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Abstract

The relative solvent accessibility (RSA) of a residue in a protein measures the extent of burial or exposure of that residue in
the 3D structure. RSA is frequently used to describe a protein’s biophysical or evolutionary properties. To calculate RSA, a
residue’s solvent accessibility (ASA) needs to be normalized by a suitable reference value for the given amino acid; several
normalization scales have previously been proposed. However, these scales do not provide tight upper bounds on ASA
values frequently observed in empirical crystal structures. Instead, they underestimate the largest allowed ASA values, by up
to 20%. As a result, many empirical crystal structures contain residues that seem to have RSA values in excess of one. Here,
we derive a new normalization scale that does provide a tight upper bound on observed ASA values. We pursue two
complementary strategies, one based on extensive analysis of empirical structures and one based on systematic
enumeration of biophysically allowed tripeptides. Both approaches yield congruent results that consistently exceed
published values. We conclude that previously published ASA normalization values were too small, primarily because the
conformations that maximize ASA had not been correctly identified. As an application of our results, we show that
empirically derived hydrophobicity scales are sensitive to accurate RSA calculation, and we derive new hydrophobicity
scales that show increased correlation with experimentally measured scales.
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Introduction

Relative solvent accessibility (RSA) has emerged as a commonly

used metric describing protein structure in computational molec-

ular biology, with the particular application of identifying buried

or exposed residues. It is defined as a residue’s solvent accessibility

(ASA) normalized by a suitable maximum value for that residue.

RSA was first introduced in the context of hydrophobicity scales

derived by computational means from protein crystal structures

[1–5]. More recently, RSA has been shown to correlate with

protein evolutionary rates and has been incorporated as a

parameter into models which determine these rates [6–13]. As

RSA straightforwardly characterizes the local environment of

residues in protein structures, many studies have developed

computational methods to predict RSA from protein primary

and/or secondary structure [14–20]. Further applications of RSA

include identification of surface, interior, and interface regions in

proteins [21], protein-domain prediction [22], and prediction of

deleterious mutations [23].

To derive a residue’s RSA from its surface area, an ASA

normalization factor is needed for each amino acid. By

convention, these normalization values have been derived by

evaluating the surface area around a residue of interest X when

placed between two glycines, to form a Gly-X-Gly tripeptide. Most

commonly, the normalization values utilized are those previously

calculated by either Rose et al. [2] or Miller et al. [3]. The primary

distinction between these two sets of normalization values lies in

the different q and y dihedral backbone angles chosen when

evaluating Gly-X-Gly tripeptide conformations. Rose et al. [2]

considered tripeptides with backbone angles representing an

average of observed q and y angles, whereas Miller et al. [3]

considered tripeptides in the extended conformation (q~{1200,

y~1400).

As the number of empirically determined 3D protein crystal

structures has grown over the years, it has become apparent that

neither the Rose [2] nor the Miller [3] scale accurately identifies

the true upper bound for a residue’s ASA. In fact, virtually all

amino acids display, on occasion, ASA values in excess of the

normalization ASA values provided by either scale. Some do so

quite frequently (e.g. R, D, G, K, P), reaching RSA values of up to

1.2. This discrepancy, which leads to RSA values w1, is generally

known in the field though rarely acknowledged in print. One

exception is a recent study that carried out an extensive empirical

survey of ASA values in PDB structures [20]. That study found

that the most accessible conformations are generally found in loops

and turns, not in the extended conformation, and it suggested to
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use conformation-dependent maximum ASA values for normal-

ization [20].

Here, we derive a new set of ASA normalization values that

provide a tight upper bound on ASA values observed in

biophysically realistic tripeptide conformations. To calculate these

normalization values, we pursue two complementary strategies—

one empirical and one theoretical. For the empirical approach, we

mined thousands of 3D crystal structures and recorded the

maximum ASA values we found for each amino acid across all

structures. For the theoretical approach, we computationally built

Gly-X-Gly tripeptides and systematically evaluated all biophysi-

cally allowed conformations to determine a maximum theoretical

ASA value. These two strategies yield congruent results and

ultimately produce comparable normalization scales that tightly

bound ASA for all 20 amino acids. We then return to the historic

motivation for RSA and investigate the implications of our results

for hydrophobicity scales. We find that ASA normalization affects

the performance of empirically derived hydrophobicity scales, and

we propose new scales that show improved correlation with

experimentally measured scales.

