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Abstract 

 

Hidden Markov Model and Financial Application 
 

Na Li, M.S. STAT 

The University of Texas at Austin, 2016 

 

Supervisor:  Lizhen Lin 

 

A Hidden Markov model (HMM) is a statistical model in which the system being 

modeled is assumed to be a Markov process with numerous unobserved (hidden) states. 

This report applies HMM to financial time series data to explore the underlying regimes 

that can be predicted by the model. These underlying regimes can be used as an important 

signal of market environments and used as guidance by investors to adjust their portfolio 

to maximize the performance.  

This report is composed of three chapters. The 1st chapter will introduce the 

difficulties in predicting financial time series, the limitations with traditional time series 

models, justification for choosing HMM and previous studies. The 2nd chapter will go 

through a detailed overview of HMM model, including the basic math frame works, and 

fundamental questions and algorithm to be addressed by the model. In the 3rd chapter, the 

trend analysis of the stock market is found using Hidden Markov Model. For a given 

observation sequence, the hidden sequence of states and their corresponding probability 

values are found. This analysis builds a platform for investors to decision makers to make 

decisions on the basis of probability and pattern of transition of each hidden state which 

cannot be observed from market data.  
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Chapter 1: Introduction 

 

A hidden Markov model (HMM) is a statistical model in which the system being 

modeled is assumed to be a Markov process with numerous unobserved (hidden) states. It 

is this modeling technique that we apply to predicting financial time series. This chapter 

will focus on the following several issues: characteristics of time series, difficulties in 

predicting financial time series, the limitations with traditional time series models, 

justification for choosing HMM and previous studies with HMM.  

 

1.1 Financial Time Series 

Financial time series are defined as a sequence of price movement over time. This 

report focuses on the US stock market because its volatile nature makes it challenging to 

data modelers. The data set used in this analysis is daily Standard & Poor 500 Index 

(S&P 500) starting from 1995 to 2006 which is long enough to cover a complete set of 

bull, bear and sideway market. Data is downloaded from Yahoo! Finance. It is a 

combination of weighed stock price of 500 US big companies from all sectors and it can 

best reflect the overall market healthiness.   

Different transformations can be made to the original data set in order to achieve 

better model performance. The most common transformation made to the original time 

series data is calculating the return of time series. Details of data transformation will be 

illustrated in Chapter 3.  

The task of modeling is develop a mathematical model to simulate the data series 

and then based on the mathematic model apply existing data sets to predict the state of 

future events. Generating a signal of probabilities more likely towards up or down, high 
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volatile or low volatile as a signal for next trading day will be extremely important for 

investors and traders. 

 

1.2 Limitations with Time Series Models 

Most traditional time series models assume time series events follow a linear 

pattern by time and therefore they can be predicted by a linear auto regressive model in a 

form of yt = a + b × yt−1 + noise, where a and b are regression weights. Obviously, this 

method only works for a linear data set. But in reality, the market is affected by many 

different factors from all different sources, and these factors are changing so fast. 

Therefore stock prices are very likely independent of past prices, and are seen as a rapid 

change in data patterns. For different time windows, they show different patterns and 

therefore cannot be described with one stationary model and no single model can make 

accurate predictions all the time.  

 

1.3 Market Technical Indicators 

The nonlinear nature of financial time series makes it hard to predict for the future 

events. In order to explore more information carried by the data price, different 

transformations resulting in different technical indicators can be valuable. A number of 

technical indicators are extensively used among market indicators investors and 

especially traders whose trading decisions are based on stock price action. Common 

technical indicators include Moving Average Convergence Divergence (MACD), Price 

by Volume, Relative Strength Index (RSI), Average True Range (ATR) and many others. 

Each indicator is created based on a specific algorithm and therefore reflects only a 
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specific aspect of information carried by the data. The analysis that follows uses ATR 

with details provided in Chapter 3.  

 

1.4 Markov Process and Hidden Markov Model 

A Markov Process is a system that has N states and the probability of being in a 

state at a particular time depends on a particular number of previous time states, but not 

the entire history. A first order Markov chain is a sequence of events where given the 

present point, the future is independent of the past. A HMM is a form of probabilistic 

finite state systems where the actual states are not directly observable. They can only be 

estimated using observable outcomes associated with the hidden states. At each time 

point, the HMM emits a symbol and changes a state with certain probability. HMM can 

be used to analyze and predict time series or time depending phenomena. There is not a 

one to one correspondence between the states and the observation symbols. Many states 

are mapped to one symbol and vice-versa.  

