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Extended bodies whose own flexibility may conditionally be neglected can often be 
faithfully treated directly by any of several formulations based on classical dynamics. Here, the 
mixed approach employing the Newton-Euler equations for centroidal body-fixed frames will be 
used, where the absolute angular orientation will be computed via the associated kinematic 
differential equations relating the rotation matrix with the angular velocity vector. As an 
example of the practical (but restricted) use of simplified classical methods - and of the 
computationally attractive mixed Newton-Euler ODE formulation - the mathematical model of 
the U.S. Army's MLRS-ILMS mechanical launcher is described which is automatically controlled 
to simultaneously rotate about nonintersecting, nominally vertical and horizontal axes when 
commanded to target absolute angular orientation coordinates. 

Introduction 

Accurately capturing the dynamics of extended bodies frequently implies a judicious 
system description which typically involves interactions of both rigid and flexible members; 
accurately controlling the orientation or position of such bodies through flexible transmission 
paths is additionally cumbersome. The issue of addressing the relative importance of flexibility, 
component by component, in a physical system to be modeled is a familiar one which is best 
guided by a complete, empirically validated physical description. Existing systems which enjoy 
measurement and nominally defined operating conditions expedite a faithful analysis which can 
only remain tentative for systems still to be designed and built. While spacial dynamic analysis 
involving completely rigid constraints usu.aUx _le.acJ.$ . _to a system of (hopefully solvable) 
differential algebraic equations (DAEs), the freedom of unconstrained motion of more general, 
flexibly mounted bodies, however, often yields the opportunity to shift attention back to a 
dynamic model highlighted by ODEs. To that end, the mixed dynamic-kinematic approach 
which retains the first-order form of the angular equations of motion will be presented. 

Problem Formulation 

The U.S. Army's MLRS ballistic platform is to be automatically controlled by hydraulic 
servomotors to simultaneously rotate about nonintersecting, nominally vertical (azimuth) and 



horizontal (elevation) axes. Figures 1 and 2 depict the launch platform under consideration: a 
large, tracked vehicle with a rectangular cage of rockets (or guided missiles, etc.) which is to be 
rotated about a horizontal (elevation) axis and a vertical (azimuth) axis simultaneously (each axis 
referenced with respect to the vehicle) as it moves toward commanded absolute angular 
orientation coordinates. As depicted in the simplified block diagram of Figure 3, a control signal 
current is fed to the servovalve of the elevation hydraulic servomotor (variable displacement) 
which produces a torque to be applied through an elevation transmission, ultimately manifesting 
itself as an elongation (or retraction) of the two ball screw actuators to elevate (or lower) the 
cage. Analogously, the azimuth drive (attached to a rigid, flexibly mounted base) operates on a 
control signal current to the servovalve of the variable displacement azimuth motor which 
produces torque through a transmission unit which acts against a ring gear mounted directly to 
the turret. Thus, it is the turret which is controlled through the azimuth transmission, the 
extended cage being mounted to the turret through two ball screws and two hinges along the 
pivoting (elevation) axis. It is to be emphasized, with reference to Figure 2, that the mass of the 
turret contributes toward the moment of inertia of the total cage assembly about the azimuth 
bearing axis, but does not contribute to the cage assembly's moment of inertia about the 
elevation axis. Of course, the moments about each of these critical axes will change 
discontinuously as the mass of the cage becomes depleted through firing, and - additionally - the 
cage/turret assembly moment of inertia about the azimuth axis is a nonnegligible function of the 
elevation angle (being reduced during elevation by as much as 25% from its maximum, "stowed" 
configuration value). The system as described above captures some of the essential features of 
what will become the ILMS, or Improved Launcher Mechanical System, as a result of the 
ongoing program to enhance the existing fleet of MLRS (Multiple Launch Rocket System) 
launchers. 

Cage disturbance effects due to the firing of rockets involve a rather complicated 
sequence of events which begins with a sufficient thrust build-up (acting against launch tubes, in 
the forward direction) to shear the detent bolts holding the rocket in its launch tube. The ejection 

--------------------------------Nomenclature-----------------------------
= cage inertia matrix 

= cage angular momentum 

= ball screw force i acting on cage 

E~P = hinge point force i acting on cage 

f:0
'"• = gravitational force acting on cage em 

E"'' = force acting on cage due to rocket 

kc o = length-dependent ball screw stiffness 
A c = cage rotation matrix 

A,, Ab = turret, base rotation matrices 
A, = ball screw pitch 

m = cage mass 

= cage angular velocity 

= ( (md + f.acJ/2 
K~P = stiffness matrix I hingepoint i 
fact = actual length of ball screw 

A, = turret rotation matrix 

C~P = damping matrix I hingepoint i 
f = commanded length of ball screw cmd 

8, 'I' = absolute cage elev., azim. angles 
<1> = rotational angle of ball screw 

£~ = pos. vector from cage em to cage point i rom ..... ~ rotational speed of hyd. metor -· 

e = force acting on cage point i (expressed locally) 

E = force acting on cage point i (expressed globally) 

