

di+e j −di

H
=

di1,··· ,i j+1,··· ,im −di1,··· ,im
H

, (3.13)

D−
j,Hdi :=

di −di−e j

H
=

di1,··· ,im −di1,··· ,i j−1,··· ,im
H

, (3.14)

denote the first order forward and backward finite difference on the jth coordinate respectively.

We address each component in (3.10)(3.11) after discretization. For the kernel, since ∂Φ

∂ny
=

∇Φ · ny = −∇Φ ·∇dΓ and the gradient of the fundamental solution ∇Φ can be precomputed

analytically for accuracy and efficiency. We use the notation

∇Φx, j = ∇Φ(x,x∗j),

∇Φ
∗
i, j = ∇Φ(x∗i ,x

∗
j),
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for the exact gradient values of the fundamental solutions (x ∈ Ω). The kernel then takes the

notation

(
∂Φ

∂ny
)x, j : = −∇Φx, j ·∇Hd j,

(
∂Φ

∂ny
)∗i, j : =


−∇Φ∗

i, j ·∇Hd j, if |x∗i −x∗j | ≥ τ.(
∂Φ

∂ny
(x∗i ,x∗j)

)
reg

, if |x∗i −x∗j |< τ.

The regularization term is precomputed in (3.9). The change of variable Jacobian term is

numerically computed as

Ji :=


1−di∆Hdi, if m = 2.

1−di∆Hdi +d2
i ⟨∇Hdi,ad j(Hess(di))∇Hdi⟩ , if m = 3.

Finally, we denote

f ∗i = f (x∗i ),

β
∗
i = β (x∗i ),

δi = δε(di).

Then the boundary integral equation (3.10) is discretized as

∑
j

Hm
(

∂Φ

∂ny

)∗
i, j

β
∗
j δ jJ j +

1
2

β
∗
i = f ∗i ,

and the solution evaluation (3.11) is

u(x) = ∑
j

Hm
(

∂Φ

∂ny

)
x, j

β
∗
j δ jJ j.
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We summarize the algorithm for solving a Dirichlet Problem (on a simply connected

interior region) using the IBIM formulation:

For a given boundary integral formulation on a C 2 compact boundary Γ, the algorithm for

solving an interior Dirichlet Problem


L u = 0, x ∈ Ω,

u = f , x ∈ Γ = ∂Ω,

using implicit boundary integral formulation (IBIM) takes the following steps:

For each xi within the ε tubular neighborhood of Γ (|dΓ(xi)| < ε), compute x∗i = xi −

di∇Hdi.

1. Form the matrix D+ 1
2 I and the vector f ∗, where

Di, j = Hm
δ jJ j

(
∂Φ

∂ny

)∗
i, j
,

f ∗i = f (x∗i ).

2. Solve the vector β ∗ from the linear equation (D+ 1
2 I)β ∗ = f ∗.

3. For any x ∈ Ω, the solution is evaluated by computing

u(x) = ∑
j

Hm
δ jJ j

(
∂Φ

∂ny

)
x, j

β
∗
j .

For the matrix inversion in 3, this thesis implements the bi-conjugate gradient stabilized

method (BiCGSTAB) for both real (Laplace) or complex (Helmholtz) versions. The formu-

lation is free to use stationary iterative methods or other Krylov space iterative solvers (for

41



example, the GMRES [Saad & Schultz (1986)]). For large matrices from high resolutions, a

matrix-vector multiplication is implemented for memory efficiency. This avoids the need to

store the dense matrix in the iterative solver. Furthermore, Fast Multipole Methods, originally

introduced by [Greengard & Rokhlin (1987)], have been further developed for Laplace-type

kernels [Ying et al. (2004)] and Helmholtz kernels [Rokhlin (1993)] with high frequencies

[Engquist & Ying (2007)] for efficient matrix multiplication calculations. We expect the ex-

isting fast multipole methods can be adapted to invert these linear systems, but so far no such

work has been developed to the best of our knowledge.

3.4 IBIM on Adaptive Grids

IBIM formulations such as (3.10)(3.11) have the flexibility to be implemented on adaptive

grids. We see that almost all the values within the formulation remain unchanged. The only

task is to obtain a signed distance function on adaptive grids and the integration quadrature

on adaptive grids. [Strain (1999); Min & Gibou (2007)] proposed fast redistancing methods

on adaptive grids. We will adopt the redistancing method in [Min & Gibou (2007)] and test

the solution accuracy using IBIM formulations on adaptive grids. The details of the adaptive

redistancing are included in Appendix B.

The experiments are done on unit circles and spheres for Dirichlet boundary conditions.

For the purpose of this thesis, we shall test on Interior Laplace Problems (See 3.1 and 3.2)

and Exterior Helmholtz Problem (See 3.3 and 3.4). An illustration of the tree structure of the

adaptive grid is shown in Figure 3.5.
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Figure 3.5: Circle on adaptive grid with curvature splitting criterion.

3.4.1 Interior Laplace Problem

The error For Laplace equation in 2D, the exact solution ue we test on can be expressed as

ue(r,θ) = a0 +
∞

∑
n=1

rn(an cos(nθ)+bn sin(nθ)), an,bn ∈ R.

Similarly for 3D Laplace equation, the exact solution can be expressed as

ue(r,θ ,φ) =
∞

∑
l=0

l

∑
m=0

(alm cos(mφ)+blm sin(mφ)) f m
l (cos(θ)),

where

f m
l (x) = (−1)m(1− x2)

m
2

dm

dxm Pl(x), Pl(x)are the Legendre polynomials.

43



Table 3.1: Solution error of Interior Laplace problem on a circle using IBIM on an adaptive
grid. The tubular neighborhood is taken to be ε = |∇dΓ|1 ∗ 2H, where H is the cell width of
the maximum resolution.

Min. resol. Max. resol. Int. error Order

642 1282 1.227E-01 -

1282 2562 5.706E-02 1.105

2562 5122 2.850E-02 1.002

5122 10242 1.368E-02 1.059

10242 20482 6.510E-03 1.072

Table 3.2: Solution error of Interior Laplace problem on a sphere using IBIM on adaptive
grid. The tubular neighborhood is taken to be ε = |∇d|1 ∗2H, where H is the cell width of the
maximum resolution.

Min. resol. Max. resol. Int. error Order

163 323 1.685E-02 -

323 643 5.084E-03 1.729

643 1283 2.009E-04 4.662

3.4.2 Exterior Helmholtz Problem

For exterior Helmholtz problems in 2D, the exact solution ue we test on are in the form of

ue(r,θ) = J0(k2r),

where J is the Bessel function of the first type. And in 3D

ue(r,θ) =
eik2r

k2r
.
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Table 3.3: Solution error for exterior Helmholtz problem with wave number k = 10 on a circle
using IBIM on adaptive grid. The tubular neighborhood is taken to be ε = |∇d|1 ∗2H, where
H is the cell width of the maximum resolution.

Min. resol. Max. resol. Ext. error Order

642 1282 6.151E-02 -

1282 2562 2.463E-02 1.321

2562 5122 1.076E-02 1.194

5122 10242 4.983E-03 1.111

10242 20482 2.405E-03 1.051

Table 3.4: Solution error for exterior Helmholtz problem with wave number k = 1 on a sphere
using IBIM on adaptive grid. The tubular neighborhood is taken to be ε = |∇d|1 ∗2H, where
H is the cell width of the maximum resolution.

Min. resol. Max. resol. Ext. error Order

163 323 3.755E-02 -

323 643 2.370E-02 0.664

643 1283 1.490E-02 0.669
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Chapter 4

IBIM for Mullins-Sekerka Dynamics

4.1 Physical Background

Mullins-Sekerka dynamics [Mullins & Sekerka (1963)] model the solidification process as

a diffusion driven free boundary problem. Let Ωt = Ω ⊆ Rm (m = 2,3) be a fixed region

that we consider our two phase problem on, Ω− = ∪t≥0Ω
−
t be a family of bounded domain

denoting the solid phase of the material, Ω
+
t = Ω\Ω

−
t the liquid phase, we are looking for a

free boundary Γ = ∪t≥0Γt (respectively, Γt = ∂Ω−) and a function u(x, t) ∈ C 2(Ω−∪Ω+)∩

C (Ω̄)×C 1([0,∞)) such that



ut = α2∆u, x ∈ Ω
−
t ∪Ω

+
t , t ≥ 0,

u = f , x ∈ Γt , t ≥ 0,

supx∈Ω| u(x, t)|< ∞, t ≥ 0,

Vn =
−1
Lv

(
kS
(

∂u
∂n

)
S + kL

(
∂u
∂n

)
K

)
, x ∈ Γt , t ≥ 0,

Γ0 = ∂Ω
−
0 ,

(4.1)
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where f is a Dirichlet condition on the interface Γt , Lv is the latent heat required per unit

volume for the phase change, kS and
(

∂u
∂n

)
S are the thermal conductivity and temperature

derivative at the interface with the normal pointing toward the solid, and similarly for kL and(
∂u
∂n

)
L. We assume the boundaries Γt are compact and C 2.

Theoretically, the above system (4.1) for u and Γt needs to be solved simultaneously. For

a tractable problem, we consider the slowest time scale, where phase equilibrium holds every-

where at leading order. Under the condition

ST := |Cv(uM −u∞)

Lv
| ≪ 1, (4.2)

where uM is the melting point, u∞ is the initial temperature in Ω+, Cv is the heat per unit

volume of the liquid. It can be shown that the solution can be found separately. That is, we

can maintain a fixed interface, solve for the Laplace equation, and propagate the surface to the

next instant. Inequality (4.2) usually holds in practice since |uM −u∞| usually must be several

hundred degrees centigrade to make ST = 1. Under the usual temperature of interest, we

also consider the model with Gibbs-Thompson condition, which gives the Dirichlet boundary

condition to be f = −κ(x), the (mean) curvature of the interface at x. This condition is used

to describe the local equilibrium at the interface. For a more in depth model analysis, see

[Langer (1980); Gurtin (1986); Pego (1989)].

With the above assumptions, the model equation (4.1) becomes the following free bound-

ary problem: find Γ = ∪t≥0Γt and a function u(x, t) ∈ C 2(Ω− ∪Ω+)∩C (Ω̄)×C 1([0,∞))
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such that 

∆u(·, t) = 0, x ∈ Ω
−
t ∪Ω+, t ≥ 0.

u =−κ, x ∈ Γt , t ≥ 0.

supx∈Ω |u(x, t)|< ∞, t ≥ 0.

Vn =−[∂nu]Γt , x ∈ Γt , t ≥ 0.

Γ0 = ∂Ω
−
0 .(∫

Γ
∂u
∂n dS(y) = 0, t ≥ 0, x ∈ R2.

)

(4.3)

It can be shown that there exists a classical global solution [Escher & Simonett (1998)]. At

any given time instant t, the first three equations in (4.3) guarantees uniqueness for the exterior

Dirichlet Laplace problem in 2D. However, this is not the case in 3D. Consider Γ to be a

sphere centered at the origin. Then any linear combination of 1 and 1
r is a solution to the

exterior Dirichlet problem even if we impose supx∈Ω |u(x, t)| < ∞. The intrinsic difference

in two dimensions is that its log-type fundamental solution explodes at infinity, whereas the

fundamental solution in other dimension goes to zero.

The solution is unique in R3 once we specify the constant u∞ = lim|x|→∞ u(x) =C to com-

plete the generalized Dirichlet condition, which is the original model in the paper of Mullins

and Sekerka [Mullins & Sekerka (1963)]. This represents an undercooling or an overheating

environment that enacts the solidification or liquidation. Under this condition, they show that

there is no equilibrium state other than one value of u∞ if we choose Ω = R3 as discussed in

[Pego (1989)]. This can be understood as the crystal can only either grow and keep growing

if the environment has temperature below melting point, or can only melt and completely liq-

uidate if the environment has temperature above melting point. Moreover, their paper proves

that, if a sphere is slightly perturbed in the angle Γ = R+δYml(θ ,φ), then the solidification of

the shape is unstable (dδ

dt > 0) after a threshold of the crystal size R > Rthr. This instability is
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present for any Ω ⊂ R3

The last condition is not in the model. It is implied in 2D from the boundedness of u

(the compatibility condition). This is the result of the log-type fundamental solution, as we

summarized in Lemma 1. Note that the above argument will not work for higher dimensions

because the fundamental solutions are not unbounded at infinity. This compatibility condition

is the reason why Mullins-Sekerka flows in 2D are automatically mass preserving, while their

dynamics in three dimensions are dependent on the environment u∞, as shown in the next

section.

There have been existing work on MS-flows in 2D [Zhu et al. (1996)] and 3D [Karali &

Kevrekidis (2009)] using explicit boundary integral methods and using level set framework

with a finite difference scheme [Chen et al. (1997)]. In this chapter, we will give an implicit

boundary integral method that can deal with far components with topological changes.

4.2 Some Analytic Properties

We can deduce some geometric properties of the dynamics with a direct computation. Let A

denote the mass (volume), and L denote the perimeter, we first have the interface dynamics

being curve shortening, as also evidenced by our numerical experiment in Figure 4.1:

d
dt

L(t) = −
∫

Γt

κV =−
∫

Γt

u[
∂u
∂n

]

= −
∫
Rm\Ω̄t

|∇u|2 ≤ 0. (4.4)

As for the mass (volume), we have (also numerically illustrated in Figure 4.1)

d
dt

A(t) = −
∫

Γt

V =−
∫

Γt

[∂nu]

= lim
r→∞

∫
∂Cr

[∂nu]− lim
r→∞

∫
Cr\Ω̄t

∆u

= lim
r→∞

∫
∂Cr

[∂nu].
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Figure 4.1: The evolution of perimeter and mass (area) of an ellipse in Mullins-Sekerka model.

For two dimensions, the compatibility condition implies the flux is zero. Therefore, the

dynamics is mass preserving in 2D. Furthermore by the curve shortening property, the only

equilibria are one circle (stable) and multiple same size circles (unstable). For three dimen-

sions, if the environment has zero heat flux, for example, an adiabatic process in a container

with boundary ∂C, then
∫

∂C[∂nu] = 0 implies that the dynamics is mass preserving. However,

if we only specify the temperature u∞ in the environment, then in general this isothermal pro-

cess is not mass preserving. Depending on whether the environment’s temperature is higher

than the phase point, one of the phase will have volume gain. The only isothermal process that

is also mass preserving is when the environment temperature is exactly at the phase point. We

note that this equilibrium is unstable.

It is worth noting that although the motion is curve shortening and its equilibria consists

of collections of equal sized circles in 2D, the process does not necessarily preserve convexity

at all times as shown in [Mayer (1993)]. In the following simulation of we will also illustrate

this phenomenon when the shape is a long tube. This also shows that there exists a continuous,

curve shortening (and even mass preserving) transformation between two convex shapes that

passes through non-convex shapes.
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Figure 4.2: Procedure diagram for Mullins-Sekerka simulation.