Time Series Analyses can apply a Hidden Markov Model (HMM) with a 

Gaussian mixture at each state as the forecast generator. Therefore, it can model more 

complex series that do not fall into a single Gaussian distribution. The parameter 

estimates of the model can be updated at each iteration by using an Expectation-

Maximization (EM) algorithm. At each time point, the parameters of the Gaussian 

mixtures, the weight of each Gaussian component contained in the output, and the 

transformation matrix are all updated in a dynamic fashion. The dynamic nature of the 

HMM model provides a good basis to model non-stationary financial time series data.  
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1.5 Previous Literatures 

Many forecasting methods have been proposed and implemented for the stock 

market analysis. In this section we will review some previous studies that applied HMM.  

Hidden Markov Model was first invented in speech recognition [9, 10], but is 

widely applied to forecast stock market data. Other statistical tools are used to make 

forecasts based on past time series data. Box–Jenkins used Time series analysis for 

forecasting and control[3]. White used Neural Networks for stock market forecasting and 

alternative learning algorithms and prediction methods were also tried[16,17]. Chiang et 

al. have used neural network to forecast the end-of-year net asset value of mutual funds 

[4]. Kim and Han showed that the complex dimensionality and buried noise of the stock 

market data makes it difficult to re-estimate the parameters of neural network[7]. Romahi 

and Shen showed that ANN occasionally suffers from over fitting problem [14]. They 

developed an evolving rule based expert systems and obtained a method which is used to 

forecast financial market behavior. Model hybridizations were also effectively used to 

forecast financial behavior. The drawback was the requirement of expert knowledge.  

Much work has been also carried out with mortified techniques and algorithms for 

training models for forecasting or predicting the next day close value of the stock market, 

for which randomly generated transition probability matrices, emission probability 

matrices and prior probability matrices have been considered. To improve the prediction 

accuracy and handle overfitting problem, Hassan and Nath used HMM to achieve better 

optimization [11]. Hassan et al. proposed a mix model of HMM and neural network for 

stock Market forecasting, and he also combined HMM and fuzzy logic rules to improve 

the prediction accuracy on non-stationary stock data sets [12]. Jyoti Badge used technical 

indicators as an input variable instead of stock prices for analysis[1].  
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1.6 Proposed Analysis 

The following uses a Hidden Markov Expert Model to forecast the change of the 

S&P 500 Index at a month interval. The underlying state, treated as “experts” for each 

regime which are usually invisible to the investor, can determine the behavior of the 

stock value,. These hidden states are derived from the emitted symbols. The emission 

probability depends on the current state of the HMM. Probability and Hidden Markov 

Model give a way of dealing with uncertainty. The analysis will focus on characterizing 

and predicting the regime for each trading day. Although the work doesn’t provide a 

direct prediction of daily price movement, yet prediction of the class of regime is also 

important as a signal of market and can be utilized by traders and investors.  
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Chapter 2: Hidden Markov Model 

 

Hidden Markov Models (HMMs) have been applied in many areas. They are 

widely used in speech recognition[6], bioinformatics [2], and semiconductor malfunction 

[15]. This chapter will describe the math framework of Hidden Markov Model (HMM), 

three fundamental problems and the algorithm used to solve each of the problems.  

 

2.1 Overview of HMM 

A Hidden Markov Model is a tool for representing probability distributions over 

sequence of observations. The Hidden Markov Model is named for two properties: first, 

it assumes that the observation at time t is generated by a process whose state St is hidden 

from the observer; second, it assumes that the state of this hidden process satisfies the 

Markov property, that is, given the value St-1, the current state St only depends on the state 

St-1, and is independent of all the states prior to time t-1.  

The general HMM approach framework is an unsupervised learning technique 

which allows us to find new patterns without having to impose a template during the 

learning process. 

