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ABSTRACT 

This monograph is intended as a practical guide to business appli­

cations of the theory of discrimination information statistics as 

developed by Kull back (1959) and Charnes and Cooper (1975 et seq. L A 

guide to modelling and computation methods is presented, with references 

to published applications and a discussion of their implications for 

business and planning. These impl icati'ons are developed by means of 

detailed examples showing MDI to be a practically workable unifying 

principle for the analysis of demand and market structure. Some applica­

tions in other management areas are al so noted. 
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I. INTRODUCTION 

The purpose of this monograph is to provide a guide to the construc­

tion, use, and interpretation of management models using Khintchine-

Kull back-Lei bl er statistics (often called minimum discrimination informa­

tion (MDI) statistics). 

Despite their formidable name, these statistics and their accompanying 

theory promise to make many aspects of modelling for managerial information 

and control a much easier task. Several familiar model types are encom­

passed by the theory (formally known as statistical information theory), 

and these models fall out of an MDI analysis as special cases. Useful 

connections have been established between information theoretic statistics 

and the management tools of linear and nonlinear programming. These link­

ages provide for straightforward computation and interpretation of MDI 

models and extend the range of management situations that can be treated 

by statistical methods. 

MDI methods are also useful for developing analytic structures 

of markets (for public gpods or private goods, as the examples will 

show), for testing whether changes have occurred in these structures 

over time, and for measuring the divergence of these structures from 

ideal or targeted states. Examples and references to follow include 

highway planning problems; economic input-output analysis; market area 

determination, market segmentation, reach-frequency-volume analysis, 

and brand switching studies for consumer goods; resource markets with 

cartels; and income inequality measurement. Additional examples 

illustrate the application of MDI to production management and planning 



(estimation of production functions and of manufacturing tolerances), to 

business forecasting and the managerial uses of forecasts, and to competitive 

analysis via game theory. 

MDI methods provide a unified and simplified treatment of individual 

choice and aggregate demand analysis, which allows for the analysis of market 

behavior (Charnes, Cooper, Learner and Phillips (1980)). They also play a 

unifying role in statistical inference in general, leading to many non­

market-oriented business and planning applications, of which some examples 

are provided below. Further, the methods are of great interest to manage­

ment scientists since they are applicable both to aggregated and disaggre­

gated data. 

In recent years a number of established management and planning 

models have been shown to be equivalent to MDI formulations. These include 

models for analyzing brand shifting behavior, for updating inter-industry 

matrices, and for estimating traffic patterns. Further equivalencies 

of this type, as well as original applications of MDI to business analysis, 

are now being published regularly. Theoretical considerations discussed by 

Learner and Phillips (1980) reinforce this evidence that the properties of 

MDI statistics are particularly appropriate for management and decision analysis. 

The thrust of this paper is methodological. References are given to 

theoretical and historical sources and to full er accounts of applications. 

The discussion is organized into five sections, examining the procedural 

and interpretive implications of each of the areas that combine to make 

MDI statistics a powerful modelling tool: Mathematical statistics, mathematical 

programming, business planning, and computational algorithms. The paper 

concludes with a summary of MDI modelling procedures. 
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The most complete published treatment of practical MDI models is that 

of Gokhale and Kullback (1978). Although it provides some guide to meth-

odology and computer programs, the example analyses are agricultural and 

medical rather than managerial, and the presentation is opaque. In addition, 

the computational algorithms given by Gokhale and Kull back have limited 

ca pa bi l ity. 

This monograph will provide examples in the business and planning 

contexts, noting especially the relationship of the statistical models 

to decision processes and the diversity of managerial models that have been 

shown to be equivalent to MDI formulations. We will note additional re-

* sults from the author 1 s work and from other sources that have a bearing 

on practical methodology, as well as some very basic procedural problems 

and solutions that have arisen in practice. To a great extent, this mono-

graph is a progress report and a description of statistical, computational 

and interpretive issues that remain open. For example, Section V descrtbes 

the most advanced computational procedures currently avai'labl e for MDI 

problems. 

Akaike (1973), (1977), (1978) has extended the original work of 

Kull back (1959) by applying information theoretfc stati sties to problems of 

deci:sion theory, multivariate analysis, and Bayesian analysis. Although 

these contributions illustrate the generality of information theoretic 

* In the text, the pronouns "we" and 11 our 11 are sometimes used to 
informally refer to previous and current work on MDI statistics. The 
research indicated i"n these instances ts that of A. Charnes, W. W. Cooper, 
D. B. Learner, P. Y. Phillips, and colleagues of the above who have 
coauthored the cited publications. Where a specific prevfous work is 
cited, however, formal acknowledgement is given. 
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methods,all of the applications discussed in this paper belong to a 

special class of discrete MDI models called linearly constrained MDI 

estimators. These models lead to an Analysis of Information table (a summary 

of the additive effects of the model's constraints); to estimates distributed 

as exponential families; to loglinear representations of the estimates; 

to a mathematical programming theory allowing for exact optimality condi-

tions and duality states; to efficient solutions via an unconstrained dual 

problem (Charnes, Cooper, Seiford (1978)) and to other features attractive 

for management decision modeling. 

The models to be discussed can be represented generically tn the form 

of the mathematical programming problem 

0 i Maximize -E; o1 l n(ec.-) 
l 

subject to ATo = b 

0 > 0 ( I. 1) 

Note that a concave functional is maximized subject to linear equality 

constrai.nts (written here in matrix form). 

