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imposed steep learning curves on everyone, especially for people with limited

programming backgrounds. For instance, due to the messy nature of data in

different application domains, data scientists spend close to 80% of their time

in data wrangling tasks, which are considered to be the “janitor work” of data

science. Similarly, software engineers spend hours or even days learning how to

use APIs through official documentation or examples from online forums.

Program synthesis has the potential to automate complex tasks that

involve API usage by providing powerful search algorithms to look for executable

programs that satisfy a given specification (input-output examples, partial

programs, formal specs, etc). However, the biggest barrier to a practical

synthesizer is the size of search space, which increases strikingly fast with the

complexity of the programs and the size of the targeted APIs.
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To address the above issue, this dissertation focuses on developing

algorithms that push the frontiers of program synthesis. First, we propose a

type-directed graph reachability algorithm in SyPet, a synthesizer for assembling

programs from complex APIs. Second, we show how to combine enumerative

search with lightweight constraint-based deduction in Morpheus, a synthesizer

for automating real-world data wrangling tasks from input-output examples.

Finally, we generalize the previous approaches to develop a novel conflict-driven

synthesis algorithm that can learn from past mistakes.
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Chapter 1

Introduction

Complex APIs in new frameworks (Spark, R, TensorFlow, etc) have

imposed steep learning curves on everyone, especially for people with limited

programming backgrounds. For instance, due to the messy nature of data in

different application domains, data scientists spend close to 80% of their time

in data wrangling tasks, which are considered to be the “janitor work” of data

science. Similarly, software engineers spend hours or even days learning how to

use APIs through official documentation or examples from online forums.

Program synthesis has the potential to automate complex tasks that

involve API usage by providing powerful search algorithms to look for executable

programs that satisfy a given specification (input-output examples, partial

programs, formal specs, etc). However, the biggest barrier to a practical

synthesizer is the size of search space, which increases strikingly fast with the

complexity of the programs and the size of the targeted APIs.

To overcome the space explosion issue, researchers from both the pro-

gramming languages and machine learning communities have started to develop

practical synthesis algorithms that can address real-world challenges. Those

approaches can be categorized into two main classes, namely, those based on
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statistical models and logical reasoning.

Statistical models . There are several ongoing synthesis efforts in the ML com-

munity, and one representative approach is to incorporate statistical knowledge

to guide a symbolic program synthesizer. These approaches train statistical

models to predict the most promising program to explore next. For instance,

the statistical model can be a log-linear model to predict the most likely DSL

operator based on features of the input-output example [74], a deep neural

network to learn features that can be used to make such predictions [13], or an

n-gram model, trained on a large database of code, to predict the most likely

completion of a hole based on its ancestors in the AST [17].

Logical reasoning . Although statistical models are very successful in provid-

ing the most likely programs with respect to the distribution in the training

set, they alone are not sufficient to solve complex tasks because the search

space is still very large. To prune the search space, there are many prior

techniques [42, 58, 37, 113] that leverage logical specifications to aid synthesis.

The logical specifications can be the types [80, 84], or first-order logic formulas

that capture the formal semantics of a given task [58].

While synthesis algorithms based on logical reasoning can incorporate

domain specific knowledge to significantly prune the search space, they alone

are still difficult to scale to large programs as it lacks of prior knowledge of

the problems. As a result, their search strategies are typically based on some
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heuristics, such as length of the candidate programs, which may not be the

best strategies in practice. In this dissertation, to overcome the limitations

of previous mentioned approaches, we show how to build scalable program

synthesizers for real-world synthesis tasks by combining the power of logical

reasoning and statistical models, and empirically demonstrate their practicality

and effectiveness in the context of automating data wrangling tasks and list

manipulation in functional programming. Specifically, to handle programming

tasks that require using an API with thousands of methods, we present a

compact Petri-net representation to model relationships between methods in an

API, as well as a novel type-directed algorithm for component-based synthesis

in Chapter 2. Given a target method signature S, our approach performs

reachability analysis on the underlying Petri-net model to identify sequences

of method calls that could be used to synthesize an implementation of S. The

programs synthesized by our algorithm are guaranteed to type check and pass

all test cases provided by the user. We have implemented this approach in a tool

called SyPet, and used it to successfully synthesize real-world programming

tasks extracted from on-line forums and existing code repositories. We also

compare SyPet with two state-of-the-art synthesis tools, namely InSynth

and CodeHint, and demonstrate that SyPet can synthesize more programs

in less time.

