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Abstract

Parallel Computing using The Multiscale Finite

Element Method for Sub-Surface Flow Models

Anshul Goyal, M.S.E.

The University of Texas at Austin, 2016

Supervisor: Clint N. Dawson
Co-Supervisor:  Howard Liljestrand

Subsurface flows, occurring in groundwater movement and production

of hydrocarbons in the petroleum industry, are affected by the heterogeneity of

the medium varying over large scales. In this thesis, we have used state of the

art multiscale methods to solve one such flow model, influenced by high con-

trast permeability field. The focus is on the elliptic pressure equation which is

solved on both fine and coarse scale for comparison purposes. Shared memory

parallelism has been achieved for generating basis functions, which is computa-

tionally the most expensive portion of the multiscale implementation. Parallel

systematic spectral enrichment using the GMsFEM (Generalized Multiscale

Finite Element Method) is the key feature of the current work and has been

compared with the MsFEM (Multiscale Finite Element Method). Efficiency of

algorithmic implementation has been first tabulated for a two-dimensional fi-

nite element code using the MATLAB parallel computing toolbox and also has

vi



been given a more generalized form using a three-dimensional finite element

code written in OpenMP (Open Multiprocessing) and C++. The timing com-

parison shows a significant decline in the execution time for the algorithms.

It indicates that a higher level of enrichment and desired accuracy is achiev-

able for large scale problems. Computational time gain and fewer memory

requirements are two key features achieved in this work. Distributed parallel

computing can further be implemented to achieve mass parallelism through

which one can solve large problems accurately and efficiently when compared

to benchmark fine scale solutions where global system solver, memory require-

ments and execution time become significant issues.

vii



Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Background 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2. Introduction 4

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Finite Element Techniques: Overview . . . . . . . . . . . . . . 9

2.2.1 Multiscale Methods . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Generalized Multiscale Finite Element Method . . . . . 11

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 3. Problem Statement 15

3.1 Multiscale Finite Element Method . . . . . . . . . . . . . . . . 18

3.2 Generalized Multiscale Finite Element Method . . . . . . . . . 19

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 4. Numerical Results 23

4.1 2D Finite Element Results . . . . . . . . . . . . . . . . . . . . 27

4.2 3D Finite Element Results . . . . . . . . . . . . . . . . . . . . 35

viii



Chapter 5. Conclusions and Future Work 41

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

Vita 51

ix



List of Tables

4.1 Summary: 2D Finite Element Code . . . . . . . . . . . . . . . 28

4.2 Relative L2 and H1 norm for different levels of enrichment:
Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Relative L2 and H1 norm for different levels of enrichment: Flux 33

4.4 CPU Time (in seconds): 2D Finite Element . . . . . . . . . . 35

4.5 Summary: 3D Finite Element Code . . . . . . . . . . . . . . . 36

4.6 Relative L2 and H1 norms: Pressure . . . . . . . . . . . . . . 38

4.7 CPU Time (in seconds): 3D Finite Element . . . . . . . . . . 40

x



List of Figures

3.1 Illustration of Coarse Neighborhood, Ghommen et al. [24] . . . 20

4.1 Schematic for Parallel Computing in MATLAB . . . . . . . . 26

4.2 Fork-Join Model used in OpenMP . . . . . . . . . . . . . . . . 26

4.3 Deterministic High Contrast Permeability Field . . . . . . . . 29

4.4 Fine Scale: Pressure Solve . . . . . . . . . . . . . . . . . . . . 30

4.5 MsFEM: Pressure Solve . . . . . . . . . . . . . . . . . . . . . 30

4.6 GMsFEM: Pressure Solve . . . . . . . . . . . . . . . . . . . . 31

4.7 Fine Scale: Velocity along x direction . . . . . . . . . . . . . . 31

4.8 MsFEM: Velocity along x direction . . . . . . . . . . . . . . . 32

4.9 GMsFEM: Velocity along x direction . . . . . . . . . . . . . . 32

4.10 CPU Time: Coarse Solve + MsFEM/GMsFEM . . . . . . . . 34

4.11 CPU Time: Coarse Solve + MsFEM/GMsFEM + Downscaling 34

4.12 Log-normal Permeability Field . . . . . . . . . . . . . . . . . . 36

4.13 Pressure Solution: Fine Scale . . . . . . . . . . . . . . . . . . 37

4.14 Pressure Solution: MsFEM . . . . . . . . . . . . . . . . . . . . 37

4.15 Pressure Solution: GMsFEM . . . . . . . . . . . . . . . . . . . 38

4.16 CPU Time: Coarse Solve + MsFEM . . . . . . . . . . . . . . 39

xi



Chapter 1

Background

1.1 Motivation

Many problems encountered in science and engineering are multiscale

in nature. It is this multiscale feature which dominates the simulation efforts

while dealing with problems of this nature. A typical example is the anal-

ysis of groundwater transport, where the difficulty lies in the heterogeneous

subsurface spanning over many scales. A similar problem arises while analyz-

ing composite materials, flow through porous media and turbulent transport

in high Reynolds number flow. Even with modern supercomputing facilities,

the direct numerical solution of these problems is complicated and requires a

tremendous amount of computer memory and CPU time. Parallel computing

may be the obvious choice to tackle this, but the size of the discrete problem is

not reduced. The workload remains the same, but now being shared by more

processors and memory. No doubt, direct solutions provide a complete analysis

of the physical process at all scales, however in an engineering context, it is de-

sirable to predict the macroscopic properties of the multiscale systems. These

may be effective conductivity and elastic modulus for composite materials and

permeability for flow through porous media or groundwater transport.
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Such complexities have led to the development of multiscale methods

which can capture the fine scale effects on the larger scale without ever fully

resolving all the fine scale features. The approach constructs coarse scale

solutions accurately and efficiently without solving a global fine scale system.

