
Copyright

by

Milad Olia Hashemi

2016

The Dissertation Committee for Milad Olia Hashemi
certifies that this is the approved version of the following dissertation:

On-Chip Mechanisms

to Reduce Effective Memory Access Latency

Committee:

Yale N. Patt, Supervisor

Douglas M. Carmean

Derek Chiou

Mattan Erez

Donald S. Fussell

On-Chip Mechanisms

to Reduce Effective Memory Access Latency

by

Milad Olia Hashemi, B.S.E.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2016

Acknowledgements

Only a fraction of the work that has allowed me to write this dissertation is my

own. I can’t imagine the strength that it must’ve taken my parents to immigrate to a

new and unfamiliar country with no resources and then raise two kids. They always

prioritized our education over any of their own needs. I was only able to write this

dissertation because of their sacrifice. I thank my parents: Homa and Mohammad,

and my sister Misha for their unwavering love.

I would never have pursued a Ph.D. or arrived at UT without my wife, Kelley.

Well before I had any idea, she knew that I wouldn’t be happy leaving graduate

school without a doctorate. I thank her for her advice, clairvoyance, and patience

throughout these last seven years.

My time in graduate school has allowed me to meet and work with amazing

people who have taught me far more than I could list here. This starts with my ad-

visor, Professor Yale N. Patt. Despite his accomplishments, Professor Patt maintains

a contagious passion for both teaching and research. He’s taught me how to learn,

how to ask questions, how to attack problems, and tried to teach me how to share

knowledge with others. I’m still not sure why he agreed to let me join HPS, but it’s

one of the pivotal moments of my life. It’s an honor to be counted as a member of

his research group, I thank him for his faith in me.

I’ve had the incredible opportunity of learning from Doug Carmean for the

past five years. Technically, Doug has taught me how to pay attention to details and

more importantly, how to listen to everybody and not allow preconceptions to color

your opinion of what they’re saying. Beyond work, Doug is one of the kindest people

that I know and he has impacted my life in more ways than I can count. I thank him

for putting up with my constant pestering and being so open with me when he had

no reason to be.

iv

I’d like to thank Professor Derek Chiou, Professor Mattan Erez, and Professor

Don Fussell for serving on my committee. Professor Erez and Professor Chiou are

instrumental to my success at UT. The wealth of knowledge that they’ve shared with

me has given me the foundation to work in computer architecture and motivated

me to want to work in this field. The university is lucky to have such amiable and

brilliant individuals.

Many of the research directions that I’ve worked on have come as a result of

discussions with Professor Onur Mutlu. Professor Mutlu is an incredibly motivational,

hardworking, and intelligent person. I’d like to thank him for teaching me how to

never be satisfied with the work that I’ve done, how to continuously strive for more,

and for pushing me to not give up when things didn’t go my way. I’d like to thank

him and Professor Moinuddin Qureshi for their advice, research discussions, and for

always treating me like one of their own family.

I wouldn’t have joined HPS without Eiman Ebrahimi. Eiman was the first

person to teach me how to do research and how to strive towards writing high-quality

papers. I’d like to thank him for his advice and support throughout my time at UT.

I’d like to thank Carlos Villavieja for putting up with an obstinate young graduate

student and showing him how to grow both as a person and a researcher. I’d also like

to thank him for proof-reading this entire dissertation. I’d like to thank the entire HPS

research group while I’ve been at UT, and in particular Khubaib for always being eager

to talk about research, José Joao for his guidance and maintaining our computing

systems, Rustam Miftakhutdinov for the insane amount of work that he put into our

simulation infrastructure, and Faruk Guvenilir for maintaining our computing systems

after José and for completing countless miscellaneous tasks without complaint.

Finally, I’d like to thank my friends: Will Diel, Curtis Hickmott, Zack Smith,

Trevor Kilgannon, and David Cate for keeping me sane for over a decade now.

Milad Hashemi

August 2016, Austin, TX

v

On-Chip Mechanisms

to Reduce Effective Memory Access Latency

by

Milad Olia Hashemi, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Yale N. Patt

This dissertation develops hardware that automatically reduces the effective

latency of accessing memory in both single-core and multi-core systems. To accom-

plish this, the dissertation shows that all last level cache misses can be separated into

two categories: dependent cache misses and independent cache misses. Independent

cache misses have all of the source data that is required to generate the address of the

memory access available on-chip, while dependent cache misses depend on data that

is located off-chip. This dissertation proposes that dependent cache misses are accel-

erated by migrating the dependence chain that generates the address of the memory

access to the memory controller for execution. Independent cache misses are acceler-

ated using a new mode for runahead execution that only executes filtered dependence

chains. With these mechanisms, this dissertation demonstrates a 62% increase in

performance and a 19% decrease in effective memory access latency for a quad-core

processor on a set of high memory intensity workloads.

vi

Table of Contents

Acknowledgements iv

Abstract vi

List of Tables x

List of Figures xii

Chapter 1. Introduction 1

1.1 The Problem . 1

1.2 Independent vs. Dependent Cache Misses 2

1.3 Reducing Effective Memory Access Latency 4

1.4 Thesis Statement . 6

1.5 Contributions . 6

1.6 Dissertation Organization . 8

Chapter 2. Related Work 9

2.1 Research in Reducing Data Access Latency via Predicting Memory
Access Addresses (Prefetching) . 9

2.2 Research in Reducing Data Access Latency via Pre-Execution 10

2.3 Research in Reducing Data Access Latency via Computation Near
Memory . 13

2.4 Research in Reducing Data Access Latency via Memory Scheduling . 14

Chapter 3. The Runahead Buffer 15

3.1 Introduction . 15

3.2 Background . 16

3.3 Runahead Observations . 17

3.4 Mechanism . 20

3.4.1 Hardware Modifications . 20

3.4.2 Dependence Chain Generation 22

3.4.3 Runahead Buffer Execution . 25

3.4.4 Dependence Chain Cache . 25

vii

3.4.5 Runahead Buffer Hybrid Policies 26

3.4.6 Runahead Enhancements . 26

3.5 Methodology . 28

3.6 Results . 31

3.6.1 Performance Results . 32

3.6.2 Sensitivity to Runahead Buffer Parameters 38

3.6.3 Performance with Prefetching 38

3.6.4 Energy Evaluation . 41

3.6.5 Sensitivity to System Parameters 45

3.7 Conclusion . 45

Chapter 4. The Enhanced Memory Controller 47

4.1 Introduction . 47

4.2 Background . 47

4.3 Mechanism . 50

4.3.1 EMC Compute Microarchitecture 53

4.3.2 Generating Chains of Dependent Micro-Operations 57

4.3.3 EMC Execution . 60

4.4 Methodology . 62

4.5 Results . 66

4.5.1 Performance Analysis . 68

4.5.2 Prefetching and the EMC . 73

4.5.3 Sensitivity to EMC Parameters 73

4.5.4 Single-Core Results . 76

4.5.5 Multiple Memory Controllers 76

4.5.6 EMC Overhead . 78

4.5.7 Energy and Area . 79

4.5.8 Sensitivity to System Parameters 82

4.6 Conclusion . 84

Chapter 5. Runahead at the Enhanced Memory Controller 85

5.1 Introduction . 85

5.2 Mechanism . 89

5.2.1 Runahead Oracle Policies . 89

5.2.2 Hardware Stall Policy . 95

5.2.3 EMC Runahead Control . 101

5.3 Methodology . 104

viii

5.4 Results . 104

5.4.1 Performance Results . 104

5.4.2 RA-EMC Overhead . 105

5.4.3 RA-EMC + Prefetching . 107

5.4.4 Energy Results . 109

5.4.5 Sensitivity To System Parameters 112

5.4.6 Dependent Miss Acceleration 113

5.5 Conclusion . 114

Chapter 6. Multi-core Enhanced Memory Controller Policies 115

6.1 Introduction . 115

6.2 Methodology . 115

6.3 Multi-core RA-EMC Policies . 117

6.3.1 Policy Evaluation . 117

6.3.2 Dynamically Adjusting Runahead Distance 121

6.3.3 Effect of Increasing RA-EMC Contexts 123

6.4 Multi-core RA-EMC Evaluation . 123

6.4.1 Energy Evaluation . 131

6.5 Sensitivity to System Parameters . 133

6.6 Conclusion . 135

Chapter 7. Conclusions and Future Work 136

Bibliography 140

ix

List of Tables

3.1 SPEC06 Classification by Memory Intensity 28

3.2 Simulation Comparison . 30

3.3 Runtime Power Consumption (W) . 31

3.4 DRAM Power Comparison . 31

3.5 Average DRAM Bandwidth Consumption (GB/S) 32

3.6 Additional Runahead Buffer Hardware Overhead 32

3.7 System Configuration . 33

3.8 Chain Cache Statistics . 36

3.9 Performance Sensitivity to Runahead Buffer Parameters 38

3.10 Runahead Buffer Performance and Energy Sensitivity 45

4.1 Multi-core System Configuration . 63

4.2 Multi-Core Workloads . 64

4.3 Multi-Core Workload IPC . 65

4.4 Multi-Core Workload Memory Bandwidth (GB/S) and Power (W) . . 65

4.5 Performance Sensitivity to EMC Parameters 75

4.6 EMC Single Core Performance . 76

4.7 EMC and Multiple Memory Controllers 77

4.8 EMC Dependence Chain Length . 78

4.9 EMC Interconnect Overhead . 79

4.10 Additional EMC Storage Overhead 83

4.11 Additional EMC Area Overhead . 84

4.12 EMC Performance and Energy Sensitivity 84

5.1 Additional RA-EMC Hardware Overhead 101

5.2 Runahead Load to Use Distance (Instructions) 104

5.3 System Configuration . 105

5.4 RA-EMC Communication Overhead 107

5.5 Effective Memory Access Latency (Cycles) 111

5.6 Normalized RA-EMC Static and Dynamic Energy 112

5.7 RA-EMC Performance and Energy Sensitivity 113

6.1 Multi-Core System Configuration . 116

x

6.2 Multi-Core Workloads . 117

6.3 SPEC06 Classification by Memory Intensity 117

6.4 RA-EMC Accuracy and Runahead Distance (Instructions) 120

6.5 RA-EMC Accuracy and Interval Length (Retired Instructions) 121

6.6 Dynamic Runahead Accuracy and Distance 123

6.7 RA-EMC Context Performance Sensitivity 123

6.8 RA-EMC+Dep Statistics . 126

6.9 RA-EMC+Dep Effective Memory Access Latency Reduction 127

6.10 RA-EMC+Dep+GHB Performance with Throttling 131

6.11 System On-Chip Overhead . 134

6.12 Multi-Core RA-EMC Performance and Energy Sensitivity 135

xi

List of Figures

1.1 SPEC CPU2006 Stall Cycles . 2

1.2 Dependence Chain . 3

1.3 Fraction of all Cache Misses that are Dependent Cache Misses 5

3.1 Breakdown of Operations Executed during Traditional Runahead . . 18

3.2 Unique vs. Repeated Dependence Chains 18

3.3 Average Length of a Runahead Miss Dependence Chain 19

3.4 The Runahead Buffer Pipeline . 21

3.5 Dependence Chain Generation Process 22

3.6 Flow Chart of the Hybrid Policy . 27

3.7 Runahead Performance Normalized to a No-Prefetching System . . . 34

3.8 Average Number of Memory Accesses per Runahead Interval 35

3.9 Percent of Time the Core is in Runahead Buffer Mode 36

3.10 Cycles Spent in Runahead Buffer Mode during the Hybrid Policy . . 37

3.11 System Performance with Stream Prefetching 39

3.12 System Performance with GHB Prefetching 40

3.13 System Performance with Stream+Markov Prefetching 40

3.14 Normalized Bandwidth Consumption 41

3.15 Normalized Energy Consumption . 42

3.16 Normalized Energy Consumption with Stream Prefetching 43

3.17 Normalized Energy Consumption with GHB Prefetching 44

3.18 Normalized Energy Consumption with Markov+Stream Prefetching . 44

4.1 Breakdown of the Cycles to Satisfy a Memory Request 48

4.2 Percent of Dependent Cache Misses Prefetched with a GHB, Stream,
and Markov prefetcher . 49

4.3 Dynamic Sequence of Micro-ops Based on mcf 51

4.4 Average Number of Dependent Operations between a Source Miss and
a Dependent Miss . 52

4.5 Partitioning the Instruction Stream between the EMC and the Core . 52

4.6 High Level View of a Quad-Core processor with an Enhanced Memory
Controller . 54

4.7 Microarchitecture of the EMC . 54

xii

4.8 EMC Dependence Chain Generation Example 57

4.9 Quad-Core Performance for H1-H10 67

4.10 Quad-Core Performance for the Copy Workloads 67

4.11 Quad-Core Performance for M11-L20 68

4.12 Fraction of Total Cache Misses Generated by the EMC for H1 - H10 . 69

4.13 Difference in Row-Buffer Conflict Rate for H1-H10 70

4.14 Data Cache Hit Rate at the EMC. 71

4.15 EMC Cache Miss Latency vs Core Cache Miss Latency 72

4.16 Average Number of Cycles Saved by the EMC on each Memory Request 72

4.17 Effect of Prefetching on EMC Memory Requests 74

4.18 Eight-Core Spread Configuration . 77

4.19 Normalized Energy Consumption for H1-H10 80

4.20 Normalized Energy Consumption for Copy Workloads 81

4.21 Normalized Energy Consumption for M11-L20 81

4.22 System Bandwidth Overhead with Prefetching 82

5.1 Percent of Useful Runahead Requests 86

5.2 Percent of Execution Time in Runahead 87

5.3 Average Number of Cycles in Each Runahead Interval 88

5.4 Performance Impact of Dependence Chain Selection Policies 91

5.5 Varying the Number of Dependence Chains Stored per Miss PC . . . 91

5.6 Number of Different PCs Generating Cache Misses 93

5.7 Length and Breakdown of Dependence Chains 94

5.8 Number of Different Instructions that cause Full-Window Stalls . . . 95

5.9 Sensitivity to the Number of Tracked PCs 97

5.10 EMC Runahead Chain Generation 98

5.11 Dataflow Graph of Dependence Chain 99

5.12 EMC Microarchitecture Runahead Modifications 101

5.13 Sensitivity to Update Interval . 103

5.14 RA-EMC Performance . 106

5.15 RA-EMC Accuracy . 106

5.16 EMC Cache Hit Rate . 108

5.17 LLC Access Overhead . 108

5.18 RA-EMC Performance with Prefetching 110

5.19 Normalized Bandwidth Overhead . 110

5.20 RA-EMC Energy Consumption . 112

5.21 RA-EMC with Dependent Miss Acceleration 114

xiii

6.1 Multi-Core Policy on High Workloads 119

6.2 Multi-Core Policy on Copy Workloads 119

6.3 Dynamic Multi-core Policy on High Workloads 122

6.4 Dynamic Multi-core Policy on Copy Workloads 122

6.5 RA-EMC+Dep Performance on High Workloads 124

6.6 RA-EMC+Dep Performance on Copy Workloads 125

6.7 RA-EMC+Dep Performance on Mix Workloads 125

6.8 RA-EMC+Dep Performance with Prefetching on High Workloads . . 128

6.9 RA-EMC+Dep Performance with Prefetching on Copy Workloads . . 128

6.10 RA-EMC+Dep Performance with Prefetching on Mix Workloads . . . 129

6.11 Average Bandwidth Overhead with Prefetching 130

6.12 Average Effective Memory Access Latency with Prefetching 130

6.13 RA-EMC+Dep Energy Consumption on High Workloads 132

6.14 RA-EMC+Dep Energy Consumption on Copy Workloads 132

6.15 RA-EMC+Dep Energy Consumption on Mix Workloads 133

xiv

Chapter 1

Introduction

1.1 The Problem

The large latency disparity between performing computation at the core and

accessing data from off-chip memory is a key impediment to system performance.

This problem is known as the “memory wall” [74, 75] and is due to two factors. First,

raw main memory access latency has remained roughly constant historically [37], with

the row activation time (trc) decreasing by only 26% from SDR-200 DRAM to DDR3-

1333. Second, increasing levels of on-chip shared-resource contention in the multi-

core era have further caused the effective latency of accessing memory from on-chip

to increase. Examples of this contention include: on-chip interconnect, shared cache,

DRAM queue, and DRAM bank contention. Due to these two factors, main memory

accesses are a performance bottleneck, particularly for single threaded applications

where the reorder buffer (ROB) of a core cannot hide long-latency operations with

thread-level parallelism.

Figure 1.1 shows the percentage of total cycles that a 4-wide superscalar out-

of-order processor with a 256-operation reorder buffer and 1MB of last level cache

(LLC) is stalled and waiting for data from main memory across the SPEC CPU2006

benchmark suite. The applications are sorted from lowest to highest memory intensity

and the average instructions per cycle (IPC) of each application is overlaid on top of

each bar. Even with an out-of-order processor, the memory intensive applications to

the right of zeusmp in Figure 1.1 all have low IPC (generally under 1 instruction/cycle)

and all spend over half of their total cycles executing the benchmark stalled waiting

for data from main memory. In contrast, the non-memory intensive applications to

the left of zeusmp all spend under 20% of total execution time stalled waiting for data

1

ca
lc

u
lix

p
o
v
ra

y
n
a
m

d
g
a
m

e
ss

p
e
rl

b
e
n
ch

to
n
to

g
ro

m
a
cs

g
o
b
m

k
d
e
a
lII

sj
e
n
g

g
cc

h
m

m
e
r

h
2
6
4

b
zi

p
2

a
st

a
r

x
a
la

n
c

ze
u
sm

p
ca

ct
u
s

w
rf

g
e
m

s
le

sl
ie

o
m

n
e
tp

p
m

ilc
so

p
le

x
sp

h
in

x
b
w

a
v
e
s

lib
q

lb
m

m
cf

0

20

40

60

80

100

%
 T

o
ta

l
C

o
re

 C
y
cl

e
s

3.0
1.9

2.4
2.3

2.7

2.21.9

1.62.3
1.6

1.3
1.6

1.61.81.0
1.4

1.5

1.3

1.6

1.0

1.4

0.8
1.2

0.8

0.9

1.3

0.70.7
0.2

Figure 1.1: SPEC CPU2006 Stall Cycles

from memory and have higher average IPC. This dissertation focuses on accelerating

memory intensive applications and the loads that lead to LLC misses which cause the

ROB to fill.

1.2 Independent vs. Dependent Cache Misses

Before any load instruction can access memory, it requires a memory ad-

dress. This memory address is generated by a chain of earlier instructions or micro-

operations (micro-ops) in the program. One example of an address generation chain is

shown in Figure 1.2. A sequence of operations is shown on the left while the dataflow

graph of the operations is shown on the right. Operation 0 is a load that uses the

value in R8 to access memory and places the result in R1. Operation 1 moves the

value in R1 to R9. Operation 2 adds 0x18 to R9 and places the result in R12. Fi-

nally, operation 3 uses R12 to access memory and places the result in R10. As R12

is the address that is used to access memory, the only operations that are required to

complete before operation 3 can be executed are operations 0, 1, and 2. Therefore, I

define the dependence chain for operation 3 as consisting of operations 0, 1, and 2.

2

Op: 0 MEM_LD([R8] -> R1)

Op: 1 MOV(R1 -> R9)

Op: 2 ADD(R9, 0x18 -> R12)

Op: 3 MEM_LD([R12] -> R10)

1: R1 -> R9

2: R9 + 0x18 ->

 R12

3: [R12]-> R10

Figure 1.2: Dependence Chain

If operation 3 results in an LLC miss, then operations 0, 1, and 2 are the

dependence chain of a cache miss. I observe that all LLC misses can be split into two

categories based on the source data required by their dependence chain:

Dependent Cache Misses: Memory accesses that depend on source data that

is not available on-chip. These operations cannot be executed by an out-of-order

processor until source data from a prior, outstanding cache-miss returns to the core

from main memory.

Independent Cache Misses: Memory accesses that depend on source data that

is available on-chip. The effective memory access latency of these operations cannot

be hidden by an out-of-order processor because of the limited size of the processor’s

reorder buffer.

For Figure 1.2, if operation 0 is a cache hit, then operation 3 is a independent

cache miss. All of the source-data that is required to generate R12 is available on-

chip. However, if operation 0 is a cache miss, then operation 3 must wait to execute

until operation 0 returns from memory and operations 1 and 2 execute. In this case

operation 3 is a dependent cache miss.

3

Figure 1.3 shows the percent of all cache misses that are dependent cache

misses for the memory intensive SPEC06 benchmarks. Since the number dependent

cache misses is a function of the number of operations that are in-flight, ROB size is

varied from 128 entries to 2048 entries, scaling support for the number of outstanding

memory operations and memory bandwidth accordingly. The benchmarks with high

dependent cache miss rates such as omnetpp, milc, soplex, sphinx, and mcf all exhibit

a high rate of dependent cache misses at even the smallest ROB size of 128 entries.

This indicates that dependent cache misses are a property of application code, not

hardware constraints. Figure 1.3 also shows that the fraction of all dependent cache

misses grows as ROB size increases. Over the memory intensive benchmarks, mcf has

the highest rate of dependent cache misses. From Figure 1.1, mcf also is the most

memory intensive application and has the lowest IPC across the entire benchmark

suite. This highlights the negative impact that dependent cache misses have on

processor performance. However, Figure 1.3 shows that for all applications besides

mcf, the majority of LLC misses are independent cache misses, not dependent cache

misses. Accelerating both of these categories of LLC misses is critical to improving

performance.

1.3 Reducing Effective Memory Access Latency

In this dissertation, I design specialized hardware to automatically reduce

memory access latency for each of these two types of cache-misses in both single-

core and multi-core systems. As dependent cache misses cannot be executed until

data returns from main-memory, I propose dynamically identifying the dependence

chain of a dependent cache miss at the core and migrating it closer to memory for

execution at a compute capable, enhanced memory controller (EMC). I demonstrate

that these dependence chains are short and show that this migration reduces the

effective memory access latency of the subsequent dependent cache miss.

Independent cache misses have all source data available on chip but are limited

from issue by ROB size. Therefore, I revisit a prior technique for expanding the

4

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

0%

20%

40%

60%

80%

100%

A
ll

La
st

 L
e
v
e
l
C

a
ch

e
 M

is
se

s

128 256 512 1024 2048

Figure 1.3: Fraction of all Cache Misses that are Dependent Cache Misses

instruction window of out-of-order processors: runahead execution [50]. I identify that

many of the operations that are executed in runahead are not relevant to producing

the memory address of the cache miss. I propose a new hardware structure, the

Runahead Buffer, that runs-ahead using only the filtered dependence chain that is

required to generate cache misses. By executing fewer operations, this dissertation

shows that the Runahead Buffer generates more cache misses per runahead interval

when compared to traditional runahead and is more energy efficient.

Yet, while the Runahead Buffer is more effective than traditional runahead ex-

ecution, I demonstrate that it is limited by the runahead paradigm. This dissertation

shows that while runahead requests have very high accuracy, the Runahead Buffer

is only active for a fraction of total execution time. This limits the impact that the

Runahead Buffer has on reducing effective memory access latency. In this disserta-

tion, I explore migrating the dependence chains that are used in the Runahead Buffer

to the enhanced memory controller. This allows the dependence chain to execute

far ahead of the program, creating a continuous prefetching effect. The result is a

5

large reduction in effective memory access latency. I evaluate new co-ordinated dy-

namic throttling policies that increase performance when traditional prefetchers are

added to the system. The final implementation of the EMC is a lightweight memory

accelerator that reduces effective memory access latency for both independent and

dependent cache misses.

1.4 Thesis Statement

Processors can dynamically identify and accelerate the short code

segments that generate cache misses, decreasing effective memory access

latency and thereby increasing single-thread performance.

1.5 Contributions

This dissertation makes the following contributions:

• This dissertation shows that there are two different kinds of cache misses: in-

dependent cache misses and dependent cache misses. This distinction is made

on the basis of whether all source data for the cache miss is available on-chip or

off-chip. By differentiating between independent and dependent cache misses,

this thesis proposes dynamic hardware acceleration mechanisms for reducing

effective memory access latency for each of these two types of cache misses.

• This dissertation observes that the dependence chains for independent cache

misses are stable. That is, if a dependence chain has generated an independent

cache miss, it is likely to generate more independent cache misses in the near

future. In Chapter 3, this observation is exploited by the Runahead Buffer,

a new low-overhead mode for runahead execution. The Runahead Buffer gen-

erates 57% more memory level parallelism on average as traditional runahead

execution. I show that a hybrid policy using both the Runahead Buffer and tra-

ditional runahead further increases performance, generating 82% more memory

level parallelism than traditional runahead execution alone.

6

• While the original Runahead Buffer algorithm has low complexity, this disserta-

tion shows that it is not the optimal algorithm for picking a dependence chain

to use during runahead. Chapter 5 evaluates several different algorithms for

Runahead Buffer chain generation and demonstrates that a more intelligent al-

gorithm increases the performance gain of the Runahead Buffer from 11% to

23%.

• This dissertation identifies that a large component of the total effective memory

access latency for dependent cache misses is a result of multi-core on-chip con-

tention. I develop the hardware that is required to transparently migrate the

dependent cache miss to a new compute capable memory controller in Chapter

4. This enhanced memory controller (EMC) executes the dependence chain im-

mediately when source data arrives from main memory. This is shown to result

in a 20% average reduction in effective memory access latency for dependent

cache misses.

• This dissertation argues that runahead execution is limited by the length of

each runahead interval. To solve this problem, mechanisms are developed in

Chapter 5 that offload Runahead Buffer dependence chains to the EMC for

continuous runahead execution. This results in a 32% average reduction in

effective memory access latency and a 37% performance increase.

• This dissertation shows that the final hardware mechanism, runahead at the

EMC with dependent miss acceleration (RA-EMC+Dep) reduces effective mem-

ory access latency in a multi-core system by 19% while increasing performance

on a set of ten high-memory intensity workloads by 62%. I demonstrate that

this is a greater performance increase and effective memory access latency reduc-

tion than three state-of-the-art on-chip prefetchers. RA-EMC+Dep is the first

combined mechanism that uses dependence chains to automatically accelerate

both independent and dependent cache misses in a multi-core system.

7

1.6 Dissertation Organization

Chapter 2 discusses prior work that is related to this dissertation. Chap-

ter 3 introduces the Runahead Buffer and explores the properties of independent

cache misses in a single-core setting. Chapter 4 explores dependent cache misses

and demonstrates the performance implications of migrating these operations to the

EMC. In Chapter 5, I explore the optimal dependence chain to use during runahead

at the EMC while Chapter 6 considers the multi-core policies that optimize runahead

performance at the EMC. I conclude with Chapter 7.

8

Chapter 2

Related Work

This dissertation is related to previous work on hardware mechanisms to reduce

memory access latency in four general areas: on-chip prefetching, code pre-execution,

computation near memory, and memory scheduling. This chapter describes the prior

studies that this dissertation builds on.

2.1 Research in Reducing Data Access Latency via Predict-
ing Memory Access Addresses (Prefetching)

Hardware prefetching can be generally divided into two categories: prefetch-

ers that predict future addresses based on memory access patterns, and prefetching

effects that are based on pre-execution of code-segments provided by (or dynamically

generated for) the application. I discuss the first category here and the second in

Section 2.2.

Prefetchers that uncover stream or stride patterns [23, 29, 52] require a small

amount of hardware overhead and are commonly implemented in modern processors

today [3]. These prefetchers can significant reduce data access latency for predictable

data access patterns, but suffer when requests are issued too early or too late. Addi-

tionally, stream/stride prefetchers do not handle complex access patterns well, leading

to inaccurate prefetch requests that waste memory bandwidth and pollute the cache.

More advanced hardware prefetching techniques such as correlation prefetching

[14, 28, 35, 66] aim to reduce average memory access latency for more unpredictable

cache misses. These prefetchers work by maintaining large on-chip tables that cor-

relate past cache miss addresses to future cache misses. The global-history buffer

(GHB) [51] is a form of correlation prefetching that uses a two-level indexing scheme

9

to reduce the need for large correlation tables. Some prefetching proposals use large

off-chip storage to reduce the need for on-chip storage [27, 73]. These proposals incur

the additional cost of transmitting meta-data over the memory bus. This dissertation

focuses on evaluating on-chip mechanisms to reduce memory access latency.

Other hardware prefetching mechanisms specifically target the pointers that

lead to cache misses. Roth and Sohi [59] use jump-pointers during the traversal of

linked-data structures to create memory level parallelism. Roth et al. [58] identify

stable dependence patterns between pointers, and store this information in a corre-

lation table. Content-directed prefetching [17] does not require additional state to

store pointers, but greedily prefetches by dereferencing values that could be memory

addresses. This results in a large number of useless prefetches. Ebrahimi et al. [21]

developed mechanisms to throttle inaccurate content-directed prefetchers.

