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ABSTRACT 

A  Familial Longitudinal Count Data Study 

Hakan Goren, M.S.Stat. 

The University of Texas at Austin, 2013 

Supervisor: Daniel A. Powers 

In this report, I study familial longitudinal count data with a Poisson regression model. The data 

is collected from individuals who are nested in families.  I focus on two main issues to fit a model. The 

first one is the large number of excess zeros and the second one is multi-level random effects. My 

approach for solving these problems are to use either Zero Inflated Poisson (ZIP) or Negative Binomial 

(NB) models to control for the excess zeros which allow for estimation of another parameter for over 

dispersion while developing the model with individual and familial random effects. 

First, I use a Poisson regression model with only main effects. After that, I fit a ZIP model to 

control for the extra zeros. I provide information about general form of the exponential families and a 

discussion about the dispersion parameter.  I also fit a Negative Binomial model instead of the ZIP 

model. I also build these models with only individual random effects and with both individual and 

familial random effects as well. I discuss the generalized estimating equation (GEE) approach to estimate 

the parameters of a generalized linear model with auto regressive correlation between outcomes. 
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INTRODUCTION 
 

A typical longitudinal study is a collection of repeated measurements over time from individuals. 

Count data from individuals over time is commonly obtained in fields such as sociology, epidemiology, 

and medicine.   It is known that repeated measurements correlation provides reduced errors when it is 

taken into account. Similarly, if the individuals come from families (clusters) then it is natural to assume 

that the within-family correlation in addition to   the repeated measurements. This will provide reduced 

residual variability as well.  Thus, the explained variation gets larger (Burton, Scurrah, 2005). 

A Poisson regression model is often the first approach to analyze count data. However, Poisson 

models have a strong assumption that the variance and the mean of the population is the same.  Often 

time some, unobserved phenomena are involved in the data collection process and cause extra zeros in 

the data set. In this case there are some zeros from the Poisson distribution and some extra zeros from 

where the probability of a count is zero for that particular measurement.   

If the observations are positively correlated, which often occurs with longitudinal data, then the 

variances of the time-independent predictor variables (variables that estimate the group effect (or 

between-subject effect) such as gender, race, treatment, and so on) are underestimated if the data is 

analyzed as though the observations are independent. In other words, the Type I error rate (rejecting 

the null hypothesis when it is true, in other words, a false positive) is inflated for these variables 

(Dunlop, 1994) 

Having a larger variance than mean for a Poisson distribution is called over-dispersion. This can 

happen by either having extra zeros or having extra variance components in the model or having both 

like this study.  
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DATA 
 

Health care utilization data for six years from 1985 to 1990 was collected by the Health Science 

Center, Memorial University, St. John’s, Canada (Sutradha, 2011). There are 180 individuals and 48 

families in the data. Each individual is nested in a family.  Thirty-six families have four members and 

twelve families have three members. The dependent variable is the “Number of physician visits from 

1985 to 1990.” Covariates are gender (0=female, 1=male), age (individual’s age in 1985), education level 

(0=high school or less, 1=college or more), chronic disease status (0=no chronic disease, 1=at least one 

chronic disease). All covariates are time independent.  

Denoting the dependent variable by  𝑌; 𝑌𝑖𝑗𝑘  represents the observation from the j-th member of 

the i-th family in the k-th year, where 𝑖 = 1,2,3,… ,𝑚      𝑗 = 1,2, … , ni     𝑘 = 1,2… , 6. Total number of 

individuals is   𝑛 = ∑ 𝑛𝑖
𝑚
1 = 180 and total number of observations is  𝑁 =  ∑ ∑ 𝑛𝑖𝑗

𝑛𝑖
𝑗=1

𝑚
𝑖=1 =   1080 . 
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DESCRIPTIVE ANALYSIS 
 

There are 84 female participants, 52 of whom have at least one chronic disease, while 40 out of 96 male 

participants have at least one chronic disease. The minimum age is 19.9 and maximum age is 85.2 with 

mean 38.57 years and standard deviation 16.52 years. 

  Descriptive analysis shows that the unconditional mean number of visits for all observations is 

4.44 while the variance is 27.6. This is evidence for over dispersion.  Output and graphs in [Appendix 2] 

also show that zeros comprise   25% of the all observations. They appear more than expected in the 

data, with or without conditioning on covariates. 

 

 

 

 

 

 

 

 

 

 

 male Female  

 no disease disease no disease disease ∑ 

HS or less 32 17 19 21 89 

COL or 
more 

24 23 13 31 91 

∑ 56 40 32 52 180 
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visits Frequency Percent 
Cumulative 
Frequency 

Cumulative 
Percent 

0 276 25.56 276 25.56 

1 121 11.2 397 36.76 

2 128 11.85 525 48.61 

3 101 9.35 626 57.96 

4 79 7.31 705 65.28 

5 56 5.19 761 70.46 

6 42 3.89 803 74.35 

7 42 3.89 845 78.24 

8 37 3.43 882 81.67 

9 34 3.15 916 84.81 

10 29 2.69 945 87.5 

11 25 2.31 970 89.81 

12 23 2.13 993 91.94 

13 17 1.57 1010 93.52 

14 12 1.11 1022 94.63 

>14 58 5.37 1080 100 

 

 

Table 1 [up]: Number of individuals conditional on the covariates 
Table 2 [down]: Frequency table of the number of visits
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Graph 1 [up left]: A histogram of all visits 
Graph 2 [up right]: A histogram of visits conditional on the year 
Graph 3 [down left]: A histogram of visits conditional on gender 

Graph 4 [down right]: A histogram of visits conditional on disease
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METHODS 
 

The simplest model for count data is a Poisson regression model. Therefore, the first model to fit 

the data is Poisson regression. For simplicity, let’s assume that all the observations are independent and 

identically distributed Poisson with the parameter   λ. 

Model 1 - Poisson Regression: 

𝑓(𝑦𝑖𝑗𝑘|𝜆) =
𝑒−𝜆 𝜆𝑦𝑖𝑗𝑘

𝑦𝑖𝑗𝑘!
     𝑦𝑖𝑗𝑘 = 0,1,2… ;  𝜆 > 0 

log(𝜆) = 𝜂 = 𝑋𝑖𝑗𝑘
𝑇 𝛽          𝜆 = 𝑒𝜂 = 𝑒𝑋𝑖𝑗𝑘

𝑇 𝛽 

𝑓(𝑦|𝑋, 𝛽) =
exp(−exp(𝑋𝑖𝑗𝑘

𝑇 𝛽)) . exp (𝑦(𝑋𝑖𝑗𝑘
𝑇 𝛽))

𝑦𝑖𝑗𝑘!
 

 

Model 2 - Zero Inflated Poisson Regression: 
 

An exponential family is defined with the parameters 𝜃 and ∅ as: 

𝑓(𝑦) = exp [
𝑦𝜃 − 𝑎(𝜃)

∅
+ 𝑆(𝑦, ∅)] 

Defining     𝜃 = 𝑋𝑇𝛽        𝑎(𝜃) = exp(𝜃)     𝑆(𝑦, ∅) = − log(𝑦!)       𝜙 = 1 , we can show that the Poisson 

distribution is an exponential family. Here  ∅ represents the dispersion parameter and the variance and 
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the mean of the Poisson distribution is the same when it equals 1.  A dispersion parameter greater than 

1 indicates over dispersion for the Poisson distribution.  