Results

Published ASA normalization values are too small
We initially assessed the accuracy of Rose’s [2] and Miller’s [3]

ASA normalization scales through an exhaustive survey of the

ASA values found in experimentally determined protein struc-

tures. We obtained a list of 3197 high-quality PDB structures from

the PISCES server [24]. We then calculated ASA for each residue

in all 3197 structures, excluding any chain-terminating residues.

ASA values were subsequently normalized using the scales of

either Rose et al. [2] or Miller et al. [3] to obtain RSA. For either

scale and each amino acid, we found that residues with RSAw1
were not uncommon (Figure 0); RSA values exceeded unity by up

to 20%. The amino acids that most commonly displayed RSAw1
were R, D, G, K, P. For those amino acids, RSA values w1

occurred at frequencies of 1% to 3% of all residues, depending on

the normalization scale used (Figure 1).

To determine the underlying factors leading to RSAw1, we

examined the association between RSA and the following factors:

residue neighbors, secondary structure, bond lengths, bond angles,

and dihedral angles. For most of these quantities, we found no

strong association with RSA. We did, however, find a clear

association with residues’ q and y backbone angles. For example,

consider the Ramachandran plot of alanine (Figure 2). A

noticeable cluster of high-RSA residues falls into the a-helix

region of q&{50, y&{45. We found similar results for all other

amino acids. Importantly, neither Rose nor Miller derived their

normalization ASA values in that region of backbone angles.

Therefore, we concluded that previous ASA normalization scales

were obtained with poorly chosen q and y angles.

Figure 1. Frequency of residues with RSAw1 in empirical protein structures. Nearly all amino acids, and notably R, D, K, G, and P, show
RSAw1 when RSA is calculated using the normalization values of either Rose et al. [2] or Miller et al. [3].
doi:10.1371/journal.pone.0080635.g001

Figure 2. Ramachandran plot for alanine residues in our
empirical data set. Coordinates which correspond to RSA values
w1 are shown in red and are clearly concentrated around coordinates
({500,{450). We therefore propose that this region contains the
maximally exposed conformation of alanine and should be used for
calculating maximum ASA.
doi:10.1371/journal.pone.0080635.g002
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Modeling Tripeptides Yields Significantly Higher
Maximum ASA Values

To derive maximum ASA values for each amino acid X, we

computationally constructed Gly-X-Gly tripeptides and systemat-

ically rotated them through all biophysically allowed conforma-

tions (see Methods and Text in File S1 for details.) When

constructing the tripeptides, we set bond lengths and angles

(excluding v, q, y, and x angles) for each amino acid equal to the

average values observed for that amino acid in our reference set of

3197 PDB structures. We set v~1800. We then rotated the q and

y around the X residue in discrete 10 steps, exhaustively

enumerating all conformations. Additionally, we iterated through

all rotamer angles x that were sterically possible with each (q,y)
combination. For those amino acids with more than 10 possible

distinct rotamer conformations, as determined by the Dunbruck

database [24], we evaluated ten randomly chosen rotamer

conformations. We recorded the maximum ASA observed for

each (q,y) backbone-angle combination.

Next, we compared the resulting theoretical maximum ASA

values to the empirically observed maximum ASA values. We

binned both the theoretical and the empirical values into discrete

50|50 bins of (q,y) and recorded the maximum ASA in each bin.

To eliminate nonexistent or rare conformations, we defined four

Ramachandran regions for each amino acid: CORE, containing

at least 80% of the empirical observations; ALLOWED, contain-

ing at least 97% of the empirical observations; GENEROUS,

extending the core region by 200 in all directions; and ALL,

containing all non-empty bins. The definitions of the CORE,

ALLOWED, and GENEROUS regions are consistent with the

definitions used in Ref. [25]. For each region, we displayed the

maximum ASA value in each bin in side-by-side Ramachandran

plots (Figure 3 and Figures S1–S3 in File S1) and generally found

good congruence between the theoretical and the empirical values

for all amino acids. Regions that had the highest maximum ASA

in the theoretical data set also had the highest maximum ASA in

the empirical data set. The highest ASA values were generally

observed in the a-helix region of the Ramachandran plot (Figure

3). Based on these results, we propose new maximum ASA values

(Table 1 and Table S1 in File S1) and maximally exposed

geometries for each amino acid (Table S2 in File S1).