The financial time series is generated by some underlying stochastic process that 

is most likely associated with market environment and investment decisions unknown to 

the public. Therefore, there is a good match between sequential data and HMM in which 

the prediction for the next state only depends on the current state not on the whole history 

of the past process. A HMM model can be treated as an imaginary professional with the 

hidden power that drives the financial market up and down.  
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2.2 Elements of HMM 

 

 

Figure 1-1. Diagram of HMM. It includes a sequence of observations indicated by O and 
a sequence of hidden states indicated by S. Sij is the probability of moving 
from one state to another.   

The structure of the Hidden Marcov Model is illustrated in Fig 1-1. An HMM 

consists of the following elements:  

(1) A set of hidden or latent states (S)  

(2) A set of possible output symbols (O)  

(3) A state transition probability matrix (A), probability of making transition from 

one state to each of the other states 𝐴 =    𝑎!"  where 

𝑎!" = 𝑃 𝑞!!! =   𝑆!    𝑞! =   𝑆! ,      1 ≤ 𝑖, 𝑗 ≤ 𝑁 

(4) Observation emission probability matrix (B), probability of emitting/observing 

a symbol at a particular state, The observation probability distribution in state 𝑗,𝐵 =

   𝑏!(𝑘) where  

𝑏! = 𝑃 𝑣!   𝑎𝑡    𝑡   𝑞! =   𝑆! ,      1 ≤ 𝑗   ≤ 𝑁, 1 ≤ 𝑘   ≤ 𝑀 

(5) The prior probability 𝜋! =    𝜋!   of being in state i at the beginning of the 

observations where   
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𝜋! = 𝑃 𝑞! =   𝑆! ,      1   ≤ 𝑖   ≤ 𝑁 

To initiate an HMM, an initial state will be chosen based on the prior distribution 

𝜋 and 𝑡 is set at 1. 𝑂! =   𝑣! is chosen according to the distribution in 𝑆!.  The model 

moves to state 𝑞!!! =   𝑆! based on the transition probability distribution of 𝑆!. This 

process will continue as 𝑡 increments or until termination.  More formally, this process 

is denoted by:  

 

𝜆=(S, O, A, B, π) where  

 

S={s1,s2,...,sN} is a set of N possible states  

O={o1,o2,...,oM} is a set of M possible observation symbols  

A is an NxN state Transition Probability Matrix (TPM)  

B is an NxM observation or Emission Probability Matrix (EPM)  

π is an N dimensional initial state probability distribution vector ���and A, B and π  

where 
𝑎!" = 1, 𝑏! 𝑂! = 1, 𝜋! = 1

!

,      
!

  
!

𝑎!" , 𝑏! 𝑂! ,𝜋! ≥ 0  for all  𝑖, 𝑗, 𝑡 

 

2.3 Fundamental Problems with HMM 

There are three fundamental issues regarding HMMs that must be solved before 

an HMM can be used. 

Given 𝜆 = 𝐴,𝐵,𝜋  and observation sequence O = O1, O2, O3, . . . , OT, how can 

𝑃 𝑂 𝜆  be computed for each observation sequence? 

Given 𝜆 = 𝐴,𝐵,𝜋  and observation sequence O = O1, O2, O3, . . . , OT, what is 

the underlying state sequence that   has the highest conditional probability?  
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Given an observation sequence O = O1, O2, O3, . . . , OT and a number of possible 

models, how do we maximize 𝑃 𝑂 𝜆  by adjusting model parameters 𝐴,𝐵,  and 𝜋? 

 
2.4 Forward-backward algorithm 

The 1st question can be solved by calculating the probability that model has 

generated sequence O by using Forward-Backward algorithm [4, 5]. The Forward-

Backward algorithm uses induction to create two sets of probabilities, the forward and 

backward.  Together, these are used to create a smoothed set of values.  

Let λ = (A, B, π) be the full set of parameters. Given λ, we address the question of 

how to calculate efficiently P(O|λ), which is the probability of some given sequence of 

observed outputs. We consider an efficient method of calculating this by defining  

α(t,i)=P(O = O1, O2, O3, . . . , OT,qt =Si) (2.1)  

This is a joint probability that the sequence of observations seen up to and 

including time t is O1,O2,O3,...,Ot, and that the state of the HMM at time t is Si. The α(T,i) 

are called forward probabilities. The forward algorithm can be described in the following 

way:  

• Initialization: α(1, i) = πibi(O1) 

• Induction:  

 

• Termination:  

 

Unlike the forward algorithm in which we calculated α(t,i) successively forward 

in time. In the backward algorithm, we calculate another quantity but backward in time. 