4.3 Algorithm Details

To simulate the dynamics described in (4.3), the problem can be summarized into five steps

1. Re-initialize level set function φt(x) to the signed distance function dΓt (x) .

2. Extract information for step 3 with connected component labeling (CCL).

3. Solve u on Ωt and Rm \ Ω̄t from the first three equations in (4.3).

4. Obtain and extend the normal velocity [∂nu].

5. Move Γt with the normal velocity V as in (4.3). We then have a new interface Γt+δ t

We begin with the level set describing Γ0, and follow the above steps iteratively. Below is how

we simulate with a full Eulerian approach in detail. The procedure diagram is illustrated as in

Figure 4.2

4.3.1 Standard Level Set Redistancing

As discussed in Subsection 3.2.2, we begin with a C 2, compact hypersurface in Rm with a

chosen orientation and non-zero reach. Then Rm can be partitioned into the disjoint union

Ω−∪Γ∪Ω+, where ∂Ω− = ∂Ω+ = Γ
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Let φ0(x) be a level set function with φ0(x) < 0 for x ∈ Ω+ and φ0(x) > 0 for x ∈ Ω−.

Standard distance re-initialization propagates the PDE

ψt +
ψ0√

ψ2
0 + ε2

(|∇ψ|−1) = 0, (4.5)

to a steady state with initial condition ψ(x,0)= φ0(x). The steady state of this eikonal equation

preserves the level set Γ := x : φ0(x) = 0 and has gradient of unit norm, which yields the

signed distance function, and can be used in IBIM for solving Dirichlet Laplace problem in

the following steps.

4.3.2 Connected Component Labeling

Connected component labeling (CCL) [Rosenfeld & Pfaltz (1966); Samet & Tamminen (1988);

Dillencourt et al. (1992); Di Stefano & Bulgarelli (1999)] is an algorithm in computer graphics

to extract and label the connected regions given a binary graph. This algorithm provides sepa-

ration and labeling of each connected component (See Appendix C). Since we deal with closed

interfaces, every grid point belongs to a unique component and has a well defined component

label. For each connected component Ci (Ci may be part of Ω or Rm \Ω̄), however, a boundary

integral formulation solving interior Dirichlet Laplace problems in multiply connected region

(in 2D, for instance)



∫
Γi

(
∂Φ(x,y)

∂ny
−1
)
β (y)dS(y)− 1

2β (x)+∑
L
j=1 A jΦ(x− z j) = f (x),

∑
L
j=1 A j = 0,∫

Γi
j
β (y)dS(y) = 0, j = 1 . . .L−1,

(4.6)

or other formulations on exterior regions as described in (2.23)(2.24)(2.25)(2.26) require a

customization of the CCL algorithm to obtain some key information. Take (4.6) for example,
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additional desired information for each component includes:

1. The boundedness of the component region Ci. This decides which formulation (interior

or exterior) to use.

2. The orientation of region Ci. This determines the normal direction ny. Notice that this

is not the same as its boundedness, as the topology of the region can be very convolved.

3. The total number of connected boundary components of the boundary Γi, which gives

L.

4. The separation of Γi into boundary components Γi
j, each bounding a hole in the region

except for the most exterior one. We denote this boundary Γi
0. The identification of this

boundary is important, as it will not be part of the third equation in (4.6) as the other

boundary pieces.

5. For each hole (circled by Γi
j, j ̸= 0), find a point zi inside the hole (zi /∈ Ωi) that gives the

least singular value of Φ(x)− zi. This means that zi should be as far from the interface

as possible.

Our labeling guidelines are described below.

1. For the environment (unbounded) component, we label it as C0. This is the only “true

exterior” component regarded in terms of the BIM formulation.

2. Each interior component (dΓ > 0) will have positive label Ci. Each exterior component

(dΓ < 0) takes negative label C−i (except for the unbounded component).

3. Each boundary piece of each component will have label Γi
j. In the program, we will

assign the label j as the component label it is adjacent to, meaning that it can take

negative values. Naturally, Γi
j = Γ

j
i . In the figures, however, we will take a direct

numbering of the boundary pieces.
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Figure 4.3: The labeling of interior and exterior of two simply-connected components.

Figure 4.4: The labeling of interior and exterior of an annulus.

4. With the signed distance available, we will record zi in Ci as the point with furthest

absolute distance to the boundary.

We show configurations of two simply connected regions (Figure 4.3), annulus (Figure 4.4),

and multi-layered annulus (Figure 4.5) to illustrate our labeling schemes.

We adopt the two-pass CCL algorithm with 2m-connectivity in Rm. That is, we do not

consider diagonal points with the same level set signage to be connected. For simplicity, we

will refer to the signage of the signed distance function at the point as “the sign of the point”.

We keep track of equivalent classes for components that are connected but are not assigned

the same label at its first pass. The root of the equivalent class denote the smallest label (in

absolute value) in the equivalent class. The scanning process works as follows.

1. On the first pass:

Figure 4.5: The labeling of interior and exterior of a multi-layer annulus.
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(a) We begin with label 0, denoting the environment component C0. This is the only

unbounded component.

(b) For each point being scanned, we look at the signed distance of the points already

traveled (to the left and to the top, and to the near in 3D).

i. If there is no points with the same sign, we assign a new label (positive or

negative) based on its sign and create a new equivalent class. We increment

the respective signed label counter by one.

ii. If there exists only one neighbor point with the same sign, we assign the label

to be the root of that neighboring point’s equivalence class. Points within the

same equivalence class are connected but not yet assigned the correct label

due to a no look-back scanning.

iii. If there exists more than one neighbor point with the same sign, we assign the

label to be the smallest root of all the neighbors’ equivalence classes. Further-

more, we combine the equivalence classes of the neighboring points, because

they’re connected exactly through this current point. This can be done just by

updating the root of the merged equivalent classes.

(c) The largest root (in each sign, as interior and exterior) of all equivalence classes

is the total number of connected (interior/exterior) components. The sum is hence

the total number of connected components.

2. On the second pass:

(a) For each point, we assign its (correct) label to be the root of its equivalent class.

(b) We update and store the points with largest absolute distance within each equiv-

alence class. These are the points furthest away from interface and will be the

zis.
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(c) For each point within the ε tubular neighborhood of the boundary (|dΓ| < ε), we

observe the root of its equivalence class (say, i) and the root of its projection point’s

equivalent class ( j) that takes the opposite sign. The projection point is easy to

find as we have x∗ = x− dΓ(x)∇dΓ(x). We can then look for the vertices of the

cell the mirror point falls in and scan for the label with opposite sign. This step

identifies the boundary piece Γi
j and collects points within the ε neighborhood of

the boundary Γi
j. The information will be used for implicit integral formulation.

(d) As in part (c), we keep a counter for each equivalence class and store the total

number of connected boundary pieces. This is L in (4.6).

After the processes above, we obtain all the information needed for our IBIM formulation at

each time t, which will be described in the next section. To concentrate on the simulation of

the MS-flow dynamics, we put numerical results solving a static Dirichlet Laplace problem

in Appendix C. This demonstrates the effectiveness of our customized algorithm combining

CCL with IBIM in a complicated topological setting . We make some concluding remarks for

the benefits of CCL:

1. The method can deal with general domains with only the knowledge of level set values.

2. Using BIM on each component piece by piece lowers computation cost with smaller

matrices, as N3 ≥ ∑i N3
i , for N = ∑i Ni.

3. With similar reasoning in 2, the boundary separation saves memory storage because we

only need to invert the matrix from one component at a time.

4. The method is easily parallizable since each component can be solved separately.

4.3.3 IBIM for the General Dirichlet Laplace Problem

As discussed in Section 3.3, from the derivations of [Kublik et al. (2013)] we can use a change

of variable and averaging theorem to transform the traditional BIM into a level-set based BIM.
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We will use the same implicit framework in a more general setting for multiply connected re-

gions as illustrated in (2.23)(2.24)(2.25)(2.26). To form the correct set of equations, we need

to use the topological and geometric information obtained from the CCL algorithm described

in Subsection 4.3.2. Let Tε = {x ∈ Rm | |dΓ(x)|< ε} be the tubular neighborhood of the inter-

face Γ, we adopt the discretization notations in Section 3.3 and describe the formulations in

detail.

4.3.3.1 Interior Component in 2D

For each interior component (Cn, n ̸= 0), the implicit formulation is

IBIM for the General Interior Dirichlet Laplace Problem in 2D

Let Ω be a region with boundary Γ=∪L
l=0Γl , where each Γl is connected and Γ0 denote the

boundary adjacent to the unbounded region. Namely, Ω has L holes, each denoted Ω̃l . Denote

also Tε for the ε tubular neighborhood of Γ (|dΓ|< ε) and T l
ε the ε tubular neighborhood

of Γl (= {|dΓl |< ε}). Then the Dirichlet Laplace problem can be solved with the following

procedure

1. Solve β , Al (l = 1 . . .L) for x∗ ∈ Γ from the following system:


∫

Tε

∂Φ(x∗,y∗)
∂ny

β (y∗)δε(dΓ(y))J(y)dy+ 1
2β (x∗)+∑

L
l=1 AlΦ(x∗− zl) = f (x∗).∫

T l
ε

β (y∗)δε(dΓ(y))J(y)dy = 0, l = 1 . . .L.
(4.7)

2. The solution for x ∈ Ω is represented by

u(x) =
∫

Γ

∂Φ(x,y∗)
∂ny

β (y∗)δε(dΓ(y))J(y)dS(y)+
L

∑
l=1

AlΦ(x− zi), (4.8)

where zl ∈ Ωl are points within the holes.
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Taking the discretization notations as in Subsection 3.3.4, we summarize the algorithm as

follows:

IBIM Algorithm for the General Interior Dirichlet Laplace Problem in 2D

For a given boundary integral formulation on a bounded region Ω with C 2 boundary

Γ = ∪L
l=0Γl , where each Γl is connected and adjacent to the hole Ω̃l and Γ0 denote the bound-

ary adjacent to the unbounded region. Denote also Tε for the ε tubular neighborhood of Γ

(|dΓ|< ε) and T l
ε the ε tubular neighborhood of Γl ({|dΓl |< ε}).

The algorithm for solving the multiply connected Dirichlet Laplace Problem


∆u(x) = 0 x ∈ Ω,

u(x) = f (x), x ∈ Γ = ∂Ω,

with implicit boundary integral formulation (IBIM) takes the following steps:

1. Use CCL in Subsection 4.3.2 to obtain L, xi ∈ T l
ε , zl ∈ Ω̃l , and N, the total the number

of points in Tε = ∪L
l=1T l

ε .

2. For each xi ∈ Tε , compute x∗i = xi −di∇Hdi.

3. Form the matrix K =

D+ 1
2 I E

F G

 of dimension (N + L)× (N + L) and the vector
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f̃ =

 f ∗

0

 (N +L)×1, where

Di, j = H2δ jJ j

(
∂Φ

∂ny

)∗
i, j
, 1 ≤ i, j ≤ N.

Ei, j = Φ(x∗i − z j), 1 ≤ i ≤ N, N +1 ≤ j ≤ N +L.

Fi, j = χT i
ε
(x∗j), 1 ≤ j ≤ N, N +1 ≤ i ≤ N +L.

Gi, j = 0, N +1 ≤ i, j ≤ N +L.

f ∗i = f (x∗i ), 1 ≤ i ≤ N.

Here χT i
ε

denotes the indicator function of the tubular neighborhood T i
ε .

4. Solve the (N +L)× 1 vector β̃ from the linear equation Kβ̃ = f̃ , where β̃ =

β ∗

A

.

β ∗ = β (x∗) is N ×1, A =


A1

...

AL


5. For any x ∈ Ω, the solution is evaluated by computing

u(x) = ∑
j

H2
δ jJ j

(
∂Φ

∂ny

)
x, j

β
∗
j +

L

∑
l=1

AlΦ(x− zi)
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4.3.3.2 Exterior Component in 2D

For the unbounded component C0, the implicit formulation is

IBIM for the General Exterior Dirichlet Laplace Problem in 2D

Let C0 =R2\Ω̄ be a region with boundary Γ=∪L
l=1Γl , where each Γl is connected and ad-

jacent to the hole denoted Ω̃l . Denote also Tε for the ε tubular neighborhood of Γ ({|dΓ|< ε})

and T l
ε the ε tubular neighborhood of Γl (|dΓl |< ε). Then the exterior Dirichlet Laplace Prob-

lem can be solved with the following procedure

1. Solve β , Al for x∗ ∈ Γ from the following system:



∫
Tε

(
∂Φ(x∗,y∗)

∂ny
−1
)
β (y∗)δε(dΓ(y))J(y)dy− 1

2β (x)+∑
L
l=1 Al ln |x∗− zl|= f (x∗).

∑
L
l=1 Al = 0.∫

T l
ε

β (y∗)δε(dΓ(y))J(y)dy = 0 for l = 1, ...,L−1.

(4.9)

2. The solution u for x ∈ R2 \ Ω̄ can then be computed as

u(x) =
∫

Tε

(∂Φ(x,y∗)
∂ny

−1
)
β (y∗)δε(dΓ(y))J(y)dy+

L

∑
l=1

Al ln |x− zl|, x ∈ R2 \ Ω̄,

(4.10)

where z j ∈ Ω j are arbitrary points within the holes.

With the corresponding algorithm:

IBIM Algorithm for the General Exterior Dirichlet Laplace Problem in 2D

For a given boundary integral formulation on an unbounded region C0 = R2 \ Ω̄ with C 2
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boundary Γ = ∪L
l=1Γl , where each Γl is connected and adjacent to the hole Ω̃l . Denote also

Tε for the ε tubular neighborhood of Γ (|dΓ|< ε) and T l
ε the ε tubular neighborhood of Γl

({|dΓl |< ε}).

The algorithm for solving the multiply connected Dirichlet Laplace Problem


∆u(x) = 0, x ∈ R2 \ Ω̄

u(x) = f (x), x ∈ Γ = ∂Ω

with implicit boundary integral formulation (IBIM) takes the following steps:

1. Use CCL in Subsection 4.3.2 to obtain L, xi ∈ T l
ε , zl ∈ Ω̃l , and N, the total the number

of points in Tε = ∪L
l=1T l

ε .

2. For each xi ∈ Tε , compute x∗i = xi −di∇Hdi.

3. Form the matrix K =


D− 1

2 I E

F G

0 1,1, . . . ,1

 of dimension (N +L)× (N +L) and the

vector f̃ =

 f ∗

0

 (N +L)×1, where

Di, j = H2δ jJ j

((
∂Φ

∂ny

)∗
i, j
−1

)
, 1 ≤ i, j ≤ N.

Ei, j = Φ(x∗i − z j), 1 ≤ i ≤ N, N +1 ≤ j ≤ N +L.

Fi, j = χT i
ε
(x∗j), 1 ≤ j ≤ N, N +1 ≤ i ≤ N +L−1.