We further evaluated our model’s performance by directly

comparing theoretical and empirical maximum ASA values in

each (q,y) bin. We calculated the difference between these two

values for each 50|50 bin (now including all bins with at least one

observation in the empirical data set). We then plotted this

difference against the number of empirical observations obtained

for each bin (Figure 4). We found that with increasing amounts of

empirical data, this difference approached zero; the maximum

ASA values from both approaches converged as more data was

available. Moreover, even for sparsely populated bins, at least

some bins showed a difference near zero, regardless of the number

of observations in each bin. Therefore, while our results did

improve with increasing amounts of data, they were also largely

robust to smaller data sets.

As Table S1 shows, the maximum ASA values observed in the

empirical data set were nearly identical for different Ramachan-

dran regions. Scales for the ALLOWED, GENEROUS, and ALL

regions were identical, with the exception of a 1 Å2 difference for

Val between ALLOWED and GENEROUS/ALL. The scale for

the CORE region was nearly identical as well, with most

Table 1. Proposed values for ASA normalization (in Å2), compared to previously used scales defined by Rose et al. [2] and Miller et
al. [3].

Residue Theoretical Empirical Miller et al. (1987) Rose et al. (1985)

Alanine 129.0 121.0 113.0 118.1

Arginine 274.0 265.0 241.0 256.0

Asparagine 195.0 187.0 158.0 165.5

Aspartate 193.0 187.0 151.0 158.7

Cysteine 167.0 148.0 140.0 146.1

Glutamate 223.0 214.0 183.0 186.2

Glutamine 225.0 214.0 189.0 193.2

Glycine 104.0 97.0 85.0 88.1

Histidine 224.0 216.0 194.0 202.5

Isoleucine 197.0 195.0 182.0 181.0

Leucine 201.0 191.0 180.0 193.1

Lysine 236.0 230.0 211.0 225.8

Methionine 224.0 203.0 204.0 203.4

Phenylalanine 240.0 228.0 218.0 222.8

Proline 159.0 154.0 143.0 146.8

Serine 155.0 143.0 122.0 129.8

Threonine 172.0 163.0 146.0 152.5

Tryptophan 285.0 264.0 259.0 266.3

Tyrosine 263.0 255.0 229.0 236.8

Valine 174.0 165.0 160.0 164.5

Both the theoretical and the empirical scale were evaluated for the ALLOWED region. Corresponding scales evaluated for other regions are provided in Table S1 in File
S1.
doi:10.1371/journal.pone.0080635.t001
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differences on the order of 1–2 Å2. The only larger difference (15

Å2) arose for Cys, the rarest amino acid in our data set. For the

theoretical scales, we similarly found that differences between the

CORE and ALLOWED regions were minor, typically on the

order of 2–5 Å2. The biggest difference again arose for Cys.

Theoretical maximum values in the GENEROUS and ALL

regions were up to 10–15 Å2 larger than in the ALLOWED

region, and generally substantially larger than the largest ASA

values observed in the entire empirical data set. We conclude from

this finding that the GENEROUS and ALL regions are too

permissive of unphysical and/or rare backbone conformations,

and we recommend that the maximum ASA values of the

ALLOWED region be used in actual applications. Table 1

summarizes these values and compares them to the previously

published scales by Miller et al. [3] and Rose et al. [2]. All results in

the remainder of this work were derived using the scales obtained

for the ALLOWED region.

Relation to Empirically Derived Hydrophobicity Scales
The solvent exposure of an amino acid, averaged over many

occurrences of that amino acid in many different protein

structures, should correlate with the amino acid’s hydrophobicity.

Therefore, solvent exposure has long been used as a means to

empirically derive hydrophobicity scales from protein crystal

structures [1,2]. In particular, Rose et al. [2] derived a

hydrophobicity scale by calculating the mean RSA for each

amino acid across a set of reference crystal structures, using the

ASA normalization values derived in the same work [2]. Since

those normalization values are inaccurate, as shown above, we

assessed how using our normalization values would alter the Rose

hydrophobicity scale.

We first compared the Rose scale to a number of experimentally

derived scales (Table 2, [26–32]). We included in the list of

experimental scales the scale by Kyte & Doolittle [27], which is a

hybrid scale partially based on solvent-accessibility data from

protein structures, and the scale by Mac Callum et al. [30], which

is based on molecular-dynamics simulations. A brief description of

each scale is given in the legend to Table 2. The Rose scale

correlated reasonably well (50%–70% of variance explained) with

most experimental scales. It correlated the highest with the scale of

Fauchere & Pliska [28] (82% of variance explained) and it did not

correlate significantly with the scales of Wimley et al. [32] and of

Mac Callum et al. [30] (Table 2).