I show that not all cache miss addresses are easily predicted by prefetching

(Chapter 4), and the work on accelerating dependent cache misses in this dissertation

targets addresses that are difficult to prefetch. My research on accelerating indepen-

dent cache misses dynamically uses portions of the application’s own code to prefetch.

This is demonstrated to result in more accurate memory requests (Chapter 3). The

proposed mechanisms for both independent and dependent cache miss acceleration

are compared to three state-of-the-art on-chip prefetchers in the evaluation: a stream

prefetcher, GHB prefetcher, and Markov correlation prefetcher.

2.2 Research in Reducing Data Access Latency via Pre-Execution

Pre-Execution via Runahead Execution: In runahead execution [20, 50,

68], once the back-end of a processor is stalled due to a full reorder buffer, the state of

the processor is checkpointed and the front-end continues to fetch operations. These

operations are executed if source data is ready. Some implementations do not store

runahead results [50], while other similar proposals do [68]. The main goal is to

generate additional memory-level parallelism and prefetch future cache misses.

10

The research in this dissertation on independent cache misses is an extension

to runahead execution. Traditional runahead execution requires the front-end to

always be on to fetch/decode instructions. I find that this is inefficient. Furthermore,

traditional runahead issues all of these fetched instructions to the back-end of the

processor for execution. I find that many of these operations are not relevant to the

dependence chain of a cache miss (Chapter 3). I show that the core can generate

more memory level parallelism by issuing only the filtered dependence chain required

to generate the cache miss to the back-end. This idea is expanded upon (Chapters 5

and 6) to allow the EMC to continuously runahead at all times, not just when the

core is stalled. To my knowledge this is the first proposal that dynamically allows

runahead execution to continue when the main thread is active.

Pre-Execution via Compiler/Hand Generated Code-Segments: Many papers

attempt to prefetch by using compiler/hand-tuned portions of code to execute ahead

of the demand access stream [9, 13, 41, 76]. These helper threads can execute on

special hardware or on a different core of a multi-core processor. Collins et al. [16]

generate helper-threads with compiler analysis and require free hardware thread-

contexts to execute them. Other work also constructs helper threads manually [81].

Kim and Yeung [32] discuss techniques for the static compiler to generate helper

threads. Similar concepts are proposed in Inspector-Executor schemes [60], where

the computation loop is preceded by an “inspector” loop, which prefetches data.

Dynamic compilation techniques have also been pursued [40, 79]. Hand-generated

helper threads have also been proposed to run on idle-cores of a multi-core processor

[10, 30]. These statically generated pre-execution proposals all are based on the idea

of decoupling the memory access stream in an application from the execution stream.

This high-level idea was initially proposed by Pleszkun [56] and Smith [62].

In contrast to these methods, I propose mechanisms that allow dynamic gener-

ation of dependence chains in this dissertation. These chains do not require resources

like free hardware cores or free thread-contexts. I tailor the memory controller to

11

contain the specialized functionality required to execute these dependence chains

(Chapter 4).

Speculation via automatically generated “Helper Threads”: Research to-

wards automatically generated helper threads is limited. For a helper-thread to be

effective it needs to execute ahead of the main-thread. In prior work, this is done by

using a filtered version of the main-thread (so the helper-thread can run faster than

the main-thread) where unimportant instructions have been removed. Three main

works are related to this thesis.

First, in Slipstream [69] two processors are used to execute an application. The

A-stream runs a filtered version of the application ahead of the R-stream. The A-

stream can then communicate performance hints such as branch-directions or memory

addresses for prefetching back to the R-stream, although a main focus for Slipstream

is fault-tolerance. However, the a instructions that are removed in Slipstream are

generally simple. Slipstream only removes ineffectual writes (stores that are never ref-

erenced, stores that do not modify the state of a location) and highly biased branches.

Other work uses a similar two-processor architecture, but does not allow the A-stream

to stall on cache misses [80].

Second, Collins et al. [15] propose a dynamic scheme to automatically extract

helper-threads from the back-end of a processor. To do so, they require large addi-

tional hardware structures, including a buffer that is twice the size of their reorder

buffer. All retired operations are filtered through this buffer. Once the helper threads

are generated, they must run on full SMT thread contexts. This requires the front-end

to fetch and decode operations and the SMT thread contends with the main thread

for resources. An 8-way SMT core is used in their evaluation.

Third, Annavaram et al. [7] add hardware to extract a dependent chain of

operations that are likely to result in a cache miss from the front-end during decode.

These operations are prioritized and execute on a separate back-end. This reduces

the effects of pipeline contention on these operations, but limits runahead distance

to operations that the processor has already fetched.

12

I propose a lightweight solution to dynamically create a dependence chain

(Chapter 3) that does not require free hardware thread contexts and filters the pro-

gram down to only the dependence chain required to create a cache miss. Unlike

prior work, this dependence chain is speculatively executed as if it was in a loop with

minimal control overhead. Chapter 5 demonstrates that this technique is limited by

the length of each runahead interval and proposes using the EMC to speculatively

execute dependence chains. To my knowledge this is the first work to study general

dynamically generated “helper threads” in a multi-core setting.

2.3 Research in Reducing Data Access Latency via Compu-
tation Near Memory

Logic and memory fabricated on the same process: Prior work has pro-

posed performing computation inside the logic layer of 3D-stacked DRAM [5, 78], but

none has specifically targeted accelerating dependent cache misses. Both EXECUBE

[34] and iRAM [53] recognize that placing compute next to memory would maximize

the available memory bandwidth for computation. This proposal has been recently

revisited with Micron’s 3D-stacked Hybrid Memory Cube (HMC) [19, 54]. Ahn et

al. [4] propose performing graph processing in an interconnected network of HMCs

by changing the programming model and architecture, forfeiting cache coherence and

virtual memory mechanisms. Alexander et al. [6] and Solihin et al. [65] propose co-

locating large correlation prefetching tables at memory and using memory-side logic

to decide which data elements to prefetch on-chip.

These proposals generally do not split computation between on-chip and off-

chip compute engines due to the cost of data-coherence across the DRAM bus. I

argue that the latency constraints of the memory bus are relatively small compared

to DRAM access latency. Therefore, locating computation at the first point where

data enters the chip, the memory controller, is an attractive and unexplored research

direction.

13

Migrating computation closer to data: Prior work has proposed atomically

combining arithmetic with loads to shared data [24] as well as migrating general

purpose computation closer to the on-chip caches where data is resident [31, 42]. I

use migration to reduce main-memory access latency, not cache access latency.

2.4 Research in Reducing Data Access Latency via Memory
Scheduling

The order in which memory requests are serviced has a large impact on the

latency of a memory request, due to DRAM row-buffer/bank contention. Prior work

has researched algorithms to optimize row-buffer hit rate and data to bank mappings

[11, 33, 36, 49]. This dissertation is orthogonal to memory scheduling. I use an

advanced memory scheduler [49] throughout this dissertation as the baseline.

14

Chapter 3

The Runahead Buffer

3.1 Introduction

Figure 1.3 showed that most last level cache (LLC) misses in an application

have all of the source data that is necessary to generate the address that results in the

LLC miss available on chip. I define this category of LLC-misses as independent cache

misses. In this chapter, I propose an energy efficient mechanism to reduce effective

memory access latency for independent cache misses. This mechanism, the runahead

buffer, is based on runahead execution for out-of-order processors [50] 1.

In runahead, once a core is stalled and waiting for memory, the processor’s

architectural state is checkpointed and the front-end continues to fetch and execute

instructions. This creates a prefetching effect by pre-executing future load instruc-

tions. The processor is able to use the application’s own code to uncover additional

cache misses when it would otherwise be stalled, thereby reducing the effective mem-

ory access latency of the subsequent demand request. Runahead targets generating

cache misses that have source data available on-chip but cannot be issued by the core

due to limitations on the size of the reorder buffer. However, runahead execution

requires the front-end to remain on when the core would be otherwise stalled. As

front-end power consumption can reach 40% of total core power [2], this can result in

a significant energy overhead.

In this Chapter, I show that most of the dependence chains that lead to cache

misses in runahead execution are repetitive (Section 3.2). I then propose dynamically

1An earlier version of this chapter was published as: Milad Hashemi and Yale Patt. Filtered
Runahead Execution with a Runahead Buffer. In MICRO, 2015. I developed the initial idea and
conducted the simulator design and evaluation for this work.

15

identifying these chains and using them to run ahead with a new structure called a

runahead buffer (Section 3.4). This results in two benefits. First, by targeting only

the filtered dependence chain, the runahead buffer frequently generates more MLP

than traditional runahead by running further ahead. Second, by clock-gating the

front-end during runahead, the runahead buffer incurs a much lower energy cost than

traditional runahead [47].

3.2 Background

The majority of all cache misses are independent cache misses that have all

source data available on-chip. Yet, two main factors prevent an out-of-order processor

from issuing these cache misses early enough to hide the effective memory access

latency of the operation. The first factor is the limited resources of an out-of-order

processor. An out-of-order core can only issue operations up to the size of its reorder

buffer. Once this buffer is full, generally due to a long-latency memory access, the

core can not issue additional operations that may result in a cache miss. The second

factor is branch prediction. Assuming that limited resources are not an issue, the

out-of-order processor would have to speculate on the sequence of instructions that

generates the cache misses. However, prior work has shown that even wrong-path

memory requests are generally beneficial for performance [46].

Runahead execution for out-of-order processors [50] is one solution to the first

factor, the limited resources of an out-of-order processor. Runahead is a dynamic

hardware mechanism that effectively expands the reorder buffer. Once the retirement

of instructions is stalled by a long-latency memory access, the processor takes several

steps.

First, architectural state, along with the branch history register and return

address stack, are checkpointed. Second, the result of the memory operation that

caused the stall is marked as poisoned in the physical register file. Once this has

occurred, the processor begins the runahead interval and continues fetching and exe-

cuting instructions with the goal of generating additional cache misses.

16

Any operation that uses poisoned source data propagates the poison flag to

its destination register. Store operations cannot allow data to become globally ob-

servable, as runahead execution is speculative. Therefore, a special runahead cache

is maintained to hold the results of stores and forward this data to runahead loads.

While runahead execution allows the core to generate additional MLP, it has the

downside of requiring the front-end to be on and remain active when the core would

be otherwise stalled, using energy. This trade-off is examined in Section 3.3.

3.3 Runahead Observations

To uncover new cache misses, traditional runahead issues all of the operations

that are fetched by the front-end to the back-end of the processor. Many of these

operations are not relevant to calculating the address necessary for a subsequent

cache miss. The operations required to execute a cache miss are encapsulated in the

dependence chain of the miss, as shown in Figure 1.2. These are the only operations

that are necessary to generate the memory address that causes the cache miss. Figure

3.1 compares the total number of operations executed in runahead to the number of

operations that are actually in a dependence chain that is required to generate a cache

miss. The SPEC06 benchmarks are sorted from lowest to highest memory intensity.

As Figure 3.1 shows, in most applications only a small fraction of the executed

instructions are necessary to uncover an LLC miss. For example, in mcf only 36 %

of the instructions executed in runahead are necessary to cause a new cache miss.

Ideally, runahead would only fetch and execute these required instructions, executing

other operations is a waste of energy.

To observe how often these dynamic dependence chains vary, during each

runahead interval, I trace the dependence chain for each generated cache miss. This

chain is compared to all of the other dependence chains for cache misses generated

during that particular runahead interval. Figure 3.2 shows how often each dependence

chain is unique, i.e. how often a dependence chain has not been seen before in the

current runahead interval.

17

ca
lc

u
lix

p
o
v
ra

y
n
a
m

d
g
a
m

e
ss

p
e
rl

b
e
n
ch

to
n
to

g
ro

m
a
cs

g
o
b
m

k
d
e
a
lII

sj
e
n
g

g
cc

h
m

m
e
r

h
2
6
4

b
zi

p
2

a
st

a
r

x
a
la

n
cb

m
k

ze
u
sm

p
ca

ct
u
s

w
rf

G
e
m

sF
D

T
D

le
sl

ie
o
m

n
e
tp

p
m

ilc
so

p
le

x
sp

h
in

x
b
w

a
v
e
s

lib
q
u
a
n
tu

m
lb

m
m

cf

0%

20%

40%

60%

80%

100%
T
o
ta

l
O

p
e
ra

ti
o
n
s

E
x
e
cu

te
d

 D
u
ri

n
g
 R

u
n
a
h
e
a
d

Dependence Chain Other Operation

Figure 3.1: Breakdown of Operations Executed during Traditional Runahead

ca
lc

u
lix

p
o
v
ra

y
n
a
m

d
g
a
m

e
ss

p
e
rl

b
e
n
ch

to
n
to

g
ro

m
a
cs

g
o
b
m

k
d
e
a
lII

sj
e
n
g

g
cc

h
m

m
e
r

h
2
6
4

b
zi

p
2

a
st

a
r

x
a
la

n
cb

m
k

ze
u
sm

p
ca

ct
u
s

w
rf

G
e
m

sF
D

T
D

le
sl

ie
o
m

n
e
tp

p
m

ilc
so

p
le

x
sp

h
in

x
b
w

a
v
e
s

lib
q
u
a
n
tu

m
lb

m
m

cf

0%

20%

40%

60%

80%

100%

T
o
ta

l
C

a
ch

e
 M

is
s

 D
e
p
e
n
d
e
n
ce

 C
h
a
in

s

Repeated Chain Unique Chain

Figure 3.2: Unique vs. Repeated Dependence Chains

18

ca
lc

u
lix

p
o
v
ra

y
n
a
m

d
g
a
m

e
ss

p
e
rl

b
e
n
ch

to
n
to

g
ro

m
a
cs

g
o
b
m

k
d
e
a
lII

sj
e
n
g

g
cc

h
m

m
e
r

h
2

6
4

b
zi

p
2

a
st

a
r

x
a
la

n
c

ze
u
sm

p
ca

ct
u
s

w
rf

G
e
m

sF
D

T
D

le
sl

ie
o
m

n
e
tp

p
m

ilc
so

p
le

x
sp

h
in

x
b
w

a
v
e
s

lib
q

lb
m

m
cf

0

5

10

15

20

25

30

35

40
D

e
p
e
n
d
e
n
ce

 C
h
a
in

 L
e
n
g
th

Figure 3.3: Average Length of a Runahead Miss Dependence Chain

As Figure 3.2 demonstrates, most dependence chains are repeated, not unique,

in a given runahead interval. This means that if an operation with a given dependence

chain generates a cache miss it is highly likely that a different dynamic instance of

that instruction with the same dependence chain will generate another cache miss in

the same interval. This is particularly true for the memory intensive applications on

the right side of Figure 3.2.

Each of these dependence chains are on average reasonably short. Figure 3.3

lists the average length of the dependence chains for the cache misses generated during

runahead in micro-operations (uops).

With the exception of omnetpp, all of the memory intensive applications in

Figure 3.3 have an average dependence chain length of under 32 uops. Several bench-

marks including mcf, libquantum, bwaves, and soplex, have average dependence chain

length of under 20 operations. Considering that the dependence chains that lead to

cache misses during runahead are short and repetitive, I propose dynamically iden-

19

tifying these chains from the reorder buffer when the core is stalled. Once the chain

is determined, the core can runahead by executing operations from this dependence

chain. To accomplish this, the chain is placed in a runahead buffer, similar to a

loop buffer [18]. As the dependence chain is made up of decoded uops, the runahead

buffer is able to feed these decoded ops directly into the back-end. Section 3.4 dis-

cusses how the chains are identified and the hardware structures required to support

the runahead buffer.

3.4 Mechanism

3.4.1 Hardware Modifications

To support the runahead buffer, small modifications are required to the tra-

ditional runahead scheme. A high-level view of a traditional out-of-order processor

is shown in Figure 3.4. The front-end includes the fetch and decode stages of the

pipeline. The back-end consists of the rename, select/wakeup, register read, execute

and commit stages. To support traditional runahead execution, the shaded modifica-

tions are required. The physical register file must include poison bits so that poisoned

source and destination operands can be marked. This is denoted in the register read

stage. Additionally, the pipeline must support new hardware paths to checkpoint

architectural state, so that normal execution can recommence when the blocking op-

eration returns from memory, and a runahead cache (RA-Cache) for forwarding store

data as in [50]. These two changes are listed in the execute stage.

The runahead buffer requires two further modifications to the pipeline: the

ability to dynamically generate dependence chains in the back-end and the runahead

buffer, which holds the dependence chain itself. Additionally, a small dependence

chain cache (Section 3.4.4) reduces how often chains are generated.

To generate and read filtered dependence chains out of the ROB, the runahead

buffer uses a pseudo-wakeup process. This requires every decoded uop, PC, and

destination register to be available in the ROB. Both the PC and destination register

are already part of the ROB entry of an out-of-order processor. Destination register

20

Fetch Decode Rename Select/

Wakeup

Register

 Read
Execute Commit

Figure 3.4: The Runahead Buffer Pipeline

IDs are necessary to reclaim physical registers at retirement. Program counters are

stored to support rolling back mispredicted branches and exceptions [63]. However,

decoded uop information can be discarded upon instruction issue. We add 4-bytes

per ROB entry to maintain this information until retirement.

The runahead buffer itself is placed in the rename stage, as operations is-

sued from the buffer are decoded but need to be renamed for out-of-order execution.

Both architectural register IDs and physical register ids are used during the psuedo-

wakeup process and runahead buffer execution. Physical register ids are used during

the dependence chain generation process. Architectural register ids are used by the

renamer once the operations are issued from the runahead buffer into the back-end

of the processor.

The hardware required to conduct the backwards data-flow walk to generate

a dependence chain depends on ROB implementation. There are two primary tech-

niques for reorder buffer organization in modern out-of-order processors. The first

technique, used in Intel’s P6 microarchitecture, allocates destination registers and

ROB entries together in a circular buffer [25]. This ROB implementation allows for

simple lookups as destination register IDs also point to ROB entries. The second

technique is used in Intel’s NetBurst microarchitecture: ROB entries and destination

registers are allocated and maintained separately [25]. This means that destination

21

LD [R1] -> R2

LD [R3] -> R5

ADD R4, R5 -> R9

LD [R7] -> R8

MOV R6->R7

ADD R9, R1 ->R6

Cycle 0
PC

0xA

0xD

0xE

0x7

0x8

0xA

Source Register

Search List: R7

Figure 3.5: Dependence Chain Generation Process

registers are not allocated sequentially in the ROB. This second implementation is

what is modeled in the performance evaluation of this dissertation. Therefore, search-

ing for a destination register in the ROB requires additional hardware. I modify the

ROB to include a content addressable memory (CAM) for the PC and destination reg-

ister ID field. This hardware is used during the pseudo-wakeup process for generating

dependence chains (Section 3.4.2).

3.4.2 Dependence Chain Generation

Once a miss has propagated to the top of the reorder buffer, as in the tradi-

tional runahead scheme, runahead execution begins and the state of the architectural

register file is checkpointed. This also triggers creation of the dependence chain for

the runahead buffer. Figure 3.5 shows an example of this process with code from mcf.

Control instructions are omitted in Figure 3.5 and not included in the chain, as the

ROB contains a branch-predicted stream of operations. The dependence chain does

not need to be contiguous in the ROB, only relevant operations are shown and other

operations are hashed out.

In Figure 3.5, the load stalling the ROB is at PC:0xA. This load cannot be

used for dependence chain generation as its source operations have likely retired.

Instead, I speculate that a different dynamic instance of that same load is present in

22

the ROB. This is based on the data from Figure 3.2 that showed that if a dependence

chain generates a cache miss, it is very likely to generate additional cache misses.

Therefore, in cycle 0, the ROB is searched for a different load with the same

PC. If the operation is found with the CAM, it is included in the dependence chain

(denoted by shading in Figure 3.5). Micro-ops that are included in the dependence

chain are tracked using a bit-vector that includes one bit for every operation in the

ROB. The source physical registers for the included operation (in this case R7) are

maintained in a source register search list. These registers are used to generate the

dependence chain.

During the next cycle, the destination registers in the ROB are searched using

a CAM to find the uop that produces the source register for the miss. In this case,

R7 is generated by a move from R6. In cycle 1, this is identified. R6 is added to the

source register search list while the move operation is added to the dependence chain.

This process continues in cycle 2. The operation that produces R6 is located

in the reorder buffer, in this case an ADD, and its source registers are added to the

search list (R9 and R1). Assuming that only one source register can be searched for

per cycle, in cycle 3 R4 and R5 are added to the search list and the second ADD is

included in the dependence chain. This process is continued until the source register

search list is empty, or the maximum dependence chain length (32 uops, based on

Figure 3.3) is met. In Figure 3.5, this process takes 7 cycles to complete. In cycle 4

R1 finds no producers and in cycle 5 R4 finds no producing operations. In cycle 6,

the load at address 0xD is included in the dependence chain, and in cycle 7 R3 finds

no producers.

As register spills and fills are common in x86, loads additionally check the

store queue to see if the load value is dependent on a prior store. If so, the store

is included in the dependence chain and its source registers are added to the source

register search list. Note that as runahead is speculative, the dependence chains

are not required to be exact. The goal is to generate a prefetching effect. While

using the entire dependence chain is ideal, given the data from Figure 3.3, I find that

23

capping the chain at 32 uops is sufficient for most applications. This dependence

chain generation algorithm is summarized in Algorithm 1.

Once the chain is generated, the operations are read out of the ROB with

the superscalar width of the back-end (4 uops in our evaluation) and placed in the

runahead buffer. Runahead execution then commences as in the traditional runahead

policy.

Algorithm 1 Runahead Buffer dependence chain
generation.
SRSL: Source Register Search List
ROB: Reorder Buffer
DC: Dependence Chain
MAXLENGTH: 32

if ROB Full then
Get PC of op causing stall.
Search ROB for another op with same PC.
if Matching PC found then

Add oldest matching op to DC.
Enqueue all source registers to SRSL.
while SRSL != EMPTY and
DC <MAXLENGTH do

Dequeue register from SRSL.
Search ROB for op that produces register.
if Matching op found then

Add matching op to DC.
Enqueue all source registers to SRSL.
if Matching op is load then

Search store buffer for load address.
if Store buffer match then

Add matching store to DC.
Enqueue all source registers to SRSL.

end if
end if

end if
end while
Fill runahead buffer with DC from ROB.
Start runahead execution.

end if
end if

24

3.4.3 Runahead Buffer Execution

Execution with the runahead buffer is similar to traditional runahead execu-

tion except operations are read from the runahead buffer as opposed to the front-end.

The runahead buffer is placed in the rename stage. Since the dependence chain is

read out of the ROB, operations issued from the runahead buffer are pre-decoded

but must be renamed to physical registers to support out-of-order execution. Oper-

ations are renamed from the runahead buffer at up to the superscalar width of the

processor. Dependence chains in the buffer are treated as loops; once one iteration

of the dependence chain is completed the buffer starts issuing from the beginning of

the dependence chain once again. As in traditional runahead, stores write their data

into a runahead cache (Table 3.7) so that data may be forwarded to runahead loads.

The runahead buffer continues issuing operations until the data of the load that is

blocking the ROB returns. The core then exits runahead, as in [50], and regular

execution commences.

3.4.4 Dependence Chain Cache

A cache to hold generated dependence chains can significantly reduce how often

chains need to be generated prior to using the runahead buffer. I use a 2-entry cache

that is indexed by the PC of the operation that is blocking the ROB. Dependence

chains are inserted into this cache after they are filtered out of the ROB. The chain

cache is checked for a hit before beginning the construction of a new dependence

chain. Path-associativity is disallowed, so only one dependence chain may exist in

the cache for every PC. As dependence chains can vary between dynamic instances

of a given static load, I find that it is important for this cache to remain small. This

allows old dependence chains to age out of the cache. Note that chain cache hits do

not necessarily match the exact dependence chains that would be generated from the

reorder buffer, this is explored further in Section 3.6

25

3.4.5 Runahead Buffer Hybrid Policies

Algorithm 1 describes the steps that are necessary to generate a dependence

chain for the runahead buffer. In addition to this algorithm, I propose a hybrid policy

that uses traditional runahead when it is best and the runahead buffer with the chain

cache otherwise. For this policy, if one of two events occur during the chain generation

process, the core begins traditional runahead execution instead of using the runahead

buffer. These two events are: an operation with the same PC as the operation that

is blocking the ROB is not found in the ROB, or the generated dependence chain is

too long (more than 32 operations).

If an operation with the same PC is not found in the ROB, the policy predicts

that the current PC will not generate additional cache misses in the near future.

Therefore, traditional runahead will likely be more effective than the runahead buffer.

Similarly, if the dependence chain is longer than 32 operations, the policy predicts

that the dynamic instruction stream leading to the next cache miss is likely to differ

from the dependence chain that will be obtained from the ROB (due to a large number

of branches). Once again, this means that traditional runahead is preferable to the

runahead buffer, as traditional runahead can dynamically predict the instruction

stream using the core’s branch predictor, while the runahead buffer executes a simple

loop. This hybrid policy is summarized in Figure 3.6 and evaluated in Section 3.6.

3.4.6 Runahead Enhancements

I find that the traditional runahead execution policy significantly increases the

total dynamic instruction count. This is due to repetitive and unnecessary runahead

intervals as discussed in [47]. Therefore, I implement the two hardware controlled

policies from that paper. These policies limit how often the core can enter runahead

mode. The first policy states that the core does not enter runahead mode unless the

operation blocking the ROB was issued to memory less than a threshold number of

instructions ago (250 instructions). The goal of this optimization is to ensure that

the runahead interval is not too short. It is important for there to be enough time to

26

Begin Runahead

Execution

Matching PC

Found in

ROB

Dependence

Chain found

in Chain Cache

Yes

No
Use Traditional

Runahead

Use Cached

Chain in Runahed

Buffer

Dependence

Chain found

in Chain Cache

No

Yes

Dependence

Chain < 32

micro-ops

Yes

No

Use Dependence

Chain in Runahead

Buffer

Figure 3.6: Flow Chart of the Hybrid Policy

enter runahead mode and generate MLP. The second policy states that the core does

not enter runahead unless it has executed further than the last runahead interval.

The goal of this optimization is to eliminate overlapping runahead intervals. This

policy helps ensure that runahead does not waste energy uncovering the same cache

miss over and over again.

These policies are implemented in the runahead enhancements policy (evalu-

ated in Section 3.6.4) and the Hybrid policy (Section 3.4.5). As the runahead buffer

does not use the front-end during runahead, I find that these enhancements do not

noticeably effect energy consumption for the runahead buffer policies.

27

High Intensity
(MPKI >= 10)

omnetpp, milc, soplex, sphinx3, bwaves, libquantum,
lbm, mcf

Medium Intensity
(MPKI >=5)

zeusmp, cactusADM, wrf, GemsFDTD, leslie3d

Low Intensity
(MPKI <5)

calculix, povray, namd, gamess, perlbench, tonto, gro-
macs, gobmk, dealII, sjeng, gcc, hmmer, h264ref, bzip2,
astar, xalancbmk

Table 3.1: SPEC06 Classification by Memory Intensity

3.5 Methodology

The simulations for this dissertation are conducted with an execution driven,

x86 cycle-level accurate simulator. The front-end of the simulator is based on Multi2Sim

[71]. The simulator faithfully models core microarchitectural details, the cache hierar-

chy, wrong-path execution, and includes a detailed non-uniform access latency DDR3

memory system [44].

The proposed mechanisms are evaluated on the SPEC06 benchmark suite.

However, since the focus of this dissertation is accelerating memory intensive appli-

cations, my evaluation targets the medium and high memory intensive applications

in the benchmark suite (Table 3.1). The words application and benchmark are used

interchangeably throughout the evaluation and refer to a single program in Table 3.1.

Workloads are collections of applications/benchmarks and are used in the multi-core

evaluations.

Each application is simulated from a representative SimPoint [61]. The simu-

lation has two stages. First, the cache hierarchy and branch predictor warm up with

a 50 million instruction warmup period. Second, the simulator conducts a 50 million

instruction detailed cycle accurate simulation. Table 3.2 lists the raw IPC and MPKI

for this two-phase technique and a 100 million instruction detailed simulation for the

SPEC06 benchmarks. There is an average IPC error of 1% and an average MPKI

error of 3% between the 100 million instruction simulation and the 2-phase scheme

used in this dissertation.

28

Chip energy is modeled using McPAT 1.3 [38] and computed using total exe-

cution time, “runtime dynamic” power, and “total leakage power”. McPAT models

clock-gating the front-end during idle cycles for all simulated systems. The average

runtime power for the memory intensive single core applications is listed in Table 3.3.