Gi, j = 0, N +1 ≤ i ≤ N +L−1,N +1 ≤ j ≤ N +L.

f ∗i = f (x∗i ), 1 ≤ i ≤ N.

Here χT i
ε

denotes the indicator function of the tubular neighborhood T i
ε .

61



4. Solve the (N +L)× 1 vector β̃ from the linear equation Kβ̃ = f̃ , where β̃ =

β ∗

A

.

β ∗ = β (x∗) is N ×1, A =


A1

...

AL

 .

5. For any x ∈ Ω, the solution is evaluated by computing

u(x) = ∑
j

H2
δ jJ j

(
∂Φ

∂ny

)
x, j

β
∗
j +

L

∑
l=1

AlΦ(x− zi).

4.3.3.3 Components in 3D

For three dimensions, the interior and exterior formulations only differ in the presence of the

far field term u∞. We can collect the formulations together:

IBIM for the General Dirichlet Laplace Problem in 3D

Let Ω ⊂R3 be a region with boundary Γ = ∪L
l=0Γl (Γ = ∪L

l=1Γl if Ω is unbounded), where

each Γl is connected and Γ0 denote the boundary adjacent to the unbounded region. Namely, Ω

has L holes, each denoted Ω̃l . Denote also Tε for the ε tubular neighborhood of Γ ({|dΓ|< ε})

and T l
ε the ε tubular neighborhood of Γl ({|dΓl |< ε}). Then the Dirichlet Laplace Problem

can be solved with the following procedure:
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1. Solve β , Al (l = 1 . . .L) for x∗ ∈ Γ from the following system:



∫
Tε

(
∂Φ(x∗,y∗)

∂ny
− 1

|x∗−y∗|
)
β (y∗)δε(dΓ(y))J(y)dy± 1

2β (x∗)+∑
L
l=1 AlΦ(x∗− zl).

= f (x∗)
(
−u∞

)
.∫

Γl
β (y∗)δε(dΓ(y))J(y)dS(y) = 0, l = 1 . . .L.

(4.11)

2. The solution for x ∈ Ω is represented by

u(x) =
∫

Γ

(∂Φ(x,y∗)
∂ny

− 1
|x−y∗|

)
β (y∗)dy+

L

∑
l=1

AlΦ(x− zl)
(
+u∞

)
, (4.12)

where zl ∈ Ωl are arbitrary points within the holes. If Ω is an interior region, then

u∞ = 0.

The respective discretization and algorithm for 3D Laplace equation is:

IBIM Algorithm for the General Dirichlet Laplace Problem in 3D:

For a given boundary integral formulation on a bounded region Ω with C 2 boundary Γ =

∪L
l=0Γl (Γ = ∪L

l=1Γl if Ω is unbounded), where each Γl is connected and adjacent to the hole

Ω̃l and Γ0 denote the boundary adjacent to the unbounded region. Denote also Tε for the ε

tubular neighborhood of Γ ({|dΓ|< ε}) and T l
ε the ε tubular neighborhood of Γl ({|dΓl |< ε}).

The algorithm for solving the 3D multiply connected Dirichlet Laplace Problem


∆u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ = ∂Ω,(
lim|x|→∞ u(x) = u∞, if µ(Ω)=∞,

)
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with implicit boundary integral formulation (IBIM) takes the following steps:

1. Use CCL in Subsection 4.3.2 to obtain L, xi ∈ T l
ε , zl ∈ Ω̃l , and N, the total the number

of points in Tε = ∪L
l=1T l

ε .

2. For each xi ∈ Tε , compute x∗i = xi −di∇Hdi.

3. Form the matrix K =

D± 1
2 I E

F G

 of dimension (N + L)× (N + L) and the vector

f̃ =

 f ∗

0

 (N +L)×1, where

Di, j = H2δ jJ j

((
∂Φ

∂ny

)∗
i, j
− 1

|x∗i −x∗j |

)
, 1 ≤ i, j ≤ N.

Ei, j = Φ(x∗i − z j), 1 ≤ i ≤ N, N +1 ≤ j ≤ N +L.

Fi, j = χT i
ε
(x∗j), 1 ≤ j ≤ N, N +1 ≤ i ≤ N +L.

Gi, j = 0, N +1 ≤ i, j ≤ N +L.

f ∗i = f (x∗i )
(
−u∞

)
, 1 ≤ i ≤ N.

Here χT i
ε

denotes the indicator function of the tubular neighborhood T i
ε . u∞ = 0 for

interior region.

4. Solve the (N +L)× 1 vector β̃ from the linear equation Kβ̃ = f̃ , where β̃ =

β ∗

A

.

β ∗ = β (x∗) is N ×1, A =


A1

...

AL

.
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5. For any x ∈ Ω, the solution is evaluated by computing

u(x) = ∑
j

H2
δ jJ j

(
∂Φ

∂ny

)
x, j

β
∗
j +

L

∑
l=1

AlΦ(x− zi)
(
+u∞

)
.

4.3.4 Velocity Extension

Given Vn = [∂u
∂n ]Γt from the solution of the PDE, the next stage of the simulation is to extend

the normal velocity to neighboring grid points to prepare for a stable interface propagation.

Following the discussions in Section 3.2, the idea is to define the velocity field in the space

such that it converges continuously to the prescribed velocity on the interface

lim
x→x∗

Vn(x) =Vn(x∗), x∗ ∈ Γ. (4.13)

We propagate the following hyperbolic equation, whose characteristics point outward from

the interface to the whole domain, and thus floods the velocity profile satisfying ∇φ ·∇Vn = 0

from the interface and out:

∂Vn

∂ t
+ sgn(φ)

∇φ

|∇φ |
·∇Vn = 0 (4.14)

In some front propagation problems such as the mean curvature flows, the normal velocity

Vn is readily known and conveniently computed for each point x∗ ∈ Γ (for example, κ(x∗) =

∇ · ∇φ

|∇φ |). Therefore, constant velocity extension is commonly used. However, in the case of

Mullins-Sekerka flows, the velocity on the boundary requires an evaluation of

∂u
∂nx

(x∗) =
∫

Γ

∂ 2Φ

∂nx∂ny
(x∗,y)β (y)dS(y).
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The extra normal derivative on the kernel makes the solution evaluation a hypersingular

boundary integral. To circumvent this challenge, we note that the velocity extension flow only

requires a continuous extension and not a constant extension. For a locally C 2 boundary,

define the general velocity field within the tubular neighborhood Tε as the difference of the

Neumann data of itself and its mirror point from the interface:

Vn(x) := sgn(dΓ(x))
(∂u

∂n
(x)− ∂u

∂n
(x−2dΓ(x)∇dΓ(x))

)
, x /∈ Γ,x ∈ Tε . (4.15)

The signum function is applied to be consistent with the sign of Mullins-Sekerka model. The

point x− 2dΓ(x)∇dΓ(x) is the mirror point of x. It is easily seen that the definition (4.15)

satisfies the continuity criterion (4.13). The kernels are now non-singular since the evaluation

points are off boundary.

For points that are further away from the boundary (e.g. not inside the tubular neighbor-

hood Tε ), the mirror point may not be a good choice as it may be projected over the interface

again into an unwanted region or across the kinks of the level set function. Therefore, we

need to apply the standard velocity extension algorithm (4.14) for points outside the tubular

neighborhood. In this case, an upwind Godunov scheme is used. The spatial derivative uses a

WENO-3 scheme. For time propagation, we use an implicit third order TVD-RK3 method as

in (3.3) with a CFL coefficient c = 1. We propagate a number of steps to ensure the velocity

information is transmitted throughout a ε neighborhood band of Γt = ∂Ωt .

4.3.5 Interface Propagation

Once we have the normal velocity profile, we propagate the interface by with the standard

level set method [Osher & Fedkiw (2000)]. Consider the motion of some level set φ(x, t) =C.

By the chain rule we have

φt +∇φ · ∂x
∂ t

= 0. (4.16)

66



Since we also have n = ∇φ

|∇φ | for the exterior normal vector n, replacing ∇φ in (4.16),

φt + |∇φ |∂x
∂ t

·n = 0.

But ∂x
∂ t ·n is precisely the normal velocity Vn if we take the positive velocity to simulate shrink-

ing motion. Hence we finally arrive at the interface propagation hyperbolic advection equa-

tion: 
φt +Vn|∇φ |= 0.

φ(x,s) = d(x,Γs).

(4.17)

We then use upwind finite difference scheme with WENO-3 spatial derivatives and implicit

TVD-RK3 method (3.3) with CFL condition ∆t < 1
maxx∈Ts,ε |Vn|∆x to obtain φs+∆t (and conse-

quently, Γs+∆t as its zero level set). We use Ts,ε again to denote the tubular neighborhood of

the interface Γs (at time s) within distance ε .

4.4 Numerical Results in 2D

We begin with two simple simulations of a circle and an ellipse with their shape evolution

(Figure 4.6) to illustrate the dynamics to equilibrium state. Next we illustrate the propagation

is successful with interfaces with sharp corners (e.g. Figure 4.7). We then test on long tubes

(See Figure 4.9) and observe the motion does not necessarily preserve convexity, as illustrated

in [Mayer (1993)]. The last few plots show that the simulation is able to deal with topological

changes with arbitrary shapes (Figure 4.8), including shape merging (Figure 4.10).

4.4.1 Equilibrium State
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Figure 4.6: Interface evolution for circle and ellipse. This is an illustration of the equilibrium
state.

4.4.2 Irregular Shapes and Curve Coarsening

We illustrate dynamics of a shape with sharp corners in Figure 4.7. The coarsening process

with irregular shapes is demonstrated in Figure 4.8. We see that the shapes converge to a

circle, with the largest component absorbing the mass of the other components.

4.4.3 Non-conservation of Convexity

As discussed in [Mayer (1993)], the convexity is not necessarily preserved during the whole

process of Mullins-Sekerka flow. We demonstrate our simulation in Figure 4.9.
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End time = 0.500000. 133 steps in total, printing every 7 steps.

Figure 4.7: Simulation of an interface with sharp corners.
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Figure 4.8: The coarsening dynamics of multiple components with irregular shapes.
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Figure 4.9: Dynamics of long tube.
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4.4.4 Shape Merging

The capability of dealing with topological changes is a main advantage of level set methods.

Below we illustrate a shape merging simulation in Mullins-Sekerka flow (Figure 4.10). By

testing on different grid resolutions (See Table 4.1), we see that the algorithm has convergent

error results in terms of area change and time jump. When merging happens, the boundary

begins to have corners and one must be careful about the implicit boundary integral since the

ε neighborhood now can overlap regardless of the size of ε . In this case, quadrature points

within the tubular neighborhood of both boundaries should be counted twice instead of once.

Under the IBIM framework, one can use a mirror point to test if a quadrature point needs to

be compensated. The results of this strategy will be reported in a future publication.

Table 4.1: The convergence of merging time and area jump.

H 4/128 4/256 4/512
Start Merge Time Stamp 0.009357 0.014789 0.02179
End Merge Time Stamp 0.032062 0.025939 0.026632

Time Jump 0.022762 0.01115 0.004842
Start Merge Area 2.696655 2.691792 2.686751
End Merge Area 2.804205 2.724255 2.694007

Area Jump 0.107550 0.032463 0.007256
Relative Area error 0.03988 0.01206 0.00270

Initial Area 2.6965 2.69611 2.695495
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Figure 4.10: Ellipse merging in 2D Mullins-Sekerka flow simulation.
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4.5 Numerical Results in 3D

For 3D dynamics, we illustrate two things.

1. The isothermal process depend on the far field environment value (Figure ??).

2. The instability of the general Mullins-Sekerka process.

For the instability, we see that the dendritic growth is isotropic given an radially symmetric

initial interface (Figure 4.12). If the crystal has an initial anisotropy, the dendritic growth will

magnify the anisotropy. This agrees with the theoretical results and the numerical simulations

by [Chen et al. (1997)].

4.5.1 Solidification and Liquidation in Various Environments

Figure 4.11: On the left, both spheres grow on low temperature. In the middle, both shrinks
on high temperature. On the right, the temperature is deliberately set at phase transition point.
We see that the larger sphere grows at the expense of the smaller sphere, just as we would
observe in the 2D case.

4.5.2 Isotropic and Anisotropic Crystallization

Figure 4.12 shows the instability of dendritic growth. In the last plot (Figure 4.13), we com-

pare crystallization of sphere and a shape with initial anisotropy in coordinate directions. For

illustration purpose, we take the xy-slice of the 3D surface. We see that anisotropy will be

magnified and muff the instability.
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Figure 4.12: Instability of dendritic growth while maintaining crystal symmetry.
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Figure 4.13: Comparison of crystallization with anisotropy.
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Chapter 5

Extrapolatory Implicit Boundary Integral

Method

5.1 Helmholtz Problem

Wave propagation and scattering has been an active research field with plenty applications in-

cluding aerospace engineering [Greenleaf et al. (2008); Kohn et al. (2008)], seismology [Bur-

ridge (1976); Shearer (2003)] and medical imaging [Ammari et al. (2010)]. When we consider

a wave equation in its frequency domain, the time harmonic wave satisfies the Helmholtz

equation. In this chapter, we concern ourselves with the exterior Helmholtz problem with

Neumann conditions, which represents acoustic wave scattering with a sound-hard obstacle

or electromagnetic wave scattering by a perfect conductor. The target problem is described in

the following:
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Definition 4. Exterior Neumann Helmholtz Problem

Given a closed, compact, C 2 hyperinterface Γ ∈ Rm, the space is separated into a open,

bounded region Ω and its complement Ω̄c = Rm \ Ω̄. We seek for a function u satisfying


∆u(x)+ k2u(x) = 0, x ∈ Rm \ Ω̄.

∂u
∂n(x) = g(x), x ∈ ∂Ω.

lim|x|→∞ |x|m−1
2 ( ∂

∂ |x| − ik)u(x) = 0.

(5.1)

Ω ∈Rm represents the obstacles for scattering. For convenience, we will denote the boundary

of the domain ∂Ω as Γ and use them interchangeably. A detailed discussion on the existence

and uniqueness of the solution to (5.1) can be found in [Colton & Kress (2013)].

Numerical studies of the Helmholtz equation include Finite Difference Methods (FDMs)

[Singer & Turkel (1998)], Finite Element Methods (FEMs) [Harari & Hughes (1991)], and the

boundary integral methods (BIMs) (also called the methods of boundary integral equations

[Colton & Kress (2013)]). For a wave scattering problem such as (5.1), FDMs and FEMs

can be inconvenient for two main reasons. First, the computation domain is the same as the

domain of interest, which is potentially unbounded. Second, artificial boundary conditions

need to be imposed to accommodate the Sommerfeld radiation condition at infinity. Boundary

integral methods (BIMs) deals with these two challenges naturally. The computation domain

is restricted to the boundary, and the integral formulations produce solutions that satisfy the

boundary condition at infinity automatically. These advantages keep numerical algorithms

based on BIMs [Kress (1991); Canino et al. (1998); Schneider (2003)] an active research field

for wave scattering.