We next derived two scales based on mean RSA, calculated

using either our theoretical or our empirical ASA normalization

values (Table S3 in File S1). Both of our mean RSA scales

correlated well with the Rose scale (r~0:96 and r~0:97,

respectively, with Pv10{10 in both cases) but were not identical

to it. The biggest difference arose for histidine, which is ranked as

the 8th-most hydrophobic amino acid according to the Rose scale

but as the 10th- or 13th-most hydrophobic amino acid,

respectively, according to our scales. Our scales correlated more

strongly than the Rose scale with all experimental scales except the

Mac Callum scale, which did not correlate significantly with either

our or the Rose scale (Table 2). For the majority of experimental

scales, the percent variance explained increased by approximately

10 percentage points using our normalization over the Rose

normalization. We can conclude from these results that mean RSA

is a useful measure of amino acid hydrophobicity and that correct

ASA normalization is required to assign appropriate hydropho-

bicity scores to all amino acids.

Figure 3. Ramachandran plots for empirical and theoretical maximum ASA values of alanine. (A) Empirical maximum ASA values for each
50 by 50 bin. All bins in the ALLOWED region are shown. (B) Theoretical maximum ASA values, as determined by computational modeling, shown for
non-empty bins in (A). Both the empirical and the theoretical approach find the largest ASA values in the a-helix region around ({500,{450). By
contrast, the extended conformation ({1200,1400) leads to relatively low maximum ASA.
doi:10.1371/journal.pone.0080635.g003

Figure 4. Difference between theoretically and empirically
determined maximum ASA values for alanine, across 50 by 50

bins. As the amount of data per bin increases, the difference between
theoretical and empirical maximum ASA approaches zero, demonstrat-
ing that our two methods converged with increasing amounts of data.
Furthermore, the difference between values is frequently close to zero,
even when little data is available for a bin. This observation indicates
that our theoretically derived maximum ASA values provide a tight
bound on the empirically observed ones.
doi:10.1371/journal.pone.0080635.g004
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One concern with using mean RSA as a measure of

hydrophobicity is that the RSA distribution of individual amino

acids tends to be highly skewed (see Figure S4 in File S1 for an

example). Hence, mean RSA may not accurately reflect the most

common RSA values. It might be preferable to use instead the

fraction of times an amino acid occurs in a buried conformation in

empirical protein structures. This approach was originally

suggested by Chothia et al. in 1976 and executed with the limited

data available at the time [1].

We calculated two additional scales from our data set of 3197

protein structures: for each of the 20 amino acids, we calculated

the fraction of completely buried residues (100% buried, RSA~0)

and the fraction of 95% buried residues (RSAv0:05) among all

occurrences of these amino acids in the protein structures. For

most of the experimental scales, these two scales showed a stronger

correlation than any of the scales based on mean RSA did (Table

2). The two main exceptions were the scale by Fauchere & Pliska

[28], which correlated better with mean RSA, and the scales by

Wimley et al. [32] and by Mac Callum et al. [30], which correlated

poorly with all empirical scales. Since the Kyte & Doolittle scale

[27] is partly based on the fraction of buried residues, its strong

correlation with our scales is not surprising and does not represent

a truly independent validation of these scales.

Discussion

We have derived significantly improved ASA normalization

values. Our normalization values provide a tight upper bound to

the largest observed ASA values in empirical structures. By

contrast, previously published ASA normalization valules were too

small, by up to 20%, and frequently led to RSA values w1. We

estimated the maximum allowed ASA for each amino acid by

computationally modeling Gly-X-Gly tripeptides, where X is the

amino acid of interest, and exhaustively surveying ASA over all

biophysically feasible conformations. We found that maximally

exposed conformations tend to fall into the a-helix region of

Ramachandran plots, and that extended conformations display

some side-chain burial. The results of our modeling approach were

consistent with maximum ASA values found by surveying over

3000 empirical protein crystal structures. We also revisited the

problem of deriving empirical hydrophobicity scales from protein

structures. We found that improved ASA normalization values

lead to improved empirical hydrophobicity scales. Further, scales

based on both mean RSA and on the fraction of buried residues

correlated well with experimentally measured scales. Overall, the

fraction of 95% buried residues seems to be the best-performing

empirical hydrophobicity scale, but mean RSA correlates well with

an experimental scale based on side-chain transfer between

octanol and water.