DRAM power is modeled using CACTI 6.5 [45]. A comparison between the CACTI

DRAM power values and a MICRON 2Gb DDR3 module [1] is shown in Table 3.4

and raw average DRAM bandwidth consumption values are listed in Table 3.5.

System details are listed in Table 3.7. The core uses a 256 entry reorder buffer.

The cache hierarchy contains a 32KB instruction cache and a 32KB data cache with

1MB of last level cache. Three different on-chip prefetchers are used in the evaluation.

A stream prefetcher (based on the stream prefetcher in the IBM POWER4 [70]), a

Markov prefetcher [28], and a global-history-buffer (GHB) based global delta correla-

tion (G/DC) prefetcher [51]. Prior work has shown a GHB prefetcher to outperform

a large number of other prefetchers [55]. I find that the Markov prefetcher alone has

a small impact on performance for most applications and therefore always use it with

a stream prefetcher. This configuration always has higher performance than using

just the Markov prefetcher.

The runahead buffer used in the evaluation can hold up to 32 micro-ops, this

number was determined as best through sensitivity analysis (Section 3.6.2). The de-

pendence chain cache for the runahead buffer consists of two 32 micro-op entries,

sensitivity to this number is also shown in Section 3.6.2. Additional hardware re-

quirements include a 32 byte bit vector to mark the operations in the ROB that are

included in the dependence chain during chain generation, an eight element source

register search list, and 4-bytes per ROB entry to store micro-ops. The total storage

overhead for the runahead buffer system is listed in Table 3.6.

To enter runahead, both traditional runahead and the runahead buffer require

checkpointing the current architectural state. This is modeled by copying the physical

registers pointed to by the register alias table (RAT) to a checkpoint register file. This

process occurs concurrently with dependence chain generation for the runahead buffer

29

100M IPC

calculix povray namd gamess perlbench tonto
2.98 1.85 2.37 2.29 2.67 2.22

gromacs gobmk dealII sjeng gcc hmmer
1.94 1.61 2.34 1.62 1.32 1.57

h264ref bzip2 astar xalancbmk zeusmp cactus
1.56 1.79 0.97 1.42 1.51 1.28
wrf gems leslie omnetpp milc soplex
1.62 1.01 1.35 0.77 1.22 0.83

sphinx bwaves libq lbm mcf
0.89 1.27 0.71 0.73 0.21

2-Phase IPC

calculix povray namd gamess perlbench tonto
2.97 1.82 2.37 2.17 2.68 2.33

gromacs gobmk dealII sjeng gcc hmmer
2.01 1.56 2.32 1.62 1.23 1.50

h264ref bzip2 astar xalancbmk zeusmp cactus
1.76 1.53 0.99 1.40 1.46 1.25
wrf gems leslie omnetpp milc soplex
1.55 1.04 1.35 0.76 1.16 0.74

sphinx bwaves libq lbm mcf
0.88 1.50 0.80 0.73 0.19

100M MPKI

calculix povray namd gamess perlbench tonto
0.02 0.04 0.05 0.06 0.06 0.11

gromacs gobmk dealII sjeng gcc hmmer
0.36 0.39 0.43 0.49 0.80 1.01

h264ref bzip2 astar xalancbmk zeusmp cactus
1.64 1.97 2.59 3.46 5.30 5.40
wrf gems leslie omnetpp milc soplex
5.54 10.42 10.96 12.29 13.81 16.05

sphinx bwaves libq lbm mcf
17.07 18.26 19.85 23.68 28.57

2-Phase
MPKI

calculix povray namd gamess perlbench tonto
0.03 0.04 0.03 0.04 0.05 0.09

gromacs gobmk dealII sjeng gcc hmmer
0.31 0.42 0.40 0.53 0.70 0.94

h264ref bzip2 astar xalancbmk zeusmp cactus
2.06 2.09 2.69 3.89 5.34 5.53
wrf gems leslie omnetpp milc soplex
5.68 10.29 12.02 12.24 13.81 14.21

sphinx bwaves libq lbm mcf
15.92 18.51 21.77 23.69 29.52

Table 3.2: Simulation Comparison

30

Runtime
Power (W)

zeusmp cactus wrf gems leslie omnetpp milc
62.0 60.1 63.2 55.9 63.0 53.3 55.2

soplex sphinx bwaves libq lbm mcf
59.0 54.0 52.2 47.9 50.9 48.4

Table 3.3: Runtime Power Consumption (W)

CACTI Power (mW)
Activate Read Write Static

122.9 31.2 32.5 110.1

Micron Power (mW)
Activate Read Write Static

249.4 77.1 44.6 66.8

Table 3.4: DRAM Power Comparison

or before runahead can begin in the baseline runahead scheme. For dependence chain

generation, a CAM is modeled for the destination register id field where up to two

registers can be matched every cycle.

Runahead buffer dependence chain generation is modeled by the following ad-

ditional energy events. Before entering runahead, a single CAM on PCs of operations

in the ROB is required to locate a matching load for dependence chain generation.

Each source register included in the source register search list requires a CAM on

the destination register ids of operations in the ROB to locate producing operations.

Each load instruction included in the chain requires an additional CAM on the store

queue to search for source data from prior stores. Each operation in the chain re-

quires an additional ROB read when it is sent to the runahead buffer. The energy

events corresponding to entering runahead are: register alias table (RAT) and physi-

cal register reads for each architectural register and a write into a checkpoint register

file.

3.6 Results

Instructions per cycle (IPC) is used as the performance metric for the single

core evaluation. During the performance evaluation I compare the runahead buffer

to performance optimized runahead (without the enhancements discussed in Section

31

Average
DRAM

Bandwidth
(GB/S)

zeusmp cactus wrf gems leslie omnetpp milc
1.6 1.5 1.9 2.9 3.5 2.8 4.3

soplex sphinx bwaves libq lbm mcf
3.8 3.6 4.8 4.9 6.1 3.0

Table 3.5: Average DRAM Bandwidth Consumption (GB/S)

Component Bytes

Runahead Buffer 8 Bytes * 32 Entries = 256 Bytes

ROB Bit-Vector 1 Bit * 256 Entries = 32 Bytes

New ROB Storage 4 Bytes * 256 Entries = 1024 Bytes

Chain Cache 8 Bytes * 64 Entries = 512 Bytes

Source Register Search List 4 Bytes * 8 Entries = 64 Bytes

Total New Storage 1888 Bytes

Table 3.6: Additional Runahead Buffer Hardware Overhead

3.4.6) as these enhancements negatively impact performance. During the energy

evaluation, the runahead buffer is compared to energy optimized runahead which uses

these enhancements. I begin by evaluating the runahead buffer without prefetching

in Section 3.6.1 and then with prefetching in Section 3.6.3.

3.6.1 Performance Results

Figure 3.7 shows the results of our experiments on the SPEC06 benchmark

suite. Considering only the low memory intensity applications in Table 3.1, we ob-

serve an average 0.8% speedup with traditional runahead. These benchmarks are not

memory-limited and the techniques that I am evaluating have little to no-effect on

performance. I therefore concentrate and the medium and high memory intensity

benchmarks for this evaluation.

Figure 3.7 shows the results of evaluating four different systems against a no-

prefetching baseline. The “Runahead” system utilizes traditional out-of-order runa-

head execution. The “Runahead Buffer” system utilizes our proposed mechanism and

does not have the ability to traditionally runahead. The “Runahead Buffer + Chain

Cache” is the Runahead Buffer system but with an added cache that stores up to

32

Core 4-Wide Issue, 192 Entry ROB, 92 Entry Reservation Station, Hybrid
Branch Predictor, 3.2 GHz Clock Rate.

Runahead Buffer 32-entry. Micro-op size: 8 Bytes. 256 Total Bytes.

Runahead Cache 512 Byte, 4-way Set Associative, 8 Byte Cache Lines.

Chain Cache 2-entries, Fully Associative, 512 Total Bytes.

L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Cache Lines, 2 Ports, 3
Cycle Latency, 8-way Set Associative, Write-through.

Last Level Cache 1MB, 8-way Set Associative, 64 Byte Cache Lines, 18-cycle Latency,
Write-back, Inclusive.

Memory
Controller

64 Entry Memory Queue, Priority scheduling. Priority order: row
hit, demand (instruction fetch or data load), oldest.

Prefetcher Stream [70]: 32 Streams, Distance 32. Markov: 1MB Correlation
Table, 4 addresses per entry. GHB G/DC: 1k Entry Buffer, 12KB
total size. All configurations: FDP [67], Dynamic Degree: 1-32,
prefetch into Last Level Cache.

DRAM DDR3[43], 1 Rank of 8 Banks/Channel, 2 Channels, 8KB Row-Size,
CAS 13.75ns. CAS = tRP = tRCD = CL. Other modeled DDR3 con-
straints: BL, CWL, tRC,RAS,RTP,CCD,RRD,FAW,WTR,WR. 800 MHz
Bus, Width: 8 B.

Table 3.7: System Configuration

two, 32-operation dependence chains. The final system uses a “Hybrid” policy that

combines the Runahead Buffer + Chain Cache system with traditional Runahead.

Considering only the medium and high memory intensity benchmarks, runa-

head results in performance improvements of 10.9%, 11.0%, 13.1% and 19.3% with

traditional Runahead, the Runahead Buffer, Runahead Buffer + Chain Cache and

Hybrid policy systems respectively. Traditional runahead performs well on omnetpp

and sphinx, two benchmarks with longer average dependence chain lengths in Figure

3.3. The runahead buffer does particularly well on mcf, an application with short

dependence chains, as well as lbm and soplex, which have longer average dependence

chains but a large number of unnecessary operations executed during traditional

runahead (Figure 3.1).

By not executing these excess operations the runahead buffer is able to gen-

erate more MLP than traditional runahead. Figure 3.8 shows the average number of

33

ca
lc

u
lix

p
o
v
ra

y
n
a
m

d
g
a
m

e
ss

p
e
rl

b
e
n
ch

to
n
to

g
ro

m
a
cs

g
o
b
m

k
d
e
a
lII

sj
e
n
g

g
cc

h
m

m
e
r

h
2
6
4

b
zi

p
2

a
st

a
r

x
a
la

n
c

ze
u
sm

p
ca

ct
u
s

w
rf

g
e
m

s
le

sl
ie

o
m

n
e
t

m
ilc

so
p
le

x
sp

h
in

x
b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n5

0

5

10

15

20

25

30

35
%

 I
P
C

 D
if
fe

re
n
ce

 o

v
e
r

N
o
-P

F
B

a
se

lin
e

Runahead

Runahead Buffer

Runahead Buffer + Chain Cache

Hybrid

Figure 3.7: Runahead Performance Normalized to a No-Prefetching System

cache-misses that are generated by runahead execution and the runahead buffer for

the medium and high memory intensity SPEC06 benchmarks.

The runahead buffer alone generates 32% more cache misses when compared

to traditional runahead execution. Since the chain cache eliminates chain generation

delay on a hit, the runahead buffer + chain cache system is able to generate 57%

more cache misses than traditional runahead. The hybrid policy generates 83% more

cache misses than traditional runahead. Benchmarks where the runahead buffer shows

performance gains over traditional runahead such as cactus, bwaves, lbm and mcf all

show large increases in the number of cache misses produced by the runahead buffer.

In addition to generating more MLP than traditional runahead on average, the

runahead buffer also has the advantage of not using the front-end during runahead.

The percent of total cycles that the front-end is idle and can be clock-gated with the

34

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0

5

10

15

20
LL

C
 M

is
se

s
 p

e
r

R
u
n
a
h
e
a
d
 I
n
te

rv
a
l

Runahead

Runahead Buffer

Runahead Buffer + Chain Cache

Hybrid

Figure 3.8: Average Number of Memory Accesses per Runahead Interval

runahead buffer are shown in Figure 3.9 for the medium and high memory intensity

SPEC06 benchmarks.

On average, 43% of total execution cycles are spent in runahead buffer mode.

By not using the front-end during this time, we reduce dynamic energy consumption

vs. traditional runahead execution on average, as discussed in the energy evaluation

(Section 3.6.4).

Dependence Chain Cache: Looking beyond the simple runahead buffer

policy, Figure 3.7 also shows the result of adding a small dependence chain cache

to the runahead buffer system. This chain cache generally improves performance,

particularly for mcf, soplex, and GemsFDTD. Table 3.8 shows the hit rate for the

medium and high memory intensity applications in the chain cache.

The applications that show the highest performance improvements with a

35

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0%

20%

40%

60%

80%

100%
%

 T
o
ta

l
C

y
cl

e
s

Figure 3.9: Percent of Time the Core is in Runahead Buffer Mode

Chain Cache
Hit Rate

zeusmp cactus wrf gems leslie omnetpp milc
0.79 0.82 0.76 0.97 0.88 0.32 0.41

soplex sphinx bwaves libq lbm mcf Mean
.0.99 0.76 0.44 0.99 0.45 0.97 0.73

Chain Cache
Exact Match

zeusmp cactus wrf gems leslie omnetpp milc
0.76 0.62 0.82 0.59 0.64 0.27 0.48

soplex sphinx bwaves libq lbm mcf Mean
0.56 0.39 0.75 0.38 0.56 0.58 0.56

Table 3.8: Chain Cache Statistics

chain cache show very high hit rates in Figure 3.8, generally above 95%. The chain

cache broadly improves performance over using a runahead buffer alone.

The dependence chains in the chain cache do not necessarily match the exact

dependence chains that would be generated from the reorder buffer. A chain cache

hit is speculation that it is better to runahead with a previously generated chain than

it is to take the time to generate a new chain, this is generally an acceptable trade-off.

In Table 3.8, all chain cache hits are analyzed to determine if the stored dependence

chain matches the dependence chain that would be generated from the ROB.

36

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0%

20%

40%

60%

80%

100%
%

 T
o
ta

l
R

u
n
a
h
e
a
d
 C

y
cl

e
s

Figure 3.10: Cycles Spent in Runahead Buffer Mode during the Hybrid Policy

On average, the chain cache is reasonably accurate, with 60% of all depen-

dence chains matching exactly. The two applications with longer dependence chains,

omnetpp and sphinx, show significantly less accurate chain cache hits than the other

benchmarks.

Hybrid Policy: Lastly, the hybrid policy results in an average performance

gain of 19.3% over the baseline. Figure 3.10 displays the fraction of time spent using

the runahead buffer during the hybrid policy.

As Figure 3.10 shows, the hybrid policy favors the runahead buffer, spending

85% of the time on average in runahead buffer mode. The remainder is spent in

traditional runahead. Applications that do not do well with the runahead buffer spend

either the majority of the time (omnetpp), or a large fraction of the time (sphinx),

in traditional runahead. We conclude that the hybrid policy improves performance

over the other schemes by using traditional runahead when it is best to do so (as in

omnetpp) and leveraging the runahead buffer otherwise (as in mcf).

37

Runahead Buffer Size (Operations)
2 4 8 16 32 64

∆ Perf ∆ Perf ∆ Perf ∆ Perf ∆ Perf ∆ Perf
1.11% 2.5% 4.9% 5.5% 11.0% 8.6%

Chain Cache Entries
2 4 8 16 32 64

∆ Perf ∆ Perf ∆ Perf ∆ Perf ∆ Perf ∆ Perf
13.1% 11.6% 11.4% 11.1% 10.8% 10.8%

Table 3.9: Performance Sensitivity to Runahead Buffer Parameters

3.6.2 Sensitivity to Runahead Buffer Parameters

In Section 3.5 the two main parameters of the runahead buffer were stated

to have been chosen via sensitivity analysis. Table 3.9 shows sensitivity to these

parameters: runahead buffer size and the number of chain cache entries. The sizes

used in the evaluation (32-Entries/2-Entries) are bolded. The runahead buffer size

experiments are conducted without a chain cache and the chain cache experiments

are conducted assuming a 32-entry runahead buffer.

Overall, the runahead buffer performance gains suffer significantly as runahead

buffer size is reduced, as the runahead buffer is not able to hold full dependence chains.

Increasing the size of the runahead buffer increases dependence chain generation time,

thereby decreasing performance. The chain cache shows the highest performance

when the size is small, as recent history is important for high dependence chain

accuracy, but shows little sensitivity to increasing storage capacity. This is explored

further in Section 5.2.1.

3.6.3 Performance with Prefetching

Figures 3.11/3.12/3.13 shows the effect of adding a Stream/GHB/Markov+Stream

prefetcher to the system respectively.

The GHB prefetcher results in the largest performance gain across these three

prefetchers. Combining the GHB prefetcher with runahead results in the highest

performing system on average with a 45% performance gain over the no-prefetching

baseline. Applications that do not significantly improve in performance with GHB

38

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n0

20

40

60

80

100

120
%

 I
P
C

 D
if
fe

re
n
ce

 o

v
e
r

N
o
-P

F
B

a
se

lin
e

Stream

Runahead + Stream

Runahead Buffer + Stream

Runahead Buffer + Chain Cache +
 Stream

Hybrid + Stream

Figure 3.11: System Performance with Stream Prefetching

prefetching such as zeusmp, omnetpp, milc, and mcf all result in performance im-

provements when combined with runahead execution. Similar cases occur in Figures

3.11/3.13 where applications like cactus or lbm do not improve in performance with

prefetching but result in large performance gains when runahead is added to the sys-

tem. Overall, traditional runahead and the runahead buffer both result in similar

performance gains when prefetching is added to the system while the hybrid policy

is the highest performing policy on average.

However, in addition to performance, the effect of prefetching on memory

bandwidth is an important design consideration as prefetching requests are not always

accurate. Figure 3.14 quantifies the memory system overhead for prefetching and

runahead.

On average, the memory bandwidth requirements of runahead execution are

small, especially when compared to the other prefetchers. Traditional runahead has a

very small impact on memory traffic, increasing the total number of DRAM requests

39

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n0

20

40

60

80

100

120
%

 I
P
C

 D
if
fe

re
n
ce

 o

v
e
r

N
o
-P

F
B

a
se

lin
e

GHB

Runahead + GHB

Runahead Buffer + GHB

Runahead Buffer + Chain Cache +
 GHB

Hybrid + GHB

Figure 3.12: System Performance with GHB Prefetching

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
t

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n0

20

40

60

80

100

120

%
 I
P
C

 D
if
fe

re
n
ce

 o

v
e
r

N
o
-P

F
B

a
se

lin
e

Stream+Markov

Runahead + Stream+Markov

Runahead Buffer +
 Stream+Markov

Runahead Buffer + Chain Cache +
 Stream+Markov

Hybrid + Stream+Markov

Figure 3.13: System Performance with Stream+Markov Prefetching

40

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
liz

e
d
 B

a
n
d
w

id
th

Runahead

Runahead Buffer

Runahead Buffer + Chain Cache

Stream

GHB

Markov+Stream

Figure 3.14: Normalized Bandwidth Consumption

by 4%. This highlights the accuracy benefit of using fragments of the application’s

own code to prefetch. Using the runahead buffer alone increases memory traffic

by 6% and the chain cache increases bandwidth overhead to 7%. The runahead

buffer consumes the most additional bandwidth on omnetpp. Even with prefetcher

throttling, the prefetchers all result in a larger bandwidth overhead than the runahead

schemes. The Markov+Stream prefetcher has the largest overhead, at 38%, while the

GHB prefetcher is the most accurate with a 12% bandwidth overhead. I conclude that

while prefetching can significant increase performance, it also significantly increases

memory traffic.

3.6.4 Energy Evaluation

The normalized results for the system without prefetching are shown in Figure

3.15. Normalized energy consumption with prefetching is shown in Figures 3.16-3.18.

41

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
liz

e
d
 E

n
e
rg

y

Runahead

Runahead Enhancements

Runahead Buffer

Runahead Buffer + Chain Cache

Hybrid

Figure 3.15: Normalized Energy Consumption

Runahead alone drastically increases energy consumption due to very high

dynamic instruction counts, as the front-end fetches and decodes instructions during

periods where it would be otherwise idle. This observation has been made before [47],

and several mechanisms have been proposed to reduce the dynamic instruction count

(Section 3.4.6). From this work, I implement the two hardware-based mechanisms

that reduce the dynamic instruction count the most in “Runahead Enhancements”.

These mechanisms seek to eliminate short and overlapping runahead intervals.

With these enhancements, traditional runahead results in drastically lower en-

ergy consumption with a 2.1% average degradation of runahead performance vs. the

baseline (2.6% with prefetching). Traditional runahead increases system energy con-

sumption by 40% and the system with the runahead enhancements increases energy

consumption by 9% on average.

The runahead buffer reduces dynamic energy consumption by leaving the front-

end idle during runahead periods. This allows the runahead buffer system to decrease

42

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0.0

0.5

1.0

1.5

2.0

2.5
N

o
rm

a
liz

e
d
 E

n
e
rg

y

Stream

Runahead + Stream

Runahead Enhancements + Stream

Runahead Buffer + Stream

Runahead Buffer + Chain Cache +
 Stream

Hybrid + Stream

Figure 3.16: Normalized Energy Consumption with Stream Prefetching

average energy consumption by 4.5% without a chain cache and 7.5% with a chain

cache. The hybrid policy decreases energy consumption by 2.3% on average. The

runahead buffer decreases energy consumption more than the hybrid policy because

the hybrid policy spends time in the more inefficient traditional runahead mode to

maximize performance.

When prefetching is added to the system, similar trends hold. Traditional

runahead execution increases energy consumption over the prefetching baseline in

all three cases. Runahead enhancements cause 6%/8%/6% over the Stream/GHB/

Markov+Stream prefetching baseline. The Runahead Buffer and Runahead Buffer

+ Chain Cache schemes both reduce energy consumption. The Runahead Buffer +

Chain Cache + GHB prefetcher system is the most energy efficient, resulting in a

24% energy reduction over the no-prefetching baseline. I conclude that this system

is both the most energy efficient and highest performing system in this evaluation.

43

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0.0

0.5

1.0

1.5

2.0
N

o
rm

a
liz

e
d
 E

n
e
rg

y

GHB

Runahead + GHB

Runahead Enhancements + GHB

Runahead Buffer + GHB

Runahead Buffer + Chain Cache + GHB

Hybrid + GHB

Figure 3.17: Normalized Energy Consumption with GHB Prefetching

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Markov+Stream

Runahead + Markov+Stream

Runahead Enhancements + Markov+Stream

Runahead Buffer + Markov+Stream

Runahead Buffer + Chain Cache +
 Markov+Stream

Hybrid + Markov+Stream

Figure 3.18: Normalized Energy Consumption with Markov+Stream Prefetching

44

3.6.5 Sensitivity to System Parameters

Table 3.10 shows performance and energy sensitivity of the runahead buffer to

three system parameters: LLC capacity, the number of memory banks per channel,

and ROB size. Performance and energy are shown as average numbers relative to

a baseline system with no-prefetching of that identical configuration. For example,

the 2MB LLC data point shows that the runahead buffer results in a performance

gain of 12.1% and an energy reduction of 4.9% over a system with a 2MB LLC and

no-prefetching.

The runahead buffer shows some sensitivity to LLC size. As LLC size de-

creases, the performance and energy gains also decrease as the system has less LLC

capacity to devote to prefetching effects. As LLC sizes increase, particularly at the

4MB data point, runahead buffer gains once again decrease as the application work-

ing set begins to fit in the LLC. Table 3.10 also shows that increasing the number of

memory banks per channel to very large numbers and increasing ROB size generally

have negative effects on runahead buffer performance and energy consumption.

LLC Cache Size
512 KB 1 MB 2 MB 4 MB

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
8.2% -3.2% 11.0% -4.5% 12.1% -4.9% 9.1% -4.6%

Number of Memory Banks
8 16 32 64

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
11.0% -4.5% 7.4% -2.9% 6.6% -2.5% 4.7% -2.2%

ROB Size
192 256 384 512

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
14.4% -4.4% 11.0% -4.5% 10.5% -4.1% 6.5% -2.1%

Table 3.10: Runahead Buffer Performance and Energy Sensitivity

3.7 Conclusion

In this chapter, I presented an approach to increase the effectiveness of runa-

head execution for out-of-order processors. I identify that many of the operations that

45

are executed in traditional runahead execution are unnecessary to generate cache-

misses. Using this insight, I enable the core to dynamically generate filtered depen-

dence chains that only contain the operations that are required for a cache-miss.

These chains are generally short. The operations in a dependence chain are read into

a buffer and speculatively executed as if they were in a loop when the core would be

otherwise idle. This allows the front-end to be idle for 44% of the total execution

cycles of the medium and high memory intensity SPEC06 benchmarks on average.

The runahead buffer generates 57% more MLP on average as traditional runa-

head execution. This leads to a 13.1% performance increase and 7.5% decrease in en-

ergy consumption over a system with no-prefetching. Traditional runahead execution

results in a 10.9% performance increase and 9% energy increase, assuming additional

optimizations. Overall, the runahead buffer is a small, easy to implement structure

(requiring 1.9 kB of additional total storage) that increases performance for mem-

ory latency-bound, single-threaded applications. Chapters 5 and 6 further develop

the mechanisms from the runahead buffer to accelerate independent cache misses in

a multi-core system. However, in the next chapter I shift focus from independent

cache misses to reducing effective memory access latency for critical dependent cache

misses.

46

Chapter 4

The Enhanced Memory Controller

4.1 Introduction

The impact of effective memory access latency on processor performance is

magnified when a last level cache (LLC) miss has dependent operations that also result

in an LLC miss. These dependent cache misses form chains of long-latency operations

that fill the reorder buffer (ROB) and prevent the core from making forward progress.

This is highlighted by the SPEC06 benchmark mcf which has the lowest IPC in Figure

1.1 and the largest fraction of dependent cache misses in Figure 1.3. The result of

changing all of these dependent cache misses into LLC hits is a performance gain

of 95%. This chapter shows that dependent cache misses are difficult to prefetch as

they generally have data-dependent addresses (Section 4.2). I then propose a new

hardware mechanism to minimize effective memory access latency for all dependent

cache-misses (Section 4.3) 1.

4.2 Background

While single-core systems have a significant latency disparity between perform-

ing computation at the core and accessing data from off-chip DRAM, the effective

memory access latency problem (Section 1.1) worsens in a multi-core system. This

is because multi-core systems have high levels of on-chip delay that result from the

different cores contending for on-chip shared resources. To demonstrate this, Figure

1An earlier version of this chapter was published as: Milad Hashemi, Khubaib, Eiman Ebrahimi,
Onur Mutlu, and Yale Patt. Accelerating Dependent Cache Misses with an Enhanced Memory
Controller. In ISCA, 2016. I developed the initial idea in collaboration with Professor Onur Mutlu
and conducted the performance simulator design and evaluation for this work.

47

4
x
ca

lc
u
lix

4
x
p
o
v
ra

y
4

x
n
a
m

d
4

x
g
a
m

e
ss

4
x
p
e
rl

b
e
n
ch

4
x
to

n
to

4
x
g
ro

m
a
cs

4
x
g
o
b
m

k
4

x
d
e
a
lII

4
x
sj

e
n
g

4
x
g
cc

4
x
h
m

m
e
r

4
x
h
2

6
4

4
x
b
zi

p
2

4
x
a
st

a
r

4
x
x
a
la

n
c

4
x
ze

u
sm

p
4

x
ca

ct
u
s

4
x
w

rf
4

x
G

e
m

s
4

x
le

sl
ie

4
x
o
m

n
e
tp

p
4

x
m

ilc
4

x
so

p
le

x
4

x
sp

h
in

x
4

x
b
w

a
v
e
s

4
x
lib

q
4

x
lb

m
4

x
m

cf

0%

20%

40%

60%

80%

100%
T
o
ta

l
M

is
s

C
y
cl

e
s

DRAM Access On-Chip Delay

Figure 4.1: Breakdown of the Cycles to Satisfy a Memory Request

4.1 shows the effect of on-chip latency on DRAM accesses for SPEC06. A quad-core

processor is simulated where each of the cores is identical to the single core described

in Section 3.5. The delay incurred by a DRAM access is separated into two categories:

the average cycles that the request takes to access DRAM and return data to the chip

and all other on-chip delays that the access incurs after missing in the LLC.

In Figure 4.1, benchmarks are sorted in ascending memory intensity. For

the memory intensive applications to the right of gems, defined as having an MPKI

(misses per thousand instructions) of over 10, the actual DRAM access is less than

half the total latency of the memory request. Roughly half the cycles spent satisfying

a memory access are attributed to on-chip delays. This extra on-chip latency is due

to shared resource contention among the multiple cores on the chip. This contention

happens in the shared on-chip interconnect, cache, and DRAM buses, row-buffers,

and banks. Others [36, 48, 49] have pointed out the large effect of on-chip contention

on performance, and Awasthi et al. [8] have noted that this effect will increase as the

number of cores on the chip grows.