The BIMs make use of fundamental solutions as discussed in Chapter 2. The fundamental

solution Φ for the Helmholtz operator satisfies

(∆y + k2)Φ(x,y) = δ (x− y).
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One can obtain the analytic form of Φ with the Fourrier transform. In particular,

Φ(x,y) =


− i

4H(1)
0 (k|x− y|) , x,y ∈ R2.

eik|x−y|

|x−y| , x,y ∈ R3.

Following similar arguments as in Chapter 2, the traditional boundary integral formulation

expresses the solution as an integral:

u(x) =
∫

Γ

Φ(x,y)α(y)dy(s) x ∈ Ω̄
c. (5.2)

Using the jump relation Lemma 3, the potential density α is obtained by solving the following

Fredholm’s integral equation of the second kind with Neumann boundary conditions.

g(x) =
∂u
∂n

(x) =
∫

Γ

∂Φ

∂nx
(x,y)α(y)dy(s)− 1

2
α(x) x ∈ ∂Ω. (5.3)

However, it is well known [Smirnov (1964)] and established [Kleinman & Roach (1974)]

that (5.3) is not uniquely solvable for some wave number k because the integral operator has

nontrivial null space. More importantly, the spectrum of the integral operator depends on the

domain Ω and is generally infinite dimensional. This means one cannot simply include a finite

linear combination of functions to rectify the kernel and cover the whole null space, as in the

Laplace problems in Section 2.2 1. Although the spectrum has no accumulation point, the

integral equation (5.3) is difficult to solve numerically when k is only close to the eigenvalues

[Brundrit (1965); Copley (1968)]. The eigenvalues greatly limits the generality of the tradi-

tional boundary integral formulation, particularly for some inverse problems. This problem of

operator eigenfrequency exists for both Dirichlet and Neumann boundary conditions.

[Brakhage & Werner (1965); Panich (1965)] showed that a formulation combining both

1Note however, that the PDE itself is uniquely solvable, just the integral formulation is not sufficient to yield
the unique solution.
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single and double layer potentials can cover the null space of each other and solve the problem

for Dirichlet boundary conditions. The analogous formulation for the Neumann problem is

proved effective by [Burton & Miller (1971)], which we summarized as follows:

u(x) =
∫

Γ

∂φ

∂ny
(x,y)β (y)dy(s)− iξ

∫
Γ

φ(x,y)β (y)dy(s) x ∈ Ω̄
c, (5.4)

and the density β is obtained by solving the resulting Fredholm’s equation of the second kind:

g(x) =
∂u
∂n

(x) =
∂

∂nx

∫
Γ

∂φ

∂ny
(x,y)β (y)dy(s)− iξ

(∫
Γ

∂φ

∂nx
(x,y)β (y)dy(s)− 1

2
β (x)

)
x ∈ ∂Ω.

(5.5)

This is also called the Burton-Miller boundary integral formulation. For numerical schemes

to invert the integral equation, the order of integration and differentiation is switched in (5.5)

to give

g(x) =
∫

Γ

∂ 2φ

∂nx∂ny
(x,y)β (y)dy(s)− iξ

(∫
Γ

∂φ

∂nx
(x,y)β (y)dy(s)− 1

2
β (x)

)
x ∈ ∂Ω. (5.6)

The hypersingular integral for x ∈ ∂Ω is to be interpreted in the Hadamard’s sense. This ap-

proach is introduced by [Kutt (1975)]. Notice that since the normal derivative on the boundary

is one-sided, which is the reason an integral value in the traditional Riemann sense does not

exist in (5.6) and requires a special interpretation. But for x /∈ ∂Ω, the derivative in the normal

direction exists and the commute of differentiation and integration is justified. We have

∂u
∂n

(x) =
∫

Γ

∂ 2φ

∂nx∂ny
(x,y)β (y)dy(s)− iξ

∫
Γ

∂φ

∂nx
(x,y)β (y)dy(s), x /∈ ∂Ω

which can be naturally interpreted in the Riemann sense.

As we can see, the difficulty with solving (5.6) is that the double layer potential has be-

come a hypersingular integral. This problem is unique for the Neumann problems (and not for
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Dirichlet problems) because of the extra derivative we need to take on the boundary. Regular-

ization methods have been studied for Nyström methods, which require explicit parametriza-

tion of the boundary [Paget (1981); Kress (1995)], or a regularization on boundary element

methods [Hackbusch & Sauter (1993); Aimi & Diligenti (2002)], which can be quite com-

plicated for nonlinear elements and the approaches are dimensionally dependent. Some other

methods include making use of the regularity of the density function to lower the order of

singularity [Frangi (1998); Bruno et al. (2012)]. In this chapter, we are going to study the

formulation using an implicit boundary integral method, which deal with its natural integral

formulation (5.5). The method is intuitive to implement on uniform or adaptive Cartesian

grids, requires no extra complications in different dimensions, and can deal with different

irregular shapes with the boundary described only by its signed distance function.

5.2 Extrapolatory Implicit Boundary Integral Method

We review [Kublik et al. (2013)] as in (3.3) that for a parallel interface Γη that is η away from

Γ and a function f : R2 ×R2 → C

∫
Γ

f (x,y(s))ds =
∫

Γη

f (x,y∗(sη))Jη dsη , (5.7)

where y∗ = y− dΓ(y)∇dΓ(y) is the projection point of y ∈ Γη onto the interface Γ and dΓ

denote the signed distance function to the interface and Jη is the Jacobian for the change of

variable to the parallel interface. The integral on the right hand side is not a function of η .

Thus for any weight function supported on [−ε,ε] with unit mass, we have

∫
Γ

f (x,y(s))ds =
∫

ε

−ε

W (η)
∫

Γη

f (x,y∗(sη))Jη dsηdη

=
∫
R2

f (x,y∗)J(y)W (dΓ(y))dy.
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Note that the transform is an exact equality because the integral is not a function of η . Con-

sequently the boundary integrals (5.2) (5.3) of the single layer formulation for the Neumann

Problem can be analytically transformed into the following implicit forms:

u(x) =
∫

T[−ε,ε]

φ(x,y∗)α(y∗)J(y)W (dΓ(y))dy x ∈ Ω̄
c.

g(x) =
∂u
∂n

(x) =
∫

T[−ε,ε]

∂φ

∂nx
(x,y∗)α(y∗)Jη(y)W (dΓ(y))dy− 1

2
α(x) x ∈ Γ. (5.8)

Here T[a,b] denote the tubular region that is [a,b] (signed) away from the interface Γ.

To regularize the hypersingular integral with implicit boundary integral formulation, we

need to extrapolate the kernel function values for x /∈ Γ. We first define a family of weighting

functions with unit mass and the first p moments vanishing:

Definition 5. Let 0 < δ0 < ε0. A function W is in the weighting function space Wp
δ0,ε0

if it
satisfies the following properties:

W (η) = 0, η /∈ [δ0,ε0].∫ ε0
δ0

W (η)dη = 1.∫ ε0
δ0

ηmW (η)dη = 0, m = 1 . . . p.
(5.9)

Now we state the main result:

Theorem 4. (Generalized Implicit Boundary Integral Formulation) Let Γ be a C 2 compact
interface in Rm with principal curvatures denoted κi, W ∈ Wp

δ0,ε0
be a weighting function

defined in (5.9), dΓ be the signed distance function to the interface, then for any function
f : Rm ×Γ → C, f ∈ C p+1(Rm ×Γ) and all δ0, ε0, min1≤i≤m−1 | 1

κi
| > ε0 > δ0 > 0, we have

for x ∈ Γ ∫
Γ

f
(
x, y(s)

)
ds

=
∫
Rn

f
(

x−dΓ(y)∇dΓ(x), y−dΓ(y)∇dΓ(y)
)

W
(
dΓ(y)

)
J(y)dy (5.10)

+O(ε p+1
0 sup

ζ∈(x,x+ε0nx)
ν∈Γ

|∂
(p+1) f (ζ ,ν)

∂n(p+1)
x

|),

where J(y) is the Jacobian for parametrizing at a parallel interface Γd(y).
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Proof. Let us first define a function h(η) :=
∫

Γ
f
(
x+ηnx, y(s)

)
ds. Our goal is computing

h(0). Take a change of variable as in [Kublik et al. (2013)], we have

h(η) =
∫

Γ

f
(
x+ηnx, y(s)

)
ds

=
∫

Γη

f
(
x−η∇dΓ(x), y∗(sη)

)
J(y)dsη .

With the properties of W , we expand the function h at 0 to degree p:

∫
ε0

δ0

h(η)W (η)dη

=
∫

ε0

δ0

(
h(0)+ηh′(0)+ · · ·+η

p h(p)(0)
p!

+η
(p+1)h(p+1)(ζ )

(p+1)!

)
W (η)dη

=h(0)+
∫

ε0

δ0

η
(p+1)h(p+1)(ζ )

(p+1)!
W (η)dη

=h(0)+
∫

ε0

δ0

η(p+1)W (η)

(p+1)!

(∫
Γ

∂ (p+1) f (ζ ,y(s))

∂n(p+1)
x

ds
)

dη

=h(0)+O
(
ε

p+1
0 sup

ζ∈(x,x+ε0nx)
ν∈Γ

|∂
(p+1) f (ζ ,ν)

∂n(p+1)
x

|
)

(5.11)

The boundary integral with this generalized function f can be put in implicit form:

∫
ε0

δ0

h(η)W (η)dη

=
∫

ε0

δ0

W (η)

(∫
Γ

f
(

x+ηnx, y(s)
)

ds
)

dη

=
∫

ε0

δ0

W (η)

(∫
Γη

f
(

x−η∇dΓ(x), y(sη)−η∇dΓ(y(sη))
)

J(y(sη))dsη

)
dη

=
∫

ε0

δ0

∫
Γη

W (η) f
(

x−η∇dΓ(x), y(sη)−η∇dΓ(y(sη))
)

J(y(sη))dsηdη

=
∫
Rn

f
(

x−dΓ(y)∇dΓ(x), y−dΓ(y)∇dΓ(y)
)

W (dΓ(y))J(y)dy. (5.12)

Combining (5.11) with (5.12), we have the generalized implicit boundary integral formulation.
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5.3 Application on Helmholtz Neumann Problem

One difficulty of solving the Helmholtz Neumann Problem is that the kernel K(x,y) := ∂ 2φ

∂nx∂ny
(x,y)

is hypersingular and the integral
∫

Γ
K(x,y(s))β (y(s))ds does not exist in the Riemann sense

when x ∈ Γ. We cannot define f (x,y) = K(x,y)β (y) and apply (5.10) directly. The reason to

this peculiarity is that the solution to the Helmholtz equation

u(x) =
∫

Γ

∂φ

∂ny
(x,y(s))β (y(s))ds− iξ

∫
Γ

φ(x,y(s))β (y(s))ds

is C 2(Ω̄c)∩C (Ω̄c∪Γ) (this actually implies analyticity on Ω̄c, see [Colton & Kress (2013)]).

Therefore, the function is differentiable on only one side of the interface. The conventional

normal derivative

∂u
∂nx

(x) =
∂

∂nx

(∫
Γ

∂φ

∂ny
(x,y(s))β (y(s))ds− iξ

∫
Γ

φ(x,y(s))β (y(s))ds
)

actually refers to the one-sided normal derivative when x ∈ Γ. Since the function is analytic

for x′ /∈ Γ, derivatives are defined and the order of operations can be interchanged freely off

interface:

∂u
∂n+x

(x) =
∂

∂n+x

(∫
Γ

∂φ

∂ny
(x,y(s))β (y(s))ds− iξ

∫
Γ

φ(x,y(s))β (y(s))ds
)

= lim
λ→0+

(
∂

∂nx

(∫
Γ

∂φ

∂ny
(x+λnx,y(s))β (y(s))ds

−iξ
∫

Γ

φ(x+λnx,y(s))β (y(s))ds
))

= lim
λ→0+

(∫
Γ

∂

∂nx

∂φ

∂ny
(x+λnx,y(s))β (y(s))ds

−iξ
∫

Γ

∂φ

∂nx
(x+λnx,y(s))β (y(s))ds

)
.

81



For x ∈ Γ, let

h̃(η) :=


∫

Γ

(
∂φ

∂ny
(x+ηnx,y(s))− iξ φ(x+ηnx,y(s))

)
β (y(s))ds, η > 0.

u(x), η = 0.

Define the pth (p ≥ 1) derivative of h̃ as

h̃(p)(η) :=


d

dη

∫
Γ

(
∂φ

∂ny
(x+ηnx,y(s))− iξ φ(x+ηnx,y(s))

)
β (y(s))ds, η > 0

limλ→0+
1
λ
(h̃(p−1)(λ )− h̃(p−1)(0)), η = 0

By the analyticity of u on either side of the interface [Colton & Kress (2013)], the function h̃

has a Taylor’s expansion with the derivative at η = 0 defined as above. With the well chosen

weighting function W ∈Wp
δ0,ε0

, we apply the proof of Theorem 4 on h̃′ to derive the following

error estimate:

∫
ε0

δ0

h̃′(η)W (η)dη

=h̃′(0)+
∫

ε0

δ0

η
(p+1) h̃(p+2)(ζ )

(p+1)!
W (η)dη

= lim
λ→0+

1
λ
(h̃(λ )− h̃(0))+

∫
ε0

δ0

η
(p+1) h̃(p+2)(ζ )

(p+1)!
W (η)dη

= lim
λ→0+

1
λ
(u(x+λnx)−u(x))+

∫
ε0

δ0

η
(p+1) h̃(p+2)(ζ )

(p+1)!
W (η)dη

=
∂u
∂nx

(x)+
∫

ε0

δ0

η
(p+1) h̃(p+2)(ζ )

(p+1)!
W (η)dη

=
∂u
∂nx

(x)+O
(
ε

p+1
0 sup

ζ∈(x+δ0nx,x+ε0nx)
ν∈Γ

|∂
(p+2)φ(ζ ,ν)

∂n(p+2)
x

|
)
. (5.13)

The last equality follows from the fact that the integral is off interface (δ0 > 0) and the higher

order derivative has a dominating value over the lower order derivatives.

Once we reduce our task to evaluating
∫ ε0

δ0
h̃′(η)W (η)dη , we apply the technique in (5.12)
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to transform the boundary integral into an implicit integral. The interchanging of differentia-

tion and integration is justified as the evaluations are all off interface (δ0 > 0). We summarize

this extrapolatory implicit approach to solve the Helmholtz Neumann Problem:

Combined Layer Formulation for Exterior Neumann Problem using EIBIM:

1. Solve the potential density β for the combination potential

g(x) =
∫

T[δ0,ε0]

(
∂ 2φ

∂nx∂ny
(x+ |d(y)|nx,y∗)− iξ

∂φ

∂nx
(x,y∗)

)
β (y∗)W (|d(y)|)J(y)dy

(5.14)

− 1
2

iξ β (x) x ∈ ∂Ω.

