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The emergence of modern large-scale datasets has led to a huge interest

in the problem of learning hidden complex structures. Not only can models

from such structures fit the datasets, they also have good generalization per-

formance in the regime where the number of samples are limited compared to

the dimensionality. However, one of the main issues is finding computation-

ally efficient algorithms to learn the models. While convex relaxation provides

polynomial-time algorithms with strong theoretical guarantees, there are de-

mands for even faster algorithms with competitive performances, due to the

large volume of the practical datasets.

In this dissertation, we consider three types of algorithms, greedy meth-

ods, alternating minimization, and non-convex gradient descent, that have been

key non-convex approaches to tackle the large-scale learning problems. For

each theme, we focus on a specific problem and design an algorithm based on

the designing ideas. We begin with the problem of subspace clustering, where

one needs to learn underlying unions of subspaces from a set of data points
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around the subspaces. We develop two greedy algorithms that can perfectly

cluster the points and recover the subspaces. The next problem of interest is

collaborative ranking, where underlying low-rank preference matrices are to

be learned from pairwise comparisons of the entries. We present an alternat-

ing minimization based algorithm. Finally, we develop a non-convex gradient

descent algorithm for general low-rank matrix optimization problems. All of

these algorithms exhibit low computational complexities as well as competitive

statistical performances, which make them scalable and suitable for a variety

of practical applications of the problems. Analysis of the algorithms provides

theoretical guarantees of their performances.
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Chapter 1

Introduction

Statistical learning considers the problem of finding an underlying model

from a set of samples drawn from the model. It has been studied for a variety

of purposes such as prediction of future samples and simpler representation of

the given samples. For example, linear or logistic regression is used to predict

output variables for input variables which have not been observed. Princi-

pal component analysis (PCA) finds low-dimensional linear representations of

datasets. The solutions to these problems are analytically well-known, and

classical methods such as convex optimization and singular value decomposi-

tion can provide these solutions.

The recent explosion in the size and the dimensionality of modern

datasets has led to considering more complicated statistical models to learn.

The models with sparse and low-rank structures have arisen in the field where

the number of samples is limited relative to their high dimensionality. Het-

erogeneity in the datasets has led to the need of representation by multi-

ple low-dimensional subspaces rather than a single subspace using PCA. For

these models, the maximum likelihood estimations are non-convex optimiza-

tion problems, which are generically NP-hard. While many classical problems

were solved by their own analytic or algorithmic solutions in virtue of the sim-

ple structures of the models, it is diffcult to design algorithms solving such

large-scale problems.
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A tremendous number of different algorithms have been proposed to

tackle these problems. Convex relaxation is one of the most attractive ap-

proaches in the sense that the exact learning of the model is guaranteed with

strong statistical complexity by polynomial-time algorithms. However, the re-

cent unprecedented size of data led to a continuing demand for even faster

algorithms. Toward this direction, several related themes arise in the litera-

ture.

Greedy methods : In many problems with parsimonius representation,

such as sparse regression [150, 182, 39], low-rank estimation [104], and learning

sparse graphical models [83, 126, 133], algorithms that incrementally select ele-

ments of the models in a greedy fashion are shown to be promising alternatives

with comparable statistical guarantees and lower computational complexities.

Alternating minimization: For several learning problems, e.g., matrix

factorization, phase retrieval, and mixed regression, the maximum likelihood

estimations are non-convex due to the non-linear combination of two underly-

ing parameters. It is shown in [82, 128, 127, 175] that alternately solving for

one parameter while fixing the other provides desirable statistical complexity.

As opposed to convex relaxation, this class of algorithms do not expand the

variable space and hence save computational costs.

Non-convex gradient descent : Very recently, algorithms with simple

gradient descent on non-convex formulations are proved to be efficient in low-

rank matrix estimation problems [90, 91, 29, 38, 152, 183, 184, 185, 19]. These

fomulations are based on the reparametrization of low-rank matrices using

two factors, and the reduced size of the variable space results in a significant

computational gain.

In this dissertation, we design algorithms in these themes, tailored to

2



specific problems. We present greedy algorithms for the problem of subspace

clustering, two algorithms based on convex relaxation and alternating mini-

mization for collabortaive ranking, and a non-convex gradient descent algo-

rithm for general low-rank matrix optimization problems. These algorithms

have low computational complexity and hence scalability in the large-scale

setting. Analysis of the algorithms is another main part of this dissertation,

where we provide the performance guarantees.

1.1 Main problems and contributions

In this section, we introduce the problems that we consider, the de-

signed algorithms, and their contributions.

Greedy methods for subspace clustering. We consider the setting where

sample points in a high-dimensional ambient space are lying on or near unions

of low-dimensional linear subspaces. This model naturally arises when a het-

erogeneous dataset contains sample points with latent labels, and each subset

of the points with the same label can be approximated by a low-dimensional

subspace. This problem is hard when the number of points are limited. In

this regime, general clustering algorithms based on Euclidean distances do not

perform properly since for each point there can be many points on different

subspaces closer to the most of the points on the same subspace. To learn this

model, we propose new greedy algorithms to cluster the points with respect

to the hidden label. Then one can learn the subspaces by applying principal

component analysis (PCA) to each subset of points. We prove that our algo-

rithms has significantly lower computational costs and also strong theoretical

guarantees, at least comparable to the state-of-the-art convex optimization

3



based algorithms (See Table 2.1 for comparison).

Alternating minimization for collaborative ranking. Collaborative rank-

ing is a problem of learning preference orderings of multiple items for multiple

users. The samples are given as partial orderings or more simply pairwise

comparisons. As observed in the collaborative filtering literature, a low-rank

matrix model is a reasonable heuristic for estimating preferences of multiple

users. This model not only captures the similarity between the preferences of

the users, it can also be learned even when the samples from each user are in-

sufficient for an independent ranking model to be learned. In order to solve this

problem, we first establish a convex relaxation based algorithm, which mini-

mizes the empirical risk function under a nuclear norm constraint. It is shown

that this method is nearly optimal in the sense that the excess risk bound

matches the lower bound up to a logarithmic factor. Then we propose a non-

convex algorithm which is based on alternating minimization. We demonstrate

that on real-world datasets with numerical relevance scores our algorithm per-

forms even better than state-of-the-art collaborative ranking algorithms. We

also show scalability of our algorithm on multi-core environments.

Non-convex gradient descent for low-rank matrix optimization. We

consider a more general setting where one minimizes a general convex function

f over low-rank matrices. This is a general formulation in many problems to

learn low-rank matrix models. For example, in the matrix sensing problem, f

is the mean squared error of an estimate from the linear measurements of a

true low-rank matrix. For the logistic PCA problem, f is the log likelihood of

an estimate with respect to the binary observation of an underlying matrix.

4



We study a general gradient descent method over the factor space, which is

an extensively used heuristic. Since a low-rank matrix can be re-parametrized

by two factors (X = UV > where X ∈ Rm×n, U ∈ Rm×r, V ∈ Rn×r, r � m,n),

the first-order method can be applied to the two factors. This method has

advantages in computational cost over existing methods which operate over

the original X space of much more parameters to optimize or require low-rank

projection using singular value decomposition (SVD) at each iteration.

For this non-convex optimization problem, we propose an algorithm

which operates gradient descent with a carefully selected step size. We also

prove local convergence guarantees for two classes of functions, smooth and

convex f , and strongly convex and smooth f . Our results are analogous to the

standard convergence rates for convex optimization. In particular, for smooth

and convex f , we provide a O(1/t) convergence guarantee, while we prove that

a linear convergence rate can be achieved for smooth and strongly convex f .

1.2 Organization

In each chapter of the remainder of this dissertation, our designed algo-

rithm is presented. Chapter 2 presents greedy subspace clustering algorithms

for learning unions of spaces. Chapter 3 shows another work in which two algo-

rithms based on convex relaxation and alternating minimization are designed

for the problem of collaborative ranking. Chapter 4 presents our non-convex

gradient descent algorithm for low-rank matrix estimation problems. We con-

clude by describing the main theme of this thesis in Chapter 5.
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1.3 Notation

Sets and subspaces are denoted by calligraphic letters. Matrices and

key parameters are denoted by letters in upper case, and vectors and scalars

are denoted by letters in lower case. We will use the following notations.

Xij the element of matrix X in the ith row and jth column

| · | absolute value

‖·‖∗ nuclear/trace norm (The sum of all singular values)

‖·‖2 `2 norm for vectors, operator norm for matrices

‖·‖F Frobenius norm

E expectation

PX probability distribution parametrized by X

N(µ,Σ) multivariate Gaussian distribution with mean µ and covariance
matrix Σ

[n] , {1, . . . , n} set of n indices

span{·} subspace spanned by a set of vectors

ProjU y projection of y onto set U

I{·} indicator function

Πn set of all permutations of [n]

Rp p-dimensional Euclidean space

Sp−1 unit sphere in Rp⊕
direct sum

d
= equality in distribution

A
d
= B if Pr{A ≥ t} = Pr{B ≥ t} for any t ∈ R

d
≥,

d
≤ stochastic domination in the corresponding directions

A
d
≥ B if Pr{A ≥ t} ≥ Pr{B ≥ t} for any t ∈ R

dim dimension of a linear subspace
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Bk(·) Stiefel manifold (of orthonormal k-frames) in a linear subspace

Bk(D) , {D ∈ Rp×k : D>D = I,Dx ∈ D, ∀x ∈ Rk}
B(D) Bk(D) with k = dimD.

〈·, ·〉 inner product

σi(·) the ith largest singular value

∇ gradient operator

Id×d d× d identity matrix

D(·||·) Kullback-Leibler divergence between two distributions

7



Chapter 2

Greedy Algorithms for Subspace Clustering

One of the main problems in high-dimensional data analysis is to find an

underlying structure that approximates a given large set of data points. Prin-

cipal component analysis (PCA) is one of the most fundamental approaches

where one approximates the points by a low-dimensional linear subspace.

While PCA performs properly when all of the points lie on or near a single

subspace, those in many practical datasets lie on unions of multiple subspaces,

where each subspace fits a subset of the unlabeled points. In this setting, one

needs to jointly find the subspaces and the points corresponding to each. This

problem of finding unions of subspaces is known as Subspace Clustering.

Due to its generality, there is a broad range of applications of subspace

clustering, which includes the following.

• Motion segmentation [158] : Given a video sequence of multiple rigid-body

motions, the point trajectories associated with each motion lie on a 4-

dimensional subspace. Since the subspaces are different depending on the

motion, we can segment the trajectories in terms of their motion by subspace

clustering algorithms.

1This work has been published as Dohyung Park, Constantine Caramanis, and Sujay
Sanghavi, “Greedy Subspace Clustering,” in Proceedings of Advances in Neural Information
Processing Systems (NIPS), 2014. My contributions are design of algorithms, statement and
proofs of main results, and design and implementation of experiments.
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• Face clustering [72] : Under varying illumination conditions, different images

of a single face from a fixed view span a low-dimensional subspace. When

the images of multiple faces are mixed in a dataset, one can cluster the

images using subspace clustering algorithms.

• Gene expression analysis [95, 44] : DNA microarray data is often given in

the form of matrices representing expression levels of multiple genes under

multiple conditions. A subgroup of the genes with a common function pro-

vides varying expression levels for the related conditions, their expression

profiles (the vectors of the entire expression levels correponding to the genes)

lie on an axis-aligned subspace.

• Blind source separation [59] : Blind source separation is the problem that

finds multiple audio sources from their mixed observations. While this prob-

lem is more related to sparse coding, it is shown in [59] that subspace clus-

tering can also perform as well as sparse coding. In this particular problem,

subspace clustering can be regarded as group-sparse coding, where each data

point is represented by one of the dictionary groups, which is the basis of a

subspace.

• Hybrid system identification [157, 76] : When the discrete-time state of a

linear hybrid system evolves under one of the multiple parameters at each

time, one needs to find all of the parameters. This problem can be reduced

to finding multiple subspaces from a given points lying on the subspaces.

There is now a sizable literature on empirical methods for this partic-

ular problem and some statistical analysis as well. Many recently proposed

methods, which perform remarkably well and have theoretical guarantees on

their performances, can be characterized as involving two steps: (a) finding
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a “neighborhood” for each data point, and (b) finding the subspaces and/or

clustering the points given these neighborhoods. Here, neighbors of a point

are other points that the algorithm estimates to lie on the same subspace as

the point (and not necessarily the closest in Euclidean distance).

2.1 Contribution

In this chapter, we devise new algorithms for each of the two steps

above; (a) we develop a new method, Nearest Subspace Neighbor (NSN), to

determine a neighborhood set for each point, and (b) a new method, Greedy

Subspace Recovery (GSR), to recover subspaces from given neighborhoods.

Each of these two methods can be used in conjunction with other methods for

the corresponding other step, while in this chapter we focus on two algorithms,

which we call NSN+GSR and NSN+Spectral. They use NSN followed by GSR

and Spectral clustering, respectively. Our main contribution is the following.

Statistical guarantees for exact clustering with general subspace

conditions. Our algorithms guarantee exactly correct clustering without

any assumptions on the subspaces. Most existing (polynomial-time) algo-

rithms are guaranteed correct neighborhoods2 for some particular conditions

on the subspaces. The only statistical results for arbitrary subspaces are in

[142, 69, 163, 70], and combined with the algorithm in [164] exact clustering

is guaranteed. Our algorithms also guarantee exact clustering without any

assumptions on the subspaces, and the difference from the existing results will

be described in the following.

2By correct neighborhoods, we mean that each point has only the points on the same
subspace as neighbors.

10



Improving conditions with more points. A common remark of the exist-

ing statistical guarantees on arbitrary subspaces was that the conditions dete-

riorate as the number of data points grows (See Table 2.1). These results may

not properly explain the clustering performances of their algorithms, which

numerically improve with more data points. The reason for this inconsistency

is that they are conditions for correct neighborhoods for all points, while in

practice spectral clustering may result in exact clustering even without any

points having correct neighborhoods. Our second step algorithm, GSR, can

guarantee exact clustering with only a few points with correct neighborhoods.

This enables us to provide the exact clustering guarantee on arbitrary subspaces

that improves as the number of data points increases.

Statistical guarantees in the presence of noise. When there is noise,

the data points are not exactly lying on the subspaces but near the subspaces.

We claim that NSN can find correct neighbors also in this case. Our statistical

guarantee in the noisy observation model is order-wise the same as the existing

algorithms [143, 162, 69].

An efficient algorithm for practical applications. NSN+Spectral pro-

vides competitive clustering performance with lower computational cost on

practical benchmark datasets. The existing neighborhood selection algorithms

with the best clustering performance on practical datasets are either based on

convex optimization with the number of variables quadratic in the number of

data points [53, 109], or of computational complexity exponential in the sub-

space dimension [34]. NSN, which is greedy, provides improved neighborhood

selection performance with significantly reduced computational time. The ex-

perimental results show that NSN+Spectral on public benchmark datasets for
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motion segmentation and face clustering achieves comparable clustering error

with reduced computation time by an order of magnitude.

2.2 Related work

2.2.1 Subspace clustering

The problem was first formulated in the data mining community [95].

Most of the related work in this field assumes that an underlying subspace

is parallel to some canonical axes. Subspace clustering for unions of arbi-

trary subspaces is considered mostly in the machine learning and the com-

puter vision communities [155]. Most of the results from those communities

are based on empirical justification. They provided algorithms derived from

theoretical intuition and showed that they perform empirically well with prac-

tical datasets. To name a few, GPCA [156], Spectral curvature clustering

(SCC) [34], and some expectation-maximization(EM)-like iterative methods

[22, 151, 181] show their good empirical performance for subspace clustering.

However, they lack theoretical analysis that guarantees exact clustering.

In the theoretical side of the problem, [107] showed that the solution

of an optimization problem based on `p distance with p ∈ (0, 1] gives perfect

recovery of the subspaces, while it is NP-hard to find the solution. [8] pro-

vided an algorithm which extends [34]. It is guaranteed exact clustering in

the general subspace condition, but the algorithm requires either exponential

sample complexity or exponential computational complexity.

As described above, several algorithms with a common structure are

recently proposed with both theoretical guarantees and remarkable empiri-

cal performance. [53] proposed an algorithm called Sparse Subspace Cluster-

ing (SSC), which uses `1-minimization for neighborhood construction. They
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proved that if the subspaces have no intersection3, SSC always finds a cor-

rect neighborhood matrix. Later, [142] provided a statistical guarantee of the

algorithm for subspaces with intersection. [52] proposed another algorithm

called SSC-OMP, which uses Orthogonal Matching Pursuit (OMP) instead

of `1-minimization in SSC. This algorithm is later statistically analyzed by

[70, 177]. Another algorithm called Low-Rank Representation (LRR) which

uses nuclear norm minimization is proposed by [109]. [163] proposed an hy-

brid algorithm, Low-Rank and Sparse Subspace Clustering (LRSSC), which

involves both `1-norm and nuclear norm. [69] presented Thresholding based

Subspace Clustering (TSC), which constructs neighborhoods based on the in-

ner products between data points. All of these algorithms use spectral clus-

tering for the clustering step.

Most of the above results guarantee correct neighborhoods, where the

algorithms find neighbor points from the same subspace for every data point.

This does not necessarily imply that the points are clustered perfectly, because

the points from the same subspace can be segmented into multiple groups. To

ensure exact clustering, one can apply the post-processing algorithm in [164]

after the neighborhood selection.

While the above results consider the noiseless model where the points

are exactly lying on the subspaces, there have been also analytic results on the

noisy model. [143, 162, 69] provide statistical conditions for SSC and TSC to

guarantee correct neighborhoods. As opposed to the noiseless model, it is not

easy to find an algorithm for perfect clustering from correct neighborhoods.

[164] shows that with an additional assumption, which is called Restricted

3By no intersection between subspaces, we mean that they share only the null point.
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eigenvalue assumption, one can obtain perfect clustering from correct neigh-

borhoods with size at least d for each.

2.2.2 Learning Gaussian mixture model (GMM)

The statistical model we consider in this problem (See Section 2.5.1)

is a special case of GMM. Each cluster has the mean point at zero and the

covariance matrix which is a low-dimensional projection matrix. Hence, our

results can be compared with more general results on learning GMM.

Since the subspace clustering model is a significantly special class of

GMM. The sufficient conditions for the subspace clustering algorithms are

much weaker than those for the general GMM. While the sample complexity of

learning GMM should be polynomial in the ambient dimension and exponential

in the number of clusters [122, 66], the algorithms for his specific class can have

linear sample complexity in the number of clusters and the subspace dimension

which is much smaller than the ambient dimension.

2.3 Problem Setup

There is a set of N data points in Rp, denoted by Y = {y1, . . . , yN}.

The data points are lying on or near a union of L subspaces D = ∪Li=1Di.

Each subspace Di is of dimension di which is smaller than p. For each point

yj, wj denotes the index of the nearest subspace. Let Ni denote the number

of points whose nearest subspace is Di, i.e., Ni =
∑N

j=1 I{wj = i}.

2.4 Algorithms

We propose two algorithms for subspace clustering as follows.
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• NSN+GSR : Run Nearest Subspace Neighbor (NSN) to construct a neigh-

borhood matrix W ∈ {0, 1}N×N , and then run Greedy Subspace Recovery

(GSR) for W .

• NSN+Spectral : Run Nearest Subspace Neighbor (NSN) to construct a

neighborhood matrix W ∈ {0, 1}N×N , and then run spectral clustering for

Z = W +W>.

2.4.1 Nearest Subspace Neighbor (NSN)

NSN approaches the problem of finding neighbor points most likely to

be on the same subspace in a greedy fashion. At first, given a point y without

any other knowledge, the one single point that is most likely to be a neighbor

of y is the nearest point of the line span{y}. In the following steps, if we have

found a few correct neighbor points (lying on the same true subspace) and have

no other knowledge about the true subspace and the rest of the points, then

the most potentially correct point is the one closest to the subspace spanned

by the correct neighbors we have. This motivates us to propose NSN described

in the following.

NSN collects K neighbors sequentially for each point. At each step k,

a k-dimensional subspace U spanned by the point and its k − 1 neighbors is

constructed, and the point closest to the subspace is newly collected. After

k ≥ kmax, the subspace U constructed at the kmaxth step is used for collecting

neighbors. At last, if there are more points lying on U, they are also counted as

neighbors. The subspace U can be stored in the form of a matrix U ∈ Rp×dim(U)

whose columns form an orthonormal basis of U. Then ‖ProjU yj‖2 can be

computed easily because it is equal to ‖U>yj‖2. While a naive implementation

requires O(K2pN2) computational cost, this can be reduced to O(KpN2), and
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Algorithm 1 Nearest Subspace Neighbor (NSN)

Input: A set of N samples Y = {y1, . . . , yN}, The number of required neigh-
bors K, Maximum subspace dimension kmax.

Output: A neighborhood matrix W ∈ {0, 1}N×N
(Optional) yi ← yi/‖yi‖2, ∀i ∈ [N ] . Normalize magnitudes
for i = 1, . . . , N do . Run NSN for each data point

Ii ← {i}
for k = 1, . . . , K do . Iteratively add the closest point to the current

subspace
if k ≤ kmax then

U← span{yj : j ∈ Ii}
end if
j∗ ← arg maxj∈[N ]\Ii ‖ProjU yj‖2

Ii ← Ii ∪ {j∗}
end for
Wij ← Ij∈Ii or yj∈U, ∀j ∈ [N ] . Construct the neighborhood matrix

end for

the faster implementation is described in Section 2.6.1. We note that this

computational cost is much lower than that of the convex optimization based

methods (e.g., SSC [53] and LRR [109]) which solve a convex program with

N2 variables and pN constraints.

NSN for subspace clustering shares the same philosophy with Orthogo-

nal Matching Pursuit (OMP) for sparse recovery in the sense that it incremen-

tally picks the point (dictionary element) that is the most likely to be correct,

assuming that the algorithms have found the correct ones. In subspace clus-

tering, that point is the one closest to the subspace spanned by the currently

selected points, while in sparse recovery it is the one closest to the residual

of linear regression by the selected points. In the sparse recovery literature,

the performance of OMP is shown to be comparable to that of Basis Pursuit

(`1-minimization) both theoretically and empirically [150, 96]. One of the con-
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tributions of this work is to show that this high-level intuition is indeed born

out, provable, as we show that NSN also performs well in collecting neighbors

lying on the same subspace.

2.4.2 Greedy Subspace Recovery (GSR)

Suppose that NSN has found correct neighbors for a data point. How

can we check if they are indeed correct, that is, lying on the same true sub-

space? One natural way is to count the number of points close to the subspace

spanned by the neighbors. If they span one of the true subspaces, then many

other points will be lying on the span. If they do not span any true subspaces,

few points will be close to it. This fact motivates us to use a greedy algorithm

to recover the subspaces. Using the neighborhood constructed by NSN (or

some other algorithm), we recover the L subspaces. If there is a neighborhood

set containing only the points on the same subspace for each subspace, the

algorithm successfully recovers the unions of the true subspaces exactly.

Recall that the matrix W contains the labelings of the points, so that

Wij = 1 if point i is assigned to subspace j. PCA(·) denotes a principal

subspace of the input set of vectors. This can be obtained by taking the first d

left singular vectors of the matrix whose columns are the vector in the set. If

there are only d vectors in the set, Gram-Schmidt orthogonalization will give

us the subspace. As in NSN, it is efficient to store a subspace Wi in the form

of its orthogonal basis because we can easily compute the norm of a projection

onto the subspace.

Testing a candidate subspace by counting the number of near points

has already been considered in the subspace clustering literature. In [173], the

authors proposed to run RANdom SAmple Consensus (RANSAC) iteratively.
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Algorithm 2 Greedy Subspace Recovery (GSR)

Input: N points Y = {y1, . . . , yN}, A neighborhood matrix W ∈ {0, 1}N×N ,
Error bound ε

Output: Estimated subspaces D̂ = ∪Ll=1D̂l. Estimated labels ŵ1, . . . , ŵN
yi ← yi/‖yi‖2, ∀i ∈ [N ] . Normalize magnitudes
Wi ← span{yj : Wij = 1}, ∀i ∈ [N ] . Estimate a subspace using the
neighbors for each point
Ci ←

∑N
j=1 I{Wij = 0, ‖ProjWi

yj‖2 ≥ 1− ε}, ∀i ∈ [N ]
I← [N ], L← 0
while maxi∈ICi ≥ C do

i∗ ← arg maxi∈ICi . Iteratively pick the best subspace estimates
D̂L ← PCA{yj : ‖ProjWi∗

yj‖2 ≥ 1− ε}
I← I \ {j : ‖ProjWi∗

yj‖2 ≥ 1− ε}
L← L+ 1

end while
ŵi ← arg maxl∈[L] ‖ProjD̂l yi‖2, ∀i ∈ [N ] . Label the points using the
subspace estimates

RANSAC randomly selects a few points and checks if there are many other

points near the subspace spanned by the collected points. Instead of randomly

choosing sample points, GSR receives some candidate subspaces (in the form

of sets of points) from NSN (or possibly some other algorithm) and selects

subspaces in a greedy way as specified in the algorithm above.

2.5 Statistical results

We analyze our algorithms in two standard noiseless models. The main

theorems present sufficient conditions under which the algorithms cluster the

points exactly with high probability. For simplicity of analysis, we assume

that every subspace is of the same dimension, and the number of data points

on each subspace is the same, i.e., d , d1 = · · · = dL, n , N1 = · · · = NL.

We assume that d is known to the algorithm. Nonetheless, our analysis can
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extend to the general case.

2.5.1 Models

We consider two models which have been used in the subspace cluster-

ing literature:

• Fully random model: The subspaces are drawn iid uniformly at random,

and the points are also iid randomly generated.

• Semi-random model: The subspaces are arbitrarily determined, but the

points are iid randomly generated.

Let Di ∈ Rp×d, i ∈ [L] be a matrix whose columns form an orthonormal

basis of Di. An important measure that we use in the analysis is the affinity

between two subspaces, defined as

aff(i, j) ,
‖D>i Dj‖F√

d
=

√∑d
k=1 cos2 θi,jk

d
∈ [0, 1],

where θi,jk is the kth principal angle between Di and Dj. Two subspaces Di

and Dj are identical if and only if aff(i, j) = 1. If aff(i, j) = 0, every vector on

Di is orthogonal to any vectors on Dj. We also define the maximum affinity

as

max aff , max
i,j∈[L],i 6=j

aff(i, j) ∈ [0, 1].

There are N = nL points, and there are n points exactly lying on each

subspace. We assume that each observation yi is the sum of a data point xi

drawn iid from the spherical Gaussian on Dwi and a noise zi drawn iid from

the spherical Gaussian in the ambient space. Equivalently, we can write

yi = Dwixi + zi, xi ∼ N

(
0,

1

d
Id×d

)
, zi ∼ N

(
0,
σ2

p
Ip×p

)
, ∀i ∈ [N ].
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We note that in the noiseless case (σ2 = 0) the analysis for the Gaussian

distribution of xi is equivalent to that for the uniform distribution on Sd−1,

which is assumed in the existing results. From the uniform distribution, we

can scale each vector by an independent Rayleigh random variable to obtain

the Gaussian distribution. From the Gaussian distribution, we can normalize

each vector to obtain uniform distribution. However, we consider the Gaussian

case for simpler analysis.

2.5.2 Main results

We first consider the points without noise (σ2 = 0). The first theorem

gives a statistical guarantee for the fully random model.

Theorem 2.1. Suppose L d-dimensional subspaces and n points on each sub-

space are generated in the fully random model. There are constants c1, c2 > 0

such that if

n

d
≥ c1

(
log

n

dδ

)2

,
d

p
≤ c2 log n

log(ndLδ−1)
, (2.1)

then with probability at least 1− 3Lδ
1−δ , NSN+GSR4 clusters the points exactly.

Also, there are other constants c′1, c
′
2 > 0 such that if (2.1) with c1 and c2

replaced by c′1 and c′2 holds then NSN+Spectral5 clusters the points exactly

with probability at least 1− 3Lδ
1−δ .

Our sufficient conditions for exact clustering explain when subspace

clustering becomes easy or difficult, and they are consistent with our intuition.

For NSN to find correct neighbors, the points on the same subspace should

4NSN with K = d− 1, kmax = 1 ∨ b2 log dc followed by GSR with arbitrarily small ε.
5NSN with K = d− 1, kmax = 1 ∨ b2 log dc.
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be many enough so that they look like lying on a subspace. This condition is

spelled out in the first inequality of (2.1). We note that the condition holds

even when n/d is a constant, i.e., n is linear in d. The second inequality implies

that the dimension of the subspaces should not be too high for subspaces to

be distinguishable. If d is high, the random subspaces are more likely to be

close to each other, and hence they become more difficult to be distinguished.

However, as n increases, the points become dense on the subspaces, and hence

it becomes easier to identify different subspaces. These scaling property holds

when the number of clusters L is at most polynomial in the subspace dimension

d. By replacing δ with δ/L, we obtain a sufficient condition which is order-wise

the same as (2.1).