48

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0%

20%

40%

60%

80%

100%

Stream PF GHB PF Markov PF

Figure 4.2: Percent of Dependent Cache Misses Prefetched with a GHB, Stream, and
Markov prefetcher

Several techniques have attempted to reduce the effect of dependent cache

misses on performance. The most common is prefetching. Figure 4.2 shows the

percent of all dependent cache misses that are prefetched by three different on-chip

prefetchers: a stream prefetcher, a Markov prefetcher [28], and a global history buffer

(GHB) [51] for the memory intensive SPEC06 benchmarks. The average percentage

of all dependent cache misses that are prefetched is small, under 25% on average.

Prefetchers have difficulty with dependent cache misses because their addresses

are reliant on the source data that originally resulted in a cache miss. This leads

to data dependent patterns that are hard to capture. Moreover, inaccurate and

untimely prefetch requests lead to a large increase in bandwidth consumption, a

significant drawback in a bandwidth constrained multi-core system. The stream,

GHB, and Markov prefetchers increase bandwidth consumption by 22%, 12%, and

39% respectively, even with prefetcher throttling enabled [67].

Note that pre-execution techniques such as traditional Runahead Execution

[20, 50], the Runahead Buffer, and Continual Flow Pipelines [68] target prefetching

49

independent cache misses. Unlike dependent cache misses, independent misses only

require source data that is available on chip. These operations can be issued and

executed by an out-of-order processor as long as the ROB is not full. Runahead

and CFP discard slices of operations that are dependent on a miss (including any

dependent cache misses) in order to generate memory level parallelism with new

independent cache misses.

Since dependent cache misses are difficult to prefetch and are delayed by on-

chip contention, I propose a different mechanism to accelerate these dependent ac-

cesses. I observe that the number of operations between a cache miss and its depen-

dent cache miss is usually small (Section 4.3). If this is the case, I propose migrating

these dependent operations to the memory controller where they can be executed im-

mediately after the original cache miss data arrives from DRAM. This new enhanced

memory controller (EMC) generates cache misses faster than the core since it is able

to bypass on-chip contention, thereby reducing the on-chip delay observed by the

critical dependent cache miss.

4.3 Mechanism

Figure 4.3 presents one example of the dependent cache miss problem. A

dynamic sequence of micro-operations (uops) has been adapted from mcf. The uops

are shown on the left and the data dependencies, omitting control uops, are illustrated

on the right. A, B, C represent cache line addresses. Core physical registers are

denoted by a ‘P’. Assume a scenario where Operation 0 is an outstanding cache miss.

I call this uop a source miss and denote it with a dashed box. Operations 3 and 5

will result in cache misses when issued, shaded gray. However, their issue is blocked

as Operation 1 has a data dependence on the result of the source miss, Operation

0. Operations 3 and 5 are delayed from execution until the data from Operation 0

returns to the chip and flows back to the core through the interconnect and cache

hierarchy. Yet, there are a small number of relatively simple uops between Operation

0 and Operations 3/5.

50

Op: 0 MEM_LD([P8] -> P1) //Addr: A

Op: 1 MOV(P1 -> P9)

Op: 2 ADD(P9, 0x18 -> P12)

Op: 3 MEM_LD([P12] -> P10) //Addr: B

Op: 4 ADD (P10, 0x4 -> P16)

Op: 5 MEM_LD([P16] -> P19) //Addr: C

1: P1 -> P9

2: P9 + 0x18 ->

 P12

3: [P12]-> P10

Figure 4.3: Dynamic Sequence of Micro-ops Based on mcf

I propose that these operations that are dependent on a cache miss can be

executed as soon as the source data enters the chip, at the memory controller. This

avoids on-chip interference and reduces the overall latency to issue the dependent

memory requests.

Figure 4.3 shows one dynamic instance where there are a small number of

simple integer operations between the source and dependent miss. I find that this

trend holds over the memory intensive applications of SPEC06. Figure 4.4 shows

the average number of operations in the dependence chain between a source and

dependent miss, if a dependent miss exists. A small number of operations between a

source and dependent miss means that the enhanced memory controller (EMC) does

not have to do very much work to uncover a cache miss and that it requires a small

amount of input data to do so.

I therefore tailor the memory controller to execute dependent chains of opera-

tions such as those listed in Figure 4.3. The added compute capability is described in

detail in Section 4.3.1. Since the instructions have already been fetched and decoded

at the core and are sitting in the reorder buffer, the core can automatically determine

the uops to include in the dependence chain of a cache miss by leveraging the existing

out-of-order execution hardware (Section 4.3.2). The chain of decoded uops is then

51

ca
lc

u
lix

p
o
v
ra

y
n
a
m

d
g
a
m

e
ss

p
e
rl

b
e
n
ch

to
n
to

g
ro

m
a
cs

g
o
b
m

k
d
e
a
lII

sj
e
n
g

g
cc

h
m

m
e
r

h
2
6
4

b
zi

p
2

a
st

a
r

x
a
la

n
c

ze
u
sm

p
ca

ct
u
s

w
rf

G
e
m

sF
D

T
D

le
sl

ie
o
m

n
e
tp

p
m

ilc
so

p
le

x
sp

h
in

x
b
w

a
v
e
s

lib
q

lb
m

m
cf

0

2

4

6

8

10

12

14

16

N
u
m

b
e
r

o
f

O
p
e
ra

ti
o
n
s

 f
ro

m
 S

o
u
rc

e
 M

is
s

 t
o
 D

e
p
e
n
d
e
n
t

M
is

s

Figure 4.4: Average Number of Dependent Operations between a Source Miss and a
Dependent Miss

On Core On Enhanced Memory Controller

 (EMC)
Op 0: MEM_LD (0xc[R3] -> R1)

Op 1: ADD (R2+1 -> R2)

Op 2: MOV (R3 -> R5)

Op 6: MEM_ST (R1 -> [R3])

Op 3: MEM_LD ([R1] -> R1)

Op 4: SUB (R1 - [R4] -> R1]

Op 5: MEM_LD ([R1] -> R3)

Figure 4.5: Partitioning the Instruction Stream between the EMC and the Core

52

sent to the EMC. I refer to the core that generated the dependence chain as the home

core.

With this mechanism, a slice of the operations in the ROB are executed at

the home core, while others are executed remotely at the EMC. Figure 4.5 provides

a high level view of partitioning a sequence of seven instructions from mcf between

the EMC and the core.

In Figure 4.5, instruction 0 is the first cache miss. Instructions 1 and 2 are

independent of instruction 0 and therefore execute on the core while instruction 0 is

waiting for memory data. Instructions 3, 4, and 5 are dependent on instruction 0.

The core recognizes that instructions 3 and 5 will likely miss in the LLC, i.e., they

are dependent cache misses, and so will transmit instructions 3, 4, and 5 to execute

at the EMC. When EMC execution completes, R1 and R3 are returned to the core so

that execution can continue. To maintain the sequential execution model, operations

sent to the EMC are not retired at the EMC, only executed. Retirement state is

maintained at the ROB of the home core and physical register data is transmitted

back to the core for in-order retirement.

Once the cache line arrives from DRAM for the original source miss, the chain

of dependent uops are executed by the EMC. The details of execution at the EMC

are discussed in Section 4.3.3.

4.3.1 EMC Compute Microarchitecture

A quad-core multiprocessor that uses the proposed enhanced memory con-

troller is shown in Figure 4.6. The four cores are connected with a bi-directional

ring. The memory controller is located at a single ring-stop, along with both memory

channels, similar to Intel’s Haswell microarchitecture [3]. The EMC adds two pieces

of hardware to the processor: limited compute capability at the memory controller

(described first in Section 4.3.1) and a dependence chain-generation unit at each of

the cores (Section 4.3.2).

53

Enhanced
Memory

Controller
(EMC)

Core 0 Core 1

Core 2 Core 3

LLC

LLC

LLC

LLC

 DRAM
Channel 0

 DRAM
Channel 1

Figure 4.6: High Level View of a Quad-Core processor with an Enhanced Memory
Controller

Physical
Register

File Live In Vector

Issue Buffer

Reservation
Station

ALU 0

ALU 1 Data
Cache

Load Store
Queue

Result Data

Tag Broadcast

Decoded
micro-ops
from core

Live-out
registers
to core

Live-in
registers
from core

Dirty
cache

lines to
core

Figure 4.7: Microarchitecture of the EMC

54

The EMC is designed to have the minimum functionality required to execute

the pointer-arithmetic that generates dependent cache misses. Instead of a front-end,

the EMC utilizes small uop buffers (Section 4.3.1.1). For the back-end, the EMC

uses 2 ALUs and provide a minimal set of caching and virtual address translation

capabilities (Section 4.3.1.2). Figure 4.7 provides a high level view of the compute

microarchitecture that we add to the memory controller.

4.3.1.1 Front-End

The front-end of the EMC consists of two small uop buffers that can each

hold a single dependence chain of up to 16 uops. With multiple buffers, the EMC

can be shared between the cores of a multi-core processor. The front-end of the

EMC consists only of this buffer, it does not contain any fetch, decode, or register

rename hardware. Chains of dependent operations are renamed for the EMC using

the out-of-order capabilities of the core (Section 4.3.2).

4.3.1.2 Back-End

As the EMC is targeting the pointer-arithmetic that generates dependent cache

misses, it is limited to executing a subset of the total uops that the core is able to

execute. Only integer operations are allowed (Table 4.1). Floating point and vector

operations are not allowed. This simplifies the microarchitecture of the EMC, and

enables the EMC to potentially execute fewer operations to get to the dependent cache

miss. The core is creating a filtered chain of operations for the EMC to execute, only

the operations that are required to generate the address for the dependent cache miss

are included in the uop chain.

These filtered dependence chains are issued from the uop buffers to the 2-wide

EMC back-end. For maximum performance it is important to exploit the memory

level parallelism present in the dependence chains. Therefore, the EMC has the

capability to issue non-blocking memory accesses. This requires a small load/store

queue along with out-of-order issue and wakeup using a small reservation station and

55

common data bus (CDB). In Figure 4.7 the CDB is denoted by the result and tag

broadcast buses. Stores are only executed at the EMC if they are a register spill that

is filled later in the dependence chain. Sensitivity to these EMC parameters is shown

in Section 4.5.3.

Each of the issue buffers in the front-end is allocated a private physical register

file (PRF) that is 16 registers large and a private live-in source vector. As the out-of-

order core has a much larger physical register file than the EMC (256 vs. 16 registers),

operations are renamed by the core (Section 4.3.2) to be able to execute using the

EMC physical register file.

4.3.1.3 Caches

The EMC contains no instruction cache, but it does contain a small data cache

that holds the most recent lines that have been transmitted from DRAM to the chip

to exploit temporal locality. This requires minimal modifications to the existing cache

coherence scheme, as we are simply adding an additional logical first level cache to

the system. We add an extra bit to each directory entry for every line at the inclusive

LLC to track the cache lines that the EMC holds.

4.3.1.4 Virtual Address Translation

Virtual memory translation at the EMC occurs through a small 32 entry TLB

for each core. The TLBs act as a circular buffer and cache the page table entries

(PTE) of the last pages accessed by the EMC for each core. The PTEs of the home

core add a bit to each TLB entry to track if a page translation is resident in the TLB

at the EMC. This bit is used to invalidate TLB entries resident at the EMC during

the TLB shootdown process [72]. Before a chain is executed, the core sends the EMC

the PTE for the source miss if it is determined not to be resident at the EMC TLB.

The EMC does not handle page-faults, if the PTE is not available at the EMC, the

EMC halts execution and signals the core to re-execute the entire chain.

56

MEM_LD C8->E0

MOV E0->E1

Cycle 0 Cycle 1

CPR

MEM_LD C8 -> C1

MOV C1 -> C9

MEM_LD C16 -> C19

MEM_LD C12 -> C10

ADD C9, 0x18 -> C12

Figure 4.8: EMC Dependence Chain Generation Example

4.3.2 Generating Chains of Dependent Micro-Operations

The EMC leverages the out-of-order execution capability of the core to gen-

erate the short chains of operations that the EMC executes. This allows the EMC

to have no fetch, decode, or rename hardware, as shown in Figure 4.7, significantly

reducing its area and energy consumption.

The core can generate dependence chains to execute at the EMC once there

is a full-window stall due to a LLC miss blocking retirement. If this is the case, a

3-bit saturating counter is used to determine if a dependent cache miss is likely. This

counter is incremented if any LLC miss has a dependent cache miss and decremented

if any LLC miss has no dependent cache misses. Dependent cache misses are tracked

by poisoning the destination register of a cache miss. Poison values are propagated for

16 operations. When an LLC miss retires with poisoned source registers the counter is

incremented, otherwise it is decremented. If either of the top 2-bits of the saturating

counter are set, the core begins the following process of generating a dependence chain

for the EMC to accelerate.

The dynamic micro-op sequence from Figure 4.3 is used to demonstrate the

chain generation process, illustrated by Figure 4.8. This process takes a variable

number of cycles based on dynamic chain length (5 cycles for Figure 4.8). As the

uops are included in the chain, they are stored in a buffer maintained at the core

57

until the entire chain has been assembled. At this point the chain is transmitted to

the EMC.

For each cycle three structures are shown in Figure 4.8. The reorder buffer

of the home core (ROB), the register remapping table (RRT), and a live-in source

vector. The RRT is functionally similar to a register alias table and maps core physical

registers to EMC physical registers. The operations in the chain have to be remapped

to a smaller set of physical registers so that the memory controller can execute them.

The live-in source vector is a shift register that holds the input data necessary to

execute the chain of operations. Only the relevant portion of the ROB is shown.

Irrelevant operations are denoted by stripes. Processed operations are shaded after

every cycle.

In Figure 4.8 the cycle 0 frame shows the source miss at the top of the ROB.

It has been allocated core physical register number 1 (C1) to use as a destination

register. This register is remapped to an EMC register using the RRT. EMC physical

registers are assigned using a counter that starts at 0 and saturates at the maximum

number of physical registers that the EMC contains (16). In the example, C1 is

renamed to use the first physical register of the EMC (E0) in the RRT.

Once the source miss has been remapped to EMC physical registers, chains

of decoded uops are created using a forward dataflow walk that tracks dependencies

through renamed physical registers. The goal is to mark uops that would be ready

to execute when the load has completed. Therefore, the load that has caused the

cache miss is pseudo “woken up” by broadcasting the tag of the destination physical

register onto the common data bus (CDB) of the home core. A uop wakes up when the

physical register tag of one of its source operands matches the tag that is broadcast

on the CDB, and all other source operands are ready. By pseudo waking up the uop

it does not execute or commit the uop, it simply broadcasts its destination tag on

the CDB. A variable number of uops are broadcast every cycle, up to the back-end

width of the home core.

58

In the example, there is only a single ready uop to broadcast in Cycle 0. The

destination register of the source load (C1) is broadcast on the CDB. This wakes up

the second operation in the chain, which is a MOV instruction that uses C1 as a

source register. It reads the remapped register id from the RRT for C1, and uses E0

as its source register at the EMC. The destination register (C9) is renamed to E1.

Operations continue to “wake-up” dependent operations until either the max-

imum number of operations in a chain is reached or there are no more operations to

awaken. Thus, in the next cycle, the core broadcasts C9 on the CDB. The result of

this operation is shown in Cycle 1, an ADD operation is woken up. This operation

has two sources, C9 and an immediate value, 0x18. The immediate is shifted into

a live-in source vector which will be sent to the EMC along with the chain. The

destination register C12 is renamed to E2 and written into the RRT.

In the example, the entire process takes five cycles to complete. In cycle 4,

once the final load is added to the chain, a filtered portion of the execution window has

been assembled for the EMC to execute. These uops are read out of the instruction

window and sent to the EMC for execution along with the live-in vector. Algorithm

2 describes our mechanism for dynamically generating a filtered chain of dependent

uops.

The proposals in this thesis require data from the back-end of an out-of-order

processor to be used in unconventional ways and therefore require hardware paths

into/out-of back-end structures that do not currently exist. This thesis does not

explore the ramifications of these micro-architectural changes on physical layout. For

example, while the instruction window may be used to provide the uops for EMC

dependence chain generation, it may be simpler to augment to ROB to store all uops

until retirement and instead obtain the uops from the ROB. Generally, the proposals

in this thesis require new paths into/out-of the ROB (for uops and branch conditions),

the PRF (for live-in/live-out data), the LSQ (for EMC memory data) and the TLB

(for page translations).

59

Algorithm 2 EMC Dependence Chain Generation

Process the source uop at ROB full stall
Allocate EPR for destination CPR of source uop in RRT.
Broadcast destination CPR tag on CDB.
for each dependent uop do

if uop Allowed and (source CPR ready or source CPR in RRT) then
Prepare the dependent uop to be sent to the EMC
for each source operand do

if CPR ready then
Read data from physical register file into live-in vector.

else
EPR = RRT[CPR]

end if
end for
Allocate EPR for destination CPR of dependent uop in RRT.
Broadcast destination CPR tag of dependent uop on CDB.

end if
if Total uops in Chain == MAXLENGTH then

break
end if

end for
Send filtered chain of uops and live-in vector to the EMC

4.3.3 EMC Execution

To start execution, the enhanced memory controller (EMC) takes two inputs:

the source vector of live-in registers and the executable chain of operations. The EMC

does not commit any architectural state, it executes the chain of uops speculatively

and sends the destination physical registers back to the core. Two special cases arise

with respect to control operations and memory operations. First, I discuss control

operations.

The EMC does not fetch instructions and is sent the branch predicted stream

that has been fetched in the ROB. We send branch directions along with computation

to the EMC so that the EMC does not generate wrong path memory requests if it is on

the wrong path. The EMC evaluates each condition and determines if the chain that

it was sent to execute contains the correct path of execution. If the EMC realizes it is

60

on the wrong-path, execution is stopped and the core is notified of the mis-predicted

branch.

For memory operations, a load first queries the EMC data cache, if it misses

in the data cache it generates an LLC request. The EMC has the ability to predict

if any given load is going to result in a cache miss. This enables the EMC to directly

issue the request to memory if it is predicted to miss in the cache, thus saving the

latency to access the on-chip cache hierarchy. To enable this capability we keep an

array of 3-bit counters for each core, similar to [57, 77]. The PC of the miss causing

instruction is used to hash into the array. On a miss the corresponding counter is

incremented, a hit decrements the counter. If the counter is above a threshold the

request is sent directly to memory.

Stores are only included in the dependence chain by the home core if the

store is a register spill. This is determined by searching the home core LSQ for a

corresponding load with the same address (fill) during dependence chain generation.

A store executed at the EMC writes its value into the EMC LSQ.

Loads and stores are retired in program order back at the home core. Every

load or store executed at the EMC sends a message on the address ring back to the

core. The core snoops this request and populates the relevant entry in the LSQ. This

serves two purposes. First, if a memory disambiguation problem arises, for example if

there is a store to the same address as a load executed at the EMC in program order

at the core, execution of the chain can be canceled. Second, for consistency reasons,

stores executed at the EMC are not made globally observable until the store has been

drained from the home core store-queue in program order. In our evaluation, we only

allow the EMC to execute a dependence chain while the core is already stalled. This

prevents these disambiguation scenarios from occurring when the EMC is executing

a dependence chain. While this simplifies the execution model, it is not required for

the EMC to correctly function.

Executing chains of instructions remotely requires these modifications to the

core. However, transactional memory implementations that are built into current

61

hardware [26] provide many similar guarantees for memory ordering. Remote execu-

tion at the EMC is simpler than a transaction, as there is no chance for a conflict or

rollback due to simultaneous execution. As the chains that are executed at the EMC

are very short, the overhead of sending messages back to the core for all loads/stores

is smaller than a transaction signature [12].

Once each dependence chain has completed execution, the live-outs, including

the store data from the LSQ, are sent back to the core. Physical register tags are

broadcast on the CDB, and execution on the main core continues. As the home

core maintains all instruction state for in-order retirement, any bad-event (branch

misprediction, EMC TLB-miss, EMC exception) causes the home core to re-issue

and execute the entire chain normally.

4.4 Methodology

The multi-core chip used to evaluate the EMC consists of four cores that are

each identical to those used in the single core evaluation of Chapter 3. The details

of the system configuration are listed in Table 4.1. The cache hierarchy of each core

contains a 32KB instruction cache and a 32KB data cache. The LLC is divided into

1MB cache slices per core. The interconnect is composed of two bi-directional rings,

a control ring and a data ring. Each core has a ring-stop that is shared with the LLC

slice. Each core can can access the LLC slice at its own ring stop without getting

onto the ring (using a bypass) to not overstate ring contention.

The baseline memory controller uses a sophisticated multi-core scheduling al-

gorithm, batch scheduling [49], and Feedback Directed Prefetching (FDP) [67] to

throttle prefetchers. The parameters for the EMC listed in Table 4.1 (TLB size,

cache size, number/size of contexts) have been chosen via sensitivity analysis. This

analysis is shown in Section 4.5.3.

I use the SPEC06 application classification from Table 3.1 to randomly gen-

erate two sets of ten quad-core workloads (Table 4.2). Each benchmark only appears

once in every workload combination. As the EMC is primarily intended to accelerate

62

Core 4-Wide Issue, 256 Entry ROB, 92 Entry Reservation Station, Hybrid
Branch Predictor, 3.2 GHz Clock Rate

L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports, 3 Cycle
Latency, 8-way, Write-Through.

L2 Cache 1MB 8-way, 18-cycle latency, Write-Back.

EMC
Compute

2-wide issue. 8 Entry Reservation Stations. 4KB Cache 4-way, 2-
cycle access, 1-port. 1 Runahead dependence chain context with 32
entry uop buffer, 32 entry physical register file. 1 Dependent cache
miss context with 16 entry uop buffer, 16 entry physical register file.
Micro-op size: 8 bytes in addition to any live-in source data.

EMC
Instructions

Integer: add/subtract/move/load/store.
Logical: and/or/xor/not/shift/sign-extend.

Memory
Controller

Batch Scheduling [49]. 128 Entry Memory Queue.

Prefetchers Stream: 32 Streams, Distance 32. Markov: 1MB Correlation Table,
4 addresses per entry. GHB G/DC: 1k Entry Buffer, 12KB total size.
All configurations: FDP [67], Dynamic Degree: 1-32, prefetch into
Last Level Cache.

DRAM DDR3[43], 1 Rank of 8 Banks/Channel, 2 Channels, 8KB Row-Size,
CAS 13.75ns. CAS = tRP = tRCD = CL. Other modeled DDR3 con-
straints: BL, CWL, tRC,RAS,RTP,CCD,RRD,FAW,WTR,WR. 800 MHz
Bus, Width: 8 B.

Table 4.1: Multi-core System Configuration

memory intensive applications, the focus is on high memory intensity workloads in

this evaluation. The first set of workloads is numbered H1-H10 and consists of four

high memory intensity applications. M11-M15 consist of 2 high intensity applications

and 2 medium intensity applications. L16-L20 consist of 2 high intensity applications

and 2 low intensity application. In addition to these workloads, the evaluation also

shows results for a set of workloads that consist of four copies of each of the high and

medium memory intensity benchmarks in Table 3.1. These workloads are referred to

as the Copy workloads.

Chip energy is modeled using McPAT 1.3 [38] and DRAM power is modeled

using CACTI [45]. Static power of shared structures is dissipated until the completion

of the entire workload. Dynamic counters stop updating upon each benchmark’s

completion. The EMC is modeled as a stripped down core and does not contain

63

H1 bwaves+lbm+milc+omnetpp M11 soplex+gems+wrf+mcf

H2 soplex+omnetpp+bwaves+libq M12 milc+zeusmp+lbm+cactus

H3 sphinx3+mcf+omnetpp+milc M13 gems+wrf+mcf+omnetpp

H4 mcf+sphinx3+soplex+libq M14 cactus+gems+soplex+sphinx3

H5 lbm+mcf+libq+bwaves M15 libq+leslie3d+wrf+lbm

H6 lbm+soplex+mcf+milc L16 h264ref+lbm+omnetpp+povray

H7 bwaves+libq+sphinx3+omnetpp L17 tonto+sphinx3+sjeng+mcf

H8 omnetpp+soplex+mcf+bwaves L18 bzip2+namd+mcf+sphinx3

H9 lbm+mcf+libq+soplex L19 omnetpp+soplex+namd+xalanc

H10 libq+bwaves+soplex+omentpp L20 soplex+bwaves+bzip2+perlbench

Table 4.2: Multi-Core Workloads

structures like an instruction cache, decode stage, register renaming hardware, or a

floating point pipeline.

The chain generation unit is modeled by adding the following additional energy

events corresponding to the chain generation process at each home core. Each of the

uops included in the chain requires an extra CDB access (tag broadcast) due to the

pseudo wake-up process. Each of the source operations in every uop require a Register

Remapping table (RRT) lookup, and each destination register requires a RRT write

since the chain is renamed to the set of physical registers at the EMC. Each operation

in the chain requires an additional ROB read when it is transmitted to the EMC.

Data and instruction transfer overhead to/from the EMC is taken into account via

additional messages sent on the ring.

Using this simulation methodology, Table 4.3 lists the raw baseline IPCs for

the simulated high intensity workloads. Table 4.4 lists the raw DRAM bandwidth

consumption (GB/S) and average chip power consumption (W).

64

Core0 Core1 Core2 Core3 Core0 Core1 Core2 Core3

H1 0.43 0.52 0.64 0.44 4xzeus 1.37 1.37 1.36 1.36

H2 0.4 0.48 0.41 0.25 4xcactus 0.7 0.65 0.65 0.65

H3 0.5 0.22 0.53 0.76 4xwrf 1.37 1.33 1.25 1.24

H4 0.21 0.4 0.37 0.26 4xgems 0.65 0.59 0.58 0.56

H5 0.45 0.17 0.18 0.32 4xleslie 0.9 0.84 0.8 0.79

H6 0.48 0.35 0.18 0.58 4xoment 0.52 0.49 0.48 0.47

H7 0.43 0.25 0.41 0.48 4xmilc 0.87 0.84 0.84 0.84

H8 0.47 0.52 0.48 0.21 4xsoplex 0.52 0.52 0.51 0.51

H9 0.42 0.17 0.18 0.31 4xsphinx 0.6 0.57 0.56 0.56

H10 0.27 0.4 0.38 0.44 4xbwaves 0.7 0.68 0.66 0.66

4xlibq 0.31 0.31 0.31 0.31

4xlbm 0.33 0.33 0.32 0.32

4xmcf 0.19 0.19 0.19 0.18

Table 4.3: Multi-Core Workload IPC

BW (GB/S) Power (W) BW (GB/S) Power (W)

H1 10.3 118.5 4xzeus 4.7 130.6

H2 5.6 118.8 4xcactus 2.5 122.4

H3 3.7 121.4 4xwrf 4.5 128.2

H4 8.4 116.3 4xgems 5.9 122.4

H5 3.6 120.6 4xleslie 7.4 127.3

H6 3.5 121.2 4xoment 6.6 121.1

H7 5.1 119.0 4xmilc 10.8 123.0

H8 3.9 121.3 4xsoplex 9.4 122.3

H9 3.8 120.6 4xsphinx 8.3 121.6

H10 8.9 116.5 4xbwaves 13.2 122.2

4xlibq 15.6 118.5

4xlbm 10.5 117.3

4xmcf 6.9 117.8

Table 4.4: Multi-Core Workload Memory Bandwidth (GB/S) and Power (W)

65

4.5 Results

Instead of using IPC to evaluate the performance of a multi-core system [22],

I use a system level metric, weighted speedup [64]:

Wspeedup =
n−1∑
i=0

IPCshared
i

IPCalone
i

(4.1)

The performance of the quad-core system for the workloads listed in Table 4.2

is shown in Figure 4.9.

On the memory intensive workloads, the EMC improves performance on av-

erage by 15% over a no-prefetching baseline, by 10% over a baseline with stream

prefetching, 13% over a baseline with a GHB prefetcher and by 11% over a baseline

with both a stream and Markov prefetcher. Workloads that include a SPEC2006

benchmark with a high rate of dependent cache misses (Figure 1.3) such as mcf or

omnetpp tend to perform well, especially when paired with other highly memory in-

tensive workloads like libquantum or bwaves. Workloads with lbm tend not to perform

well: lbm contains essentially zero dependent cache misses and has a regular access

pattern that utilizes most of the available bandwidth, particularly with prefetching

enabled, making it difficult for the EMC to satisfy latency-critical requests.