Our method of obtaining ASA normalization values was similar

to the methods employed by Rose et al. [2] and by Miller et al. [3].

Rose et al. [2] calculated their ASA normalization values by

computing the ASA of residue X in Gly-X-Gly tripeptides whose

conformations were chosen based on the average dihedral angles

from available empirical data at the time. Miller et al. [3], on the

other hand, calculated their ASA normalization values by

computing the ASA of an extended trimer structure with

q~{1200,y~1400 and with side-chain conformations that were

frequently observed in the empirical data. The key distinction

between these previous approaches and ours lies in our exhaustive

sampling of tripeptide conformations. By modeling all biophysi-

cally feasible discrete combinations of q and y angles and varying

rotamers, we identified the ideal conformations which yield

maximum allowed ASA. To pursue our modeling strategy, we

developed a program that allowed us to easily construct peptide

chains from scratch in arbitrary conformations (see Text in File S1

for details).

Our results are broadly consistent with a recent paper by Singh

and Ahmad [20]. These authors did an extensive empirical survey

Table 2. Absolute value of correlation coefficients r between empirically derived and experimentally derived hydrophobicity
scales.

Empirical scale

Experimental scale Mean RSA (Rose)a Mean RSA (theor)b Mean RSA (emp)c 100% buriedd 95% buriede

Wolfenden et al.f 0.614 0.681 0.681 0.827 0.774

Kyte & Doolittleg 0.841 0.879 0.881 0.953 0.948

Radzicka & Wolfendenh 0.852 0.855 0.851 0.844 0.888

Moon & Flemingi 0.704 0.748 0.752 0.678 0.764

Fauchere & Pliskal 0.904 0.906 0.910 0.734 0.878

Wimley et al.m 0.463{ 0.464 0.473 0.323{ 0.417{

MacCallum et al.k 0.27{ 0.265{ 0.285{ 0.116{ 0.227{

The largest significant correlation in each row is highlighted in bold.
aMean RSA of residues in protein structures, as calculated by Rose et al. [2].
bMean RSA of residues in protein structures, as given in column 2 of Table S3 in File S1.
cMean RSA of residues in protein structures, as given in column 3 of Table S3 in File S1.
dFraction of 100% buried residues, as given in column 4 of Table S3 in File S1.
eFraction of 95% buried residues, as given in column 5 of Table S3 in File S1.
fTransfer energy from vapor to water [26].
gHybrid scale based on transfer energy from vapor to water and on the percentages of 95% and 100% buried residues in protein structures [27].
hTransfer energy from cyclohexane to water [29].
iDDG between the folded and unfolded state of a mutated membrane-inserted protein, outer membrane phospholipase A [31].
kTransfer energy calculated from molecular-dynamic simulations of side-chain analogs within a bilayer [30].
lTransfer energy between octanol and water [28].
mTransfer energy of pentapeptides between octanol and water [32].
{Correlation not statistically significant; all other correlations are significant at a~0:05.
doi:10.1371/journal.pone.0080635.t002
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of ASA values in tripeptides from PDB structures. They found that

the highest observed ASA values were found in loops and turns,

not in the extended conformation used by Miller et al.. Their

highest ASA values are generally consistent with ours. Further,

Singh and Ahmad found that the highest observed ASA values

were dependent on the neighboring residues around the focal

residue. Finally, Singh and Ahmad showed that for RSA

prediction from primary sequence, prediction accuracy could be

improved by approximately 10% if ASA values were normalized

by (neighbor-dependent) highest observed ASA values rather than

by ASA values observed in the extended conformation [20]. Our

work serves as a useful complement to their work, by (i) providing,

through molecular modeling, highest possible ASA values rather

than just highest observed ASA values, by (ii) providing highest

observed and highest possible ASA values as a function of

backbone dihedral angle, and by (iii) demonstrating that improved

RSA normalization yields empirical hydrophobicity scales that are

more similar to experimentally measured ones.