Let us compare our result with the conditions required for success in

the fully random model in the existing literature.6 In [142], it is guaranteed

for SSC to have correct neighborhoods that n should be superlinear in d when

d/p fixed. In [68, 163], the conditions on d/p becomes worse as we have more

points. On the other hand, our algorithms are guaranteed exact clustering

of the points, and the sufficient condition is order-wise at least as good as

the conditions for correct neighborhoods by the existing algorithms (See Table

2.1). Moreover, exact clustering is guaranteed even when n is linear in d, and

d/p fixed.

For the semi-random model, we have the following general theorem.

Theorem 2.2. Suppose L d-dimensional subspaces are arbitrarily chosen, and

n points on each subspace are generated in the semi-random model. There are

6We consider L is at most polynomial in d so that the guarantees of the existing work
are valid, i.e., the success probabilities approach one.
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constants c1, c2 > 0 such that if

n

d
≥ c1

(
log

n

dδ

)2

, max aff ≤

√
c2 log n

log(dLδ−1) · log(ndLδ−1)
. (2.2)

then with probability at least 1− 3Lδ
1−δ , NSN+GSR7 clusters the points exactly.

In the semi-random model, the sufficient condition does not depend on

the ambient dimension p. When the affinities between subspaces are fixed, and

the points are exactly lying on the subspaces, the difficulty of the problem does

not depend on the ambient dimension. It rather depends on max aff, which

measures how close the subspaces are. As they become closer to each other, it

becomes more difficult to distinguish the subspaces. The second inequality of

(2.2) explains this intuition. The inequality also shows that if we have more

data points, the problem becomes easier to identify different subspaces.

Compared with other algorithms, NSN+GSR is guaranteed exact clus-

tering, and more importantly, the condition on max aff improves as n grows.

This remark is consistent with the practical performance of the algorithm

which improves as the number of data points increases, while the existing

guarantees of other algorithms are not. In [142], correct neighborhoods in SSC

are guaranteed if max aff = O(
√

log(n/d)/ log(nL)). In [68], exact clustering

of TSC is guaranteed if max aff = O(1/ log(nL)). However, these algorithms

perform empirically better as the number of data points increases.

2.5.3 Guarantees on the noisy model

Now let us consider the observation is noisy. Opposed to the noiseless

model, even when NSN finds correct neighbors from the same true subspace,

7NSN with K = d− 1 and kmax = b2 log dc followed by GSR with arbitrarily small ε.
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the intermediate subspace U spanned by the neighbors is distinct from the

true subspace. Our analysis claims that as long as the noise variance σ2 is

bounded and small, NSN can find all correct neighbors using the perturbed

intermediate subspaces.

Theorem 2.3. Suppose L d-dimensional subspaces are arbitrarily chosen, and

n points on each subspace are generated in the noisy semi-random model.

There are constants c1, c2 > 0 such that if

n

d
≥ c1 log

n

dδ
, max aff <

c2

log(nL)
− 10(1 + σ)2

√
d

p
, (2.3)

then with high probability, NSN finds correct neighbors for every point.

When the model is noisy, similarly to the existing results [143, 162, 69],

we can only guarantee correct neighborhoods for all points, and the condition

on max aff deteriorates as n grows. Again, this is because one requires every

point to have correct neighborhoods, and it is reasonable that this condition

becomes worse as n and L increases.

Our result demonstrates that the noise variance affects the sufficient

condition on max aff. If the noise gets higher, the affinity between subspaces

should be smaller. A surprising remark is that the noise power σ2 can be as

large as O(
√

p
d(lognL)2 ), which is in general much higher than the signal power

which is O(1). In this case, a intermediate subspace U is obtained from very

noisy points, and it is far from a true subspace even when the algorithm have

collected the points all from the subspace. However, since that is due to the

noise, U is even farther than the other true subspaces, and it is less likely for

their points to be collected. This remark, being able to pick correct neighbors

in the highly noisy model, has been also observed with the existing algorithms

[162, 69].
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2.6 Implementation

2.6.1 A faster implementation for NSN

At each step of NSN, the algorithm computes the projections of all

points onto a subspace and find one with the largest norm. A naive imple-

mentation of the algorithm requires O(pK2N2) time complexity.

In fact, we can reduce the complexity to O(pKN2). Instead of finding

the maximum norm of the projections, we can find the maximum squared

norm of the projections. Let Uk be the subspace U at step k. For any data

point y, we have

‖ProjUk y‖
2
2 = ‖ProjUk−1

y‖2
2 + |u>k y|2

where uk is the new orthogonal axis added from Uk−1 to make Uk. That is,

Uk−1 ⊥ uk and Uk = Uk−1

⊕
uk. As ‖ProjUk−1

y‖2
2 is already computed in the

(k − 1)’th step, we do not need to compute it again at step k. Based on this

fact, we have a faster implementation as described in the following. Note that

Pj at the kth step is equal to ‖ProjUk yj‖
2
2 in the original NSN algorithm.

2.6.2 Estimation of the number of clusters

When L is unknown, it can be estimated at the clustering step. For

Spectral clustering, a well-known approach to estimate L is to find a knee

point in the singular values of the neighborhood matrix. It is the point where

the difference between two consecutive singular values are the largest. For

GSR, we do not need to estimate the number of clusters a priori. Once the

algorithms finishes, the number of the resulting groups will be our estimate of

L.

24



Algorithm 3 Fast Nearest Subspace Neighbor (F-NSN)

Input: A set of N samples Y = {y1, . . . , yN}, The number of required neigh-
bors K, Maximum subspace dimension kmax.

Output: A neighborhood matrix W ∈ {0, 1}N×N
(Optional) yi ← yi/‖yi‖2, ∀i ∈ [N ]
for i = 1, . . . , N do

Ii ← {i}, u1 ← yi
Pj ← 0,∀j ∈ [N ]
for k = 1, . . . , K do

if k ≤ kmax then
Pj ← Pj + ‖u>k yj‖2, ∀j ∈ [N ]

end if
j∗ ← arg maxj∈[N ],j /∈Ii Pj
Ii ← Ii ∪ {j∗}
if k < kmax then

uk+1 ←
yj∗−

∑k
l=1(u>l yj∗ )ul

‖yj∗−
∑k
l=1(u>l yj∗ )ul‖2

end if
end for
Wij ← Ij∈Ii or Pj=1, ∀j ∈ [N ]

end for
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2.6.3 Parameter setting

The choices of K and kmax depend on the dimension of the subspaces

d. If data points are lying exactly on the model subspaces, K = kmax = d

is enough for GSR to recover a subspace. In practical situations where the

points are near the subspaces, it is better to set K to be larger than d. kmax

can also be larger than d because if we have collected correct neighbors then

the kmax − d additional dimensions, which may be induced from the noise, do

not intersect with the other subspaces in practice. In our motion segmentation

and face clustering experiments on real datasets, we found that our algorithm

performs well if K = kmax is set to be around 2d.

2.7 Experimental results

In this section, we empirically compare our algorithms with the existing

algorithms in terms of clustering performance and computational time (on

a single desktop). For NSN, we used the fast implementation described in

Section 2.6.1. The compared algorithms are K-means, K-flats8, SSC, LRR,

SCC, TSC9, and SSC-OMP10. The numbers of replicates in K-means, K-flats,

and the K-means used in the spectral clustering are all fixed to 10. The

algorithms are compared in terms of Clustering error (CE) and Neighborhood

8K-flats is similar to K-means. At each iteration, it computes top-d principal subspaces
of the points with the same label, and then labels every point based on its distances to those
subspaces.

9The MATLAB codes for SSC, LRR, SCC, and TSC are obtained from http:

//www.cis.jhu.edu/~ehsan/code.htm, https://sites.google.com/site/guangcanliu,
and http://www.math.duke.edu/~glchen/scc.html, http://www.nari.ee.ethz.ch/

commth/research/downloads/sc.html, respectively.
10For each data point, OMP constructs a neighborhood for each point by regressing the

point on the other points up to 10−4 accuracy.
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selection error (NSE), defined as

(CE) = min
π∈ΠL

1

N

N∑
i=1

I(wi 6= π(ŵi)), (NSE) =
1

N

N∑
i=1

I(∃j : Wij 6= 0, wi 6= wj)

where ΠL is the permutation space of [L]. CE is the proportion of incorrectly

labeled data points. Since clustering is invariant up to permutation of label

indices, the error is equal to the minimum disagreement over the permutation

of label indices. NSE measures the proportion of the points which do not have

all correct neighbors. Having all correct neighbors for a point has been of

interest for analysis in recent subspace clustering literature. Such a property

is called subspace detection property [142], exact feature selection [52], or self-

expressiveness property [53]. To be fair in comparison, we fixed the number

of neighbors to be d over all algorithms. 11

2.7.1 Synthetic data: Fully random model

We compare the performances on synthetic data generated from the

fully random model. In Rp, five d-dimensional subspaces are generated uni-

formly at random. Then for each subspace n unit-norm points are generated

iid uniformly at random on the subspace. To see the agreement with the the-

oretical result, we ran the algorithms under fixed d/p and varied n and d. We

set d/p = 3/5 so that each pair of subspaces has intersection.

Figures 2.1 and 2.2 show CE and NSE, respectively. Each error value is

averaged over 100 trials. Figure 2.1 indicates that our algorithm clusters the

data points better than the other algorithms. As predicted in the theorems, the

11For the neighborhood matrices from SSC, LRR, and SSC-OMP, the d points with
the maximum weights are regarded as neighbors for each point. For TSC, the d nearest
neighbors are collected for each point.
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Figure 2.1: CE of algorithms in the fully random model. Five random d-
dimensional subspaces are generated iid uniformly at random, and n iid uni-
formly random unit-norm points are drawn on each subspace. The figures
shows CE for different numbers of n/d and ambient dimension p. d/p is fixed
to be 3/5. Brighter cells represent that less data points are clustered incor-
rectly.
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Figure 2.2: NSE in the fully random model with the same model parameters
as those in Figure 2.1. Brighter cells represent that more data points have all
correct neighbors.

clustering performance improves as the number of points increases. However, it

also improves as the dimension of subspaces grows in contrast to the theoretical

analysis. We believe that this is because our analysis on GSR is not tight. In

Figure 2.2, we can see that more data points obtain correct neighbors as n

increases or d decreases, which conforms the theoretical analysis.

We also compare the computational time of the neighborhood selec-

tion algorithms for different numbers of subspaces and data points. As shown
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Figure 2.3: Average computational time of the neighborhood selection algo-
rithms

in Figure 2.3, the greedy algorithms (OMP, Thresholding, and NSN) are sig-

nificantly more scalable than the convex optimization based algorithms (`1-

minimization and nuclear norm minimization).

2.7.2 Synthetic data: Semi-random model

Now we evaluate our algorithm for controlled affinity betweeen sub-

spaces. In R50, four 5-dimensional subspaces are generated as follows. Let D(1)

and D(2) be random orthonormal matrices such that D(1)>D(1) = D(2)>D(2) =

I5×5, and D(1)>D(2) = 0. Then the orthonormal basis of subspace Di is given

by

Di = cos(θ · i) ·D(1) + sin(θ · i) ·D(2), i ∈ {1, 2, 3, 4}.

Note that if θ ≤ π/4, the maximum affinity between the subspaces is given

by max aff = sin(θ). Given these subspaces, n unit-norm points are generated

uniformly at random for each subspace. Each error value is averaged over 100

trials.

Figures 2.4 and 2.5 show CE and NSE, respectively. Each error value is
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Figure 2.4: CE of algorithms in the semi-random model. Four 5-dimensional
subspaces are generated with fixed max aff, and iid uniformly random unit-
norm points are drawn on each subspace. The figures shows CE for different
numbers of n/d and max aff. Brighter cells represent that less data points are
clustered incorrectly.
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Figure 2.5: NSE in the semi-random model with the same model parameters
as those in Figure 2.4. Brighter cells represent that more data points have all
correct neighbors.

averaged over 100 trials. Figure 2.4 indicates that our algorithm clusters the

data points better than the other algorithms. As predicted in the theorems,

clustering becomes harder as the maximum affinity grows, but the performance

improves as the number of points increases. Also in Figure 2.2, we can see a

similar performance behavior.
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2.7.3 Motion segmentation

For the motion segmentation, we used Hopkins155 dataset [149], which

contains 155 video sequences of 2 or 3 motions. Table 2.2 shows CE and

average computational time. We can see that NSN+Spectral performs com-

petitively with the methods with the lowest errors, but much faster. Compared

to the other greedy neighborhood construction based algorithms, SSC-OMP

and TSC, our algorithm performs significantly better.

2.7.4 Face clustering

For the face clustering, we used Extended Yale B dataset with cropped

images from [58, 105]. The dataset contains 64 images of size 192× 168 pixels

for each of 38 individuals in frontal view and different illumination conditions.

To compare with the existing algorithms, we used the set of 48 × 42 resized

raw images provided by the authors of [53]. The parameters of the existing

algorithms were set as provided in their source codes.12

Table 2.3 show CE and average computational time for K-means, K-

flats, SSC, SSC-OMP, TSC and NSN+Spectral.13 We omitted the result from

NSN+GSR since it did not perform well in this practical dataset. However, we

can see that NSN+Spectral performs competitively with the methods with the

lowest errors, but much faster. Compared to the other greedy neighborhood

construction based algorithms, SSC-OMP and TSC, our algorithm performs

significantly better.

12As SSC-OMP and TSC do not have proposed number of parameters for motion seg-
mentation, we found the numbers minimizing the mean CE. The numbers are given in the
table.

13The LRR code provided by the author did not perform properly with the face clustering
dataset that we used.
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2.8 Proofs

2.8.1 Proofs for the noiseless model (Theorems 2.1 and 2.2)

Exact clustering of our algorithms depends on whether NSN can find

all correct neighbors for the data points so that the following algorithm (GSR

or Spectral clustering) can cluster the points exactly. For NSN+GSR, exact

clustering is guaranteed when there is a point on each subspace that have all

correct neighbors which are at least d−1. For NSN+Spectral, exact clustering

is guaranteed when each data point has only the n − 1 other points on the

same subspace as neighbors. In the beginning step, we explain why these are

true.

Step 1a: Exact clustering condition for GSR

The two statistical models have a property that for any d-dimensional

subspace in Rp other than the true subspaces D1, . . . ,DL the probability of

any points lying on the subspace is zero. Hence, we claim the following.

Fact 2.4 (Best d-dimensional fit). With probability one, the true subspaces

D1, . . . ,DL are the L subspaces containing the most points among the set of

all possible d-dimensional subspaces.

Then it suffices for each subspace to have one point whose neighbors

are d−1 all correct points on the same subspace. This is because the subspace

spanned by those d points is almost surely identical to the true subspace they

are lying on, and that subspace will be picked by GSR.

Fact 2.5. If NSN with K ≥ d − 1 finds all correct neighbors for at least one

point on each subspace, GSR recovers all the true subspaces and clusters the
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data points exactly with probability one. That is,

∀l ∈ [L],∃i : wj = l : Wij = 1 ⇒ D̂ ≡ D,∃π ∈ ΠL : π(ŵi) = wi,∀i ∈ [N ].

where ΠL is the permutation space for [L].

In the following steps, we consider one data point for each subspace.

We show that NSN with K = d − 1 finds all correct neighbors for the point

with probability at least 1− 3δ
1−δ . Then the union bound and Fact 2.5 establish

exact clustering with probability at least 1− 3Lδ
1−δ .

Step 1b: Exact clustering condition for spectral clustering

It is difficult to analyze spectral clustering for the resulting neighbor-

hood matrix of NSN. A trivial case for a neighborhood matrix to result in

exact clustering is when the points on the same subspace form a single fully

connected component. If NSN with K = kmax = d finds all correct neighbors

for every data point, the subspace U at the last step (k = K) is almost surely

identical to the true subspace that the points lie on. Hence, the resulting

neighborhood matrix W form L fully connected components each of which

contains all of the points on the same subspace.

In the rest of the proof, we show that if (2.1) holds, NSN finds all

correct neighbors for a fixed point with probability 1 − 3δ
1−δ . Let us assume

that this is true. If (2.1) with c1 and c2 replaced by 4c1 and c2
2

holds, we have

n

d
> 4c1

(
log

n

dδ

)2

≥ c1

(
log

n

d(δ/n)

)2

,

d

p
<

c2 log n

2 log(ndLδ−1)
≤ c2 log n

log(ndL(δ/n)−1)
.
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Then it follows from the union bound that NSN finds all correct neighbors for

all of the n points on each subspace with probability at least 1− 3Lδ
1−δ , and hence

we obtain Wij = Iwi=wj for every (i, j) ∈ [N ]2. Exact clustering is guaranteed.

Step 2: Analysis of NSN using an Oracle algorithm

Now the only proposition that we need to prove is that for each subspace

Di NSN finds all correct neighbors for a data point (which is a uniformly

random unit vector on the subspace) with probability at least 1− 3δ
1−δ . As our

analysis is independent of the subspaces, we only consider D1. Without loss

of generality, we assume that y1 lies on D1 (w1 = 1) and focus on this data

point.

Consider the Oracle algorithm in the following. Unlike NSN, this al-

gorithm knows the true label of each data point. It picks the point closest to

the current subspace among the points with the same label. Since we assume

w1 = 1, the Oracle algorithm for y1 picks a point in {yj : wj = 1} at every

step.

Note that the Oracle algorithm returns failure if and only if the original

algorithm picks an incorrect neighbor for y1. The reason is as follows. Suppose

that NSN for y1 picks the first incorrect point at step k. By the step k − 1,

correct points have been chosen because they are the nearest points for the

subspaces in the corresponding steps. The Oracle algorithm will also pick those

points because they are the nearest points among the correct points. Hence

U ≡ Vk. At step k, NSN picks an incorrect point as it is the closest to U.

The Oracle algorithm will declare failure because that incorrect point is closer

than the closest point among the correct points. In the same manner, we see

that NSN fails if the Oracle NSN fails. Therefore, we can instead analyze the
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Algorithm 4 NSN Oracle algorithm for y1 (assuming w1 = 1)

Input: A set of N samples Y = {y1, . . . , yN}, The number of required neigh-
bors K = d− 1, Maximum subspace dimension kmax = d2 log de
I

(1)
1 ← {1}

for k = 1, . . . , K do
if k ≤ kmax then

Vk ← span{yj : j ∈ I
(k)
1 }

else
Vk ← Vkmax

end if
j∗k ← arg maxj∈[N ]\Ik:wj=1 ‖ProjVk yj‖2

if max
j∈[N ]:wj=1,j /∈I(k)

i
‖ProjVk yj‖2 ≤ maxj∈[N ]:wj 6=1 ‖ProjVk y‖2 then

Return FAILURE
end if
I

(k+1)
1 ← I

(k)
1 ∪ {j∗k}

end for
Return SUCCESS

success of the Oracle algorithm. The success condition is written as

‖ProjVk yj∗k‖2 > max
j∈[N ]:wj 6=1

‖ProjVk y‖2, ∀k = 1, . . . , K. (2.4)

Remark 2.6. For all k, Vk is independent of the points {yj : j ∈ [N ] : wj 6= 1}.

The rest of the proof is the following technical lemmas.

Lemma 2.7. If the conditions (2.2) holds for the semi-random model, then

(2.4) holds with probability at least 1− 3δ
1−δ .

Lemma 2.8. If the conditions (2.1) holds for the fully random model, then

(2.4) holds with probability at least 1− 3δ
1−δ .

The proofs can be found in Appendices A.1.2 and A.1.3. This technique

is similar to the proof technique for OMP [150, 36]. The key difference, which
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is the main difficulty, is that the incremental subspace at each step is still

dependent of the correct points, while the independence between the residual

and the correct points is crucial in the proof for OMP. We provide a novel

intuition to disentangle this dependence using stochastic ordering (Lemma

A.1.4).

2.8.2 Proof outline for the noisy model (Theorem 2.3)

When there is noise (σ2 > 0), we only consider correct neighborhood

selection of NSN. Similarly to the proof for the noiseless model in Section 2.8.1,

we only need to show (2.4) holds for every point. If the following lemma holds,

then we can use the union bound to complete the proof of Theorem 2.3.

Lemma 2.9. If the condition (2.3) holds for the semi-random model, then

(2.4) holds with probability at least 1− 3δ
n(1−δ) −

2
(ndL)2 − 4e−d/16.

Since the probability of failure approaches zero even when multipled

by N = nL, NSN finds an all-correct neighborhood with size d for every data

point with high probability. The proof of Lemma 2.9 is provided in Appendix

A.1.5.
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L Algorithms K-flats SSC LRR SCC OMP(8) TSC(10) NSN+Spec(5)

Mean CE (%) 13.62 1.52 2.13 2.06 16.92 18.44 3.62
2 Median CE (%) 10.65 0.00 0.00 0.00 12.77 16.92 0.00

Avg. Time (sec) 0.80 3.03 3.42 1.28 0.50 0.50 0.25
Mean CE (%) 14.07 4.40 4.03 6.37 27.96 28.58 8.28

3 Median CE (%) 14.18 0.56 1.43 0.21 30.98 29.67 2.76
Avg. Time (sec) 1.89 5.39 4.05 2.16 0.82 1.15 0.51

Table 2.2: CE and computational time of algorithms on Hopkins155 dataset.
L is the number of clusters (motions). The numbers in the parentheses rep-
resent the number of neighbors for each point collected in the corresponding
algorithms.

L Algorithms K-means K-flats SSC SSC-OMP TSC NSN+Spectral

Mean CE (%) 45.98 37.62 1.77 4.45 11.84 1.71
2 Median CE (%) 47.66 39.06 0.00 1.17 1.56 0.78

Avg. Time (sec) - 15.78 37.72 0.45 0.33 0.78
Mean CE (%) 62.55 45.81 5.77 6.35 20.02 3.63

3 Median CE (%) 63.54 47.92 1.56 2.86 15.62 3.12
Avg. Time (sec) - 27.91 49.45 0.76 0.60 3.37

Mean CE (%) 73.77 55.51 4.79 8.93 11.90 5.81
5 Median CE (%) 74.06 56.25 2.97 5.00 33.91 4.69

Avg. Time (sec) - 52.90 74.91 1.41 1.17 5.62
Mean CE (%) 79.92 60.12 7.75 12.90 38.55 8.46

8 Median CE (%) 80.18 60.64 5.86 12.30 40.14 7.62
Avg. Time (sec) - 101.3 119.5 2.84 2.24 11.51

Mean CE (%) 82.68 62.72 9.43 15.32 39.48 9.82
10 Median CE (%) 82.97 62.89 8.75 17.11 39.45 9.06

Avg. Time (sec) - 134.0 157.5 5.26 3.17 14.73

Table 2.3: CE and computational time of algorithms on Extended Yale B
dataset. For each number of clusters (faces) L, the algorithms ran over 100
random subsets drawn from the overall 38 clusters.
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Chapter 3

Convex Relaxation and Alternating

Minimization for Collaborative Ranking

Rank aggregation is a classic problem which learns the global ordering

of a set of entities from their partial orderings. To this end, one usually

assumes an underlying score vector which determines the global ordering and

a model which gives samples of partial orderings according to this vector. This

problem is interesting in several applications such as recommender systems

and webpage ranking. However, in many cases, it is not desirable to learn

one single ordering. Recommender systems have to recommend items to each

user based on the user’s personalized preference ordering. In webpage ranking,

one should have different rankings of webpages depending on the users even

if they have the same query terms. In this personalization perspective, it is

more reasonable to learn a preference ordering for each user. This problem is

referred to as collaborative ranking.

A naive method is to learn each user’s preference ordering indepen-

dently from the sample provided by the users. However, this has two main

issues: (a) The number of samples provided by the users are very limited com-

1This work has been published as Dohyung Park, Joe Neeman, Jin Zhang, Sujay Sang-
havi, and Inderjit S. Dhillon, “Preference Completion: Large-scale Collaborative Ranking
from Pairwise Comparisons,” in Proceedings of International Conference on Machine Learn-
ing (ICML), 2015. My contributions are design of the large-scale non-convex algorithm, and
design and implementation of experiments.
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pared to the number of all items. (b) Since it does not exploit the similarity

of preferences between users, the method may be inefficient. As seen from

the collaborative filtering and the matrix completion literature, a low-rank

matrix model is a reasonable heuristic that we can assume. Then the formal

description of the problem can be as follows: Given sample partial orderings

from users, we fit a low-rank matrix where each row corresponds to a user’s

preference score vector.

To simplify the problem, we especially consider collaborative ranking

from pairwise comparisons. The problem can be stated as follows: Given

a set of items, a set of users, and non-numerical pairwise comparison data,

find the underlying preference ordering of the users. The observed pairwise

comparisons are of the form “user i prefers item j over item k”, for different

ordered user-item-item triples i, j, k. Pairwise preference data is wide-spread;

indeed, almost any setting where a user is presented with a menu of options

– and chooses one of them – can be considered to be providing a pairwise

preference between the chosen item and every other item that is presented.

Essentially, we fit a low-rank users × items score matrix X to pairwise

comparison data by trying to ensure that Xij − Xik is positive when user i

prefers item j to item k.

3.1 Contribution

We present two algorithms to infer the score matrix X from training

data; once inferred, this can be used for predicting future preferences. While

there has been some recent work on fitting low-rank score matrices to pairwise

preference data (which we review and compare to below), in this chapter we

present the following two contributions.
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A statistical analysis for the convex relaxation. We bound the general-

ization error of the solution to our convex program. Essentially, we show that

the minimizer of the empirical loss also almost minimizes the true expected

loss. We also give a lower bound showing that our error rate is sharp up to

logarithmic factors.

A non-convex algorithm based on alternating minimization. We pro-

vide a non-convex algorithm that we call Alternating Support Vector Machine

(AltSVM). This non-convex algorithm is more practical than the convex pro-

gram in a large-scale setting; it explicitly parameterizes the low-rank matrix

in factored form and minimizes the hinge loss. Crucially, each step in this

algorithm can be formulated as a standard SVM that updates one of the two

factors; the algorithm proceeds by alternating updates to both factors. We

apply a stochastic version of dual coordinate descent [73, 140] with lock-free

parallelization. This exploits the problem structure and ensures it parallelizes

well. We show that our algorithm outperforms several existing collaborative

ranking algorithms in both speed and prediction accuracy., and it achieves

significant speedups as the number of cores increases.

3.2 Related Work

The rank aggregation from pairwise comparisons to learn a single or-

dering has been considered since a few decades ago. Let us briefly introduce

recent work on this problem. [84] and [4] consider an active query model

with noiseless responses; [85] give an algorithm for exactly recovering the true

ranking under a low-rank assumption similar to ours, while [4] approximately

recovers the true ranking without such an assumption. [166] and [124] learn
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a ranking from noisy pairwise comparisions; [124] consider a Bradley-Terry-

Luce model similar to ours and attempt to learn an underlying score vector,

while [166] get by without structure assumptions, but only attempt to learn

the ranking itself. [63] considered a problem to learn a single ranking given a

more generalized partial rankings from the Plackett-Luce model and provided

a minimax-optimal algorithm.

There are a few results that considers learning multiple rankings from

comparisons [117, 130], which are the most related work to ours. They also

considered the problem of learning preference orderings for multiple users.

[117] analyzed a convex program with nuclear norm regularization in the set-

ting where the pairwise comparisons are drawn from the Bradley-Terry-Luce

model. [130] considered partial orderings from the multinomial logit model

and learned the rankings by solving a nuclear norm regularized convex pro-

gram similarly to [117].

There is also a line of work on collaborative ranking that considers

learning multiple rankings for multiple users but from (ordinal or binary) rel-

evance scores. [167] attempted to directly optimize Normalized Discounted

Cumulative Gain (NDCG), a widely used performance measure for ranking

problems. [11], and [159] converted this problem into a learning-to-rank prob-

lem and solved it using the existing algorithms. While these works considered

the low-rank matrix model, different models are proposed by [171] and [103].

[171] proposed a tensor model to rank items for different queries and users,

and [103] proposed a weighted sum of low-rank matrix models. There are

some algorithms which take pairwise comparisons from this relevance scores

and learn the rankings [135, 110]. [174] took a purely optimization-based ap-

proach. Rather than assuming a probabilistic model, they minimized a convex
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objective using the hinge loss on a low-rank matrix. In a slightly different

model, [75] and [141] consider the problem of learning from latent feedback.

We finally note that there is another hugh literature from the larning-to-

rank community [111], which considers the setting where one learns a ranking

function which depend on each item’s feature vector. Given a set of pairs of

a feature vector and a relevance score, the ranking function is learned so that

the feature vectors with larger score is ranked more highly. There have also

been algorithms [71, 87] based on pairwise comparisons between the training

samples. One of our algorithms is related to these algorithms, while we assume

the feature vectors of the items to be latent and need to be learned.

3.3 Problem Setup

The task is to estimate rankings of multiple users on multiple items.