The zero inflated Poisson (ZIP) model is one way to allow for over dispersion caused by extra 

zeros. This model assumes that the sample is a “mixture” of two sets of individuals: one set whose 

counts are generated by the standard Poisson regression model, and another set who have zero 

probability of a count greater than 0. In our study, an empirical way to think about this is that under the 

assumption 𝜙 = 1, which means  𝐸[𝑌] = 𝑉𝑎𝑟[𝑌] = 𝜆, the expected number of zeros can be obtained 

by substituting 𝑦 ̅as an unbiased estimator of 𝜆 in the Poisson probability mass function. Hence, the 

expected probability of zero is  𝑓(𝑦 = 0|𝜆) =
𝑒−𝜆 𝜆0

0!
= 𝑒−4.44 = 0.0118 . However, more than 25% of 

all observations are zero in data. Expected number of zeros is much smaller than observed zeros. 

Therefore, a zip model for this study could be interpreted as a set of individuals who get ill in a given 

year who have a non-zero probability of seeing the doctor and another set of people who never get ill in 

that given year and have zero probability of seeing a doctor. Observed values of 0 could come from 

either group. This suggests building a two-stage model. A logistic model to assign an individual to the set 

they belong to and a Poisson model for those who belong to the Poisson process.  For simplicity, let’s 

assume all observations are independent. Covariate matrix 𝑋𝑖𝑗𝑘   is assumed to be the same for both 

states. One can have a different covariate matrix for the zero state if there is a belief about what 

covariates related to having zero count (Brian H. Neelon , A. James O'Malley and Sharon-Lise T. 

Normand, 2010). 

logit (
𝜋𝑖𝑗𝑘

1 − 𝜋𝑖𝑗𝑘
) = 𝜉𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘

𝑇 𝐴 
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log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘
𝑇 𝛽 

 

Let 𝑧𝑖𝑗𝑘  be an unobserved binary variable indicating if 𝑦𝑖𝑗𝑘  comes from the latent class zero or 

non-zero. Decomposition of the complete data log likelihood into two orthogonal components can be 

obtained by treating the realization of the incidence of extra zeros as a missing latent variable. 

(Sutradha, 2011) 

𝑙𝐶 = 𝑙𝜉 + 𝑙𝜂 

𝑙𝜉 = ∑(𝑧𝑖𝑗𝑘𝜉𝑖𝑗𝑘 − log(1 + exp(𝜉𝑖𝑗𝑘)))

𝑖𝑗𝑘

 

𝑙𝜂 = ∑((1 − 𝑧𝑖𝑗𝑘) (𝑦𝑖𝑗𝑘𝜂𝑖𝑗𝑘 − exp(𝜂𝑖𝑗𝑘) − log(𝑦𝑖𝑗𝑘!)))

𝑖𝑗𝑘

  

𝑧𝑖𝑗𝑘
(𝑔) = {

1

1 + exp[−(𝑥𝑖𝑗𝑘
𝑇 �̂�(𝑔)) − exp (𝑥𝑖𝑗𝑘

𝑇 �̂�(𝑔))]
   if 𝑦𝑖𝑗𝑘 = 0

                  0                                                        if 𝑦𝑖𝑗𝑘 ≥ 1

 

 

Estimation can be carried out using the EM algorithm. Starting with some initial values for 

𝛢 and 𝛽. The EM algorithm proceeds by iteratively replacing 𝑧𝑖𝑗𝑘by its conditional expectation 𝑧𝑖𝑗𝑘
(𝑔) 

where g donates the g-th iteration under the current estimates  �̂�(𝑔), �̂�(𝑔), and solving the likelihood 

equations of a simpler model Details are given in Appendix 1. 

 

Model – 3 Individual Level Random Effects Longitudinal Data for Poisson Regression 
 

 After obtaining Model 1, before we compare it with the ZIP model, let’s develop a more complex 

model. We have data collected from the same individuals over a period of time. It is very likely, and 
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assumed, that the observations for the same person from one time point to another one will be 

correlated. Since the time is equally spaced (1 year) for our data and assuming the correlation is 

stronger when the lag is shorter, an auto-regressive correlation structure is therefore assumed for the 

variance covariance matrix of  𝑣. Let R denote the variance covariance matrix of observations with the 

size of NxN. R is a block diagonal matrix whose blocks are determined by the serial correlation structure 

of the repeated measurements taken from the same individual. Other elements of the matrix are zero. 

This applies that individuals are independent from one another. 

𝑅 = [

[𝑅1] 0 0

0 [⋱] 0
0 0 [𝑅𝑛]

]      

 

Therefore, the model can be expressed by, 

        log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘
𝑇 𝛽 + 𝑣𝑖𝑗𝑘                  𝑣~ 𝑁(0, 𝑅𝑣)  

where 𝑅𝑣  is the R matrix for v. 

And the log likelihood of the data under this model is    

𝑙𝜂 = ∑(𝑦𝑖𝑗𝑘𝜂𝑖𝑗𝑘 − exp(𝜂𝑖𝑗𝑘) − log(𝑦𝑖𝑗𝑘!)) − 
1

2
[𝑁 log(2𝜋𝜎𝑣

2)+𝑣𝑇𝑅𝑣
−1𝑣]

𝑖𝑗𝑘

  

Model – 4 Individual Level Random Effects Longitudinal Data for ZIP Regression 
 

 Now let’s combine the ZIP model with model 3. So that we will account for excess zeros as well 

as individual-level random effects.  
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logit (
𝜋𝑖𝑗𝑘

1 − 𝜋𝑖𝑗𝑘
) = 𝜉𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘

𝑇 𝐴 + 𝑠𝑖𝑗𝑘 

 

log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘
𝑇 𝛽 + 𝑣𝑖𝑗𝑘  

 

𝑙𝜉 = ∑(𝑧𝑖𝑗𝑘𝜉𝑖𝑗𝑘 − log(1 + exp(𝜉𝑖𝑗𝑘))) − 
1

2
[𝑁 log(2𝜋𝜎𝑠

2)+𝑠𝑇𝑅𝑠
−1𝑠 ]

𝑖𝑗𝑘

 

 

𝑙𝜂 = ∑((1 − 𝑧𝑖𝑗𝑘) (𝑦𝑖𝑗𝑘𝜂𝑖𝑗𝑘 − exp(𝜂𝑖𝑗𝑘) − log(𝑦𝑖𝑗𝑘!))) − 
1

2
[𝑁 log(2𝜋𝜎𝑣

2)+𝑣𝑇𝑅𝑣
−1𝑣]

𝑖𝑗𝑘

  

 

    𝑠𝑖𝑗 , 𝑣𝑖𝑗   are random individual effects assumed to be independent and normally distributed with zero 

mean and variances denoted by  𝑅𝑣 and 𝑅𝑠. Selecting this approach leads a Generalized Estimating 

Equation method. Estimation details are given in the Appendix 1. 