The form ( I.1) will be specialized in various ways for the example 

applications to follow. In particular the specialized form 

P· 
Maximize -I (p:q) = -E p

1 
•. ln( -. 1 

) 
. - i qt 

subject to ATP = e 

E P;- = l 
i 

P· > 0 1. -
(I. 2) 

is of interest for statistical purposes. If q. > O and E. q. = 1, then 
l l l 
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the function I (p:q) is a measure of the divergence of the probability mass 

function p from the mass function q -- the 11 di stance 11 between the two dis­

tri butions in the information theoretic sense (see Kullback (1959) for a 

more detailed development of I (p:q}}. When the constants qi or ej are 

observations from a sample of size N, and when an optimal solution p* exists 

for (I.2), 2NI (p*:q} is asymptotically distributed as chi-square, under 

the null hypothesis that p = q. Thus solving (I.2) yields (1) an estimate 

P* which satisfies Ap* = e and "is as close as possible 11 to the distribution 

q in the information theoretic sense; (2) a test of the hypothesis that 

the p and q distributions are identical; and (3) a loglinear model of 

the quantities p* · i . 

l n p~ = 1 n q. + L a .. z*j 
1 1 j lJ 

(I. 3) 

where the z~ are dual evaluators corresponding to the constraints of ( I.2 ) . 
J 

In the terminology of Gokhale and Kullback (1978) the z~ are the scale 
J 

parameters and the natural parameters of the loglinear model. 

Gokhale and Kullback (1978) remark that for applications, the qi 

(and, we add, thee. ) may be observed, theoretical, or estimated quantities. 
J 

Learner and Phillips (1980) also add that tn the managerial contex~, the 

qi may be historical figures, anticipated figures, or desired figures. The 

use of (I.1) (or (I.2)) as a decision model depends on some of the co-

efficients c~, a ... or b. being managerially controllable, at least imolic-
1 1 J J 

itl_y. Then the cSi or pi may be intelligently influenced through the infor-

mation given by their loglinear representation -- possibly with the intent 

of affecting the status of the hypothesis Hd : p = q or other hypotheses. 
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I I. STATISTICAL ASPECTS 

The concept of information is implicit in all statistical inference, 

which is, after all, a way of inductive logic . Information was first con­

sidered explicitly and quantitatively by R. A. Fisher in the 1920's. A 

more recent concept of statistical information due to Khintchine (1949), 

(1953) and to Kullback and Leibler (1951) is, under certain conditions, 

asymptotically equivalent to Fisher information. Kullback and Leibler's 

(1951) suggestion that a complete system of statistical inference could be 

built around this definition of information was fulfilled by Kullback (1959). 

Additional historica 1 and developmental background is ava, il able in Kull back 

(1959}, Guiasu (1977), Phi"lltps (1978L and Haynes, Phillips and Mohrfeld 

(1980}. 

Modern statistical information theory provides a unified treatment 

of estimation, hypothesis testing, and statistical decisions; and provides an 

objective determination of some previously heuristic procedures in multi­

variate and Bayesian analysis (see Charnes and Cooper (1975), a,nd Akaike 

(J973, (1978)). In particular, the linearly constrained MDI estimators 

introduced in section I genera.ltze uniyarta.te and multivariate logit analysis 

and quantal response analysts (Gokhale and Kullback (1978)) and some classes 

of probit and tndi.vidual choice models (Charnes, Cooper, Learner and 

Phillips (1980}}, treating these models as special cases. This is possible 

because tlte logl inear Cmul tipl icative) representati'ons and exponential 

distributions of MDI estimates are a consequence of the optimal solution of 

of problem ( I. 2), not a necessary prior assumption (Gokhal e and Kull back 

0978) and Brockett, Charnes and Cooper (1978). 
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The MDI estimates, under the null hypothesis, are equivalent asymptot­

ically or in probability to maximum likelihood estimates (ML), least squares 

estimates, and many chi-square type estimates. In some important cases, 

MDI and ML estimates are identical. MDl estimates are also, in general, 

best asymptotically normal (Gokhale·and Kullback (1978)) . 

Kullback's (1959) development of the information measure, I(p:q), is 

summarized by Phillips (1978). Some ess·ential properties of I(p:q) are 

tnformally noted below and may be motivated by observing that, since 

pi/qi is a likelihood ratio, I(p:q) is the expected value of the log­

likelihood ratio, under the hypothesis that the random variable x is dis­

tributed according to the probability law p(x). 

* * If p is the optimal solution of (1.2), then I(p :q) is the minimum 

discrimination information in favor of the hypothesis Hi against H0 where 

(.
11 rv 11 denotes 11 i s dtstri buted according to 11

): 

H0 : x rv q (.x } and 

H 1 : x rv p (x } "f q Cx ) and 

* I(p :q) may be interpreted as the mean information per observation for 

discrimination between the distributions p and q. 

I(p:q) has properties which are conststent with intuitive notions of 

11 information. 11 The measure is additive in that twice as much quantitative 

information may be said to result from twi"ce as many statistically inde­

pendent observations. The information measure has a related Pythagorean 

property which leads to the Analysis of Information table. I(p:q ) is 

nonnegative, equal to zero if and only if p = q. The information statistic 

formalizes the notion of a sufficient statistic as one that entails no 

loss of information about a sample. The discrimination information for 
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statistics of observations is always less than or equal to that for 

the original observations, with equality only if the statistics are 

sufficient. 

An algebra of conditional information can be applied when events or 

observations are not independent. However the models discussed here are 

based on assumptions that (l} an individual's probability of classification 

into a category i remains constant, and (2 ) individuals and events are 

sampled independently. 

See Kullback (1959), Phillips (1978) or Gokhale and Kullback {_1978) 

for more detailed development of these properties. 

Gokhale and Kullback 1·s book (1978) is concerned with contingency 

tables and the analysis of categorical data i'n cross-tabulated form. It 

develops a complete and general information theoretic treatment of this 

subject, including tests for conditional and unconditional homogeneity, 

independence and i'nteraction of factors, and computational algorithms for 

these tests. It distinguishes two varfants of the constrained MDI esti-

mator -- the " internal constraints problem" and the "external constraints 

pro bl em. 0 

The internal constraints problem (ICP) is concerned with the estima­

tion of a "smoothed" distribution, pi' such that certain moments of pi are 

equal to the corresponding moments of an observed distribution. When the 

moments can oe expressed as 1 inear statistics of the pi, their observed 

values are assigned to the ej of problem (I.2), The qi of (I.2) represent 

the null hypothesis· to be tested, for example the theoretical values of pi 

under an flypothesis of independence of certain linear combinations of the 
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p .• The solution of (I.2 ) then determines the consistency of thfs hypo-
1 

thesis with the observed stati sti.cs at a desired significance 1 evel 

the less the value of the minimum discrimination information, the 

greater the a 11 owabl e confi'dence in the null hypothesis, depending of 

course, on the sample size. 