We denote the numbers of users by d1, and the number of items by d2. We

are given a set of triples Ω ⊂ [d1] × [d2] × [d2], where the preference of user i

between items j and k is observed if (i, j, k) ∈ Ω. The observed comparison is

then given by {Yijk ∈ {1,−1} : (i, j, k) ∈ Ω} where Yijk = 1 if user i prefers

item j over item k, and Yijk = −1 otherwise. Let Ωi = {(j, k) : (i, j, k) ∈ Ω}

denote the set of item pairs that user i has compared.

We predict rankings for multiple users by estimating a score matrix

X ∈ Rd1×d2 such that Xij > Xik means that user i prefers item j over item

k. Then the sorting order for each row provides the predicted ranking for the

corresponding user.

We propose (as have others) that X is low-rank or close to low-rank, the

intuition being that each user bases their preferences on a small set of features
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that are common among all the items. Then the empirical risk minimization

(ERM) framework can naturally be formulated as

minimize
X

∑
(i,j,k)∈Ω

L(Yijk(Xij −Xik)) (3.1)

subject to rank(X) ≤ r

where L(·) is a monotonically non-increasing loss function which induces Xij >

Xik if Yijk = 1, and Xij < Xik otherwise. (e.g., hinge loss, logistic regression

loss, etc.)

3.4 Convex Relaxation

Solving (3.1) is NP-hard because of the rank constraint. Our first

method is the convex relaxation of (3.1), which involves a nuclear norm con-

straint.

minimize
X

∑
(i,j,k)∈Ω

L(Yijk(Xij −Xik)) (3.2)

subject to ‖X‖∗ ≤
√
λd1d2

Here, for any matrix X, the nuclear/trace norm ‖X‖∗ denotes the sum

of its singular values; it is a well-recognized convex surrogate for low-rank

structure (most famously in matrix completion).

The only parameter of this algorithm is λ, which governs the trade-

off between better optimizing the likelihood of the observed data, and the

strictness in imposing approximate low-rank structure. Since we motivated

our algorithm with the assumption that X has low rank, we should point out

how our algorithm’s parameter λ compares to the rank: note that if X is
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a d1 × d2 rank-r matrix whose largest absolute entry is bounded by C then

‖X‖∗ ≤
√
r‖X‖F ≤ C

√
rd1d2. In other words, λ is a parameter that takes

into account both the rank of X and the size of its elements, and it is roughly

proportional to the rank.

3.4.1 Excess risk bounds

We analyze (3.2) by assuming a standard model for pairwise compar-

isons. Then we provide a statistical guarantee of the method under the model.

Assume that each user-item-item triple (i, j, k) independently belongs to Ω

with probability pi,j,k, and let m =
∑

i,j,k pi,j,k be the expected size of Ω. We

will assume that the pi,j,k are approximately balanced in the sense that no

user-item pair is observed too frequently:

Assumption 3.1. There is a constant κ > 0 such that for every i, j,∑
k

pi,j,k ≤ κ
m

d1d2

.

Note that if κ = 1 in Assumption 3.1 then the pi,j,k are all equal,

meaning that each user-item-item triple has an equal chance to be observed.

In order to state our error bounds, we first introduce some notation: let

PX be the distribution of {Yi,j,k : 1 ≤ i ≤ d1, 1 ≤ j < k ≤ d2} (i.e. the complete

distribution of all pairwise preferences, even those that are not observed).

Our main upper bound shows that if m is sufficiently large then our

algorithm finds a solution with almost minimal risk. Given a loss function L,

define the expected risk of X by

R(X) =
1

d1d2
2

d1∑
i=1

d2∑
j,k=1

EX∗L(Yijk(Xij −Xik)),
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where the expectation is with respect to the distribution parametrized by the

true parameters X∗.

Theorem 3.2. Suppose that L is 1-Lipschitz, and let Y and Ω be distributed

as PX∗ for some d1 × d2 matrix X∗. Under Assumption 3.1,

ER(X̂) ≤ inf
{X:‖X‖∗≤

√
λd1d2}

ER(X) + Cκ

√
λ(d1 + d2)

m
log(d1 + d2),

where C is a universal constant.

We recall that the parameter λ is related to rank in that if X is a d1×d2

rank-r matrix whose largest absolute entry is bounded by C then ‖X‖∗ ≤
√
r‖X‖F ≤ C

√
rd1d2. In other words, λ is a parameter that takes into account

both the rank of X∗ and the size of its elements, and it is roughly proportional

to the rank. In particular, Theorem 3.2 shows that once we observe m ∼
r(d1 + d2) log2(d1 + d2) pairwise comparisons, then we can accurately estimate

the probability of any user preferring any item over any other. In other words,

we need to observe about r(1 + d2/d1) log2(d1 + d2) comparisons per user,

which is substantially less than the rd2 log(d2) comparisons that we would have

required if each user were modelled in isolation. Moreover, our lower bound

(below) shows that at least r(1 + d2/d1) comparisons per user are required,

which is only a logarithmic factor from the upper bound.

Theorem 3.3. Suppose that L′(0) < 0. Let A be any algorithm that receives

{Yi,j,k : (i, j, k) ∈ Ω} as input and produces X̂ as output. For any λ ≥ 1 and

m ≥ d1 + d2, there exists X∗ with ‖X∗‖∗ ≤
√
λd1d2 such that when Y and Ω

are distributed according to PX∗ then with probability at least 1
2
,

ER(X̂) ≥ R(X∗) + cmin

{
1,

√
λ(d1 + d2)

m

}
,

where c > 0 is a constant depending only on L.
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Together, Theorems 3.2 and 3.3 show that (up to logarithmic factors)

if X∗ has rank r then about r(1 + d2/d1) comparisons per user are necessary

and sufficient for learning the users’ preferences.

3.4.2 Maximum likelihood estimation for the BTL model

Recall the classical Bradley-Terry-Luce model [23, 118] for pairwise

preferences of a single user, which assumes that the probability of item j

being preferred over k is given by a logistic of the difference of the underlying

preference scores of the two items. For multiple users, we assume that there

is some true score matrix X∗ ∈ Rd1×d2 and

Pr(Yijk = 1) =
exp(X∗ij −X∗ik)

1 + exp(X∗ij −X∗ik)
.

By specializing the loss function L, Theorem 3.2 has a simple corollary

for maximum-likelihood estimation of X∗. Recall that if µ and ν are two

probability distributions on a finite set S the the Kullback-Leibler divergence

between them is

D(µ‖ν) =
∑
s∈S

µ(s) log
µ(s)

ν(s)
,

under the convention that 0 log 0 = 0. We recall that although D(·‖·) is not a

metric it is always non-negative, and that D(µ‖ν) = 0 implies µ = ν.

Corollary 3.4. Let Y and Ω be distributed as PX∗ for some d1 × d2 matrix

X∗. Define the loss function L by L(z) = log(1+exp(z))−z. Under Assump-

tion 3.1,

1

d1d2
2

sup
{X:‖X‖∗≤

√
λd1d2}

D(PX∗‖PX̂)−D(PX∗‖PX) ≤ Cκ

√
λ(d1 + d2)

m
log(d1 + d2),

where C is a universal constant.
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Note that the loss function in Corollary 3.4 is exactly the negative

logarithm of the logistic function, and so X̂ in Corollary 3.4 is the maximum-

likelihood estimate for X∗. Thus, Corollary 3.4 shows that the distribution

induced by the maximum-likelihood estimator is close to the true distribution

in Kullback-Leibler divergence.

3.5 Large-scale Non-convex Implementation

While the convex relaxation is statistically near optimal, it is not ideal

for large-scale datasets because it requires the solution of a convex program

with d1 × d2 variables. In this section we develop a non-convex variant which

both scales and parallelizes very well, and has better empirical performance

as compared to several existing empirical baseline methods.

Our approach is based on the following steps:

• We represent the low-rank matrix in explicit factored form X = UV > and

replace the regularizer appropriately. This results in a non-convex optimiza-

tion problem in U ∈ Rd1×r and V ∈ Rd2×r, where r is the rank parameter.

• We solve the non-convex problem by alternating between updating U while

keeping V fixed, and vice versa. With the hinge loss (which we found works

best in experiments), each of these becomes an SVM problem - hence we

call our algorithm AltSVM.

• The problem is of course not symmetric in U and V because users rank items

but not vice versa. For the U update, each user vector naturally decouples

and can be done in parallel (and in fact just reduces to the case of rankSVM

[87]).
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• For the V update, we show that this can also be made into an SVM problem;

however it involves coupling of all item vectors, and all user ratings. We

employ several tricks (detailed below) to speed up and effectively parallelize

this step.

The non-convex problem can be written as

min
U,V

∑
(i,j,k)∈Ω

L(Yijk · u>i (vj − vk)) +
λ

2
(‖U‖2

F + ‖V ‖2
F ) (3.3)

where we replace the nuclear norm regularizer using the property ‖X‖∗ =

minX=UV >
1
2
(‖U‖2

F + ‖V ‖2
F ) [145]. u>i and v>i denote the ith rows of U and

V , respectively. While this is a non-convex algorithm for which it is hard

to find the global optimum, it is computationally more efficient since only

(d1 +d2)r variables are involved. We propose to use L2 hinge loss, i.e., L(x) =

max(0, 1− x)2.

In the alternating minimization of (3.3), the subproblem for U is to

solve

U ← arg min
U∈Rd1×r

∑
(i,j,k)∈Ω

L(Yijk · u>i (vj − vj)) +
λ

2
‖U‖2

F , (3.4)

while V is fixed. This can be decomposed into n independent problems for

ui’s where each solves for

ui ← arg min
u∈Rr

λ

2
‖u‖2

2 +
∑

(j,k)∈Ωi

L(Yijk · u>(vj − vk). (3.5)

This part is in general a small-scale problem as the dimension is r, and the

sample size is |Ωi| for each user i.
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On the other hand, solving for V with fixed U can be written as

V ← arg min
V ∈Rd2×r

λ2‖V ‖2
F +

∑
(i,j,k)∈Ω

L(〈V,A(u,i,j)〉)

 (3.6)

where A(i,j,k) ∈ Rd2×r is such that the lth row of A(i,j,k) is Yijk · u>i if l = j,

−Yijk · u>i if l = k, and 0 otherwise. It is a much larger SVM problem than

(3.5) as the dimension is d2r and the sample size is |Ω|.

We note that the feature matrices {A(i,j,k) : (i, j, k) ∈ Ω} are highly

sparse since in each feature matrix only 2r out of the d2r elements are nonzero.

This motivates us to apply the stochastic dual coordinate descent algorithm

[73, 140], which not only converges fast but also takes advantages of feature

sparsity in linear SVMs. Each coordinate descent step takes O(r) computation,

and iterations over |Ω| coordinates provide linear convergence [140].

Now we describe the dual problems of our two subproblems explicitly.

Let α ∈ R|Ωi| denote the dual vector for (3.5), in which each coordinate is

denoted by αijk where (j, k) ∈ Ωi. Then the dual problem of (3.5) is to solve

min
α∈R|Ωi|,α≥0

1

2

∥∥∥∥∥∥
∑

(j,k)∈Ωi

αijkYijk(vj − vk)

∥∥∥∥∥∥
2

2

+
1

λ

∑
(j,k)∈Ωi

L∗(−λαijk) (3.7)

where L∗(z) is the convex conjugate of L. At each coordinate descent step for

αijk, we find the value of αijk minimizing (3.7) while all the other variables

are fixed. If we maintain ui =
∑

(j,k)∈Ωi
αijkYijk(vj − vk), then the coordinate

descent step is simply to find δ∗ minimizing

1

2
‖ui + δ∗Yijk(vj − vk)‖2

2 +
1

λ
L∗(−λ(αijk + δ∗)) (3.8)

and update αijk ← αijk + δ∗.
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The dual problem of (3.6) is to solve

min
β∈R|Ω|,β≥0

1

2

∥∥∥∥∥∥
∑

(i,j,k)∈Ω

βijkA
(i,j,k)

∥∥∥∥∥∥
2

F

+
1

λ

∑
(i,j,k)∈Ω

L∗(−λβijk) (3.9)

where β is the dual vector for the subproblem (3.6). Similarly to αijk, the

coordinate descent step for βijk is to replace βijk by βijk+δ∗ where δ∗ minimizes

1

2

(
‖vj + δ∗Yijkui‖2

2 + ‖vk − δ∗Yijkui‖2
2

)
+ L∗(−λ(βijk + δ∗)), (3.10)

and maintain V =
∑

(i,j,k)∈Ω βijkYijkA
(i,j,k).

The detailed description of AltSVM is presented in Algorithm 5. In

each subproblem, we run the stochastic dual coordinate descent, in which a

pairwise comparison (i, j, k) ∈ Ω is chosen uniformly at random, and the dual

coordinate descent for αijk or βijk is computed. We note that each coordinate

descent step takes the same O(r) computational cost in both subproblems,

while the subproblem sizes are much different.

3.5.1 Parallelization

For each subproblem, we parallelize the stochastic dual coordinate de-

scent algorithm asynchronously without locking. Given T processors, each

processor randomly sample a triple (i, j, k) ∈ Ω and update the corresponding

dual variable and the user or item vectors. We note that this update is for a

sparse subset of the parameters. In the user part, a coordinate descent step for

one sample updates only r out of the rd1 variables. In the item part, one coor-

dinate descent step for a sample update only 2r out of the rd2 variables. This

motivates us not to lock the variables when updated, so that we ignore the

conflicts. This lock-free parallelism is shown to be effective in [129] for stochas-

tic gradient descent (SGD) on the sum of sparse functions. Moreover, in [74],
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it is also shown that the stochastic dual coordinate descent scales well without

locking. We implemented the algorithm using the OpenMP framework. In our

implementations, we also parallelized steps 3 and 13 of Algorithm 5. We show

in the next section that our proposed algorithm scales up favorably.

3.6 Experimental results

Now we demonstrate that our algorithm performs well as a collaborative

ranking method on rating data. We used the datasets specified in Table 3.1.

Given a training set of ratings for each user, our algorithm will only use non-

tying pairwise comparisons from the set, while other competing algorithms use

the ratings themselves. Hence, they have more information than ours. The

competing algorithms are those with publicly available codes provided by the

authors.

• CofiRank [167]2 This algorithm uses alternating minimization to directly

optimize NDCG.

• Local Collaborative Ranking (LCR) [103]3 : The main idea is to predict

preferences from the weighted sum of multiple low-rank matrices model.

• RobiRank [178]4 : This algorithm uses stochastic gradient descent to opti-

mize the loss function motivated from robust binary classification.

2http://www.cofirank.org, The dimension and the regularization parameter are set
as suggested in the paper. For the rest of the parameters, we left them as provided.

3http://prea.gatech.edu, We run the code with each of the 48 sets of loss function
and parameters given in the main code, and the best result is reported. We could not run
this algorithm on the Netflix dataset due to time constraint.

4https://bitbucket.org/d_ijk_stra/robirank, We used the part for collaborative
ranking from binary relevence score. We left the parameter settings as provide with the
implementation.
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MovieLens1m MovieLens10m Netflix

Users 6,040 71,567 480,000
Items 3,900 10,681 17,000

Ratings 1,000,209 10,000,054 100,000,000

Table 3.1: Datasets to be used for simulation

• Global Ranking : To see the effect of personalized ranking, we compare the

results with a global ranking of the items. We fixed U to all ones and solved

for V .

The algorithms are compared in terms of two standard performance

measures of ranking, which are NDCG and Precision@K. NDCG@K is the

ranking measure for numerical ratings. NDCG@K for user i is defined as

NDCG@K(i) =
DCG@K(i, πi)

DCG@K(i, π∗i )

where

DCG@K(i, πi) =
K∑
k=1

2Miπi(k) − 1

log2(k + 1)
,

and πu(k) is the index of the kth ranked item of Ti in our prediction. Mij is the

true rating of item j by user i in the given dataset, and π∗u is the permutation

that maximizes DCG@K. This measure counts only the top K items in our

predicted ranking and put more weights on the prediction of highly ranked

items. We measured NDCG@10 in our experiments. Precision@K is the

ranking measure for binary ratings. Precision@K for user i is defined as

Precision@K(i) =
1

K

∑
j∈PK(i)

Mij
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Figure 3.1: NDCG@10 and Precision@10 over time for different algorithms.

where Mij is the binary rating on item j by user i given in the dataset. This

counts the number of relevant items in the predicted top K recommendation.

These two measures are averaged over all of the users.

We first compare our algorithm with numerical rating based algorithms,

CofiRank and LCR. We follow the standard setting that are used in the col-

laborative ranking literature [167, 11, 159, 103]. For each user, we subsampled

N ratings, used them for training, and took the rest of the ratings for test.

The users with less than N+10 ratings were dropped out. Table 3.2 compares

AltSVM with numerical rating based algorithms. While N = 20 is too small

so that a global ranking provides the best NDCG, our algorithm performs the

best with larger N . We also ran our algorithm with subsampled pairwise com-

parions with the largest numerical gap (AltSVM-sub), which are as many as N

for each user (the number of numerical ratings used in the other algorithms).

Even with this, we could achieve better NDCG. We can also observe that the

statistical performance is better with the hinge loss than with the logistic loss.

We have also experimented with collaborative ranking on binary rat-
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Datasets N AltSVM AltSVM-sub AltSVM-logistic Global CofiRank LCR
20 0.7308 0.6998 0.7125 0.7500 0.7333 0.7007

MovieLens1m 50 0.7712 0.7392 0.7141 0.7501 0.7441 0.7081
100 0.7902 0.7508 0.7446 0.7482 0.7332 0.7151
20 0.7059 0.7053 0.7031 0.7264 0.7076 0.6977

MovieLens10m 50 0.7508 0.7212 0.7115 0.7176 0.6977 0.6940
100 0.7692 0.7248 0.7292 0.7101 0.6754 0.6899
20 0.7132 0.6822 - 0.7605 0.6615 -

Netflix 50 0.7642 0.7111 - 0.7640 0.6527 -
100 0.8007 0.7393 - 0.7656 0.6385 -

Table 3.2: NDCG@10 on different datasets, for different numbers of observed
ratings per user.

AltSVM RobiRank
Precision@ C = 1000 C = 2000 C = 5000

1 0.2165 0.2973 0.3635 0.3009
2 0.1965 0.2657 0.3297 0.2695
5 0.1572 0.2097 0.2697 0.2300
10 0.1265 0.1709 0.2223 0.1922
100 0.0526 0.0678 0.0819 0.0781

Table 3.3: Precision@K on the binarized MovieLens1m dataset.

ings. We compare our algorithm against RobiRank [178], which is a recently

proposed algorithm for collaborative ranking with binary ratings. We ran an

experiment on a binarized version of the Movielens1m dataset. In this case,

the movies rated by a user is assumed to be relevant to the user, and the other

items are not. Since it is inefficient to take all possible comparisons which are

in average a half million per user, we subsampled C comparisons for each user.

Both algorithms are set to estimate rank-100 matrices. Table 3.3 shows that

our algorithm provides better performance than RobiRank.

We now show the computational speed and scalability of our practical

algorithm, AltSVM. The experiments were run on a single 16-core machine in

the Stampede Cluster at University of Texas.

Figures 3.1a and 3.1b show NDCG@10 over time of our algorithms with
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1, 4, and 16 threads, compared to CofiRank. Figure 3.1c shows Precision@10

over time of our algorithm with C = 5000. We note that our algorithm

converges faster, while the sample size |Ω| for our algorithm is larger than the

number of training ratings that are used in the competing algorithms.
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Algorithm 5 Alternating Support Vector Machine (AltSVM)

Input: Ω, {Yijk : (i, j, k) ∈ Ω}, and λ ∈ R+

Output: U ∈ Rd1×r, V ∈ Rd2×r

1: Initialize U , and set α, β ← 0 ∈ R|Ω|
2: while not converged do
3: vj ←

∑
(i,j,k)∈Ω βijkYijkui

4: −
∑

(i,k,j)∈Ω βikjYikjui, ∀j ∈ [d2]
5: for all threads t = 1, . . . , T in parallel do
6: for s = 1, . . . , S do
7: Choose (i, j, k) ∈ Ω uniformly at random
8: Find δ∗ minimizing (3.10).
9: βijk ← βijk + δ∗

10: vj ← vj + δ∗Yijkui
11: vk ← vk − δ∗Yijkui
12: end for
13: end for
14: ui ←

∑
(i,j,k)∈Ω αijkYijk(vj − vk), ∀i ∈ [d1]

15: for all threads t = 1, . . . , T in parallel do
16: for s = 1, . . . , S do
17: Choose (i, j, k) ∈ Ω uniformly at random.
18: Find δ∗ minimizing (3.8).
19: αijk ← αijk + δ∗

20: ui ← ui + δ∗Yijk(vj − vk)
21: end for
22: end for
23: end while
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Chapter 4

Non-convex Gradient Descent for Low-rank

Matrix Optimization

We study matrix problems of the form:

minimize
X∈Rm×n

f(X), (4.1)

where the minimizer X? ∈ Rm×n is rank-r? (r? ≤ min {m,n}), or approx-

imately low rank, i.e., ‖X? − X?
r?‖F is sufficiently small, for X?

r? being the

best rank-r? approximation of X?. In our discussions, f is a smooth convex

function; further assumptions on f will be described later in the text. Note, in

particular, that in the absence of further assumptions, X? may not be unique.

Specific instances of (4.1), where the solution is assumed low-rank, ap-

pear in several applications in diverse research fields; a non-exhaustive list

includes factorization-based recommender systems [144, 136, 47, 17, 93, 78],

multi-label classification tasks [3, 18, 32, 119, 161, 170], dimensionality re-

duction techniques [138, 40, 88, 154, 61, 113], density matrix estimation of

quantum systems [1, 60, 89], phase retrieval applications [27, 160], sensor local-

ization [20, 168] and protein clustering [116] tasks, image processing problems

1This work is in preparation for journal publication, and it has been published in part as
Dohyung Park, Anastasios Kyrillidis, Constantine Caramanis, and Sujay Sanghavi, “Find-
ing low-rank solutions to convex smooth problems via the Burer-Monteiro approach,” in
Proceedings of 54th Annual Allerton Conference on Communication, Control, and Com-
puting, 2016. My contributions are design of algorithms, statement and proofs of main
results.
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[6], as well as applications in system theory [56], just to name a few. Thus, it

is critical to devise easy-to-implement, efficient and provable algorithms that

solve (4.1), taking into consideration such near low-rank structure of X?.

While, in general, imposing a low-rank constraint may result in an NP-

hard problem, (4.1) with a rank-constraint can be solved in polynomial-time

in numerous applications, due to the special structure of the objective f . A

prime –and by now well-known– example of this is the matrix sensing/matrix

completion problem [31, 134, 78] (we discuss this further in the following sec-

tion). There, f is a least-squares objective function and the measurements

satisfy the appropriate restricted isometry/incoherence assumptions. In such

a scenario, the optimal low-rank X? can be recovered in polynomial time, by

solving (4.1) with a rank-constraint [80, 16, 12, 104, 97, 147], or by solving its

convex nuclear-norm relaxation, as in [108, 15, 26, 14, 35, 180].

In view of the above, although the resulting algorithms have attractive

convergence rates, they directly manipulate the n×n variable matrix X, which

in itself is computationally expensive. Specifically, each iteration typically

requires computing the top-r singular value/vectors of the matrix. As the size

n of the matrix scales, this computational demands at each iteration can be

prohibitive.

Optimizing over factors. In this chapter, we follow a different path: a

rank-r matrix X ∈ Rm×n can be written as a product of two matrices UV >,

where U ∈ Rm×r and V ∈ Rn×r. Based on this premise, we consider optimizing

f over the U and V space. Particularly, we are interested in solving (4.1) via

the parametrization:

minimize
U∈Rm×r, V ∈Rn×r

f(UV >) where r ≤ rank(X?) ≤ {m, n}. (4.2)
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Note that (4.2) and (4.1) are equivalent in the case rank(X?) = r.2 Observe

that such parameterization leads to a very specific kind of non-convexity in

f . Even more importantly, proving convergence for these settings becomes a

harder task, due to the bi-linearity of the variable space.

Motivation. Our motivation for studying (4.2) originates from large-scale

problem instances: when r is much smaller than min{m,n}, factors U ∈ Rm×r

and V ∈ Rn×r contain far fewer variables to maintain and optimize, than

X = UV >. Thus, by construction, such parametrization also makes it easier

to update and store the iterates U, V .

Even more importantly, observe that UV > reformulation automatically

encodes the rank constraint. Standard approaches, that operate in the original

variable space, either enforce the rank(X) ≤ r constraint at every iteration or

involve a nuclear-norm projection. Doing so requires computing a truncated

SVD3 per iteration, which can get cumbersome in large-scale settings. In stark

contrast, working with f(UV >) replaces singular value computation per iter-

ation with matrix-matrix multiplication UV >. Thus, such non-conventional

approach turns out to be a more practical and realistic option, when the di-

mension of the problem is large. We defer this discussion to Section 4.8.1 for

some empirical evidence of the above.

2Here, by equivalent, we mean that the set of global minima in (4.2) contains that of
(4.1). It remains an open question though whether the reformulation in (4.2) introduces
spurious local minima in the factored space for the majority of f cases.

3This holds in the best scenario; in the convex case, where the rank constraint is “re-
laxed” by the nuclear norm, the projection onto the nuclear-norm ball often requires a full
SVD calculation.
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4.1 Contributions

While the computational gains are apparent, such bi-linear reformu-

lations X = UV >often lack theoretical guarantees. Only recently, there

have been attempts in providing answers to when and why such non-convex

approaches perform well in practice, in the hope that they might provide

a new algorithmic paradigm for designing faster and better algorithms; see

[79, 5, 152, 184, 38, 19, 183, 146, 185].

As we detail below and in greater detail in Section 4.3, our work is more

general, addressing important settings that could not (as far as we know) be

treated by the previous literature. Our contributions can be summarized as

follows:

(i) We study a gradient descent algorithm on the non-convex formulation given

in (4.2) for non-square matrices. We call this Bi-Factored Gradient Descent

(BFGD). Recent developments (cited above, and see Section 4.3 for further

details) rely on properties of f for special cases [146, 152, 185, 183], and their

convergence results seem to rely on this special structure. In this work, we

take a more generic view of such factorization techniques, closer to results in

convex optimization. We provide local convergence guarantees for general

smooth (and strongly convex) f objectives.

(ii) In particular, when f is only smooth (not strictly convex), we show that a

simple lifting technique leads to a local sublinear rate convergence guarantee,

using results from that of the square and PSD case [19]. Moreover, we

provide a simpler and improved proof than [19], which requires a weaker

initial condition.
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(iii) When f is both strongly convex and smooth, results from the PSD case

do not readily extend as above. In such cases, of significant importance is the

use of a regularizer in the objective, that restricts the geometry of the prob-

lem at hand. Here, we improve upon [152, 185, 176] –where such a regularizer

was used only for the cases of matrix sensing/completion and robust PCA–

and solve a different formulation to prove a local linear rate convergence

guarantee. Our proof technique proves a significant generalization: using

any smooth and strongly convex regularizers on the term (U>U − V >V ),

with optimum at zero, one can guarantee linear convergence.

(iv) Our theory is backed up with extensive experiments, including affine rank

minimization (Section 4.8.2), compressed noisy image reconstruction from

a subset of image pixels (Section 4.8.3), and 1-bit matrix completion tasks

(Section 4.8.4). Overall, our proposed scheme shows at least competitive re-

covery performance, as compared to state-of-the-art approaches, while being

(i) simple to implement, (ii) scalable in practice and, (iii) versatile to vari-

ous applications.

4.2 Applications

In this section, we describe some applications that can be modeled as in

(4.2). The list includes criteria with (i) smooth and strongly convex objective

f (e.g., quantum state tomography from a limited set of observations and com-

pressed image de-noising), and (ii) just smooth objective f (e.g., 1-bit matrix

completion and logistic PCA). For all cases, we succinctly describe the problem

and provide useful references on state-of-the-art approaches; we restrict our

discussion on first-order, gradient schemes. Some discussion regarding recent

developments on factorized approaches is deferred to Section 4.3. Section 4.8
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provides specific configuration of our algorithm, for representative tasks, and

make a comparison with state of the art.

Matrix sensing applications. Matrix sensing (MS) problems have gained

a lot of attention the past two decades, mostly as an extension of Compressed

Sensing [48, 13] to matrices; see [55, 134]. The task involves the reconstruction

of an unknown and low-rank ground truth matrix X?, from a limited set of

measurements. The assumption on low-rankness depends on the application

at hand and often is natural: e.g., in background subtraction applications, X?

is a collection of video frames, stacked as columns where the “action” from

frame to frame is assumed negligible [28, 165]; in (robust) principal component

analysis [33, 28], we intentionally search for a low-rank representation of the

data an hand; in linear system identification, the low rank X? corresponds to a

low-order linear, time-invariant system [115]; in sensor localization, X? denotes

the matrix of pairwise distances with rank-dependence on the, usually, low-

dimensional space of the data [86]; in quantum state tomography, X? denotes

the density state matrix of the quantum system and X? is designed to be rank-

1 (pure state) or rank-r (almost pure state), for r relatively small [1, 57, 89].