   𝑣~ 𝑁(0, 𝑅𝑣)      𝑠~ 𝑁(0, 𝑅𝑠) 

where 𝑹𝒗 , 𝑹𝒔  are the R matrices for v and s respectively (Andy H. Lee, Kui Wang, 2006). 

  In statistics, a generalized estimating equation (GEE) can be used to estimate the parameters of 

a generalized linear model with a possible unknown correlation between outcomes.  

There are several ways to construct the serial correlation from the same individual. A variance 

component specification, assumes no correlation between repeated measures from the same individual.  

A compound symmetry specification, assumes non-zero covariance matrix, yet every observation 

collected from a subject is equally correlated with every other observation from that subject. An auto 

regressive specification assumes equally spaced time points and stronger correlations for proximate 

time points than distal time points. If estimation of the regression coefficients is the primary objective of 

the study, and the number of subjects is much greater than the number of time points, then one should 

not spend much time choosing a correlation structure. The GEE method for the parameter estimates 
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was designed to guarantee consistency of the parameter estimates under minimal assumptions about 

the nature of the time dependence. (Diggle, Liang, and Zeger, 1994) 

Model – 4.1: Individual Level Random Effects Longitudinal Data for NB Regression 

 
Negative Binomial (NB) regression is commonly used and recommended when the Poisson data 

includes too many zeros (Hilbe, 2011). The Poisson distribution has only one parameter for the mean 

and variance while the NB regression allows an additional parameter for over dispersion. Therefore, we 

can use the same data to fit a well-known distribution without being worried if the strict assumption of 

the Poisson regression is met. I will use a Negative Binomial regression with random individual effects 

instead of a ZIP regression with random individual effects. Therefore, I can still account for extra zeros 

and random individual effects with a model that is simpler than ZIP regression. 

 

Model – 5: Individual and Familial Level Random Effects Poisson Regression 
 

 The following model allows for both individuals and families to have random effects.  

 

log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘
𝑇 𝛽 + 𝑢𝑖 + 𝑣𝑖𝑗𝑘 

 

𝑙𝜂 = ∑((1 − 𝑧𝑖𝑗𝑘) (𝑦𝑖𝑗𝑘𝜂𝑖𝑗𝑘 − exp(𝜂𝑖𝑗𝑘) − log(𝑦𝑖𝑗𝑘!)))

𝑖𝑗𝑘

− 
1

2
[𝑚 log(2𝜋𝜎𝑢

2) + 𝜎𝑢
−2𝑢𝑇𝑢 + 𝑁 log(2𝜋𝜎𝑣

2)+𝑣𝑇𝑅𝑣
−1𝑣] 

 
𝑢~𝑁(0, 𝜎𝑢

2)     𝑣~ 𝑁(0, 𝑅𝑣) 
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An Extended Model – ZIP Model with Multilevel Random Effects Longitudinal Data: 
 

Unfortunately, this model could not be estimated due to computational difficulties that are 

discussed in the conclusion section of this paper. However, I will talk about a parameter estimation 

procedure for this model in Appendix 1. This model is a more general form of other models in this study. 

So, solutions are similar and simpler with the ease of implementation in SAS.   

We have a longitudinal study with individuals nested in families, the model can be written as 

logit (
𝜋𝑖𝑗𝑘

1 − 𝜋𝑖𝑗𝑘
) = 𝜉𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘

𝑇 𝐴 + 𝑤𝑖 + 𝑠𝑖𝑗𝑘 

 

log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘
𝑇 𝛽 + 𝑢𝑖 + 𝑣𝑖𝑗𝑘 

 

𝑙𝜉 = ∑(𝑧𝑖𝑗𝑘𝜉𝑖𝑗𝑘 − log(1 + exp(𝜉𝑖𝑗𝑘))) − 
1

2
[𝑚 log(2𝜋𝜎𝑤

2) + 𝜎𝑤
−2𝑤𝑇𝑤 + 𝑁 log(2𝜋𝜎𝑠

2)+𝑠𝑇𝑅𝑠
−1𝑠 ]

𝑖𝑗𝑘

 

 

𝑙𝜂 = ∑((1 − 𝑧𝑖𝑗𝑘) (𝑦𝑖𝑗𝑘𝜂𝑖𝑗𝑘 − exp(𝜂𝑖𝑗𝑘) − log(𝑦𝑖𝑗𝑘!)))

𝑖𝑗𝑘

− 
1

2
[𝑚 log(2𝜋𝜎𝑢

2) + 𝜎𝑢
−2𝑢𝑇𝑢 + 𝑁 log(2𝜋𝜎𝑣

2)+𝑣𝑇𝑅𝑣
−1𝑣]  

 

where 𝑤𝑖 and 𝑢𝑖 are  family random effect, 𝑠𝑖𝑗and 𝑣𝑖𝑗  are individual random effects. 

 
𝑤~𝑁(0, 𝜎𝑤

2)               𝑢~𝑁(0, 𝜎𝑢
2)           𝑣~ 𝑁(0, 𝑅𝑣)      𝑠~ 𝑁(0, 𝑅𝑠) 

 

where 𝑹𝒗 , 𝑹𝒔  are the R matrices for v and s respectively. 
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ANALYSIS with SAS software and RESULTS 
 

PROC MIXED handles unbalanced data with unequally spaced time points and subjects 

observed at different time points, uses all the available data in the analysis, directly models the 

covariance structure, and provides valid standard errors and efficient statistical tests. However, it is not 

implemented for discrete data. It has been studied extensively. Many options and different structures 

are available. Random effects and error terms are assumed to be normally distributed with means of 0 

and random effects and error terms are independent of each other. The relationship between the 

response variable and predictor variables is assumed to be linear.  Variance-covariance matrices for 

random effects and error terms exhibit structures available in PROC MIXED. 

 PROC GENMOD is a procedure in SAS that allows users to run a Poisson regression model for 

count data. However, it does not allow fitting of a zero inflated model. The model statement supports a 

choice of an AR (1) error covariance matrix. A random statement is not valid in this context. Repeated 

option is used instead. This is a powerful tool to conduct Generalized Linear Model regressions as well as 

the extension to General Estimating Equations where correlated outcome data must be taken into 

account. 

PROC NLMIXED can be viewed as generalizations of the random coefficient models fit by the 

MIXED procedure. This generalization allows the random coefficients to enter the model nonlinearly, 

whereas in PROC MIXED they enter linearly.  The GLIMMIX procedure also fits mixed models for non- 

normal data with nonlinearity in the conditional mean function. In contrast to the NLMIXED procedure, 

PROC GLIMMIX assumes that the model contains a linear predictor that links covariates to the 

conditional mean of the response. The NLMIXED procedure is designed to handle general conditional 
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mean functions, whether they contain a linear component or not. As mentioned earlier, the GLIMMIX 

procedure by default estimates parameters in generalized linear mixed models by pseudo-likelihood 

techniques, whereas PROC NLMIXED by default performs maximum likelihood estimation by adaptive 

Gauss-Hermite quadrature. This estimation method is also available with the GLIMMIX procedure 

(METHOD=QUAD in the PROC GLIMMIX statement). 

PROC GLIMMIX fits statistical models to data with correlations or non-constant variability and 

where the response is not necessarily normally distributed. Conditional on Gaussian random effects, 

data can have any distribution in the exponential family.  It has features like flexible covariance 

structures for random effects and correlated errors and programmable link and variance functions.  