The main idea is to construct the finite element basis functions which capture

the fine scale information within each element.

1.2 Scope

While implementing multiscale methods, a significant amount of com-

putational time is required to construct the basis functions. However, the

computation of basis functions per coarse node is independent of each other.

This allows parallel computing, which distributes the computation and reduces

CPU time as more processors are used. Though the operation count of the

multiscale method is almost twice that of conventional finite element method,

the present work aims to demonstrate the application of parallel computing to

reduce overall computation time. Parallel versions of the GMsFEM and the

MsFEM have been developed, which have not yet been presented elsewhere as

a full comparison study.

Shared memory parallelism is achieved using MATLAB’s built-in par-

allel toolbox for a two-dimensional finite element code. It is subsequently

generalized by solving a three-dimensional finite element code using OpenMP

in C++. The timing comparisons indicate a declining trend which is encourag-

ing for using these methods to solve large scale problems. Spectral enrichment
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using parallel GMsFEM gives an added advantage to achieve the desired level

of accuracy which is one of the key features of the current work.

1.3 Thesis Organization

The thesis consists of five chapters. Chapter 2 provides an introduc-

tion to the multiscale methods. A brief literature review is done on earlier pro-

posed methods for solving problems which are multiscale in nature. A short

discussion of several variants of multiscale methods is also presented. The

chapter ends with a discussion on GMsFEM. Chapter 3 describes the physi-

cal problem and mathematical details. Notable features include the variational

statement of the problem and the governing equations for solving the problem

numerically using a Galerkin formulation on the fine scale and the MsFEM

and the GMsFEM on the coarse scale. Chapter 4 presents the numerical

results which include the solution of an elliptic pressure equation, computing

the fluxes and comparing CPU time at fine and coarse scale. Chapter 5 sum-

marizes the study objectives and highlights the key results and conclusions of

this study.
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Chapter 2

Introduction

In subsurface flow, the permeability of the porous media may vary

over several scales and can be represented as a high contrast heterogeneous

coefficient. Such kinds of multiscale problems pose challenges in mathematical

modeling and simulation. A direct numerical solution is difficult because of

the tremendous amount of computation involved. For instance, in a typical

reservoir simulation, even the most detailed models have grid blocks with

dimensions of the order of tens of meters, whereas the raw permeability and

porosity data are measured on a scale of a few centimeters [29]. Therefore, the

first major issue is to upscale the information from the core to the grid blocks

for obtaining flow properties. The coarse-grained permeabilities also depend

on the pressure boundary conditions on the coarse blocks. Direct numerical

solutions are more informative since one can get the complete information

about the physical process at all scales. Some of the recent direct solutions for

flow and transport in porous media are reported in [2, 32]. However, the goal

here is to avoid the computational complexity presented by direct solutions

and to obtain accurately coarse scale solutions without resolving the fine scale

details completely. This is done by capturing the multiscale structure of the

solution via localized basis functions. The essential multiscale information at
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the fine level is embedded in basis functions, which is coupled through the

global formulation to obtain an approximate solution at the coarse grid.

There are two types of multiscale processes. The first one has scale

separation, where small-scale information is captured via local multiscale basis

functions within local regions (coarse-scale grid blocks) and the second one

does not have clear scale separation; therefore, information at different scales

is used for generating multiscale basis function. In the present work, we have

used the first approach by constructing coarse grids. In most of the cases,

a Representative Volume Element (RVE) is used when the input information

about the process or material properties is not available everywhere. In such

cases, the RVE contains the essential information about the heterogeneities.

Thus, the fine scale information within each RVE can be ingrained in the

basis functions. Based on the information available within each RVE there

are two approaches to solve the macroscopic system. The first one is fine

to coarse, where coarse-scale equations are not formulated explicitly and the

characteristic fine scale information is carried throughout the simulation. The

other approach is coarse to fine, where coarse scale equations are developed

and solved explicitly to obtain coarse scale parameters [20]. The present work

uses fine to coarse scale approach.

The next critical component in multiscale problems may be the uncer-

tainty associated with media properties. These uncertainties are usually pa-

rameterized and give rise to a large set of permeability fields with multiscale

nature. It is yet another motivation to use multiscale methods as direct solu-
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tions cannot take into account large number of multiscale permeability fields.

In such complex problems, multiscale basis functions contain both spatio-

temporal scale information and the associated uncertainties. Thus, from the

point of view of uncertainty quantification, the multiscale approach is a feasible

choice [9].

2.1 Literature Review

Many numerical techniques have been developed to solve problems with

multiple scales. Some of the earlier attempts focused on obtaining the effec-

tive properties of the medium using statistical averaging, homogenization the-

ory [8, 11] and upscaling [10, 33]. The techniques for upscaling range from

simple averaging of the heterogeneous values within the block to sophisticated

inversions. Wen and Hernandez [33] provide a comprehensive overview of the

recent studies for upscaling hydraulic conductivity in heterogeneous media.

Dykaar and Kitanidis [8] used a numerical spectral technique known as the

Fourier Galerkin method to determine the effective hydraulic conductivity in

a rigid saturated porous medium. It was also shown that the finite difference

method required about four times more nodes than the spectral method to

give the same accuracy. Methods based on homogenization have been success-

fully applied for determining the effective properties in porous media but are

difficult in problems containing separate scales since the cost of computation

grows exponentially [25].