In a non-factored form, MS is expressed via the following criterion:

minimize
X∈Rm×n

f(X) := 1
2
· ‖y −A(X)‖2

2

subject to rank(X) ≤ r,
(4.3)

where usually m 6= n and r � min{m, n}. Here, y = A (X?)+ε ∈ Rp contains

the (possibly noisy) samples, where p� m ·n. Key role in recovering X? plays

the sampling operator A: it can be a Gaussian-based linear map [55, 134], a

Pauli-based measurement operator [114] (used in quantum state tomography

applications), a Fourier-based measurement operator [94, 134] (used due to
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their structure which leads to computational gains in practice), or even a

permuted and sub-sampled noiselet linear operator [165] (used in image and

video compressive sensing applications).

Critical assumption for A that renders (4.3) a polynomially solvable

problem, is the restricted isometry property (RIP) for low-rank matrices [30]:

Definition 4.1 (Restricted Isometry Property (RIP)). A linear map A satis-

fies the r-RIP with constant δr, if

(1− δr)‖X‖2
F ≤ ‖A(X)‖2

2 ≤ (1 + δr)‖X‖2
F ,

is satisfied for all matrices X ∈ Rn×n such that rank(X) ≤ r.

It turns out linear maps that satisfy Definition 4.1 also satisfy the

(restricted) strong convexity [123]; see Theorem 2 in [37].

State-of-the-art approaches. The most popularized approach to solve

this problem is through convexification: [54, 134, 31] show that the nuclear

norm ‖·‖∗ is the tightest convex relaxation of the non-convex rank(·) constraint

and algorithms involving nuclear norm have been shown to be effective in

recovering low-rank matrices. This leads to:

minimize
X∈Rn×p

f(X) subject to ‖X‖∗ ≤ t, (4.4)

and its regularized variant:

minimize
X∈Rn×p

f(X) + λ · ‖X‖∗. (4.5)

Efficient implementations include Augmented Lagrange Multiplier (ALM) meth-

ods [108], convex conic solvers like the TFOCS software package [15] and, con-

vex proximal and projected first-order methods [26, 14]. However, due to the
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nuclear norm, in most cases these methods are binded with full SVD computa-

tions per iteration, which constitutes them impractical in large-scale settings.

From a non-convex perspective, algorithms that solve (4.3) in a non-

factored form include SVP and Randomized SVP algorithms [80, 16], Rieman-

nian Trust Region Matrix Completion algorithm (RTRMC) [21], ADMiRA [104]

and the Matrix ALPS framework [97, 147].4

In all cases, algorithms admit fast linear convergence rates towards

X?. Moreover, the majority of approaches assumes a first-order oracle: in-

formation of f is provided through its gradient ∇f(X). For MS, ∇f(X) =

−2A∗ (y −A(X)), which requires O(Tmap) complexity, where Tmap denotes

the time required to apply linear map (or its adjoint A∗) A. Moreover, for-

mulations (4.3)-(4.5) require at least one top-r SVD calculation per iteration;

this translates into additional O(mnr) complexity.

Motivation for factorizing (4.3). For this case, the initial problem can

be factorized as follows:

minimize
U∈Rn×r,V ∈Rp×r

f(UV >) := 1
2
· ‖y −A(UV >)‖2

2. (4.6)

For this case and assuming a first-order oracle over the factors U, V , the

gradient of f with respect to U and V can be computed respectively as

∇Uf(UV >) := ∇f(X)V and ∇V f(UV >) := ∇f(X)>U , respectively. This

translates into 2 · O(Tmap + mnr) time complexity. However, one avoids per-

forming any SVD calculations per iteration, which in practice is considered a

great computational bottleneck, even for moderate r values. Thus, if there ex-

4Based on the results of [97], we use Matrix ALPS II in our experiments, as that scheme
seems to be more effective and faster than the aforementioned algorithms.
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ist linearly convergent algorithms for (4.6), intuition indicates that one could

obtain computational gains.

Logistic PCA and low-rank estimation on binary data. Finding a

low-rank approximation of binary matrices has gain a lot of interest recently,

due to the wide appearance of categorical responses in real world applications

[138, 40, 88, 154, 61, 113]. While regular linear principal component analysis

(PCA) is still applicable for binary or categorical data, (i) the way data are

pre-processed (e.g., centering data before applying PCA), and/or (ii) the least-

squares nature of the underlying objective criterion, constitute PCA a natural

choice mostly for real-valued data, where observations are assumed to follow a

Gaussian distribution. [148, 43] propose generalized versions of PCA for other

type of datasets: In the case of binary data, this leads to Logistic Principal

Component Analysis (Logistic PCA), where each binary data vector is assumed

to follow the multivariate Bernoulli distribution, parametrized by the principal

components that live in a r-dimensional subspace. Moreover, collaborative

filtering on binary data and network sign prediction tasks have shown that

standard least-squares loss functions perform poorly, while generic logistic loss

optimization shows more interpretable and promising results.

To rigorously formulate the problem, let Y ∈ {0, 1}m×n be the observed

binary matrix, where each of the m rows stores a n-dimensional binary fea-

ture vector. Further, assume that each entry Yij is drawn from a Bernoulli

distribution with mean qij, according to: P [Yij | qij] = q
Yij
ij · (1 − qij)

1−Yij .

Define the log-odds parameter Xij = log
(

qij
1−qij

)
and the logistic function

σ(Xij) =
(
1 + e−Xij

)−1
. Then, we equivalently have P [Yij | Xij] = σ(Xij)

Yij ·
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σ(−Xij)
1−Yij , or in matrix form,

P [Y | X] =
∏
ij

σ(Xij)
Yij · σ(−Xij)

1−Yij ,

where we assume independence among entries of Y . The negative log-likelihood

is given by:

f(X) := −
∑
ij

(Yij · log σ(Xij) + (1− Yij) · log σ(−Xij)) .

Assuming a compact, i.e., low-rank, representation for the latent variable X,

we end up with the following optimization problem:

minimize
X∈Rm×n

f(X) := −
∑
ij

(Yij · log σ(Xij) + (1− Yij) · log σ(−Xij))

subject to rank(X) ≤ r;

(4.7)

observe that the objective criterion is just a smooth convex loss function.

State-of-the-art approaches.5 In [40], the authors consider the problem

of sign prediction of edges in a signed network and cast it as a low-rank ma-

trix completion problem: In order to model sign inconsistencies between the

entries of binary matrices6, the authors consider more appropriate loss func-

tions to minimize, among which is the logistic loss. The proposed algorithmic

solution follows (stochastic) gradient descent motions; however, no guarantees

5Here, we note that [99] proposes a slightly different way to generalize PCA than [43],
based on a different interpretation of Pearson’s PCA formulation [132]. The resulting for-
mulation looks for a weighted projection matrix UU> (instead of UV >), where the number
of parameters does not increase with the number of samples and the application of principal
components to new data requires only one matrix multiplication. For this case, the authors
in [99] propose, among others, an alternating minimization technique where convergence to
a local minimum is guaranteed. Even for this case though, our framework applies, based on
ideas from [19].

6Here, we assume a matrix is binary if it has {±1} entries.
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are provided. [88] utilizes logistic PCA for collaborative filtering on implicit

feedback data (page clicks and views, purchases, etc.): in order to find a local

minimum, an alternating gradient descent procedure is used—further, the au-

thors use AdaGrad [51] to adaptively update the gradient descent step size, in

order to reduce the number of iterations for convergence. A similar alternat-

ing gradient descent approach is followed in [138], with no known theoretical

guarantees.

Motivation for factorizing (4.7). Following same arguments as before,

in logistic PCA and logistic matrix factorization problems, we often assume

that the observation binary matrix is generated as the sign operation on a

linear factored model: sign(UV T ). Assuming the probability of {±1} values

is distributed according to a logistic function, parameterized by the latent

factors U, V , we obtain the following optimization criterion:

minimize
U∈Rm×r,V ∈Rn×r

f(UV >) := −
∑
ij

(
Yij log σ(UiV

>
j ) + (1− Yij) log σ(−UiV >j )

)
,

(4.8)

where Ui, Vj represent the i-th and j-th row of U and V , respectively.

4.3 Related work

As it is apparent from the discussion above, this is not the first time such

transformations have been considered in practice. Early works on principal

component analysis [41, 137] and non-linear estimation procedures [172], use

this technique as a heuristic; empirical evaluations show that such heuristics

work well in practice [136, 62, 7]. [24, 25] further popularized these ideas

for solving SDPs: their approach embeds the PSD and linear constraints into

the objective and applies low-rank variable re-parameterization. While the
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constraint considered here is of different nature—i.e, rank constraint vs. PSD

constraint—the motivation is similar: in SDPs, by representing the solution

as a product of two factor matrices, one can remove the positive semi-definite

constraint and thus, avoid computationally expensive projections onto the PSD

cone.

We provide an overview of algorithms that solve instances of (4.2);

for discussions on methods that operate on X directly, we defer the reader to

[2, 78, 97] for more details. We divide our discussion into two problem settings:

(i) X? is square and PSD and, (ii) X? is non-square.

Square and PSD X?. A rank-r matrix X ∈ Rn×n is PSD if and only if it

can be factored as X = UU> for some U ∈ Rn×r. This is a special case of the

problem discussed above, where m = n and (4.1) includes a PSD constraint.

Thus, after the re-parameterization, (4.2) takes the form:

minimize
U∈Rn×r

f(UU>) where r = rank(X?) ≤ n. (4.9)

Several recent works have studied (4.9). For the special case where f

is a least-squares objective for an underlying linear system7, [152] and [184]

propose gradient descent schemes that function on the factor U . Both studies

employ careful initialization (performing few iterations of SVP [80] for the

former and, using a spectral initialization procedure—as in [29]—for the latter)

and step size selection, in order to prove convergence. However, their analysis

is designed only for least-squares instances of f . Some results and discussion

on their step size selection/initialization and how it compares with this work

are provided in Section 4.8.

7This includes affine rank minimization problems, as well as matrix completion instances.
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The work of [38] proposes a first-order algorithm for (4.9), where f

is more generic. The algorithmic solution proposed can handle additional

constraints on the factors U ; the nature of these constraints depends on the

problem at hand.8 The authors present a broad set of exemplars for f—

matrix completion and sensing, as well as sparse PCA, among others. For

each problem, a set of assumptions need to be satisfied; i.e., faithfulness, local

descent, local Lipschitz and local smoothness conditions; see [38] for more

details. Under such assumptions and with proper initialization, one can prove

convergence with O(1
ε
) or O(log(1

ε
)) rate, depending on the nature of f , and

for problems that even fail to be locally convex.

[19] proposes Factored Gradient Descent (FGD) algorithm for (4.9). FGD

is also a first-order scheme; key ingredient for convergence is a novel step

size selection that can be used for any f , as long as it is gradient Lipschitz

continuous; when f is further strongly convex, their analysis lead to faster

convergence rates. Using proper initialization, this is the first paper that

provably solves (4.9) for general convex functions f and under common convex

assumptions. An extension of these ideas to some constrained problem cases

can be found in [131].

To summarize, most of these results guarantee convergence –up to linear

rate– on the factored space, starting from a “good” initialization point and

employing a carefully selected step size.

Non-square X?. [81] propose AltMinSense, an alternating minimization

8Any additional constraints should satisfy the faithfulness property: a constraint set
C is faithful if for each U ∈ C, within some bounded radius from optimal point, we are
guaranteed that the closest (in the Euclidean sense) rotation of optimal U? lies within U.
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algorithm for matrix sensing and matrix completion problems. This is one of

the first works to prove linear convergence in solving (4.2) for the MS model.

Moreover, [65] improves upon [81] for the case of reasonably well-conditioned

matrices. Their algorithm handles problem cases with bad condition number

and gaps in their spectrum. Recently, [152] extended the Procrustes Flow

algorithm to the non-square case, where gradient descent, instead of exact al-

ternating minimization, is utilized. A few days before this paper, [185] also

extended the first-order method of [38] for matrix completion to the rectan-

gular case. All the studies above focus on the case of least-squares objective

f .

[146] generalize the results in [81, 65]: the authors show that, under

common incoherence conditions and sampling assumptions, most first-order

variants (e.g., gradient descent, alternating minimization schemes and stochas-

tic gradient descent, among others) indeed converge to the low-rank ground

truth X?. Specifically, for the alternating gradient descent variant, the au-

thors propose several step size selection procedures9. Both the theory and the

algorithm proposed are restricted to the matrix completion objective.

Recently, [183]—based on the inexact first-order oracle, previously used

in [10]— proved that linear convergence is guaranteed if f(UV >) is strongly

convex over either U and V , when the other is fixed. While the technique

applies for generic f and for non-square X, the authors provide algorithmic

solutions only for matrix completion / matrix sensing settings.10 Furthermore,

9However, the restricted Armijo rule, as well as the line search procedure, can be applied
to any the aforementioned algorithms too.

10E.g., in the gradient descent case, the step size proposed depends on RIP [134] constants
and it is not clear what a good step size would be in other problem settings.
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their algorithm requires QR-decompositions after each update of U and V ; this

is required in order to control the notion of inexact first order oracle.

4.4 Preliminaries

Notation. For matrices X, Y ∈ Rm×n, 〈X, Y 〉 = tr
(
X>Y

)
represents their

inner product. We use ‖X‖F and σ1(X) for the Frobenius and spectral norms

of a matrix, respectively; we also use ‖X‖2 to denote spectral norm. More-

over, we denote as σi(X) the i-th singular value of X. For a rank-r matrix

X = UV >, the gradient of f w.r.t. U and V is ∇f(UV >)V and ∇f(UV >)>U ,

respectively. With a slight abuse of notation, we will also use the terms

∇Uf(UV >) , ∇f(UV >)V and ∇V f(UV >) := ∇f(UV >)>U .

Given a matrix X, we denote its best rank-r approximation with Xr;

Xr can be computed in polynomial time via the SVD. For our discussions from

now on and in an attempt to simplify our notation, we denote the optimum

point we search for as X?
r , both (i) in the case where we intentionally restrict

our search to obtain a rank-r approximation of X? –while rank(X?) > r– and

(i) in the case where X? ≡ X?
r , i.e., by default, the optimum point is of rank

r.

An important issue in optimizing f over the factored space is the exis-

tence of non-unique possible factorizations for a given X. Since we are inter-

ested in obtaining a low-rank solution in the original space, we need a notion of

distance to the low-rank solution X?
r while we are optimizing over the factors.

Among infinitely many possible decompositions of X?
r , we focus on the set of
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balanced factorizations [152]:

X?
r =

{
(U?, V ?) : U? ∈ Rm×r, V ? ∈ Rn×r, U?V ?> = X?

r ,

σi(U
?) = σi(V

?) = σi(X
?
r )1/2,∀i ∈ [r]

}
. (4.10)

Note that (U?, V ?) ∈ X?
r if and only if the pair can be written as U? =

A?Σ?1/2R, V ? = B?Σ?1/2R, where A?Σ?B? is the singular value decomposition

of X?
r , and R ∈ Rr×r is an orthogonal matrix.

Given a pair (U, V ), we define the distance to X?
r as:

dist (U, V ;X?
r ) = min

(U?,V ?)∈X?r

∥∥∥∥[UV
]
−
[
U?

V ?

]∥∥∥∥
F

.

Assumptions. We consider applications that can be described (i) either by

restricted strongly convex functions f with gradient Lipschitz continuity, or

(ii) by convex functions f that have only Lipschitz continuous gradients.11

We state these standard definitions below.

Definition 4.2. Let f : Rm×n → R be a convex differentiable function. Then,

f is gradient Lipschitz continuous with parameter L (or L-smooth) if:

‖∇f (X)−∇f (Y )‖F ≤ L · ‖X − Y ‖F , (4.11)

∀X, Y ∈ Rm×n.

Definition 4.3. Let f : Rm×n → R be convex and differentiable. Then, f is

µ-strongly convex if:

f(Y ) ≥ f(X) + 〈∇f (X) , Y −X〉+ µ
2
‖Y −X‖2

F , (4.12)

∀X, Y ∈ X ⊆ Rm×n.

11Our ideas can be extended in a similar fashion to the case of restricted strong convexity
[123, 2].
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4.5 The Bi-Factored Gradient Descent (BFGD) algorithm

In this section, we provide an overview of the Bi-Factored Gradient

Descent (BFGD) algorithm for two problem settings in (4.1): (i) f being a L-

smooth convex function and, (ii) f being L-smooth and µ-strongly convex.

For both cases, we assume a good initialization point X0 = U0V
>

0 is provided;

given X0 and under proper assumptions, we further describe the theoretical

guarantees that accompany BFGD.

As introduced, BFGD is built upon non-convex gradient descent over

each factor U and V , written as

Ut+1 = Ut − η · ∇Uf(UtV
>
t ), Vt+1 = Vt − η · ∇V f(UtV

>
t ). (4.13)

When f is convex and smooth, BFGD follows exactly the motions in (4.13); in

the case where f is also strongly convex, BFGD is based on a different set of

recursions, which we discuss in more detail in the rest of the section.

4.5.1 Reduction to FGD: When f is convex and L-smooth

In [78], the authors describe a simple technique to transform problems

similar to (4.1), where the variable space is that of low-rank, non-square X,

into problems where we look for a square and PSD solution. The key idea is to

lift the problem and introduce a stacked matrix of the two factors, as follows:

W =

[
U
V

]
∈ R(m+n)×r,

and optimize over a new function f̂ : R(m+n)×(m+n) → R defined as

f̂
(
WW>) = f̂

([
UU> UV >

V U> V V >

])
= f(UV >).
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Following this idea, one can utilize algorithmic solutions designed only to work

on square and PSD-based instances of (4.1), where f is just L-smooth. Here,

we use the Factored Gradient Descent (FGD) algorithm of [19] on the W -space,

as follows:

Wt+1 = Wt − η · ∇W f̂(WtW
>
t ). (4.14)

Then, it is easy to verify the following remark:

Remark 4.4. Define

f̂

([
A B
C D

])
=

1

2
f(B) +

1

2
f(C>)

for A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×m, D ∈ Rn×n. Then FGD for minimizing

f̂(WW>) with the stacked matrix W = [U>, V >]> ∈ R(m+n)×r is equivalent to

(4.13).

A natural question is whether this reduction gives a desirable conver-

gence behavior. Since FGD solves for a different function f̂ from the original f ,

the convergence analysis depends also on f̂ . When f is convex and smooth,

we can rely on the result from [19].

Proposition 4.5. If f is convex and L-smooth, then f̂ is convex and L
2

-

smooth.
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Proof. For any Z1 =

[
A1 B1

C1 D1

]
, Z2 =

[
A2 B2

C2 D2

]
∈ R(m+n)×(m+n), we have

∥∥∥∇f̂(Z1)−∇f̂(Z2)
∥∥∥
F

=

∥∥∥∥[ 0 1
2
· ∇f(B1)

1
2
· ∇f(C>1 )> 0

]
−
[

0 1
2
· ∇f(B2)

1
2
· ∇f(C>2 )> 0

]∥∥∥∥
F

= 1
2
·
√
‖∇f(B1)−∇f(B2)‖2

F +
∥∥∇f(C>1 )−∇f(C>2 )

∥∥2

F

≤ L
2
·
√
‖B1 −B2‖2

F + ‖C1 − C2‖2
F

≤ L
2
· ‖Z1 − Z2‖F

where the first inequality follows from the L-smoothness of f .

Based on the above proposition, we use FGD to solve (4.2) with f̂ : its

procedure is exactly (4.13) (up to a factor of 2 for the step size). While

one can rely on the sublinear convergence analysis from [19], we provide a

new guarantee with a weaker initial condition. Our step size condition is the

following:

η ≤ 1

20L

∥∥∥∥[U0

V0

]∥∥∥∥2

2

+ 3‖∇f(U0V >0 )‖2

(4.15)

In Section 4.6, we discuss a convergence guarantee under this step size condi-

tion.

4.5.2 Using BFGD when f is L-smooth and strongly convex

Now we assume f function satisfies both properties in Definitions 4.2

and 4.3. In this case, we cannot simply rely on the lifting technique as above

since f̂ is clearly not strongly convex. Instead, we consider a slight variation,

based on [152], where we appropriately regularize the objective and force the
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solution pair (Û , V̂ ) to be “balanced”, according to the definition in (4.10). In

particular, we consider the following optimization problem:

minimize
U∈Rm×r, V ∈Rn×r

f(UV >) + λ · g(U>U − V >V ), (4.16)

where g : Rr×r → R is an additional convex regularizer. We require the

selected g to be such that:

(i) g is convex and minimized at zero point; i.e., ∇g(0) = 0.

(ii) The gradient, ∇g(U>U − V >V ) ∈ Rr×r , is symmetric for

any such pair.

(iii) g is µg-strongly convex and Lg-smooth.

The necessity of the regularizer. As we show next, the theoretical guar-

antees of BFGD heavily depend on the condition number of the pair (U?, V ?)

the algorithm converges to. In particular, one of the requirements of BFGD is

that every estimate Ut (resp. Vt) be “relatively close” to the convergent point

U? (resp. V ?), such that their distance ‖Ut−U?‖F is bounded by a function of

σr(U
?), for all t. Then, it is easy to observe that, for arbitrarily ill-conditioned

(U?, V ?) ∈ X∗r, such a condition might not be easily satisfied by BFGD per it-

eration12, unless we “force” the sequence of estimates (Ut, Vt), ∀t, to converge

to a better conditioned pair (U?, V ?). This is the key role of regularizer g: it

guarantees U and V are not too ill-conditioned. Note that adding g does not

change the optimum of f in the original X space.13

12Even if UV > is close to U?V ?>, the condition numbers of U and V can be much larger
than the condition number of UV >.

13In particular, for any rank-r solution UV >, there is a factorization (Ũ , Ṽ ) minimizing
g with the same function value f(Ũ Ṽ >) = f(UV >), which are

Ũ = AΣ
1
2 , Ṽ = BΣ

1
2
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An example of g is the Frobenius norm (weighted by µ/2), as pro-

posed in [152]. Other examples are sums of element-wise (at least) µg-strongly

convex and (at most) Lg-gradient Lipschitz functions (of the form g(X) =∑
i,j gij(Xij)) with the optimum at zero. However, any other user-friendly g

can be selected, as long as it satisfies the above conditions. We show in this

chapter that any such regularizer results provably in convergence, with attrac-

tive convergence rate. However, as we observe in practice, one can remove g

from the objective and observe slightly different performance in practice.

The BFGD algorithm. BFGD is a first-order, gradient descent algorithm, that

operates on the factored space (U, V ) in an alternating fashion. Principal

components of BFGD is a proper step size selection and a “decent” initialization

point. BFGD can be considered as the non-squared extension of FGD algorithm

in [19], which is specifically designed to solve problems as in (4.2), for U = V

and m = n. The key differences with FGD though, other than the necessity of

a regularizer g, are two-fold:

(i) The main recursion followed is different in the two schemes:

in the non-squared case, we update the left and right factors

(U, V ) with a different rule, according to which:

Ut+1 = Ut − η
(
∇Uf(UtV

>
t ) + λ · ∇Ug(U>t Ut − V >t Vt)

)
,

Vt+1 = Vt − η
(
∇V f(UtV

>
t ) + λ · ∇V g(U>t Ut − V >t Vt)

)
.

The parameter λ > 0 is arbitrarily chosen.

where UV > = AΣB> is the singular value decomposition.
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Algorithm 6 BFGD for smooth and strongly convex f

Input: Function f , target rank r, # iterations T .
1: Set initial values for U0, V0

2: Set step size η as in (4.17).
3: for t = 0 to T − 1 do
4: Ut+1 = Ut − η

(
∇Uf(UtV

>
t )− λ · ∇Ug(U>t Ut − V >t Vt)

)
5: Vt+1 = Vt − η

(
∇V f(UtV

>
t )− λ · ∇V g(U>t Ut − V >t Vt)

)
6: end for

Output: X = UTV
>
T .

(ii) Due to this new update rule, a slightly different and proper

step size selection should be devised for the case of BFGD.

Our step size is selected as follows:

η ≤ 1

12 ·max {L, Lg} ·
∥∥∥∥[U0

V0

]∥∥∥∥2

2

. (4.17)

The scheme is described in Algorithm 6. Observe that η has similar

formula with the step size in [19]. Though, as we show next, our analysis

simplifies further the selection of the step size.14. As shown in the next section,

constant step size (4.17) is sufficient to lead to attractive convergence rates for

BFGD, for f L-smooth and µ-strongly convex.

4.6 Local convergence for BFGD

This section includes the main theoretical guarantees of BFGD, both for

the cases of just smooth f , and f being smooth and strongly convex. Our

results follow and improve upon the results for the square and PSD case from

14There is no dependence on the spectral norm of the gradient.
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[19]. To provide such local convergence results, we assume that there is a

known “good” initialization which ensures the following.

Assumption A1. Define κ = max{L,Lg}
min{µ,µg} where µg and Lg are

the strong convexity and smoothness parameters of g, respectively.
Then, we assume we are provided with a “good” initialization point
X0 = U0V

>
0 such that:

dist(U0, V0;X?
r ) ≤

√
2·σr(X?

r )1/2

10
√
κ

(Strongly convex and smooth f),

dist(U0, V0;X?
r ) ≤

√
2·σr(X?

r )1/2

10
(Smooth f).

Moreover, for our analysis, we will use the following step size assumptions:

η̂ ≤ 1

8 max{L,Lg} ·
∥∥∥∥[UtVt

]∥∥∥∥2

2

(Strongly convex and smooth f),

(4.18)

η̂ ≤ 1

15L

∥∥∥∥[UtVt
]∥∥∥∥2

2

+ 3‖∇f(UtV >t )‖2

(Smooth f) (4.19)

The assumption and the step size depends on the strong convexity and smooth-

ness parameters of g. When µ and L are known a priori, this dependency can

be removed since one can choose g such that at least µ-restricted strongly

convex and at most L-smooth. Then, κ becomes the condition number of f ,

and the step size depends only on L.

Observe that step sizes in (4.18) and (4.19) are computationally inef-

ficient in practice: they require at most two spectral norm computations of

Ut, Vt and ∇f(UtV
>
t ) per iteration. However, as the following lemma states,

even in the case where we cannot afford such calculations per iteration, there

is a constant-fraction connection between η̂ and η.
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Lemma 4.6. Let (U0, V0) be such that Assumption A1 is satisfied. Then,

(4.18) holds if (4.17) is satisfied, and (4.19) holds if (4.15) is satisfied.

The proof is provided in the Appendix C.1. By this lemma, our analysis

below is equivalent –up to constants– to that if we were using the original step

size η of the algorithm. However, for clarity reasons and ease of exposition,

we use η̂ below.

4.6.1 Linear local convergence rate when f is L-smooth and µ-
strongly convex

The following theorem proves that, under proper initialization, BFGD

admits linear convergence rate, when f is both L-smooth and µ-restricted

strongly convex.

Theorem 4.7. Suppose that f is L-smooth and µ-restricted strongly con-

vex and regularizer g is Lg-smooth and µg-restricted strongly convex. De-

fine µmin := min {µ, µg} and Lmax := max {L,Lg}. Denote the unique min-

imizer of f as X? ∈ Rm×n and assume that X? is of arbitrary rank. Let η̂

be defined as in (4.18). If the initial point (U0, V0) satisfies Assumption A1,

then BFGD algorithm in Algorithm 6 converges linearly to X?
r , within error

O

(√
κ

σr(X?
r )
‖X? −X?

r ‖F
)

, according to the following recursion:

dist(Ut+1, Vt+1;X?
r )2 ≤ γt · dist(Ut, Vt;X

?
r )2 + η̂L ‖X? −X?

r ‖
2
F , (4.20)

for every t ≥ 0, where the contraction parameter γt satisfies:

γt = 1− η̂ · µmin·σr(X?
r )

8
≥ 1− µmin

17·Lmax
· σr(X

?
r )

σ1(X?
r )
> 0.

The proof is provided in Section C.2. The theorem states that if X?

is (approximately) low-rank, the iterates converge to a close neighborhood of

X?
r .
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The above result can also be expressed w.r.t. the function value f(UV >),

as follows:

Corollary 4.8. Under the same initial condition with Theorem 4.7, Algorithm

(6) satisfies the following recursion w.r.t. to the distance of function values

from the optimal f values:

f(UtV
>
t )− f(X?) ≤ γt · σ1(X?) ·

(
f(U0V

>
0 )− f(X?)

)
+

√
µL

σr(X?)
‖X? −X?

r ‖
2
F

4.6.2 Local sublinear convergence

In Section 4.5.1, we showed that a lifting technique can reduce our

problem (4.2) to a rank-constrained semidefinite program, and applying FGD

from [19] is exactly BFGD (4.13). While the sublinear convergence guarantee

of FGD can also be applied to our problem, we provide an improved result.