To isolate the performance implications of the EMC, Figure 4.10 shows a

system running four copies of each high memory intensity SPEC06 benchmark.

The workloads in Figure 4.10 are sorted from lowest to highest memory inten-

sity. Overall, the EMC results in a 9.5% performance advantage over a no-prefetching

baseline and roughly 8% over each prefetcher. The highest performance gain is on

mcf, at 30% over a no-prefetching baseline. All of the benchmarks with a high rate

of dependent cache misses show performance improvements with an EMC. These ap-

plications also generally observe overall performance degradations when prefetching

is employed.

Lastly Figure 4.11 shows the results of the EMC on the M11-L20 workload

suite. As this workload suite has lower memory intensity, smaller performance gains

66

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1

0

G
M

e
a
n0

10
20
30
40
50
60
70
80
90

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

EMC

Stream

GHB

Markov+Stream

Stream+EMC

GHB+EMC

Markov+Stream+EMC

Figure 4.9: Quad-Core Performance for H1-H10

4
x
o
m

n
e
tp

p

4
x
m

ilc

4
x
so

p
le

x

4
x
sp

h
in

x

4
x
b
w

a
v
e
s

4
x
lib

q

4
x
lb

m

4
x
m

cf

G
M

e
a
n20

0

20

40

60

80

100

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

EMC

Stream

GHB

Markov+Stream

Stream+EMC

GHB+EMC

Markov+Stream+EMC

Figure 4.10: Quad-Core Performance for the Copy Workloads

67

M
1

1

M
1

2

M
1

3

M
1

4

M
1

5

L1
6

L1
7

L1
8

L1
9

L2
0

G
M

e
a
n0

20

40

60

80

100
%

 W
e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

EMC

Stream

GHB

Markov+Stream

Stream+EMC

GHB+EMC

Markov+Stream+EMC

Figure 4.11: Quad-Core Performance for M11-L20

are expected. The largest EMC gains are 7.5% on workloads M11 and M13, which

both contain mcf. Overall, the EMC results in a 4.9% performance gain over the

no-prefetching baseline and 3.0% when combined with each of the three prefetchers.

4.5.1 Performance Analysis

To examine the reasons behind the performance benefit of the EMC, I contrast

workload H1 (1% performance gain) and workload H4 (33% performance gain). While

there is no single indicator for the performance improvement that the EMC provides,

I identify three statistics that correlate to increased performance. First, Figure 4.12

shows the percentage of total cache misses that the EMC generates. As workloads H1

and H4 are both memory intensive workloads, the EMC generating a larger percentage

of the total cache misses indicates that its latency reduction features result in a

larger impact on workload performance. The EMC generates about 10% of all of

the cache misses in H1 and 22% of the misses in H4. The Markov + Stream PF

68

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Mean
0

5

10

15

20

25

30

35
%

 T
o
ta

l
C

a
ch

e
 M

is
se

s
 G

e
n
e
ra

te
d
 b

y
 E

M
C

No PF Stream GHB Markov + Stream

Figure 4.12: Fraction of Total Cache Misses Generated by the EMC for H1 - H10

configuration generates 25% more memory requests than any other configuration on

average, diminishing the impact of the EMC in Figure 4.12 and one reason for lower

relative performance.

Second, the EMC should produce a reduction in DRAM contention for requests

issued by the EMC. As requests are generated and issued to memory faster than in

the baseline, a request can reach an open DRAM row before the row can be closed by

a competing request from a different core. This results in a reduction in row-buffer

conflicts. There are two different scenarios where this occurs. First, the EMC can

issue a dependent request that hits in the same row-buffer as the original request.

Second, multiple dependent requests to the same row-buffer are issued together and

can coalesce into a batch. I observe that the first scenario occurs about 15% of the

time while the second scenario is more common, occurring about 85% of the time on

average.

Figure 4.13 shows the difference in row-buffer conflict reduction. This statistic

strongly correlates to how much latency reduction the EMC achieves, as the latency

for a row-buffer conflict is much higher than the latency of a row-buffer hit. For

69

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Mean
60

40

20

0

20

40
%

 D
if
fe

re
n
ce

 i
n
 R

o
w

 B
u
ff

e
r

C
o
n
fl
ic

ts

No PF Stream GHB Markov + Stream

Figure 4.13: Difference in Row-Buffer Conflict Rate for H1-H10

example, the reduction in H1 is less than 1%. This is much smaller than the 19%

reduction exhibited by H4 (and the 23% reduction in H2, a workload that has other

indicators that are very similar to H1).

Between these two factors, the percent of total cache misses generated by the

EMC and the reduction in row-buffer conflicts, it is clear that the EMC has a much

smaller impact on performance in workload H1 than workload H4. One other factor

is also important to note. The EMC exploits temporal locality in the memory access

stream with a small data cache. If the dependence chain executing at the EMC

contains a load to data that has recently entered the chip, this will result in a very

short-latency cache hit instead of an LLC lookup. Figure 4.14 shows that Workload

H1 has a much smaller hit rate in the EMC data cache than Workload H4.

These three statistics: the fraction of total cache misses generated by the

EMC, the reduction in row-buffer conflict rate, and the EMC data cache hit rate are

indicators that demonstrate why the performance gain in Workload H4 is much more

significant than the performance gain in Workload H1.

70

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Mean
0

5

10

15

20

25

30

35
E
M

C
 D

a
ta

 C
a
ch

e

 H
it

 R
a
te

 (
%

)

No PF Stream GHB Markov + Stream

Figure 4.14: Data Cache Hit Rate at the EMC.

The net result of the EMC is a raw latency difference for cache misses that

are generated by the EMC and cache misses that are generated by the core. This is

shown in Figure 4.15. Latency is given in cycles observed by the miss before dependent

operations can be executed and is inclusive of accessing the LLC, interconnect, and

DRAM. On average, a cache miss generated by the EMC observes a 20% lower latency

than a cache miss generated by the core.

The critical path to executing a dependent cache miss includes three areas

where the EMC saves latency. First, in the baseline, the source cache miss is required

to go through the fill path back to the core before dependent operations can be

woken up and executed. Second, the dependent cache miss must go through the on-

chip cache hierarchy and interconnect before it can be sent to the memory controller.

Third, the request must be selected by the memory controller to be issued to DRAM.

I attribute the latency reduction of requests issued by the EMC in Figure 4.15

to these three sources: bypassing the interconnect back to the core, bypassing cache

accesses, and reduced contention at the memory controller. The average number of

cycles saved by each of these factors are shown in Figure 4.16.

71

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Mean
0

50

100

150

200

250

300

350

400
C

y
cl

e
s

to
 C

o
m

p
le

te

EMC Request Core Request

Figure 4.15: EMC Cache Miss Latency vs Core Cache Miss Latency

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10Mean
0

20

40

60

80

100

T
o
ta

l
M

is
s

C
y
cl

e
s

Interconnect

Cache Lookup

DRAM Contention

Figure 4.16: Average Number of Cycles Saved by the EMC on each Memory Request

72

Overall, the interconnect savings for requests issued by the EMC is about 11

cycles on average. I observe a 20 cycle average reduction in cache access latency and

a 30 cycle reduction in DRAM contention. The reduction in average cache access

latency is due to issuing predicted cache misses directly to the memory controller.

While we utilize a miss predictor to decide when to send misses to the memory con-

troller, this miss predictor acts as a bandwidth filter to reduce the off-chip bandwidth

cost of the EMC. Removing the miss predictor and issuing all EMC loads to main

memory results in a 5% average increase in system bandwidth consumption.

4.5.2 Prefetching and the EMC

This section discusses the interaction between the EMC and prefetching when

they are employed together. Figure 4.12 shows that the fraction of total cache misses

that are generated by the EMC with prefetching is, on average, about 2/3 of the frac-

tion of total cache misses generated without prefetching. However, the total number

of memory requests is different between the prefetching and the non-prefetching case.

This is because the prefetcher generates many memory requests, some requests are

useful while others are useless. Thus, the impact of prefetching on the EMC is more

accurately illustrated by considering how many fewer cache misses the EMC generates

when prefetching is on versus when prefetching is off. This fraction is shown below

in Figure 4.17.

On average, the Stream/GHB/Markov+Stream prefetchers can prefetch about

21%, 30%, 48% of the requests that the EMC issued in the non-prefetching case

respectively. This shows that prefetching does diminish the benefit of the EMC to

some extent, but the EMC also supplements the prefetcher by reducing the latency

to access memory addresses that the prefetcher can not predict ahead of time.

4.5.3 Sensitivity to EMC Parameters

The EMC is tailored to have the minimum functionality that is required to

execute short chains of dependent operations. This requires making many design

73

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Mean
0

10

20

30

40

50

60
%

 o
f

E
M

C
 R

e
q
u
e
st

s
 t

h
a
t

a
re

 P
re

fe
tc

h
e
d

Stream GHB Markov + Stream

Figure 4.17: Effect of Prefetching on EMC Memory Requests

decisions as to the specific parameters listed in Table 4.1. The sensitivity analysis

used to make these decisions is discussed in this section.

First, Table 4.5 shows sensitivity to the main micro-architectural parameters:

issue width, data cache size, dependence chain buffer length, number of dependence

chains contexts, and EMC TLB size. Performance is given as the average geometric

mean weighted speedup of workloads H1-H10.

Increasing the data cache size, number of dependence chain contexts, and the

number of TLB entries all result in performance gains. Increasing issue width leads to

marginal benefits. The largest performance sensitivity is to an increased data cache,

going from a 4kB structure to a 16kB structure increases the EMC performance

gain by 4.2%. The EMC also shows some sensitivity from increasing the number of

dependence chain contexts from 2 to 4, resulting in a 3.4% performance gain. Overall,

the parameters picked for the EMC are the smallest parameters that allow the EMC

to achieve a performance gain of over 10%.

The results of varying the maximum dependence chain length parameter differs

from the other parameters listed in Table 4.5. Increasing dependence chain length

74

Issue Width
1 2 4 8

∆ Perf ∆ Perf ∆ Perf ∆ Perf
10.7% 12.7% 13.6% 14.0%

Data Cache Size
2KB 4KB 8KB 16KB

∆ Perf ∆ Perf ∆ Perf ∆ Perf
9.91% 12.7% 15.4% 16.6%

Dependence Chain Length
4 8 16 32

∆ Perf ∆ Perf ∆ Perf ∆ Perf
3.5% 8.5% 12.7% 11.9%

Number of Contexts
1 2 4 8

∆ Perf ∆ Perf ∆ Perf ∆ Perf
8.5% 12.7% 16.1% 16.3%

TLB Entries
8 16 32 64

∆ Perf ∆ Perf ∆ Perf ∆ Perf
8.1% 9.8% 12.7% 15.6%

Table 4.5: Performance Sensitivity to EMC Parameters

both increases the communication overhead with the EMC and increases the amount

of work that the EMC must complete before the core can resume execution. Therefore,

a long dependence chain can result in performance degradation. Table 4.5 shows that

the 16-uop performance chain is the optimal length for these workloads.

Two other high-level parameters also influenced the design of the EMC. First,

the x86 instruction set has only eight architectural registers. This means that register

spills/fills (push and pop instructions) are common. While executing stores at the

EMC complicates the memory consistency model, eliminating all stores from depen-

dence chains that are executed at the EMC results in a performance gain of only

3.9%. By including register spills/fills in dependence chains, this performance gain

increases to the 12.7% in Figure 4.9. An EMC for a processor with an instruction

set that has a larger set of architectural registers would not need to perform stores.

75

Second, the EMC is allowed to issue operations out-of-order. This is necessary be-

cause the dependence chains sent to the EMC contain load operations. The latency

of these loads is variable, some may hit in the EMC data cache or the LLC while

others may result in LLC misses. To minimize the latency impact of dynamic loads

on dependent cache misses, out-of-order issue is required. A strictly in-order EMC

only results in a 2.1% performance improvement on workloads H1-H10.

4.5.4 Single-Core Results

While the EMC is designed to accelerate memory intensive applications in

a multi-core system, it provides some small utility in a single core setting as well.

Performance results for using the EMC in a single core system is shown in Table 4.6

for the medium and high memory intensity benchmarks. While all applications with

a large fraction of dependent cache misses show some performance gain, the only

significant performance gain occurs for mcf.

Performance
Gain

zeusmp cactus wrf gems leslie omnetpp milc
0% 0% 0% 0% 0% 6.9% 4.8%

soplex sphinx bwaves libq lbm mcf GMean
7.8% 4.6% 0% 0% 0% 10.8% 2.6%

Table 4.6: EMC Single Core Performance

4.5.5 Multiple Memory Controllers

As this evaluation is aimed at accelerating single threaded applications, the

multi-core system primarily centers around a common quad-core processor design,

where one memory controller has access to all memory channels from a single location

on the ring (Figure 4.6). However, with large core counts multiple memory controllers

can be distributed across the interconnect. In this case, with our mechanism, each

memory controller would be compute capable. On cross-channel dependencies (where

one EMC has generated a request to a channel located at a different enhanced memory

controller) the EMC directly issues the request to the new memory controller without

76

EMC

Core 0 Core 1

Core 4 Core 5

LLC

LLC

LLC

LLC

Channel 0

Channel 1

Core 2 Core 3

Core 6 Core 7

LLC

LLC

LLC

LLC

Channel 2

Channel 3

EMC

Figure 4.18: Eight-Core Spread Configuration

migrating execution of the chain. This cuts the core, a middle-man, out of the process

(in the baseline the original request would have to travel back to the core and then

on to the second memory controller).

This scenario is evaluated with an eight-core processor as shown in Figure 4.18.

The results are compared to an eight-core processor with a single memory controller

that co-locates all four memory channels at one ring stop. The eight core workloads

consists of two copies of workloads H1-H10. Average performance results are shown

below in Table 4.7.

Single Spread
Baseline 0% -.8%

EMC 16.9% 15.8%
Stream 24.5% 24.3%

Stream + EMC 41.3% 39.6%
GHB 36.4% 34.3%

GHB + EMC 51.0% 49.1 %
Markov + Stream 22.1% 21.2%

Markov + Stream + EMC 36.9% 35.07%

Table 4.7: EMC and Multiple Memory Controllers

Overall, the performance benefit of the EMC is slightly larger in the eight-

core case than the quad-core case, due to a more heavily contested memory system.

77

Live-Ins

H1 H2 H3 H4 H5 H6
3.2 8.8 9.0 7.8 7.3 1.9
H7 H8 H9 H10 Mean
8.8 9 7.4 8.8 7.2

Dependence
Chain Length

H1 H2 H3 H4 H5 H6
4.5 11.7 11.0 8.8 8.4 3.8
H7 H8 H9 H10 Mean
11.2 11.6 8.5 11.7 9.1

Table 4.8: EMC Dependence Chain Length

The single memory controller configuration gains 17%, 14%, 13%, and 13% over the

no-prefetching, stream, GHB and stream+Markov prefetchers respectively. The dual

memory controller baseline system shows a slight (-.8%) performance degradation

over the single memory controller system, and gains slightly less on average over each

baseline (16%, 14%, 11%, 12% respectively) than the single memory controller, due

to the overhead of communication between the EMCs. I conclude that there is not a

significant performance degradation when using two enhanced memory controllers in

the system.

4.5.6 EMC Overhead

The data traffic overhead of the EMC consists of three main components:

sending both dependent operation chains and the source registers (live-ins) that these

chains require to the EMC, and sending destination registers (live-outs) back to the

core from the EMC.

Table 4.8 shows the average chain length in terms of uops for the chains that

are sent to the EMC along with the number of live-ins per dependence chain. The

chain length defines both the number of uops which must be sent to the EMC and

the number of registers that must be shipped back to the core. This is because all

physical registers are sent back to the core (Section 4.3.3) and each uop produces a

live-out/physical register.

78

Data Ring
Overhead

H1 H2 H3 H4 H5 H6
26.8 48.2 31.9 21.3 16.1 26.1
H7 H8 H9 H10 Mean
44.7 56.3 34.6 35.9 34.2

Control Ring
Overhead

H1 H2 H3 H4 H5 H6
3.4 10.2 11.8 6.4 9.4 9.8
H7 H8 H9 H10 Mean
7.5 2.9 7.6 4.9 7.4

Table 4.9: EMC Interconnect Overhead

On average, the dependence chains executed at the EMC for H1-H10 are short,

under 10 uops on average. These chains require 7 live-ins on average. The destination

registers that are shipped back to the home core result in roughly a cache line of data

per chain. Transmitting the uops to the EMC results in a transfer of 1-2 cache lines

on average. This relatively small amount of data transfer motivates why we do not

see a performance loss due to the EMC. The interconnect overhead of the EMC for

each executed chain is small and we accelerate the issue and execution of integer

dependent operations only if they exist. As shown in Table 4.9, these messages result

in a 34% average increase in data ring activity across Workloads H1-H10 while using

the EMC and a 7% increase in control ring activity.

4.5.7 Energy and Area

The energy results for the quad-core workloads are shown in Figures 4.19, 4.20,

and 4.21. All charts present the cumulative results for the energy consumption of the

chip and DRAM as a percentage difference in energy consumption from the no-EMC,

no-prefetching baseline.

Overall, the EMC is able to reduce energy consumption (Chip+DRAM) on

average by about 11% for H1-H10, 7% for the copy workloads and by 5% for M11-

L20. This reduction is predominantly due to a reduction in static energy consumption

(as the performance improvement caused by the EMC decreases the total execution

time of a workload).

79

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1
0

M
e
a
n0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
rm

a
liz

e
d
 E

n
e
rg

y

EMC

Stream

GHB

Markov+Stream

Stream+EMC

GHB+EMC

Markov+Stream+EMC

Figure 4.19: Normalized Energy Consumption for H1-H10

In the prefetching cases, the energy consumption charts illustrate the cost of

prefetching in a multi-core system. As in the performance results, combining prefetch-

ing and the EMC result in better energy efficiency than just using a prefetcher. The

GHB+EMC system has the lowest average energy consumption across all three work-

loads. All three of the evaluated prefetchers cause an increase in energy consumption,

particularly the Markov+Stream prefetcher. This is due to inaccurate prefetch re-

quests, which occur despite prefetcher throttling in the baseline. In Figure 4.19, the

GHB, Stream, Markov+Stream systems increase memory traffic by 19%, 16% and

41% respectively while the EMC increases traffic by 4%. A similar trend holds in

Figure 4.20 where the prefetchers increase traffic by 15%, 9% and 32% respectively

while the EMC increases traffic by 3%. The average bandwidth increase over the

no-prefetching baseline for the EMC and prefetching is shown in Figure 4.22 for all

workloads.

The components of the storage overhead that are required to implement the

EMC are listed in Table 4.10. The total additional storage required is 6kB. Most of

80

4
x
o
m

n
e
tp

p

4
x
m

ilc

4
x
so

p
le

x

4
x
sp

h
in

x

4
x
b
w

a
v
e
s

4
x
lib

q

4
x
lb

m

4
x
m

cf

M
e
a
n0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
rm

a
liz

e
d
 E

n
e
rg

y

EMC

Stream

GHB

Markov+Stream

Stream+EMC

GHB+EMC

Markov+Stream+EMC

Figure 4.20: Normalized Energy Consumption for Copy Workloads

M
1
1

M
1
2

M
1
3

M
1
4

M
1
5

L1
6

L1
7

L1
8

L1
9

L2
0

G
M

e
a
n0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 E

n
e
rg

y

EMC

Stream

GHB

Markov+Stream

Stream+EMC

GHB+EMC

Markov+Stream+EMC

Figure 4.21: Normalized Energy Consumption for M11-L20

81

High Copy Mix
0

10

20

30

40

50
B

a
n
d
w

id
th

 O
v
e
rh

e
a
d
 (

%
)

EMC

Markov+Stream

Markov+Stream+EMC

Stream

Stream+EMC

GHB

GHB+EMC

Figure 4.22: System Bandwidth Overhead with Prefetching

this storage is due to the data cache at the EMC. Based on McPAT, this overhead

translates to an area overhead of 2.2mm2, roughly 2% of total quad-core chip area.

The area overhead is listed in Table 4.11. Over half of this additional area is due to

the 4kB cache located at the EMC. The small out-of-order engine constitutes 8% of

the additional area, while the two integer ALUs make up 5%. As McPAT estimates

the area of a full out-of-order core as 21.2mm2, the EMC is 10.4% of a full core and

is shared by all of the cores on a multi-core processor.

4.5.8 Sensitivity to System Parameters

In this section, the performance sensitivity of the EMC to three key system

parameters is measured. Table 4.12 shows performance and energy sensitivity of the

EMC to LLC capacity, the number of memory banks per channel, and ROB capacity.

First, unlike the Runahead Buffer, the EMC does not show significant performance

sensitivity to LLC capacity. The irregular dependent cache misses that the EMC

targets do not become cache hits even with a 16MB LLC. However, the EMC does

82

Component Bytes

Core

RRT 32 Entries * 1 Byte = 64 Bytes

Dependence Chain Buffer 8 Bytes * 16 Entries = 128 Bytes

Live-In Vector 4 Bytes * 16 Entries = 64 Bytes

Total New Core Storage 256 Bytes

EMC

Instruction Buffers 8 Bytes * 16 Entries * 2 Contexts =
256 Bytes

Register Files 4 Bytes * 16 Entries * 2 Contexts =
128 Bytes

Live-In Vectors 4 Bytes * 16 Entries * 2 Contexts =
128 Bytes

Reservation Station 8 Bytes * 8 Entries =
64 Bytes

TLB 8 Bytes * 32 Entries * 4 Cores =
1024 Bytes

Data Cache 4096 Bytes

Load Store Queue 4 Bytes * 16 Entries = 64 Bytes

Miss Predictor 384 Bytes

Total EMC Storage 6096 Bytes

Table 4.10: Additional EMC Storage Overhead

show performance sensitivity to very large numbers of banks per memory channel.

One of the main performance gains of the EMC is reducing row-buffer miss rate. If

a memory system has 64 banks/channel, this row-buffer contention lessens and the

performance gain of the EMC is degraded. Lastly, I find that the EMC does not

show significant performance sensitivity to ROB capacity. Hiding dependent cache

miss latency requires a ROB to tolerate two serialized memory accesses. A 512-entry

ROB is unable to generally hide the latency of even a single memory access without

stalling the pipeline, so the lack of performance sensitivity is unsurprising.

83

Component Size

Instruction Buffers .07mm2

Register Files .12mm2

Execute Logic .17mm2

TLB .20mm2

Data Cache 1.52mm2

Load Store Queue .07mm2

Miss Predictor .05mm2

Total EMC Area 2.2mm2

Table 4.11: Additional EMC Area Overhead

LLC Cache Size
2 MB 4 MB 8 MB 16 MB

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
14.2% -10.1% 12.7% -11.0% 13.8% -11.6% 11.7% -10.1%

Number of Memory Banks
8 16 32 64

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
12.7% -11.0 14.7% -11.9% 11.6% -10.1% 9.9% -7.9%

ROB Size
192 256 384 512

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
12.9% -11.1% 12.7% -11.0 14.5% -11.9% 11.7% -9.8%

Table 4.12: EMC Performance and Energy Sensitivity

4.6 Conclusion

This chapter identifies dependent cache misses as a critical impediment to

processor performance for memory intensive applications. A mechanism is proposed

for minimizing the latency of a dependent cache miss by performing computation

where the data first enters the chip, at the memory controller. By migrating the

dependent cache miss to the memory controller, I show that the EMC reduces effective

memory access latency by 20% for dependent cache misses. This results in a 13%

performance improvement and a 11% energy reduction on a set of ten high memory

intensity quad-core workloads. In the next chapter, I examine how to use the compute

capability of the EMC to accelerate independent cache misses in addition to dependent

cache misses. The analysis starts in Chapter 5 for a single core system and continues

in Chapter 6 for a multi-core system.

84

Chapter 5

Runahead at the Enhanced Memory Controller

5.1 Introduction

In Chapter 3 I develop a mechanism that identifies the micro-operations (micro-

ops) that are required to generate the address of a memory access. These micro-ops

constitute the dependence chain of the memory operation. I propose pre-executing

these dependence chains using runahead execution [50] with the goal of generating

new independent cache misses. Section 3.6.1 demonstrates that pre-executing a de-

pendence chain generates more independent cache misses than traditional runahead

execution as traditional runahead fetches and executes many irrelevant operations.

Based on Chapter 3, I make three observations that motivate this chapter:

runahead requests are overwhelmingly accurate, the core spends only a fraction of

total execution time in runahead mode, and runahead interval length is generally

short. First, Figure 3.14 illustrates that runahead has very low memory-bandwidth

overhead, particularly when compared to traditional prefetching. This highlights the

benefit of using the application’s code to predict future memory accesses. To further

explore this point, Figure 5.1 displays the average percentage of useful runahead

requests (defined as the number of cache lines prefetched by a runahead request that

are accessed by the core before eviction from the LLC) for the high memory intensity

SPEC06 benchmarks. On average, runahead requests are very accurate, with 95%

of all runahead accesses prefetching useful data. This is 13% more accurate than a

GHB prefetcher that uses dynamic throttling 1.

1An earlier version of this chapter was published as: Milad Hashemi, Onur Mutlu, and Yale Patt.
Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads. In
MICRO, 2016. I developed the initial idea and conducted the performance simulator design and
evaluation for this work.

85

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0%

20%

40%

60%

80%

100%
P
re

fe
tc

h
 A

cc
u
ra

cy

Runahead Stream GHB Markov+Stream

Figure 5.1: Percent of Useful Runahead Requests

Second, given this high accuracy, it could be advantageous to spend large

periods of time in runahead, prefetching independent cache misses. However, I find

that this is not generally the case. Figure 5.2 displays the percentage of total execution

cycles that the core spends in runahead. Two data points are shown: traditional

runahead and traditional runahead plus energy optimizations (Section 3.4.6). Since

these optimizations are intended to eliminate short or wasteful runahead intervals,

this data more accurately demonstrates the number of useful runahead cycles. From

Figure 5.2, the core spends less than half of all execution time in traditional runahead

on average. Runahead + Enhancements further reduces the cycles spent in runahead

mode as repetitive runahead cycles are eliminated.

Third, in addition to the percentage of total cycles spent in runahead, the

length of each runahead interval is also important. The average duration of each

runahead interval is the number of cycles from when runahead begins to when runa-

head terminates. A large interval length indicates that runahead is able to get ahead

86

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0%

20%

40%

60%

80%

100%
A

v
e
ra

g
e
 C

y
cl

e
s

in
 R

u
n
a
h
e
a
d

Runahead Runahead + Enhancements

Figure 5.2: Percent of Execution Time in Runahead

of the demand execution stream and generate more cache misses. A short interval

length is more likely to result in few to no new independent cache misses. Figure

5.3 shows that each runahead interval is short. On average, each runahead interval

is 55 cycles long without the efficiency enhancements and 101 cycles with additional

enhancements. This is significantly less than the amount of time to access DRAM.

From this data, I conclude that current runahead techniques are not active for

a large portion of execution time. This is because runahead imposes constraints on

how often and how long the core is allowed to speculatively execute operations. First,

the core is required to completely fill its reorder buffer before runahead begins. Mem-

ory level parallelism causes DRAM access latency to overlap, reducing the amount

of time that the core is able to runahead as ROB size grows. This limits how often

the core can enter runahead mode, particularly as ROB sizes increase. Second, the

runahead interval terminates when the operation that is blocking the pipeline retires.

This limits the duration of each runahead interval. Since runahead shares pipeline

87

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0

50

100

150

200

250

300
A

v
e
ra

g
e
 R

u
n
a
h
e
a
d
 D

u
ra

ti
o
n

 (
C

y
cl

e
s)

Runahead Runahead + Enhancements

Figure 5.3: Average Number of Cycles in Each Runahead Interval

resources with the main thread of execution, these constraints are necessary to main-

tain maximum performance when the main thread is not stalled. However, despite

the high accuracy of runahead, these constraints force current runahead policies to

remain active for a small fraction of total execution time.

In this chapter, I explore removing the constraints that lead to these short

intervals. Traditional runahead is a reactive mechanism that requires the pipeline to

be stalled before pre-execution begins. Instead, I will explore using the additional

hardware resources of the Enhanced Memory Controller (EMC) to pre-execute code

arbitrarily ahead of the demand access stream. The goal is to develop a proactive

policy that uses runahead to prefetch independent cache misses so that the core stalls

less often.

There are two major challenges to remote runahead at the EMC. First, the core

must decide which operations to execute remotely. In the case of dependent cache

misses (Chapter 4) this problem is straightforward. If a core is predicted to have

88

dependent cache misses, the dependence chain is migrated to the EMC for execution.