GLIMMIX uses an iteratively reweighted linear mixed model to estimate a generalized linear mixed 

model (GLMM). (Wolfinger, R. and O'Connell, M., 1993). This procedure is now fully incorporated into 

SAS and allows for a number of alternative estimation options. 

%GLIMMIX The macro uses iteratively reweighted likelihoods to fit the model. Refer to 

Wolfinger, R. and O'Connell, M. (1993). By default, %GLIMMIX uses restricted/residual psuedo likelihood 

(REPL) to find the parameter estimates of the generalized linear mixed model you specify. The macro 

calls PROC MIXED iteratively until convergence, which is decided using the relative deviation of the 

variance/covariance parameter estimates. An extra-dispersion scale parameter is estimated by default. 
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RESULTS Here are the 5 models fit to the data. The first model ‘Poisson’ is a standard Poisson 

Regression. The second model ‘ZIP’ is a zero inflated Poisson Regression. The third model ‘Poi nofam’ is 

a Poisson regression model with random individual intercepts. That said, random family effect is ignored 

and all individuals are treated as independent. The only correlation appears within individual 

measurements. The fourth model (model 4.1) ‘NB nofam’ has the same assumptions as the third model 

except it is a Negative Binomial regression with only individual random effect. This model was preferred 

to ZIP model since it is easier to code. The main concern is over dispersion, so this regression will include 

a parameter to relax the assumptions of the Poisson model. The fifth model ‘PoiFull’ is the full model 

that is developed in the Method section (model 5). It allows the familial correlation that individuals with 

in a particular family have in common as well as the longitudinal correlations resulted by the repeated 

measurements.  

To compare the models we need to check fit statistics. Below is a table of model fit statistics 

that explain how well the data fits the model. This comparison might allow us to find a better model 

specification.  

 

 

 Poisson ZIP Poi nofam NB nofam PoiFull 

Deviance 5016.6079 6474.57 5016.6079  4234.644 
LL 2871.87 3474.424 2871.87   

AIC 7699.6788 6514.57 7699.6788  2941.7 
AICC 7699.8846 6515.363 7699.8846  2947.8 
BIC 7749.526 6614.264 7749.526  2953.3 
QIC   -1089.334 -8231.4533  

QICu   -1109.804 -8248.0933  

Table : Fit statistics obtained from models 
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LL is the log likelihood fit statistics. It is the likelihood of the data for the given model. 

Deviance is a fit statistics obtained by calculating  −2 (𝐿𝐿𝑚𝑜𝑑𝑒𝑙 − 𝐿𝐿𝑓𝑢𝑙𝑙) . Here full model is a 

model that there is a parameter for every observation so the data fits perfectly.  

AIC is another fit statistics that rewarding the better fit while penalizing for number of 

parameters (over fitting). 

AICC is AIC with correlation for a finite number observations. It has a greater penalty for extra 

parameters than AIC. 

BIC is similar to AIC, penalizes over fitting the model with extra parameters. 

 

To start with, let’s check the deviance statistic. The smaller the deviance the better the model. 

Poisson regression models have smaller deviances than the ZIP model. PoiFull model has the smallest 

deviance. The concept of the likelihood function does not apply to generalized estimating equations; 

thus, the usual goodness of fit statistics cannot be computed. Instead, information criteria based on a 

generalization of the likelihood are computed. The Quasi-likelihood under Independence Model 

Criterion (QIC) can be used to help choose between two correlation structures, given a set of model 

terms. The structure that obtains the smaller QIC is "better" according to this criterion.  Therefore, there 

is no deviance statistics calculated for model ‘NB nofam’. Checking all other statistics, we can conclude 

that the PoiFull model performs better than others, as expected. 
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Table: Estimated parameter values from the models 

The coefficient for gender (coded 1 for male and 0 for female) shows a negative value for all 

models. This suggests that females made more visits to the physician compared to males. The positive 

values of parameter estimates suggest that individuals having at least one chronic disease or belonging 

to an older age group made more visits to the physicians, as would be expected. The effect on education 

is not significant in any of the above models. 

  

Parameters

EST SE EST SE EST SE EST SE EST SE

intercept 1.2583 0.0537 1.5767 0.0554 1.3262 0.2034 1.1696 0.206 1.1886 0.168

y1 -0.1877 0.0509 -0.2807 0.0517 -0.1877 0.0838 -0.1968 0.0913 -0.1877 0.1028

y2 -0.2034 0.0511 -0.2404 0.0518 -0.2034 0.0821 -0.1818 0.0935 -0.2034 0.1012

y3 -0.1779 0.0507 -0.2423 0.0515 -0.1779 0.0882 -0.1183 0.095 -0.1779 0.0965

y4 0.0035 0.0484 -0.0872 0.0489 0.0035 0.0813 0.0514 0.0953 0.003511 0.08446

y5 0.1327 0.0469 0.1138 0.0472 0.1327 0.0674 0.157 0.0715 0.1327 0.06616

age 0.0099 0.001 0.0089 0.001 0.0084 0.004 0.0115 0.0041 0.01167 0.003513

gender -0.6208 0.0311 -0.3907 0.0315 -0.6872 0.1415 -0.7379 0.1354 -0.6496 0.1026

education -0.0188 0.0317 0.0337 0.0318 -0.0236 0.1369 -0.036 0.1365 -0.09295 0.1162

disease 0.3059 0.0324 0.1507 0.0325 0.3393 0.127 0.4115 0.1295 0.3414 0.1128

intercept(fam) 0.1151

AR(1) 0.6034 0.5562 0.5352 

Var 4.2712

Poisson ZIP Poi nofam NB nofam PoiFull
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DISCUSSION and CONCLUSION 
 

 Generalized Linear Models provide flexibility to design more and more realistic models to 

complex data structures. In case of discrete data obtained from a longitudinal study, GEE can be applied 

to find a solution.  The Generalized Estimating Equations procedure extends the generalized linear 

model to allow for the analysis of repeated measurements or other correlated observations, such as 

clustered longitudinal data. 

In this paper, I tried to develop a model that could better fit data of this nature.  To start with, 

for simplicity, I decided to fit only main effect models. The model, if necessary, can be extended by 

adding interaction terms. I fit a ZIP model to control for excess zeros to improve the fit of the model. 

When the software did not allow me to use a more complicated ZIP model, I uses a Negative Binomial 

regression model to handle over dispersion. Because the data come from a longitudinal study, I built an 

individual random effects model without the consideration of the familial correlations.  I then added the 

familial random effect. However, due to computational difficulties, I could not estimate the ZIP Model 

with multi-level random effects.  One approach would make it possible for me to solve the extended 

model by using the %glimmix macro with the negative binomial distribution with a log function link. 

However, the macro works fine only with exponential families. Negative binomial is only an exponential 

family when the scale parameter k is held fixed. Perhaps, defining a gamma function whose parameters 

are obtained from a negative binomial distribution could lead to an answer. This could be a further 

study.  