The goal of the backward algorithm is to calculate the probability β(t,i) defined by  

β(t, i) = P (Ot+1, Ot+2, ..., OT |qt = Si),  for 1 ≤ t ≤ T − 1. (2.2)  
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For convenience, we set β(t, i) to 1, for all i. We then compute equation (2.2) 

working backwards from t = T − 1. The induction step of the procedure entails the 

equation: 

 

It may be shown that 

 
 

2.5 Viterbi Algorithm   

The second question is to calculate the most likely sequence of hidden states that 

produced this observation sequence O given a model and the observation sequence. The 

process is to decode the system by calculating the most likely sequence of hidden states 

that produced this observation sequence O.  

This question becomes extremely important in speech recognition. Usually this 

problem is handled by Viterbi Algorithm [9, 10]. The Viterbi algorithm, based on 

dynamic programming, is used to find the most likely sequence of hidden states – called 

the Viterbi path – that results in a sequence of observed events. Viterbi is commonly used 

because it takes into account the most likely state at every instant and the probability of 

occurrence within the sequence of states.  The algorithm will find the max 𝑄 for a 

given observation sequence 𝑂 by the means of induction.  An array δt(i) is used to 

store the highest probability paths, define:  

δt(i) = max P({q1,q2,...,qt−1,qt =Si} ∩ { O1, O2, O3, . . . , OT})  (2.1) 



 11 

So, δt(i) is the maximum probability of all possible ways to end up in state Si at 

time T having observed the sequence O1, O2, O3, . . . , OT. Then 

max P(Q ∩ O) = max δT (i)  

To find a sequence Q for which the maximum conditional probability in equation 

(2.1) is achieved. Since  

max P(Q|O) = max P(Q ∩ O) / P(O)  

The denominator on the right-hand side does not depend on Q, so:  

arg max P(Q|O) = arg max P(Q ∩ O) / P(O)  = argmax P(Q∩O)  

Hence, we have the algorithm as follows:  

 

• Initialization step: δ1(i) = πibi(O1), 1 ≤ i ≤ N.  

• Induction step: δt(j) = max1≤i≤N δt−1(i)aijbj(Ot),  2 ≤ t ≤ T, 1 ≤ j ≤ N  

• Update time: t=t+1 Return to step 2 if t ≤ T else terminate the algorithm  
 

2.6 Baum-Welch algorithm  

The third question is to determine HMM parameters λ= {A,B,  𝜋 }that best fit 

training data, given some training observation sequences O= O1, O2, O3, . . . , OT and 

general structure of HMM (numbers of hidden and visible states). The problem can be 

reformulated as find the parameters that maximize the following probability: argmax P 

(O| λ).  

There is no known analytic method to choose λ to maximize the probability. 

However, we can use a local maximization algorithm to find the highest probability. This 

algorithm is called the Baum-Welch [9, 10]. This is a special case of the Expectation 

Maximization method. It works iteratively to improve the likelihood of P (O| λ). This 

iterative process is called the training of the model. The Baum-Welch algorithm is 
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numerically stable with the likelihood non-decreasing of each iteration. It has linear 

convergence to a local optima.  

To work out the optimal model μ = (A, B, π) iteratively, the Baum-Welch method 

uses the Forward Backward algorithm to create a re-estimation model of 𝜆 = 𝐴,𝐵,𝜋 .  

By using 𝜆 in place of 𝜆, the probability of 𝑂 being observed from the model can be 

increased up to some point.  This can be defined by  
max
!
[𝑄 𝜆, 𝜆 ] = 𝑃 𝑂 𝜆 ≥ 𝑃 𝑂 𝜆  

where the likelihood function converges to a critical point.   

Given the above definitions we begin with an initial model λ and run the training 

data O through the current model to estimate the expectations of each model parameter. 

Then we can change the model to maximize the values of the paths that are used. By 

repeating this process we hope to converge on the optimal values for the model 

parameters.  