In our modeling approach, we calculated ASA values for Gly-X-

Gly tripeptides. Other authors have considered normalizations

based on Ala-X-Ala tripeptides [18,33] or even neighbor-specific

normalizations (i.e., a different normalization for each specific

tripeptide [20]). We chose Gly-X-Gly tripeptides because we

wanted to calculate the highest possible ASA values of tripeptides,

and glycines will generally occlude less solvent than alanines. From a

practical perspective, we prefer a simple normalization scheme, and

hence highest possible ASA values are attractive to us. However, for

certain applications, it may be the case that neighbor-specific or

backbone-specific normalizations are preferable. Singh and Ahmad

[20] provided neighbor-specific normalization values, but didn’t

control for backbone angles. We have shown here that maximum

ASA values depend substantially on backbone angles (e.g. Fig. 3),

and we provide both highest observed and highest possible ASA

values as a function of backbone angles (see ‘‘Data and code

availability’’ in Methods). It is not known at this time whether

neighbor-dependent or backbone-dependent normalization is

preferable, and the answer may depend on the specific application.

In principle, one could also normalize by both neighboring amino

acids and backbone dihedral angles. A modeling approach such as

ours could be employed to calculate the highest possible ASA values

for any tripeptide in any conformation. The computational

resources required would be substantial, however, since we would

have to model 400 times more tripeptides than we did for the

present work.

Our theoretical modeling approach to exhaustively survey

tripeptides has two potential shortcomings. First, for bond lengths

and angles (except major dihedral angles), we used mean values

observed in a large number of protein crystal structures. This

approach neglects the variation around the mean, and there could

be rare cases where unusually large bond lengths or unusual bond

angles might cause ASA to become larger than estimated here.

Such scenarios would have to be exceedingly rare, however, since

we did not find a single case in which the largest empirically

derived maximum ASA value exceeded the largest theoretically

derived maximum ASA value (Table 1). Second, for amino acids

with more than 10 distinct rotamer conformations, we did not

exhaustively enumerate all possible conformations but only

sampled 10 conformations at random. Thus, in principle it is

possible that we missed a particular rotamer conformation that

would have corresponded to a larger ASA value than the

maximum we observed. Two arguments suggest that this issue is

not likely a major source of error. First, again, we did not find a

single case in which the empirical maximum ASA was larger than

the theoretical maximum ASA. Second, maximum ASA varied

slowly with q and y, and by exhaustively enumerating conforma-

tions in 10 steps, in effect we sampled the most exposed

conformations multiple times, thus reducing the chance of missing

a rare, large-ASA conformation.

As our RSA calculations are based on ASAs of tripeptides, we

excluded all chain terminating residues from both the empirical and

the theoretical analysis. Even with our improved ASA normaliza-

tion values, then, chain-terminating residues may still display

RSAw1. We therefore recommend that future analyses making use

of RSA similarly exclude any chain-terminating residues, as their

RSA estimates will not be precise. Suitable normalization values for

chain-terminating residues are not available at present.

The normalization values we have derived here are, strictly

speaking, only valid for solvent-accessible surface areas calculated

with the DSSP program [34]. However, more generally, we expect

them to be correct as long as solvent accessibility is calculated

according to the definition of Lee and Richards [35], which

assumes that a sphere of radius 1.4Å is rolled over the surface of

the molecule. For cases in which solvent accessibility is calculated

differently, our results suggest that one can follow an empirical

approach to normalization. In other words, one need not

exhaustively evaluate tripeptides, as we have done here. Instead,

one can obtain a representative sample of structures from the

protein data bank, exclude all terminal residues and residues in

unusual conformations, and then find for each amino acid the

maximum solvent accessibility within that data set, according to

one’s chosen definition of solvent accessibility. As Table 1 shows,

this empirical approach should generally yield results that are quite

similar to the theoretical normalization values.

In many applications, specifically in the context of sequence

evolution, RSA is treated as a site-specific property that is

invariant under mutation. While RSA values of homologous

structures tend to be strongly correlated [9,14], individual sites, in

particular exposed ones, can show substantial RSA variability

[14]. In this context, we would like to emphasize that one potential

source of RSA variability in previous studies was RSA normal-

ization. For example, Ref. [14] used the Rose scale, which differs

quite substantially from the scale we propose here. In particular,

the corrections we propose to the Rose scale range from 4% (for

Leu) to 18% (for Asp), and are approximately uniformly

distributed in that range over the 20 amino acids. Thus, one can

envision scenarios under which a substitution that might not

change RSA under our scale might change it by over 10% under

the Rose scale. At the same time, we have to realize that RSA can

show variability even in the absence of mutation, in particular for

exposed residues. A residue in a surface loop will undergo

thermodynamic fluctuations, and its solvent exposure state will

vary over time as neighboring residues move closer in or further

out. By contrast, a residue in the core will likely remain solvent-

occluded at all times. To obtain a reliable RSA value for a surface

residue, one would thus ideally calculate an average over a

thermodynamic ensemble of structures. A detailed analysis of RSA

variability under thermodynamic fluctuations and among homol-

ogous structures is beyond the scope of this work but should be

undertaken in the future.