In the case of independent cache misses, the answer is not as clear. The independent

cache miss chains can execute arbitrarily far ahead of the demand access stream. For

high accuracy, it is important to make the correct choice of which dependence chain

to migrate to the EMC. This is the first question that I examine in Section 5.2.1.

Second, EMC memory accesses need to be timely. If runahead requests are too early

they can harm cache locality by evicting useful data. If they are too late they will

not reduce effective memory access latency. I examine this trade-off in Section 5.2.3.

As these two questions are both predominantly single-thread decisions, I focus on a

single core setting in this chapter and explore multi-core policies for runahead at the

EMC in Chapter 6.

5.2 Mechanism

The goal of this section is to determine a policy that decides: 1) which depen-

dence chain to use during runahead at the EMC and 2) how long that dependence

chain should execute remotely. To answer the first question, Section 5.2.1 explores

three different policies with unbounded storage constraints while 5.2.2 translates the

highest performing policy into hardware at the EMC. To answer the second question,

Section 5.2.3 examines how often a dependence chain needs to be sent to the EMC

to maximize prefetch accuracy.

5.2.1 Runahead Oracle Policies

The runahead buffer uses a simple and greedy mechanism to generate depen-

dence chains at a full-window stall. Figure 3.2 demonstrates that for many bench-

marks if a operation is blocking retirement it is likely that a different dynamic instance

of the same static load is also present in the reorder buffer. This second dynamic op-

eration is then used during a backwards dataflow walk to generate the dependence

chain for runahead. While Section 3.6.1 shows that the chain uncovered this way is

useful to increase performance, it is not clear that this policy is ideal. In this section, I

89

relax the constraints that the runahead buffer uses to choose a dependence chain and

explore three new policies. While I call these policies oracles, each policy only uses

unlimited storage. The policies do not have oracle knowledge of which dependence

chain is optimal to run.

PC-Based Oracle: In order to generate a dependence chain on demand, the runa-

head buffer policy restricts itself to using a dependence chain that is available in the

reorder buffer. For the first policy, this restriction is relaxed. The simulator maintains

a table of all PCs that cause last level cache (LLC) misses. For each PC, the simulator

also maintains a list of all of the unique dependence chains that have led to an LLC

miss in the past. When the pipeline stalls due to a full reorder buffer, the runahead

buffer uses the PC miss table to identify the dependence chain that has generated the

most LLC misses for the PC that is blocking retirement. The performance results of

the PC-based oracle are shown in Figure 5.4.

On average the PC-based oracle improves performance over the runahead

buffer policy. However, the policy also causes performance degradations on leslie,

sphinx, and gems. One reason for this performance reduction is evident in Figure 5.5

where the number dependence chains that are stored for each miss PC are varied from

1 to 32. Performance is normalized to the system that stores all dependence chains

for each miss PC. All three of these applications have maximum performance with

only one stored dependence chain. This suggests that recent path history is more

important than historical miss data for these two applications. The greedy runahead

buffer algorithm is already optimized for this case (since the runahead buffer uses the

last dependence chain present in the ROB during runahead). Moreover, storing 16

or 32 dependence chains is on average only marginally higher performing than stor-

ing one chain. With this data, I conclude that storing large numbers of dependence

chains per miss PC is not required for high runahead buffer performance.

Beyond the performance benefits of the PC-based oracle policy, by tracking all

miss PCs and all dependence chains I find two additional pieces of data that provide

insight into the nature of dependence chains that generate LLC misses. First I observe

90

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n20

0

20

40

60

80

100
%

 I
P
C

 I
m

p
ro

v
e
m

e
n
t

Runahead Buffer

PC-Based Oracle

Maximum Misses Oracle

Stall Oracle

Figure 5.4: Performance Impact of Dependence Chain Selection Policies

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

1 Chain

8 Chains

2 Chains

16 Chains

4 Chains

32 Chains

Figure 5.5: Varying the Number of Dependence Chains Stored per Miss PC

91

that a small number of static PCs cause all LLC misses. Figure 5.6 shows the total

number of static PCs that cause LLC misses and the number of static PC’s that cause

90% of all LLC misses in each of the memory intensive SPEC06 benchmarks. On

average, there are 345 PCs per benchmark that cause LLC misses: omnetpp has the

most instructions causing cache misses at 950 while bwaves has the fewest at 46. I

find that on average the number of instructions that cause 90% of all cache misses

is very small across the high memory intensity SPEC06 benchmarks. For example,

in libquantum, only 4 static instructions account for 90% of all cache misses. With

numbers this small, I conclude that it is practical for hardware to dynamically track

the exact instructions that often lead to an LLC miss.

Second, when tracking all independent cache miss chains, I verify the obser-

vation from Section 3.3 that the average dependence chain length is short. Figure

5.7 shows that chains are 14 operations on average and consist of mainly memory,

add, and move operations. Multiply, logical, and shift operations all add less than

one operation on average to dependence chain length. This also suggests that it is

practical for hardware to dynamically uncover the dependence chains for all inde-

pendent cache misses, not just those that fit the constraints of the runahead buffer.

Note that control operations do not propagate a register dependency and therefore do

not appear in the backwards data-flow walks that generate these dependence chains.

The operations that appear in the dependence chain comprise the speculated path

through the program that the branch-predictor has predicted.

Maximum Misses Oracle: For hardware simplicity, the runahead buffer constrains

itself to using a dependence chain based on the PC that is blocking retirement. How-

ever, hardware can take advantage of the observation that the total number of PCs

that cause the majority of all independent cache misses is small. In the second oracle

policy, instead of using the PC of the operation blocking retirement to index the PC

miss table, the simulator searches the entire table for the PC that has resulted in the

most LLC misses over the history of the application so far. This assigns criticality to

the loads that miss most often.

92

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0

200

400

600

800

1000
A

ll
In

d
e
p
e
n
d
e
n
t

C
a
ch

e
 M

is
s

P
C

s

90% of Independent Cache Misses

All Independent Cache Misses

Figure 5.6: Number of Different PCs Generating Cache Misses

The maximum misses oracle policy maintains all PCs that have generated LLC

misses and every LLC miss dependence chain for each PC. At a full window stall, the

dependence chain that has caused the most cache misses for the chosen PC is loaded

into the runahead buffer and runahead execution begins. The performance of this

policy is shown in Figure 5.4. Choosing a dependence chain based on the PC that

has generated the most LLC misses improves performance by 8% on average over the

PC-Based oracle.

Stall Oracle: Due to overlapping memory access latencies in an out-of-order pro-

cessor, the load with the highest number of total cache misses is not necessarily the

most critical load operation. Instead, the most important memory operations to ac-

celerate are those that cause the pipeline to stall due to a full reorder buffer. Using

this insight, Figure 5.8 displays both the total number of different instructions that

cause full-window stalls in the high memory intensity SPEC06 applications and the

93

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0

5

10

15

20

25

30

35
A

v
e
ra

g
e
 N

u
m

b
e
r

o
f

O
p
e
ra

ti
o
n
s

 i
n
 D

e
p
e
n
d
e
n
ce

 C
h
a
in

Memory Ops

Add Ops

Mov Ops

Multiply Ops

Logic Ops

Shift Ops

Figure 5.7: Length and Breakdown of Dependence Chains

number of operations that cause 90% of all full-window stalls. On average, 94 op-

erations cause full-window stalls per benchmark and 19 operations cause 90% of all

full-window stalls. This is much smaller than the number of operations that cause

cache misses in Figure 5.6, particularly for omnetpp and sphinx and provides a filter

for identifying the most critical loads.

For the final policy, the simulator tracks each PC that has caused a full-window

stall and every dependence chain that has caused a full-window stall for each PC. Each

PC has a counter that is incremented when a load operation blocks retirement. At

a full-window stall, the simulator searches the table for the PC that has caused the

most full-window stalls. The dependence chain that has caused the most stalls for

the chosen PC is then loaded into the runahead buffer. Figure 5.4 shows that this is

the highest performing oracle policy on average.

In conclusion, I find that the highest performing policy is the stall oracle.

While the runahead buffer uses the operation blocking retirement to generate a de-

94

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0

50

100

150

200

250

300

350
A

ll
Fu

ll-
W

in
d
o
w

 S
ta

ll
P
C

s

90% of Full Window Stalls All Full Window Stalls

Figure 5.8: Number of Different Instructions that cause Full-Window Stalls

pendence chain, it is ideal to use the operation that has caused the most full-window

stalls. However, from Figure 5.5, it is reasonable to only track the last dependence

chain for the chosen PC. It is not necessary to maintain a large cache of dependence

chains. These observations are used to turn the stall oracle into a realizable hardware

policy in Section 5.2.2.

5.2.2 Hardware Stall Policy

In this Section I develop a hardware algorithm based on the stall oracle to

identify a dependence chain for use during runahead execution at the EMC. The stall

oracle uses unbounded space to track all PCs that cause full-window stalls. However,

from Figure 5.8, the average number of operations that cause full-window stalls per

benchmark is only 94, an unbounded amount of space is not necessary.

Figure 5.9 shows performance for the stall oracle policy if the number of PC

95

entries is varied from 4 to 128 (based on the 90% percentile data in 5.9). The chart

is normalized to a baseline with an unbounded amount of storage. Some applications

maximize performance with a 4-entry cache, once again highlighting that the most

recently used path is often advantageous for predicting future behavior. However,

the 4-entry configuration results in a significant performance degradation on mcf

and omnetpp. On average, the 32-entry configuration provides performance close

to the unbounded baseline at lower cost (with the exception of omnetpp which has

the largest number of PCs that cause full-window stalls in Figure 5.8). Therefore, I

propose maintaining a 32-entry cache of PCs that tracks the operations that cause

full-window stalls. If the processor is in a memory-intensive phase, the PC that has

caused the highest number of full-window stalls is marked and used to generate a

new dependence chain for use during runahead execution. To separate independent

cache misses from dependent cache misses, the PC-Miss table is only updated if the

operation blocking retirement has been determined to not be a dependent cache miss

(Section 4.3.2). This policy is described in Algorithm 3.

Algorithm 3 Marking a Runahead Operation

if ROB full AND stall op is not dependent cache miss then
Access PC-Miss Table with PC of op causing stall
if Hit then

Increment miss counter for PC-entry
else

Allocate new PC-Miss Table entry
end if

end if

if New Interval AND High MPKI then
Mark PC with largest miss counter in PC-Miss Table

end if

Once a PC is marked for dependence chain generation, the next time a match-

ing PC is issued into the reservation stations the core begins the chain generation

process. Dependence chain generation is a combination of the backwards data-flow

walk in Section 3.4.2 and EMC dependence chain generation in Section 4.3.2. A back-

96

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
ce

4 Entries

8 Entries

16 Entries

32 Entries

64 Entries

128 Entries

Figure 5.9: Sensitivity to the Number of Tracked PCs

wards data-flow walk is required to identify source operations, but operations must

be renamed to execute at the EMC. Algorithm 4 details the dependence chain gener-

ation process while Figure 5.10 provides an example chain of code adapted from mcf.

As in the dependent cache miss case (Section 4.3.2), we leverage the register state

available at the core to rename the chain for EMC execution. This is advantageous

as the chain only has to be renamed once instead of every iteration at the EMC.

In Figure 5.10 the load at PC 0x96 has been marked for dependence chain

generation. In cycle 0 (Not shown in Figure 5.10), the operation is identified and

the destination register P8 is mapped to E0. Source register P2 is mapped to E1

and added to the source register search list (SRSL). These changes are recorded in

the register remapping table (RRT). Note that the RRT from Section 4.3.2 has been

slightly modified to include an additional row of EMC physical registers. This row is

written once when an architectural register is mapped for the first time. It is then

used to re-map all live-outs back to live-ins at the end of dependence chain generation

97

Final Chain

MEM_LD [E1] -> E0

SHIFT E2 -> E1

ADD E4 + E3 -> E2

SHIFT E3 -> E4

ADD E5 + 1 -> E3

MAP E3 -> E5

0x96: MEM_LD [EDX(P2)] -> ECX(P8)

0x94: SHIFT EDX(P3) -> EDX(P2)

0x92: ADD EDX(P9) + EAX(P1) -> EDX(P3)

0x8F: SHIFT EAX(P1) -> EDX(P9)

0x85: ADD EAX(P7) + 1 -> EAX(P1)

MEM_LD [E1] -> E0

SHIFT E2 -> E1

Cycle 1

SRSL: P3

CPR

RRT
EAX EBX ECX EDX

First EPR

P3P8

E0

E1

E2
E0

0x96: MEM_LD [EDX(P2)] -> ECX(P8)

0x94: SHIFT EDX(P3) -> EDX(P2)

0x92: ADD EDX(P9) + EAX(P1) -> EDX(P3)

0x8F: SHIFT EAX(P1) -> EDX(P9)

0x85: ADD EAX(P7) + 1 -> EAX(P1)

MEM_LD [E1] -> E0

SHIFT E2 -> E1

CPR

RRT
EAX EBX ECX EDX

P9P8

E0

E2

E4
E0

P1

E3
E3

SRSL: P9, P1

Cycle 2

ADD E4 + E3 -> E2

0x96: MEM_LD [EDX(P2)] -> ECX(P8)

0x94: SHIFT EDX(P3) -> EDX(P2)

0x92: ADD EDX(P9) + EAX(P1) -> EDX(P3)

0x8F: SHIFT EAX(P1) -> EDX(P9)

0x85: ADD EAX(P7) + 1 -> EAX(P1)

MEM_LD [E1] -> E0

SHIFT E2 -> E1

CPR

RRT
EAX EBX ECX EDX

P9P8

E0

E2

E4
E0

P7

E5
E3

SRSL: P7

Cycle 4

ADD E4 + E3 -> E2

SHIFT E3 -> E4

ADD E5 + 1 -> E3

Current EPR
First EPR

Current EPR

First EPR
Current EPR

Figure 5.10: EMC Runahead Chain Generation

and is required to allow the dependence chain to execute as if it was in a loop.

In cycle 1 the core searches all older destination registers for the producer

of P2. From Chapter 3, the ROB has been modified to include a CAM on source

and destination registers. These structures are used during the dependence chain

generation process. If an operation is found, it is marked to be included in the

dependence chain and read out of the ROB at retirement. The result of the search is

found to be a SHIFT and the source register of the shift (P3) is remapped to E2 and

enqueued in the SRSL. This process continues until the SRSL is empty. In cycle 2

P9 and P1 are remapped to E4 and E3 respectively. In cycle 3 the SHIFT at address

0x8F is remapped and in cycle 4 the ADD at address 0x85 is remapped and enqueues

P7 into the SRSL.

In cycle 5 P7 does not find any producers. This means that EAX (P7) is a

live-in into the dependence chain. This result is recorded in the RRT. To be able to

speculatively execute this dependence chain as if it was in a loop a new operation

is inserted at the end of the final dependence chain. This “MAP” operation moves

the live-out for EAX (E3) into the live-in for EAX (E5) thereby propagating data

from one dependence chain iteration to the next. Semantically, MAP also serves as

98

ADD E5 + 1 -> E3

SHIFT E3 -> E4 ADD E4 + E3 -> E2

SHIFT E2 -> E1

MEM_LD [E1] -> E0

Figure 5.11: Dataflow Graph of Dependence Chain

a data-flow barrier and denotes the boundary between dependence chain iterations.

MAP cannot issue at the EMC until all prior operations have issued. This restricts

the out-of-order engine at the EMC but as the issue width of the EMC (2) is much

smaller than dependence chain length MAP does not result in a negative performance

impact. For wider EMC back-ends, future research directions could include unrolling

dependence chains using live-in data to the maximum number of free EMC physical

registers. A pure hardware dataflow implementation is also possible as the EMC does

not retire any operations and is just prefetching.

The result of the MAP operation on the dataflow graph of the dependence

chain in Figure 5.10 is shown in Figure 5.11. Solid arrows represent actual register

dependencies while the dashed line shows the MAP operation feeding the destination

register E5 back into the source register of the ADD. The final dependence chain

including the MAP is shown to the right of Figure 5.10. Once Algorithm 4 has

completed, the dependence chain is sent to the EMC along with a copy of the core

physical registers used in the RRT to begin runahead execution.

Table 5.1 lists the additional hardware storage overhead required to implement

Algorithm 4. At the core, the PC-Miss table requires entires and counters to track

operations that block retirement. The core must include additional storage for the

99

Algorithm 4 Dependence chain generation
MAXLENGTH: 32, SRSL: Source Register Search List, ROB: Reorder Buffer, DC:
Dependence Chain, CAR: Core Architectural Register, CPR: Core Physical Register,
EPR: EMC Physical Register

if PC Marked AND PC Issued then
mapOperation(missPCOp)
while SRSL != EMPTY and DC <MAXLENGTH do

Dequeue CPR from SRSL
Search ROB for older op that produces CPR
if Matching op with new PC found then

mapOperation(matchingOp)
if Matching op is load then

Search store buffer for load address
if Store buffer match then

Mark matching store for DC inclusion
mapOperation(matchingStore)

end if
end if

else
Mark CAR as live-in in RRT

end if
end while
MAP each live in register: First EPR ->Current EPR

end if

function mapOperation(operation)
Allocate First EPR for each new CAR in RRT
Allocate Current EPR for destination CPR in RRT
Allocate Current EPR for each new source CPR in RRT
EPR = RRT[CAR] for each core source register
Enqueue all new source CPR to SRSL
Mark op for DC inclusion

end function

100

Physical
Register

File Live In Vector

Dependent
Miss Issue

Buffers

Reservation
Station

ALU 0

ALU 1 Data
Cache

Load Store
Queue

Result Data

Tag Broadcast

Live-in
registers
from core

Runahead
Physical
Register

File

Runahead
Issue Buffer

Figure 5.12: EMC Microarchitecture Runahead Modifications

dependence chain while it is being generated and a copy of all remapped physical

registers to send to the EMC as input data. The EMC requires an additional hard-

ware context to hold the runahead dependence chain and physical registers. These

additions are shown in Figure 5.12.

Component Bytes

Core

PC-Miss Table Entries 4 Bytes * 32 Entries = 128 Bytes

PC-Miss Table Counters 4 Bytes * 32 Entries = 128 Bytes

RRT Capacity Increase 4 Bytes * 32 Entries = 128 Bytes

Dependence Chain Buffer 8 Bytes * 32 Entries = 256 Bytes

Register Copy Buffer 4 Bytes * 32 Entries = 128 Bytes

Total New Core Storage 768 Bytes

EMC

Runahead Physical Register File 4 Bytes * 32 Entries = 128 Bytes

Runahead Chain Storage 8 Bytes * 32 Entries = 256 Bytes

Total New EMC Storage 384 Bytes

Table 5.1: Additional RA-EMC Hardware Overhead

5.2.3 EMC Runahead Control

While Section 5.2.2 describes the hardware policy used to determine which

dependence chain to execute at the EMC, it does not explore how to control runahead

execution at the EMC. In this section I show that runahead request accuracy, and

101

correspondingly EMC runahead performance, can be managed by the interval that

the core uses to send dependence chain updates to the EMC.

When a dependence chain is sent to the EMC for runahead execution, a copy

of the core physical registers that are required to execute the first iteration of the

dependence chain are also sent. This serves to reset runahead at the EMC. For

example, if the core sends a new dependence chain to the EMC at every full window

stall, the runahead interval length at the EMC for each dependence chain is simply

the average time between full-window stalls. At every new full window stall, the

processor will reset the state of the EMC to execute a new runahead dependence

chain. This limits the distance that the EMC is allowed to run ahead of the main

core. Therefore, Figure 5.13 explores how modifying the dependence chain update

interval impacts performance and runahead request accuracy. The x-axis varies the

update interval based on the number of instructions retired at the core from one

thousand instructions to 2 million instructions. There are two bars, the first bar

is the average geometric mean performance gain of the memory intensive SPEC06

benchmarks. The second bar is the request accuracy defined as the percent of total

lines fetched by runahead at the EMC (RA-EMC) that are touched by the core before

eviction.

The main observation from Figure 5.13 is that both average performance and

runahead request accuracy plateaus from the 5k instruction update interval to the

100k update interval. From the 250k update interval to the 2M instruction interval

both request accuracy and performance decrease. Average runahead request accuracy

in the plateau of the chart is at about 85%. This is about 10% less than average

runahead request accuracy with the runahead buffer (Figure 5.1). As both runahead

accuracy and performance gain decrease above the 250k update interval, it is clear

that allowing the EMC to runahead for too long without an update has a negative

effect on performance as the application can move to a different phase. However, the

1k update interval also reduces performance without a large effect on runahead request

accuracy. Table 5.2 demonstrates why this occurs by listing the average number of

102

1
k

5
k

1
0
k

2
5
k

5
0
k

1
0
0
k

2
5
0
k

5
0
0
k

1
M

2
M

Update Interval (Instructions Retired)

0%

20%

40%

60%

80%

100%

GMean Performance Gain RA-EMC Accuracy

Figure 5.13: Sensitivity to Update Interval

instructions executed between when a runahead line is fetched by the EMC and when

it is accessed by the core. On average, the 1k interval length has a much shorter

runahead distance than the 5k or 10k interval. By frequently resetting the EMC, the

core decreases EMC effectiveness in the 1k case.

From the 5k interval length upwards, the values in Table 5.2 stabilize to

roughly three thousand instructions from when the value is prefetched into the last

level cache by the EMC to when the core accesses the data on average. This number

is controlled by the rate at which the EMC is able to issue memory requests into the

cache hierarchy and is influenced by many factors including: EMC data cache hit rate,

interconnect contention, LLC bank contention, memory controller queue contention,

benchmark memory intensity, DRAM bank contention, and DRAM row buffer hit

rate. If the entire memory system is abstractly viewed as a queue, Little’s Law [39]

bounds the rate at which the EMC is able to issue independent cache misses at the

queue size divided by the average time spent in the queue. Assuming a constant

103

application phase where the memory intensity of the runahead dependence chain is

constant, this is independent from the update interval of the EMC in the steady

state. For the memory intensive SPEC06 applications, this plateau lasts from the 5k

interval length until the 100k interval length on average. To reduce communication

overhead, it is advantageous to control the EMC at the coarsest interval possible to

maintain high performance. Therefore, based on Table 5.2 and Figure 5.13 I choose

a 100k instruction update interval for runahead at the EMC. This interval length

changes in Section 6.3.2 when multi-core contention changes this argument and a

dynamic interval length is advantageous.

1k 5k 10k 25k 50k 100k 250k 500k 1M 2M

732 2576 2864 2919 2898 2933 3002 3086 3074 3032

Table 5.2: Runahead Load to Use Distance (Instructions)

5.3 Methodology

For the single core evaluation, the simulator is set up as in Section 3.5. EMC

parameters are as in Section 4.4, except with only one dependent cache miss context

and the addition of a runahead issue context as shown in Figure 5.12. These settings

are summarized in Table 5.3. The system is evaluated on the medium and high

memory intensive benchmarks from the SPEC06 benchmark suite.

5.4 Results

5.4.1 Performance Results

Figure 5.14 presents the performance results of runahead at the EMC (RA-

EMC) as compared to the best runahead buffer algorithm (Section 5.2.1). RA-EMC

improves performance over the runahead buffer for all of the high memory intensity

SPEC06 benchmarks. The benchmarks with both very high memory intensity and

high RA-EMC request accuracy in Figure 5.15 such as bwaves, libquantum, lbm, and

mcf all show larger performance gains over the runahead buffer algorithm. On aver-

104

Core 4-Wide Issue, 256 Entry ROB, 92 Entry Reservation Station, Hybrid
Branch Predictor, 3.2 GHz Clock Rate

L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports, 3 Cycle
Latency, 8-way, Write-Through.

L2 Cache 1MB 8-way, 18-cycle latency, Write-Back.

EMC
Compute

2-wide issue. 8 Entry Reservation Stations. 32 Entry TLB. 64 Line
Data Cache 4-way, 2-cycle access, 1-port. 1 Runahead dependence
chain context with 32 entry uop buffer, 32 entry physical register file.
1 Dependent cache miss context with 16 entry uop buffer, 16 entry
physical register file. Micro-op size: 8 bytes in addition to any live-in
source data.

EMC
Instructions

Integer: add/subtract/move/load/store.
Logical: and/or/xor/not/shift/sign-extend.

Memory
Controller

64 Entry Memory Queue.

Prefetchers Stream: 32 Streams, Distance 32. Markov: 1MB Correlation Table,
4 addresses per entry. GHB G/DC: 1k Entry Buffer, 12KB total size.
All configurations: FDP [67], Dynamic Degree: 1-32, prefetch into
Last Level Cache.

DRAM DDR3[43], 1 Rank of 8 Banks/Channel, 8KB Row-Size, CAS 13.75ns.
800 MHz bus. 2 Channels.

Table 5.3: System Configuration

age, across the entire set of benchmarks the runahead buffer with the hardware stall

policy improves performance by 23% while RA-EMC improves performance by 35%.

The hardware stall policy results in a 7% lower performance gain when compared to

the stall oracle of Figure 5.4. Considering only the high memory intensity bench-

marks the runahead buffer with the hardware stall policy improves performance by

27% while RA-EMC increases performance by 41%.

5.4.2 RA-EMC Overhead

While RA-EMC increases performance, it also leads to an increase in on-

chip activity. With a 100k instruction interval length, the overhead of migrating

dependence chains and register state to the EMC for runahead is very small as shown

in Table 5.4. The total number of data messages required to send register state and

micro-operations to the EMC are listed under “Data Messages”. This is a .0006%

105

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n0

20

40

60

80

100

120
%

 I
P
C

 I
m

p
ro

v
e
m

e
n
t

Runahead Buffer RA-EMC

Figure 5.14: RA-EMC Performance

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0%

20%

40%

60%

80%

100%

R
A

-E
M

C
 R

e
q
u
e
st

 A
cc

u
ra

cy

Figure 5.15: RA-EMC Accuracy

106

average increase in data ring activity. The length of the average dependence chain that

is sent to the EMC is listed under “Dependence Chain Length” for each benchmark.

Data
Messages

zeusmp cactus wrf gems leslie omnetpp milc
992 1235 362 325 637 1402 972

soplex sphinx bwaves libq lbm mcf
668 1267 190 192 187 917

Dependence
Chain Length

zeusmp cactus wrf gems leslie omnetpp milc
10.7 12.9 3.9 3.5 4.8 15.1 10.5

soplex sphinx bwaves libq lbm mcf
5.2 13.3 2.1 2.0 2.0 9.8

Table 5.4: RA-EMC Communication Overhead

While register state and the dependence chains do not constitute a large over-

head, the EMC increases pressure on the on-chip cache hierarchy. EMC requests first

query the EMC data-cache before accessing the LLC (Section 4.3.3). The hit rate

in the EMC data cache is shown in Figure 5.16 while the increase in LLC traffic is

shown in Figure 5.17.

The benchmarks with very high hit rates in Figure 5.16 such as gems or om-

netpp tend to have load accesses in their dependence chains that hit in the data

cache of the core. These benchmarks require fast access to this shared data for high

RA-EMC request accuracy. Figure 5.16 demonstrates that the 4kB EMC cache re-

sults in a 56% cache hit rate. While this is a substantial fraction of operations, the

trade-off to executing dependence chains at the EMC is the increased pressure that

the remaining 44% of loads place on the LLC. Figure 5.17 shows that this results in

a 35% average increase in the number of LLC requests over a no-EMC baseline.

5.4.3 RA-EMC + Prefetching

Figure 5.18 demonstrates the performance impact when prefetchers are added

to the system. Overall, the Stream, GHB, and Markov+Stream prefetchers increase

performance by 14%, 22%, and 22% on average respectively. As RA-EMC increases

performance by 34% across the medium/high memory intensity benchmarks and by

107

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0%

20%

40%

60%

80%

100%

H
it

 R
a
te

Figure 5.16: EMC Cache Hit Rate

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 A

cc
e
ss

e
s

Figure 5.17: LLC Access Overhead

108

40% across the high memory intensity benchmarks, RA-EMC out-performs all three

prefetchers. Additionally, RA-EMC improves performance on average when combined

with each prefetcher. As in both Sections 3.6.3 and 3.6.3 I observe that the highest

performing system on average is the RA-EMC+GHB prefetcher.

Moreover, RA-EMC has the lowest bandwidth overhead of any of the evaluated

prefetchers as shown in Figure 5.19. I find that the Markov+Stream prefetcher uses

the most additional bandwidth while the GHB prefetcher bandwidth consumption is

comparable to RA-EMC. Applications with low RA-EMC request accuracy such as

omnetpp, milc, soplex, and sphinx use more bandwidth than those with high accuracy

such as lbm.