MsFEM was first introduced in [27] and has similarities with upscaling
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methods. The idea behind upscaling is to form coarse scale equations ana-

lytically, which may differ from the underlying fine scale equations. However,

in multiscale methods, coarse equations are not expressed analytically, but

rather formed and solved numerically. One of the earliest descriptions of the

multiscale methods can be found in [3, 4], where the authors proposed the

use of multiscale basis functions for elliptic equations with a special multi-

scale coefficient, which is the product of one-dimensional fields. This led to

the introduction of the generalized finite element method. The approach was

extended in the work of Hou and Wu [25], where the authors implemented

the multiscale method for solving elliptic PDEs arising in composite materials

and flow through porous media. They also showed that boundary conditions

play a significant role in constructing the basis functions and is important

to consider for the overall accuracy of the method. It has also been shown

that the construction of basis functions per coarse node is independent of each

other and has been implemented in parallel. CPU time for a large number of

processors was plotted, depicting a declining trend, which points to the scala-

bility of the multiscale methods for solving large-scale problems. Effendiev and

Hou [21] extended the idea for solving nonlinear problems. MsFEMs also share

similarity with the variational multiscale methods [26]. Once the multiscale

basis function/multiscale map is obtained, a global finite element formulation

is used to solve the problem.

Application of MsFEM for solving two-phase flows has been studied

extensively by [18, 19]. The authors use a global formulation which allows

7



capturing long-range effects more accurately than the traditional multiscale

method, which uses local information for constructing the basis functions.

Two different approaches have been considered for solving the transport equa-

tion. Moreover, application of MsFEM for solving inverse problems arising

in subsurface characterization has also been addressed. One of the recent de-

velopment of the multiscale methods is the use of limited global information.

The idea is to use simplified surrogate models to extract non-local multiscale

behavior of physical processes. The surrogate models are precomputed in an

offline step which allows me to compute effective parameters, which are useful

for solving dynamic problems with varying sources and boundary conditions.

Chen and Durlofsky, [6] showed the use of single phase information for ac-

curate upscaling of two-phase flow and transport. The global single phase

problem is solved several times to compute upscaled permeabilities which are

then used in the simulation of two-phase flow and transport on the coarse

grid. Similar to this approach based on upscaling, multiscale methods using

limited global information and model reduction techniques are presented in [1]

and [31] respectively.

Several other variants of multiscale methods exist in the literature

which is used for solving a wide variety of physical problems involving issues

related to scaling [20]. The present work discusses these variations in the con-

text of problems related to subsurface flow and its applications. Effendiev et

al. [14] implemented another approach called the GMsFEM for two-phase flow

problems. GMsFEM provides a flexible framework by systematically enrich-
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ing the coarse space, taking into account the small scale information through

a high dimensional input space. The author proposed that GMsFEM frame-

work overcomes the limitation of the reduced solution space which needs to

be generated for different forcing or boundary conditions. Section 2.2.2 covers

further details on this. Presho et al. [5] proposed the method for construc-

tion of locally conservative flux fields used in the two-phase flow models. It

has also been shown that the addition of more basis functions to the enriched

multiscale space produces solutions which more accurately captures the be-

havior and converges faster to the full fine scale model. Effendiev et al. [30]

developed and investigated oversampling strategies to improve the accuracy of

multiscale methods. In general, oversampling allows the use of larger coarse

blocks for basis function generation. The following subsection provides an

overview of different finite element techniques, implementation, and variation

for addressing problems related to subsurface flow.

2.2 Finite Element Techniques: Overview

2.2.1 Multiscale Methods

Implementation of multiscale methods involves two major components,

the first being the basis function generation to capture the fine scale infor-

mation and the second is the global formulation which combines the basis

function formulation with a variety of available techniques like finite element,

finite volume, and mixed finite element methods to solve the physical prob-

lem. For example, in the case of MsFEM, the basis functions are constructed

9



from the solution of the leading-order homogeneous elliptic equation on each

coarse element with some specified boundary conditions. The domain of inter-

est for the multiscale basis function can even be chosen to be smaller than the

coarse grid if the RVE is used to represent the local heterogeneities within the

coarse-grid block. It is necessary to mention that the basis function generation

involves solving the homogenized equations on the fine scale and therefore is

computationally the most expensive portion of the whole process.

Once the basis functions are generated, global coupling procedures

project the solution on the coarse dimensional space. The choice of the global

coupling scheme is affected by the problem one is solving. In subsurface appli-

cations, mass conservative schemes play a central role, and therefore it becomes

necessary to consider methodologies which can provide conservative approxi-

mations for flux. In the case of the Multiscale Finite Volume Method (MsFV),

finite volume global formulation with multiscale basis functions are used to ob-

tain a mass conservative velocity field on a coarse grid [28]. In the Multiscale

Finite Volume Element Method (MsFVEM), mass conservative equations are

set on the dual grid. Both these methods are different from conventional Ms-

FEM since the velocity field obtained by both methods is conservative at the

coarse grid level.

For multiphase flow and transport simulations, one often needs the

conservative velocity at the fine scale level to solve the transport part of the

equation. Chen et al. [7] implemented the mixed MsFEM for reconstruct-

ing conservative velocity fields at the fine scale. The general implementation

10



framework of the multiscale methods can be summarized as:

• Set the coarse mesh configuration from the fine scale mesh information.