Estimates from the models are consistent with expectations. Females, older people, people with 

at least one chronic disease and people with less education tend to visit a physician more often than 

their complementary group. 
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Predicting health care demand can be useful for institutions or governments that provide health 

care. New methodologies are being developed to understand this phenomenon. The great power of 

digital computing is the main force behind developing more complex models.  
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APPENDIX 1 

 Extended Model Estimation: 
 

logit (
𝜋𝑖𝑗𝑘

1 − 𝜋𝑖𝑗𝑘
) = 𝜉𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘

𝑇 𝐴 + 𝑤𝑖 + 𝑠𝑖𝑗𝑘 

 

log(𝜆𝑖𝑗𝑘) = 𝜂𝑖𝑗𝑘 = 𝑋𝑖𝑗𝑘
𝑇 𝛽 + 𝑢𝑖 + 𝑣𝑖𝑗𝑘 

 
𝐴 , 𝛽  correspond to vectors of regression coefficients.  𝑤𝑖 and 𝑢𝑖 are cluster effects and 

𝑠𝑖𝑗𝑘  , 𝑣𝑖𝑗𝑘   are individual effects. 

 

𝑤 = (𝑤1, 𝑤2, …𝑤𝑚)𝑇      𝑢 = (𝑢1, 𝑢2, … 𝑢𝑚)𝑇 

𝑠 = (𝑠11, … , 𝑠1𝑛1
, 𝑠21, … 𝑠2𝑛2 , … , 𝑠𝑚1, … . 𝑠𝑚𝑛𝑚

)
𝑇

 

𝑣 = (𝑣11, … , 𝑣1𝑛1
, 𝑣21, … 𝑣2𝑛2 , … , 𝑣𝑚1, … . 𝑣𝑚𝑛𝑚

)
𝑇

 

logit (
𝜋

1 − 𝜋
) = 𝜉 = 𝑋𝐴 + 𝑄𝑤𝑤𝑖 + 𝑄𝑠𝑠𝑖𝑗𝑘 

 
log(𝜆) = 𝜂 = 𝑋𝛽 + 𝑄𝑢𝑢𝑖 + 𝑄𝑣𝑣𝑖𝑗𝑘  

 
𝐴, 𝑋, 𝑄𝑤 , 𝑄𝑠, 𝑄𝑢, 𝑄𝑣  are design matrices. 

𝑤~𝑁(0, 𝜎𝑤
2)               𝑢~𝑁(0, 𝜎𝑢

2)              𝑣~ 𝑁(0, 𝑅𝑣)      𝑠~ 𝑁(0, 𝑅𝑠) 

 

Partition of likelihood: Fixed level and random level 
 

𝑙1 = ∑ log(
exp(𝜉𝑖𝑗𝑘) + exp (− exp(𝜂𝑖𝑗𝑘))

1 + exp (𝜉𝑖𝑗𝑘)
)

𝑦𝑖𝑗𝑘=0

+ ∑ [𝑦𝑖𝑗𝑘  𝜂𝑖𝑗𝑘 − exp(𝜂𝑖𝑗𝑘) − log(𝑦𝑖𝑗𝑘!) − log (1 + exp(𝜉𝑖𝑗𝑘)]

𝑦𝑖𝑗𝑘>0
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𝑙2 = − 
1

2
[𝑚 log(2𝜋𝜎𝑤

2) + 𝜎𝑤
−2𝑤𝑇𝑤 + 𝑁 log(2𝜋𝜎𝑠

2)+sTR𝑠
−1𝑠]  

− 
1

2
[𝑚 log(2𝜋𝜎𝑢

2) + 𝜎𝑢
−2𝑢𝑇𝑢 + 𝑁 log(2𝜋𝜎𝑣

2)+𝑣𝑇𝑅𝑣
−1𝑣 ] 

 

Partition of likelihood: Poisson state and zero state 
 

𝑙𝜉 = ∑(𝑧𝑖𝑗𝑘𝜉𝑖𝑗𝑘 − log(1 + exp(𝜉𝑖𝑗𝑘))) − 
1

2
[𝑚 log(2𝜋𝜎𝑤

2) + 𝜎𝑤
−2𝑤𝑇𝑤 + 𝑁 log(2𝜋𝜎𝑠

2)+𝑠𝑇𝑅𝑠
−1𝑠 ]

𝑖𝑗𝑘

 

 

𝑙𝜂 = ∑((1 − 𝑧𝑖𝑗𝑘) (𝑦𝑖𝑗𝑘𝜂𝑖𝑗𝑘 − exp(𝜂𝑖𝑗𝑘) − log(𝑦𝑖𝑗𝑘!)))

𝑖𝑗𝑘

− 
1

2
[𝑚 log(2𝜋𝜎𝑢

2) + 𝜎𝑢
−2𝑢𝑇𝑢 + 𝑁 log(2𝜋𝜎𝑣

2)+𝑣𝑇𝑅𝑣
−1𝑣]  

 

𝑧𝑖𝑗𝑘
(𝑔) = {

1

1 + exp[−(𝑥𝑖𝑗𝑘
𝑇 �̂�(𝑔) − 𝑤�̂�

𝑔 − �̂�𝑖𝑗𝑘
𝑔) − exp (𝑥𝑖𝑗𝑘

𝑇 �̂�(𝑔)𝑢�̂�
𝑔 − 𝑣𝑖𝑗𝑘

𝑔)]
   if 𝑦𝑖𝑗𝑘 = 0

                                                      0                                                                       if 𝑦𝑖𝑗𝑘 ≥ 1

 

 

 

Derivatives: 
 

𝑑𝑙𝜉  

𝑑𝜉
= 𝑧 − exp(𝜉) 1 + (exp(𝜉))⁄                 

𝑑𝑙𝜂 

𝑑𝜂
= (1 − 𝑧)(𝑦 − exp(𝜂)) 

𝑑2𝑙𝜉

𝑑𝜉𝑑𝜉𝑇
= Diag[−exp(𝜉) (1 + exp(𝜉))2⁄ ]           

𝑑2𝑙𝜂

𝑑𝜂𝑑𝜂𝑇
= Diag[−(1 − 𝑧)exp (𝜂)]    

 

𝑑𝑙𝜂

𝑑𝛽
= 𝑋𝑇

𝑑𝑙𝜂 

𝑑𝜂
               

𝑑𝑙𝜂

𝑑𝑢
= 𝑄𝑢

𝑇
𝑑𝑙𝜂 

𝑑𝜂
− 𝜎𝑢

2𝑢           
𝑑𝑙𝜂

𝑑𝑣
 = 𝑄𝑣

𝑇
𝑑𝑙𝜂 

𝑑𝜂
− 𝜎𝑣

2𝑅𝑣
−1𝑣      

𝑑𝑙𝜉

𝑑𝐴
= 𝑋𝑇

𝑑𝑙𝜉  

𝑑𝜉
               

𝑑𝑙𝜉

𝑑𝑢
= 𝑄𝑤

𝑇
𝑑𝑙𝜉  

𝑑𝜉
− 𝜎𝑤

2𝑤          
𝑑𝑙𝜉

𝑑𝑠
 = 𝑄𝑠

𝑇
𝑑𝑙𝜉  

𝑑𝜉
− 𝜎𝑠

2𝑅𝑠
−1𝑠      
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Ψ𝛼𝑤𝑠 = [
𝑋𝑇

𝑄𝑤
𝑇

𝑄𝑠
𝑇
] (

𝑑2𝑙𝜉

𝑑𝜉𝑑𝜉𝑇) [𝑋 𝑄𝑤 𝑄𝑆] + [

0 0 0
0 σ𝑤

−2𝐼𝑚 0

0 0 𝑅𝑠
−1

] 