The MDI statistic 2NI(p*:q ) (where N is the sample size) for the ICP 

is asymptotically distributed as chi-square with degrees of freedom equal 

to the number of parameters estimated less the number of 1 inearly indepe1-

dent constraints~ under the null hypothesis. 

Composite hypotheses may be tested via the Pythagorean property of 

MDI numbers CKullback (_19591) . If a set of internal constraints, Ap = e, is 

implied by or contai'ned in a distinct constraint set, A1 p = e and p* and 

p* 1 are the res·pecttve MDI estimates, then 

2NI(p*:q} = 2NI(p*:p 1*) + 2NI(p ''*:q). (I I. 1) 

The term, 2NlCp*:p 1*), is called the ... effect term" and measures the impact 

of the constraints in A•p = a which are not present in Ap = e. Each of the 

terms of equation (I I. l) is i'tsel fan MDI' statisttc, and the respective degrees 

of freedom are additive. Equation (II.1 ) constitutes the ~Analysis of 

Information" for the tCP. 

The "interzonal transfer" or 11 spatial interactibn" problem is an 

example of an ICP. In this problem, the dai'ly numbers of interzonal trips 

originating and terminating ii1 each dtstrict are known, .as is some friction-

of-distance function such as the travel time between pairs of districts. 

The objective is to esti:mate the number of trips between each pair of districts, 

for purposes of road and public transportation planning, commercial zoning, 

or store location . The origin and destination data form the right- hand -
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sides of the constraints of the problem: 

Maximize -2: 2: p .. ln(p .. /q .. ) 
i j 1J lJ 1J . 
ifj 

subject to 2: p .. = 0. i = l ' n .... ' 
j lJ 1 

if j 

2: p .. = D. j = l ' n 
lJ J 

~ .. ,, 
i 

i;!j 

P;j > 0 (II.2) -

The q .. lJ are perhaps the inverses of the travel times between zone pairs. 

The optimal Ptj are the estimates of the interzonal transfers conforming 

most closely to the inverse travel time dtstri.'bution. If the observed 

marginals (or "moments"), Ot and Dj' are consistent with a number of transfers 

that are strictly inversely proportional to travel ti"me, with discrepancies 

due only to sampling error, then 2NI(P'ffqtj} will be distributed chi-

square with d.f. = n2-n..,(2n-l) = n2 .. Jn+1. (The travel matrix without 

its. diagonal 11·tntrazonal 11 elements has n2 ... n elements. Then x n constraint 

system (II.2 ) has 2n-l linearly tndependent rows. Hence n2-n-{2n-1) degrees 

of freedom .. } 

An external constraints problem (ECP) example from economic plan­

ning is the update of the Leontieff input-output matrix. The compilation 

of an inter-industry matrix from hard data sources is an enormous job even 

at a high level of aggregation of industrial categories. Sometimes current 

data on the marginals (total inputs and outputs of each industrial category) 

are available and it is felt that the proportional relationships of a known 

I/O matrix from an earlier point in time will still hold (i.e., there have 

been no technological innovations significantly changing the input mix of 
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any industry). The new matrix can then be estimated as those P;j satisfying 

the current marginals, IN; and OUT., but resembling the old martix q .. most 
, J lJ 

closely: 

Maximize - l: l: p ... ln(p .. /q .. } 
i j lJ lJ lJ 

subject to l: P;-j = IN; i = 1 ' - 4 • ' 
n 

j 

l: p .. = OUT. j = 1 J n ..... " ' 
i lJ J 

p .. > 0 (II.3) lJ 

This problem differs from the interzonal transfer problem in that the 

diagonals, P;;' are now of interest. Further, the positions of observed 

and hypothesized quantities have been reversed: qij now represents the 

observed I/O table rather than the hypothesized friction-of-distance function, 

and the right-hand-sides Of the constraints now represent hypothetically 

consistent marginal sums rather than observed origins and destinations. In 

this ECP, the degrees of freedom under H
0

: p = q are (2n - 1)--the number 

of linearly independent constraints. This is also equal to the number of 

parameters necessary for the loglinear representation of each P; (I.3). Note 

that if the impact of some technological change is conjectured, it may be in­

corporated in an alternative hypotheses, q'ij' and tested as an ICP; or re­

presented as additional "external " linear constraints and tested as an ECP. 

The following ECP example is adapted from Gokhale and Kullback 0978). 

Suppose we have taken two samples, 7Tl and 7T2, of respective sizes, n1 and 

n2, on the spaces, a1 and a2. We wish to test the equali'ty of the population 

means: 

E 
Maximize -2n1 ie:nl 

l 
1 Pi· 

P; ln( 2 
'IT. 

1 

11 

2 p. 
ln( ~} 

'IT • 
J 



subject to l: p~ 
ie:n1 

1 

l: 2 p. 
j£n2 J 

l: . l 
. n 1 p. 
1 £~Gl 1 

= l 

= 1 

l 2 
P,·' p. > 0 J -

The l ast equation represents the null hypothesis, H
0

; µ 1 = µ 2. 

For the general ECP, 

Maximize -Z:: p. l n {_p
1
Jrr

1
.) 

i 1 

p. > 0 
1 -

( II.4 ) 

(II.5 ) 

2NI(p*:q) is asymptotically distributed x~ when the constraint matrix , 

is of rank r, excluding the normalization constraints z:: pi = l. 
In the case of multi-sample pro bl ems (k-sampl e pro bl ems) such as 

example (I I.4 ) , 

k* ~ 2 
2 Z:: nk I ( P : q) X , 

k s 
(II.6) 

where s is the number of linearly independent constraints not counting 

the k normalization constrai~ts. 