• For every node of each of the coarse grid blocks, compute the basis func-

tion satisfying the boundary condition and the homogenized equation.

• Assemble the stiffness matrix on the coarse mesh. This may differ based

on the strategy used for global coupling. The specific formulation will

govern the assembly step.

• Assemble the external force on the coarse matrix.

• Solve the system at the coarse grid level.

2.2.2 Generalized Multiscale Finite Element Method

In subsurface flow problems the input space consists of permeability and

source terms which take values from a large parameter space. It is because we

are dealing with problems where the permeability field is high contrast and

heterogeneous. Therefore, to make accurate predictions on the global level,

one may have to solve a large number of forward problems to account for the

variability in permeability and source terms. The computational cost associ-

ated with this would be tremendous, and therefore, model reduction techniques

are sought which can reduce the solution space to a small dimensional space.

However, in the presence of multiscale features, it is hard to obtain this re-

duced dimensional space with the existing techniques, which was one of the

motivations to develop the GMsFEM [14].

11



Model reduction techniques can be grouped into two classes, global and

local. Global reduction techniques approximate the solution space by global

fields (global snapshots) obtained by solving global problems for many input

parameters. The approximation space is further reduced using the spectral

decomposition approach. However, this method is sensitive to boundary data

and the source terms, changing one or both leads to re-computation.

When dealing with problems of multiple scales in heterogeneous porous

media, model reduction techniques are often needed. As discussed above, in

such cases, multiscale type methods attempt to approximate the fine scale

effects on the coarse scale using the localized basis functions. This method-

ology is known as local model reduction approach, where the local effects

are transmitted at the coarse grid level. An offline space is first constructed,

which is used to obtain the multiscale basis functions at the online stage. Lo-

cal approaches are useful as they avoid computation of the global snapshots.

Another advantage is that in global approach one needs to compute a large

number of global snapshots and all of these may not contribute to the solution.

Such redundant values of the parameters are identified in the local approaches

quickly and inexpensively at the coarse level.

GMsFEM is a local reduced order technique which systematically en-

riches the coarse space such that the desired level of accuracy is achieved, and

the solution converges to fine scale as the coarser space is enriched more and

more. This approach divides the computation into two stages: offline and

online. In the offline stage, a small dimensional space is constructed and is

12



used to construct basis functions in the online stage. Substantial reduction in

computational time is obtained since these basis functions can be re-used for

any input parameter for solving the problem on the coarse grid. An outline is

presented below,

Offline Computation:

• Configuring the coarse grid structure which contains the underlying net-

work of interconnected fine grid blocks.

• Computing local snapshots by solving local problems for various choices

of input parameter within each coarse grid.

• Construction of offline space via spectral decomposition of the local snap-

shot space. This step involves solving the eigenvalue problems and se-

lecting eigenvector corresponding to the largest eigenvalues.

Online Computation:

• Computation of the multiscale basis function for each of the parameter.

• Solution of the coarse grid problem for any given force term and bound-

ary conditions.

This computed online coarse space is used within the finite element

framework such as Galerkin or Petrov-Galerkin coupling to solve the global

problem. It is important to emphasize that this approach is different from

the earlier described ones as it provides a procedure to enrich the local space

systematically to converge to the fine grid solution.

13



2.3 Summary

This chapter gives a brief overview starting from the development of

methods to solve problems in subsurface flow governed by high contrast het-

erogeneous permeability field. Common finite element techniques like Ms-

FEM and GMsFEM are reviewed, which are the focus of the current work.

Several variants of the Multiscale method such as MsFEM, MsFV, MsFVEM

and mixed MsFEM are also discussed. Finally, general algorithmic steps are

given from an implementation point of view. The next chapter will describe

the physical problem in more detail and relevant mathematical details of the

above-discussed methodologies used in our work.
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Chapter 3

Problem Statement

We discuss the problem in the context of hydrocarbons flowing through

a porous medium. The problem consists of a heterogeneous oil reservoir con-

fined in a domain Ω. The reservoir is equipped with an injection well from

which water is discharged to push the trapped oil towards the production wells

situated on the perimeter of the domain. Certain assumptions are made to

model this physical process mathematically. First, the system is two phase

with oil, o, and water, w considered incompressible fluids. Second, capillary

pressure is not included in the model. Further assumptions are the gravity free

environment and the two fluids fill pore space completely. Darcy’s law com-

bined with the conservation of mass allows us to write the governing equations

as

∇v = q (3.1)

v = −λ(S)k(x)∇p (3.2)

15



∂s

∂t
+∇ · (f(S)v) = qw, (3.3)

where v is the velocity, S is the water saturation and k(x) is the permeability

coefficient. The total mobility λ(S) and the flux function f(S) are respectively

given as

λ(S) =
krw(S)

µw
+
kro(S)

µo
(3.4)

f(S) =
krw/µw
λ(S)

, (3.5)

where krj, j = w, o is the relative permeability of the phase j.