Theorem 4.9. Suppose that f is L-smooth with a minimizer X? ∈ Rm×n. Let

X̂r be any target rank-r matrix, and let η̂ be defined as in (4.19). If the initial

point X0 = U0V
>

0 , U0 ∈ Rm×r and V0 ∈ Rn×r, satisfies Assumption A1, then

FGD converges with rate O(1/T ) to a tolerance value according to:

f(UTV
>
T )− f(U?V ?>) = f̂(WTW

>
T )− f̂(W ?W ?>) ≤ 10 · dist(U0, V0;X?

r )2

ηT

Theorem 4.9 guarantees a local sublinear convergence with a looser

initial condition. While [19] requires minR∈O(r) ‖W −W ?R‖F ≤
σ2
r(W ?)

100σ2
1(W ?)

·

σr(W
?), our result requires that the initial distance to the W ? is merely a

constant factor of σr(W
?).
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4.7 Initialization

Our main theorem guarantees linear convergence in the factored space

given that the initial solution (U0, V0) is within a ball around the closest target

factors (U?
0 , V

?
0 ) with radius O(κ−1/2σr(X

?
r )1/2). To find such a solution, we

propose an extension of the initialization in [19].

Lemma 4.10. Consider an initial solution U0V
>

0 which is the best rank-r

approximation of

X0 = − 1
L
∇f(0) (4.21)

Then we have∥∥U0V
>

0 −X?
r

∥∥
F
≤ 2
√

2
(
1− 1

κ

)
‖X?‖F + 2 ‖X? −X?

r ‖F

Combined with Lemma 5.14 in [152], which transforms a good initial

solution from the original space to the factored space, we can obtain an ap-

propriate initial solution. The following corollary gives one sufficient condition

for global convergence of BFGD with the SVD of (4.21) as initialization.

Corollary 4.11. If

‖X? −X?
r ‖F ≤

σr(X
?)

100
√
κ
, κ ≤ 1 +

σr(X
?
r )2

4608 · ‖X?
r ‖

2
F

then the initial solution

U0 = A0Σ
1/2
0 , V0 = B0Σ

1/2
0

where A0Σ0B0 is the SVD of − 1
L
∇f(0) satisfies the initial condition of Theo-

rem 4.7.
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While our theoretical results can only guarantee global convergence for

a well-conditioned problem (κ close to one), we show in the experiments that

the algorithm performs well in practice where the sufficient conditions are yet

to be satisfied.

4.8 Experiments

In this section, we first provide comparison results regarding the actual

computational complexity of SVD and matrix-matrix multiplication proce-

dures; while such comparison is not thoroughly complete, it provides some

evidence about the gains of optimizing over U, V factors, in lieu of SVD-based

rank-r approximations. Next, we provide extensive results on the performance

of BFGD, as compared with state of the art, for the following problem settings:

(i) affine rank minimization, where the objective is smooth and (restricted)

strongly convex, (ii) image denoising/recovery from a limited set of observed

pixels, where the problem can be cast as a matrix completion problem, and

(iii) 1-bit matrix completion, where the objective is just smooth convex. In

all cases, the task is to recover a low rank matrix from a set of observations,

where our machinery naturally applies.

4.8.1 Complexity of SVD and matrix-matrix multiplication proce-
dures in practice

To provide an idea of how matrix-matrix multiplication scales, in com-

parison with truncated SVD,15 we compare it with some state-of-the-art SVD

15Here, we consider algorithmic solutions where both SVD and matrix-matrix mul-
tiplication computations are performed with high-accuracy. One might consider ap-
proximate SVD—see the excellent monograph [64]—and matrix-matrix multiplication

84



subroutines: (i) the Matlab’s svds subroutine, based on ARPACK software pack-

age [106], (ii) a collection of implicitly-restarted Lanczos methods for fast

truncated SVD and symmetric eigenvalue decompositions (irlba, irlbablk,

irblsvds) [9] 16, (iii) the limited memory block Krylov subspace optimization

for computing dominant SVDs (LMSVD) [112], and (iv) the PROPACK software

package [100]. We consider random realizations of matrices in Rm×n (w.l.o.g.,

assume m = n), for varying values of m. For SVD computations, we look for

the best rank-r approximation, for varying values of r. In the case of matrix-

matrix multiplication, we record the time required for the computation of 2

matrix-matrix multiplications of matrices Rm×m and Rm×r, which is equivalent

with the computational complexity required in our scheme, in order to avoid

SVD calculations. All experiments are performed in a Matlab environment.

Figure 4.1 (left panel) shows execution time results for the algorithms

under comparison, as a function of the dimension m. Rank r is fixed to

r = 100. While both SVD and matrix multiplication procedures are known

to have O(m2r) complexity, it is obvious that the latter on dense matrices

is at least two-orders of magnitude faster than the former. In Table 4.1, we

also report the approximation guarantees of some faster SVD subroutines,

as compared to svds: while irblablk seems to be faster, it returns a very

rough approximation of the singular values, when r is relatively large. Similar

findings are depicted in Figures 4.1 (middle and right panel).

approximations—see [49, 50, 98, 42]; we believe that studying such alternatives is an in-
teresting direction to follow for future work.

16IRLBA stands for Implicitly Restarted Lanczos Bidiagonalization Algorithms.
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Figure 4.1: Comparison of SVD procedures versus Matrix Matrix (MM) mul-
tiplication. Left panel: Varying dimension m and constant rank r = 100.
Middle panel: Similar to left panel where m scales larger and we focus on a
subset of SVD algorithms that can scale up. Right panel: Varying rank values
and constant dimension m = 5 · 103.

Algorithms Error
‖Σ̂−Σ?‖F
‖Σ?‖F

, where Σ? is diagonal matrix with top r singular values from svds.

Σ̂ m = 2 · 103 m = 4 · 103 m = 6 · 103 m = 8 · 103 m = 104

irblsvds 3.63e-15 4.33e-09 8.11e-11 4.79e-12 5.82e-10

irbla 6.00e-15 9.01e-07 1.05e-04 2.99e-04 7.29e-04

irblablk 1.48e+03 1.67e+03 1.24e+03 1.45e+03 7.91e+11

LMSVD 2.14e-14 4.49e-12 3.94e-11 1.33e-10 7.30e-10

PROPACK 4.10e-12 2.46e-10 1.63e-12 7.90e-12 3.55e-11

Table 4.1: Approximation errors of singular values, in the form ‖Σ̂−Σ?‖F
‖Σ?‖F

. Here,

Σ̂ denote the diagonal matrix, returned by SVD subroutines, containing r top
singular values; we use svds to compute the reference matrix Σ?, that contains
top-r singular values of the input matrix. Observe that some algorithms devi-
ate singificantly from the “ground-truth”: this is due to either early stopping
(only a subset of singular values could be computed) or due to accumulating
approximation error.

4.8.2 Affine rank minimization using noiselet linear maps

In this task, we consider the problem of affine rank minimization. In

particular, we observe unknown X? through a limited set of observations y ∈
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Rp, that satisfy:

y = A (X?) , (4.22)

where X? ∈ Rm×n, p� m ·n, and A : Rm×n → Rp is a given linear map. The

task is to recover X?, using A and y. Here, we use permuted and sub-sampled

noiselets for the linear operator A, due to their efficient implementation [165];

similar results can be obtained for A being a subsampled Fourier linear op-

erator or, even, a random Gaussian linear operator. For the purposes of this

experiment, the ground truth X? is synthetically generated as the multiplica-

tion of two tall matrices, U? ∈ Rm×r and V ? ∈ Rn×r, such that X? = U?V ?>

and ‖X?‖F = 1. Both U? and V ? contain random, independent and identically

distributed (i.i.d.) Gaussian entries, with zero mean and unit variance.

List of algorithms. We compare the following state-of-the-art algorithms:

(i) the Singular Value Projection (SVP) algorithm [80], a non-convex, projected

gradient descent algorithm for (4.3), with constant step size selection (we study

the case where µ = 1/3, as it is the one that showed the best performance in

our experiments), (ii) the Matrix ALPS II variant in [97], an accelerated,

first-order, non-convex algorithm, with adaptive step size and optimized sub-

procedures for the criterion in (4.3), (iii) the SparseApproxSDP extension

to non-square cases for (4.5) in [78], based on [67], where a putative solution

is refined via rank-1 updates from the gradient17, (iv) the matrix completion

algorithm in [146], which we call GuaranteedMC18, where the objective is (4.6),

17SparseApproxSDP in [67] avoids computationally expensive operations per iteration,
such as full SVDs. In theory, at the r-th iteration, these schemes guarantee to compute a
1
r -approximate solutio, with rank at most r, i.e., achieves a sublinear rate.

18We note that the original algorithm in [146] is designed for the matrix completion
problem, not the matrix sensing problem here.
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(v) the Procrustes Flow algorithm in [152] for (4.6), and (vi) the BFGD algo-

rithm.19

Implementation details. To properly compare the algorithms in the above

list, we preset a set of parameters that are common. In all experiments, we

fix the number of observations in y to p = C · n · r, where n ≥ m in our cases,

and for varying values of C. All algorithms in comparison are implemented in

a Matlab environment, where no mex-ified parts present, apart from those

used in SVD calculations; see below.

In all algorithms, we fix the maximum number of iterations to T = 4000,

unless otherwise stated. We use the same stopping criteria for the majority of

algorithms as:

‖Xt −Xt−1‖F
‖Xt‖F

≤ tol, (4.23)

where Xt, Xt−1 denote the current and the previous estimates in the X space

and tol := 5 · 10−6. For SVD calculations, we use the lansvd implementa-

tion in PROPACK package [100]. For fairness, we modified all the algorithms

so that they exploit the true rank r; however, we observed that small devia-

tions from the true rank result in relatively small degradation in terms of the

reconstruction performance.20

In the implementation of BFGD, we set g to be 1
16
· ‖U>U − V >V ‖2

F , as

suggested in [152], for ease of comparison. Moreover, for our implementation

19The algorithm in [183] assumes step size that depends on RIP constants, which are
NP-hard to compute; since no heuristic is proposed, we do not include this algorithm in the
comparison list.

20In case the rank of X? is unknown, one has to predict the dimension of the principal
singular space. The authors in [80], based on ideas in [92], propose to compute singular
values incrementally until a significant gap between singular values is found.
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of Procrustes Flow, we set the constant step size as µ := 2
187
· { 1
‖U0‖2F

, 1
‖V0‖2F ‖

},

as suggested in [152]. We use the implementation of [146], with random initial-

ization (unless otherwise stated) and regularization type soft, as suggested

by their implementation. In [78], we require an upper bound on the nuclear

norm of X?; in our experiments we assume we know ‖X?‖∗, which requires

a full SVD caclulation. Moreover, for our experiments, we set the curvature

constant Cf = 1.

For initialization, we consider the following settings: (i) random ini-

tialization, where X0 = U0V
>

0 for some randomly selected U0 and V0 such

that ‖X0‖F = 1, and (ii) specific initialization, as suggested in each of the

papers above. Our specific initialization is based on the discussion in Sec-

tion 4.7, where X0 = Proj r(− 1
L
∇f(0)). Algorithms SVP, Matrix ALPS

II, SparseApproxSDP and the solver in [146] work with random initial-

ization. For the initialization phase of [152], we consider two cases: (i) the

condition number κ is known, where according to Theorem 3.3 in [152], we

require Tinit := d3 log(
√
r · κ) + 5e SVP iterations21, and (ii) the condition

number κ is unknown, where we use Lemma 3.4 in [152].

Results using random initialization. Figure 4.2 depicts the convergence

performance of the above algorithms w.r.t. total execution time. Top row

corresponds to the case m = n = 1024, bottom row to the case m = 2048, n =

4096. For all cases, we fix r = 50; from left to right, we decrease the number

of available measurements, by decreasing the constant C. Matrix ALPS II

shows the best performance in terms of execution time: while still using SVD

21Observe that setting Tinit = 1 leads to spectral method initialization and the algorithm
in [184] for non-square cases, given sufficient number of samples.
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Figure 4.2: Convergence performance of algorithms under comparison w.r.t.
‖X̂−X?‖F
‖X?‖F

vs. the total execution time. Top row corresponds to dimensions
m = n = 1024; bottom row corresponds to dimensions m = 2048, n = 4096.
Details on problem configuration are given on plots’ title. For all cases, we
used A as noiselets and r = 50.

routines per iteration, Matrix ALPS II is specialized to solve matrix sensing

problem instances and performs several subroutines per iteration (subspace

exploration, debias steps, adaptive step size selection, among others). Hoever,

Matrix ALPS II applies only to this problem. Compared to Matrix ALPS

II, BFGD shows the second best performance, compared to the rest of the

algorithms. It is notable that BFGD performs better than SVP, by avoiding

SVD calculations and employing a better step size selection.22 For this setting,

GuaranteedMC converges to a local minimum while SparseApproxSDP and

Procrustes Flow show close to sublinear convergence rate.

22If our step size is used in SVP, we get slightly better performance, but not in a universal
manner.
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To further show how the performance of each algorithms scales as di-

mension increases, we provide aggregated results in Tables 4.2-4.3. Observe

that BFGD is one order of magnitude faster than the rest non-convex factoriza-

tion algorithms, while being competitive with Matrix ALPS II algorithm.

Table 4.4 shows the median time per iteration, spent by each algorithm, for

both problem instances and C = 3. Observe that Matrix ALPS II and

SVP require one order of magnitude more time to complete one iteration,

mostly due to the SVD step. In stark contrast, all factorization-based ap-

proaches spend less time per iteration, as was expected by the discussion in

the Introduction section; however, less progress is achieved by performing only

matrix-matrix computations.

Results using specific initialization. In this case, we study the effect

of initialization in the convergence performance of each algorithm. To do

so, we focus only on the factorization-based algorithms: Procrustes Flow,

GuaranteedMC, and BFGD. We consider two problem cases: (i) all these schemes

use our initialization procedure, and (ii) each algorithm uses its own suggested

initialization procedure. The results are depicted in Tables 4.5-4.6, respec-

tively.

Using our initialization procedure for all algorithms, we observe that

both Procrustes Flow and GuaranteedMC schemes can compute an approxima-

tion X̂ that is no closer to X? than 10−1 normalized distance, i.e., ‖X̂−X
?‖F

‖X?‖F
>

10−1. In contrast, our approach achieves a solution X̂ that is close to the

stopping criterion, i.e., ‖X̂−X
?‖F

‖X?‖F
≈ 10−6.

Using different initialization schemes per algorithm, the results are de-

picted 4.6. We remind that GuaranteedMC is designed for matrix completion
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tasks, where the linear operator is a selection mask of the entries. Observe

that Procrustes Flow’s performance improves significantly by using their pro-

posed initialization: the idea is to perform SVP iterations to get to a good

initial point; then switch to non-convex factored gradient descent for low per-

iteration complexity. However, this initialization is computationally expensive:

Procrustes Flow might end up performing several SVP iterations. This can

be observed e.g., in the case m = n = 1024, r = 5 and comparing the results

in Tables 4.5-4.6: for this case, Procrustes Flow performs T = 4000 iterations

when our initialization is used and spends ∼ 200 seconds, while in Table 4.6 it

performs T � 4000 iterations, at least 20% of them using SVP, and consumes

∼ 2000 seconds.

As a concluding remark, we note that similar results have been observed

in noisy settings and, thus, are omitted.

4.8.3 Image denoising as matrix completion problem

In this example, we consider the matrix completion setting for an image

denoising task: In particular, we observe a limited number of pixels from the

original image and perform a low rank approximation based only on the set

of measurements—similar experiments can be found in [97, 169]. We use real

data images: While the true underlying image might not be low-rank, we apply

our solvers to obtain low-rank approximations.

Figures 4.3-4.5 depict the reconstruction results for three image cases.

In all cases, we compute the best 100-rank approximation of each image (see

e.g., the top middle image in Figure 4.3, where the full set of pixels is ob-

served) and we observe only the 35% of the total number of pixels, randomly

selected—a realization is depicted in the top right plot in Figure 4.3. Given
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Figure 4.3: Reconstruction performance in image denoising settings. The
image size is 2845 × 4266 (12, 136, 770 pixels) and the approximation rank is
preset to r = 100. We observe 35% of the pixels of the true image. We depict
the median reconstruction error with respect to the true image in dB over 10
Monte Carlo realizations.

a fixed common tolerance level and the same stopping criterion as before, the

top rows of Figures 4.3-4.5 show the recovery performance achieved by a range

of algorithms under consideration—the peak signal to noise ration (PSNR),

depicted in dB, corresponds to median values after 10 Monte-Carlo realiza-

tions. In all cases, we note that Matrix ALPS II has overall slightly better

performance as compared to the rest of the algorithms, as a more specialized

algorithms for matrix completion problems. Our algorithm shows competitive

performance compared to simple gradient descent schemes as SVP and Pro-

crustes Flow, while being a fast and scalable solver. Table 4.7 contains timing

results from 10 Monte Carlo random realizations for all image cases.
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Figure 4.4: Reconstruction performance in image denoising settings. The
image size is 3309 × 4963 (16, 422, 567 pixels) and the approximation rank is
preset to r = 100. We observe 30% of the pixels of the true image. We depict
the median reconstruction error with respect to the true image in dB over 10
Monte Carlo realizations.

Figure 4.5: Reconstruction performance in image denoising settings. The
image size is 4862 × 9725 (47, 282, 950 pixels) and the approximation rank is
preset to r = 100. We observe 30% of the pixels of the true image. We depict
the median reconstruction error with respect to the true image in dB over 10
Monte Carlo realizations.

4.8.4 1-bit matrix completion

For this task, we repeat the experiments in [45] and compare BFGD with

their proposed schemes. The observational model we consider here satisfies the
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following principles: We assume X? ∈ Rm×n is an unknown low rank matrix,

satisfying ‖X?‖∞ ≤ α, α > 0, from which we observe only a subset of indices

Ω ⊂ [m]× [n], according to the following rule:

Yi,j =

{
+1 with probability σ(X?

i,j)
−1 with probability 1− σ(X?

i,j)
for (i, j) ∈ Ω. (4.24)

Similar to classic matrix completion results, we assume Ω is chosen uniformly

at random, e.g., we assume Ω follows a binomial model, as in [45]. Two natural

choices for h function are: (i) the logistic regression model, where σ(x) = ex

1+ex
,

and (ii) the probit regression model, where σ(x) = 1 − Φ(−x/σ) for Φ being

the cumulative Gaussian distribution function. Both models correspond to

different noise assumptions: in the first case, noise is modeled according to the

standard logistic distribution, while in the second case, noise follows standard

Gaussian assumptions. Under this model, [45] propose two convex relaxation

algorithmic solutions to recover X?: (i) the convex maximum log-likelihood

estimator under nuclear norm and infinity norm constraints:

minimize
X∈Rm×n

f(X),

subject to ‖X‖∗ ≤ α
√
rmn, ‖X‖∞ ≤ α,

(4.25)

and (ii) the the convex maximum log-likelihood estimator under only nuclear

norm constraints. In both cases, f(X) satisfies the expression in (4.7). [45]

proposes a spectral projected-gradient descent method for both these criteria;

in the case where only nuclear norm constraints are present, SVD routines

compute the convex projection onto norm balls, while in the case where both

nuclear and infinity norm constraints are present, [45] propose a alternating-

direction method of multipliers (ADMM) solution, in order to compute the

joint projection onto these sets.
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Figure 4.6: Comparison of 1-bit matrix procedures. Left panel: Output of
(4.25) is not projected onto rank-r set. Right panel: Output of (4.25) is
projected onto rank-r set.

Synthetic experiments. We synthetically construct X? ∈ Rm×n, where

m = n = 100, such that X? = U?V ?>, where U? ∈ Rm×r, V ? ∈ Rn×r for

r = 1. The entries of U?, V ? are drawn i.i.d. from Uni
[
−1

2
, 1

2

]
. Moreover,

according to [45], we scale X? such that ‖X?‖∞ = 1. Then, we observe

Y ∈ Rm×n according to (4.24), where |Ω| = 1
4
· mn. we consider the probit

regression model with additive Gaussian noise, with variance σ2.

Figure 4.6 depicts the recovery performance of BFGD, as compared to

variants of (4.25) in [45]. We consider their performance over different noise

levels w.r.t. the normalized Frobenius norm distance ‖X̂−X
?‖F

‖X?‖F
. As noted in

[45], the performance of all algorithms is poor when σ is too small or too large,

while in between, for moderate noise levels, we observe better performance for

all approaches.

By default, in all problem settings, we observe that the estimate of

(4.25) is not of low rank : to compute the closest rank-r approximation to that,

we further perform a debias step via truncated SVD. The effect of the debias

step is better illustrated in Figure 4.6, focusing on the differences between left
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and right plot: without such step, BFGD has a better performance in terms

of ‖X̂−X
?‖F

‖X?‖F
, within the “sweet” range of noise levels, compared to the convex

analog in (4.25). Applying the debias step, both approaches have comparable

performance, with that of (4.25) being slightly better.

Perhaps somewhat surprisingly, the performance of BFGD, in terms of

estimating the correct sign pattern of the entries, is better than that of [45],

even with the debias step. Figure 4.7 (left panel) illustrates the observed

performances for various noise levels.
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Figure 4.7: Left panel: Comparison of 1-bit matrix procedures w.r.t. sign
pattern estimation. Right panel: Recovery ofX? from p = C·n2 measurements.
X? is designed to be low rank: r = 3, 5 and 10. x-axis represents C for various
values.

Finally, we study the performance of the algorithms under consideration

as a function of the number of measurements, for fixed settings of dimensions

m = n = 200 and noise level σ = 0.244. By the discussion above, such noise

level leads to good performance from all schemes. We considered matrices

X? with rank r ∈ {3, 5, 10} and generate p = C · n2, over a wide range of

0 < C < 1. Figure 4.7 (right panel) shows the performance of BFGD and the

approach for (4.25) in [45], in terms of the relative Frobenius norm of the error.

All approaches do poorly when there are only p < 0.35 · n2 measurements,
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since this is near the noiseless information-theoretic limit. For higher numbers

of measurements, the non-convex approach in BFGD returns more reasonable

solutions and outperforms convex approaches, taking advantage of the prior

knowledge on low-rankness of the solution.

Recommendation system using the MovieLens dataset. We compare

1-bit matrix completion solvers on the 100k MovieLens dataset. To do so, we

repeat the experiment in Section 4.3 of [45]: we use the MovieLens 100k, which

consists of 100k movie ratings, from 1000 users on 1700 movies. Each user

entry denotes the movie rating, ranging from 1 to 5. To convert this dataset

into 1-bit measurements, we convert these ratings to binary observations by

comparing each rating to the average rating for the entire dataset (which

is approximately 3.5), according to [45]. To evaluate the performance of the

algorithms, we assume part of the observed ratings as unobserved (5k of them)

and check if the estimate of X?, X̂, predicts the sign of these ratings. We

perform ML estimation using logistic function h(x) = ex

1+ex
in f .

We compare the following algorithms: (i) the spectral projected gradi-

ent descent (SPG) implementation of (4.25) in [45] for 1-bit matrix completion,

(ii) the standard matrix completion implementation TFOCS [15], where we ob-

serve the unquantized dataset (actual values)23, (iii) BFGD for various values

of rank parameter r. The results are shown Table 4.8 over 10 Monte Carlo

realizations (i.e., we randomly selected 5k ratings as test sets and solved the

problem for different runs of the algorithms). The values in Table 4.8 denote

the accuracy in predicting whether the unobserved ratings are above or below

23Using TFOCS, we set the regularizer µ = 10−3 as the parameter value that returned the
best recovery results over a wide range of µ values.
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the average rating of 3.5. BFGD shows competitive performance, compared to

convex approaches. Moreover, setting the parameter r is an “easier” and more

intuitive task: our algorithm administers precise control on the rankness of

the solution, which might lead to further interpretation of the results. Con-

vex approaches lack of this property: the mapping between the regularization

parameters and the number of rank-1 components in the extracted solution is

highly non-linear. At the same time, BFGD shows much faster convergence to a

good solution, which constitutes it a preferable algorithmic solution for large

scale applications.
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m = n = 1024, C = 3 m = 2048, n = 4096, C = 3

Algorithm Median time per iter. Median time per iter.

Matrix ALPS II 2.360e-01 2.461e+00

SVP 1.604e-01 1.040e+00

Procrustes Flow 5.871e-02 4.525e-01

SparseApproxSDP 3.407e-02 3.001e-01

GuaranteedMC 7.142e-02 4.059e-01

BFGD 5.337e-02 3.981e-01

Table 4.4: Median time per iteration. Time reported is in seconds.

m = n = 1024, C = 10, r = 50 m = n = 1024, C = 10, r = 5

Algorithm
‖X̂−X?‖F
‖X?‖F

Total time
‖X̂−X?‖F
‖X?‖F

Total time

Procrustes Flow 2.2703e+01 281.2095 4.0432e+01 192.0993

GuaranteedMC 9.2570e-01 96.8512 4.7646e-01 2.4792

BFGD 3.7055e-06 52.5205 8.1246e-06 65.4926

Table 4.5: Summary of results of factorization algorithms using our proposed
initialization.

m = n = 1024, C = 10, r = 50 m = n = 1024, C = 10, r = 5

Algorithm
‖X̂−X?‖F
‖X?‖F

Total time
‖X̂−X?‖F
‖X?‖F

Total time

Procrustes Flow 3.2997e-05 390.6830 8.5741e-04 2017.7942

GuaranteedMC 9.2570e-01 114.9332 1.0114e+00 68.1775

BFGD 3.6977e-06 64.2690 3.1471e-06 74.2345

m = 2048, n = 4096, C = 10, r = 50 m = 2048, n = 4096, C = 10, r = 5

Algorithm
‖X̂−X?‖F
‖X?‖F

Total time
‖X̂−X?‖F
‖X?‖F

Total time

Procrustes Flow 4.9896e-02 265.2787 4.2263e-02 1497.6867

GuaranteedMC 4.7646e-01 4.0752 1.0302e+00 35.0559

BFGD 8.1381e-06 83.3411 5.8428e-06 379.1430

Table 4.6: Summary of results of factorization algorithms using each algo-
rithm’s proposed initialization.
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Time (sec.)

Algorithm UT Campus Graffiti Milky way

Matrix ALPS II 2550.2 2495.9 7332.5

SVP 5224.1 4154.9 7921.4

Procrustes Flow 5383.4 6501.4 12806.3

BFGD 4062.4 3155.9 9119.6

Table 4.7: Summary of execution time results for the problem of image de-
noising. Timings correspond to median values on 10 Monte Carlo random
instantiations.

Ratings (%) Overall (%) Time (sec)

Algorithm 1 2 3 4 5

SPG (α
√
r = 0.32) 73.7 68.4 52.5 74.9 91.0 71.3 79.5

SPG (α
√
r = 4.64) 77.2 71.0 58.5 72.5 86.9 71.8 213.4

SPG (α
√
r = 10.00) 76.2 71.3 58.3 71.0 85.7 71.0 491.8

TFOCS 70.4 69.4 59.2 39.1 59.4 64.8 42.3

BFGD (r = 3) 79.4 74.5 56.9 72.5 88.2 72.2 25.4

BFGD (r = 5) 79.0 72.4 56.8 71.6 86.2 71.2 27.5

BFGD (r = 10) 77.6 75.0 57.5 70.5 84.1 70.9 30.3

Table 4.8: Summary ofresults for the problem of 1-bit matrix completio on
MovieLens dataset. Individual and overall ratings correspond to percentages
of signs correctly estimated (+1 corresponds to original rating above 3.5, -
1 corresponds to original rating below 3.5). Timings correspond to median
values on 10 Monte Carlo random instantiations.
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Chapter 5

Conclusion

In this dissertation, we have presented efficient algorithms for non-

convex learning problems. We first developed algorithms for two particular

problems, subspace clustering for learning unions of subspaces and collabora-

tive ranking for learning low-rank matrices from pairwise comparisons. Then

we designed a non-convex gradient descent algorithm for a more general ma-

trix optimization problem which arises in several applications, such as matrix

sensing and matrix completion.

All of these problems, which stem from the unprecedently high volume

and dimensionality of modern datasets, require to estimate statistical models

for which the generic maximum likelihood estimations cannot be efficiently

solved by classical methods such as convex optimization and singular value

decomposition. While convex relaxation can provide polynomial-time algo-

rithms for a wide range of non-convex learning problems, there are needs for

developing even faster algorithms with competitive performances. Providing

such algorithms for several particular problems, this dissertation makes efforts

to deal with the continued growth of data sizes.

An interesting direction for this line of research is application of ran-

domization and parallelism to these non-convex approaches. While most of

our approaches are currently simple, deterministic, and serial, the techniques

such as subsampling, randomized dimensionality reduction, and stochastic op-
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timization will improve the scalability of the designed algorithms. Also, we

believe that all of our non-convex algorithms can be parallelized very well.

These ideas will help our algorithms more scalable and improve their practical

performances for even larger datasets than those we have used in this work.
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Appendix A

Technical Proofs for Chapter 2

A.1 Proofs for Chapter 2

A.1.1 Preliminary lemmas

Before we step into the technical parts of the proof, we introduce the

technical ingredients which will be used. The following lemma is about upper

and lower bounds on the order statistics for the projections of iid Gaussian

vectors.