If A'p = 8' => Ap = 9, then the resulting measures of fit and of 

effect, and the associated degrees of freedom, are additive, as in the 

ICP model. To continue example (II.4), suppose we affix a constraint to 

problem (I I.4) requiring that 

(I I. 7) 
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The constra i.nts now imply an hypothesis that the population means and 

variances are equal. The MDI number for the second problem, I2, has one 

more degree of freedom than I1 (_the MDI number for the first pro bl em}, and 

12 
= 112 + r1• If it happens that the first hypothesis is not rejected 

and the second hypothesis ts rejected, then r12 , the measure of the effect 

of the added constraint, is said to be significant. 

Generally, the MDI estimate under ECP is not equivalent to the maximum 

1 i.kelthood e.sti'ma:te CGokhal e and Kull back (1978}). In the notation of 

(II.5), the 1og1inear representatton of the k-samp1e MCI/ECP estimate is 

p~ k r 
1 n ( -

1 
) = E a .. L . + E a . 1 + k Tl 

7fi j=l lJ J l=l 1, 
(II.8) 

The Pi and the the rows of [aij] are reindexed lexicographically in (11.8) so 

that i = 1, 2, •.. , E Jk; where Jk ts the number of categories in the kth 
k 

sample. Gokhale and Kullback (1978) call the L; 1•·normalization constants," 

and the Tl the "natural parameters" of interest for the model. 

A brand switching model used as a research tool at the Market Research 

Corporation of America will provide an example of an ECP. Given a brand 

switching matrix [p .. ], (EE p .. = 1), a brand's "vulnerability ratio" may 
lJ i j lJ 

be defined as a linear function, Ri(pii)' of the brand's repeat buying prob­

ability, P;;· The segmentation of the brands of a market i.nto groups of 

brands having vulnerability ratios whi'ch are not significantly different 

can result 1n marketing insights . To test whether two brands, k and k', 

can be considered members of the same segment, we begin with the observed 

switching matrix [qtj] and solve 
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Maximize -EE p .. ln(p.j/q .. } . . . l J l .. lJ . 
l J 

subject to ~ ~ Pij = l 
l J 

k k' 
R (pkk} - R (Pttkl} = 0 

p. . ,. 0 
lJ 

(II.9) 

2NI(p~.:q ... ) is approximately distributed x2
1 under the hypothesis. If we 

. l J lJ 

accept this hypothesis and go on to conjecture that brand k11 is also a 

member of the segment, we must solve 

Maximize -z:: z:: p .. ln(p .. /q .. ) 
i j lJ lJ lJ 

subject to E z:: p .. = l 
i j . lJ 

k k 1 

R (pkk) - R (pk'k') = O 

p.. > 0 
lJ 

yielding an optimal solution p*I 
ij' The results may be summarized 

Analysis of Information table: 

Analysis of Information 
d.f. 

1. fit of k,k' 2Nl(p*:q) l 

2. effect of k" 2N I ( p* I : p*) l 

3. fit of k,k • ,k11 2NI(p*': q) 2 

Note th~t care must be exercised in writing down the sample size, 

( II.10) 

in an 

If the 

swttching matrix [qij] is compiled from observing many consecutive pairs 

of purchases, we may want to say that N = the number of observed pairs of 

purchases, not N = the number of observed purchases. Note also that al ­

though for a short-term study both the row and column marginal sums of 
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Iqtj] are equal to the market shares of the respective brands, this fact 

i:s not expli:ci:tly uttli.zed i:n (II.9) or (II.10). Although marginal sum 

constrafnts are ubi~uitous in the ICP, the entire observed distribution is 

written down as the q constants in the ECP. If the ECP estimate, p, is 

accepted as tdentical to q, then ~ forti6rt the marginals of p will be 

equal to those of q. 

The li:near equation representation of a given hypothesis may not be 

unique. When an external hypothesi.s can be represented as two distinct 

out equivalent sets of constraints, the tes·t statistics are not sensitive 

to tne formulation (constraint set} used. However, the number and values 

of the coefftcfents in th.e logli.near repres·entatton o.f the estimates are 

affected by the formulation, since these are measures of the effects of 

individual constaints, See Gokhale and Kullback (J978a} for examples. 

The ECP examples just given indicate that testing comoosite hvootheses 

requires. the solutton of several MDI problems. Usually these are solved 

sequentially rather than simultaneously, with the decision for the next 

stage based on the results of the previous stage. Gokhale and Kullback 

(J 978) stress that common sense is the best determtnant for selecting the 

sequence of proolems to be solved. 

The different rules for computing the degrees of freedom in the ICP 

and the ECP seem to be based on the rationale that (1) in the ECP we are 

usually more interested tn the hypothests test than in the estimates of 

the Pp (2) the test depends on th.e signiftcance of the Hnear equations 

comprtstng the re.presentation of the hypothesis, and (3) therefore the r 

unconstratned "m~tural parameters''", Tl, ~re of greatest interest. Also, the 

roles of the obs·erved quantlttes and the nypothesized quantities 
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are essentially reversed in the mathematical formulations of the lCP and 

the ECP. 

Recent experience in applications, however, has led to doubts that 

these rules for the ICP and the ECP cover the complete range of realistic 

cases. First, we can conceive of cases in which the ni of the ECP are 

not observed, but estimated. Second, as Gokhale and Kullback stress, l(p*:q) 

is useful not only as a test stattstic out as a general measure of the 

11 distance'1 from an hypothesis, and it has a known approximate distribution 

even when the null hypothes·is is rejected. Therefore, especially in 

manageri'al situations, the estimates of all pri'mal and dual parameters may 

be of interest for suggesti'ng further hypotheses. This is especially 

true in li:ght of the mathematical programmi'ng theory discussed in the next 

sectton, which provides addi'tional i~nterpretations of the dual parameters 

(Le,, the scale and natural para.meters).. 

Unfortunately, differences of opinion concerning the degrees of free­

dom of a.n estimate are not rare, even among professional statisticians (see, 

for example, Jaynes (1978} ) . These arguments are usually due to the exis .. 

tence of additional restraints on the parameters which are latent, implicit 

or hidden. As further research clarifi.es the nature of these extra re-

straints, attive discussion may resolve the matter of whether it is legiti­

ate to 11 countu them in the determinatton of degrees of freedom. Since we 

are sti"l 1 in the early stages of practical experience with constrained ·MDI 

estimators~ these uncertainties may s·oon oe res·olved. 