In this present work, the focus is on the elliptic pressure equation, which will

be solved on the fine scale using a continuous Galerkin formulation and on the

coarse scale using MsFEM and GMsFEM to obtain the pressure at fine and

coarse scales respectively. For this purpose, the elliptic part of the problem is

rewritten as

−∇.(λk(x)∇p) = q in Ω ⊂ R2

p = pD on ΓD

−λk(x)∇p.n = gN on ΓN . (3.6)

The variational formulation of Eq. 3.6 is to find p ∈ H1(Ω) with (p − pD) ∈

H1
D = w ∈ H1(Ω) : w|ΓD = 0 and such that

16



a(p, w) = F (w)− 〈gN , w〉ΓN
∀ w ∈ H1

D. (3.7)

Here p and v ∈ H1(Ω). The bi-linear form of a is defined by

a(p, w) =

∫
Ω

λk(x)∇p · ∇w dx. (3.8)

The functional F (w) is defined as

(q, w) =

∫
Ω

q w dx, (3.9)

and the boundary condition is given by

〈gN , w〉ΓN
=

∫
ΓN

gN w dl. (3.10)

The approximate solution of p is sought in some finite dimensional subspace

of H1
D, Vh, that satisfies Eq. 3.7. The domain Ω is discretized into rectangular

subdomains, τh, such that
⋃
τh = Ω. The approximate solution is found to

satisfy (ph − pD,h) and

a(ph, wh) = (q, wh)− 〈gN , wh〉ΓN
∀ wh ∈ Vh. (3.11)

The above formulation leads to a linear system such that Ap = f , where A

is a square matrix (Nf × Nf ) whose entries are given as a(φi, φj), f is the

vector of entries (q, φi) for inside nodes and (q, φi)− 〈gN , φi〉 for nodes on the

Neumann boundary. Here Nf is the size of the fine scale matrix.

17



3.1 Multiscale Finite Element Method

MsFEM solves Eq 3.7 in the finite dimensional subspace of H1
D. The

distinctive feature of the method is that it obtains the solution without di-

rectly resolving the fine scale details of k(x). The size of the grid chosen

for computation is larger than the characteristic scale of k(x) resulting in less

computer memory requirements as a consequence of the smaller global system.

The information about the fine scale is ingrained within the multiscale basis

functions that characterize the finite-dimensional subspace. The governing

equations for obtaining the multiscale basis functions are obtained by solving

Eq 3.12 and enforcing the boundary conditions such that the multiscale basis

functions coincide with the standard bilinear finite element basis functions at

the boundaries.

−∇.(k(x)∇χi,τ ) = 0 in τ

χi,τ (x) = φi,τ (x) on ∂τ. (3.12)

The multiscle finite dimensional subspace is defined as

Vms,h = span (χi) ⊂ H1
D (3.13)

Consistent to the above definition, the multiscale method seeks to find pms,h

with (pms,h − pD,h) ∈ Vms,h such that

18



a(pms,h, wh) = (q, wh)− 〈gN , wh〉ΓN
∀ wh ∈ Vms,h. (3.14)

Such a treatment yields system of equations Ams p = fms. Here Ams is a

square matrix of size Nc × Nc with entries a(χi, χj), fms is a vector of size

Nc×1 with entries (q, χi) for inside nodes and (q, χi)−〈gN , χτ 〉 for nodes lying

on the Neumann Boundary.

From the above discussion, it is evident that the crux of the multiscale method

lies in the fact that if one wishes to solve Eq 3.6 using finite element formulation

as described in Eq 3.11, it is required to choose a mesh resolution comparable

to the scale of heterogeneity in k(x), which would ultimately yield a very big

system whose inversion may pose a significant challenge. As well, issues related

to the storage of such a large system may further add to the problems. On the

other hand, multiscale method avoids this drawback as there is no need to pose

Eq 3.14 on a mesh having the resolution comparable to k(x). It is because the

fine scale information is ingrained into the finite dimensional subspace Vms,h

spanned by the multiscale basis function, χ.

3.2 Generalized Multiscale Finite Element Method

As evident from the above methodology, the aim of the present work

is to reduce systematically the dimension of the system that results from the

fully-resolved (fine scale) solution. A local model reduction technique is ap-

plied which constructs localized basis functions that span the coarse solu-
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tion space. Fig 3.1, provides a representation of the model reduction ap-

proach where the coarse grid is shown for representative and notation purposes.

{yi}Nc

i=1 denote the vertices of the coarse scale mesh τH , where Nc << Nf . The

neighborhood of the node yi is represented by ωi such that

ωi =
⋃{

Kj ∈ τH ; yi ∈ Kj

}
(3.15)

Figure 3.1: Illustration of Coarse Neighborhood, Ghommen et al. [24]

Using this coarse mesh τH , we start with an initial coarse space V initial
o =

span {χi}Nc

i=1, where χi are standard (MsFEM) partition of unity functions sat-

isfying Eq 3.12. A solution computed within V initial
o is the standard MsFEM

solution. However, the coarse space may be systematically enriched by using
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generalized approaches for multiscale model reduction [16, 22, 23].The coarse

space is enriched by multiplying the localized eigenvalue problems to the initial

partition of unity. It produces a result such that the solution error decreases

with respect to the localized eigenvalue behavior [16]. The first step in this

process involves computing pointwise energy of the original basis functions by

setting

k̃ = kH2

Nc∑
i=1

| 5χi |2 (3.16)

where H is the coarse mesh size. Once k̃ is available, we solve homogeneous

Neumann eigenvalue problem given by Eq 3.17, on each coarse block neigh-

borhood ωi.

−5 ·(k 5 ψl) = λl k̃ ψl (3.17)

The eigenvalues and eigenvectors are denoted by {λωi
l } and {ψωi

l } re-

spectively. For a zero Neumann problem, the first eigenpair is represented as

{λωi
l } = 0 and {ψωi

l } = 1. The eigenvectors corresponding to small, asymp-

totically vanishing eigenvalues are used for the construction of the coarse space

Vo. The updated basis functions are defined by Eq 3.18

φi,l = χi ψ
ωi
l 1 ≤ i ≤ Nc ; 1 ≤ l ≤ Li (3.18)

where Li denotes the number of eigenvectors that will be chosen for each
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node i. With the updated basis functions computed above, the local spectral

multiscale space is defined by Eq 3.19

Vo = span {φi,l : 1 ≤ i ≤ Nc ; 1 ≤ l ≤ Li} (3.19)

This enriched space is used for obtaining the approximate solution for the

pressure equation. For rigorous error estimates, refer to [17].