Since SyPet uses primitive types as the coarse-grained specifications

to prune infeasible candidates that are not well-typed, it will degrade to naive

enumerative search in some domains which typically consume and produce
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the same types, such as string manipulation and data wrangling. To address

the disadvantage of SyPet, in Chapter 3, we present a novel component-

based synthesis algorithm that marries the power of type-directed search

with lightweight SMT-based deduction and partial evaluation. Given a set of

components together with their over-approximate first-order specifications, our

method first generates a program sketch over a subset of the components and

checks its feasibility using an SMT solver. Since a program sketch typically

represents many concrete programs, the use of SMT-based deduction greatly

increases the scalability of the algorithm. Once a feasible program sketch is

found, our algorithm completes the sketch in a bottom-up fashion, using partial

evaluation to further increase the power of deduction for rejecting partially-

filled program sketches. We apply the proposed synthesis methodology for

automating a large class of data preparation tasks that commonly arise in data

science. We have evaluated our synthesis algorithm on dozens of data wrangling

and consolidation tasks obtained from on-line forums, and we show that our

approach can automatically solve a large class of problems encountered by R

users.

While both SyPet and Morpheus incorporate statistical models to

speed up enumerative search and use logical reasoning to prune search space,

none of them can learn from past mistakes. To address this limitation as well

as provide a unified framework that combines statistical models and logical

reasoning in a natural way, in Chapter 4 we propose a new conflict-driven

program synthesis framework that is capable of learning from past mistakes.

4



Given a spurious program that violates the desired specification, our synthesis

algorithm identifies the root cause of the conflict and learns new lemmas that

can prevent similar mistakes in the future. Specifically, we introduce the notion

of equivalence modulo conflict and show how this idea can be used to learn

useful lemmas that allow the synthesizer to prune large parts of the search space.

We have implemented a general-purpose CDCL-style program synthesizer called

Neo and evaluate it in two different application domains, namely data wrangling

in R and functional programming over lists. Our experiments demonstrate the

substantial benefits of conflict-driven learning and show that Neo outperforms

two state-of-the-art synthesis tools, Morpheus and DeepCoder, that target

these respective domains.

In summary, we show in this dissertation that by combining the power

of logical reasoning and statistical models, we could build scalable synthesizers

that can automate a large class of complex and tedious tasks facing by majority

of the end-users.

5



Chapter 2

SyPet 1

Component-based approaches to program synthesis assemble programs

from a database of existing components, such as methods provided by an API.

In practice, one challenge is to model relationships between methods which

can have multiple arguments or side effects, as well as an efficient algorithm

to enumerate viable candidates. To address this problem, in this chapter,

we use of a compact Petri-net representation to model relationships between

methods in an API, as well as a novel type-directed algorithm for component-

based synthesis. Specifically, given a target method signature S, our approach

performs reachability analysis on the underlying Petri-net model to identify

sequences of method calls that could be used to synthesize an implementation

of S. The programs synthesized by our algorithm are guaranteed to type check

and pass all test cases provided by the user.

We have implemented this approach in a tool called SyPet, and used

it to successfully synthesize real-world programming tasks extracted from on-

line forums and existing code repositories. We also compare SyPet with

two state-of-the-art synthesis tools, namely InSynth and CodeHint, and

1Parts of this chapter have appeared in [27].
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demonstrate that SyPet can synthesize more programs in less time. Finally,

we compare our approach with an alternative solution based on hypergraphs

and demonstrate its advantages.

The rest of this chapter is organized as follows: First, we start by

presenting an example to motivate our approach ( Section 2.2) and provide

some necessary background on Petri nets ( Section 2.3). After presenting an

outline of the main synthesis algorithm in Section 2.4, we then elaborate

on the core technical pieces in Section 2.5, Section 2.6 and Section 2.7. In

Section 2.8 and Section 2.9, we describe implementation details and present

our main experimental results.