Lemma A.1. Let x1, . . . , xn be drawn iid from N(0, 1
d
Id×d). Let z(n−m+1) de-

note the m’th largest value of {zi , ‖Axi‖2, 1 ≤ i ≤ n} where A ∈ Rk×d(k ≤
d).

a. Suppose the rows of A are orthonormal to each other. If

n

m
≥ 6

(
log

ne

mδ

)2

(A.1)

we have

z2
(n−m+1) >

k

d
+

2

d
· log

(
n−m+ 1

6m
(
log ne

mδ

)2

)
with probability at least 1− δm.

b. Let A be arbitrary full-rank matrix. Suppose m ≤ d. If

n

m
≥ 9dα log

ne

mδ
,

107



for some α > 0, then we have

z2
(n−m+1) >

‖A‖2
F

d
·
(

1 +
1

2k
log

(
n−m+ 1

m log ne
mδ

))
for 1 ≤ k ≤ max{1, bα

2
log dc} with probability at least 1− δm.

The following lemma provides a concentration bounds for uniformly

random subspaces.

Lemma A.2. Let the columns of X ∈ Rd×k be the orthonormal basis of a

k-dimensional random subspace drawn uniformly at random in d-dimensional

space.

a. For any matrix A ∈ Rp×d.

E[‖AX‖2
F ] =

k

d
‖A‖2

F

b. [120, 102] If ‖A‖2 is bounded, then we have

Pr

{
‖AX‖F >

√
k

d
‖A‖F + ‖A‖2 ·

(√
8π

d− 1
+ t

)}
≤ e−

(d−1)t2

8 .

A.1.2 Proof of Lemma 2.7

Step 1: Lower bounds on the projection of correct points

Let Vk ∈ Rp×k be such that Vk ∈ BVk. In this step, we want to lower

bound the LHS of (2.4), which can be written as

‖V >k yj∗k‖2 = ‖V >k D1xj∗k‖2

It is not trivial to analyze ‖V >k D1xj∗k‖2 because Vk and xj∗k are dependent.

D1xj∗k should not be too close to V1, . . . , Vk−1 since it has not been selected in
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the preceding steps. In order to avoid this dependence, we instead analyze an-

other random variable that is stochastically dominated by ‖V >k D1xj∗k‖
2
2. Then

we use a high-probability lower bound on that variable which also lower bounds

‖V >k D1xj∗k‖
2
2 with high probability.

Lemma A.3. For a fixed k, let x̂1, . . . , x̂n−1 be drawn iid uniformly at random

from N(0, 1
d
Id×d), independently of Vk. Define ρ(n−m) as the m’th largest value

of ‖V >k D1x̂1‖2, . . . , ‖V >k D1x̂n−1‖2. Then

‖V >k D1xj∗k‖
2
2

d

≥ ρ2
(n−k).

Now we can apply Lemma A.1a to ρ2
(n−k) in the above lemma. Since we

assume n = Ω(d), the condition (A.1) holds for any m ∈ [d]. With probability

at least 1− δk, we have

‖V >k D1xj∗k‖
2
2 ≥

k ∧ kmax

d
+

2

d
log

(
n− k + 1

6k
(
log ne

kδ

)2

)

≥ 1
d
·
(

2 log
n− d

6
+ (k ∧ kmax)− 2 log k − 4 log log

ne

δ

)
≥ c4 log n

d
(A.2)

for some constant c4 > 0, because (k ∧ kmax) ≥ 2 log k. The union bound

gives that (A.2) holds for all k ∈ [K] simultaneously with probability at least

1− δ
1−δ .

Step 2: Upper bounds on the projection of incorrect points

The RHS of (2.4) can be written as

max
j:j∈[N ],wj 6=1

‖V >k yj‖2 = max
j:j∈[N ],wj 6=1

‖V >k Dwjxj‖2 (A.3)
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In this step, we want to bound (A.3) for every k ∈ [K] by using the concen-

tration inequalities for Vk and xj. Note that the points of {xj : wj 6= 1} are

all independent of each other and independent of V1, . . . , VK . (Remark 2.6)

Consider a point yj = Dlxj from Dl. Let V >k Dl = UΣV > be the SVD.

Since we have

‖V >k Dlxj‖2
2 = ‖UΣV >xj‖2

2 = ‖Σxj‖2
2 =

k∑
i=1

σ2
i x

2
j,i,

‖V >k Dlxj‖2
2 is a weighted Chi-square random variable. It follows from [101]

that

Pr

d · ‖V >k Dlxj‖2
2 ≥ ‖V >k Dl‖2

F + 2

√√√√ k∑
i=1

σ4
i ·
√
t+ 2‖V >k Dl‖2

2 · t

 ≤ exp(−t)

When t ≥ 1, we obtain

Pr

{
‖V >k Dlxj‖2

2 ≥
‖V >k Dl‖2

F

d
· 5t
}
≤ exp(−t)

Applying the union bound, we obtain that with probability 1− δ,

max
j:j∈[N ],wj 6=1

‖V >k Dwjxj‖2
2 ≤

maxl 6=1 ‖V >k Dl‖2
F

d
· 5 log

nkmaxL

δ
(A.4)

for all k = 1, . . . , kmax − 1.

Now let us consider maxl 6=1 ‖V >k Dl‖F . In our statistical model, the new

axis added to Vk at the kth step (uk+1 in Algorithm 3) is chosen uniformly at

random from the subspace in D1 orthogonal to Vk. Therefore, Vk is a random

matrix drawn uniformly from the d × k Stiefel manifold, and the probability

measure is the normalized Haar (rotation-invariant) measure. From Lemma
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A.1b and the union bound, we obtain that with probability at least 1− δ/dL,

‖V >k Dl‖F ≤
√
k ∧ kmax

d
‖D>1 Dl‖F + ‖D>1 Dl‖2 ·

(√
8π

d− 1
+

√
8

d− 1
log

dL

δ

)

≤ ‖D>1 Dl‖F ·

(√
k ∧ kmax

d
+

√
50

d
log

dL

δ

)

≤ max aff ·

(√
2 log d+

√
50 log

dL

δ

)
. (A.5)

The union bound gives that with probability at least 1− δ, maxl 6=1 ‖V >k Dl‖F
is also bounded by (A.5) for every k = 1, . . . , kmax.

Putting (A.4) and (A.5) together, we obtain

max
j:j∈[N ],wj 6=1

‖V >k Dwjxj‖2

≤ max aff ·

(√
2 log d+

√
50 log

dL

δ

)
. ·
√

5 log
ndL

δ
(A.6)

for all k = 1, . . . , d− 1 with probability at least 1− 2δ.

Step 3: Proof of the statement

Putting (A.2) and (A.6) together, we obtain that if

max aff <

√
c4 log n(√

2 log d+
√

50 log dL
δ

)
. ·
√

5 log ndL
δ

, (A.7)

then (2.4) holds, and hence NSN finds all correct neighbors for y1 with proba-

bility at least 1− 3δ
1−δ . We can see that (A.7) holds because of the assumption

of the lemma.

A.1.3 Proof of Lemma 2.8

Step 1: Lower bounds on the projection of correct points
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Since there is no different probability relation for the subspace D1 and

the points from D1, we again use Lemma A.3. Then we have

‖V >k D1xj∗k‖
2
2 ≥

c4 log n

d
(A.8)

for all k = 1, . . . , d− 1 simultaneously with probability at least 1− δ
1−δ .

Step 2: Upper bounds on the projection of incorrect points

Since ‖ProjVk yj‖2 = ‖V >k yj‖2 = ‖V >k D1xj‖2, the RHS of (2.4) can be

written as

max
j:j∈[N ],wj 6=1

‖V >k yj‖2 (A.9)

Since the true subspaces are independent of each other, yj with wj 6= 1 is also

independent of D1 and Vk, and its marginal distribution is N(0, 1
p
Ip×p). Hence,

p ·‖V >k yj‖2
2 is a Chi-square random variable with (k∧kmax) degrees of freedom,

we have

Pr
{
p · ‖V >k yj‖2

2 ≥ 2(k ∧ kmax) + 3t
}
≤ exp(−t)

It follows that with probability at least 1− δ/d,

max
j:j∈[N ],wj 6=1

‖V >k yj‖2
2 ≤

2(k ∧ kmax) + 3 log ndL
δ

p

≤
4 log d+ 3 log ndL

δ

p
. (A.10)

The union bound provides that (A.10) holds for every k = 1, . . . , d − 1 with

probability at least 1− δ.

Step 3: Proof of the main theorem
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Putting (A.8) and (A.10) together, we obtain that if

d

p
<

c4 log n

7 log ndL
δ

, (A.11)

then (2.4) holds, and hence NSN finds all correct neighbors for y1 with proba-

bility at least 1− 3δ
1−δ . We can see that (A.11) holds because of the assumption

of the lemma.

A.1.4 Proof of Lemma A.3

The key idea is that the projection of the non-selected points onto the

new axis at step k in Pk
1 are independent of the direction of that axis.

We construct a generative model for two random variables that are

equal in distribution to ‖V >k D1xj†k
‖2

2 and ρ2
(n−k). Then we show that the one

corresponding to ‖V >k D1xj†k
‖2

2 is greater than the other corresponding to ρ2
(n−k).

This generative model uses the fact that for any isotropic distributions the

marginal distributions of the components along any orthogonal axes are in-

variant.

Let D>1 Vkmax = QR be the reduced QR decomposition where

Q ∈ Rd×kmax , Q>Q = Ikmax×kmax , R ∈ Rkmax×kmax .

The generative model is given as follows.

• For k = 1, . . . , kmax, repeat 2.

• Draw n − 1 iid random variables W
(k)
1 , . . . ,W

(k)
n−1 from N(0, 1

d
), and draw

1This axis is lying on Pk but orthogonal to Pk−1
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other n− 1 iid random variables Z
(k)
1 , . . . , Z

(k)
n−1 from N(0, σ

2

p
). Define

X
(k)
j = X

(k−1)
j +

(
k∑
`=1

R`k ·W (`)
j

)2

,

Y
(k)
j = Y

(k−1)
j +

((
k∑
i=`

R`k ·W (`)
j

)
+ Z

(`)
j

)2

,

and find

π†k , arg max
j:j 6=π∗1 ,...,π∗k−1

X
(k)
j ,

π∗k , arg max
j:j 6=π∗1 ,...,π∗k−1

Y
(k)
j .

• For k = kmax + 1, . . . , K, repeat finding

π†k , arg max
j:j 6=π∗1 ,...,π∗k−1

X
(kmax)
j ,

π∗k , arg max
j:j 6=π∗1 ,...,π∗k−1

Y
(kmax)
j .

Before we claim the stochastic equivalence, we note that

V >k D1 = R>kQ
>
k

for every k = 1, . . . , kmax, where Qk ∈ Rd×k is the left submatrix of Q, and

Rk ∈ Rk×k is the upper left submatrix of R. We will use Qk and Rk in the

following.

We first claim that the following two sets of random variables are equal

in distribution.

Ak ,
{

(W
(k)
j , Z

(k)
j ) : j ∈ [n− 1], j 6= π∗1, . . . , π

∗
k−1

}
,

Bk ,
{

(q>k xj, v
>
k zj) : wj = 1, j 6= 1, j∗1 , . . . , j

∗
k−1

}
.
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Since j∗k−1 is a function of{
(V >k−1D1xj, V

>
k−1zj) : wj = 1, j 6= 1, j∗1 , . . . , j

∗
k−1

}

{
((I − Vk−1Vk−1)>xj, (I − Vk−1Vk−1)>zj) : wj = 1, j 6= 1, j∗1 , . . . , j

∗
k−1

}
Since xj’s are isotropically

Then we have

X
(k)

π†k
= max

j:j 6=π∗1 ,...,π∗k−1

X
(k)
j

= max
j:j 6=π∗1 ,...,π∗k−1

k∑
i=1

(
i∑

`=1

R`i ·W (`)
j

)2

d
= max

j:wj=1,j 6=1,j∗1 ,...,j
∗
k−1

k∑
i=1

(
i∑

`=1

R`i · (q>` xj)

)2

= max
j:wj=1,j 6=1,j∗1 ,...,j

∗
k−1

‖R>kQ>k xj‖2
2

= max
j:wj=1,j 6=1,j∗1 ,...,j

∗
k−1

‖V >k D1xj‖2
2

= ‖V >k D1xj∗k‖
2
2.

Similarly, it is shown that the k’th maximum of {X(k)
j : j ∈ [n − 1]} is

equal in distribution to the k’th maximum of {‖V >k D1x̂j‖2
2 : j ∈ [n − 1]},

because x̂j’s are independent of Q and R, and hence (q>` x̂j) is a single gaus-

sian N(0, 1
d
). Since X

(k)

π†k
is the maximum in a subset with n − k variables of{

X
(k)
1 , . . . , X

(k)
n−1

}
, it is greater than or equal to the k’th maximum of the set.

Therefore, ‖V >k D1xj†k
‖2

2 stochastically dominates P 2
k,(k).

Now it suffices to show that Ak is stochastically equivalent to Bk. We

prove by induction.

115



• Base case : The elements of {xj : wj = 1, j 6= 1} are iid isotropic Gaus-

sians with N(0, 1
d
Id×d) independent of Q1 = q1. Therefore, the elements of

{q>1 xj : wj = 1, j 6= 1} are iid univariate Gaussians with N(0, 1
d
), which are

stochastically equivalent to {W (1)
1 , . . . ,W

(1)
n−1}.

Similarly, the elements of {zj : wj = 1, j 6= 1} are iid isotropic Gaus-

sians with N(0, 1
p
Ip×p) independent of V1 = v1. Therefore, the elements of

{v>1 zj : wj = 1, j 6= 1} are iid univariate Gaussians with N(0, 1
p
), which are

stochastically equivalent to {Z(1)
1 , . . . , Z

(1)
n−1}.

• Induction: Assume that the joint distribution of Ak−1 is equal to the joint

distribution of Bk−1. It is sufficient to show that given Ak−1
d
= Bk−1 the con-

ditional joint distribution of Ak = {(W (k)
j , Z

(k)
j ) : j ∈ [n−1], j 6= π∗1, . . . , π

∗
k}

is equal to the conditional joint distribution of Bk = {(q>k xj, v>k zj) : wj =

1, j 6= 1, j∗1 , . . . , j
∗
k}.

The two terms are independent of each other because Vk ⊥ vk, and xj is

isotropically distributed. Hence, we only need to show that ((v>k xj)
2 : wj =

1, j 6= 1, j∗1 , . . . , j
∗
k) is equal in distribution to (Y

(k+1)
j : j ∈ [n − 1], j 6=

π1, . . . , πk).

Since vk is a normalized vector on the subspace V⊥k ∩D1, and xj∗k is drawn

iid from an isotropic distribution, vk is independent of V >k xj∗k . Hence, the

marginal distribution of vk given Vk is uniform over (V⊥k ∩D1)∩Sp−1. Also, vk

is also independent of the points {xj : wj = 1, j 6= 1, j∗1 , . . . , j
∗
k}. Therefore,

the random variables (v>k xj)
2 for j with wj = 1, j 6= 1, j∗1 , . . . , j

∗
k are iid

equal in distribution to Y
(k+1)
j for any j.
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A.1.5 Proof of Lemma 2.9

The proof is similar to the proof of Lemma 2.7. The difference is that

Vk is no longer a subspace of D1, since the points are not exactly lying on the

subspaces. In this case, we need to introduce the following notations.

Definition A.4. For each Vk, we define Pk and Qk as the projection of Vk

onto D1 and the null space of D1, namely,

Pk , {ProjD1
y : y ∈ Vk}, Qk , {ProjD⊥1 y : y ∈ Vk}.

Definition A.5. Let Vk ∈ Rp×k be such that Vk ∈ BVk, and the left k − 1

columns of Vk is identical to Vk−1. This can be obtained by stacking the new

axis at each step as a column.

Definition A.6. Let Pk ∈ Rp×k be such that Pk ∈ BPk, and the left k − 1

columns of Pk is identical to Pk−1. This can be obtained as follows.

Pk = D1Q, A ∈ Rd×k

where D>1 Vk = QR is the reduced QR decomposition.

Remark A.7. For every k, the marginal distributions of Pk and Qk are uni-

form over BkD1 and BkD
⊥
1 , respectively.

Step 1: Lower bounds on the projection of correct points

In this step, we want to lower bound the LHS of (2.4), which can be

written as

‖V >k yj∗k‖2.
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Define

j†k = arg max
j∈[N ]\Ik:wj=1

‖V >k D1xj‖2

for every k = 1, . . . , K. Since the definition of j∗k and the triangle inequality

lead to

‖V >k yj∗k‖2 ≥ ‖V >k yj†k‖2

≥ ‖V >k D1xj†k
‖2 − ‖V >k zj†k‖2,

we instead lower bound ‖V >k D1xj†k
‖2 and ‖V >k zj†k‖2 separately. The same tech-

nique as Lemma A.3 can be used to obtain such bounds.

Corollary A.8. For a fixed k, let x̂1, . . . , x̂n−1 be drawn iid uniformly at ran-

dom from N(0, 1
d
Id×d), independently of Vk. And let ẑ1, . . . , ẑn−1 be drawn iid

uniformly at random from N(0, σ
2

p
Ip×p), independently of Vk. Define ρ(n−m) as

the m’th largest value of ‖V >k D1x̂1‖2, . . . , ‖V >k D1x̂n−1‖2. Then

‖V >k D1xj†k
‖2

2

d

≥ ρ2
(n−k).

and

‖V >k zj†k‖
2
2

d

≤ max
i∈[n−1]

‖V >k ẑi‖2
2.

Lemma A.9. If p ≥ 64σ2d, with probability at least 1− 4e−d/16,

‖V >k D1‖F ≥
1

8(1 + σ)

for all k = 1, . . . , kmax.

Now we can apply Lemma A.1b to obtain a lower bound on ρ2
(n−k).

Combined with Corollary A.8, Lemma A.9, and Lemma A.12, we obtain that
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with probability 1− δ
1−δ −

1
n2 − 4e−d/16,

‖V >k yj†k‖2 ≥
1

8(1 + σ)
√
d
·

√
1

2 ∨ (α log d)
log

(
n− d
d log ne

dδ

)
− 4σ

√
log(nd)

p

≥ 1

8(1 + σ)
√
d
·

√
1

2 ∨ (α log d)
log (8dα))− 4σ

√
log(nd)

p

≥ c6

8(1 + σ)
√
d
− 4σ

√
log(nd)

p
(A.12)

for some constant c6 > 0.

Step 2: Upper bounds on the projection of incorrect points

Using the triangle inequality, the RHS of (2.4) can be upper bounded

as

max
j∈[N ]:wj 6=1

‖V >k yj‖2 = max
j∈[N ]:wj 6=1

‖V >k (Dwjxj + zj)‖2

≤ max
j∈[N ]:wj 6=1

‖V >k Dwjxj‖2 + max
j∈[N ]:wj 6=1

‖V >k Dwjxj‖2 (A.13)

In this step, we want to bound (A.13) for every k = 1, . . . , kmax by using the

concentration inequalities for Vk, xj, and zj. Note that the points of {xj :

wj 6= 1} are all independent of each other and independent of V1, . . . , Vkmax .

Lemma A.10. With probability at least 1− 1
(nkmaxL)2 ,

max
j∈[N ]:wj 6=1

‖V >k Dwjxj‖2
2 ≤

maxl 6=1 ‖V >k Dl‖2
F

d
· (1 + 12 log(nkmaxL))

for all k = 1, . . . , kmax simultaneously.

Lemma A.11. Suppose δ ≤ 10−2. With probability at least 1− 2δ.

max
l 6=1
‖V >k Dl‖F ≤

(
max aff ·‖V >k D1‖F +

√
d

p− d

)
·

(
√
k +

√
50 log

kmaxL

δ

)
for all k = 1, . . . , kmax simultaneously.
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Lemma A.12. With probability at least 1− 1
N2 ,

max
j∈[N ]:wj 6=1

‖V >k zj‖2 ≤ 4σ

√
log(ndL)

p

for all k = 1, . . . , kmax simultaneously.

Applying the above lemmas, we obtain

max
j∈[N ]:wj 6=1

‖V >k yj‖2

≤

(
max aff ·‖V >k D1‖F +

√
d

p− d

)
·

(
√
k +

√
50 log

kmaxL

δ

)

·
√

13

d
log(nkmaxL) + 4σ

√
log(ndL)

p
(A.14)

for all k = 1, . . . , kmax with probability at least 1− 2δ − 2
(nkmaxL)2 .

Step 3: Proof of the lemma

Putting (A.12) and (A.14) together, we obtain that if

c6

8(1 + σ)
− 4σ

√
d log(nd)

p

≥

(
max aff ·‖V >k D1‖F +

√
d

p− d

)
·
√

50 log
dL

δ
·
√

13 log(nkmaxL)

for all k = 1, . . . , K, then (2.4) holds. Using Lemma A.9, the above condition

is satisfied if

max aff ≤
c7 − 3σ(1 + σ)

√
d logn
p

log(nL)
− 10(1 + σ)

√
d

p

for some constant c7 > 0. This completes the proof.
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A.2 Proofs of Auxiliary Lemmas

A.2.1 Proof of Lemma A.1a

We use the following lemma.

Lemma A.13 (Chi-square upper-tail lower-bound). For any k ∈ N and any

ε ≥ 0, we have

Pr{χ2
k ≥ k(1 + ε)} ≥ 1

3kε+ 6
exp

(
−kε

2

)
.

where χ2
k is the chi-square random variable with k degrees of freedom.

Then it follows that for ε ≥ 0,

Pr

{
z2

(n−m+1) <
k

d
(1 + ε)

}
(a)

≤ Pr

{
∃I ⊂ [n], |I| = n−m+ 1 : z2

i <
k

d
(1 + ε),∀i ∈ I

}
(b)

≤
(

n

m− 1

)
· Pr

{
z2

1 <
k

d
(1 + ε)

}n−m+1

(c)

≤
(ne
m

)m
·
(

1− 1

3kε+ 6
exp

(
−kε

2

))n−m+1

(d)

≤ exp

{
m log

ne

m
− n−m+ 1

3kε+ 6
exp

(
−kε

2

)}
(A.15)

where (a) follows from that the event
{
z2

(n−m+1) <
k
d
(1 + ε)

}
implies that there

is a size-(n −m + 1) subset of zi’s where every squared value is smaller than

k
d
(1 + ε), (b) follows from the union bound and the independence between zi’s,

(c) follows from the fact
(
n
m

)
≤
(
ne
m

)m
and Lemma A.13, and (d) follows from

the fact 1 + x ≤ ex,∀x.

Choose ε such that

ε =
2

k
log

(
n−m+ 1

6m
(
log ne

mδ

)2

)
.
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This ε is non-negative because of the assumption of the lemma. Then

we obtain

(A.15) ≤ exp

m log
ne

m
− n−m+ 1

6 log

(
n−m+1

6m(log ne
mδ )

2

)
+ 6

·
6m
(
log ne

mδ

)2

n−m+ 1


= exp

{
m log

ne

m
−

log ne
mδ(

1 + log
(

1
6
· n−m+1

m
· (log ne

mδ
)−2
)) ·m log

ne

mδ

}

≤ exp

{
m log

ne

m
−

(1 + log n
m

)

(1 + log n
6m
− 2 log log ne

mδ
)
m log

ne

mδ

}
≤ exp

{
m log

ne

m
−m log

ne

mδ

}
≤ δm.

This completes the proof.

A.2.2 Proof of Lemma A.13

For k ≥ 2, it follows from [77, Proposition 3.1] that

Pr{χ2
k ≥ k(1 + ε)}

≥ 1− e−2

2

k(1 + ε)

kε+ 2
√
k

exp

(
−1

2
(kε− (k − 2) log(1 + ε) + log k)

)
≥ 1

3
√
kε+ 6

exp

(
−k

2
(ε− log(1 + ε))

)
≥ 1

3kε+ 6
exp

(
−kε

2

)
.

For k = 1, we can see numerically that the inequality holds.
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A.2.3 Proof of Lemma A.1b

Let A = UΣV > be the singular value decomposition of A. For x ∼
N(0, 1

d
Id×d) and ε ≥ 1, we have

Pr

{
‖Ax‖2

2 >
‖A‖2

F

d
(1 + ε)

}
= Pr

{
‖Σx‖2

2 >
‖A‖2

F

d
(1 + ε)

}
= Pr

{
k∑
i=1

σ2
i x

2
i >

k∑
i=1

σ2
i

d
(1 + ε)

}
(a)

≥
k∏
i=1

Pr

{
x2
i >

1

d
(1 + ε)

}
(b)

≥ exp(−2kε)

where (a) follows from the following event leads to the preceding event, and

(b) follows by lower bounding the Gaussian tail for ε ≥ 1. Then we have

Pr

{
z2

(n−m+1) <
‖A‖2

F

d
(1 + ε)

}
(a)

≤ Pr

{
∃I ⊂ [n], |I| = n−m+ 1 : z2

i <
‖A‖2

F

d
(1 + ε),∀i ∈ I

}
(b)

≤
(

n

m− 1

)
· Pr

{
z2

1 <
‖A‖2

F

d
(1 + ε)

}n−m+1

(c)

≤
(ne
m

)m
· (1− exp (−2kε))n−m+1

(d)

≤ exp
{
m log

ne

m
− (n−m+ 1) exp (−2kε)

}
where (a) follows from the event

{
z2

(n−m+1) <
‖A‖2F
d

(1 + ε)
}

implies that there

is a size-(n − m + 1) subset where the squared values are all smaller than
‖A‖2F
d

(1 + ε), (b) follows from the union bound and the independence between

zi’s, (c) follows from previous inequality, and (d) follows from the fact 1 +x ≤
ex, ∀x.

123



Choosing

ε =
1

2k
log

(
n−m+ 1

m log ne
mδ

)
,

we get

Pr

{
z2

(n−m+1) <
‖A‖2

F

d
(1 + ε)

}
≤ δm

This ε is valid since we can have

ε =
1

2k
log

(
n−m+ 1

m log ne
mδ

)
≥ 1

2 ∨ bα log dc
log

(
n−m+ 1

m log ne
mδ

)
≥ 1

if n
m
≥ 9dα log ne

mδ
.

A.2.4 Proof of Lemma A.2a

Let A = UΣV > be the singular value decomposition of A. Then we

have

E[‖AX‖2
F ] = E[‖UΣV >X‖2

F ]

= E[‖ΣX‖2
F ]

=

min(p,d)∑
i=1

σ2
i ·

(
k∑
j=1

E[X2
ij]

)

=

min(p,d)∑
i=1

σ2
i ·
k

d
=
k

d
‖A‖2

F .

where the second last equality follows from that Xij is a coordinate of a uni-

formly random unit vector, and thus

E[X2
ij] =

1

d
, ∀i, j.
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A.2.5 Proof of Lemma A.2b

Consider the Stiefel manifold Vk(Rd) equipped with the Euclidean met-

ric. We see that X is drawn from Vk(Rd) with the normalized Harr probability

measure. We have

‖AX‖F − ‖AY ‖F ≤ ‖AX − AY ‖F = ‖A(X − Y )‖F ≤ ‖A‖2‖X − Y ‖F

for any X, Y ∈ Rd×k. Since ‖A‖2 ≤ 1, ‖AX‖F is a 1-Lipschitz function of X.

As stated in [102, p.27], we have

Pr{‖AX‖F > m‖AX‖F + t} ≤ e−
(d−1)t2

8 ,

where m‖AX‖F is the median of ‖AX‖F . Also, we have

Pr{|‖AX‖F −m‖AX‖F | > t} ≤ 2e−
(d−1)t2

8 ,

and then it follows that

|E‖AX‖F −m‖AX‖F | ≤ E [|‖AX‖F −m‖AX‖F |]

≤
∫ ∞

0

2e−
(d−1)t2

8 dt

=

√
8π

d− 1
.

It follows from Jensen’s inequality and Lemma A.1a that

E‖AX‖F ≤
√
E‖AX‖2

F =

√
k

d
‖A‖F

Putting the above inequalities together using the triangle inequality, we obtain

the desired result.
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A.2.6 Proof of Lemma A.10

Since ‖V >k Dwjxj‖2
2 is a weighted Chi-square random variable, we use

the following concentration bound.

Lemma A.14 ([101]). Let x1, . . . , xk be drawn iid from N(0, 1). Then

Pr


k∑
i=1

aix
2
i ≥

k∑
i=1

ai + 2

√√√√ k∑
i=1

a2
i · t+ 2amaxt

 ≤ exp(−t).

Applying the above lemma to the union bound, we have

Pr
{
∃k ∈ [kmax], j ∈ [N ], wj 6= 1 : ‖V >k Dwjxj‖2

2 ≥
‖V >k Dwj‖2

F

d
+

2‖V >k Dwj‖2
F · t

d
+

2‖V >k Dwj‖2
2 · t

d

}
≤ nkmaxL · exp(−t).