Meanwhile, if the numoer of d.f. is uncertain for a given application, 

a qui:ck and dirty approximation can be achieved by restati'ng th.e problem 

in terms of a very large number of free parameters, thus rendering the 
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I 
v 

critical value of the test less sensitive to the degrees of freedom . In 

th.is case, we would use a normal approxirnati'on of the chi-square distribu­

tion [Kendall and Stuart (.1958)} under which the null hypothesis implies 

that 2(NI*}12 has a normal distribut'fon with unlt variance and mean equal 
~ 

to (2k-1}2, where k is the degrees of freedom. 

Gok.hale and Kullback 0978) specify the covariance matrix of the Tl 

on the basis of the constraint matrix, AT, and a diagonal matrix, D, defined 

as d .. = Np~: compute S = ADAT, and partition Sas 
ll 1 

s = 

where~ for the case of one 11 natural 11 or normaHzing constraint, s11 is 

lxl and s22 is rxr. The estimated asymptotic covariance matrix is 

(II.11) 

Gokhale and Kullback (1978) continue with a procedure for asymptotic simul -

taneous confidence intervals for the taus and for linear combinations of 

the taus (note that the log-odds expressions, ln(p/q1), are linear 

combinations of the taus)_. 

For the practical MDI applications noted in this section and in 

section IV (and espectally, as Gokhale and Kullback {_1978) remark, for 

problems involving contingency taolesl, the sample sizes are naturally quite 

large. We can therefore feel comfortable with tests based on an asymptotic 

chi-square distribution for 2Nl*. 
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III. Math.ernati.cal Progn~mrning Aspects 

The development of a mathematical programming theory of MDI estimation 

was motivated by both applied (Charnes:, Rai'ke and Bettinger (1972)) and 

th.eoreUca 1 (.see, Charnes, Cooper and Selford (J 978) and Phi 11 ips ( 1978)) 

considerations. Its development has· added a precise duality theory and 

effi.cient computational methods to the inferential capability of statistical 

i. nf orma tfon theory. 

Of course, mathematical programming techniques are applicable to a 

great variety of statisttcal problems (see, Armstrong, Frame and Kung 

(1979) for just one exampleI. But they are especially attractive in the 

case of MDI estimation because of the unconstrained dual to problem (I.l) 

and because of the special appHcability of MDI statistics to business and 

management problems .. 

Constder the dual programs 

"Prtmal 

0 . 
sup v(o)_ = -E oi ln( 1 

) 
1 ·· ec. · 0 - i , 

subject to ATo ,.. b 

0 > 0 

Dual 

. ;Az T 
inf ~(z) =.. cie - b z 
z 

z unconstrained 

( III.1 ) 

where ;A indicates the ;th row of A, and AT is the transpose of A. 

Brockett, Charnes and Cooper (1978 ) set down a theorem developed by 

Charnes and Cooper that explains the most specific and complete duality 

theory for these problems. In summary, if the primal problem has a nonzero 

feasible solution, then en v(o) has a unique maximum at 0 * > o, and 
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* ;(z) has a unique minimum at z*; (2) v(o*) = ~Cz*); and (3) <St = 
.Az* l .. 

c .e · 
l 

Note that this last equation is the basis of the logl i.ne<ff model ( I.3) 

and that, as a mathematical programming opttmal ity condi.tion it is true 

regardless of whether H
0

: p = g is. accepted or rejected. The dual evalua,... 

tors, z*, take the role of re9resston coefficeints in thJs equation. The 

Am~lysis of Information table tests the s·igni'ftcance of these coefficients 

,..,... more precisely~ the stgniftcance for the hypothesis of the constraints 

corresponding to th.e coeffi'cients •. 

Note also that the primal problem (III.I ) is not identical to the 

11Jaxi:inizati.on of ~I(p;ql of problem (I.2 ) i'n th.at (1) the quantity, e, appears 

in th.e. denomtnatQr of the argument of the logarithm, This means that v* 

wtl 1 differ from I* by a constant eqw~l to ~ cS ~; and (2) t~e oi and ci are 

not necessariJy required to sum to unity. Prom a mathematical programming 

standpoi'nt, these differences do not affect the solution since, if Ei oi 

;:: 6., then the optimal o; and Pf wtll be in the same relative proportions for 

any given 6. whether v(cS) or I(p:q) is maximized. Thus it is always possible 

to normalize or otherwise reconcile the optimal solutions of (III.I) and 

( I.2) after the solution , via p*
1
• = cS~/E.cS~. 

l 1, l 

For example, if we solve both 

Max . ,... I ( p: q) 
p. 

= E p. l n( - 1 
) 

. l q. 
l l 

subject to ATp = b 

and E p .. = l 
i . 1 

p > 0 

Min . ,...y(cS) 

and 

I9 

Q. 
= l: cS. ln( - 1

- ) 
; i eqi 

E o. = 6 
i l 

0 > 0 (I II.2 ) 



* then o i 

* 
-t p": b. ln( L) - ln(~} l: p~ ::i 

i . 1 qi e i 

* * p. 
-b. l: pi ln( q~ ) + b. ln b. = -b. f{p*:qJ + 6 ln 6, 

i 1 

{III.3) 

From a statistical standpoint, however, it is essential to have the 

optimal value of I(p*:q) in order to proceed with hypothesis testing (since 

the test is based on the sampling distribution of 2NI(p*:q)). 

In this regard we may note that for contingency tables, the functional 

can be expre$sed in tenns of frequencies, xi, rather than 1n tenns of the 

proportions, p1, where we have x1 =NP;· In that case, e.g., for the ECP, 

x. 
-2: xi ln ( o~s ) 

i x 

Np. 
= -N l: p ln ( 1 

) = 
i Np. obs 

Thus -22: x. 
i l 

i 

p. 
-Nl: p . ln( ~bs ) = 

i , pi 

(. obs) ln x1/xi may be 

ECP and similarly for th.e ICP, 

1 

( III.4 ) 

used directly as the test statistic for the 

Depending on the computer algorithm used, the transformation (I II.3) may 

be advantageous for scaling th.e variables for purposes of numerical stability. 