2.1 Overview

The goal of component-based synthesis is to automatically generate

loop-free programs from a collection of base components, such as methods

provided by an API [43, 57]. Considering the explosion of software libraries

over the last few decades, component-based synthesis promises to simplify

programming by automatically composing the building blocks needed to achieve

some implementation task. Hence, instead of spending precious time in learning

how to use existing libraries, programmers can focus on challenging algorithmic

tasks.

Despite significant advances in component-based synthesis over the last

several years [57, 44, 43, 83], existing algorithms have two key shortcomings:

First, they can only handle a small number of components, typically in the range

7



of 5-20 methods; but real-world APIs typically involve thousands of procedures.

Second, most existing tools require logical specifications for the underlying

components; however, few APIs contain methods that are formally specified.

As a result, the applicability of component-based synthesis remains limited

to domain-specific applications, such as bit-vector, string, or data-structure

manipulations [57, 29, 97].

In this chapter, we propose a new algorithm for component-based

synthesis that overcomes both of these difficulties. Similar to recent work on

type-directed API-completion [68, 49, 80, 47], our algorithm uses types as a

coarse proxy for logical specifications and can handle APIs with thousands

of procedures. However, unlike API completion tools, our algorithm does

not require a partial implementation, and can synthesize complete programs

from method signatures and test cases. The programs synthesized by our

approach are always guaranteed to type-check and pass all user-provided tests.

Furthermore, our approach is oblivious to the underlying components, and can

be used to synthesize Java code using any combination of APIs.

The workflow of our synthesis algorithm is illustrated in Figure 3.1. At a

technical level, a key idea underlying our approach is to represent relationships

between API components using a certain kind of Petri net where places

(nodes) correspond to types, transitions represent methods, and tokens denote

the number of program variables of a given type. For example, Figure 2.6

shows a Petri net that describes the relationships between a subset of the

functions in the java.awt.geometry API. Given such a Petri net N and a

8



Query

Candidate
program

Run
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Sketch
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constraint

SyPet

Figure 2.1. Workflow of the SyPet tool

target configuration defined by the method signature, our algorithm performs

reachability analysis on N to identify a sequence of transitions (i.e., method

calls) that “produce” the output type by “consuming” the input types.

In our approach, a reachable path in the Petri-net model corresponds to

a program sketch rather than a complete executable program. In particular, to

keep the underlying Petri net representation compact, our algorithm deliberately

decomposes the synthesis task into two separate sketch-generation and sketch-

completion phases. Hence, after we perform reachability analysis on the Petri

net, we must still complete the sketch by determining what arguments to provide

for each procedure. Toward this goal, our algorithm generates constraints that

encode various syntactic and semantic requirements on the synthesized program,

and uses a SAT solver to find a model. The satisfying assignment produced

by the solver is then used to generate a candidate implementation that can be

tested. If the synthesized program fails any test case, our algorithm backtracks

and generates a different implementation, either by finding another model of
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public void test1() {
Area a1 = new Area(new Rectangle(0, 0, 10, 2));
Area a2 = new Area(new Rectangle(-2, 0, 2, 10));
Point2D p = new Point2D.Double(0, 0);
assertTrue(a2.equals(rotate(a1, p, Math.PI/2)));

}

Figure 2.2. Example test case for the rotate method

the SAT formula or by exploring a different reachable path in the Petri net.

At a very high level, our algorithm can be viewed as a generalization

of techniques that use graph-reachability analysis for API completion. For

example, standard graph reachability has been used to synthesize jungloids,

which are sequences of single argument methods [68]. However, because our

goal is to develop a general solver for component-based synthesis, we require a

more expressive graph representation that can faithfully model relationships

between multi-argument functions. In this work, we choose to use Petri nets as

the underlying formalism because they have several advantages compared to

other generalized graph representations, such as hypergraphs. As we show later

in Section 2.9, Petri nets allow us to synthesize a larger class of imperative

programs, including those that call the same procedure multiple times or where

components can have side effects.

2.2 Motivating Example

Consider a programmer, Bob, who wants to implement functionality for

rotating a 2-dimensional geometric object. Specifically, Bob has the following
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signature in mind:

Area rotate(Area obj, Point2D pt, double angle)

Here, the rotate method should take a 2-dimensional object called obj and

return a new object that is the same as obj except that it has been rotated

by the specified angle around the specified point pt. The types Area and

Point2D are defined in the java.awt.geom library. Bob thinks that there is

probably a way of implementing this functionality using the java.awt.geom

package, but he cannot figure out how.