2. Use the density β to evaluate u off interface

u(x) =
∫

T[δ0,ε0]

(
∂φ

∂ny
(x,y∗)− iξ φ(x,y∗)

)
β (y∗)W (|d(y)|)J(y)dy x ∈ Ω̄

c. (5.15)

5.4 Numerical Results in Two Dimensions

The numerical results in this section is divided into three parts. First we compare the formu-

lation of (5.8) and (5.14) on cases where k is not an interior eigenvalue (k = 1), and where

the wave number k is an interior eigenvalue of the unit disk (k ≈ 2.4048255577) (The first ten

eigenvalues of the unit disk can be found in [Reutskiy (2006)]). Then we compare the solu-

tions of a non-convex kite shape, where the solution is known as in [Kress (1995)]. Finally we

illustrate some scattering graphics generated by using the implicit methods. For simplicity, we

will denote the numerical results using (5.8) as IBIM and the results using (5.14) as EIBIM.
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Figure 5.1: Weight function WEIBIM (black) and W (blue). Both functions are in the weighting
function space W1

0.1,1 as defined in (5.9). Additionally, WEIBIM has two vanishing derivatives
at δ0, whereas W is only continuous. The first two plots show the shape of the two weighting
functions and their first derivatives. The third plot is the extrapolation error for the function
f (η) = 1√

η+0.05 on the interval [0.1dx,
√

dx].

The explicit functions used in (5.8)(5.14) for the numerical results are as follows. The

weight function for the IBIM formulation is the symmetric cosine weight:

WIBIM(η) =


1

2ε

(
1+ cos(πη

ε
)
)
, |η |< ε.

0, otherwise.
(5.16)

For the EIBIM combination method, the shifted sine function is used:

WEIBIM(η) =
1
ε0

WS(t =
η

ε0
,τ =

δ0

ε0
)

=


π

ε0(τ−1)2 (wS
0(t,τ)w

S
1(t,τ)), δ0 < η < ε0.

0, otherwise.
(5.17)

wS
0(t,τ) = sin(

π(t −1)
2(τ −1)

)cos3(
π(t −1)
2(τ −1)

).

wS
1(t,τ) = 7+ τ +3(5+3τ)cos(

π(τ − t)
τ −1

).

One can check that WEIBIM ∈ W1
δ0,ε0

and additionally W ′
EIBIM(δ0) = W ′′

EIBIM(δ0) = 0. From

the error analysis (5.13), the analytic error is O
(
ε2

0 supζ∈(x+δ0nx,x+ε0nx)
ν∈Γ

|∂ 4φ(ζ ,ν)
∂n4

x
|
)
.

Numerically, regularity of the weighting functions can help tame the more singular values

at δ0. To show this, we take another weight function W ∈ W1
δ0,ε0

where W is only contin-
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Figure 5.2: Error results for integration over hypersingular kernel with W (blue) and WEIBIM
(black). Both are in the weighting functions space W1

δ0,ε0
, as defined in (5.9). Additionally,

we have W ′
EIBIM(δ0) =W ′′

EIBIM(δ0) = 0 while W is only continuous at δ0.

uous at δ0 and compare it with WEIBIM (twice differentiable at δ0). We first extrapolate the

integral f (η) = 1√
η+0.05 to evaluate f (0). The weighting function that is twice differentiable

at δ0 yields a smaller error. An illustration of this comparison is shown in Figure 5.1. The

advantage of using a weight with more regularity at δ0 for a hypersingular kernel is even

more obvious. We show the integral error with a hypersingular kernel using a constant tubular

width (Figure 5.2a), a tubular width of O(
√

H) (Figure 5.2b), and a tubular width of O(
√

H)

but width δ0 = O(H) (Figure 5.2c). The error from WEIBIM has a higher order of convergence

than W consistently.

We address that (5.14) must have enough points on the normal direction of the interface to

resolve the wave, rather than just having enough points on the tangential direction as the case

in the original KTT IBIM. This is because x+ηnx jumps within the band of the hypersingular

integrals in the new formulation (5.14), whereas in the original KTT IBIM integral (5.8), x is

a fixed point on the boundary.

For the combination parameter ξ , we use the formula (D.1)(D.2) as in [Kress & Spassov

(1983)]. We leave the discussion of the choice of parameter ξ in Appendix D.
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Table 5.1: Condition number of the operators to be inverted in IBIM (5.8) and EIBIM (5.14).
k = 1 is not an eigenvalue. k = 2.4048 . . . is the first eigenvalue of the unit disk. The tube
width is a constant.

k = 1 k = 2.4048255577
dx Cond(MIBIM) Cond(MEIBIM) Cond(MIBIM) Cond(MEIBIM)
4

128 2.72E+00 1.16E+02 6.50E+02 1.46E+02
4

256 2.70E+00 1.01E+02 9.74E+02 1.22E+02
4

512 2.69E+00 1.00E+02 1.88E+03 1.21E+02

5.4.1 Unit Circle

We show the results on a constant bandwidth δ0 = 0.005, ε0 = 0.15 (See Figure 5.3), tubular

width of O(
√

H) (See Figure 5.4), and O(H) (See Figure 5.5). We set ε = ε0−δ0
2 so they have

roughly same number of points inside the band. We can see that EIBIM is able to solve the

exterior Neumann problem at both non-eigenvalues and eigenvalues. Note that for constant

tube width, the error will saturate at finer grid because of the truncation error is proportional

to ε2
0 . For width of O(H), the error will diverge since the same number of points will need to

resolve a larger bump as the band gets closer to the interface.

5.4.1.1 Constant Tube Width

The tubular width we test in this section is a constant width δ0 = 0.005, ε0 = 0.15, ε = ε0−δ0
2 .

The size of the matrices for IBIM are 948, 3752, and 14908. The size of the matrices for

EIBIM are 860, 3456, and 13796. We report the condition number of the matrix (Table 5.1)

and test the solution for a non-eigenvalue k = 1 (Table 5.2) and an eigenvalue k = 2.4048 . . .

(Table 5.3). We illustrate the error results with Figure 5.3.

5.4.1.2 Tube Width O(
√

H)

The tubular width in this section is taken to be δ0 = 0.5H, ε0 =
√

H, ε = ε0−δ0
2 . The size of

the matrices for IBIM are 1036, 3000, 8684, and 24840. The size of the matrices for EIBIM
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Table 5.2: Solution and relative error to the Neumann Helmholtz Problem using IBIM (5.8)
and EIBIM (5.14). Wave number k = 1 is not an eigenvalue. ue denotes the exact solution.
The tubular width for EIBIM is δ0 = 0.005, ε0 = 0.15. The tubular width for IBIM method is
ε = ε0−δ0

2 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4

128
0.719622

0.711141 1.18E-02 0.740852 2.95E-02
4

256 0.720568 1.31E-03 0.717483 2.97E-03
4

512 0.720053 5.99E-04 0.718210 1.96E-03
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4

128
0.162163

0.158838 2.05E-02 0.123289 2.40E-01
4

256 0.161680 2.98E-03 0.159302 1.76E-02
4

512 0.161891 1.68E-03 0.162697 3.29E-03

Table 5.3: Solution and relative error using IBIM (5.8) and EIBIM (5.14). Wave number
k = 2.4048255577 . . . is an eigenvalue. The tubular width for EIBIM is δ0 = 0.005, ε0 = 0.15.
The tubular width for IBIM is ε = ε0−δ0

2 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4

128
-0.117847

-0.600801 4.10E+00 -0.099827 1.53E-01
4

256 -0.324059 2.26E+00 -0.114964 2.45E-02
4

512 -0.322838 1.74E+00 -0.116073 1.51E-02
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4

128
0.472381

-0.173992 1.37E+00 0.451656 4.39E-02
4

256 -0.110502 1.23E+00 0.463844 1.81E-02
4

512 -0.109982 1.23E+00 0.465060 1.55E-02
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Figure 5.3: Solution error plots for non-eigenvalue k = 1 (left) and eigenvalue k =
2.404825558 . . . (right) using IBIM and EIBIM. The integration is performed on a constant
width tubular region.
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Table 5.4: Condition number of the operators to be inverted in IBIM (5.8) and EIBIM (5.14).
k = 1 is not an eigenvalue. k = 2.4048 . . . is the first eigenvalue of the unit disk. The tube
width is O(

√
H).

k = 1 k = 2.4048255577
dx Cond(MIBIM) Cond(MEIBIM) Cond(MIBIM) Cond(MEIBIM)
4

128 2.70E+00 9.50E+01 5.40E+02 1.40E+02
4

256 2.69E+00 1.28E+02 9.54E+02 1.51E+02
4

512 2.69E+00 1.77E+02 1.87E+03 2.05E+02

Table 5.5: Solution and relative error to the Neumann Helmholtz Problem using IBIM (5.8)
and EIBIM (5.14). Wave number k = 1 is not an eigenvalue. ue denotes the exact solution.
The tubular width for EIBIM is δ0 = 0.5H, ε0 =

√
H. The tubular width for IBIM is ε = ε0−δ0

2 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4

128

0.719622

0.718801 1.14E-03 0.713544 8.45E-03
4

256 0.720564 1.31E-03 0.723476 5.36E-03
4

512 0.720045 5.88E-04 0.718159 2.03E-03
4

1024 0.719815 2.68E-04 0.719753 1.81E-04
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4

128

0.162163

0.160431 1.07E-02 0.152353 6.05E-02
4

256 0.161668 3.05E-03 0.163314 7.10E-03
4

512 0.161902 1.61E-03 0.161219 5.83E-03
4

1024 0.162021 8.78E-04 0.162333 1.05E-03

are 940, 2804, 8356, and 24196. We report the condition number of the matrix (Table 5.4)

and test the solution for a non-eigenvalue k = 1 (Table 5.5) and an eigenvalue k = 2.4048 . . .

(Table 5.6). We illustrate the error results with Figure 5.4.
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Table 5.6: Solution and relative error to the Neumann Helmholtz Problem using IBIM (5.8)
and EIBIM (5.14). Wave number k = 2.4048255577 . . . is an eigenvalue. The tubular width
for EIBIM is δ0 = 0.5H, ε0 =

√
H. The tubular width for IBIM is ε = ε0−δ0

2 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4

128

-0.117847

-0.543542 3.61E+00 -0.111288 5.57E-02
4

256 -0.327077 1.78E+00 -0.115184 2.26E-02
4

512 -0.320489 1.72E+00 -0.117085 6.46E-03
4

1024 -0.315194 1.67E+00 -0.117446 3.40E-03
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4

128

0.472381

-0.171159 1.36E+00 0.456347 3.39E-02
4

256 -0.110484 1.23E+00 0.469015 7.13E-03
4

512 -0.108450 1.23E+00 0.469175 6.79E-03
4

1024 -0.107306 1.23E+00 0.471316 2.26E-03
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Figure 5.4: Solution error plots for non-eigenvalue k = 1 (left) and eigenvalue k =
2.404825558 . . . (right) using IBIM and EIBIM. The integration is performed on a tubular
region with width of O(

√
H).
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5.4.1.3 Tube Width O(H)

The tubular width δ0 = 0.5H, ε0 = 6.5H, ε = ε0−δ0
2 . The size of the matrices for IBIM are

1236, 2404, 4836, 9688, and 19328. The size of the matrices for EIBIM are 1072, 2240,

4708, 9552, and 19176. We report the condition number of the matrix (Table 5.7) and test the

solution for a non-eigenvalue k = 1 (Table 5.8) and an eigenvalue k = 2.4048 . . . (Table 5.9).

We illustrate the error results with Figure 5.5.

Table 5.7: The condition number of the operators to be inverted in IBIM (5.8) and EIBIM
(5.14). k = 1 is not an eigenvalue. k = 2.4048 . . . is the first eigenvalue of the unit disk. The
tube width is O(H)

k = 1 k = 2.4048255577
dx Cond(MIBIM) Cond(MEIBIM) Cond(MIBIM) Cond(MEIBIM)
4

128 2.70E+00 9.50E+01 5.77E+02 1.38E+02
4

256 2.69E+00 1.61E+02 9.93E+02 1.88E+02
4

512 2.69E+00 3.43E+02 1.99E+03 3.81E+02
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Table 5.8: The solution and relative error using IBIM (5.8) and EIBIM (5.14). Wave number
k = 1 is not an eigenvalue. ue denotes the exact solution. The tubular width for EIBIM is
δ0 = 0.5H, ε0 = 6.5H. The tubular width for IBIM is ε = ε0−δ0

2 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4

128

0.719622

0.721610 2.76E-03 0.708438 1.55E-02
4

256 0.720625 1.39E-03 0.714493 7.13E-03
4

512 0.720096 6.59E-04 0.717871 2.43E-03
4

1024 0.719850 3.17E-04 0.722288 3.70E-03
4

2048 0.719733 1.55E-04 0.732947 1.85E-02
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4

128

0.162163

0.161254 5.61E-03 0.152510 5.95E-02
4

256 0.161691 2.91E-03 0.154170 4.93E-02
4

512 0.161921 1.50E-03 0.155298 4.23E-02
4

1024 0.162041 7.52E-04 0.153034 5.63E-02
4

2048 0.162102 3.79E-04 0.142887 1.19E-01

Table 5.9: The solution and relative error using IBIM (5.8) and EIBIM (5.15). Wave number
k = 2.4048255577 . . . is an eigenvalue. The tubular width for EIBIM is δ0 = 0.5H, ε0 = 6.5H.
The tubular width for IBIM is ε = ε0−δ0

2 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4

128

-0.117847

-0.441122 2.74E+00 -0.112690 4.38E-02
4

256 -0.345925 1.94E+00 -0.114851 2.54E-02
4

512 -0.364585 2.09E+00 -0.115330 2.14E-02
4

1024 -0.375719 2.19E+00 -0.114242 3.06E-02
4

2048 -0.389311 2.30E+00 -0.109846 6.79E-02
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4

128

0.472381

-0.145206 1.31E+00 0.451668 4.38E-02
4

256 -0.113864 1.24E+00 0.464946 1.57E-02
4

512 -0.120919 1.26E+00 0.468097 9.07E-03
4

1024 -0.124683 1.26E+00 0.468355 8.52E-03
4

2048 -0.129543 1.27E+00 0.467003 1.14E-02
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Figure 5.5: Solution error plots for non-eigenvalue k = 1 (left) and eigenvalue k =
2.404825558 . . . (right) using IBIM and EIBIM. The integration is performed on a tubular
region of width O(H).