Care must be taken to retransfonn th.e soluti.on b.efore performing any stati.stical 

interpretatton. 

This transformation is also the key to the fact that MDI models are a 
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generali:zati.on of the so-called "maximum entropy 11 models (as shown by 

Ph.illi:ps, Wh.ite and Haynes (1976}; see also Wilson (_1970)). These 

models involve maximizing the 1'entropy 11 function of a distribution p: 

Maximfze H(p} ~ ~pi ln pi (III.5 ) 
l 

subject to linea.r constraints as i·n (III.2). lt is easily seen that H(p) 

fi:nds tts maxim.um at the same point as does l(.p:q), if Cl; = l/n, for 

t ~ 1, 2~ , , ., n: 

f(p;q) = 1:. p .. 1n(p/n"'1} 
;· l 

;::; -1: pi ln p. - ln n 
i.· l 

= -H(p} ln n = -H(p} -. (constant). (III.6) 

H(.p} and l(p:~) aY'e therefore measures of the deviation of p from a discrete 

uniform· distribution. All th.e remarks i'n this paper also apply to the use 

and computaUon of max-entropy models, since these are a special case of 

MDI models .. 

A recurring problem in the measurement and analysis of business pro­

cesses involves the grouping of values from many categories into fewer 

categories for purposes of tractab1'l ity. In the most extreme and general 

form of the problem, one must approximate by discrete intervals a variable 

which would otherwise be regarded as continuous. Examples include distributions 

of income, brand loyalty, corporate size, etc. 

The implied problem for MDI modelling is as follows: suppose 

pi(i = 1, ••. , n) represent approximate di'screte category proportions, and 

@ is a vector of observed moments of the latent continuous distribution 

(not necessarily simple marginal sums). Then, in practice, it is quite likely 
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th.at the system, ATP = @, will have no solution. A second problem i.s 

that, even wh.en ATp = @does have a solution, thJs soluti.on i.s sensi.tive 

to the .cnoi.ce of n and the interval boundaries. 

We first attacked these prob.lems b.y. replacing AT p "' @ b.y various 

sets of i.nequc~ 1 i Ues invo l v i~ng the t, : Pp and e i, drawn from· prottabtl i ty 

theory\ Thes.e tnequaltttes allowed: for a feasible solution to the priJJJal 

prob 1em 7 but th.e approach had sertous dtsadvantages. Each interva 1 must 

be asstgned ~ '1value 11
7 xi~ so that moments of the ratto ... scaled variable may 

be expressed mathematically (_e.g., ECx} = ri.xiplx;})_. Usually the mi.d,.. 

potnt of tne interval is ch.osen for X;, put tfifs can mean a yery unsat;:s ... 

factory approxtmatton. Also, the statlsttcal theory of the MDI wc;i.s 

developed for th.e case of equality constraints; qualifications ma,y be 

ne.cessary for a statistical tnterpretatton of the tnequal ity .. canstratned 

MDI, Ftnally? sensitivity analysts : ~s to be performed by trial and error wh.en 

th.e i:nequallty constraint approadt ts :t1sed\ 

P2 

f(~~1 v:r-:-}-~-;--+IP3 ~llllT 
n = 35 

An alternative strategy, suggested by John Rousseau (1979), is to 

restate the mode 1 in terms of a vary large number of free parameters (i.e. , 

primal variables or di.screte categortes·l. This will increase the similarity 

of th.e discrete di'stribution to the latent conttnuous dtstribution, and 

"increase the. chances 1~ of a feastble solution to ATp = @. Thts strategy 

i:mposes ltttle extra computational Durden on the dual si:de, since the number 

of dual variaoles depends onlyon tft.e numfler of prtmal constratnts -- and 
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there are no dual constraints. (The optimal variables are translated into 

* "A * an optimal primal vector via the equation oi = cie1 z , which is a condition 

of optimality.) This approach may also have some statistical advantages, 

as suggested in section II. It will, however, be inapplicable if the number 

of categories in the model must confonn to the number of categories of 

some outside data which the model must address. 

An important special case of (III.l) is the maximization of I(p:q ) 

subject to 11 origin-destination 11 or 11 supply-demand 11 equations. The con-

straints for this problem are the same as those for the network problem 

without transshipment, i.e., the distribution problem, of linear program­

ming. Many MDI applications to date have been of this fonn, including the 

I/O matrix example given earlier. The dual programs for this special MDI 

model are written below: 

Primal 
p .. 

Max. -E E p. . l n ( .:_:u_ ) 
i j lJ eqij 

subject to ~ pij = O'. 

p .• > 0 
lJ -

1 

Min. E E 
i j 

r. s. 
l J 

Dual 

r. q .. s. -
.1 lJ J 

E r. Qi - E s. D. 
i l J J J. 

unconstrained 

(III.7) 

Note the double-subscripted primal variables. All aspects of problems 

(III.7) are strictly parallel to the general problems (III.1). 
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IV. Business and Managerial Aspects 

The main function of this section is to briefly review past and 

recent business applications of MDI techniques, with references to sources, 

and to indicate the areas of current research and future potential. 

The one methodological point made in this section is simply that 

the models discussed are data oriented. One must be careful to devise 

appropriate units of measurement (see Learner and Phillips (1980)). Sources 

of business data are often secondary sources rather than direct experiments, 

and figures for different time periods may be drawn from two or more sources 

whose units of measurement are incompatible. Furthermore, sampling units 

and sample sizes can be difficult or impossible to infer from library 

sources of business data. These considerations mean that the statistical 

interpretations of the formal MDI model must be tempered with judgment 

in applications. 