By replacing t = 3 log(nkmaxL), we have that with probability at least 1 −
1

(nkmaxL)2 ,

max
j∈[N ]:wj 6=1

‖V >k Dwjxj‖2
2 ≤

maxl 6=1 ‖V >k Dl‖2
F

d
· (1 + 12 log(nkmaxL))

for all k = 1, . . . , kmax.

A.2.7 Proof of Lemma A.11

Since Vk(PkP
>
k +QkQ

>
k ) = Vk, we have

‖V >k Dl‖F ≤ ‖V >k PkP>k Dl‖F + ‖V >k QkQ
>
kDl‖F

≤ ‖V >k Pk‖F · ‖P>k Dl‖F + ‖V >k Qk‖2 · ‖Q>kDl‖F

≤ ‖V >k D1‖F · ‖P>k Dl‖F + ‖Q>kDl‖F ,

where the first inequality follows from the triangle inequality, and the third

inequality follows from that ‖Vk‖2 = ‖Pk‖2 = ‖Qk‖2 = 1. Since Pk and Qk is
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drawn uniformly at random from BkD1 and BkD
⊥
1 , we use Lemma A.2b and

the union bound to obtain that

‖P>k Dl‖F ≤
√
k

d
‖D>1 Dl‖F + ‖D>1 Dl‖2 ·

(√
8π

d− 1
+

√
8

d− 1
log

kmaxL

δ

)

≤ ‖D>1 Dl‖F ·

(√
k

d
+

√
50

d
log

kmaxL

δ

)

≤ max aff ·

(
√
k +

√
50 log

kmaxL

δ

)

for all k = 1, . . . , kmax with probability at least 1− δ. We also have

‖Q>kDl‖F ≤

√
k

p− d
‖Dl‖F + ‖Dl‖2 ·

(√
8π

p− d− 1
+

√
8

p− d− 1
log

kmaxL

δ

)

≤

√
kd+

√
50 log kmaxL

δ√
p− d

for all k = 1, . . . , kmax with probability at least 1−δ. Putting the above bounds

together, we obtain

‖V >k Dl‖F ≤

(
max aff ·‖V >k D1‖F +

√
d

p− d

)
·

(
√
k +

√
50 log

kmaxL

δ

)

A.2.8 Proof of Lemma A.12

Since each p
σ2‖V >k zj‖2

2 is a chi-square random variable with k degrees

of freedom, it follows from Lemma A.14 and the union bound that

Pr
{
∃k ∈ [kmax],∃j ∈ [N ], wj 6= 1 :

p

σ2
‖V >k zj‖2

2 ≥ k + 2
√
kt+ 2t

}
≤ nkmaxL · exp(−t).
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By replacing t = 3 log(nkmaxL), we have that with probability at least 1 −
1

(nkmaxL)2 ,

max
j∈[N ]:wj 6=1

‖V >k zj‖2 ≤
σ
√
p
·
√
k + 2

√
kt+ 2t

≤ σ
√
p
·
√

2k + 3t

≤ σ
√
p
·
√

2kmax + 9 log(nkmaxL)

≤ 4σ
√
p
·
√

log(ndL)

for all k = 1, . . . , kmax.

A.2.9 Proof of Lemma A.9

We have

‖V >k D1‖F ≥ ‖D>1 v1‖2 =
‖D>1 y1‖2

‖y1‖2

≥ ‖x1‖2 − ‖D>1 z1‖2

‖x1‖2 + ‖z1‖2

where the first inequality is trivial, and the second inequality follows from the

triangle inequality. Now we use concentration bounds of the norms of Gaussian

vectors. It follows from [102, 101] that

Pr
{
‖x1‖2 ≤ 2−1

}
≤ e−d

2/16, Pr {‖x1‖2 ≥ 2} ≤ e−d/2,

Pr {‖z1‖2 ≥ 2} ≤ e−p/2, Pr

{√
p

σ2d
‖D>1 z1‖2 ≥ 2

}
≤ e−d/2.

Hence, with probability 1− 2e−d/2 − e−p/2 − e−d2/16,

‖V >k D1‖F ≥
‖x1‖2 − ‖D>1 z1‖2

‖x1‖2 + ‖z1‖2

≥
1
2
− 2σ

√
d
p

2 + 2σ
≥ 1

8(1 + σ)

where the last inequality follows from the assumption p ≥ 64σ2d.
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Appendix B

Technical Proofs for Chapter 3

B.1 Proof of Theorem 3.1

We write L(X) for the function being optimized; i.e.,

L(X) =
∑

(i,j,k)∈Ω

L(Yi,j,k(Xi,j −Xi,k)).

Note that for any fixed X, PX∗L(X) = mR(X) (where PX∗ denotes the ex-

pectation taken with respect to future samples from PX∗ , as distinct from E

which denotes the expectation over the samples used to generate X̂). Let K

be the set of d1 × d2 matrices with nuclear norm at most 1. The proof of

Theorem 3.1 proceeds in three main steps.

1. By some algebraic of manipulations L, we reduce the problem to showing

a uniform law of large numbers for the family of functions {L(X) : X ∈
√
λd1d2K}.

2. Using symmetrization and duality properties of K, we reduce the prob-

lem to bounding the norm of a matrix M whose entries are sums of

random signs.

3. We bound the norm of M using various concentration inequalities and a

theorem of Seginer [139].
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Since X̂, by definition, minimizes L(X̂), for any X̃ ∈
√
λd1d2K we can

bound

PX∗ [L(X̂)− L(X̃)] ≤ PX∗ [L(X̂)]− L(X̂)−
(
PX∗ [L(X̃)]− L(X̃)

)
≤ 2 sup

X∈
√
λd1d2k

|PX∗L(X)− L(X)|.

In other words, it suffices to show a uniform law of large numbers for {L(X) :

X ∈
√
λd1d2K}.

Let εi,j,k be i.i.d. ±1-valued variables and let ξi,j,k be the indicator that

(i, j, k) ∈ Ω. By Giné-Zinn’s symmetrization (as in [46]),

sup
X∈
√
λd1d2K

|PX∗L(X)− L(X)|

≤ 2E sup
X∈
√
λd1d2K

∣∣∣∣∣ ∑
i,j,k∈Ω

εi,j,kL(Yi,j,k(Xi,j −Xi,k))

∣∣∣∣∣ .
Since L is 1-Lipschitz, we obtain

sup
X∈
√
λd1d2K

|PX∗ [L(X)]− L(X)| ≤ 2E sup
X∈
√
λd1d2K

∣∣∣∣∣ ∑
i,j,k∈Ω

εi,j,kYi,j,k(Xi,j −Xi,k)

∣∣∣∣∣
= 2E sup

X∈
√
λd1d2K

∣∣∣∣∣∑
i,j,k

ξi,j,kεi,j,k(Xi,j −Xi,k)

∣∣∣∣∣ ,
where in the last line, we recognized that εi,j,kYi,j,k has the same distribution

as εi,j,k. Now, let M denote the matrix where Mij =
∑

k(ξi,j,kεi,j,k− ξi,k,jεi,k,j).
Then ∑

i,j,k

ξi,j,kεi,j,k(Xi,j −Xi,k) = tr(MTX)

and so

sup
X∈
√
λd1d2K

∑
i,j,k

ξi,j,kεi,j,k(Xi,j −Xi,k) = sup
X∈
√
λd1d2K

tr(MTX) =
√
λd1d2‖M‖.
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Putting everything together, we have (for any X̃ ∈
√
λd1d2K)

E
[
PX∗ [L(X̂)]− PX∗ [L(X̃)]

]
≤ 4
√
λd1d2E‖M‖.

Together with the following lemma (which we prove in Appendix B.2), this

completes the proof of Theorem 3.1

Lemma B.1. With p = m
d1d2

,

E‖M‖ ≤ Cκ
√
p(d1 + d2) log(d1d2).

B.2 Proof of Lemma B.1

We will decompose M into two parts, M = M (1) −M (2), with

M
(1)
ij =

∑
k 6=j

ξi,j,kεi,j,k

M
(2)
ij =

∑
k 6=j

ξi,k,jεi,k,j.

Then ‖M‖ ≤ ‖M (1)‖+ ‖M (2)‖. Since M (1) and M (2) have the same distribu-

tion,

E‖M‖ ≤ 2E‖M (1)‖,

and so we are reduced to studying M (1), which has i.i.d. entries. Now, we

apply Seginer’s theorem [139]:

E‖M (1)‖ ≤ C

(
Emax

i
‖M (1)

i∗ ‖2 + Emax
j
‖M (1)

∗j ‖2

)
, (B.1)

where M
(1)
i∗ denotes the ith row of M (1) and M

(1)
∗j denotes the jth column, and

‖ · ‖2 denotes the Euclidean norm.

We will separate the task of bounding Emaxi ‖M (1)
i∗ ‖2 into two parts:

if ‖x‖0 denotes the number of non-zero coordinates in x and ‖x‖∞ denotes
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maxj |xj| then ‖x‖2 ≤
√
‖x‖0‖x‖∞; with the Cauchy-Schwarz inequality, this

implies that(
E
[
max
i
‖M (1)

i∗ ‖2

])2

≤ E
[
max
i
‖M (1)

i∗ ‖0

]
E
[
max
i
‖M (1)

i∗ ‖2
∞

]
(B.2)

First, we will show that every row ofM (1) is sparse. Let Zij =
∑

k 6=j ξi,j,k

and let Yij be the indicator that Zij > 0. Recalling that Eξi,j,k = pi,j,k, we have

(by Assumption 3.1) EZij ≤ κp. Since Zij takes non-negative integer values,

we have Pr(Yij = 1) = Pr(Zij > 0) ≤ κp. By Bernstein’s inequality, for any

fixed i

Pr(‖M (1)
i∗ ‖0 ≥ κd2p+ t) ≤ Pr(

d2∑
j=1

Yij ≥ κd2p+ t) ≤ exp

(
− t2/2

κpd2 + t/3

)
.

Integrating by parts, we have

E
[
‖M (1)

i∗ ‖0

]
≤ κd2p+

∫ ∞
κd2p

Pr(‖M (1)
i∗ ‖0 ≥ t) dt ≤ κd2p+

3

8
.

Next, we will consider the size of the elements in M (1). First of all,

M
(1)
ij ≤ Zij (this fairly crude bound will lose us a factor of

√
log(d1d2)). Now,

Bernstein’s inequality applied to Zij gives

Pr(M
(1)
ij ≥ κp+ t) ≤ Pr(Zij ≥ κp+ t) ≤ exp

(
− t2/2

κp+ t/3

)
.

Taking a union bound over i and j, if t ≥ Cκ log(d1d2) then

Pr(max
ij

M
(1)
ij ≥ t) ≤ d1d2 exp (−ct) ≤ exp(−c′t).

Integrating by parts,

E
[
max
ij

M
(1)
ij

]
≤ κ log2(d1d2) +

∫ ∞
κ log2(d1d2)

Pr(max
ij

M
(1)
ij ≥

√
t) dt

≤ κ log2(d1d2) + C.
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Going back to (B.2), we have shown that

Emax
i
‖M (1)

i∗ ‖ ≤ Cκ
√
pd2 log(d1d2).

The same argument applies to M
(1)
∗j (but with

√
pd1 instead of

√
pd2), and so

we conclude from (B.1) that

E‖M (1)‖ ≤ Cκ
√
p(d1 + d2) log(d1d2).

B.3 Proof of Theorem 3.2

B.3.1 A sketch of the proof

The proof of Theorem 3.2 uses Fano’s inequality.

1. We construct matrices X1, . . . , X`. These matrices all have small nu-

clear norm, and for every pair i, j the KL-divergence between the in-

duced observation distributions is Θ(log `). We construct these matrices

randomly, using concentration inequalities and a union bound to show

that we can take ` of the order
√
λm(d1 + d2).

2. We apply Fano’s inequality to show that if we generate data according

to a randomly chosen X i, then any algorithm has a reasonable chance to

choose a different Xj (using the fact that the KL-divergence is O(log `)).

Since the KL-divergence is Ω(log `), this implies that the algorithm incurs

a substantial penalty whenever it makes a wrong choice.

In any application of Fano’s inequality, the key is to construct a large

number of admissible models that are close to one another in KL-divergence.

Specifically, if we can construct distributions P1, . . . ,P` with D(Pi‖Pj) + 1 ≤
1
2

log ` for all i, j, then given a single sample from some Pi, no algorithm can
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accurately identify which Pi it came from. In order to apply this denote by

PX,m the distribution of the data when the true parameters are X. We will

construct X1 . . . , X` ∈
√
λd1d2K such that for all i 6= j,

D(PXi,m‖PXj ,m) + 1 ≤ 1

2
log `, (B.3)

Rj(X
i) ≥ Rj(X

j) + c
log `

m
(B.4)

for some constant c > 0, where Rj denotes the expected risk when the true

parameters are given by Xj. Given a single observation from some PXj ,m, (B.3)

will imply (by Fano’s inequality) that no algorithm can correctly identify which

Xj was the true parameter. On the other hand, (B.4) will imply that if the

algorithm makes a mistake – say it chooses X i for i 6= j – then its risk will

be c log `
m

larger than the best in the class. In particular, if we can prove (B.3)

and (B.4) with log ` ∼
√
λm(d1 + d2) then it will imply Theorem 3.2.

We construct a set of matrices satisfying (B.3) and (B.4) using a prob-

abilistic method. Supposing that d2 ≥ d1, we choose a parameter γ > 0

and set B to be an integer that is approximately λγ−2. We define X1 by

filling its top B × d2 block with independent, uniform ±γ entries, and then

copying that top block B/d1 times to fill the matrix. Then let X2, . . . , X`

be independent copies of X1. First of all, each X i ∈
√
λd1d2K because

‖X i‖∗ ≤
√

rank(X i)‖X i‖F ≤
√
λd1d2.

Now, let us consider D(PX1,m‖PX2,m). For a single i, j, k triple, there

is probability 1/4 of having X1
i,j − X1

i,k different from X2
i,j − X2

i,k, in which

case they differ by 4γ. If γ is bounded above, each different entry contributes

Θ(α2γ2) to the KL-divergence between PX1,m and PX2,m. Since aboutm entries

are observed in PX1,m, we see that

D(PX1,m‖PX2,m) � mγ2. (B.5)
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On the other hand, R1(X1) and R1(X2) differ by Θ(γ2), because for a constant

fraction of triples i, j, k, the chance that Yi,j,k is 1 differs by O(γ) in X1 and

X2, and on the event that Yi,j,k differs in these two models the loss differs by

another O(γ) factor.

Applying standard concentration inequalities, we show that one can

apply the union bound to ` = exp(cBd2) of these matrices. In view of (B.3)

and (B.5), we need to take Bd2 = λ2

γ2d1
� mγ2. Eliminating γ, we end up with

log ` �
√
λm/d1 (which is within a constant factor of

√
λm(d1 + d2) under

our assumption that d2 ≥ d1).

B.3.2 Some concentration lemmas

We begin by quoting some standard concentration results (see, e.g. [153]).

Definition B.2. A random variable X is σ2-subgaussian if EeθX ≤ eθ
2σ2/2 for

all θ > 0. A random variable X is L-subexponential if EeθX ≤ (1− θ2L2) for

θ < 1/L.

One can easily show that the product of two subgaussian variables is

subexponential:

Lemma B.3. If X is σ2-subgaussian and Y is τ 2-subgaussian then XY is

Cστ -subexponential for a universal constant C.

Moreover, one has a Bernstein-type inequality for sums of independent

subexponential variables.

Lemma B.4. If X1, . . . , Xk are i.i.d. L-subexponential then

Pr(
∑
i

Xi ≥ t) ≤ exp

(
− ct2

L2k + Lt

)
.
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B.3.3 Construction of a packing set

Let 0 < γ < 1 be some parameter to be determined such thatB := λγ−2

is an integer.

Proposition B.5. Suppose that L′(0) < 0. For every sufficiently small γ

(depending on L), there exists a set X ⊂
√
λd1d2K of exp(cBd2) d1 × d2

matrices such that for any two X1, X2 ∈ X,

1

d1d2
2

d1∑
i=1

d2∑
j,k=1

EX1 [L(Y (X2
ij −X2

ik))− L(Y (X1
ij −X1

ik))] ≥ cγ2

and for any m,
1

m
D(PX1,m‖PX2,m) ≤ Cγ2,

where 0 < c < C are universal constants.

Following Davenport et al., we construct this set X randomly: let X be

a random B × d2 matrix, where each element is chosen independently to be

either γ or −γ.

Lemma B.6. Let X1 and X2 be independent copies of X. Then with proba-

bility at least 1− exp(−cBd2),

B∑
i=1

d2∑
j,k=1

(X1
ij −X1

ik −X2
ij +X2

ik)
2 ≥ 2γ2Bd2

2,

where c > 0 is a universal constant.

Before proving Lemma B.6, let us see how it implies Proposition B.5.

First of all, for X a random B × d2 matrix as above, let X̃ be the d1 × d2
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matrix obtained by stacking dd1/Be copies of X, and filling out any remaining

entries by zeros. Then, for random X and Y , with high probability

d1∑
i=1

d2∑
j,k=1

(X̃1
ij − X̃1

ik − X̃2
ij + X̃2

ik)
2 = dd1/Be

B∑
i=1

d2∑
j,k=1

(X1
ij −X1

ik −X2
ij +X2

ik)
2

� γ2d1d
2
2, (B.6)

where the lower bound for the last line came from Lemma B.6, and the upper

bound just came from the observation that each term in the sum is bounded

by 16γ2. Let X be the set obtained by choosing exp(cBd2/4) random copies

of X̃ in this way. The high-probability estimate in Lemma B.6 implies that

with high probability, every pair X̃1, X̃2 in X satisfies (B.6). Now,

D(PX1,m‖PX2,m) = EΩ

 ∑
(i,j,k)∈Ω

D(f(X1
ij −X1

ik)‖f(X2
ij −X2

ik))


� m

d1d2
2

∑
i,j,k

(X1
ij −X1

ik −X2
ij +X2

ik)
2,

where f(x) = ex/(1 + ex) is the logistic function, and the last line follows from

a Taylor expansion of D(f(x)‖f(y)) around x = y, because all the X1
ij and X2

ij

are bounded by γ < 1. Together with (B.6), this proves the first inequality in

Proposition B.5; the second inequality follows because each term of the form

D(f(Xij −Xik)‖f(Yij − Yik)) is bounded by a constant times γ2. This proves

the second inequality of Proposition B.5.

By Taylor expansion again, if γ is sufficiently small (depending on L)

then

L(Yi,j,k(X
2
i,j −X2

i,k))− L(Yi,j,k(X
1
i,j −X1

i,k)) � Yi,j,k(X
1
i,j −X1

i,k −X2
i,j +X2

i,k).

Now, if i, j, k is a triple for which 2γ = X1
i,j−X1

i,k > X2
i,j−X2

i,k (and under the

event of Lemma B.6, there are at least cBd2
2 such triples) then EX1 [Yi,j,k] � γ
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and so

EX1 [L(Yi,j,k(X
2
i,j −X2

i,k))− L(Yi,j,k(X
1
i,j −X1

i,k))] � γ2.

The same holds when i, j, k is a triple for which −2γ = X1
i,j − X1

i,k < X2
i,j −

X2
i,k. Finally, if i, j, k is a triple such that X1

i,j − X1
i,k = X2

i,j − X2
i,k then the

expectation is zero. Summing over all triples, we see that on the event that

Lemma B.6 holds,

1

Bd2
2

∑
i,j,k

EX1 [L(Yi,j,k(X
2
i,j −X2

i,k))− L(Yi,j,k(X
1
i,j −X1

i,k))] ≥ cγ2.

After summing over all dd1/Be blocks, this proves the first inequality of Propo-

sition B.5.

Proof of Lemma B.6. We expand the square:∑
ijk

(Xij −Xik − Yij + Yik)
2

= 2
∑
ijk

X2
ij + Y 2

ij + 2XijYik −XijXik − YijYik − 2XijYij

= 4γ2Bd2
2 + 2

∑
ijk

2XijYik −XijXik − YijYik − 2XijYij. (B.7)

We may study each of the cross-terms separately: for the XijYik term, note

that
∑

j Xij and
∑

k Yik are both γ2d2-subgaussian (by Hoeffding’s inequal-

ity). Hence,
∑

jkXijYik is Cγ2d2-subexponential (by Lemma B.3) and so by

Lemma B.4,

Pr

(∣∣∣∣∣∑
ijk

XijYik

∣∣∣∣∣ ≥ 1

8
γ2Bd2

2

)
≤ 2 exp(−cBd2).

The similar argument applies to the XijXik term:
∑

j Xij is γ2d2-subgaussian

and so
∑

ijkXijXik =
∑

i(
∑

j Xij)
2 is Cγ2d2-subexponential; hence

Pr

(∣∣∣∣∣∑
ijk

XijXik

∣∣∣∣∣ ≥ 1

8
γ2Bd2

2

)
≤ 2 exp(−cBd2).
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Of course, the YijYik term is identical. Finally, note that
∑

ijkXijYij =

d2

∑
ij XijYij. Since the terms in this sum are i.i.d., we may apply Hoeffd-

ing’s inequality to obtain

Pr

(∣∣∣∣∣∑
ijk

XijYij

∣∣∣∣∣ ≥ 1

8
γ2Bd2

2

)
= Pr

(∣∣∣∣∣∑
ij

XijYij

∣∣∣∣∣ ≥ 1

8
γ2Bd2

)
≤ 2 exp(−cB2d2

2).

Putting everything together, we see that with high probability, the total of all

the cross-terms in (B.7) is at most half of the first term.

B.3.4 Completing the proof

Let C denote the constant from Proposition B.5. Assume that d1 ≤ d2

and that m is large enough so√
d2

m
≤ 8C

√
λ ≤

√
m

d2

. (B.8)

Note that under the assumptions λ ≥ 1 and m ≥ d1 + d2 from Theorem 3.2,

the lower bound of (B.8) is satisfied. Moreover, if the upper bound of (B.8) is

not satisfied then we may decrease λ until it is; the conclusion of Theorem 3.2

will not be affected because as long as (B.8) fails, the minimum in Theorem 3.2

will be 1.

By the lower bound in (B.8), there is an integer B such that

B ≤
√
λm

d2

≤ 2B;

fix this B and define γ by

γ2 = λ/B �
√
λd2

m
.

By the upper bound in (B.8), γ ≤ 1.
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Now, Fano’s inequality states that if we first select a random X ∈ X

and then draw a sample from PX,m, then any algorithm trying to identify X

can succeed with probability at most

min{D(PX,m‖P(Y,m)) : X, Y ∈ X}+ 1

log |X|
≤ 2Cmγ2

Bd2

≤ 1

2
.

Finally, note that by the first inequality in Proposition B.5, the error incurred

by choosing the wrong X ∈ X is at least cγ2 �
√

λd2

m
.

Now, we have so far only discussed the case d2 ≥ d1. The case d1 ≤ d2

is not exactly equivalent because our model is not symmetric in its treatment

of users and items. However, the proof of Theorem 3.2 does not change very

much. We take horizontally stacked blocks of size d1 × B instead of B × d2.

The main difference is in the calculation leading to (B.6): there are extra

cross-terms appearing due to the fact that items in different blocks need to be

compared with one another. However, all of these additional terms may be

controlled with Lemmas B.3 and B.4 in much the same way as the existing

terms are controlled.

B.4 Comparison to Stochastic Gradient Descent

Another practical algorithm to optimize (3) is Stochastic Gradient De-

scent (SGD). We have experimented SGD on the same datasets in Table 1.

We ran the algorithm with the same regularization parameters and different

step sizes. The statistical results for SGD were observed to be no better than

AltSVM, and hence we did not present them in the main paper.

Let us first describe the SGD procedure. At each step, ones chooses

a triple (i, j, k) ∈ Ω uniformly at random and run a SGD step, which can be
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Datasets N NDCG@10
20 0.6852

ML1m 50 0.7666
100 0.7728
20 0.6977

ML10m 50 0.7452
100 0.7659

Table B.1: NDCG@10 of SGD on different datasets, for different numbers of
observed ratings per user.

Precision@ SGD with C = 5000
1 0.1556
2 0.1498
5 0.1236
10 0.1031
100 0.0441

Table B.2: Precision@K for SGD of (3) on the binarized MovieLens1m dataset.

written as

u+
i ← ui − η ·

{
g · (vj − vk) +

λ

|Ωi|
ui

}
v+
j ← vj − η ·

{
g · ui +

λ

|Ωj|
vj

}
v+
j ← vj − η ·

{
−g · ui +

λ

|Ωk|
vk

}
where Ω(j) denotes the number of comparisons in Ω which involve item j. η is

a step size and g ∈ ∂L(u>i (vj − vk)).

The following tables show the statistical result of SGD. The step size

is chosen by η = α
1+βt

as suggested in [179]. α and β were the powers of 10−1,

and the best result is reported. The results are comparable to AltSVM, but

it did not achieve better results. We note that this is the best result from

several different step sizes, while AltSVM does not have any other parameter

to choose except for the regularization parameter.
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Appendix C

Technical Proofs for Chapter 4

C.1 Proof of Lemma 4.6

Proof of (4.18)⇒(4.17) Let R?
t be the r × r orthogonal matrix such that

dist(Ut, Vt;X
?
r ) = ‖Wt −W ?R?

t‖F . By the triangle inequality, we have

‖Wt‖2 = ‖Wt −W ?R?
t +W ?R?

t‖2

(i)

≤ ‖W ?R?
t‖2 + ‖Wt −W ?R?

t‖2

(ii)

≤ ‖W ?‖2 +
√

2σr(X?
r )

1/2

10

(iii)

≤ ‖W ?‖2 + σr(W ?)
10

≤ 11
10
· ‖W ?‖2 (C.1)

where (i) is due to triangle inequality, (ii) is due to Assumption A.1 (iii) is

due to the fact that
√

2 · σr(X?
r )1/2 = σr(W

?) and κ ≥ 1. The above bound

holds for every t = 0, 1, . . ..

On the other hand, we have:

‖W0‖2 = ‖W0 −W ?R?
t +W ?R?‖2

(i)

≥ ‖W ?R?
t‖2 − ‖W0 −W ?R?

t‖2

≥ ‖W ?‖2 −
√

2σr(X?
r )

1/2

10

≥ ‖W ?‖2 − σ1(W ?)
10

≥ 9
10
· ‖W ?‖2 (C.2)

Combining (C.1) and (C.2), we obtain:

‖Wt‖2 ≤ 11
10
· ‖W ?‖2 ≤ 11

9
‖W0‖2 =⇒ 81

121
· ‖Wt‖2

2 ≤ ‖W0‖2
2

142



and, finally,

1
8·max{L, Lg}·‖Wt‖22

= 1

8·121
81
·max{L, Lg}·

81
121
·‖Wt‖22

≥ 1
12·max{L, Lg}·‖W0‖22

Proof of (4.19)⇒(4.15) We have

‖∇f(UtV
>
t )‖2

≤ ‖∇f(U0V
>

0 )‖2 + ‖∇f(UtV
>
t )−∇f(U0V

>
0 )‖2

(i)

≤ ‖∇f(U0V
>

0 )‖2 + L‖UtV >t − U0V
>

0 ‖F
(ii)

≤ ‖∇f(U0V
>

0 )‖2 + L‖UtV >t − U?V ?>‖F + L‖U0V
>

0 − U?V ?>‖F (C.3)

where (i) is due to the fact that f is L-smooth and, (ii) holds by adding and

subtracting U?V ?> and then applying triangle inequality. To bound the last

two terms on the right hand side, we observe:

‖UtV >t − U?V ?>‖F = ‖UtV >t − U?RV >t + U?RV >t − U?RR>V ?>‖F
(i)

≤ ‖U?R‖2 · ‖Vt − V
?R‖F + ‖Vt‖2 · ‖Ut − U

?R‖F
≤ (‖U?‖2 + ‖Vt‖2) · dist(Ut, Vt;X

?
r )

(ii)

≤ 21

10
· ‖W ?‖2 ·

σr(W
?)

10

≤ 7

10
· ‖W0‖2

2

where (i) is due to the triangle and Cauchy-Schwartz inequalities, (ii) is by

Assumption A1 and (C.1). Similarly, one can show that ‖U0V
>

0 −U?V ?>‖F ≤
7
10
· ‖W0‖2

2. Thus, (C.3) becomes:

‖∇f(U0V
>

0 )‖2 ≥ ‖∇f(UtV
>
t )‖2 −

3L

2
‖W0‖2

2 (C.4)

Applying (C.1), (C.2), and the above bound, we obtain the desired result.
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C.2 Proof of Linear Convergence (Theorem 4.7)

For clarity, we omit the subscript t, and use (U, V ) to denote the current

estimate and (U+, V +) the next estimate. Further, we abuse the notation by

denoting ∇g , ∇g(U>U − V >V ), where the gradient is taken over both U

and V . We denote the stacked matrices of (U, V ) and their variants as follows:

W =

[
U
V

]
, W+ =

[
U+

V +

]
, W ? =

[
U?