5.4.2 Kite Shape (Non-Convex)

We test our solution on the kite shape described by

y(s) = (cos(s)+0.65cos(2s)−0.65, 1.5sin(s)), 0 ≤ s ≤ 2π, (5.18)

and compare our solution with the solutions given in [Kress (1995)] using accurate regular-

ization with explicit parametrization. The shape is illustrated in Figure 5.6. The incidental

wave is ui = eikd·x, where d = (1,0). [Kress (1995)] showed the exterior Neumann problem

has directional far-field total wave

u∞(x̂) =
e−

iπ
4

√
8πk

∫
Γ

(
kx̂ ·ny +ξ

)
e−ikx̂·y

β (y)dS(y),

where x̂ is the test direction and β is the resolved density using combined double and sin-

gle layer potential with combination parameter ξ . We compare the error results for k = 1

(Table 5.10), k = 3 (Table 5.11), and k = 5 (Table 5.12).
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Table 5.10: Far-field solution error on 2D kite shape described in (5.18). Wave number k = 1.

dx Re(limr→∞ u((r,0)) Err Im(limr→∞ u((r,0))) Err
- 0.151537 - 0.191535 -
4

128 0.131936 0.019601 0.159917 0.031618
4

256 0.133984 0.017553 0.174343 0.017192
4

512 0.141053 0.010484 0.181224 0.010311
4

1024 0.145569 0.005968 0.186459 0.005076
4

2048 0.148291 0.003246 0.188774 0.002761
dx Re(limr→∞ u((−r,0)) Err Im(limr→∞ u((−r,0))) Err
- -1.102342 - -0.509187 -
4

128 -1.074023 0.028319 -0.507663 0.001524
4

256 -1.109982 0.00764 -0.528309 0.019122
4

512 -1.1047 0.002358 -0.515955 0.006768
4

1024 -1.104736 0.002394 -0.515549 0.006362
4

2048 -1.103845 0.001503 -0.512877 0.00369

Table 5.11: Far-field solution error on 2D kite shape described in (5.18).Wave number k = 3.

dx Re(limr→∞ u((r,0)) Err Im(limr→∞ u((r,0))) Err
- -0.036467 - 0.711221 -
4

128 -0.041236 0.004769 0.696300 0.014921
4

256 -0.057583 0.021116 0.710192 0.001029
4

512 -0.050893 0.014426 0.707467 0.003754
4

1024 -0.044105 0.007638 0.711591 0.00037
4

2048 -0.040943 0.004476 0.711862 0.000641
dx Re(limr→∞ u((−r,0)) Err Im(limr→∞ u((−r,0))) Err
- -1.636892 - -0.823357 -
4

128 -1.623179 0.013713 -0.806345 0.017012
4

256 -1.679449 0.042557 -0.812605 0.010752
4

512 -1.654864 0.017972 -0.822264 0.001093
4

1024 -1.651741 0.014849 -0.823977 0.00062
4

2048 -1.646324 0.009432 -0.823851 0.000494
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Table 5.12: Far-field solution error on 2D kite shape described in (5.18).Wave number k = 5.

dx Re(limr→∞ u((r,0)) Err Im(limr→∞ u((r,0))) Err
- -0.280672 - -0.29818 -
4

128 -0.326625 0.045953 -0.220888 0.077292
4

256 -0.319861 0.039189 -0.239901 0.058279
4

512 -0.300958 0.020286 -0.271519 0.026661
4

1024 -0.29066 0.009988 -0.282961 0.015219
4

2048 -0.286097 0.005425 -0.290469 0.007711
dx Re(limr→∞ u((−r,0)) Err Im(limr→∞ u((−r,0))) Err
- -1.947493 - -1.275907 -
4

128 -1.928536 0.018957 -1.038644 0.237263
4

256 -1.98456 0.037067 -1.145499 0.130408
4

512 -1.960317 0.012824 -1.220294 0.055613
4

1024 -1.958113 0.01062 -1.245836 0.030071
4

2048 -1.955342 0.007849 -1.259986 0.015921
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Figure 5.6: Kite shape described by (5.18).
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5.4.3 Illustration of Scattering in Two Dimensions

In this section, we illustrate the scattering results by drawing the norm of the total wave. We

compare the results using wave number k = 1 and k = 5 with a flower shape (Figure 5.7) and

a moon shape with close and far sources (Figure 5.8).

Figure 5.7: Scattering by a flower shape with Dirichlet boundary conditions. k = 1, 5.

Figure 5.8: Scattering by a moon shape with Dirichlet boundary conditions. k = 1, 5. We
compare the results where the wave source is near and far.
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Table 5.13: Number of points in the computation tubular neighborhood.

H δ A
0 = 0.005,εA

0 = 0.3 εA =
√
(εA

0 )
2 − (δ A

0 )
2 δ0 = 0.1H, ε0 =

√
H ε =

√
ε2

0 −δ 2
0

4
30 3220 3268 3924 3900
4
40 7512 7674 8078 7952
4
50 14972 14948 14000 13940
4
60 25744 26086 22052 21602
4
70 40740 41220 32440 32320
4
80 60980 61302 44796 45414
4

100 119020 120322 77629 78426

5.5 Numerical Results in Three Dimensions

As in the previous section, we use the cosine weight (5.16) for IBIM and the shifted sine

weight (5.17) for EIBIM. We first test on eigenvalues and non-eigenvalues on a unit sphere for

constant tubular width and for tubular width of O(
√

H). Next we compare the solutions for a

non-convex shape. We then illustrate some scattering results in 3D.

5.5.1 Unit Sphere

We show the results on a constant bandwidth δ0 = 0.005, ε0 = 0.3 (See Figure 5.3) and tubular

width of O(
√

H) (ε0 =
√

H, δ0 = 0.1H, see Figure 5.4). We take ε =
√

ε2
0 −δ 2

0 so the number

of points will be roughly the same. The following tables show the width and the number of

points in each scenario. We again see that EIBIM is able to solve the exterior Neumann

problem at both non-eigenfrequencies and eigenfrequencies.

5.5.1.1 Constant Tube Width

We compare the solution to the exterior Neumann Helmholtz problem using IBIM on the

single layer potential and EIBIM on the combination of single and double layer potentials.

using a non-eigenvalue (Table 5.14) and an eigenvalue (Table 5.15) wave number k. The band

has constant width δ0 = 0.005, ε0 = 0.3. We illustrate the error results in Figure 5.9.
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Table 5.14: The solution and relative error using IBIM with only one potential (5.8) and the
EIBIM with both potentials (5.14). Wave number k = 1 is not an eigenvalue. ue denotes the
exact solution. The tubular width for EIBIM is δ0 = 0.005, ε0 = 0.3. The tubular width for
IBIM is ε =

√
ε2

0 −δ 2
0 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4
30

-0.205768

-0.225221 9.45E-02 -0.793837 2.86E+00
4
40 -0.218142 6.01E-02 -0.325428 5.82E-01
4
50 -0.214985 4.48E-02 -0.283356 3.77E-01
4
60 -0.212991 3.51E-02 -0.220804 7.31E-02
4
70 -0.211673 2.87E-02 -0.220149 6.99E-02
4
80 -0.210776 2.43E-02 -0.204722 5.08E-03
4

100 -0.209610 1.87E-02 -0.204391 6.69E-03
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4
30

-0.741199

-0.777313 4.87E-02 -0.441240 4.05E-01
4
40 -0.763821 3.05E-02 -0.682795 7.88E-02
4
50 -0.757609 2.21E-02 -0.708353 4.43E-02
4
60 -0.753851 1.71E-02 -0.740213 1.33E-03
4
70 -0.751412 1.38E-02 -0.740388 1.09E-03
4
80 -0.749743 1.15E-02 -0.746361 6.97E-03
4

100 -0.747609 8.65E-03 -0.743564 3.19E-03
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Figure 5.9: Relative Error for Helmholtz Neumann Problem in 3D on constant tubular width.
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Table 5.15: The solution and relative error using IBIM with only one potential (5.8) and
EIBIM with both potentials (5.14). Wave number k = π is an eigenvalue. The tubular width

for EIBIM is δ0 = 0.005, ε0 = 0.3. The tubular width for IBIM is ε =
√

ε2
0 −δ 2

0 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4

30

0.143921

-0.086553 1.60E+00 0.116937 1.87E-01
4

40 -0.091683 1.64E+00 0.119227 1.72E-01
4

50 -0.098112 1.68E+00 0.122059 1.52E-01
4

60 -0.100048 1.70E+00 0.130660 9.21E-02
4

70 -0.102288 1.71E+00 0.130813 9.11E-02
4

80 -0.105551 1.73E+00 0.133807 7.03E-02
4

100 -0.110590 1.77E+00 0.133334 7.36E-02
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4

30

0.198091

0.099299 4.99E-01 0.162764 1.78E-01
4

40 0.102752 4.81E-01 0.162858 1.78E-01
4

50 0.110064 4.44E-01 0.168832 1.48E-01
4

60 0.112123 4.34E-01 0.178870 9.70E-02
4

70 0.114573 4.22E-01 0.179502 9.38E-02
4

80 0.118064 4.04E-01 0.182520 7.86E-02
4

100 0.123588 3.76E-01 0.183025 7.61E-02
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5.5.1.2 Tube Width O(
√

H)

We compare the solution to the exterior Neumann Helmholtz problem using IBIM on the

single layer potential and EIBIM on the combination of single and double layer potentials

using a non-eigenvalue (Table 5.16) and an eigenvalue (Table 5.17) wave number k. The band

has width δ0 = 0.1H, ε0 =
√

H. We illustrate the error results in Figure 5.10.

Table 5.16: The solution and relative error using IBIM (5.8) and EIBIM (5.14). Wave number
k = 1 is not an eigenvalue. ue denotes the exact solution. The tubular width for EIBIM is

δ0 = 0.1H, ε0 =
√

H. The tubular width for IBIM is ε =
√

ε2
0 −δ 2

0 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4
30

-0.205768

-0.224373 9.04E-02 -0.415482 1.02E+00
4
40 -0.218022 5.96E-02 -0.285181 3.86E-01
4
50 -0.214855 4.42E-02 -0.286292 3.91E-01
4
60 -0.212810 3.42E-02 -0.236729 1.50E-01
4
70 -0.211444 2.76E-02 -0.254808 2.38E-01
4
80 -0.210502 2.30E-02 -0.227409 1.05E-01
4

100 -0.209749 1.93E-02 -0.216433 5.18E-02
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4
30

-0.741199

-0.776345 4.74E-02 -0.566261 2.36E-01
4
40 -0.763564 3.02E-02 -0.700634 5.47E-02
4
50 -0.757833 2.24E-02 -0.704991 4.89E-02
4
60 -0.754129 1.74E-02 -0.735219 8.07E-03
4
70 -0.751366 1.37E-02 -0.726710 1.95E-02
4
80 -0.749722 1.15E-02 -0.737676 4.75E-03
4

100 -0.748050 9.24E-03 -0.743145 2.63E-03
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Figure 5.10: Relative Error for Helmholtz Neumann Problem in 3D. Tubular width is O(
√

H).
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Table 5.17: The solution and relative error using IBIM (5.8) and EIBIM (5.14). Wave number
k = π is an eigenvalue. The tubular width for EIBIM is δ0 = 0.1H, ε0 =

√
H. The tubular

width for IBIM is ε =
√

ε2
0 −δ 2

0 .

dx Re(ue) Re(uIBIM) ErrIBIM Re(uEIBIM) ErrEIBIM
4

30

0.143921

-0.094470 1.66E+00 0.112512 2.18E-01
4

40 -0.094490 1.66E+00 0.120267 1.64E-01
4

50 -0.079998 1.56E+00 0.125629 1.27E-01
4

60 -0.068139 1.47E+00 0.131535 8.61E-02
4

70 -0.088125 1.61E+00 0.129501 1.00E-01
4

80 -0.060890 1.42E+00 0.134285 6.70E-02
4

100 -0.088902 1.62E+00 0.137683 4.33E-02
dx Im(ue) Im(uIBIM) ErrIBIM Im(uEIBIM) ErrEIBIM
4

30

0.198091

0.105453 4.68E-01 0.142503 2.81E-01
4

40 0.105677 4.67E-01 0.163665 1.74E-01
4

50 0.086081 5.65E-01 0.171389 1.35E-01
4

60 0.070375 6.45E-01 0.179290 9.49E-02
4

70 0.098601 5.02E-01 0.178621 9.83E-02
4

80 0.059838 6.98E-01 0.185208 6.50E-02
4

100 0.098888 5.01E-01 0.188870 4.66E-02

5.5.2 Bean Shape (Non-Convex)

We test on a non-convex shape in 3D as shown in Figure 5.11, the bean shape. The incidental

is taken to be uinc = eikd·x, where d = (−1,0,0) and we record the consecutive difference of the

solutions (scattered wave) and compare it with the solutions using IBIM (5.8) in Table 5.18.

The tubular width is taken to be O(
√

H), with ε0 =
√

H, δ0 = 0.1H.
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Figure 5.11: The bean shape. The interface is the zero set of 0.9(1.6x+( y
1.6)

2)2 +( y
1.5)

2 +

( z
1.5)

2 = 1

Table 5.18: Consecutive difference of the scatter wave solution and comparison with IBIM on
bean shape. k = 1, ε0 =

√
H. Evaluated at (2,2,2).

dx #points Re(uEIBIM) Con. Diff. #points Re(uIBIM) |ReEIBIM −ReIBIM|
4

30 5752 0.944556 - 5896 0.979018 0.034462

4
60 32888 0.972148 0.027592 33332 0.974335 0.002187

4
90 90964 0.946706 0.025442 91876 0.918696 0.028010

4
120 186714 0.930812 0.015894 188364 0.920763 0.010049

dx #points Im(uEIBIM) Con. Diff. #points Im(uIBIM) |ImEIBIM − ImIBIM|
4

30 5752 0.043454 - 5896 0.349326 0.305872

4
60 32888 0.262999 0.219545 33332 0.349435 0.0864360

4
90 90964 0.303281 0.040282 91876 0.334712 0.031431

4
120 186714 0.318407 0.015126 188364 0.327899 0.009492

5.5.3 Illustration of Wave Scattering in Three Dimensions

In this section, we illustrate wave scattering in 3D by drawing the norm of the total wave. We

show the results for k = 3, 12 on a torus in Figure 5.12. Then we illustrate a scattering result
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for a bowl shape where the incidental wave is not on the coordinate direction in Figure 5.13.

Figure 5.12: 3D scattering by a torus with Dirichlet boundary conditions using k = 3, 12.
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Figure 5.13: 3D scattering by bowl shape with Dirichlet boundary conditions using k = 12.
The wave is in a slanted direction.

103



Chapter 6

Conclusion

This thesis solves two PDE problems in which the boundary is represented implicitly by the

signed distance function.

The first part targets a nonlocal Stefan-type interface propagation problem, which may

involve topological changes in two or three dimensions. We develop an algorithm that com-

bines the advantages of level set methods, which incorporate irregular boundary shapes and

their topological changes with ease, and boundary integral methods, which deal with exterior

problems naturally. In particular, we simulate the Mullins-Sekerka model, which is a high or-

der, nonlinear, nonlocal front propagation problem that simulates dendritic growth. Numerical

experiments demonstrate the effectiveness of this algorithm in both two and three dimensions.