Business and management applications of MDI to date include the 

traffic planning (see Phillips (1978)), interindustry matrix,* and product 

segmentation (Charnes, Cooper, Learner and Phillips (1978)) problems used 

as examples earlier in this paper. Some others include: 

1. An individual choice model (the multiplicative competitive 

interaction 11 MCI 11 model of Nakanishi and Cooper (1974), basing 

probability of choice on attributes of the choice objects, 

has been shown to be equivalent to an MDI formulation 

*Cha rnes, Phi 11 ips, Rousseau and Narasimhan (forthcoming}. The pro­
blem ts discussed, but not related to Mor, in Sachem and Korte (1978) and 
Fisch and Gordon (undated}. 
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(Charnes, Cooper, Learner and Phillips (1980)). The IOCldel 

has application in studies of brand choice and shopping location 

choice. 

2. Charnes and Cooper (1974) devised a model of the behavior of 

a cartel economy which is equivalent to an MDI. 

3. Charnes, Cooper and Learner (1978) demonstrated the equivalence 

of SANDDABS, an established model of the shifting of consumers' 

brand preferences, to an MDI estimation. 

4. Theil (1967) uses entropic measures to model the distribution 

of resources and income across regions and populations. Semple 

( 1970), Semp 1 e and Demko (1977) and Ba tty ( 1972) a 1 so deve 1 op 

information theoretic measures of concentration of markets, 

incomes, and corporate headquarters sites. 

5. Ph.i:llips (1978} relates the use of the ICP approach to monitor 

the components of a brand's sales in a model called MARK-IT. 

6. Charnes and Cooper (1975) have defined and characterized entropic 

solutions ton-person games having favorable theoretical, 

computational and statistical properties. 

7. Jaynes (1978) describes an application of a max-entropy principle 

to the estimation of manufacturing tolerances. 

8. Learner and Phillips (1980} show how the properties of the MDI 

measures lead to methods of controllable forecasting that are 

particularly appropriate in the business/managerial environment. 

9. Charnes, Cooper and Schni"nnar (1976) derive production functions 

of the multiplicative or Cobb-Doublas type via MDI esti'mation. 
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Current research includes refining the procedures for applying the 

equivalencies mentioned above and investigating the connections between 

MDI techniques and chance-constrained programming. 

The properties of the Analysis of Information table have another 

particular potential for business planning -- the simplification of the 

estimation procedures for some simultaneous equation and econometric 

models. The Pythagorean property of I(p:q) could be used to measure the 

incremental effect of each restriction in the model, making it unnecessary 

to devise separate maximum likelihood estimates of each model parameter. 
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V. Computational Aspects 

This section reviews some solution algorithms published prior to 

our own work and then describes our recent approaches to computation of 

the MDI estimates, namely (1) solution as a linear programming problem via 

a piecewise linear approximation to the information functional (Charnes, 

Haynes and Phillips (1976)); (2) solution as a nonlinear progranming problem 

on both the primal and dual sides (Charnes, Narasimhan, Phillips and Rousseau 

(1980)); and, for some special problems (3) analytical solutions obtainable 

without the use of a computer (Charnes, Cooper and Learner (1978)}. 

Prior to the establishment of the mathematical programming equiva­

lences, several iterative algorithms existed for solution of MDI-type prob­

lems. These included the algorithms of D'Esopo and Lefkowitz (1963) and 

Wi.lson (1970) for the spaUal interaction model, various implementations of 

the uRAS" algorithm for the update of the inter-industry matrix (Bacharach 

(1970}, Bachem and Korte (1978) and Fisch and Gordon.(undated)), and the 

MDI algorithms of Gokhale, et.al. (see Gokhale and Kull back (1978)). None 

of these algorithms were proven to converge to the true minimum value of the 

functional, and thefr behavfor under ill .. conditfoned problems was undocumented. 

Sttll, these procedures are easy to program and may be conveniently used for 

small problems or when powerful computational facilities are not available. 

Gokhale and Kullback (1978) provide a package of programs (available 
' 

through the statisUcs department at George Washington University) for MDT 

analysis of contingency tables. Most of these programs have specialized 

features for the analysis of particular interaction hypotheses, etc. 

Slightly dtfferent procedures are used for solving special cases of the ICP 

and ECP, each with a different stoppfog rule (condition of fit), 
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The mathematical programming approaches treat all of these problems 

equally, although on a less-particularized level. A single optimality 

criterion is applied to all of the problem types. 

Our first implemented application of mathematical programming to MDI 

was a 1 inear programming approximation to the i nterzonal transfer problem 

(Charnes, Haynes and Phillips (1976)}. In this procedure, the information 

functional in problem (II.2) is rendered as -r 2: [t .. ln t .. - t .. ln K .. ]. 
i J lJ lJ lJ lJ 
ifj 

The portion of the separable functional associated with each tij has a 

linear term , tij(ln Kij), and a nonlinear term, tij ln tij' graphed below. 

0 

\ 
\ 

t .. ln t .. 
lJ lJ 

\ 

' ' ' .............. _,,, / 

I 
/ 

/ 

l 

I 
I 

minimum at (l/e, -1/e) 

t .. 
lJ 

It is assumed that tij is constrained to be between zero and one. The 

piecewise linear approximation is achieved by splitting each tij into two 
l 2 variables, t .. and t .. , as suggested by the graph below: 
lJ lJ 

0 1 

(l/e, -1/e} 
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The slope of the line segment on the left is -1; the segment on the right 

l -1 
has a slope of l/(e-1). Stipulating that t .. . < e , we can therefore 

lJ 

1 l 2 approximate t .. . ln t .. by -t .. + -e 1 t ... The following steps will then 
lJ lJ lJ - lJ 

solve the tnterzonal transfer problem: 

1 1 2 Substitute -t .. + - 1 t .. fort .. ln t .. fo the functional of lJ . e- lJ lJ lJ 1. 

pro b 1 em ( I I. 2) . 

2. Substitute t~j + t~j for tij for every remaining appearance of 

t .. in problem (II.2). 
lJ 

3. l -1 
Add the condition that tij < e 

4. Solve the resulting capacitated l inear distribution probl em. 

* 1 * 2* Make the backward transformation t.. + t .. . + t ... 
lJ lJ lJ 5. 