R:m pos. vector of cage em (expressed globally) 

r' _, 

R~rg 
R hp 

~ . _, 

= pos. vector from turret bearing center to turret point i 
= pos. vector of turret brg (expressed globally) 

= displacement (globally expressed) between turret and cage of hingepoint i 
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Figure 1: MLRS Launcher 
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Figure 2: Mechanical Assembly Model 
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Figure 3: Simplified ILMS Block Diagram 
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of the rocket is then precipitated by a continuously changing inertia matrix (I c = Ic <t J) as the fired 

rocket travels along the spin rails of the launch tubes prior to achieving free flight. The advent of 
rocket free flight implies a discontinuity in the cage inertia matrix at the instant that the rocket 
loses contact with the interior spin rails of the cage. The fired rocket then exerts blast forces on 
the exposed face of the cage due to its trailing plume which are considerable (approximately 
twice cage weight), but of brief duration. Under normal operation, the transient flexible modes 
of the system are permitted to damp out between firings (reaiming). Although there are aspects 
of cage and/or rocket motion which may depend upon a consideration of cage flexibility and 
which we will discuss below, the gross characteristics of interest here (with respect to normal 
aiming/firing scenarios) invite a rigid body treatment. However, the turret possesses 
considerable flexibility, especially in the vertical direction at the comers of attachment with the 
ball screws, and the hingepoint comers themselves will also be characterized by stiffness and 
damping in the three principal directions (locally oriented with turret's body-fixed axes). Thus, 
the cage is permitted six degrees-of-freedom in view of its flexible mounting. 

A comprehensive, time-domain system description often becomes indispensable to the 
competent synthesis of a feedback control system, especially with regard to hydraulic control 
action with performance demands at the extremes of temperature experienced by military 
equipment. Such a time-domain system description is also necessary when addressing such 
effects as time delays, measurement noise, hysteresis, backlash, and failure analysis scenarios. 
These were some of the features of interest which motivated the comprehensive system model 
developed. It is with the treatment of rigid body cage/base motion that classical mechanics was 
blended with the approximate methods of discrete, or lumped parameter system dynamics 
analysis in an effort to produce a closed-loop set of state equations. Thus, given an adequate 
system dynamics which treats the elevation path from control signal input to ball screw extension 
as well as the azimuth path from control signal input to turret rotation, one is left to consider the 
mechanical assembly itself. 

Dynamic Model 
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Provided that an appropriate control signal current is supplied to the servovalve of the 
(variable displacement) elevation hydraulic servomotor, the dynamics of the motor result in an 
applied torque which acts through a transmission to extend or contract the screws. Given the 
nominal lengths and the pitches of the ball screws, the commanded lengths are kinematically 
related to the angles through which the screws have turned. The ball screw/turret attachment 
points - having been described as turret mass-spring-dampers -each have position (and velocity) 
state variables associated with them. Thus, the cage being rigid, all points on or in the cage may 
be obtained by transforming suitable local frame, centroidal body-fixed cage vectors into 
equivalent global frame expressions through use of Eq. (3), where the reader is reminded that the 
reference point .R~m is dependent upon rocket configuration (i .e., changes with firing) . The 
actual lengths of the ball screws, then, are obtained by vector subtraction of the endpoints of the 
screws. For ball screws which can be treated as flexible axial links, the forces generated may be 
obtained by multiplying the length-dependent variable stiffness against the difference between 
actual and commanded length. The lines of action of the forces are here approximated as 
collinearly directed between the known endpoints. 

The four points at which the turret is attached to the cage are driven through a known 
angle by the azimuth motor (determined from the solution of the turret dynamics); superimposed 
on this circular motion is the flexure induced by ball screw forces (coriolis components being 
negligible), as well as the base vibration transmitted through the turret bearing. Again, the cage 
being rigid, its elevation hinge attachment points (refer Figure 2) are always available via Eq. (3). 
Thus, the vector component differences of the two hinge attachment points between cage and 
turret supply the components of differential motion which are suitably multiplied against turret 
comer stiffnesses calculated from an FEM analysis of the turret. The lines of action of these 
forces are similarly obtained from the known points on the cage and turret. Gravitational loading 
and rocket disturbance forces are also applied, their representations being inherently expressed in 
the global (inertial) and local (body-fixed) frames, respectively. 

mR:m = I Fe = pBS + F~P + p orav + prkt 
- i 

_, _, (1) 

he = (lcffic +(roc) + (J)c X he = I (r~ xe) = I <r ~ x A~f~ ) (2) 

In Eq. (1), the global (inertial) reference frame (for cartesian expression of position, velocity) is 
taken as fixed to the ground surface at the nose of the vehicle cab, while the centroidal, body
fixed frame for Eq. (2) is a rectangular frame which is nominally parallel with the global frame 
when the cage is in the "stowed" configuration. That is, for centroidal, body-fixed frames : 

Rc = _, 
fc = _, 

Ac r~ 
ATF~ c- t 

+ .R~m (3) 

(4) 

indicate the rotation matrix relation of an appropriate Euler angle set between frames for position 
and free vectors which are being taken with respect to Eqs. (1) and (2). The skew-symmetric 
matrix representation of the angular velocity of the cage (as expressed in its centroidal, body-
fixed frame) is related to Ac through: 
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= ~" x 
[ 