V ?

]
.

Observe that W,W+,W ? ∈ R(m+n)×r. Then, the main recursion of BFGD in

Algorithm 6 can be succinctly written as

W+ = W − η̂∇W (f + 1
2
g),

where

∇W (f + 1
2
g) =

[
∇Uf(UV >) + 1

2
∇Ug

∇V f(UV >) + 1
2
∇V g

]
=

[
∇f(UV >)V + 1

2
U∇g

∇f(UV >)>U − 1
2
V∇g

]
.

In the above formulations, we use as regularizer of g function λ = 1
2
.

Our discussion below is based on the Assumption A.1, where:

dist(U, V ;X?
r ) ≤

√
2 · σr(X?

r )1/2

10
√
κ

=
σr(W

?)

10
√
κ
, (C.5)

holds for the current iterate. The last equality is due to the fact that σr(W
?) =

√
2 ·σr(X?

r )1/2, for (U?, V ?) with “equal footing”. For the initial point (U0, V0),

(C.5) holds by the assumption of the theorem. Since the right hand side is

fixed, (C.5) holds for every iterate, as long as dist(U, V ;X?
r ) decreases.

To show this, let R ∈ Or be the minimizing orthogonal matrix such that

dist(U, V ;X?
r ) = ‖W −W ?R‖F ; here, Or denotes the set of r × r orthogonal
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matrices such that R>R = I. Then, the decrease in distance can be lower

bounded by

dist(U, V ;X?
r )2 − dist(U+, V +;X?

r )2

= ‖W −W ?R‖2
F − min

Q∈Or

∥∥W+ −W ?Q
∥∥2

F

≥ ‖W −W ?R‖2
F −

∥∥W+ −W ?R
∥∥2

F

= 2η̂ ·
〈
∇W (f + 1

2
g),W −W ?R

〉
− η̂2 ·

∥∥∇W (f + 1
2
g)
∥∥2

F
(C.6)

where the last equality is obtaining by substituting W+, according to its def-

inition above. To bound the first term on the right hand side, we use the

following lemma; the proof is provided in Section C.2.1.

Lemma C.1 (Descent lemma). Suppose (C.5) holds for W . Let µmin =

min {µ, µg} and Lmax = max {L, Lg} for (µ, L) and (µg, Lg) the strong con-

vexity and smoothness parameters pairs for f and g, respectively. Then, the

following inequality holds:

〈
∇W (f + 1

2
g),W −W ?R

〉
≥ µmin·σr(W ?)2

20
‖W −W ?R‖2

F + 1
4Lmax

∥∥∇f(UV >)
∥∥2

F

+ 1
16Lmax

‖∇g‖2
F −

L
2
‖X? −X?

r ‖
2
F (C.7)

For the second term on the right hand side of (C.6), we obtain the
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following upper bound:∥∥∇W (f + 1
2
g)
∥∥2

F

=

∥∥∥∥[ ∇f(UV >)V + 1
2
U∇g

∇f(UV >)>U − 1
2
V∇g

]∥∥∥∥2

F

=
∥∥∇f(UV >)V + 1

2
U∇g

∥∥2

F
+
∥∥∇f(UV >)>U − 1

2
V∇g

∥∥2

F

(a)

≤ 2
∥∥∇f(UV >)V

∥∥2

F
+ 1

2
‖U∇g‖2

F + 2
∥∥∇f(UV >)>U

∥∥2

F
+ 1

2
‖V∇g‖2

F

= 2
∥∥∇f(UV >)V

∥∥2

F
+ 2

∥∥∇f(UV >)>U
∥∥2

F
+ 1

2
‖W∇g‖2

F

(b)

≤ 2
∥∥∇f(UV >)

∥∥2

F
·
(
‖U‖2

2 + ‖V ‖2
2

)
+ 1

2
‖W‖2

2 ‖∇g‖
2
F

(c)

≤
(

4
∥∥∇f(UV >)

∥∥2

F
+ 1

2
‖∇g‖2

F

)
· ‖W‖2

2 , (C.8)

where (a) follows from the fact ‖A+B‖2
F ≤ 2 ‖A‖2

F + 2 ‖B‖2
F , (b) is due to

the fact ‖AB‖F ≤ ‖A‖F · ‖B‖2, and (c) follows from the observation that

‖U‖2 , ‖V ‖2 ≤ ‖W‖2.

Plugging (C.7) and (C.8) in (C.6), we get

dist(U, V ;X?
r )2 − dist(U+, V +;X?

r )2

≥ 2η̂ ·
〈
∇W (f + 1

2
g),W −W ?R

〉
− η̂2 ·

∥∥∇W (f + 1
2
g)
∥∥2

F

≥ η̂·µmin·σr(W ?)2

10
dist(U, V ;X?

r )2 − η̂L ‖X? −X?
r ‖

2
F

= η̂·µmin·σr(X?
r )

5
dist(U, V ;X?

r )2 − η̂L ‖X? −X?
r ‖

2
F

where we use the fact that σr(W
?) =

√
2 · σr(X?

r )1/2.

The above lead to the following recursion:

dist(U+, V +;X?
r )2 ≤ γt · dist(U, V ;X?

r )2 + η̂L ‖X? −X?
r ‖

2
F ,
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where γt = 1− η̂·µmin·σr(X?
r )

5
. By the definition of η̂ in (4.18), we further have:

γt = 1− µmin·σr(X?
r )

40·Lmax·‖W‖22
(i)

≥ 1− µmin·σr(X?
r )

40·Lmax·
100
81
·‖W ?‖22

(ii)

≥ 1− µmin

17·Lmax
· σr(X

?
r )

σ1(X?
r )

where (i) is by using (C.2) that connects ‖W‖2 with ‖W ?‖2 as ‖W‖2 ≥
9
10
‖W ?‖2, and (ii) is due to the fact ‖W ?‖2 =

√
2 · σ1(X?

r )1/2.

C.2.1 Proof of Lemma C.1

Before we step into the proof, we require a few more notations for

simpler presentation of our ideas. We use another set of stacked matrices

Y =

[
U
−V

]
, Y ? =

[
U?

−V ?

]
. The error of the current estimate from the closest

optimal point is denoted by the following ∆× matrix structures:

∆U = U − U?R, ∆V = V − V ?R, ∆W = W −W ?R, ∆Y = Y − Y ?R.

For our proof, we can write〈
∇W (f + 1

2g),W −W ?R
〉

=
〈
∇f(UV >)V,U − U?R

〉
+
〈
∇f(UV >)>U, V − V ?R

〉
︸ ︷︷ ︸

(A)

+ 1
2 ·

〈U∇g, U − U?R〉 − 〈V∇g, V − V ?R〉︸ ︷︷ ︸
(B)


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For (A), we have

(A) =
〈
∇f(UV >)V, U − U?R

〉
+
〈
∇f(UV >)>U, V − V ?R

〉
=
〈
∇f(UV >), UV > − U?V ?>

〉
+
〈
∇f(UV >),∆U∆>V

〉
(C.9)

≥ µ

2

∥∥∥UV > − U?V ?>
∥∥∥2

F︸ ︷︷ ︸
(A1)

+
1

2L

∥∥∇f(UV >)
∥∥2

F︸ ︷︷ ︸
(A2)

− L

2
‖X? −X?

r ‖
2
F︸ ︷︷ ︸

(A3)

−
∥∥∇f(UV >)

∥∥
2
· ‖∆W‖2

F︸ ︷︷ ︸
(A4)

where, for the second term in (C.9), we use the fact that
〈
∇f(UV >),∆U∆>V

〉
≥

−
∣∣〈∇f(UV >),∆U∆>V

〉∣∣ = −
∣∣〈∇f(UV >)∆V ,∆U

〉∣∣, the Cauchy-Schwarz in-

equality and the fact that ‖∆U‖F , ‖∆V ‖F ≤ ‖∆W‖F ; the first term in (C.9)

follows from:〈
∇f(UV >), UV > − U?V ?>

〉
(i)

≥ f(UV >)− f(U?V ?>) +
µ

2

∥∥∥UV > − U?V ?>
∥∥∥2

F

(ii)
= (f(UV >)− f(X?))− (f(U?V ?>)− f(X?)) +

µ

2

∥∥∥UV > − U?V ?>
∥∥∥2

F

(iii)

≥ 1

2L

∥∥∇f(UV >)
∥∥2

F
− L

2

∥∥∥X? − U?V ?>
∥∥∥2

F
+
µ

2

∥∥∥UV > − U?V ?>
∥∥∥2

F
.

where (i) is due to the µ-strong convexity of f , (ii) is by adding and subtracting

f(X?); observe that f(X?) = f(U?V ?>) if and only if rank(X?) = r, and (iii)

is due to the L-smoothness of f and the fact that ∇f(X?) = 0 (for the middle

term), and due to the inequality [125, eq. (2.1.7)] (for the first term):

f(X) + 〈∇f(X), Y −X〉+ 1
2L
· ‖∇f(X)−∇f(Y )‖2

F ≤ f(Y ). (C.10)
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For (B), we have

(B)

= 〈Y∇g,W −W ?R〉 =
〈
∇g, Y >W − Y >W ?R

〉
= 1

2

〈
∇g, Y >W −R>Y ?>W ?R

〉
+ 1

2

〈
∇g, Y >W − 2Y >W ?R +R>Y ?>W ?R

〉
(a)
= 1

2

〈
∇g, Y >W

〉
+ 1

2

〈
∇g, Y >W − Y >W ?R−R>Y ?>W +R>Y ?>W ?R

〉
=

1

2

〈
∇g, U>U − V >V

〉
+

1

2

〈
∇g,∆>Y ∆W

〉
(C.11)

(b)

≥ µg
4

∥∥U>U − V >V ∥∥2

F︸ ︷︷ ︸
(B1)

+
1

4Lg
‖∇g‖2

F︸ ︷︷ ︸
(B2)

−1

2
‖∇g‖2 · ‖∆W‖F · ‖∆Y ‖F︸ ︷︷ ︸

(B3)

where (a) follows from the “balance” assumption in X?
r:

Y ?>W ? = U?>U? − V ?>V ? = 0,

for the first term, and the fact that ∇g is symmetric, and therefore

〈
∇g, Y >W ?R

〉
=
〈
∇g,R>W ?>Y

〉
=
〈
∇g,R>Y ?>W

〉
,

for the second term; (b) follows from the fact

〈
∇g,∆>Y ∆W

〉
≥ −

∣∣〈∇g,∆>Y ∆W

〉∣∣ = − |〈∆Y∇g,∆W 〉|

and the Cauchy-Schwarz inequality on the second term in (C.11), and

〈
∇g, U>U − V >V

〉
(i)

≥ g(U>U − V >V )− g(0) + µg
2

∥∥U>U − V >V ∥∥2

F

(ii)

≥
〈
∇g(0), U>U − V >V

〉
+ 1

2Lg
‖∇g −∇g(0)‖2

F + µg
2

∥∥U>U − V >V ∥∥2

F

(iii)
= 1

2Lg
‖∇g‖2

F + µg
2

∥∥U>U − V >V ∥∥2

F
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where (i) follow from the strong convexity, (ii) is due to (C.10), and (iii) is by

construction of g where ∇g(0) = 0. Furthermore, (B1) can be bounded below

as follows:

(B1) =
∥∥U>U − V >V ∥∥2

F
=
∥∥U>U∥∥2

F
+
∥∥V >V ∥∥2

F
− 2

〈
U>U, V >V

〉
=
∥∥UU>∥∥2

F
+
∥∥V V >∥∥2

F
− 2

〈
UV >, UV >

〉
=
〈
WW>, Y Y >

〉
=
〈
WW> −W ?W ?>, Y Y > − Y ?Y ?>

〉
+
〈
W ?W ?>, Y Y >

〉
+
〈
WW> −W ?W ?>, Y ?Y ?>

〉
(i)
=
〈
WW> −W ?W ?>, Y Y > − Y ?Y ?>

〉
+
〈
W ?W ?>, Y Y >

〉
+
〈
WW>, Y ?Y ?>

〉
≥
〈
WW> −W ?W ?>, Y Y > − Y ?Y ?>

〉
=
∥∥∥UU> − U?U?>

∥∥∥2

F
+
∥∥∥V V > − V ?V ?>

∥∥∥2

F
− 2

∥∥∥UV > − U?V ?>
∥∥∥2

F

where (i) is due to the fact that〈
W ?W ?>, Y ?Y ?>

〉
=
∥∥∥Y ?>W ?

∥∥∥2

F
=
∥∥∥U?>U? − V ?>V ?

∥∥∥2

F
= 0

and the first inequality holds by the fact that the inner product of two PSD

matrices is non-negative.

At this point, we have all the required components to compute the

desired lower bound. Combining (A1) and (B1), we get

4(A1) + (B1)

=
∥∥∥UU> − U?U?>

∥∥∥2

F
+
∥∥∥V V > − V ?V ?>

∥∥∥2

F
+ 2

∥∥∥UV > − U?V ?>
∥∥∥2

F

=
∥∥∥WW> −W ?W ?>

∥∥∥2

F
≥ 4σr(W

?)2

5
‖∆W‖2

F ,
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where, in order to obtain the last inequality, we borrow the following Lemma

by [152]:

Lemma C.2. For any W,W ? ∈ R(m+n)×r, with ∆W = W −W ?R for some

orthogonal matrix R ∈ Rr×r, we have:∥∥∥WW> −W ?W ?>
∥∥∥2

F
≥ 2 ·

(√
2− 1

)
· σr(W ?)2 · ‖∆W‖2

F

For convenience, we further lower bound the right hand side of this

lemma by: 2 ·
(√

2− 1
)
· σr(W ?)2 · ‖∆W‖2

F ≥
4σr(W ?)2

5
‖∆W‖2

F .

Given the definitions of µmin and Lmax, we have:

(A) + 1
2
(B)

≥ µ
2
(A1) + 1

2L
(A2)− L

2
(A3)− (A4) + µg

8
(B1) + 1

8Lg
(B2)− 1

4
(B3)

(i)

≥ µmin

8
(4(A1) + (B1)) + 1

2Lmax
(A2) + 1

8Lmax
(B2)− (A4)− 1

4
(B3)− L

2
(A3)

≥ µmin·σr(W ?)2

10
‖∆W‖2

F + 1
2Lmax

∥∥∇f(UV >)
∥∥2

F
+ 1

8Lmax
‖∇g‖2

F

−
∥∥∇f(UV >)

∥∥
2
‖∆W‖2

F −
1
4
‖∇g‖F ‖∆W‖F ‖∆Y ‖F

− L
2
‖X? −X?

r ‖
2
F (C.12)

where in (i) we used the definitions of µmin and Lmax. Note that we have not

used the condition (C.5). It follows from (C.5) that∥∥∇f(UV >)
∥∥

2
· ‖∆W‖2

F ≤
σr(W ?)
10
√
κ

∥∥∇f(UV >)
∥∥

2
· ‖∆W‖F

≤ µmin·σr(W ?)2

25
‖∆W‖2

F + 1
4Lmax

∥∥∇f(UV >)
∥∥2

2
(C.13)

and

1
4
‖∇g‖2 · ‖∆W‖F · ‖∆Y ‖F = 1

4
‖∇g‖2 · ‖∆W‖2

F

≤ σr(W ?)
40
√
κ
‖∇g‖2 · ‖∆W‖F

≤ µmin·σr(W ?)2

100
‖∆W‖2

F + 1
16Lmax

‖∇g‖2
2 (C.14)
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where we use the AM-GM inequality. Plugging (C.13) and (C.14) in (C.12),

it is easy to obtain:

(A) + 1
2
(B)

≥ µmin·σr(W ?)2

20
‖∆W‖2

F + 1
4Lmax

∥∥∇f(UV >)
∥∥2

F
+ 1

16Lmax
‖∇g‖2

F −
L
2
‖X? −X?

r ‖
2
F .

C.3 Proof of (Improved) Sublinear Convergence (The-
orem 4.9)

The proof follows the same framework of the sublinear convergence

proof in [19]. We use the following general lemma to prove the sublinear

converegence.

Lemma C.3. Suppose that a sequence of iterates {Wt}Tt=0 satisfies the follow-

ing conditions

f(WtW
>
t )− f(Wt+1W

>
t+1) ≥ α ·

∥∥∇Wf(WtW
>
t )
∥∥2

F
, (C.15)

f(WtW
>
t )− f(W ?W ?>) ≤ β ·

∥∥∇Wf(WtW
>
t )
∥∥
F

(C.16)

for all t = 0, . . . , T − 1 and some values α, β > 0 independent of the iterates.

Then it is guaranteed that

f(WTW
>
T )− f(W ?W ?>) ≤ β2

α · T

Proof. Define δt = f(WtW
>
t )− f(W ?W ?>). If we get δT0 ≤ 0 at some T0 < T ,

the desired inequality holds because the first hypothesis guarantees {δt}Tt=0 to

be non-increasing. Hence, we can only consider the time t where δt, δt+1 ≥ 0.
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We have

δt+1

(a)

≤ δt − α ·
∥∥∇Wf(WtW

>
t )
∥∥2

F

(b)

≤ δt −
α

β2
· δ2

t

(c)

≤ δt −
α

β2
· δt · δt+1

where (a) follows from the first hypothesis, (b) follows from the second hy-

pothesis, (c) follows from that δt+1 ≤ δt by the first hypothesis. Dividing by

δt · δt+1, we obtain

1

δt+1

− 1

δt
≥ α

β2

Then we obtain the desired result by telescoping the above inequality.

Now it suffices to show BFGD provides a sequence {Wt}Tt=0 satisfies the

hypotheses of Lemma C.3.

Obtaining (C.15) Although f is non-convex over the factor space, it is

reasonable to obtain a new estimate (with a carefully chosen steplength) which

is no worse than the current one, because the algorithm takes a gradient step.

Lemma C.4. Let f be a L-smooth convex function. Moreover, consider the

recursion in Let X = WW> and X+ = W+W+> be two consecutive estimates

of BFGD. Then

f(WW>)− f(W+W+>) ≥ 3η

5
·
∥∥∇Wf(WW>)

∥∥2

F
(C.17)

Since we can fix the steplength η based on the initial solution so that it

is independent of the following iterates, we have obtained the first hypothesis

of Lemma C.3.
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Obtaining (C.16) Consider the following assumption.

(A) : dist(U, V ;X?
r ) = min

R∈O(r)
‖W −W ?R‖F ≤

σr(W
?)

10

Trivially (A) holds for U0 and V0. Now we provide key lemmas, and then the

convergence proof will be presented.

Lemma C.5 (Suboptimality bound). Assume that (A) holds for W . Then

we have

f(WW>)− f(W ?W ?>) ≤ 7

3
·
∥∥∇Wf(WW>)

∥∥
F
· dist(U, V ;X?

r )

Lemma C.6 (Descent in distance). Assume that (A) holds for W . If

f(W+W+>) ≥ f(W ?W ?>),

then

dist(U+, V +;X?
r ) ≤ dist(U, V ;X?

r )

Combining the above two lemmas, we obtain

f(WW>)− f(W ?W ?>) ≤ 7 · dist(U0, V0;X?
r )

3
·
∥∥∇Wf(WW>)

∥∥
F

(C.18)

Plugging (C.17) and (C.18) in Lemma C.3, we obtain the desired result.

C.3.1 Proof of Lemma C.4

The L-smoothness gives

f(WW>)− f(W+W+>)

≥
〈
∇f(WW>),WW> −W+W+>

〉
− L

2

∥∥∥WW> −W+W+>
∥∥∥2

F

=
〈
∇f(WW>), (W −W+)W> +W (W −W+)>

〉
(C.19)

−
〈
∇f(WW>), (W −W+)(W −W+)>

〉
− L

2

∥∥∥WW> −W+W+>
∥∥∥2

F
(C.20)
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For the first term, we have〈
∇f(WW>), (W −W+)W> +W (W −W+)>

〉
= 2 ·

〈
∇f(WW>)W,W −W+

〉
= η ·

∥∥∇Wf(WW>)
∥∥2

F
(C.21)

Using the Cauchy-Schwarz inequality, the second term can be bounded as

follows. 〈
∇f(WW>), (W −W+)(W −W+)>

〉
= η2 ·

〈
∇f(WW>),∇Wf(WW>) · ∇Wf(WW>)>

〉
= η2 ·

〈
∇f(WW>) · ∇Wf(WW>),∇Wf(WW>)

〉
≤ η2 ·

∥∥∇f(WW>) · ∇Wf(WW>)
∥∥
F
·
∥∥∇Wf(WW>)

∥∥
F

≤ η2 ·
∥∥∇f(WW>)

∥∥
2
·
∥∥∇Wf(WW>)

∥∥2

F
(C.22)

To bound the third term of (C.19), we have

‖WW> −W+W+>‖F

≤ ‖WW> −WW+>‖F + ‖WW+> −W+W+>‖F

≤ (‖W‖2 +
∥∥W+

∥∥
2
) · ‖W −W+‖F

≤ η ·
(
2 ‖W‖2 + η ·

∥∥∇f(WW>)
∥∥

2
· ‖W‖2

)
· ‖∇Wf(WW>)‖F

≤ 7η

3
‖W‖2 · ‖∇Wf(WW>)‖F (C.23)

Plugging (C.21), (C.22), and (C.23) to (C.19), we obtain

f(WW>)− f(W+W+>)

≥ η ·
∥∥∇Wf(UV >)

∥∥2

F
·
(

1− η17L‖W‖2
2 + 3‖∇f(WW>)‖2

3

)
≥ 3η

5
·
∥∥∇Wf(UV >)

∥∥2

F
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where the last inequality follows from the condition of the steplength η. This

completes the proof.

C.3.2 Proof of Lemma C.5

We use the following lemma.

Lemma C.7 (Error bound). Assume that (A) holds for W . Then

〈
∇f(WW>),∆W∆>W

〉
≤ 1

3
·
∥∥∇Wf(UV >)

∥∥
F
· dist(U, V ;X?

r )

Now the lemma is proved as follows.

f(WW>)− f(W ?W ?>)

(a)

≤ 〈∇f(WW>),WW> −W ?W ?>〉

= 〈∇f(WW>),∆WW
>〉+ 〈∇f(WW>),W∆>W 〉 − 〈∇f(WW>),∆W∆>W 〉

= 2〈∇f(WW>)W,∆W 〉 − 〈∇f(WW>),∆W∆>W 〉
(b)

≤ 2 ·
∥∥∇Wf(WW>)

∥∥
F
· ‖∆W‖F + |〈∇f(WW>),∆W∆>W 〉|

(c)

≤ 7

3
·
∥∥∇Wf(WW>)

∥∥
F
· ‖∆W‖F

(a) follows from the convexity of f , (b) follows from the Cauchy-Schwarz in-

equality, and (c) follows from Lemma C.7.
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C.3.3 Proof of Lemma C.7

Define QW , QW ? , and Q∆W
as the projection matrices of the column

spaces of W , W ?, and ∆W = W −W ?R, respectively. We have

〈
∇f(WW>),∆W∆>W

〉
=
〈
∇f(WW>)Q∆W

,∆W∆>W
〉

(a)

≤
∥∥∇f(WW>)Q∆W

∥∥
2
· ‖∆W‖2

F

(b)

≤
(∥∥∇f(WW>)QW

∥∥
2

+
∥∥∇f(WW>)QW ?

∥∥
2

)
· ‖∆W‖2

F

(C.24)

where (a) follows from the Cauchy-Schwarz inequality and the fact ‖AB‖F ≤

‖A‖2 · ‖B‖F , and (b) follows from that W − W ? lies on the column space

spanned by W and W ?. To bound the terms in (C.24), we obtain∥∥∇f(WW>)QW

∥∥
2

=
∥∥∇f(WW>)WW †∥∥

2

≤ 1

σr(W )

∥∥∇f(WW>)W
∥∥

2

≤ 10

9σr(W ?)

∥∥∇f(WW>)W
∥∥

2
,∥∥∇f(WW>)QW ?

∥∥
2

=
∥∥∥∇f(WW>)W ?W ?†

∥∥∥
2

≤ 1

σr(W ?)

∥∥∇f(WW>)W ?
∥∥

2
,

‖∇f(WW>)W ?‖2 ≤ ‖∇f(WW>)W‖2 + ‖∇f(WW>)∆W‖2

≤ ‖∇f(WW>)W‖2

+
(
‖∇f(WW>)QW‖2 + ‖∇f(WW>)QW ?‖2

)
· ‖∆W‖2

≤ 10

9
‖∇f(WW>)W‖2 +

1

10
· ‖∇f(WW>)W ?‖2,

‖∇f(WW>)QW ?‖2 ≤
1

σr(W ?)
‖∇f(WW>)W ?‖2 ≤

5

4σr(W ?)
‖∇f(WW>)W‖2,
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where W † and W ?† are the Moore-Penrose pseudoinverses of W and W ?. Plug-

ging the above into (C.24), we get

〈
∇f(WW>),∆W∆>W

〉
≤ 95

36σr(W ?)
·
∥∥∇f(WW>)W

∥∥
2
· ‖∆W‖2

F

(a)

≤ 1

3
·
∥∥∇f(WW>)W

∥∥
2
· ‖∆W‖F

where (a) follows from (A).

C.3.4 Proof of Lemma C.6

For this proof, we borrow a lemma from [19]. Although the assumption

for the lemma is stronger than Assumption (A), but a slight modification of

the proof leads to the following lemma from Assumption (A).

Lemma C.8 (Lemma C.2 of [19]). Let f(W+W+>) ≥ f(W ?W ?>), and As-

sumption (A) holds. Then the following lower bound holds:

〈
∇f(WW>),∆W∆>W

〉
≥ −

√
2√

2− 1
10

· 1

10
·
∣∣∣〈∇f(WW>),WW> −W ?W ?>

〉∣∣∣ .
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We have

dist(U, V ;X?
r )2 − dist(U+, V +;X?

r )2

≥ ‖W −W ?R‖2
F −

∥∥W+ −W ?R
∥∥2

F

= 2η
〈
∇Wf(WW>),∆W

〉
− η2

∥∥∇Wf(WW>)
∥∥2

F

= 4η
〈
∇f(WW>)W,∆W

〉
− η2

∥∥∇Wf(WW>)
∥∥2

F

= 2η
〈
∇f(WW>),WW> −W ?W ?>

〉
+ 2η

〈
∇f(WW>),∆W∆>W

〉
− η2

∥∥∇Wf(WW>)
∥∥2

F

(a)

≥ 17η

10

〈
∇f(WW>),WW> −W ?W ?>

〉
− η2

∥∥∇Wf(WW>)
∥∥2

F

(b)

≥ 51η2

50

∥∥∇Wf(WW>)
∥∥2

F
− η2

∥∥∇Wf(WW>)
∥∥2

F

≥ 0 (C.25)

where (a) follows from Lemma C.8, (b) follows from the convexity of f , the

hypothesis of the lemma, and Lemma C.4 as follows.〈
∇f(WW>),WW> −W ?W ?>

〉
≥ f(WW>)− f(W ?W ?>)

≥ f(WW>)− f(W+W+>)

≥ 3η

5
·
∥∥∇Wf(WW>)

∥∥2

F

This completes the proof.

C.4 Proof of Lemma 4.10

The triangle inequality gives that∥∥U0V
>

0 −X?
r

∥∥
F
≤
∥∥U0V

>
0 −X0

∥∥
F

+ ‖X0 −X?‖F + ‖X? −X?
r ‖F (C.26)
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Let us first obtain an upper bound on the first term. We have

∥∥X0 − U0V
>

0

∥∥
F

=

∥∥∥∥∥∥∥
 σr+1(X0)

...
σmin{m,n}(X0)


∥∥∥∥∥∥∥

(a)

≤
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 σr+1(X?)
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σmin{m,n}(X

?)
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= ‖X? −X?
r ‖F +

√√√√min{m,n}∑
i=r+1

(σi(X0)− σi(X?))2

(b)

≤ ‖X? −X?
r ‖F + ‖X0 −X?‖F

where (a) follows from the triangle inequality, and (b) is due to Mirsky’s

theorem [121]. Plugging this bound into (C.26), we get∥∥U0V
>

0 −X?
r

∥∥
F
≤ 2 ‖X0 −X?‖F + 2 ‖X? −X?

r ‖F (C.27)

Now we bound the first term of (C.27). We have

‖X0‖F =
1

L
‖∇f(0)‖F =

1

L
‖∇f(0)−∇f(X?)‖F

(a)

≤ ‖0−X?‖F = ‖X?‖F ,

L 〈X0, X
?〉 = −〈∇f(0), X?〉

(b)

≥ f(0)− f(X?) +
µ

2
‖X?‖2

F

(c)

≥ µ ‖X?‖2
F

where (a) follows from the L-smoothness, (b) and (c) follow from the µ-strong

convexity. Then it follows that

‖X0 −X?‖2
F = ‖X0‖2

F + ‖X?‖2
F − 2 〈X0, X

?〉 ≤ 2(1− µ

L
) ‖X?‖2

F

Applying this inequality to (C.27), we get the desired inequality.
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