The comparison between experimentally and empirically derived

hydrophobicity scales has been a persistent topic in biochemistry. As

of this writing, the AAIndex database [36] contains over 40 scales

related to amino acid hydrophobicity or polarity. While these scales

tend to cluster [37,38], there are substantial dissimilarities among

hydrophobicity scales, and any two scales within the hydrophobicity

cluster may not correlate that well. Any further insight into the

mechanisms that cause differences among scales derived under

different conditions or using different methodologies would improve
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our understanding of protein biochemistry. In particular, resolving

discrepancies between empirically-derived data and experimentally

derived thermodynamics of hydrophobicity could provide crucial

insight into algorithms of protein-structure prediction and de-novo

protein folding.

Wolfenden et al. [26] were the first to propose an approach for

reconciling the empirical and the experimental approach, by

correlating the distribution of amino acid exposure with their

experimental behaviors in water/vapor solutions. More recently,

Moelbert et al. [4] attempted to reconcile these disparities by

correlating hydrophobic states with surface-exposure patterns of

protein structures. Additionally, Shaytan et al. [5] assessed the

distribution of amino acid exposure in proteins to discern apparent

free energies of transfer between protein interior and surface

states, and found that free energy is highly correlated with

experimental hydrophobicity scales [5]. Each of these approaches

used the ASA normalization values from either Rose et al. [2] or

Miller et al. [3]. Since the normalization ASA values developed

here are more accurate, we believe that our findings are valuable

for determining exposure states. Using the Rose hydrophobicity

scale as an example, we have shown here that improved ASA

normalization values consistently yield improved correlations with

experimental scales, irrespective of the exact type of experimental

scale considered. Of all empirical scales we analyzed, however, the

fraction of 95% buried residues was most consistently strongly

correlated with different experimental scales and thus could be

considered the overall best-performing empirical scale.

Further, in agreement with Shaytan et al. [5], we found that

different experimental scales corresponded to different empirical

scales. For example, transfer energies from water to vapor

correlated the strongest with the fraction of 100% buried residues,

while transfer energies from water to cyclohexane correlated the

strongest with the fraction of 95% buried residues, and transfer

energies from water to octanol correlated the strongest with mean

RSA. Since mean RSA puts more weight on exposed residues than

does the fraction of either 100% buried or 95% buried residues,

this finding agrees with the three distinct types of scales found by

Shaytan et al. [5]. The pentapetide scale by Wimley et al. [32],

however, did not correlate well with either of the empirical scales

we considered. Wimley et al. performed a partioning experiment

between water and 1-octanol using pentapeptide species, Ace-

WLXLL, with X being one of the naturally occuring 20 amino

acids. Otherwise, their set up was simlar to the one of Fauchere &

Pliska [28]. By using pentapeptides rather than individual amino

acids, the Wimley et al. hydrophobicity scale does not seem to

accurately reflect the hydrophobic character of individual amino

acids but rather that of the pentapeptides.

In summary, we have presented significantly improved ASA

normalization values. We recommend that our theoretical normal-

ization values for the ALLOWED region (column 1 of Table 1) be

used to normalize ASA. The optimal hydrophobicity scale will

depend on the specific application, but the fraction of 95% buried

residues seems to be the best general-purpose empirical scale.

Materials and Methods

Empirical maximum ASA values
We obtained a set of 3197 high-quality protein crystal structures

using the PISCES server [24]. We imposed the following

requirements: resolution of 1.8 Å or less, an R-free value

v0:25, and a pairwise mutual sequence identity of at most

20%. For each amino-acid residue in all 3197 structures, we

retrieved bond lengths, bond angles, dihedral angles, peptide bond

lengths, and nearest neighbors. Chain-terminating residues,

defined as those residues whose peptide bond lengths with any

neighboring residue was greater than six standard deviations from

the protein’s mean peptide bond length, were excluded from all

subsequent analyses. We further identified all residues in the data

set that had either missing atoms or atoms with ambiguous

occupancy data (PDB occupancy column contained a number

v1:0 for at least one atom in the residue). We eliminated these

residues and their immediate neighbors from all subsequent

analyses as well.