0 -w: ro; ] 
= w< 0 - (J)c = 

z • 

-(J)c (i)c 0 
y • 

(5) 

which implies the following matrix kinematic ODEs (among other forms): 

Ac = AcfQc (6) 
or, 

Ac = AC c (J) - A~Ac) (7) 

Of the right hand side forces appearing in Eqs. (1) and (2), the directions and magnitudes of the 
rocket force and gravitational force are known, while the ball screw forces and damped elastic 
forces at the hingepoint corners of the turret may be obtained as follows: 

(8) 

Taking the differential displacement and velocity (as expressed in the global, fixed frame) 
between the cage and turret of an elevation axis hingepoint as: 

6R~P = [(Acr~ +R~m)-(A,r:+R~,g)] 

6R~P = [(Acr~ +R:m)-(A, r:+R~rg )] 

then the damped elastic forces acting upon the cage, as expressed globally, are: 

(9) 

(10) 

(11) 

where K~P, C~P are the diagonal matrices characterizing the stiffness and damping of a 
hingepoint corner of the turret as determined from FEM analysis. 

Although in Eq. (2) the explicit time-dependence of the cage inertia matrix has been 
noted, the numerical data describing the physical system is not refined enough (esp. products of 
inertia, rocket contact forces acting on cage, chassis suspension stiffnesses, etc.) to distinguish 
the contribution from rocket motion along the launch tubes prior to free flight, and that term is 
thus neglected. 

Turret/Base 

Formulations analogous to Eqs. (1) - (7) are applied to the 6 DOF, flexibly mounted base 
upon which the turretrotates ·(refer.Pigure-2);-where-theexternal forces and moments (in addition 
to the gravitational force) which act against it are transmitted either from the turret itself, through 
its large bearing, or by the stiffness and damping of the base suspension. Depending upon the 
firing orientation, any of the roll, pitch, or yaw modes of base motion may be excited by the 
forces transmitted through the turret. The turret has been modeled as a plate rotating about its 
azimuth bearing axis with respect to the base, with a moment of inertia which depends upon 
elevation angle. Additionally, the two turret corners of ball screw attachment are permitted to 
flex in the locally vertical direction only (in the frame of the turret). Thus, 

6 



[cos'!', sin \jl, 

~]A, A, = -sm \jl, COS\jl, (12) 

0 0 

Controlled Response 

Figure 4 is a plot of the elevation and azimuth angles of the cage, as provided by the 
global orientation of a nominal, body-fixed "pointing" vector continuously transformed through 
Eq. (3). In the figure, a 90° azimuth angle and a 57° elevation angle have been commanded, but 
azimuth motion is not permitted owing to geometric limitations until the cage has cleared the cab 
(see Figure 1) at approximately 17° elevation. Figure 5 indicates the approximate axial forces 
which the ball screws experience while elevating the cage. They are of relatively large 
magnitude at low angles of elevation where the mechanical advantage is least, and vice versa. 
The plots shown represent a fully loaded launcher resting on level ground, thus the numerical 
values of ball screw force represent that magnitude of loading carried in each ball screw; that is, 
the curves for the two ball screws cannot be distinguished at the scale shown. Under general, 
more highly asymmetric loading, separation would be evident. 

As a further indication of the mixed Newton-Euler formulation of the cage/turret/base 
multibody dynamics, a simultaneous braking event of elevation and azimuth motion is shown in 
Figures 6 and 7, where "sudden" braking has been implemented in the form of kinematically 
locking the respective hydraulic motor shafts (rom = 0), which, in the azimuth drive, is equivalent 
to locking the turret. The 3.5 Hz elevation oscillation propagated in Figure 6 is characteristic of 
elevation path flexibility, while the instantaneous braking event excites higher order 
contributions of azimuth path flexibility from the stiff hingepoints along the elevation axis. 

Discussion 

Using the mixed Newton-Euler ODE formulation avoids the DAE system implied by the 
introduction of the Euler parameters and their normalization constraint. Depending upon other 
system dynamics, which might influence (or dictate) the numerical solution approach, this 
difference may be significant; for example, logic intensive models are notoriously sensitive to the 
integration algorithm chosen. 

One can imagine modes of operation of the system in which a rigid body treatment of the 
cage assembly, as was presented here, might be less persuasive. The actual method of 
fabrication of the components obviously plays a role in this issue, but, moreover, one must 
always bear in mind the use for which the model is intended. As was already mentioned, under 
normal operation of the existing MLRS launcher, pauses between rounds are required to permit 
the transient flexible system modes to damp out; such will also be the case with the ILMS 
launcher. However, the pursuit of failure mode scenarios involving braking maneuvers with an 
empty cage under steep ground slope conditions may well invalidate rigid treatments. Also, 
attempts to predict the initial conditions of the rocket (in contrast to cage dynamics) for use with 
trajectory simulations involve complicated rocket interaction effects with the spin rails of the 
cage's launch tubes which raise questions about the flexure effects on the rocket. 
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Figure 4: Cage Path Trajectory 
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