The 34% performance increase that RA-EMC provides is due to a decrease in

the effective memory access latency visible to the core. The effective memory access

latency is listed in Table 5.5 for each of the medium/high memory intensity SPEC06

benchmarks. Effective memory access latency is defined as the number of cycles that

it takes for a memory request to be satisfied (wake up dependent operations) after

it misses in the first level data cache of the core. The GHB prefetcher results in

a 30% effective memory access latency reduction, the largest when considering the

three prefetchers used in this evaluation. RA-EMC outperforms all three prefetchers

by resulting in a 34% reduction in effective memory access latency.

5.4.4 Energy Results

While RA-EMC may decrease energy consumption, it does so at the cost of

additional on-chip computational hardware. Figure 5.20 demonstrates the effect of

the RA-EMC on system (Chip+DRAM) energy consumption.

Overall, most of the benchmarks break even on energy consumption versus

the baseline. The three benchmarks with high accuracy and low bandwidth over-

head (bwaves, libquantum, and lbm) show significant energy reductions, leading to

a 10% energy reduction over the no-prefetching baseline. As in the performance

case, RA+EMC interacts favorably with the GHB prefetcher but increases energy

109

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n0

20

40

60

80

100

120

140
%

 I
P
C

 I
m

p
ro

v
e
m

e
n
t

Stream

GHB

Markov+Stream

Stream+RA-EMC

GHB+RA-EMC

Markov+Stream+RA-EMC

Figure 5.18: RA-EMC Performance with Prefetching

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

M
e
a
n0.0

0.5

1.0

1.5

2.0

2.5

N
o
rm

a
liz

e
d
 B

a
n
d
w

id
th

RA-EMC Stream GHB Markov+Stream

Figure 5.19: Normalized Bandwidth Overhead

110

Baseline

zeusmp cactus wrf gems leslie omnetpp milc
98 243 89 135 101 131 151

soplex sphinx bwaves libq lbm mcf Mean
130 114 170 253 186 93 146

Stream PF

zeusmp cactus wrf gems leslie omnetpp milc
92 240 66 64 58 136 113

soplex sphinx bwaves libq lbm mcf Mean
98 65 152 200 94 90 113

GHB PF

zeusmp cactus wrf gems leslie omnetpp milc
96 175 62 62 58 131 116

soplex sphinx bwaves libq lbm mcf Mean
95 66 81 223 85 93 103

Markov +
Stream PF

zeusmp cactus wrf gems leslie omnetpp milc
91 235 76 64 58 130 110

soplex sphinx bwaves libq lbm mcf Mean
99 63 153 225 103 90 115

RA-EMC

zeusmp cactus wrf gems leslie omnetpp milc
86 180 79 69 68 89 98

soplex sphinx bwaves libq lbm mcf Mean
69 55 84 183 90 78 95

Table 5.5: Effective Memory Access Latency (Cycles)

consumption with the Markov+Stream prefetcher. As noted in Figure 5.19 the

Markov+Stream prefetcher significantly increases bandwidth consumption, causing

RA-EMC requests to be less effective.

RA-EMC relies on significantly cutting execution time to reduce static energy

consumption since runahead causes an increase in dynamic energy consumption. In

the single core case, this trade-off is more difficult to balance as the chip is smaller.

However, sharing the RA-EMC in the multi-core case is evaluated in Section 6.5 and

results in a more significant reduction in energy consumption. Also note that the Chip

+ DRAM energy evaluation does not include other significant static power sources

such as disk or hardware peripherals. Table 5.6 breaks down the energy evaluation

into static and dynamic components normalized to a no-prefetching baseline. The

RA-EMC causes a 18% reduction in static energy consumption but a 21% increase

in dynamic energy consumption on average.

111

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
rm

a
liz

e
d
 E

n
e
rg

y

RA-EMC

Stream

GHB

Markov+Stream

Stream+RA-EMC

GHB+RA-EMC

Markov+Stream+RA-EMC

Figure 5.20: RA-EMC Energy Consumption

Static Energy

zeusmp cactus wrf gems leslie omnetpp milc
.90 1.1 .94 .84 .88 .90 .95

soplex sphinx bwaves libq lbm mcf Mean
.87 .89 .51 .45 .60 .84 .82

Dynamic
Energy

zeusmp cactus wrf gems leslie omnetpp milc
1.01 1.01 1.02 1.3 1.20 1.21 1.10

soplex sphinx bwaves libq lbm mcf Mean
1.08 1.32 1.23 1.40 1.36 1.51 1.21

Table 5.6: Normalized RA-EMC Static and Dynamic Energy

5.4.5 Sensitivity To System Parameters

In this Section I identify three key parameters to RA-EMC: LLC cache ca-

pacity, the number of memory banks and the threshold MPKI at which RA-EMC

execution is marked to begin in Algorithm 3. RA-EMC performance and energy

sensitivity to these parameters are listed in Table 5.7. The values used for these

parameters in the evaluation (Section 5.4.1) are bolded.

112

LLC Cache Size
512 KB 1 MB 2 MB 4 MB

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
22.3% 4.5% 34.3% -7.3% 36.1% -8.1% 35.8% -8.0%

Number of Memory Banks
8 16 32 64

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
34.3% -7.3% 37.1% -7.9% 35.4% -7.7% 34.1% -7.7%

RA-EMC Threshold MPKI
2 5 7 10

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
31.1% -3.1% 34.3% -7.3% 28.4% -1.5% 23.8% 3.3%

Table 5.7: RA-EMC Performance and Energy Sensitivity

RA-EMC shows some sensitivity to LLC capacity. If the LLC capacity is

too small, as in the 512KB case, the runahead distance is limited by available cache

capacity. Sensitivity to memory bandwidth is much smaller, as RA-EMC is able to

be more aggressive as memory system bandwidth increases. The threshold MPKI

to start runahead at the EMC also shows a large amount of performance sensitivity.

If the threshold MPKI is too high, then RA-EMC is not able to prefetch effectively

enough to amortize its static and dynamic energy overhead.

5.4.6 Dependent Miss Acceleration

As demonstrated in Section 4.5.4, dependent miss acceleration does not have

a large effect on single core performance since the small amount of on-chip contention

does not have a large impact on effective memory access latency. However, Fig-

ure 5.21 shows the performance results of using both runahead and dependent miss

acceleration at the EMC. Since dependent cache misses are critical to processor per-

formance (they are currently stalling the home core pipeline) and RA-EMC requests

are prefetches, dependent cache misses are given priority to issue if they are available.

Figure 5.21 shows that benchmarks with high numbers of dependent cache misses

(predominantly mcf) increase further in performance when dependent miss accelera-

tion is added to RA-EMC. This study is revisited in a multi-core context in Section

6.4.

113

ze
u
sm

p

ca
ct

u
s

w
rf

g
e
m

s

le
sl

ie

o
m

n
e
tp

p

m
ilc

so
p
le

x

sp
h
in

x

b
w

a
v
e
s

lib
q

lb
m

m
cf

G
M

e
a
n0

20

40

60

80

100

120
%

 I
P
C

 I
m

p
ro

v
e
m

e
n
t

RA-EMC RA-EMC+Dep

Figure 5.21: RA-EMC with Dependent Miss Acceleration

5.5 Conclusion

In this chapter I augmented the Enhanced Memory Controller (EMC) with the

ability to continuously run ahead of the core without the interval length limitations

of the runahead paradigm. The result is a 34% average reduction in effective memory

access latency and 37% performance increase on the high memory intensity SPEC06

benchmarks. I show that a more intelligent decision to pick the dependence chain

to use during runahead results in increased performance using both the runahead

buffer and the EMC. In the next chapter, I evaluate the RA-EMC in a bandwidth

constrained multi-core setting and demonstrate its impact as a shared resource that

reduces effective memory access latency for both independent and dependent cache

misses.

114

Chapter 6

Multi-core Enhanced Memory Controller Policies

6.1 Introduction

Chapter 5 developed hardware techniques that allow a single core to use the

EMC to continuously runahead during memory intensive phases, thereby reducing

effective memory access latency for independent cache misses. In this Chapter, I

expand the single-core system to a multi-core system. In the multi-core case, the

EMC is a shared resource that all of the different cores contend over. Therefore,

I will develop policies that allow the EMC to decide when it is best to runahead

with a dependence chain from each core (Section 6.3). I will then combine the in-

dependent cache miss acceleration that runahead provides with the dependent miss

acceleration mechanisms developed in Chapter 4 (Section 6.4). By combining these

two mechanisms, I propose a complete mechanism that can reduce effective memory

access latency for all cache misses. This is the first work that I am aware of that uses

dependence chains to accelerate both independent and dependent cache misses in a

multi-core context.

6.2 Methodology

As the policies in this chapter are experiment-driven, I first review the multi-

core simulation model. As in Chapter 4 weighted speedup is used [64] as a performance

metric.

Wspeedup =
n−1∑
i=0

IPCshared
i

IPCalone
i

(6.1)

115

The system configuration is shown in Table 6.1, and is identical to the system

in Chapter 4 with the exception of the single new runahead context (RA-EMC). The

workloads that I use for evaluation in this chapter are shown in Table 6.2. The “High”

workloads are labeled H1-H10 and consist of a random mix of high memory intensity

benchmarks. The “Mix” workloads are labeled “M1-M5” and “L16-L20” and consist

of a random mix of 2 high intensity benchmarks/2 medium intensity benchmarks and

2 high intensity benchmarks/2 low intensity benchmarks respectively. In addition

to these combinations, I additionally show results for workloads that consist of four

copies of each of the high and medium memory intensity benchmarks in Table 6.3. I

refer to these workloads as the “Copy” workloads.

Core 4-Wide Issue, 256 Entry ROB, 92 Entry Reservation Station, Hybrid
Branch Predictor, 3.2 GHz Clock Rate

L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports, 3 Cycle
Latency, 8-way, Write-Through.

L2 Cache Distributed, Shared, 1MB 8-way slice per core, 18-cycle latency,
Write-Back. 4 MB total.

Interconnect 2 Bi-Directional rings, control (8 bytes) and data (64 bytes). 1 cycle
core to LLC slice bypass. 1 cycle latency between ring stops.

EMC
Compute

2-wide issue. 8 Entry Reservation Stations. 4KB Data Cache 4-way,
2-cycle access, 1-port. 1 Runahead dependence chain context with 32
entry uop buffer, 32 entry physical register file. 2 Dependent cache
miss contexts with 16 entry uop buffer, 16 entry physical register file.
Micro-op size: 8 bytes in addition to any live-in source data.

EMC
Instructions

Integer: add/subtract/move/load/store.
Logical: and/or/xor/not/shift/sign-extend.

Memory
Controller

Batch Scheduling [49]. 128 Entry Memory Queue.

Prefetchers Stream: 32 Streams, Distance 32. Markov: 1MB Correlation Table,
4 addresses per entry. GHB G/DC: 1k Entry Buffer, 12KB total size.
All configurations: FDP [67], Dynamic Degree: 1-32, prefetch into
Last Level Cache.

DRAM DDR3[43], 1 Rank of 8 Banks/Channel, 2 Channels, 8KB Row-Size,
CAS 13.75ns. CAS = tRP = tRCD = CL. Other modeled DDR3 con-
straints: BL, CWL, tRC,RAS,RTP,CCD,RRD,FAW,WTR,WR. 800 MHz
Bus, Width: 8 B.

Table 6.1: Multi-Core System Configuration

116

H1 bwaves+lbm+milc+omnetpp M11 soplex+gems+wrf+mcf

H2 soplex+omnetpp+bwaves+libq M12 milc+zeusmp+lbm+cactus

H3 sphinx3+mcf+omnetpp+milc M13 gems+wrf+mcf+omnetpp

H4 mcf+sphinx3+soplex+libq M14 cactus+gems+soplex+sphinx3

H5 lbm+mcf+libq+bwaves M15 libq+leslie3d+wrf+lbm

H6 lbm+soplex+mcf+milc L16 h264ref+lbm+omnetpp+povray

H7 bwaves+libq+sphinx3+omnetpp L17 tonto+sphinx3+sjeng+mcf

H8 omnetpp+soplex+mcf+bwaves L18 bzip2+namd+mcf+sphinx3

H9 lbm+mcf+libq+soplex L19 omnetpp+soplex+namd+xalanc

H10 libq+bwaves+soplex+omentpp L20 soplex+bwaves+bzip2+perlbench

Table 6.2: Multi-Core Workloads

High Intensity
(MPKI >= 10)

omnetpp, milc, soplex, sphinx3, bwaves, libquantum,
lbm, mcf

Medium Intensity
(MPKI >=5)

zeusmp, cactusADM, wrf, GemsFDTD, leslie3d

Low Intensity
(MPKI <5)

calculix, povray, namd, gamess, perlbench, tonto, gro-
macs, gobmk, dealII, sjeng, gcc, hmmer, h264ref, bzip2,
astar, xalancbmk

Table 6.3: SPEC06 Classification by Memory Intensity

6.3 Multi-core RA-EMC Policies

In this Section I evaluate three different policies for determining which depen-

dence chain to use during RA-EMC in a multi-core system. From Table 6.1, note that

the EMC is augmented with one runahead context. I show sensitivity to this num-

ber (Section 6.3.3), but a single runahead context is optimal as it devotes all EMC

resources in a given interval to accelerating a single benchmark, thereby maximizing

runahead distance for that application.

6.3.1 Policy Evaluation

Three policies are evaluated in this section. All three policies are interval

based. Initially the interval length is 100k instructions retired by the core that has

provided a runahead dependence chain (as in Section 5.2.3). At the end of each

interval, the EMC selects a new dependence chain to use for runahead. Dependence

chains are generated by each core (Section 5.2.2).

117

The first policy is a round-robin policy. This policy picks a core from each

eligible application in the workload in a round-robin fashion. An eligible application

has an MPKI above the threshold (MPKI >5, from Table 5.7). The chosen core then

provides the EMC with a dependence chain to use during RA-EMC. This scheduling

is repeated after the home core that generated the dependence chain notifies the EMC

that it has retired the threshold number of instructions.

The second policy schedules a dependence chain for RA-EMC from an eligible

application with the lowest IPC in the workload. By picking the benchmark with

the lowest IPC, the EMC is able to accelerate the application that is performing the

worst in the workload.

The third policy schedules a dependence chain from the eligible application

with the highest score in the workload. Recall from Section 5.2.2 that the hardware

stall policy assigns a score to each cache miss based on how often it blocks retirement.

These scores are sent to the EMC in the third policy and the EMC notifies the core

with the highest score to send a dependence chain for runahead execution. This policy

prioritizes accelerating the dependence chain that is causing the workload to stall the

most.

Since the EMC is intended to accelerate high memory intensity workloads, I

first concentrate on making policy decisions based on the results of the High and Copy

workload sets. The performance results of these three policies are shown in Figure

6.1 for the High workload set and in Figure 6.2 for the Copy workloads. The first,

second, and third policies are referred to as Round Robin, IPC, and Score respectively.

Figures 6.1 and 6.2 also include a Runahead Buffer data point. In this configuration

a runahead buffer is added to each core and allowed to runahead using the hardware

stall policy (Section 5.2.2).

From this study it is clear that the round-robin policy is the highest performing

policy on average across both the High and Copy workloads. Examining the Copy

workloads in more detail, the round-robin policy is the highest performing policy on

all high intensity workloads except for 4xlibq where the Score policy performs best.

118

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1

0

G
M

e
a
n0

10

20

30

40

50

60

70

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

Runahead Buffer Round Robin Score IPC

Figure 6.1: Multi-Core Policy on High Workloads

4
x
ze

u
sm

p

4
x
ca

ct
u
s

4
x
w

rf

4
x
g
e
m

s

4
x
le

sl
ie

4
x
o
m

n
e
tp

p

4
x
m

ilc

4
x
so

p
le

x

4
x
sp

h
in

x

4
x
b
w

a
v
e
s

4
x
lib

q

4
x
lb

m

4
x
m

cf

G
M

e
a
n10

0
10
20
30
40
50
60
70
80

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

Runahead Buffer Round Robin Score IPC

Figure 6.2: Multi-Core Policy on Copy Workloads

119

The Score policy also comes close to matching round-robin performance on 4xbwaves.

Both libq and bwaves have a very small number of dependence chains that cause

full-window stalls in Figure 5.8. This indicates that the Score policy works best when

there is a clear choice as to the dependence chain that is causing the workload to slow

down the most.

The runahead buffer results show that adding a runahead buffer to each core

does not match the performance gains of the RA-EMC policies. The runahead buffer

is not able to runahead for very long periods of time, reducing its performance impact

(Section 5.1). The IPC policy performs very poorly. Table 6.4 shows why this is the

case for the Copy workloads where the IPC policy has a very small performance gain

of only 6%.

Accuracy Runahead
Distance

Round-Robin 85% 2343

Score 85% 2473

IPC 75% 3658

Table 6.4: RA-EMC Accuracy and Runahead Distance (Instructions)

The IPC policy has both much lower memory request accuracy and a much

larger runahead distance when compared to the round-robin and Score policies. Runa-

head distance is measured from the number of instructions that the core executes

between when the EMC fetches a cache line and when the core accesses the line for

the first time. The reason for this disparity is that by picking the benchmark with

the smallest IPC every time, the IPC policy lengthens the number of cycles that

the EMC executes a particular dependence chain. This interval is initially statically

set to 100k instructions. A benchmark with a very low IPC takes longer to reach

this threshold relative to rest of the multi-core system. This means that the EMC

runs ahead for more cycles than it would with a dependence chain from a different

core, generating more runahead requests and hurting the cache locality of the other

application. This observation motivates the need for a dynamic interval length in

120

the multi-core RA-EMC system to control this effect. I explore a dynamic runahead

interval in Section 6.3.2.

6.3.2 Dynamically Adjusting Runahead Distance

Table 6.4 shows that a long RA-EMC update interval can lead to inaccurate

runahead requests in a multi-core setting. Therefore, I propose a dynamic policy

that tracks runahead request accuracy (similar to FDP [67]). Runahead requests set

an extra-bit in the tag-store of each LLC cache line. Upon eviction, the EMC is

notified if a runahead-fetched line was touched by the core. If this is the case, the

EMC increments a useful counter. These counters are reset at the beginning of each

runahead interval. Based on these counters, the EMC determines the length of each

runahead interval as in Table 6.5.

>95% >90% >85% <85%

Interval
Length

100k 50k 20k 10k

Table 6.5: RA-EMC Accuracy and Interval Length (Retired Instructions)

The performance results for the dynamic interval length policy are shown in

Figure 6.3 for the High workloads and Figure 6.4 for the Copy workloads. The runa-

head distance and accuracy for these dynamic polices are shown in Table 6.6. Overall,

all policies improve in runahead request accuracy with a dynamic interval length, but

the result of the decrease in runahead distance has a much larger performance effect

on low-performing workloads than high-performing workloads. The low-performing

IPC policy shows the largest improvement, with a performance increase from 6%

on the Copy workloads to 15%. On the High workloads IPC policy performance is

increased from 14% to 32%. Yet, from this data, I conclude that the round robin

policy is still the highest performing policy with a 55% performance gain on the High

workloads and a 37% gain on the Copy workloads. This is roughly the same as the

53% gain from Figure 6.1 and the 37% gain from Figure 6.2. This policy is used for

the remainder of this evaluation.

121

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1

0

G
M

e
a
n0

10

20

30

40

50

60

70

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

Round Robin

Round Robin Dyn

Score

Score Dyn

IPC

IPC Dyn

Figure 6.3: Dynamic Multi-core Policy on High Workloads

4
x
ze

u
sm

p

4
x
ca

ct
u
s

4
x
w

rf

4
x
g
e
m

s

4
x
le

sl
ie

4
x
o
m

n
e
tp

p

4
x
m

ilc

4
x
so

p
le

x

4
x
sp

h
in

x

4
x
b
w

a
v
e
s

4
x
lib

q

4
x
lb

m

4
x
m

cf

G
M

e
a
n10

0
10
20
30
40
50
60
70
80

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

Round Robin

Round Robin Dyn

Score

Score Dyn

IPC

IPC Dyn

Figure 6.4: Dynamic Multi-core Policy on Copy Workloads

122

Accuracy Runahead
Distance

Round Robin 91% 2040

Score 90% 2119

IPC 75% 2343

Table 6.6: Dynamic Runahead Accuracy and Distance

6.3.3 Effect of Increasing RA-EMC Contexts

As shown in Table 6.1, the EMC uses a single runahead dependence chain

context for the policy analysis in this chapter. The EMC is designed to have the

minimum capability to execute dependence chains (Section 4.3). This results in a very

lightweight hardware accelerator with a 2-wide issue capability, limited out-of-order,

and a small data cache. If the EMC is multiplexed between runahead dependence

chains every cycle on a very fine-granularity, overall performance gain degrades due

to EMC resource contention. This is demonstrated in Table 6.7 where going from 1 to

2 runahead contexts reduces performance gain by half. While more aggressive EMC

designs are possible, Section 6.3.2 notes that even this lightweight design needs to be

throttled down to maximize performance. I find that a single runahead context is

sufficient to maximize runahead distance and this context can be multiplexed among

high-memory intensity applications at coarse intervals.

High Copy

1 Context 55.3% 37.2%

2 Contexts 24.8% 20.8%

4 Contexts 10.7% 16.7%

Table 6.7: RA-EMC Context Performance Sensitivity

6.4 Multi-core RA-EMC Evaluation

To allow the EMC to accelerate both independent and dependent cache misses,

in this Section I incorporate both dependent cache miss acceleration (Chapter 4) and

prefetching into the RA-EMC round robin policy.

123

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1

0

G
M

e
a
n0

10

20

30

40

50

60

70

80
%

 W
e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

RA-EMC RA-EMC+Dep

Figure 6.5: RA-EMC+Dep Performance on High Workloads

Dependent Miss Acceleration: To share the EMC between runahead operations

and dependent cache miss chains I use a simple policy. Dependent cache misses are

more critical than runahead requests since they are currently blocking retirement at

the home core. Therefore, they are given priority at the EMC. If a dependent miss

context has ready instructions it is given scheduling priority on the EMC. Otherwise,

the EMC is allowed to execute runahead operations.

I evaluate RA-EMC+Dep (the combination of RA-EMC and dependent miss

acceleration from Chapter 4) on three sets of workloads. The High set and the Mix

set in Table 6.2 along with four copies of each of the high and medium intensity

benchmarks in Table 6.3. Results for the High/Copy/Mix workloads are shown in

Figure 6.5/6.6/6.7 respectively.

Overall, the benefit of adding dependent miss acceleration is similar to the re-

sults of Section 4.5. Workloads such as H1/H6/H9 that show small gains in Figure 4.9

also show lower performance (Figure 6.5). Workloads such as H3, H4, H7, H8 all show

performance gains over the RA-EMC policy. Adding dependent miss acceleration to

the RA-EMC policy leads to a 8.7% performance gain over the High workloads. The

124

4
x
ze

u
sm

p

4
x
ca

ct
u
s

4
x
w

rf

4
x
g
e
m

s

4
x
le

sl
ie

4
x
o
m

n
e
tp

p

4
x
m

ilc

4
x
so

p
le

x

4
x
sp

h
in

x

4
x
b
w

a
v
e
s

4
x
lib

q

4
x
lb

m

4
x
m

cf

G
M

e
a
n0

10

20

30

40

50

60

70

80

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

RA-EMC RA-EMC+Dep

Figure 6.6: RA-EMC+Dep Performance on Copy Workloads

M
1

1

M
1

2

M
1

3

M
1

4

M
1

5

L1
6

L1
7

L1
8

L1
9

L2
0

G
M

e
a
n0

10

20

30

40

50

60

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

RA-EMC RA-EMC+Dep

Figure 6.7: RA-EMC+Dep Performance on Mix Workloads

125

Copy workloads similarly show large performance gains on mcf (22%) and omnetpp

(12%) while showing no gain on benchmarks with small numbers of dependent cache

misses like bwaves or libquantum.

The Mix workloads show much smaller gains than the higher memory intensity

workloads. The workloads with mcf or omnetpp, such as M13, perform well while

RA-EMC+Dep does not improve performance over RA-EMC in the other cases.

Table 6.8 lists the dynamic operation split between runahead chains and de-

pendent cache miss chains at the EMC. Of all the operations executed at the EMC,

only 3.2% are operations in dependent cache miss chains for the High workload suite.

This data supports the argument that available dependent cache miss chains need

to be given priority over runahead operations at the EMC. Dependent cache misses

are much more rare than runahead operations and gain high priority when they are

available. Table 6.8 also lists the bandwidth overhead of the RA-EMC+Dep system.

There is a small increase from the 7% bandwidth overhead (Figure 5.19) to a 11.2%

increase for RA-EMC+Dep.

High Copy Mix

Dependent Ops Executed (%) 3.2% 2.4% 1.3%

Bandwidth Overhead 11.2% 8.5% 5.4%

Table 6.8: RA-EMC+Dep Statistics

The effective memory access latency reduction for RA-EMC+Dep is listed in

Table 6.9. Latencies are shown in cycles for each of the three evaluated workload

sets. Effective memory access latency is measured from the time a memory access

misses in the data-cache to the corresponding fill that wakes up dependent operations.

This distribution is bimodal, with LLC hits taking fewer cycles than LLC misses.

Therefore, higher intensity workloads have higher effective memory access latency,

with the average latency of the High workload being the highest at 298 cycles. The

RA-EMC+Dep reduces average effective memory access latency by 19%/22%/43%

for the High/Copy/Mix workloads respectively. The effective memory access latency

improvement increases as workload memory intensity decreases. The reason for this

126

is also shown in Table 6.9 as the reduction in MPKI for each RA-EMC+Dep system

is listed. The lower memory intensity applications have a higher relative reduction in

MPKI.

Effective Memory Access Latency MPKI

High Base 258 23.9

High RA-EMC+Dep 210 19.9

Copy Base 226 16.1

Copy RA-EMC+Dep 175 12.8

Mix Base 159 11.3

Mix RA-EMC+Dep 90 8.5

Table 6.9: RA-EMC+Dep Effective Memory Access Latency Reduction

Prefetching: Earlier chapters in this dissertation have demonstrated that prefetch-

ing increases performance when combined with the independent/dependent cache

miss acceleration mechanisms that I have proposed. I find that this continues with

RA-EMC+Dep. Figures-6.8/6.9/6.10 show performance for the High/Copy/Mix work-

load suites when combined with Stream/GHB/Markov+Stream prefetchers.

Once again, the results are an extension of those in Figure 4.9 and Figure

5.18. For the High workloads, the 62% performance increase of RA-EMC+Dep in

Figure 6.5 is larger than any of the average performance increases of the evaluated

prefetchers. On the lower memory intensity workloads, the GHB prefetcher alone

performs as well as RA-EMC+Dep. On the Copy workloads, the GHB prefetcher

results in a 45% gain while RA-EMC+Dep results in a 40% performance gain. On

the Mix workloads the GHB prefetcher results in a 33% gain while RA-EMC+Dep

results in a 37% gain. I conclude that the GHB prefetcher is the highest performing

prefetcher among the evaluated on-chip prefetchers.

The highest performing system overall is the combination of GHB+RA-EMC+Dep.

On the High/Copy/Mix workloads this system improves performance by 76%/70%/59%

over the no-prefetching baseline. The GHB prefetcher and RA-EMC+Dep com-

plement each other well, due to the low bandwidth overhead of these two tech-

niques. The highest bandwidth prefetcher, Markov+Stream, performs poorly with

127

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1

0

G
M

e
a
n0

20

40

60

80

100
%

 W
e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

Stream

GHB

Markov+Stream

Stream+RA-EMC+Dep

GHB+RA-EMC+Dep

Markov+Stream+RA-EMC+Dep

Figure 6.8: RA-EMC+Dep Performance with Prefetching on High Workloads

4
x
ze

u
sm

p

4
x
ca

ct
u
s

4
x
w

rf

4
x
g
e
m

s

4
x
le

sl
ie

4
x
o
m

n
e
tp

p

4
x
m

ilc

4
x
so

p
le

x

4
x
sp

h
in

x

4
x
b
w

a
v
e
s

4
x
lib

q

4
x
lb

m

4
x
m

cf

G
M

e
a
n20

0
20
40
60
80

100
120
140
160

%
 W

e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

Stream

GHB

Markov+Stream

Stream+RA-EMC+Dep

GHB+RA-EMC+Dep

Markov+Stream+RA-EMC+Dep

Figure 6.9: RA-EMC+Dep Performance with Prefetching on Copy Workloads

128

M
1

1

M
1

2

M
1

3

M
1

4

M
1

5

L1
6

L1
7

L1
8

L1
9

L2
0

G
M

e
a
n0

20

40

60

80

100

120
%

 W
e
ig

h
te

d
 S

p
e
e
d
u
p

 I
m

p
ro

v
e
m

e
n
t

Stream

GHB

Markov+Stream

Stream+RA-EMC+Dep

GHB+RA-EMC+Dep

Markov+Stream+RA-EMC+Dep

Figure 6.10: RA-EMC+Dep Performance with Prefetching on Mix Workloads

RA-EMC+Dep. The overall bandwidth consumption and effective memory access

latency improvements of each of these systems are listed in Figures 6.11/6.12 respec-

tively.