SyPet can help a programmer like Bob by automatically synthesizing

the desired rotate method. To use SyPet, Bob only needs to provide (a) the

method signature above, and (b) write one or more test cases. In this case,

suppose Bob has written the unit test shown in Figure 2.2. This test creates a

rectangle a1 and its variant a2 that has been rotated by 90◦; it then asserts

that invoking rotate on a1 yields an object that is identical to a2.

Given this test case and method signature, SyPet automatically synthe-

sizes the implementation of rotate shown in Figure 2.3 in 2.01 seconds. Observe

that writing this code is non-trivial for a programmer like Bob for several reasons:

First, Bob must know about the existence of a class called AffineTransform

in the java.awt.geom library. Second, he must know about (and correctly

use) the setToRotation method, which sets up a matrix representing the

desired transformation. Finally, the call to createTransformedArea creates a

new Area object that contains the same geometry as obj, but transformed by

11



Area rotate(Area obj, Point2D pt, double angle) {
AffineTransform at = new AffineTransform();
double x = pt.getX();
double y = pt.getY();
at.setToRotation(angle, x, y);
Area obj2 = obj.createTransformedArea(at);
return obj2;

}

Figure 2.3. Implementation synthesized by SyPet

the specified transformation at. Hence, from the user’s perspective, SyPet

can significantly boost programmer productivity by automatically finding the

relevant API methods and invoking them in the right manner.

From the synthesizer’s perspective, automatically generating an imple-

mentation of rotate offers several challenges: First, the java.awt.geom library,

which we use to synthesize this code, contains 725 methods. Hence, even though

the implementation consists of just 6 lines of code, the number of components

is quite large. Second, even when we restrict ourselves to code snippets of

length 3 (measured in terms of the number of API calls), there are already over

3.1 million implementations of rotate that type check. Because the search

space is so large, finding the right implementation of rotate is akin to finding

a needle in the proverbial hay stack.

2.3 Primer on Petri Nets

Because the remainder of this paper relies on basic knowledge about

Petri nets, we first provide some background on this topic.
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2.3.1 Petri Net Definition

A Petri net is a bipartite graph with two types of nodes: places, which

are drawn as circles, and transitions, represented as solid bars (see Figure 2.4).

Each place in a Petri net can contain a number of tokens, which are drawn as

dots and typically represent resources. A marking (or configuration) of a Petri

net is a mapping from each place p to the number of tokens at p. Transitions

in the Petri net correspond to events that change the marking. In particular,

incoming edges of a transition t represent necessary conditions for t to fire,

and outgoing edges represent the outcome. For example, consider transition T1

from Figure 2.4. A necessary condition for T1 to fire is that there must be at

least one token present at P1, because the incoming edge to T1 has weight 1.

Because the precondition of this transition is met, we say that T1 is enabled.

If we fire transition T1, we consume one token from place P1 and produce

one token at place P2, because the outgoing edge of T1 is also labeled with 1.

Figure 2.5 shows the result of firing T1 at the configuration shown in Figure 2.4.

Observe that transition T2 is disabled in both Figure 2.4 and Figure 2.5 because

there are fewer than two tokens at place P2.

Definition 2.1. (Petri net) A Petri net N is a 5-tuple (P, T,E,W,M0) where

P is a set of places, T is a set of transitions, and E ⊆ (P × T ) ∪ (T × P ) is

the set of edges (arcs). Finally, W is a mapping from each edge e ∈ E to a

weight, and M0 is the initial marking of N.

Example 2.1. Consider the Petri net shown in Figure 2.4. Here, we have

P = {P1, P2, P3} and T = {T1, T2, T3}. Let e∗ be the edge P2 → T2. We have
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W (e∗) = 2, and W (e) = 1 for all other edges e in E (e.g., P1 → T1). The

initial marking M0 assigns P1 to 2, and all other places to 0.

A run (or trace) of a Petri net N is a sequence of transitions that are fired.