Ψ𝛽𝑢𝑣 = [
𝑋𝑇

𝑄𝑢
𝑇

𝑄𝑣
𝑇
] (

𝑑2𝑙𝜂

𝑑𝜂𝑑𝜂𝑇) [𝑋 𝑄𝑢 𝑄𝑣] + [

0 0 0
0 σ𝑢

−2𝐼𝑚 0

0 0 𝑅𝑣
−1

] 

 

[
�̂�
�̂�
�̂�
] =  [

𝛼0

𝑤0

𝑠0

] + Ψ𝛼𝑤𝑠
−1  

[
 
 
 
 
 
𝑑𝑙𝜉

𝑑𝛼
⁄

𝑑𝑙𝜉
𝑑𝑤

⁄

𝑑𝑙𝜉
𝑑𝑠

⁄ ]
 
 
 
 
 

        ,         [
�̂�
�̂�
𝑣

] =  [
𝛽0

𝑢0

𝑣0

] + Ψ𝛽𝑤𝑠
−1  

[
 
 
 
 
 
𝑑𝑙𝜉

𝑑𝛽
⁄

𝑑𝑙𝜉
𝑑𝑢

⁄

𝑑𝑙𝜉
𝑑𝑣

⁄ ]
 
 
 
 
 

 

Hessian Matrix 

𝐻 = 

[
 
 
 
 
 
𝑋𝑇

𝑄𝑤
𝑇

𝑄𝑠
𝑇

0
0
0

0
0
0
𝑋𝑇

𝑄𝑢

𝑄𝑣]
 
 
 
 
 

+ 

(

 
 

𝐸 [−
𝑑2𝑙1

𝑑𝜉𝑑𝜉𝑇
] 𝐸 [−

𝑑2𝑙1
𝑑𝜉𝑑𝜂𝑇

]

𝐸 [−
𝑑2𝑙1

𝑑𝜂𝑑𝜉𝑇
] 𝐸 [−

𝑑2𝑙1
𝑑𝜂𝑑𝜂𝑇

]
)

 
 

+ [
𝑋 𝑄𝑤 𝑄𝑠 0 0 0
0 0 0 𝑋 𝑄𝑢 𝑄𝑣

]  

 

Information matrix 
 

Ψ𝛼𝑤𝑠𝛽𝑢𝑣 = 𝐻 + 

[
 
 
 
 
 
0 0 0
0 σ𝑤

−2𝐼𝑚 0

0 0 𝑅𝑠
−1

0

0

0 0 0
0 σ𝑢

−2𝐼𝑚 0

0 0 𝑅𝑣
−1]

 
 
 
 
 

 

 

 

 

 

Information matrix needs to be inverted to get the estimating equations for variances. 

 

 Let  𝑉 = [Ψ𝛼𝑤𝑠𝛽𝑢𝑣]
−1

       𝑉 = [𝑉𝑖𝑗]    𝑖 = 1,2,3, . . ,6   𝑗 = 1,2,3, . .6     block matrices. 
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𝜎𝑠
2 =

𝑠𝑇𝑅𝑠
−1𝑠 + trace(𝑅𝑠

−1𝑉33) 

𝑁
                𝜎𝑣

2 =
𝑣𝑇𝑅𝑣

−1𝑣 + trace(𝑅𝑣
−1𝑉66) 

𝑁
 

 

𝜎𝑤
2 =

𝑤𝑇𝑤 + trace(𝑉22) 

𝑚
                   𝜎𝑢

2 =
𝑢𝑇𝑢 + trace(𝑉55) 

𝑚
 

 

      𝑆𝐸(�̂�) = √𝑉11                 𝑆𝐸(�̂�) = √𝑉44           

 

Calculating the auto regressive parameter is possible with a cubic equation (K.K.W. Yau, C.A. 

McGilchrist, 1998). Let’s define three matrices that are symmetric, with k (k= 6 for this study) rows and 

columns. 

 𝑰𝒊 is the identity matrix; 𝑱𝒊 has diagonals of one above and below principle diagonal but zero for 

all other elements; 𝑲𝑖 has only two non-zero elements one at each end of the principle diagonal. 

Recalling variance-covariance structure of individual random effects. If 𝚿𝒊 𝑖s the block diagonal 

component of 𝚿 partitioned conformally to the partition of R and then  

 

𝑅 = [

[𝑅1] 0 0

0 [⋱] 0
0 0 [𝑅𝑛]

]      

∑ 𝑡𝑟[𝑰𝒊(𝚿𝒊 + 𝑹𝒊)]𝑖 = 𝐿1              ∑ 𝑡𝑟[𝑱𝒊(𝚿𝒊 + 𝑹𝒊)]𝑖 = 2𝐿2              ∑ 𝑡𝑟[𝑲𝒊(𝚿𝒊 + 𝑹𝒊)]𝑖 = 𝐿3 

𝑓(𝜌) = 𝐶1𝜌
3 + 𝐶2𝜌

2 + 𝐶3𝜌 + 𝐶4 = 0 

𝐶1 = (𝑁 − 𝑛)(𝐿1 − 𝐿3)    𝐶2 = (2𝑛 − 𝑁)𝐿2   𝐶3 = 𝑁𝐿3 − (𝑁 + 𝑛)𝐿1   𝐶4 = 𝑁𝐿2 

With an initial value of the auto-regressive parameter can be estimated by using Newton-

Raphson iterative method 

�̂� =  𝜌0 − [
𝑓(𝜌0)

𝑓′(𝜌0)
] 
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E-M Steps: 
1. Give initial values for 𝐴0, 𝛽0, 𝑤0, 𝑠0,  

2.  Use fixed variances 

3. Calculate 𝑧𝑖𝑗𝑘  

4. Find 𝜉and 𝜂 

5. Calculate the derivatives 

6. Obtain new 𝐴, 𝛽,𝑤, 𝑠 

7. Go to the third step (do this iteration M times) 

8. Get the estimated𝐴,̂ �̂�, �̂�, �̂� after M iterations 

9. Calculate the first and second derivatives of 𝑙1with respect to 𝜂  and 𝜉 

10. Calculate the hessian matrix 

11. Calculate the information matrix 

12. Get the inverse of the information matrix 

13. Get the new values of variance elements 

14. Go to the second step and update the variances (do this iteration many times until it converges) 
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SAS Software CODE FOR MODELS 
 

/*M1-Basic poisson regression model*/ 

proc genmod data=hakan.hkn; 

class fam id year; 

model visits=year age gender disease educ/dist=poisson; 

run; 

 

/*M2-a zip regression*/ 

proc genmod data = hakan.hkn; 

class year id fam; 

  model visits = year age gender educ disease/ dist=zip ; 

  zeromodel year age gender educ disease  /link = logit; 

run; 

 