3.3 Summary

The first section of the chapter presents the governing equations in-

volved in the fluid flow. The subsequent sections discuss the Finite Element

formulation of the problem. The problem has been solved on both fine and

coarse grids for the comparison purposes. The initial formulation is on the

fine scale where we use the standard bilinear basis functions. Later on, coarse

scale techniques are formulated where multiscale finite element basis functions

are generated. The last section deals with the enrichment of coarse space af-

ter solving the corresponding eigenvalue problem on each of the coarse grid

neighborhood. The choice of the number of basis functions governs the accu-

racy and the computation time. Numerical results are presented in the next

section to verify the claims. Implementation of parallel computing for inde-

pendent calculation of basis functions as well coarse space enrichment is also

shown.
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Chapter 4

Numerical Results

This chapter contains the numerical results based on the governing

equations developed in the earlier chapter. The objective of this section is to

compare the coarse mesh results with the fine scale solutions and to improve

the computational efficiency of the coarse scale solutions by implementing

parallel computing. Shared memory parallel programming is explored, where

each processor accesses the same memory. Initially, the fine scale problem is

solved to set up the benchmark solution and the CPU time associated with the

serial run of the program. These benchmark results are later compared, after

solving the problem on the coarse scale using the standard multiscale method

and spectral enrichment.

The first section consists of a set of results for a 2D Finite Element

Code made parallel using the MATLAB parallel computing toolbox. The par-

allel computation starts by creating a pool of workers. The pool consists of

a set of MATLAB workers in a cluster or desktop as shown in Fig 4.1. The

program is run on Lonestar Linux cluster, which allows a maximum of twelve

workers for shared parallel operations on a single node, using MATLAB-2013a

version. The comparison results for CPU time are thus restricted to a maxi-
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mum of twelve workers. Within the MATLAB, the parallel computing toolbox

supports several programming models like Data parallel, Distributed Memory

(Message Passing), Single Program Multiple Data (SPMD) and Multiple Pro-

gram Multiple Data (MPMD). For shared memory applications, available ones

are SPMD blocks and PARFOR loops. PARFOR is chosen because the com-

putation of basis functions per coarse node is independent of each other, which

implies no dependencies in computation. PARFOR divides the loop iterations

into groups so that each worker executes some portion of the total number

of iterations. Since the problem is two-dimensional, it involves an inner and

outer loop for looping through the entire grid. MATLAB does not allow the

use of nested PARFOR and therefore, either the outer or the inner loop can be

made in parallel. Following three portions of the program are made parallel,

to calculate the CPU time as more processors are used.

• Standard Multiscale basis function generation (one basis function per

coarse node)

• Generalized Multiscale basis function generation (spectral enrichment

with more than one basis functions per coarse node)

• Downscaling fluxes to fine scale.

The rest of the program which typically involves assembling the global

system, setting up the boundary conditions and global system solver are still

in serial. This way, we are comparing the overhead time in solving the coarse

system, which is essentially due to the basis function generation.
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A similar exercise is repeated for a more intensive 3D Finite Element

code using OpenMP in C++. OpenMP uses a fork-join model of parallel

execution as shown in Fig 4.2. When a thread encounters a parallel construct,

it creates a team composed of itself and some additional number of threads.

The encountering thread becomes the master, and the other threads are called

slave of the team. When a thread finishes its work within the parallel construct,

it waits at the implicit barrier at the end of the parallel construct. When all the

team members have arrived at the barrier, the threads can leave the barrier.

The master thread continues execution of user code beyond the end of the

parallel construct. The slave threads become free and are available for the next

parallel construct. This model offers a lot more flexibility than the MATLAB

parallel computing toolbox. For example, unlike PARFOR, OpenMP allows

nested parallel loops. However, the efficiency depends on the complexity of

the code and may involve several trials before fixing the level of nesting in

the program. In the present case, no parallel nesting is used, and all the

slave threads work at the outermost loop. The maximum number of threads

used in the program also depends on the run-time efficiency. Using a higher

number of threads may not always give the best results. In this study, the

best results are obtained for twelve number of threads. The following sections

discuss the numerical results for pressure, velocity, relative L2 and H1 norm

and execution time associated with a different number of processors/threads

for two-dimensional and three-dimensional problem.
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Figure 4.1: Schematic for Parallel Computing in MATLAB

Figure 4.2: Fork-Join Model used in OpenMP
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4.1 2D Finite Element Results