For instance, some feasible runs of the Petri net shown in Figure 2.4 include

T1, T1, T2 and T1, T1, T2, T3. However, T1, T2 and T1, T2, T3 are not feasible.

2.3.2 Reachability and k-safety in Petri Nets

A key decision problem about Petri nets is reachability : Given Petri net

N with initial marking M0 and target marking M∗, is it possible to reach M∗

by starting at M0 and firing a sequence of transitions? For instance, consider

Figure 2.4 and target marking M∗ = [P1 7→ 0, P2 7→ 0, P3 7→ 1]. This marking

is reachable because we can get to marking M∗ by firing the sequence of

transitions T1, T1, T2. The reachable state space of a Petri net N, denoted R(N),

is the set of all markings that are reachable from the initial state. Given Petri

net N and target marking M∗, a run of N is accepting if it ends in M∗.

Another important concept about Petri nets is k-safety : A Petri net N

is said to be k-safe if no place contains more than k tokens for any marking in

R(N). For example, the Petri net of Figure 2.4 is 2-safe, because no place can

contain more than 2 tokens in any configuration. However, if we modify this

Petri net by adding a back edge from T1 to P1 (with an arc weight of 1), then

the resulting Petri net is not k-safe for any k. As we will see later, the notion

of k-safety plays an important role in the reachability analysis of Petri nets

because the reachable state space R(N) is bounded iff N is k-safe.
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Figure 2.4. A simple Petri net

P1 P2 P3T1

T2
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11

Figure 2.5. Result of firing T1 in Figure 2.4

2.4 Algorithm Overview

We now give an overview of SyPet’s synthesis algorithm and illustrate

how it works on the example from Section 2.2. As shown in Algorithm 3.1,

the Synthesize procedure takes a method signature S, a set of components Λ,

and test cases E. Its output is either ⊥, meaning that the specification cannot

be synthesized using components Λ, or a well-typed program that passes all

test cases E.

Petri-net construction. The first step of our synthesis algorithm is to

construct a Petri net using signatures of components in Λ. In particular, the

procedure ConstructPetri in Algorithm 3.1 constructs a Petri net N where

each transition is a component f ∈ Λ and each place correspond to a type.

If there is an edge in the Petri net from τ to f with weight w, component f

takes w arguments of type τ . Similarly, an edge from f to τ ′ indicates that f ’s
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Affine
Transform

Area
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TransArea

toString

invert

AffineTrans()

setToRotation

double

getX
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Point2D

String void

Figure 2.6. Petri net for motivating example

return value has type τ ′.

Example 2.2. Figure 2.6 shows (a small part of) the Petri net generated by

ConstructPetri for the example from Section 2.2. The transition labeled

getX has one incoming edge of weight 1 from Point2D because it takes a single

argument of this type. There is also an edge from getX to double because

getX’s return value is double. As another example, the weight of the edge from

double to setToRotation is 3 because this method requires three arguments

of type double. Note that Figure 2.6 also contains special clone transitions

labeled κ: Intuitively, these κ transitions allow us to duplicate tokens. As we

will see in Section 2.5, the clone transitions allow us to reuse program variables

in the synthesis context.

The initial and final markings on the Petri net are determined by the

signature S provided by the user. For instance, the tokens on the Petri net N
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Algorithm 2.1 Synthesis Algorithm

1: procedure Synthesize(S, Λ, E)

2: Input: Signature S of method to synthesize,
3: components Λ, and tests E

4: Output: Synthesized program or ⊥ for failure

5: (N,M∗) := ConstructPetri(S,Λ)

6: while true do

7: π := GetNextPath(N,M∗)

8: (Σ, φ) := SketchGen(π)

9: for all σ ∈ Models(φ) do

10: if RunTests(Σ[σ],E) then
11: return Σ[σ]

12: return ⊥

from Figure 2.6 indicate the initial marking M0 of N. In particular, because the

desired rotate method takes arguments of type Area, Point2D, and double,

the initial marking assigns one token to each of these types. In addition, M0

also assigns a single token to the special type void. In contrast, M0[Shape] = 0

because rotate does not take any arguments of type Shape.