Throttling the EMC: Since these RA-EMC+Dep and the GHB prefetcher com-

plement each other particularly well, I extend the throttling policy (Section 6.3.2)

to control both RA-EMC+Dep and the GHB prefetcher. By keeping track of the

accuracy of each mechanism (defined by the percent of all prefetched lines that are

accessed by the core prior to eviction) the EMC is able to throttle RA-EMC and

the GHB prefetcher in a fashion similar to FDP [67]. If RA-EMC is more accurate

than the GHB prefetcher then the GHB prefetcher is throttled down: the number

of requests it is allowed to issue is reduced. If the GHB prefetcher is more accurate

than RA-EMC, then the issue width of the EMC for runahead chains is reduced from

2 to 1. The performance effects of this throttling scheme are shown in Table 6.10.

This policy increases performance on workloads where the GHB prefetcher is more

129

High Copy Mix
0

10

20

30

40

50

B
a
n
d
w

id
th

 O
v
e
rh

e
a
d
 (

%
)

RA-EMC+Dep

Markov+Stream

Markov+Stream+RA-EMC+Dep

Stream

Stream+RA-EMC+Dep

GHB

GHB+RA-EMC+Dep

Figure 6.11: Average Bandwidth Overhead with Prefetching

High Copy Mix
0

50

100

150

200

250

300

E
ff

e
ct

iv
e
 M

e
m

o
ry

 A
cc

e
ss

 L
a
te

n
cy

 (

C
y
cl

e
s)

RA-EMC+Dep

Markov+Stream

Markov+Stream+RA-EMC+Dep

Stream

Stream+RA-EMC+Dep

GHB

GHB+RA-EMC+Dep

Figure 6.12: Average Effective Memory Access Latency with Prefetching

130

accurate than RA-EMC. It generally does not effect the performance of the high

memory intensity workloads (High/Copy), but it does improve performance for the

Mix workload set from 59% to 65%.

High Copy Mix

Weighted Speedup Gain (%) 76.4% 71.0% 65.3%

Table 6.10: RA-EMC+Dep+GHB Performance with Throttling

6.4.1 Energy Evaluation

In contrast to the single core case in Chapter 5 where the EMC led to a

7.8% chip area overhead, the EMC is 2% of total chip area in the multi-core case.

This reduces EMC static energy impact. Moreover, the multi-core workloads run for

longer than the single-core workloads due to multi-core contention. For example the

multi-core run of 4xmcf runs for 42% more cycles than the single core run of mcf

in Chapter 5. Since these memory intensive applications already have low-activity

factors, this leads to static energy dominating energy consumption. For 4xmcf, static

energy is 76.9% of total system energy consumption. In contrast, static energy is

59.7% of mcf energy consumption in the single core case. These large static energy

contributions relative to the small static energy cost of the EMC in the multi-core

case mean that the large performance improvements from Section 6.4 translate to

large energy reductions. These reductions are shown in Figures-6.13/6.14/6.15 for

the High/Copy/Mix workloads.

I find that RA-EMC+Dep+GHB is the lowest energy consuming system in

all three workload sets consuming 61%/64%/65% of the energy in the no-prefetching

baseline on average for the High/Copy/Mix workloads. RA-EMC+Dep is generally

as energy efficient as the GHB prefetcher. However, in the High workloads RA-

EMC+Dep has a large relative performance increase over GHB prefetching (Section

6.4). This leads to a 13% energy reduction over GHB prefetcher in Figure 6.13.

While RA-EMC+Dep improves energy consumption in the multi-core case,

the cost is an increase in on-chip contention. Table 6.11 shows the increase in ring

131

H
1

H
2

H
3

H
4

H
5

H
6

H
7

H
8

H
9

H
1
0

G
M

e
a
n0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

o
rm

a
liz

e
d
 E

n
e
rg

y

RA-EMC

Stream

GHB

Markov+Stream

Stream+RA-EMC

GHB+RA-EMC

Markov+Stream+RA-EMC

Figure 6.13: RA-EMC+Dep Energy Consumption on High Workloads

4
x
ze

u
sm

p

4
x
ca

ct
u
s

4
x
w

rf

4
x
g
e
m

s

4
x
le

sl
ie

4
x
o
m

n
e
tp

p

4
x
m

ilc

4
x
so

p
le

x

4
x
sp

h
in

x

4
x
b
w

a
v
e
s

4
x
lib

q

4
x
lb

m

4
x
m

cf

G
M

e
a
n0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 E

n
e
rg

y

RA-EMC

Stream

GHB

Markov+Stream

Stream+RA-EMC

GHB+RA-EMC

Markov+Stream+RA-EMC

Figure 6.14: RA-EMC+Dep Energy Consumption on Copy Workloads

132

M
1
1

M
1
2

M
1
3

M
1
4

M
1
5

L1
6

L1
7

L1
8

L1
9

L2
0

G
M

e
a
n0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
rm

a
liz

e
d
 E

n
e
rg

y

RA-EMC

Stream

GHB

Markov+Stream

Stream+RA-EMC

GHB+RA-EMC

Markov+Stream+RA-EMC

Figure 6.15: RA-EMC+Dep Energy Consumption on Mix Workloads

activity and L2 accesses for RA-EMC+Dep. The systems with prefetching but no

RA-EMC+Dep do not effect these statistics and are excluded from the table. Overall,

RA-EMC+Dep results in a roughly 30% on-chip interconnect overhead and a 75%

increase in the number of LLC accesses. The LLC access overhead increases when

prefetching is enabled, particularly when the Markov+Stream prefetcher is added to

the system which generally causes a reduction in RA-EMC+Dep performance and

accuracy.

6.5 Sensitivity to System Parameters

In this Section I identify three key parameters to the RA-EMC+Dep system:

LLC cache capacity, the number of memory banks, and the number of cycles that

it takes to access the LLC. RA-EMC performance and energy sensitivity to these

parameters are listed in Table 6.12. The values used for these parameters in the

evaluation in Section 6.4 are bold.

133

Data Ring
Overhead

Control
Ring
Overhead

LLC
Access
Overhead

High RA-EMC+Dep 26.0% 24.0% 75.1%

High
Stream+RA-EMC+Dep

40.5% 31.3% 81.3%

High
GHB+RA-EMC+Dep

38.5% 29.1% 78.3%

High Markov+Stream+
RA-EMC+Dep

41.2% 34.5% 92.7%

Copy RA-EMC+Dep 22.9% 31.3% 63.5%

Copy
Stream+RA-EMC+Dep

30.9% 38.1% 82.5%

Copy
GHB+RA-EMC+Dep

27.4% 33.2% 71.4%

Copy Markov+Stream+
RA-EMC+Dep

35.9% 41.2% 87.8%

Mix RA-EMC+Dep 29.5% 37.1% 65.3%

Mix
Stream+RA-EMC+Dep

34.3% 41.2% 74.1%

Mix
GHB+RA-EMC+Dep

32.6% 38.5% 72.3%

Mix Markov+Stream+
RA-EMC+Dep

38.1% 45.3% 86.7%

Table 6.11: System On-Chip Overhead

RA-EMC+Dep shows significant performance sensitivity to very large LLC

size (16MB), where the impact of runahead prefetching is diminished. RA-EMC+Dep

also shows performance sensitivity to a large number of memory banks/channel (64

banks/channel) where the delay that the dependent miss acceleration at the EMC

exploits is decreased. Overall, system energy reduction stays relatively constant in the

LLC/memory bank sensitivity as chip size/DRAM bandwidth increases in both RA-

EMC+Dep and the baseline. Increasing LLC access latency decreases RA-EMC+Dep

benefit and reduces the energy consumption benefit over the baseline, while reducing

LLC latency benefits RA-EMC+Dep. This is because all EMC cache misses result in

LLC lookups and a low latency LLC is advantageous to EMC performance.

134

LLC Cache Size
2 MB 4 MB 8 MB 16 MB

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
53.5% -29.6% 63.3% -31.3% 52.9% -33.3% 45.8% -34.2%

Number of Memory Banks
8 16 32 64

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
61.0% -32.9% 63.3% -31.3% 51.0% -28.8% 50.1% -28.0%

LLC Latency (Cycles)
13 18 23 28

∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy ∆ Perf ∆ Energy
67.1% -34.3% 63.3% -31.3% 43.9% -26.9% 38.5% -25.3%

Table 6.12: Multi-Core RA-EMC Performance and Energy Sensitivity

6.6 Conclusion

In this chapter I developed the mechanisms that are required to allow the

Enhanced Memory Controller to accelerate both independent and dependent cache

misses in a multi-core system. This proposal, RA-EMC+Dep is shown to outperform

three on-chip prefetchers (Stream, GHB, and Stream+Markov). RA-EMC+Dep re-

duces effective memory access latency by 19% on a suite of high memory inten-

sity workloads. This is greater than the effective memory access latency reduction

achieved by any of the three evaluated prefetchers. When combined with a GHB

prefetcher, RA-EMC+Dep+GHB is the highest performing system, resulting in a

28.2% reduction in effective memory access latency. I conclude that RA-EMC+Dep

improves system performance by accelerating both independent and dependent cache

misses.

135

Chapter 7

Conclusions and Future Work

The effective latency of accessing main memory is the largest impediment to

high single thread performance. All of the applications in Figure 1.1 with an IPC

of under one are high-memory intensity benchmarks. This dissertation studies the

dynamic properties of the operations that lead to last level cache (LLC) misses. The

key insight is that all LLC misses can be separated into two categories based on their

dependence chains: independent cache misses and dependent cache misses. Using

this insight, I develop hardware mechanisms to increase performance for high-memory

intensity benchmarks.

Independent cache misses have all of the source data that is required to gener-

ate the address of the memory access available on-chip. The reason that the processor

pipeline stalls waiting for the data from an independent cache miss is that the back-

end of the processor has limited resources and can not continuously fetch and execute

operations. To mitigate this problem, this dissertation proposes an efficient version of

runahead execution. By dynamically isolating and executing only the filtered depen-

dence chains that lead to independent cache misses, the runahead buffer generates

57% more memory level parallelism on average when compared to traditional runa-

head while consuming 17.5% less energy.

This dissertation then shows that the performance gain due to the runahead

buffer is limited by the short length of each runahead interval. To solve this problem,

I develop mechanisms to offload runahead dependence chains to a compute capable

memory controller where they are speculatively executed continuously to prefetch

data. This prefetching is shown to significantly reduce the effective memory access

136

latency of subsequent demand requests and outperforms three on-chip prefetchers

with a lower memory bandwidth overhead.

Dependent cache misses are difficult to accelerate as source data is not available

on-chip and memory access addresses are data-dependent. This severely limits the

ability of prefetchers to efficiently predict the address of a dependent cache miss

far enough in advance to reduce the effective latency of accessing main memory.

This dissertation shows that a predominant source of the effective memory access

latency for dependent cache misses is a result of on-chip contention. This dissertation

develops mechanisms to reduce the on-chip delay observed by a dependent cache miss

by migrating the filtered dependence chain to a compute capable memory controller

for execution when source data arrives from main memory. By executing dependent

cache misses at the enhanced memory controller (EMC), these misses experience 20%

lower latency than if they were issued by the core.

By combining dependent cache miss acceleration with continuous runahead

execution at the EMC, the final mechanism in this dissertation, RA-EMC+Dep re-

duces effective memory access latency in a multi-core system by 19% while increasing

performance on a set of ten high-memory intensity workloads by 62%. This is a

greater performance increase and effective memory access latency reduction than any

of the three on-chip prefetchers that are used in the evaluation. RA-EMC+Dep is the

first combined mechanism that uses dependence chains to automatically accelerate

both independent and dependent cache misses in a multi-core system.

RA-EMC+Dep requires additional compute hardware at the memory con-

troller. This dissertation demonstrates that this proposed hardware has limited over-

head and can be tailored to the task of executing the dependence chains that lead to

cache misses. This enhanced memory controller (EMC) does not require large com-

pute structures such as floating point or vector units. It does not require heavyweight

out-of-order hardware structures such as register renaming or a wide super-scalar ex-

ecution engine. The short dependence chains that the EMC executes do not require a

large monolithic physical register file. The EMC does not need a front-end as it exe-

137

cutes chains of decoded micro-ops that are provided by the main core. As dependent

cache misses are rare when compared to independent cache misses, this disserta-

tion demonstrates that these two acceleration mechanisms are easily combined at a

lightweight EMC.

This dissertation makes a case for compute capable memory controllers and

dynamically filtered code execution. These are two lightly explored areas that provide

a route for hardware to reduce or eliminate the effects of effective memory access

latency on memory intensive applications. There are several paths forward to improve

the EMC that is proposed in this dissertation. The primary drawback to computation

at the EMC is the increased pressure that is placed on the LLC. Yet, the necessity of

this increased pressure is questionable. As the EMC executes speculative dependence

chains it is not clear that EMC data cache needs to be placed inside the coherence

domain of the multi-core processor. Opportunistic or lazy data updates to the EMC

would reduce the remote-execution overhead on the multi-core chip. Taking this

concept even further, the EMC is a prime location for value prediction. As the

data values that the EMC uses do not need to be 100% correct and up to date for

prefetching, a value predictor may be good enough to avoid constant LLC requests.

Exploring the hardware structure of the EMC itself provides a different re-

search direction. The proposed EMC still looks like the back-end of an out-of-order

core. However, as dependence chains are short, a pure dataflow implementation

could further reduce dynamic energy consumption and increase runahead distance.

Exposing the EMC to the programmer could allow expert-programmers to hand code

optimal dataflow threads that prefetch data in cohort with application phases.

Researchers can also build on the simple code filtering mechanisms that are

developed in this dissertation to enable EMC-like engines to provide intelligent feed-

back and control throughout the cache hierarchy. For example, different flavors of

pattern-matching prefetchers can be driven by feedback from how accurate runa-

head threads currently are and how useful each flavor of prefetcher is to future code.

Cache replacement policies and cache partitioning algorithms can take into account

138

reuse information from filtered dependence chains to guide policy decisions. Memory

scheduling algorithms can use information about future memory accesses to determine

which row buffers to hold open or to close. All current on-chip cache hierarchy poli-

cies guess at access patterns using local information. Intelligently controlling these

policies globally based on future code segments is an exciting research direction.

Dynamically increasing single-thread performance is a challenging problem.

This dissertation demonstrates that micro-architectural compute improvements are

still capable of delivering performance increases. As main memory latencies remain

roughly constant and do not improve relative to core frequency, architects must search

for new and creative avenues to reduce effective memory access latency for applications

that cannot hide long latency operations with parallelism.

139

Bibliography

[1] Micron DDR3 SDRAM System-Power Calculator. https://www.micron.com/

~/media/documents/products/power-calculator/ddr3_power_calc.xlsm?

la=en. [Online; Accessed 4-June-2016].

[2] NVIDIA Tegra 4 Family CPU Architecture. http://www.nvidia.com/docs/

IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf, 2013. [Online; Page

13; Accessed 8-May-2015].

[3] Intel 64 and IA-32 Architectures Optimization Reference Manual.

http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf, 2014. [On-

line; Page 54; Accessed 4-May-2015].

[4] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

A scalable processing-in-memory accelerator for parallel graph processing. In

ISCA, 2015.

[5] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. PIM-enabled

instructions: A low-overhead, locality-aware processing-in-memory architecture.

In ISCA, 2015.

[6] Thomas Alexander and Gershon Kedem. Distributed prefetch-buffer/cache de-

sign for high performance memory systems. In HPCA, 1996.

[7] Murali Annavaram, Jignesh M. Patel, and Edward S. Davidson. Data prefetching

by dependence graph precomputation. In ISCA, 2001.

[8] Manu Awasthi, David W. Nellans, Kshitij Sudan, Rajeev Balasubramonian, and

Al Davis. Handling the problems and opportunities posed by multiple on-chip

memory controllers. In PACT, 2010.

140

https://www.micron.com/~/media/documents/products/power-calculator/ddr3_power_calc.xlsm?la=en
https://www.micron.com/~/media/documents/products/power-calculator/ddr3_power_calc.xlsm?la=en
https://www.micron.com/~/media/documents/products/power-calculator/ddr3_power_calc.xlsm?la=en
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.nvidia.com/docs/IO/116757/NVIDIA_Quad_a15_whitepaper_FINALv2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

[9] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H Albonesi. Dynam-

ically allocating processor resources between nearby and distant ilp. In ISCA,

2001.

[10] Jeffery A. Brown, Hong Wang, George Chrysos, Perry H. Wang, and John P.

Shen. Speculative precomputation on chip multiprocessors. In Workshop on

Multithreaded Execution, Architecture, and Compilation, 2001.

[11] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang, Erik

Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote, Michael Parker, Lam-

bert Schaelicke, and Terry Tateyama. Impulse: Building a smarter memory

controller. In HPCA, 1999.

[12] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk disambiguation

of speculative threads in multiprocessors. In ISCA, 2006.

[13] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and

Yale N. Patt. Simultaneous subordinate microthreading (SSMT). In ISCA, 1999.

[14] M. J. Charney and A. P. Reeves. Generalized correlation-based hardware

prefetching. Technical Report EE-CEG-95-1, Cornell Univ., 1995.

[15] Jamison D. Collins, Dean M. Tullsen, Hong Wang, and John P. Shen. Dynamic

speculative precomputation. In MICRO, 2001.

[16] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes, Yong-

Fong Lee, Dan Lavery, and John P. Shen. Speculative precomputation: long-

range prefetching of delinquent loads. In ISCA, 2001.

[17] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless, content-

directed data prefetching mechanism. In ASPLOS, 2002.

[18] Cray Research, Inc. Cray-1 computer systems, hardware reference manual

2240004, 1977.

141

[19] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold

Noyes. An efficient and scalable semiconductor architecture for parallel automata

processing. IEEE Transactions of Parallel and Distributed Computing, 2014.

[20] James Dundas and Trevor Mudge. Improving data cache performance by pre-

executing instructions under a cache miss. In ICS, 1997.

[21] Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt. Techniques for bandwidth-

efficient prefetching of linked data structures in hybrid prefetching systems. In

HPCA, 2009.

[22] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics for mul-

tiprogram workloads. IEEE MICRO, 2008.

[23] J. D. Gindele. Buffer block prefetching method. IBM Technical Disclosure Bul-

letin, 20(2):696–697, July 1977.

[24] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry

Rudolph, and Marc Snir. The NYU Ultracomputer; designing a mimd, shared-

memory parallel machine. In ISCA, 1982.

[25] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean, Alan

Kyker, and Patrice Roussel. The microarchitecture of the pentium R© 4 processor.

In Intel Technology Journal, Q1, 2001.

[26] Intel Transactional Synchronization Extensions. http://software.intel.com/

sites/default/files/blog/393551/sf12-arcs004-100.pdf, 2012.

[27] Akanksha Jain and Calvin Lin. Linearizing irregular memory accesses for im-

proved correlated prefetching. In ISCA, 2013.

[28] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In ISCA,

1997.

142

http://software.intel.com/sites/default/files/blog/393551/sf12-arcs004-100.pdf
http://software.intel.com/sites/default/files/blog/393551/sf12-arcs004-100.pdf

[29] Norman Jouppi. Improving direct-mapped cache performance by the addition of

a small fully-associative cache and prefetch buffers. In ISCA, 1990.

[30] Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. Inter-core prefetching

for multicore processors using migrating helper threads. In ASPLOS, 2011.

[31] Omer Khan, Mieszko Lis, Srini Devadas, Omer Khan, Mieszko Lis, and Srinivas

Devadas. Em2: A scalable shared-memory multicore architecture. In MIT CSAIL

TR 2010-030, 2010.

[32] Dongkeun Kim and Donald Yeung. Design and evaluation of compiler algorithms

for pre-execution. In ASPLOS, 2002.

[33] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter.

Thread cluster memory scheduling: Exploiting differences in memory access be-

havior. In MICRO, 2010.

[34] Peter M. Kogge. Execube-a new architecture for scaleable mpps. In Proceedings

of the 1994 International Conference on Parallel Processing - Volume 01.

[35] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction and dead-

block correlating prefetchers. In ISCA, 2001.

[36] Chang Joo Lee, O. Mutlu, V. Narasiman, and Y.N. Patt. Prefetch-aware dram

controllers. In MICRO, 2008.

[37] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian,

and Onur Mutlu. Tiered-latency dram: A low latency and low cost dram archi-

tecture. In HPCA, 2013.

[38] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,

and Norman P. Jouppi. McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures. In MICRO, 2009.

143

[39] John D. C. Little. A proof for the queuing formula: L = λW . Journal of

Operations Research, 1961.

[40] Jiwei Lu, Abhinav Das, Wei-Chung Hsu, Khoa Nguyen, and Santosh G. Abra-

ham. Dynamic helper threaded prefetching on the Sun UltraSPARC CMP Pro-

cessor. In MICRO, 2005.

[41] Chi-Keung Luk. Tolerating memory latency through software-controlled pre-

execution in simultaneous multithreading processors. In ISCA, 2001.

[42] Pierre Michaud. Exploiting the cache capacity of a single-chip multi-core pro-

cessor with execution migration. In HPCA, 2004.

[43] Micron Technology MT41J512M4 DDR3 SDRAM Datasheet Rev. K, April

2010. http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_

SDRAM.pdf.

[44] Rustam R Miftakhutdinov. Performance Prediction for Dynamic Voltage and

Frequency Scaling. PhD thesis, University of Texas at Austin, 2014.

[45] Naveen Muralimanohar and Rajeev Balasubramonian. CACTI 6.0: A tool to

model large caches. In HP Laboratories, Tech. Rep. HPL-2009-85, 2009.

[46] Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt. Understand-

ing the effects of wrong-path memory references on processor performance. In

Workshop on Memory Performance Issues, 2004.

[47] Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Techniques for efficient processing

in runahead execution engines. In ISCA, 2005.

[48] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling

for chip multiprocessors. In MICRO, 2007.

[49] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: En-

hancing both performance and fairness of shared DRAM systems. In ISCA,

2008.

144

http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf
http://download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf

[50] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead execu-

tion: An alternative to very large instruction windows for out-of-order processors.

In HPCA, 2003.

[51] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global history

buffer. In HPCA, 2004.

[52] Subbarao Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary

cache replacement. In ISCA, 1994.

[53] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly

Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case

for intelligent ram. In IEEE Micro, March 1997.

[54] J Thomas Pawlowski. Hybrid Memory Cube (HMC). In Proceedings of Hot

Chips, 2011.

[55] Daniel Gracia Perez, Gilles Mouchard, and Olivier Temam. Microlib: A case

for the quantitative comparison of micro-architecture mechanisms. In MICRO,

2004.

[56] Andrew R Pleszkun and Edward S Davidson. Structured memory access archi-

tecture. IEEE Computer Society Press, 1983.

[57] Moinuddin K. Qureshi and Gabe H. Loh. Fundamental latency trade-off in

architecting dram caches: Outperforming impractical sram-tags with a simple

and practical design. In MICRO, 2012.

[58] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based

prefetching for linked data structures. In ASPLOS, 1998.

[59] Amir Roth and Gurindar S. Sohi. Effective jump-pointer prefetching for linked

data structures. In ISCA, 1999.

145

[60] Joel Saltz, Harry Berryman, and Janet Wu. Multiprocessors and run-time com-

pilation. Concurrency: Practice and Experience, 1991.

[61] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automat-

ically characterizing large scale program behavior. In ASPLOS, 2002.

[62] James E. Smith. Decoupled access/execute computer architectures. ACM Trans-

actions on Computer Systems, Nov. 1984.

[63] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar processors. Pro-

ceedings of the IEEE, 1995.

[64] Allan Snavely and Dean M. Tullsen. Symbiotic job scheduling for a simultaneous

multithreading processor. In ASPLOS, 2000.

[65] Yan Solihin, Jaejin Lee, and Josep Torrellas. Using a user-level memory thread

for correlation prefetching. In ISCA, 2002.

[66] Stephen Somogyi, Thomas F. Wenisch, Anastassia Ailamaki, Babak Falsafi, and

Andreas Moshovos. Spatial memory streaming. In ISCA, 2006.

[67] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Feedback

directed prefetching: Improving the performance and bandwidth-efficiency of

hardware prefetchers. In HPCA, 2007.

[68] Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, Amit Gandhi, and Mike

Upton. Continual flow pipelines. In ASPLOS, 2004.

[69] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenberg. Slipstream proces-

sors: improving both performance and fault tolerance. In ASPLOS, 2000.

[70] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4

system microarchitecture. IBM Technical White Paper, October 2001.

[71] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.

Multi2Sim: a simulation framework for cpu-gpu computing. In PACT, 2012.

146

[72] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex

Ramirez, Avi Mendelson, Nacho Navarro, Adrian Cristal, and Osman S Un-

sal. Didi: Mitigating the performance impact of tlb shootdowns using a shared

tlb directory. In PACT, 2011.

[73] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and

Andreas Moshovos. Practical off-chip meta-data for temporal memory streaming.

In HPCA, 2009.

[74] Maurice V. Wilkes. The memory gap and the future of high performance mem-

ories. In SIGARCH Computer Architecture News, 2001.

[75] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the

obvious. In SIGARCH Computer Architecture News, 1995.

[76] Chia Yang and Alvin R. Lebeck. Push vs. pull: Data movement for linked data

structures. In ICS, 2000.

[77] Doe Hyun Yoon, Min Kyu Jeong, Michael Sullivan, and Mattan Erez. The

dynamic granularity memory system. In ISCA, 2012.

[78] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L.

Greathouse, Lifan Xu, and Michael Ignatowski. TOP-PIM: Throughput-oriented

programmable processing in memory. In HPDC, 2014.

[79] Weifeng Zhang, Dean M. Tullsen, and Brad Calder. Accelerating and adapting

precomputation threads for effcient prefetching. In HPCA, 2007.

[80] Huiyang Zhou. Dual-core execution: Building a highly scalable single-thread

instruction window. In PACT, 2005.

[81] Craig Zilles and Gurindar Sohi. Execution-based prediction using speculative

slices. In ISCA, 2001.

147

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	The Problem
	Independent vs. Dependent Cache Misses
	Reducing Effective Memory Access Latency
	Thesis Statement
	Contributions
	Dissertation Organization

	Chapter 2. Related Work
	Research in Reducing Data Access Latency via Predicting Memory Access Addresses (Prefetching)
	Research in Reducing Data Access Latency via Pre-Execution
	Research in Reducing Data Access Latency via Computation Near Memory
	Research in Reducing Data Access Latency via Memory Scheduling

	Chapter 3. The Runahead Buffer
	Introduction
	Background
	Runahead Observations
	Mechanism
	Hardware Modifications
	Dependence Chain Generation
	Runahead Buffer Execution
	Dependence Chain Cache
	Runahead Buffer Hybrid Policies
	Runahead Enhancements

	Methodology
	Results
	Performance Results
	Sensitivity to Runahead Buffer Parameters
	Performance with Prefetching
	Energy Evaluation
	Sensitivity to System Parameters

	Conclusion

	Chapter 4. The Enhanced Memory Controller
	Introduction
	Background
	Mechanism
	EMC Compute Microarchitecture
	Generating Chains of Dependent Micro-Operations
	EMC Execution

	Methodology
	Results
	Performance Analysis
	Prefetching and the EMC
	Sensitivity to EMC Parameters
	Single-Core Results
	Multiple Memory Controllers
	EMC Overhead
	Energy and Area
	Sensitivity to System Parameters

	Conclusion

	Chapter 5. Runahead at the Enhanced Memory Controller
	Introduction
	Mechanism
	Runahead Oracle Policies
	Hardware Stall Policy
	EMC Runahead Control

	Methodology
	Results
	Performance Results
	RA-EMC Overhead
	RA-EMC + Prefetching
	Energy Results
	Sensitivity To System Parameters
	Dependent Miss Acceleration

	Conclusion

	Chapter 6. Multi-core Enhanced Memory Controller Policies
	Introduction
	Methodology
	Multi-core RA-EMC Policies
	Policy Evaluation
	Dynamically Adjusting Runahead Distance
	Effect of Increasing RA-EMC Contexts

	Multi-core RA-EMC Evaluation
	Energy Evaluation

	Sensitivity to System Parameters
	Conclusion

	Chapter 7. Conclusions and Future Work
	Bibliography