The second part of the thesis develops an extrapolatory implicit boundary integral method

(EIBIM) to cope with boundary integral formulations bearing a hypersingular kernel. The

particular model problem is the exterior Neumann Helmholtz problem, which typically re-

quires the combination of singular and hypersingular integrals to cover solutions for all wave

frequencies. By exploiting the integral embeddings across the parallel interfaces, EIBIM ap-

proximates the natural definition of the hypersingular-type boundary integral and avoids the

artificial interpretation using Hadamard’s finite part. This method carries over to different

dimensions and manages irregular shapes with no extra complications. Numerical results il-
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lustrate the effectiveness of this method to solve the exterior Neumann Helmholtz problem,

regardless of the assigned frequencies and shapes.

Both algorithms work conveniently on Cartesian grids, and are compatible with any tree-

structured adaptive grids. Fast Multipole Methods, preconditioning methods, and other es-

tablished techniques including fast kernel evaluations (for Hankel functions) can be further

explored to improve its numerical efficiency. Since the IBIM and EIBIM formulations rely

on closest points to a manifold, they have the potential to generalize to applications involving

manifolds with boundaries. The papers of [Kublik et al. (2013); Kublik & Tsai (2015)] and

this thesis provide some of the necessary foundation for such applications. We also envision

the work in this thesis can be further developed for a wide class of inverse problems.
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Appendix A

Regularization for Helmholtz Kernels

In this appendix chapter, we derive the regularization terms for the normal derivative of the

Helmholtz fundamental solution ∂Φ

∂ny
for two points get close on the boundary Γ. For conve-

nience, we also use the notation

G(x = |x−y|) = Φ(x,y) =


− i

4H(1)
0 (k|x|), if n = 2,

− eik|x|

4π|x| , if n = 3,
(A.1)

where H(1)
0 (x) is the Hankel function of the first kind.

A.1 Regularization of ∂Φ

∂ny
in Two Dimensions

As in the Laplace equation case [Kublik et al. (2013)], let C be a C2 curve in R2 and let z

be a point on C . We assume that we have a parametrization (x(t),y(t)) of C and consider

the Frenet frame associated to C and centered at z = (x(t0),y(t0)) ∈ C for some t0 > 0. In

that frame z is the point (0,0), the x-axis is the tangent and the y-axis is the normal. For

simplicity we denote by O the origin of the frame (which is also z). Locally around the

origin, the equation of the curve can be written as a function y = f (x). As a result we have
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f (0) = 0, f ′(0) = 0, and f ′′(0) = κ(0) = 1
R is the curvature of the curve at O. This curvature

is also the curvature of C at z.

Now consider the osculating circle of the curve C at O. In the Frenet frame the osculat-

ing circle is centered at (0,R). The equation of the circle (bottom portion) can be written as

y = R−
√

R2 − x2, for |x|< R. For |h|< R a small parameter we consider a point M on the os-

culating circle with coordinates (h,R−
√

R2 −h2) and a point P on the curve with coordinates

(h, f (h)). We compute the difference of their y-coordinates:

f (h)− (R−
√

R2 −h2) = f (0)+h f ′(0)+
h2

2
f ′′(0)+

h3

6
f ′′′(0)+O(h4)

−R+R
(

1− h2

2R2 +
h4

8R4 +O(h6)
)

=
h2

2R
+

h3

6
f ′′′(0)− h2

2R
+O(h4)

=O(h3).

As this result works for all function f , we directly apply this result and estimate the normal

derivative of the fundamental solution for the Helmholtz equation.

Let M = (x,R−
√

R2 − x2) (for |x| ≪ R) and P = (x, f (x)) be defined as above. We com-

pare the two quantities ∂Φ(M,O)
∂nO

and ∂Φ(P,O)
∂nO

First we notice that, using the Green’s function

defined in (A.1), we have

∂Φ(x,y)
∂ny

=
∂G(|x− y|)

∂ |x− y|
∂ |x− y|

∂y
·ny

= −G′(|x− y|) x− y
|x− y|

·ny

= −G′(|x− y|)|x− y| (x− y)
|x− y|2

·ny.
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And hence

∂Φ(M,O)

∂nO
= −G′(|M−O|)|M−O|(M−O) ·nO

|M−O|2

= −G′(|M−O|)|M−O|
√

R2 − x2 −R

x2 +(R−
√

R2 − x2)2

=G′(|M−O|)|M−O| 1
2R

. (A.2)

∂Φ(P,O)

∂nO
= −G′(|P−O|)|P−O|(P−O) ·nO

|P−O|2

=G′(|P−O|)|P−O| f (x)
x2 + f (x)2

=G′(|P−O|)|P−O|
( 1

2R
+O(x)

)
. (A.3)

Now we look at |M −O| and |P−O|. Since |M −O| =
√

x2 +(R−
√

R2 − x2)2. Expanding

|M−O| around x = 0, we get

|M−O|=
√

2R2 −2R
√

R2 − x2

=x+
x3

8R2 +O(x5).

Similarly, since f (x) = R−
√

R2 − x2 +O(x3),

|P−O|=
√

x2 + f (x)2 =

√
2R2 −2R

√
R2 − x2 +O(x3))

=
√

x2 +O(x4)+O(x3)

=x+O(x3)+O(x2)

= |M−O|+O(x2).

The higher order is deliberately written out to show the convergence of the Taylor expansion

of
√

2R2 −2R
√

R2 − x2, which indicates that if the point O is overosculating, we would have
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|P−O| = x+O(x3) = |M −O|+O(x3). Using these results for (A.2) and (A.3), and the

expansion of the Bessel function

G′(x) =
1

2π|x|
+

k
2π

( ∞

∑
m=1

(−1)m

(m!)2

(k|x|
2
)2m−1(m log(

k|x|
2

)+
1
2
−m(γ +1+

1
2
+ . . .+

1
m
)
))

=
1

2π|x|
+O(x log(x)),

where γ is the Euler constant. We have

∂Φ(M,O)

∂nO
=G′(x+O(x3)) |x+O(x3)| 1

2R

=
( 1

2π(x+O(x3))
+O(x log(x))

)
|x+O(x3)| 1

2R

=
1

4πR
(
1
x
+O(x log(x)) |x+O(x3)|

=
1

4πR
+O(x2 log(x)).

∂Φ(P,O)

∂nO
=G′(x+O(x2)) |x+O(x2)|

( 1
2R

+O(x)
)

=
( 1

2πx
+O(1)

)
|x+O(x2)|

( 1
2R

+O(x)
)

=
1

4πR
+O(x).

If curve is overosculating at the point O, we would have

∂Φ(P,O)

∂nO
=G′(x+O(x3)) |x+O(x3)|

( 1
2R

+O(x)
)

=
( 1

2πx
+O(x log(x)

)
|x+O(x3)|

( 1
2R

+O(x)
)

=
1

4πR
+O(x2 log(x)).
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Consequently we have in general

∂Φ(P,O)

∂nO
=


∂Φ(M,O)

∂nO
+O(x) = ∂Φ(M,O)

∂nO
+O(|O−P|), in general.

∂Φ(M,O)
∂nO

+O(x2 log(x)), when Ois a vertex.

This concludes our regularization scheme for 2D Helmoltz kernel:

(
∂Φ

∂ny
(x∗,y∗)

)
reg

=
κ(y∗)

4π
. (A.4)

A.2 Regularization of ∂Φ

∂ny
in Three Dimensions

Notice the singularity of the Helmholtz Green’s function G(x) = −eikx

4πx is the same as the

Green’s function for Laplace equation GL(x) = −1
4πx . With the derivative adds another sin-

gular term related to the wave number, we can expect similar regularization terms plus a first

order term related to the wave number k.

Let S be a C2 surface in R3, and let S,O be points on S . Our goal is to approximate∫
U(τ,S)

∂Φ(S,O)
∂nO

dS(O) when S and O are close. The Green’s function in three dimension has a

higher degree of singularity, and hence does not have a limit for its normal derivative. How-

ever, the integral value still exists and we can approximate the derivative weakly by the integral

value on a small surface. This is to say we are looking for a function K so that the following

first order (weak) approximation holds:

∫
U(x;τ)

K(x,y)dS(y) =
∫

U(x;τ)

∂Φ(x,y)
∂n−y

dS(y).

With the approximation, we have the first order term equal, and the higher order terms vanish

when the points are close. After performing Taylor’s expansion on the targeted integral, we
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have the two values are equal when passed to limit:

∫
U(x;τ)

∂Φ(x,y)
∂n−y

β (y)dS(y)

= β (x)
∫

U(x;τ)

∂Φ(x,y)
∂n−y

dS(y)+∇β (x) ·
∫

U(x;τ)

∂Φ(x,y)
∂n−y

(y−x)dS(y)+ · · · .

One candidate of K can be defined as follows:

K(x,y) :=
1

Ũ(x;τ)

∫
Ũ(x;τ)

∂Φ(x,y)
∂n−y

dS(y),

where Ũ(x;τ) is an approximating surface in the τ neighborhood of the point x. In this project,

the approximating surface is chosen to be the paraboloid tangent to the point x for the subse-

quent 3D regularization:

Let O be the origin of the local coordinate system. The tangent plane is the xy-plane

with principal directions being the x-axis and y-axis. Locally around the origin, the equation

of the surface can be written as a function z = f (x,y). As a result, we have f (0,0) = 0,

fx(0,0), fy(0,0)= 0, fxx(0,0)= κ1, fyy(0,0)= κ2, and fxy(0,0)= 0. We first use an osculating

paraboloid to approximate the surface. We can write the equation of the paraboloid as

z(x,y) =
1
2
(
κ1x2 +κ2y2).

Now, for S = (x,y, f (x,y)) sufficiently close to O, let P = (x,y,z) be the point with the same

xy coordinate on the paraboloid, we have

S−P = f (x,y)− 1
2
(
κ1x2 +κ2y2)= O(x3,x2y,xy2,y3).

The osculating paraboloid has contact of order 3 in general. We examine the partial derivatives
∂Φ(S,O)

∂nO
and ∂Φ(P,O)

∂nO
.
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Recall from (refeq: 2D regularization) that

∂Φ(x,y)
∂ny

=−G′(|x−y|)
|x−y|

(x−y) ·ny.

we then have

∂Φ(S,O)

∂nO
=

k|S−O|sin(k|S−O|)+ cos(k|S−O|)
|S−O|3

(S−O)

=
1+O(|P−O|2)

|P−O|3(1+O(|P−O|3))
(z+O(|P−O|3)).

=
∂Φ(P,O)

∂nO
+O(1).

This means we can use ∂Φ(P,O)
∂nO

for ∂Φ(S,O)
∂nO

and get an error term of O(τ2). Hence we only need

to evaluate ∂Φ(P,O)
∂nO

, which we are going to replace with the analytic average on the paraboloid.

We need to evaluate
∫
Ū(τ,O)

∂Φ(P,O)
∂nO

dS(O)∫
Ū(τ,O) 1dS(O) . We can do this in polar coordinate. The denominator

(area) is a standard calculation and the first few terms are

∫
τ

0

∫ 2π

0
r
√

1+ r2
(
(κ1 cos(θ))2 +(κ2 sin(θ))2

)
dθ dr = πτ

2 +π
(κ2

1 +κ2
2

8
)
τ

4 +O(τ6).

As the numerator, we have

∂Φ(P,O)

∂nO
=

G′(|P−O|)
|P−O|

z

=
k|P−O|sin(k|P−O|)+ cos(k|P−O|)

4π|P−O|3
z

=
1+ 1

2(k|P−O|)2 +O(|P−O|4)
4π|P−O|3

z.

The term that differs from Laplace equation and makes an influence for more than O(τ2) is
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zk2

8π|P−O| . Therefore, we just need to find out

∫
Ū(τ,O)

zk2

8π|P−O|
dS(O)

=
k2

8π

∫
τ

0

∫ 2π

0

r2(κ1 cos2 θ +κ2 sin2
θ)
√

1+ r2(κ1 cos2 θ +κ2 sin2
θ)

4+ r2(κ1 cos2 θ +κ2 sin2
θ)2

dθ dr

=
k2

48
(κ1 +κ2)τ

3 +O(τ5).

The last formula is a result of Taylor expansion and Matlab simplification. Now adding the

term after division with the Laplace regularization, we get

(∂Φ(P,O)

∂nO

)
avg

=
1

8πτ
(κ1 +κ2)−

1
π

( 5
512

(κ3
1 +κ

3
2 )+

25
1536

κ1κ2(κ1 +κ2)
)
τ +

k2

48π
(κ1 +κ2)τ

+O(τ3).

This concludes our 3D Helmholtz regularization scheme:

(
∂Φ

∂ny
(x∗,y∗)

)
reg

=
1

4πτ
H(y∗)− 1

π

( 5
256

H(y∗)
(
4H2(y∗)−G(y∗)

)
+

25
768

H(y∗)G(y∗)
)
τ (A.5)

+
k2

24π
H(y∗)τ,

where H(y∗), G(y∗) denote the mean curvature and Gaussian curvature at the point y∗ ∈ Γ

respectively.
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Appendix B

Adaptive Redistancing and Integral

Quadrature

B.1 Adaptive Redistancing

The distance portfolio is essential for IBIM. Since we are only integrating on the ε neighbor-

hood of the interface, adaptive gridding is a natural choice for efficient computations. In this

appendix, we will briefly describe the method in [Min & Gibou (2007)] and illustrate some

possible gridding results.

The adaptive gridding in two dimensions require a quadtree data structure (respectively,

octtree for 3D). The simulated tree nodes are tile blocks that partitions the frame. For each

node, the coordinate values are taken to be the center of the tile. So for example, the root

layer (node) has coordinate value at (0,0). When a certain criterion is satisfied in a specific

node, we split the tree structure at the node to create a finer grid locally, as illustrated in . The

splitting algorithm adopted for our numerical experiments is summarized as follows.

The rationale for the above algorithm is to have finer grid when the curvature is large.

However, we want to eliminate points that have large Laplacion but are far from the boundary

(e.g. the center of a circle), so we need to first have finer grid near the interface. To test
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Algorithm B.1 Algorithm for adaptive grid splitting.
Initialize root node. Set up MIN_LAYER, MIDDLE_LAYER, MAX_LAYER

Start with root node and enter the recursive part

IF current layer > MAX_LAYER THEN

Set children to be NULL and return

END

IF current layer < MIN_LAYER THEN

SPLIT NODE

ELSE

IF current layer ≤ MIDDLE_LAYER THEN

IF node cuts through tube THEN

SPLIT NODE

ELSE

Set children to be NULL and return

END

ELSE

IF node curvature times current grid size > threshold THEN

SPLIT NODE

ELSE

Set children to be NULL and return

END

END

END
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Figure B.1: Tree splitting based on distance (left) and both distance and curvature (right) on a
flower shape.

whether a tile block intersects the interface, we adopt the Whitney decomposition

min
v∈vertices(C)

|φ(v)| ≤ Lip(φ) ·diag-size(C),

where Lip(φ) = maxx,y∈vertices(C),x ̸=y
|φ(x)−φ(y)|

|x−y| . Of course, we need a minimum splitting level

so that the resolution is good enough to correctly detect the interface intersection. Comparison

of this splitting criterion and the usual splitting based on distance to boundary is illustrated for

a flower shape (Figure B.1) and a star shape (Figure B.2).