/*M3-individual random effect Poisson Regression*/ 

proc genmod data=hakan.hkn; 

class id year; 

model visits=year age gender disease educ/dist=p; 

repeated subject=id /corrw covb type=ar(1); 

run; 

 

/*M4.1-individual random effect Negative Binomial Regression*/ 

proc genmod data=hakan.hkn; 

class id year; 

model visits=year age gender disease educ/dist=nb; 

repeated subject=id /corrw covb type=ar(1); 

run; 

 

 

/*M5-multilevel random effect Poisson Regression*/ 

 

/*Macro is available online. One has to download and run it before calling 

the macro. Since it is pages long I did not put it here. Here is the link for 

it: 

http://www.stat.ncsu.edu/people/davidian/courses/st762/nlinmix/glmm800.sas */ 

 

 

 %glimmix (data=hakan.hkn,procopt=noclprint,  

 stmts=%str(   

 class year fam id ;  

 model visits= year age gender disease educ;  

 random intercept/subject=fam;  

 repeated /subject=id(fam)type=ar(1);),  

 error=poisson,  

 link=log);  

run; 

http://www.stat.ncsu.edu/people/davidian/courses/st762/nlinmix/glmm800.sas
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APPENDIX 2PLOTS and OUTPUTS 
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OUTPUT1- Standard Poisson 

 

Model Information 

Data Set HAKAN.HKN 

Distribution Poisson 

Link Function Log 

Dependent Variable visits 

 

 

Number of Observations Read 1080 

Number of Observations Used 1080 

 

 

 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 1070 5016.6079 4.6884 

Scaled Deviance 1070 5016.6079 4.6884 

Pearson Chi-Square 1070 5368.2664 5.0171 

Scaled Pearson X2 1070 5368.2664 5.0171 

Log Likelihood  2871.8700  

Full Log Likelihood  -3839.8394  

AIC (smaller is better)  7699.6788  

AICC (smaller is better)  7699.8846  

BIC (smaller is better)  7749.5260  

 

 

Algorithm converged. 
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Analysis Of Maximum Likelihood Parameter Estimates 

Parameter  DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square Pr > ChiSq 

Intercept  1 1.2583 0.0537 1.1531 1.3636 548.94 <.0001 

year 1 1 -0.1877 0.0509 -0.2874 -0.0880 13.62 0.0002 

year 2 1 -0.2034 0.0511 -0.3035 -0.1033 15.86 <.0001 

year 3 1 -0.1779 0.0507 -0.2773 -0.0785 12.30 0.0005 

year 4 1 0.0035 0.0484 -0.0913 0.0983 0.01 0.9421 

year 5 1 0.1327 0.0469 0.0407 0.2246 8.00 0.0047 

year 6 0 0.0000 0.0000 0.0000 0.0000 . . 

Age  1 0.0099 0.0010 0.0080 0.0118 105.28 <.0001 

gender  1 -0.6208 0.0311 -0.6818 -0.5598 397.51 <.0001 

disease  1 0.3059 0.0324 0.2423 0.3695 88.90 <.0001 

educ  1 -0.0188 0.0317 -0.0810 0.0434 0.35 0.5543 

Scale  0 1.0000 0.0000 1.0000 1.0000   

 

 

Note: The scale parameter was held fixed. 
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OUTPUT2- Standard ZIP Regression 

 

Model Information 

Data Set HAKAN.HKN 

Distribution Zero Inflated Poisson 

Link Function Log 

Dependent Variable visits 

 

 

Number of Observations Read 1080 

Number of Observations Used 1080 

 

 

 

 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance  6474.5699  

Scaled Deviance  6474.5699  

Pearson Chi-Square 1060 2457.9304 2.3188 

Scaled Pearson X2 1060 2457.9304 2.3188 

Log Likelihood  3474.4244  

Full Log Likelihood  -3237.2849  

AIC (smaller is better)  6514.5699  

AICC (smaller is better)  6515.3631  

BIC (smaller is better)  6614.2642  

 

 

Algorithm converged. 
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Analysis Of Maximum Likelihood Parameter Estimates 

Parameter  DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square Pr > ChiSq 

Intercept  1 1.5767 0.0554 1.4681 1.6853 809.45 <.0001 

Year 1 1 -0.2807 0.0517 -0.3820 -0.1794 29.49 <.0001 

Year 2 1 -0.2404 0.0518 -0.3420 -0.1388 21.50 <.0001 

Year 3 1 -0.2423 0.0515 -0.3432 -0.1414 22.14 <.0001 

Year 4 1 -0.0872 0.0489 -0.1831 0.0086 3.18 0.0743 

Year 5 1 0.1138 0.0472 0.0213 0.2064 5.81 0.0159 

Year 6 0 0.0000 0.0000 0.0000 0.0000 . . 

Age  1 0.0089 0.0010 0.0069 0.0108 82.02 <.0001 

gender  1 -0.3907 0.0315 -0.4525 -0.3289 153.51 <.0001 

educ  1 0.0337 0.0318 -0.0286 0.0961 1.12 0.2893 

disease  1 0.1507 0.0325 0.0870 0.2144 21.49 <.0001 

Scale  0 1.0000 0.0000 1.0000 1.0000   

 

 

Note: The scale parameter was held fixed. 

 

 

Analysis Of Maximum Likelihood Zero Inflation Parameter Estimates 

Parameter  DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square Pr > ChiSq 

Intercept  1 -1.0390 0.2796 -1.5870 -0.4910 13.81 0.0002 

year 1 1 -0.5348 0.2641 -1.0524 -0.0172 4.10 0.0429 

year 2 1 -0.2135 0.2519 -0.7072 0.2803 0.72 0.3969 

year 3 1 -0.3463 0.2562 -0.8484 0.1558 1.83 0.1764 

year 4 1 -0.4253 0.2572 -0.9294 0.0787 2.74 0.0981 

year 5 1 -0.1104 0.2466 -0.5937 0.3729 0.20 0.6544 

year 6 0 0.0000 0.0000 0.0000 0.0000 . . 

Age  1 -0.0061 0.0053 -0.0166 0.0043 1.31 0.2518 

gender  1 1.0417 0.1627 0.7228 1.3606 40.99 <.0001 
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Analysis Of Maximum Likelihood Zero Inflation Parameter Estimates 

Parameter  DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square Pr > ChiSq 

educ  1 0.2358 0.1630 -0.0838 0.5553 2.09 0.1482 

disease  1 -0.7215 0.1624 -1.0397 -0.4032 19.74 <.0001 
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OUTPUT 3 Poisson Individual Random Effect 
 

Model Information 

Data Set HAKAN.HKN 

Distribution Poisson 

Link Function Log 

Dependent Variable visits 

 

 

 

 

Number of Observations Read 1080 

Number of Observations Used 1080 

 

 

 

 

 

 

Algorithm converged. 