The domain is represented by Ω = [0, 1]× [0, 1]. To solve the pressure

Eq. 3.6, the Dirichlet boundary conditions used are pL = 1 and pR = 0 at the

left and right boundaries of Ω respectively. No flow (zero Neumann) conditions

are specified at the top and bottom boundaries. There is no external forcing

such that, q = 0 and λ(S) = 1 is assumed to further simply the problem. Fig

4.3 represents the deterministic high contrast permeability field, k(x), used

in the problem. This permeability is constructed on a fine mesh containing

100 × 100 elements. The coarse scale mesh is chosen to be 10 × 10. The

total number of nodes in the fine scale mesh are 10201 whereas the total

number of coarse nodes are 121. The summary of the two-dimensional finite

element code is given in Table 4.1. The fine scale solution is considered as

a benchmark and the performance of MsFEM and GMsFEM is compared

against this. The global system solved using the multiscale methods is on the

coarser grid, and hence, the memory requirements and the computational time

required is significantly less than the fine solution. The time taken to solve the

coarse system is 0.017 sec which is smaller than the time needed for fine scale

solve, 0.35 sec. This difference becomes significant when large-scale complex

problems are solved. Table 4.2 shows the relative L2 and H1 norm for the

pressure solution obtained after solving the system on the coarse scale. It can

be observed that as the number of basis functions per coarse node is increased,

the solution tends to converge towards fine scale solution. Table 4.3 shows the

relative L2 and H1 norm for flux obtained at the fine scale after downscaling.
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Fig 4.4, 4.5 and 4.6 shows the pressure solution obtained after solving the

system of equations at the fine scale and the coarse scale respectively. Here

also, it is evident that systematic spectral enrichment reduces the error and

converges towards the fine scale solution. A similar trend is obtained for

velocity flux along the x direction as shown in Fig 4.7, 4.8 and 4.9.

Table 4.1: Summary: 2D Finite Element Code

Total number of coarse elements in each direction 10
Total number of elements within each coarse element 10
Total number of elements in each direction 100
Total number of nodes in each direction 101
Total number of global nodes 10201

The next set of results focuses on the CPU time associated with solv-

ing the problem on the fine and coarse scale. Fig 4.10 shows the decline plot

obtained when MsFEM and GMsFEM are implemented in parallel. Because

of the restriction with the MATLABs parallel computing toolbox, only twelve

number of processors could be used. It is one of the motivations to shift

towards a more flexible OpenMP based shared memory parallel computing.

Three components of the algorithm are made parallel: the MsFEM basis

function generation, the GMsFEM spectral enrichment and the downscal-

ing method to obtain fluxes on fine scale. Fig 4.11 gives a comparison of the

overhead time required when solving the problem on the coarse scale using the

multiscale method. The overhead time is obtained by adding up time needed

for the basis function generation and the coarse system solver. Though the
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CPU time required for the multiscale method is higher, the declining trend

suggests that the method is scalable and can be effectively used for solving

large scale problems where memory requirements and global system solver are

significant issues. Table 4.4 tabulates the CPU time for a different number of

processors.
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Figure 4.3: Deterministic High Contrast Permeability Field
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Figure 4.4: Fine Scale: Pressure Solve
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Figure 4.5: MsFEM: Pressure Solve
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Figure 4.6: GMsFEM: Pressure Solve
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Figure 4.8: MsFEM: Velocity along x direction
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Table 4.2: Relative L2 and H1 norm for
different levels of enrichment: Pressure

L2 (%) H1 (%)

Nz = 1 8.425 480.09
Nz = 2 7.389 39.859
Nz = 4 1.180 14.971
Nz = 8 0.897 11.098

Table 4.3: Relative L2 and H1 norm for
different levels of enrichment: Flux

L2 (%) H1 (%)

Nz = 1 68.907 109.01
Nz = 2 33.331 52.481
Nz = 4 8.724 21.345
Nz = 8 8.190 19.346
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Table 4.4: CPU Time (in seconds): 2D Finite Element

Processors
#

Multiscale
Basis

Spectral
Enrichment

Downscaling

1 12.304 74.826 3.384
2 6.606 41.370 2.117
4 4.440 25.781 1.236
6 3.344 18.169 1.244
8 3.587 19.012 0.993
10 3.014 12.391 0.896
11 3.018 12.335 1.101
12 2.585 12.117 1.034

4.2 3D Finite Element Results

After attempting to solve the problem using a two-dimensional finite

element code, a similar exercise is repeated with a three-dimensional finite

element code. The results obtained after solving the two-dimensional problem

are encouraging and led to the motivation to solve a three-dimensional problem

and use OpenMP for parallel computing.

The domain is represented by Ω = [0, 1]× [0, 1]× [0, 1]. For simplicity,

all the boundaries have Dirichlet boundary conditions such that all the six

faces have p = 0. The forcing condition chosen is, q = 1. Fig 4.12 shows that

the permeability field is log-normal which is generated by simulating random

numbers from a standard normal distribution and raising to the exponent.

The summary of the finite element code is given in Table 4.5. The Biconjugate

Gradient Stabilized (Bi-CGSTAB) method is used for solving the system of
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equations obtained as a result of the finite element formulation.

Table 4.5: Summary: 3D Finite Element Code

Total number of coarse elements in each direction 5
Total number of elements within each coarse element 5
Total number of elements in each direction 25
Total number of nodes in each direction 26
Total number of global nodes 17576
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Figure 4.12: Log-normal Permeability Field

Fig 4.13 shows the benchmark fine scale pressure solution. Fig 4.14 and

Fig 4.15 show the coarse scale solution obtained after using MsFEM and GMs-

FEM respectively. The number of basis functions used for spectral enrichment

is fifteen. It can be seen clearly that the accuracy of the solution increases by
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spectral enrichment. The visualization of the pressure solution is done using

Paraview 4.0, and a slice at x = 0.5 is chosen for this purpose. The relative

percentage error using the coarse scale techniques is given in Table 4.6.