See Charnes and Cooper (1961) for a fuller explanation of the use of 

piecewise linear functionals. 

This approach ts disadvantageous tn that (1) the duality theory of 

the. nonlinear formulation is inapplicable; (2) the number of nonzero 

basts elements in the optimal linear programmi'ng solutfon ts almost always 

less than the total number of variables tn the problem, whereas an MDI 

solution ts stri'ctly postti've; and (3} the rough approximation of the 

information functi.onal severely limits the potential for hypothesis testing. 

Nonetheless, thi's procedure can be useful and even advantageous tn 

* cases. where the estimates, ttj, are of primary importance and hypothesis 

testtng i:s of mtnimal interest, or where the s·tze of the problem exceeds 

the. ca pac Hy of ava th bl e nonlinear programming codes. Both of these 
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conditions held at the time of the Corpus Christi intraurban transfer study 

(56 origins and 56 destinations). The linear programming approximation 

provided an immediate solution by means of an available capacitated network 

code (in terms of which this was a small problem). 

Of course, the quality of the piecewise linear approximation can be 

improved oy using a three-ptece, four-piece, or n-piece breakdown instead 

of the two-piece approximation just illustrated. 

Several of the other examples used in this paper have been solved by 

the Sequential Unconstrained Minimization Techniques (SUMT} of Fiacco and 

McCormick (see Mylander, Holmes and McCormi'cR (1971 )} . This set of 

algorttlims deals handily with the nonltnear MDI problems, especially the 

unconstrained dua 1 form; and SUMT's regularization opti'ons seem wel 1 suited 

to mending MDI problems with ill-conditioned constraint matrices. SUMT, 

which analyzes the Hessian of a transformed functional, solves MDI problems 

faster (subject to some difficulties of di'rect comparison) than an alternative 

numeri.cal descent code that analyzes only fi'rst derivatives, and faster than 

GOKHALE, the most general of the programs available from Gokhale and Kullback. 

Section II implied that the test of a composite hypothesis with MDI 

involves solving several constrained MDI estimates in sequence. It follows 

that solution times for later problems i'n such a sequence can be reduced 

by using the optimal solution of an earlier problem as a starti'ng point or 

as an indication of a favorable starting point. This may, i.n fact, be 

one consideration in determi'ning the order of solving problems in the 

sequence. 

Jn Se.cti'on III, emphasis was given to the quest for a feasible solution. 

Brock.ett, Cnarnes and Cooper (1978) provide a li'near programming problem 
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which can be applied when the existence of a feasible solution is 

questionable. The solution of this LP indicates the feasibility/non-

feasibility of the nonl inear-constra i"ned MDI prool em . 

Finally we mentton that some classes of constrai'ned MDI's may be 

solved manually by means of a simple formula. Charnes, Cooper and Learner 

(J 978) showed that a component of the SANODABS model corresponds to an MDI 

with an analytical solution. This result depended on a functional relation­

ship between the q .. . and the o .. and D. of problem (III.9). An exhaustive 
lJ 1 J 

characterizatfon of the class of MDI pro51 ems having analytic solutions 

rema tns a subject for f1Jture research, 
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VI. Summary of Modelling Methodology 

To summarize the modelling procedures presented in this monograph, 

let us reiterate the hypothesis testing paradigm within the context of 

statistical information theory. The distri"butfon, f1 (x), (with parameters 

e) closest in the information theoretic sense to another distribution, 

* f2(x), is that f 1 (x) satisfying the mi'nimization 

Minimize 

subject to JT(x) f1(x) dx = e (VI. l ) 

where T(x) is a measurable (in this example, Hnear) statistic for e. If 

there is more than one unbiased statistic for 8, that one yielding the 

largest value of I*(l :2) is used (and the estimate is really a 11maximin 11
). 

The minimum value I*(l :2 ) of I(l :2) is called the minimum discrimination 

information . 

We first decide whether to represent our hypothesis by means of 

f 2(x) (. 11 ICP 11
) or by means of 8 (11 ECP 11

). In either case, the solution of 

(VI.l) will test the consistency of f 2(x) and 8, where one of these is 

hypothesized and the other is observed. 

Having set up the appropriate constrained MDI problem in the form of 

(VI.l ) , we take a sample of N observations on x. If we are working with 

an ICP, we substitute the value of the sample statistic, T(x), for the 

population parameter, 8, in (VI.1). If we are in ECP, we substitute the 

empirical distribution, q{x), for f 2(x) tn (VI.l) . 

The null hypothesis, H
0

, that xis a sample from the population 
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characterized by f 2(x) is then tested. The test takes the form: 

reject H
0 

if 2NI*(l :2) > c, for a suitable c. (VI.2) 

For ICP, the degrees of freedom for 2Nl*(l :2) is given on page 9 . For 

ECP, the d.f., is defined on page 11. 2Nl*(l :2 ) approathes a chi-square 

di stri but ion as N grows; for sma 11 numbers of degrees of freedom, c should 

be a chi .. square fractile. For large numbers of degrees of freedom, we 

reject H
0 

if 2(NI*(l :2})~ - (2k-l )1-a i's greater than c', where k 

ts the degrees of freedom and c' is a standard norma 1 fractil e ( see page 

15}. All tests are one-tailed. 

It should be noted that if H
0 

i's rejected under this test, we are 

nonetheless 1 eft with an estimate of the dtstri'butiCHl of x whkh yi"el ds 

mtnimum tnformation for discrimination against f 2(x) and may yield further 

insights in the context of the appltcati'on. 

The. logl inear models, and thetr derivative forms, which result from 

the MD! solution present useful variate relationships based on optimal 

use of management informqtion. These rel ationshtps are simplified and 

managerially useful representations of aggregated or disaggregated empirical 

data. The examples given in this monograph illustrate the usefulness of 

theserelattonships in a wide range of business and planning si'tuations and 

the uni:fyfog role of MDI principles in the analysis of demand and market 

structure, 
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