 
2.7 Summary  

In this chapter, the general form of HMM is introduced. We also studied the three 

basic problems involved with any HMM. A specific model design based on a specific 

data set is based on the basic model and the techniques to solve the three problems. In 

reality, in the prediction task, both Viterbi algorithm and the Baum-Welch algorithm are 

used in combination to make the system work.  
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Chapter 3: Analysis of SP500 Index with HMM 

 

This chapter will construct HMM models based on Standard & Poor 500 Index 

(S&P500) from 1950 to 2016 as an application of HMM model to financial time series. 

Since it’s hard to directly predict price movement for financial time series data due to its 

volatility nature, we will instead focus on the underlying state, assuming there exists an 

expert at each state of the Hidden Markov Model. We will do it in two ways. First, we 

will explore the bull/bear market transition. We can clearly see the importance of finding 

the switch between bull and bear market. Second, we will explore the transition between 

different volatility states. We assume that one of the experts is good at forecasting low 

volatility data, the second expert is best for high volatility regions, and the 3rd one for 

middle volatility regions. Computing the posterior odds being at each state for each time 

point provides a good guidance about market environment.  

 

3.1 Data Set 

The data set used in my analysis is Standard & Poor 500 Index (S&P 500 index) 

starting from beginning 1950 to 2016, downloaded from Yahoo Finance. It is a 

combination of weighed stock price of 500 US big companies from all sectors and it can 

best reflect the overall market healthiness and therefore are extensively studied.   

The market price for each day is calculated as a daily index, which is composed of 

an opening price, a closing price, the highest price during the day and the lowest price 

during the day. For this analysis, we used the closing price at the last trading day of each 

month as the index of monthly price. The market closing price is commonly used by 

market traders as an indication of the price action of a day, a week or a month. The 
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overall trend from 1950 to 2016 is shown in Fig 3-1. It can be divided into 3 periods. The 

market price gradually increases before 2000. It’s getting choppy between 2000 and 

2010. After 2010, it starts another upward trend.  

 

 

Figure 3-1. Trend of S&P 500 index between 1995 and 2016. Monthly closing prices are 
plotting in time.  

A common assumption in many time series models is that data sets are stationary.  

A stationary process has the property that the mean, variance and autocorrelation 

structure do not change over time. Stationarity can be defined in precise mathematical 

terms, but for our purpose, we mean a flat looking series, without trend, constant variance 

over time, a constant autocorrelation structure over time and no periodic fluctuations. 

One way to check if data is stationary is by calculating autocorrelation (ACF). It is the 

correlation between two variables under the assumption that we know and take into 



 15 

account the values of some other set of variables. ACF based on original SP500 index 

shows that data is not stationary (Fig 3-3, top).  

 

 

Figure 3-2. Log return of S&P 500 index. Detailed calculations can be found in text.  
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Figure 3-3. ACF. ACF based on S&P 500 monthly price (top) and ACF based on S&P 
500 monthly log return (bottom).  

In order to better model the data set, different transformations can be made to the 

original data set because modeling works better on stationary data set. The most common 

transformation made to the original time series data is calculating the return of time 

series. The calculation of return is following: Rt = (Pt – Pt-1) / Pt-1 (Rt : return at time t, Pt : 

price at time, Pt-1 : price at time t-1). Based on calculating return, Log return and square 

return are often used to achieve stationary data set. In my analysis, I calculated Log 

return (Fig 3-2) and ACF measured after transformation showed a much better 

stationarity (Fig 3-3, bottom). It justifies why we transform original SP500 index and use 

the transformed data to build our models.  

 

3.2 Identify Bull/Bear State Switch with HMM Model 

Markov Models are a probabilistic process that looks at the current state to predict 

the probability moving to the next state. Hidden Markov Model (HMM) comes into play 
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when the complexity lies in not knowing the probability of each regime shift and how to 

account for these probabilities changing over time. They are able to estimate the 

transition probabilities for each regime and then, based on current conditions, output the 

most probable regime.  

In this analysis, we apply Hidden Markov Expert Model to forecast the 

underlying state change of the S&P 500 Index at a month interval. We define the regimes 

as being two states, bull market and bear market. Of course we can also extend to three 

state, bull, bear, or sideway. Here we only use two states as an example to show the 

application we can use HMM onto financial data.  Our goal is to identity the switch 

between these two states and to identify a pattern of the two states. The entire analysis 

was coded in R and depmixS4 library was used for modeling and ggplot2 library was 

used for plotting. 