Figure 4.13: Pressure Solution: Fine Scale

Figure 4.14: Pressure Solution: MsFEM
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Figure 4.15: Pressure Solution: GMsFEM

Table 4.6: Relative L2 and H1 norms: Pressure

L2 (%) H1 (%)

MsFEM 9.465 32.483
GMsFEM 3.572 19.415

The next set of results focuses on the scalability of the algorithms when

run in parallel. Shared memory parallelism is achieved here using OpenMP

in C++. Table 4.7 shows the CPU time taken by different number of threads

for MsFEM and GMsFEM. Fig 4.16 shows the graphical comparison of CPU

time with the benchmark results obtained using fine scale method. The results

indicate that the overhead time required for multiscale method drops below

the fine scale solution. The time requirement for coarse solve is negligible and
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therefore, the effective time is whatever required for the basis function genera-

tion. It is worthwhile to mention here the importance of compiler optimization

flags used while compiling the programs in parallel. Without any optimization

option, the compiler’s goal is to reduce the cost of compilation and to make de-

bugging produce the expected results. However, turning on optimization flags

makes the compiler attempt to improve the performance. Several optimization

flags such as -O1, -O2, -O3, etc. are supported by g++ compiler. The CPU

time reported in Table 4.7 is obtained after turning on -O2 optimization flag

which enables speed optimization and gives the best results.
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Figure 4.16: CPU Time: Coarse Solve + MsFEM
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Table 4.7: CPU Time (in seconds): 3D Finite Element

Number of
Threads

MsFEM GMsFEM

1 1.075 3751.46
2 0.6542 1875.5
4 0.451 1047.7
6 0.2272 1047.64
8 0.227 1037.5
10 0.2346 1036.46
12 0.221 1029.04

The results, therefore, indicate that it is possible to beat the fine scale

solution at the expense of some approximations used in the standard multi-

scale method. OpenMP provides more flexibility and the use of g++ compiler

further enables optimization flags one can use for faster execution of the pro-

gram. The spectral enrichment allows reducing the relative error but increases

the computation time as shown in Table 4.7. The declining trend suggests the

need of mass parallelism to make spectral enrichment further faster. It also

depends on the type of problem one is solving and the level of accuracy de-

sired. Distributed computing may further be explored to make the enrichment

process faster.
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Chapter 5

Conclusions and Future Work

The objective of the study was to solve the elliptic pressure Eq 3.6,

where the permeability of the medium is high contrast with several jumps

and discontinuities. Two separate studies have been conducted using a two-

dimensional and a three-dimensional finite element code to solve numerically

the elliptic pressure equation. Solving the equation on fine scale requires

tremendous computational effort and storage demands. It may not always

be feasible and required to solve such a problem on the fine scale, and there-

fore, multiscale techniques were developed which provide a suitable framework

to handle the complexity. A desired accuracy and convergence to fine scale

solution is demonstrated by using spectral enrichment technique, GMsFEM.

It is worthwhile to mention here, that GMsFEM is same as standard MsFEM

when only one basis function per coarse node is used for spectral enrichment.

5.1 Results

• Implementation of MsFEM and GMsFEM for solving the problem on

the coarse grid is demonstrated. The pressure and the flux obtained

using both the methods are compared against the benchmark fine scale
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solutions. Two-dimensional results are presented first, where Figs 4.4,

4.5 and 4.6 graphically demonstrate that the relative error with MsFEM,

which uses only one basis function per coarse node is more than GMs-

FEM where six basis functions per coarse node are used. This systematic

enrichment of the coarse space after using more number of basis func-

tions per coarse node, allows us to obtain the higher level of accuracy.

Table 4.2 shows the numerical value of the relative error percentage, as

a larger number of basis functions are used. Similar results are obtained

for the three-dimensional problem, where the accuracy of the pressure

solution increases when fifteen number of basis functions are used. How-

ever, the gain in accuracy leads to greater computational time, which

leads to parallel computing.

• The size of the actual fine scale problem is chosen smaller for the demon-

stration purposes only. It is expected that the computation time for

solving the global system and memory requirements will be tremendous

for larger complex systems, and one would need multiscale methods.

Fig 4.10 and 4.11 show that it is possible to implement these methods

in parallel and reduce the CPU time associated with the basis function

generation, spectral enrichment and downscaling. Though the compu-

tational time required for solving the fine scale system is lesser, much

because of the smaller size of the problem chosen here, the time needed

solving the coarse system drops down significantly indicating that the

algorithms are scalable.
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• The implementation has been made more general and flexible using

OpenMP in C++ for solving a three-dimensional finite element code.

It gives more flexibility for optimizing the program when compared to

the MATLAB’s parallel computing toolbox. Table 4.7 indicates a higher

CPU time efficiency is achieved by using the -O2 optimization scheme.

A significant result is shown in Fig 4.16, where the CPU time required

for generating basis functions using standard MsFEM drops below fine

scale solve time. It is yet another claim that parallel implementation

makes these algorithms scalable. Spectral enrichment still takes much

longer, but the decline is significant when more threads are used.

5.2 Future Work

It can be concluded that the results of parallel computing for solving

subsurface flow using multiscale methods are very encouraging. The next step

can be to implement distributed parallel computing using Message Passing In-

terface (MPI). It can particularly be done for the loop involving basis function

generation during the spectral enrichment process, which is computationally

the most difficult step. It will provide more opportunities to enhance further

the efficiency of the algorithms.

Another application may be in uncertainty quantification where perme-

ability field is random and noisy. Researchers in the Computational Hydraulics

Group are currently focused on solving the inversion problem which requires

using the forward model as a “black box” iteratively. Parallel computing using
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multiscale methods will make the computation more efficient.
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