The target marking M∗ of the Petri net is determined by the return

type of S. In our example, M∗[Area] = 1 because the return value of rotate

is of type Area. However, for all other types τ (except for void), we require

M∗[τ ] to be 0, because this value effectively enforces that the synthesized

implementation should not generate unused values. For instance, the target

marking for the rotate example assigns Point2D to 0, thereby enforcing that

the implementation uses argument pt and does not generate any other unused

variables of type Point2D.
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Reachability analysis. After constructing a Petri net N that models the

relationships between components in Λ, we next perform reachability analysis

to lazily find N’s accepting runs (line 7 in Algorithm 3.1). For instance, an

accepting run r for Figure 2.6 consists of the following sequence of transitions:

κD, getX, getY, new AffineTransform,
κT , setToRotation, createTransformedArea

Another accepting run r′ can be obtained by replacing the transition

createTransformedArea by invert. Observe that κD, getX, getY is not an

accepting run because the marking obtained after this run assigns 3 tokens to

double.

Sketch generation. Each accepting run of the Petri net N corresponds to

a possible sequence of method calls with unknown arguments. Hence, the

SketchGen procedure used in line 8 of Algorithm 3.1 converts each reachable

path π to a program sketch Σ which is then used to resolve unknown arguments.

For example, consider the accepting run r of N that we considered earlier. This

run r corresponds to the following code sketch:

x = #1.getX(); y = #2.getY();
t = new AffineTransform();
#3.setToRotation(#4, #5, #6);
a = #7.createTransformedArea(#8);
return #9;

In other words, we can convert an accepting run r to a program sketch

Σ by ignoring the κ transitions and passing unknown arguments (denoted as
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#i) to each component. Furthermore, our construction guarantees that it is

always possible to complete sketch Σ in a way that type-checks and satisfies

certain well-formedness requirements. However, there may be multiple ways

to instantiate the holes in Σ. For instance, we must assign #1 and #2 to pt,

but we can assign #4 to either angle, x, or y, because the only requirement is

that #4 is of type double.

Sketch completion. Similar to other sketching-based techniques (e.g., [101]),

our technique uses a SAT solver to find possible completions of the generated

program sketch. For this purpose, the SketchGen procedure generates

a propositional formula φ that encodes various semantic requirements on

the generated program, including being well-typed, not containing unused

variables, and having all holes filled. Specifically, our encoding introduces

Boolean variables of the form h#i
v , which encode that hole #i is filled with

program variable v. For example, for hole #4, our encoding generates the

following constraint:

h#4
angle + h#4

x + h#4
y = 1.

This formula stipulates that hole #4 must be filled with exactly one of angle, x,

or y because those are the only program variables of type double. In addition,

our encoding stipulates that each program variable must be used at least once.

For instance, for variable angle, we generate the following constraint:

h#4
angle + h#5

angle + h#6
angle ≥ 1.
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This formula expresses that at least one of the holes #4,#5 and #6 must be

instantiated with angle, because those are the only holes of type double.

After generating such a pseudo-boolean formula, we transform these

constraints to CNF and use a SAT solver to find an assignment to each variable.

For our running example, the following assignment σ is a model:

h#1
pt ∧ h

#2
pt ∧ h

#3
t ∧ h

#4
angle ∧ ¬h

#4
x ∧ ¬h#4

y ∧ ¬h#5
angle ∧ h

#5
x ∧

¬h#5
y ∧ ¬h#6

angle ∧ ¬h
#6
x ∧ h#6

y ∧ h#7
obj ∧ h

#8
t ∧ ¬h

#9
obj ∧ h

#9
a

Observe that σ corresponds to instantiating holes #1−#9 in our code sketch

with variables pt, pt, t, angle, x, y, obj, t, and a, respectively.

Validation and backtracking. Once we generate a complete program P ,

we then compile it and run P on the test cases provided by the user (line 10

in Algorithm 3.1). If all tests pass, we return P as a solution to the synthesis

problem. If at least one test case fails, our algorithm backtracks and finds

another satisfying assignment σ′ to φ (if one exists) and generates a different

completion of sketch Σ. If we have already considered all possible ways to fill

the holes in Σ, our algorithm backtracks by finding a different accepting run of

the Petri net N and generating a different sketch.