The summary (Fig 3-4) below shows AIC and BIC for the model. AIC and BIC 

measures how much information was captured by the model. It’s useful when we have 

more than one model to choose from. The transition matrix in Fig 3-4 tells us the 

probability of moving from one state to each of the states. We can see that the initial state 

is in state 2. Under this current state, the transition matrix tells us that there is a 96.3% 

chance that it stays in state 2 and there is 3.7% chance it moves to state 1, based on the 

current data set. Since we only have one response variable that is S&P 500 Log returns, 

we only have one Gaussian mixture model, as shown in summary.  
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Figure 3-4. Summary of HMM model based on S&P 500 Log returns. Information about 
the initial state, transition matrix, and distribution of each response variables 
is shown.  

To examine the posterior probabilities of being in each state at each time point for 

a given sequence of observations and a given Hidden Markov Model, we calculated 

posterior odds over the entire data set. Fig 3-5 shows posterior odds for head and tails of 

the data set. From time point 1-6, there is a higher probability staying at S2 than S1, same 

with time point 791-796. It’s not surprising because S2 stands for bull market and the US 

stock market has a prominent feature of long bull period and short bear period which can 

easily observed from Fig 3-1. Next we see the transition from bull to bear market happens 

over some periods.  
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Figure 3-5. Posterior probability of being in state S1 and S2 for head and tail of the data 
set. State indicated the preferred state of each time point by comparing the 
probability being each of two states S1 and S2.  

Fig 3-6 shows the posterior odds over the entire data set. The 1st graph on the top 

is price over time. The 2nd plot shows the Log Return calculated based on original price. 

It’s randomly distributed around 0 and can’t be predicted. The 3rd plot is the probability 

being in Bear state at each time point. The bottom plot is the probability being in Bull 

state at each time point. From the two bottom plots, we can clearly see the transition 

between bull/bear states. Further, we can see the transition is in a neat cyclic pattern 

(rectangle in red) in time that cannot be directly observed from original price chart or log 

returns. When bear state takes over, it corresponds to a sizable correction. This 

correlation can be clearly observed from the zoom in graph in Fig 3-7 which only focus 

on a short period covering the 1st few years and the 1st bear control (blue arrows on both 

Fig 3-6 and 3-7). It suggests the importance of this model. If we cannot accurately predict 

the index price as most time series model do, and neither find a regular pattern to predict 

the trend for future events, then we can look at the transition between two or even more 

different underlying states which may show a preferred pattern and can be used indirectly 

as a prediction to the market.  
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Figure 3-6. Bull/Bear state transitions over the entire time. Top two plots are the S&P 
500 price and transformed Log returns. Bottom two plots are the probability 
staying in bear state and bull state at each time point. Red rectangle 
indicates the cyclic pattern over time for both bull and bear states.  
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Figure 3-7. Bull/Bear state transitions from 1950-1967. It shows when a bear state in 
control can cause a size market correction. Blue arrow indicates the 
correction that is also indicated in Fig 3-7 but difficult to be seen.  

 

3.3 Average True Range (ATR)  

In order to explore more information carried by the data price, different 

transformations are often made to explore the underlying patterns that are not easily 

observed from original data point. For financial time series, a number of technical 

indicators are come up by different transformations and they are extensively used among 

market indicators investors and especially traders because whose trading decisions are 

mostly made based on stock price action and less depend on the financial fundamentals of 

company. They believe that even under the situation when the company fundamentals do 

not change, the price movement can be large enough for them to trade. A number of 
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common technical indicators are Moving Average Convergence Divergence (MACD), 

Price by Volume, Relative Strength Index (RSI), Average True Range (ATR) and many 

others. Each indicator is created based on a specific algorithm and therefore reflects only 

a specific feature of the data. We will use ATR through my analysis. ATR measures a 

security's volatility. High ATR values indicate high volatility and may be an indication of 

panic selling or panic buying. Low ATR readings indicate sideways movement by the 

stock. 

The Average True Range (ATR) is based on 14 periods and is calculated on a 

daily basis. Because there must be a beginning, the first ATR value is simply the High 

minus the Low and the first 14-day ATR is the average of the daily ATR values for the 

last 14 days.  
 