 

 

GEE Model Information 

Correlation Structure AR(1) 

Subject Effect id (180 levels) 

Number of Clusters 180 

Correlation Matrix Dimension 6 

Maximum Cluster Size 6 

Minimum Cluster Size 6 

 

 

 

 

Algorithm converged. 
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Working Correlation Matrix 

 Col1 Col2 Col3 Col4 Col5 Col6 

Row1 1.0000 0.6034 0.3641 0.2197 0.1326 0.0800 

Row2 0.6034 1.0000 0.6034 0.3641 0.2197 0.1326 

Row3 0.3641 0.6034 1.0000 0.6034 0.3641 0.2197 

Row4 0.2197 0.3641 0.6034 1.0000 0.6034 0.3641 

Row5 0.1326 0.2197 0.3641 0.6034 1.0000 0.6034 

Row6 0.0800 0.1326 0.2197 0.3641 0.6034 1.0000 

 

 

GEE Fit 

Criteria 

QIC -1089.3344 

QICu -1109.8042 

 

 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate 

Standard 

Error 

95% 

Confidence 

Limits Z Pr > |Z| 

Intercept  1.3262 0.2034 0.9275 1.7249 6.52 <.0001 

year 1 -0.1877 0.0838 -0.3520 -0.0235 -2.24 0.0251 

year 2 -0.2034 0.0821 -0.3643 -0.0425 -2.48 0.0132 

year 3 -0.1779 0.0882 -0.3508 -0.0050 -2.02 0.0438 

year 4 0.0035 0.0813 -0.1558 0.1628 0.04 0.9655 

year 5 0.1327 0.0674 0.0006 0.2647 1.97 0.0490 

year 6 0.0000 0.0000 0.0000 0.0000 . . 

age  0.0084 0.0040 0.0005 0.0163 2.09 0.0365 

gender  -0.6872 0.1415 -0.9647 -0.4098 -4.86 <.0001 

disease  0.3393 0.1270 0.0903 0.5882 2.67 0.0076 

educ  -0.0236 0.1369 -0.2919 0.2448 -0.17 0.8634 
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OUTPUT 4- NB Individual Random Effect 

Model Information 

Data Set HAKAN.HKN 

Distribution Negative Binomial 

Link Function Log 

Dependent Variable visits 

 

 

Number of Observations Read 1080 

Number of Observations Used 1080 

 

 

 

 

 

 

Algorithm converged. 

 

 

GEE Model Information 

Correlation Structure AR(1) 

Subject Effect id (180 levels) 

Number of Clusters 180 

Correlation Matrix Dimension 6 

Maximum Cluster Size 6 

Minimum Cluster Size 6 

 

 

 

 

 

 

Algorithm converged. 
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Working Correlation Matrix 

 Col1 Col2 Col3 Col4 Col5 Col6 

Row1 1.0000 0.5562 0.3093 0.1720 0.0957 0.0532 

Row2 0.5562 1.0000 0.5562 0.3093 0.1720 0.0957 

Row3 0.3093 0.5562 1.0000 0.5562 0.3093 0.1720 

Row4 0.1720 0.3093 0.5562 1.0000 0.5562 0.3093 

Row5 0.0957 0.1720 0.3093 0.5562 1.0000 0.5562 

Row6 0.0532 0.0957 0.1720 0.3093 0.5562 1.0000 

 

 

GEE Fit 

Criteria 

QIC -8231.4533 

QICu -8248.0933 

 

 

Analysis Of GEE Parameter Estimates 

Empirical Standard Error Estimates 

Parameter  Estimate 

Standard 

Error 

95% 

Confidence 

Limits Z Pr > |Z| 

Intercept  1.1696 0.2060 0.7659 1.5734 5.68 <.0001 

year 1 -0.1968 0.0913 -0.3757 -0.0180 -2.16 0.0310 

year 2 -0.1818 0.0935 -0.3651 0.0015 -1.94 0.0520 

year 3 -0.1183 0.0950 -0.3045 0.0678 -1.25 0.2128 

year 4 0.0514 0.0953 -0.1354 0.2383 0.54 0.5895 

year 5 0.1570 0.0715 0.0169 0.2971 2.20 0.0281 

year 6 0.0000 0.0000 0.0000 0.0000 . . 

age  0.0115 0.0041 0.0035 0.0195 2.83 0.0047 

gender  -0.7379 0.1354 -1.0032 -0.4725 -5.45 <.0001 

disease  0.4115 0.1295 0.1576 0.6654 3.18 0.0015 

educ  -0.0360 0.1365 -0.3036 0.2315 -0.26 0.7919 
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OUTPUT 5 Multilevel Random Effects Poisson Model 

Model Information 

Data Set WORK._DS 

Dependent Variable _z 

Weight Variable _w 

Covariance Structures Variance Components, Autoregressive 

Subject Effects fam, id(fam) 

Estimation Method REML 

Residual Variance Method Profile 

Fixed Effects SE Method Model-Based 

Degrees of Freedom Method Containment 

 

 

Dimensions 

Covariance Parameters 3 

Columns in X 11 

Columns in Z Per Subject 1 

Subjects 48 

Max Obs Per Subject 24 

 

 

Number of Observations 

Number of Observations Read 1080 

Number of Observations Used 1080 

Number of Observations Not Used 0 

 

 

Parameter Search 

CovP1 CovP2 CovP3 Variance Res Log Like -2 Res Log Like 

0.1151 0.5352 4.2712 4.2712 -1470.8659 2941.7317 

 

 

Iteration History 

Iteration Evaluations -2 Res Log Like Criterion 

1 1 2941.73173533 0.00000000 

 

 

Convergence criteria met. 
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Covariance Parameter 

Estimates 

Cov Parm Subject Estimate 

Intercept fam 0.1151 

AR(1) id(fam) 0.5352 

Residual  4.2712 

 

 

Fit Statistics 

-2 Res Log Likelihood 2941.7 

AIC (smaller is better) 2947.7 

AICC (smaller is better) 2947.8 

BIC (smaller is better) 2953.3 

 

 

PARMS Model Likelihood 

Ratio Test 

DF Chi-Square Pr > ChiSq 

2 0.00 1.0000 

 

 

Solution for Fixed Effects 

Effect year Estimate 

Standard 

Error DF t Value Pr > |t| 

Intercept  1.1886 0.1680 47 7.07 <.0001 

year 1 -0.1877 0.1028 1023 -1.83 0.0681 

year 2 -0.2034 0.1012 1023 -2.01 0.0446 

year 3 -0.1779 0.09650 1023 -1.84 0.0656 

year 4 0.003511 0.08446 1023 0.04 0.9669 

year 5 0.1327 0.06616 1023 2.01 0.0452 

year 6 0 . . . . 

age  0.01167 0.003513 1023 3.32 0.0009 

gender  -0.6496 0.1026 1023 -6.33 <.0001 

disease  0.3414 0.1128 1023 3.03 0.0025 

educ  -0.09295 0.1162 1023 -0.80 0.4239 
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Type 3 Tests of Fixed Effects 

Effect 

Num 

DF 

Den 

DF F Value Pr > F 

year 5 1023 3.49 0.0039 

age 1 1023 11.03 0.0009 

gender 1 1023 40.05 <.0001 

disease 1 1023 9.16 0.0025 

educ 1 1023 0.64 0.4239 

 

Description Value 

Deviance 4234.6441 

Scaled Deviance 991.4324 

Pearson Chi-Square 4348.8109 

Scaled Pearson Chi-Square 1018.1616 

Extra-Dispersion Scale 4.2712 
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