The main challenge for computations on adaptive grid is the existence of junction points,

or "ghost points" as termed in [Min & Gibou (2007)]. Junction points occur when two adjacent

nodes have different refinement levels, which makes it possible to have no corresponding point

in the coarser node when calculating finite difference derivatives, illustrated as follows:

Using second order finite difference schemes for the derivatives on adaptive grids as de-

scribed in [Min & Gibou (2007)] to propagate the eikonal equation, we can have a second

order redistancing scheme on adaptive grids.

116



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1e−020

1e−020

1e
−0

20
1e−020

1e−020

1e
−0

20

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1e−020

1e−020

1e
−0

20

1e−020
1e−020

1e
−0

20

Figure B.2: Tree splitting based on distance (left) and both distance and curvature (right) on a
star shape.

Figure B.3: The cell on the left has finer resolution, and hence the point in the middle has no
neighbor on its right in the coarser cell.

Figure B.4: The closer upper left subcell in the right cell has the finest resolution. The case in
3D is more complicated in that one point may have up to two ghost neighbors. And depending
on the situation, the interpolation may be a 2D interpolation.
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B.2 Integration on Adaptive Grid

Suppose we are integrating the function f on a rectangular domain D. The analytic integral is

expressed as I =
∫

D f (p)dxdy.

Let S be the side length of the frame, L j denote the collection of cells having resolution

2 j, which means the sides of the square cells in this resolution have length S
2 j (call it layer j

collection). Let N j be the number of cells in level j, {Q j
i } be the cells in layer j collection.

Suppose the finest resolution on the adaptive grid is 2M, and the adaptive grid is split so that

the smallest resolution within the integration domain is level k. Then in 2D the trapezoidal

quadrature on the adaptive grid Ik is defined as follows:

Ik =
M

∑
j=k

N j

∑
i=1

h2
j

(
f (pnw

i )+ f (pne
i )+ f (psw

i )+ f (pse
i )
)

4
,

where h j =
S
2 j is the side length of the cell in level j, pi is the center of the cell Q j

i , and

pnw
i , pne

i , psw
i , pse

i are the four corners (northwest, northeast, southwest, southeast) of the cell

Q j
i , as illustrated in Figure B.5.

For 3D adaptive grid, the trapezoidal quadrature on the local cell is

Ik =
M

∑
j=k

N j

∑
i=1

h2
j

(
f (pcnw

i )+ f (pcne
i )+ f (pcsw

i )+ f (pcse
i )+ f (p f nw

i )+ f (p f ne
i )+ f (p f sw

i )+ f (p f se
i )
)

8
,

where c stands for close, and f stands for far.

A direct computation verifies that the quadrature is exact for any degree one polynomial.
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Figure B.5: Local trapezoidal rule illustration in 2D.
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Appendix C

Numerical Results of CCL with IBIM on

Dirichlet Laplace Problems

With the help of connected component labeling (CCL) algorithm described in 4.3.2, we can

apply the implicit formulations in 4.3.3 and solve Dirichlet Laplace problems in general mul-

tiply connected regions. We will demonstrate the effectiveness with numerical results in two

and three dimensions.

C.1 Two Dimensions

Since the exact solution is difficult to obtain, we use the constant boundary condition for multi-

hole region and multi-piece concentric circles. For multi-layered annulus, we do have an exact

solution for non-constant boundary condition. We record the error convergence below.
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Figure C.1: Illustration of the regions and the test points. The interior regions are surrounded
by red boundary and exterior surrounded by blue. The green dots are representative points
selected by CCL so that they are furthest from boundary in exterior regions, while black dots
are for interior regions. The test points are labeled and colored brown. The boundary condition
is taken to be the constant 1.

C.1.1 Multi-Hole Region

C.1.2 Multi-Piece Concentric Circles

C.1.3 Multi-Layered Annulus

For the third case, we test on a multi-layered annulus. We use a boundary condition compatible

with the Mullins-Sekerka simulation. In this case, the boundary condition is taken to be the

signed curvature of a point x on the boundary with the inmost circle clockwise (negative)

orientation.
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Table C.1: The convergence of solution to Laplace equation with interface illustrated in Figure
C.1 on page 121. The boundary condition is taken to be the constant 1. The error is taken to
be the absolute error. The convergence order is approximately approaching one.

N 64 128 256 512 1024 2048
Error P1 1.93E-02 1.01E-02 4.07E-03 1.90E-03 9.77E-04 4.77E-04
Order P1 - 0.93 1.32 1.10 0.96 1.04
Error P2 2.27E-04 1.72E-04 6.55E-05 1.83E-05 1.10E-05 6.09E-06
Order P2 - 0.40 1.39 1.84 0.73 0.86
Error P3 1.12E+00 5.67E-03 2.57E-03 1.23E-03 5.18E-04 2.25E-04
Order P3 - 7.62 1.14 1.06 1.25 1.21
Error P4 7.88E-04 2.45E-05 2.73E-05 2.20E-05 9.53E-06 4.36E-06
Order P4 - 5.01 -0.16 0.31 1.21 1.13
Error P5 2.52E-04 3.77E-04 1.59E-04 5.62E-05 3.08E-05 1.64E-05
Order P5 - -0.58 1.25 1.50 0.87 0.91
Error P6 2.26E-03 2.83E-04 1.51E-04 7.95E-05 4.00E-05 2.05E-05
Order P6 - 2.99 0.91 0.92 0.99 0.97

Table C.2: The convergence of solution to Laplace equation with interface illustrated in Figure
C.2 on page 123. The boundary condition is taken to be the constant 1. The convergence order
is approximately approaching one.

N 64 128 256 512 1024 2048
Error P1 1.93E-02 1.01E-02 4.07E-03 1.90E-03 9.77E-04 4.77E-04
Order P1 - 0.93 1.32 1.10 0.96 1.04
Error P2 3.92E-02 9.31E-03 3.81E-03 1.82E-03 9.08E-04 4.71E-04
Order P2 - 2.07 1.29 1.07 1.00 0.95
Error P3 1.69E-01 1.12E+00 9.92E-03 4.08E-03 1.80E-03 7.29E-04
Order P3 - -2.73 6.82 1.28 1.18 1.30
Error P4 2.03E-01 7.23E-03 2.61E-03 1.05E-03 4.11E-04 1.80E-04
Order P4 - 4.81 1.47 1.32 1.35 1.19
Error P5 1.12E+00 5.67E-03 2.57E-03 1.23E-03 5.18E-04 2.25E-04
Order P5 - 7.62 1.14 1.06 1.25 1.21
Error P6 2.12E-02 1.15E-02 4.35E-03 1.93E-03 8.28E-04 3.25E-04
Order P6 - 0.89 1.40 1.17 1.22 1.35
Error P7 4.12E-01 5.22E-03 2.62E-03 1.32E-03 8.72E-04 3.47E-04
Order P7 - 6.30 0.99 0.99 0.60 1.33
Error P8 6.44E-03 2.55E-03 8.02E-04 3.32E-04 1.97E-04 1.11E-04
Order P8 - 1.33 1.67 1.27 0.76 0.83
Error P9 2.29E-04 1.73E-04 6.56E-05 1.83E-05 1.10E-05 6.13E-06
Order P9 - 0.41 1.40 1.84 0.73 0.85
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Figure C.2: Illustration of the regions and the test points. As in Figure C.1, the interior
regions are surrounded by red boundary and exterior surrounded by blue. The green dots
are representative points selected by CCL so that they are furthest from boundary in exterior
regions, while black dots are for interior regions. The test points are labeled and colored
brown. The boundary condition is taken to be the constant 1.

Let R1, R2, · · · , RM be the radii of the concentric circles, with 0<R1 <R2 < · · ·<RM <∞.

The boundary condition is

f (x) = (−1)i 1
Ri

for ||x||= Ri.

The exact solution for r = ||x|| is then

u(x) =


κ1, ||x||< R1.

κi−1 +
lnr−lnRi−1
lnRi−lnRi−1

(κi −κi−1), Ri−1 ≤ ||x||< Ri

κM, RM < ||x||.

(i = 2 . . .M).
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The test case uses M = 6, illustrated in Figure C.3 on page 124. The solution convergence

result is presented in Table C.3 on page 125.
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Figure C.3: Illustration of a multi-layered annulus and the test points. The boundary con-
dition is the signed curvature on the interface, as one would encounter for Mullins-Sekerka
simulations. The solution is a linear combination of a constant and a logarithm of the norm
depending on the region.
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Table C.3: The convergence of solution to Laplace equation with interface illustrated in Figure
C.3 on page 124. The boundary condition is taken to be the signed curvature of the curve, with
the inmost curve having the clockwise (negative) orientation. The absolute error is larger at
point 2 and point 3 because the points are closer to the boundary. The convergence order is
approximately approaching one.

N 64 128 256 512 1024 2048
Error P1 7.47E-01 3.18E-02 1.38E-02 4.62E-03 1.92E-03 8.04E-04
Order P1 - 4.56 1.20 1.58 1.26 1.26
Error P2 2.37E+00 1.47E-01 1.04E-01 7.13E-02 3.13E-02 1.46E-02
Order P2 - 4.01 0.50 0.54 1.19 1.10
Error P3 3.96E-01 1.12E-01 6.08E-02 2.81E-02 1.52E-02 7.46E-03
Order P3 - 1.83 0.88 1.12 0.88 1.03
Error P4 1.14E+00 1.89E-02 6.43E-02 5.81E-02 3.42E-03 4.23E-03
Order P4 - 5.91 -1.77 0.15 4.09 -0.31
Error P5 7.70E-02 3.59E-02 2.37E-02 1.50E-02 5.60E-03 1.76E-03
Order P5 - 1.10 0.60 0.66 1.42 1.67
Error P6 5.20E-02 3.22E-02 7.16E-03 2.40E-03 1.38E-03 7.18E-04
Order P6 - 0.69 2.17 1.58 0.80 0.94
Error P7 3.45E-04 8.64E-05 4.70E-05 2.59E-05 1.29E-05 6.42E-06
Order P7 - 2.00 0.88 0.86 1.00 1.01

C.2 Three Dimensions

We show the error results for solving Dirichlet Laplace problems in multiply connected regions

using the CCL based IBIM. As in two dimensions, we test constant boundary conditions on

two multi-layered balls (Table C.4 on page 126) and non-constant boundary condition on one

multi-layered ball (Table C.5 on page 127), of which we have analytic solutions below.

For the single multi-layered ball we use a boundary condition compatible with the Mullins-

Sekerka simulation. In this case, the values on boundary are taken to be the signed curvature

of a point x on the boundary with the inmost circle clockwise (negative) orientation.

Let R1, R2, · · · , RM be the radii of the concentric circles, with 0<R1 <R2 < · · ·<RM <∞.

The boundary condition is

f (x) = (−1)i 1
Ri

for ||x||= Ri.
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Table C.4: The solution error for two multi-layered balls. The testing boundary condition is
the constant 1. The first multi-layered ball is centered at (−0.5,−0.5,−0.5) with radii 0.23,
0.47, 0.72, 0.95. The second multi-layered ball is centered at (0.8, 0.8, 0.8) with radii 0.31,
0.61. The convergence order seems to approach 1.

N 32 64 128 Distance
Error P1 1.54E-01 1.07E-02 7.41E-03

-0.1300
Order P1 - 3.85 0.53
Error P2 1.61E-01 1.59E-02 7.26E-03

0.1062
Order P2 - 3.34 1.13
Error P3 7.99E-03 2.15E-02 9.24E-03

-0.1060
Order P3 - -1.43 1.22
Error P4 4.42E-02 2.08E-02 9.44E-03

0.0717
Order P4 - 1.08 1.14
Error P5 2.95E-02 2.69E-03 1.20E-02

-0.1967
Order P5 - 3.46 -2.16
Error P6 2.52E-02 1.09E-02 4.45E-03

0.1324
Order P6 - 1.21 1.29
Error P7 0.00E+00 0.00E+00 0.00E+00

-0.9288
Order P7 - - -

The exact solution for r = ||x|| is then

u(x) =



κ1, ||x||< R1.

κi−1 +
1

Ri−1
− 1

r
1

Ri−1
− 1

Ri

(κi −κi−1), Ri−1 ≤ ||x||< Ri

(−1)M 1
RM

, RM < ||x||.

(i = 2 . . .M).
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Table C.5: The solution error for one multi-layered ball. The boundary condition is assigned
the signed curvature. The multi-layered ball is centered at (0.1, 0.2,−0.1) with radii 0.23,
0.47,0.72, 0.95.

N 32 64 128 Distance
Error P1 8.84E-01 5.20E-02 6.42E-02

-0.1292
Order P1 - 4.09 -0.30
Error P2 6.33E-01 2.34E-01 4.33E-02

0.1095
Order P2 - 1.44 2.43
Error P3 9.96E-01 1.79E-01 1.06E-01

-0.1015
Order P3 - 2.48 0.76
Error P4 1.26E+00 1.89E-01 1.02E-01

0.0816
Order P4 - 2.74 0.90
Error P5 4.94E-03 4.87E-03 2.17E-04

-0.8640
Order P5 - 0.02 4.49
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Appendix D

Optimal Linear Combination of Double

and Single Layer Potential for Neumann

Helmholtz Problem

Define the operators S ,D ,D∗,T : C∞(Γ)→C(R2) as in (2.3):

(S α)(x) : =
∫

Γ

Φ(x,y)α(y)dy(s).

(Dα)(x) : =
∫

Γ

∂Φ

∂ny
(x,y)α(y)dy(s).

(D∗
α)(x) : =

∫
Γ

∂Φ

∂nx
(x,y)α(y)dy(s).

(T α)(x) : =
∂

∂nx

∫
Γ

∂Φ

∂ny
(x,y)α(y)dy(s).

Recall the boundary integral formulation using both single and double layer potential:

u = (D − iξS )α.
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And the inversion formula for Neumann data on the boundary:

g =
∂u
∂nx

= (T − iξ (D∗− 1
2
I ))α.

The choice of ξ affects the condition number for the inversion matrix. [Kress & Spassov

(1983)] has shown that the optimal parameter for 2D is

ξ ≈


(

π2 +4(ln k
2 + γ)2

)− 1
2
, if kis small (k ≤ 8).

0.5k, if kis large (k > 8).
(D.1)

where γ ≈ 0.5772 . . . is the Euler’s constant. For Helmholtz equation in R3, they showed the

optimal choice is

ξ ≈


ξ0 ∈ [1

2 ,1], if kis small (k ≤ 8).

0.5k, if kis large (k > 8).
(D.2)

We use the above choices of ξ in the numerical experiments. However, we acknowledge

that due to the off-interface regularization of the hypersingular integral, the condition number

and its estimates may not be the same as the parametrized case on interface as analyzed in

[Kress & Spassov (1983)].
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