3.4 Importance of Market Volatility 

Investors general success hinges on long-term thinking. However, most of them 

can’t help worrying about short time adjustment with their portfolios. This worry is 

caused by recent increases in volatility over the last few years. History has shown that the 

stock market and the economy move in cycles that repeat over and over. Therefore, 

understanding the different stages of the economy can help guide investment decisions.  

In a bull market, where investors are showing immense confidence, they tend to 

raise stock holding position. Conversely, safe-haven assets, like gold and bonds, will fall 

by the wayside. In a bear market, which indicates a lack of confidence in the economy, 

investors usually turn toward safe havens assets, adjusting the percentage of bonds 

upward. Bonds are less likely to lose money than stocks are and can reduce your 

portfolio's losses during stock market declines.  
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Obviously, knowing different market conditions can affect the investment strategy 

and therefore have a huge impact on the investment returns. Figuring out when to start, 

stop or change a trading strategy, adjusting risk and money management techniques, and 

even setting the parameters of entry and exit conditions are all dependent on the market 

conditions or so called “regimes”.  

Being able to identify different market regimes and altering your strategy 

accordingly can mean the difference between success and failure in the markets. In this 

study, we will explore how to identify different market regimes by using a powerful class 

of machine-learning algorithms known as Hidden Markov Models.  

 

3.5 Identify High/Mid/Low Volatility State Shift with HMM Model 

In this analysis, ATR was calculated and both Log Return and ATR were used as 

response variables to construct our model. This model has two Gaussian mixture models 

at each time. To identify High/Mid/Low volatility state change, we define the regimes as 

being different volatility, which is an important factor and having a large effect on the 

performance of trading strategy. The “experts” at each state of the Hidden Markov Model 

applied for financial time series prediction are three regimes, with characteristics and 

predicting bias distinct from each other. One of the experts is good at forecasting low 

volatility data, the second expert is best for middle volatility regions, and the third one is 

good for high volatility data. We are looking to find different market regimes based on 

these factors that we can then use to optimize trading strategy.  

The model summary is shown in Fig 3-8. The transition matrix gives us the 

probability of moving from one state to the next. From the transition matrix, the initial 

state probabilities model is in state 1. Under this current state, we can see from the 
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transition matrix that there is a 99.8% chance that it moves from S1 to S1, 0.02% chance 

it moves to state S3.  

 

 

Figure 3-8. Summary of HMM model using both Log returns and ATR as response 
variables.  

Fig 3-9 below shows the 3 regime shift over the entire time. We can see before 

1998, low Volatility state has been in control (4th plot labelled as “low V”). Then mid 

Volatility state kicks in (blue arrow) and then gradually shift to high Volatility state 

(green arrow).  



 25 

 

Figure 3-9. Regime shift over the entire time series. From top to bottom, the plots are: 
S&P 500 index price, Log returns, ATRs, preferred state, probability of low 
volatility, middle volatility and high volatility at each time point. The blue 
arrow indicates the shift from low volatility to middle volatility. The green 
arrow indicates the shift from middle volatility from high volatility.  

3.6 Summary 

This report showed two examples of HMM model and value of studying market 

environment. However, unlike other time series model in which future events can be 

predicted based on recent events, HMM model can’t predict the future market price based 

on history. But it can reveal more underlying information other than index price. The 

underlying states can indirectly guide the direction of market price and therefore are 

equally important. For example, the bear/bull state show a more clear temporal pattern 

than the original market price based on this analysis (Fig 3-6). It’s clear that every 10 

years the market experiences a transition between two states. Based on this temporal 

pattern, it reasonable to expect that the next big bull/bear transition will happen around 
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~year 2020. This is the predict of the martket based on the model. However, at this statge, 

since test data in not available, this conlusion cannot be validated.  

 

In the future, model should be implemented on big data platform to allow in 

streaming analytics.  Based on this platform, models can be updated in a real time 

fashion and the trading strategy can be adjusted quickly to survive in a volatile market. 

The model is constructed based on most recent data. By looking at the current regime, the 

current market can be future investagated and the change of market regime will provide a 

shift of market environment.  This is not a real prediction for the future event. However, 

by real time updating the model, it can give us the better update of the market regime.  
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