We used the program DSSP (2011 version) [34] to calculate

solvent accessibility (ASA) and to identify the secondary structure

of each residue across all proteins. Because of the quality control

we imposed on residues (see preceding paragraph), our final ASA

data set only contained residues that were complete and

unambiguous and whose neighbors were complete and unambig-

uous as well.

We next filtered by allowed Ramachandran angles. For each

amino acid, we binned all observed q,y combinations into 50|50

squares, and assigned each square to one or more of the following

regions: The CORE region was defined to contain at least 80% of

the observed Ramachandran angles. The ALLOWED region was

defined to contain at least 97% of the observed Ramachandran

angles. For both the CORE and the ALLOWED regions, we

identified, for each amino acid, the number of observations per

50|50 bin required for that bin to be part of the respective region.

Table S4 in File S1 lists these bin cutoffs. The GENEROUS

region was defined to extend the ALLOWED region by 200 in all

directions, regardless of whether the particular Ramachandran

angles have been observed. Finally, the ALL region was defined to

contain all observed Ramachandran angles. The definitions of the

CORE, ALLOWED, and GENEROUS regions are consistent

with current biochemical convention [25,39]. For all four regions,

we identified the maximum ASA observed.

We calculated RSA as RSA~ASA=MaximumASA, where

‘‘Maximum ASA’’ corresponds to the maximum ASA value, as

determined by the normalization scale used, for the focal amino

acid.

Theoretical maximum ASA values
To find the theoretical maximum solvent accessibility (ASA) for

each amino acid X, we computationally constructed Gly-X-Gly

tripeptides. Each tripeptide was modeled by specifying coordinates

of each constituent atom, using bond lengths and angles from our

empirically mined protein structures. Briefly, we first constructed

peptides in a defined conformation by placing each atom at the

correct position in 3D space. We then adjusted q, y, and x angles

to obtain the desired conformation. This method is described in

more detail in Text (File S1), and the computer code to carry out

tripeptide construction has been published as a stand-alone library

[40].

Once constructed, we exhaustively rotated q and y dihedral

backbone angles in discrete 10 increments, holding v constant at

1800. For each (q,y) combination, we additionally rotated through

all possible x rotamer angles, as found in the Dunbruck Rotamer

Database [24]. Rotamer angles were grouped into three 1200

sectors (600, –600, and 1800) and averaged within each sector. For

amino acids where the side chain could assume more than ten

distinct rotamer conformations (e.g. for L, I, M, K, N), we selected

ten rotamer conformations at random instead of exhaustively

enumerating all rotamer conformations. A different set of

randomly chosen rotamer conformations was generated for each

combination of (q,y) angles.

For each tripeptide conformation examined, a corresponding

PDB file was created and inputted into the program DSSP [34] to

Maximum Solvent Accessibilities

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e80635



compute the ASA of amino acid X. For each amino acid and (q,y)
combination, we recorded the largest ASA value from all rotamer

variations examined. To determine the theoretical maximum ASA

value for each amino acid, we identified the largest ASA value

observed for any (q,y) combination within one of the four

Ramachandran regions defined above (CORE, ALLOWED,

GENEROUS, ALL).

Hydrophobicity scales
We calculated empirical hydrophobicity scales on the same set

of 3197 crystal structures. Mean RSA of each amino acid was

calculated as the RSA averaged over all occurrences of that amino

acid in the data set. The corresponding hydrophobicity scale was

defined as 1{(meanRSA). The ASA normalization for this

calculation used either the empirical or the theoretical scale,

evaluated for the ALLOWED region.

Fraction 100% buried was calculated for each amino acid as the

percent of times the program DSSP reported ASAv1Å for each

occurrence of that amino acid in the data set. Fraction 95% buried

was calculated for each amino acid as the percent of times that

amino acid had an RSA value v0:05, where RSA was calculated

using the theoretical normalization values of Table 1 (ALLOWED

region).

Data and code availability
All results and all computer code used to generate these results

have been deposited to GitHub.com (https://github.com/mtien/

RSA-normalization-values). This inlcudes maximum observed

ASA values (both empirical and theoretical) as a function of

backbone dihedral angles.

Supporting Information

File S1 Combined pdf of Figures S1–S4, Tables S1–S4,
and Supporting Text.

(PDF)
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