Discussion of design choices. A key design decision underlying our algo-

rithm is to decompose the synthesis algorithm into two phases, namely sketch

generation and sketch completion. In particular, an accepting run of the Petri

net corresponds to a sequence of method calls, but there are, in general, multi-

ple possible ways of choosing which variables to pass as arguments. We believe
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this decomposition between sketch generation and completion is beneficial

because it allows us to perform reachability analysis on a more compact graph

representation. We have considered an alternative Petri-net representation in

which nodes represent parameters and return values instead of types. Under

this representation, an accepting run of the Petri net can be directly translated

into a code snippet rather than a sketch. However, because the corresponding

Petri net is much larger, we found that the reachability problem becomes much

harder, thereby making the algorithm less scalable.

2.5 Petri-Net Construction

We now explain in more detail how our algorithm constructs a Petri

net N from type signatures of components. In the remainder of this paper,

we assume a first-order language of type signatures with classes and built-in

primitive types (string, int, etc.).2 Given library components Λ and a desired

method signature S, the algorithm constructs N = (P, T,E,W,M0) and a

target marking M∗ as follows:

• Places P correspond to types used in Λ.

• Transitions T represent methods in Λ. In addition, for every type τ ∈ P ,

there is a special transition called κτ .

2 As described in Section 2.8, our approach also handles polymorphism, but using
monomorphic instantiation.
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• Arc (τ, f) is in E and W [(τ, f)] = k if component f ∈ Λ takes k inputs

of type τ .

• Arc (f, τ) is in E and W [(f, τ)] = 1 if f ’s return type is τ for some

component f ∈ Λ.

• Arcs (τ, κτ ) and (κτ , τ) are both in E. Furthermore, W [(τ, κτ )] = 1 and

W [(κτ , τ)] = 2.

• M0[void] = 1 and M0[τ ] = k if S has k inputs of type τ .

• If the return type of S is τ , then M∗[τ ] = 1, M∗[void] ≥ 0 and M∗[τ ′] = 0

for all other types τ ′.3

At a high level, the Petri-net construction outlined above views types

as resources. In particular, a transition associated with component f ∈ Λ

“consumes” its input types and produces a token at its output type. Hence, if

the desired signature S has type (τ1 × . . .× τn)→ τ , our goal is to produce a

token at place τ by consuming the incoming tokens at places τ1, . . . , τn.

While this resource analogy fits very well with linear types, conventional

types do not exactly behave as resources: In particular, invoking a component

f ∈ Λ on input x does not actually “consume” x; indeed, in a Java program, x

can be used again. For this reason, the Petri-net construction outlined above

introduces special transitions κτ (called clone transitions) that effectively allow

3If the return type of S is void, then M∗[void] ≥ 0.
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us to “duplicate” objects of type τ . Intuitively, the number of clone transitions

taken in a given run indicates the total number of times variables will be reused

in the synthesized program.4

To illustrate the necessity of clone transitions, consider our motivating

example from Section 2.2. Here, to synthesize the implementation of rotate,

we must retrieve the x and y coordinates of point pt. However, because we

initially only have one token at Point2D, we can only call getX or getY, but

not both. By invoking the clone transition κD, we can generate two resources

of type Point2D, allowing us to invoke both getX and getY on parameter pt.

Another interesting aspect of our construction is the choice of target

marking M∗. First, observe that M∗ assigns 0 tokens to all places other than

void and the return type of S. Intuitively, this requirement dictates that the

synthesized method should use all of its inputs as well as any intermediate values

that are produced. This property is desirable because a method implementation

that takes x as an input but does not use x is unlikely to be correct. Furthermore,

a method that produces unused variables necessarily performs redundant work

and can be replaced by a simpler implementation.5

4Our use of clone transitions is somewhat related to the use of read arcs in the Petri-net
literature [118]. A read arc is a transition that does not consume tokens when fired. An
alternative to having clone transitions is to use read arcs; however, this design choice would
require us to use a different target marking that does not enforce the property that all inputs
must be used.

5There are some methods, such as the add method of collections, that return a Boolean
value that is often ignored. For such functions, we also consider a variant of the method
that returns void.
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2.6 Sketch Synthesis via Petri-Net Reachability

Given a Petri net N with target marking M∗, we need to answer the

following questions to generate a suitable code sketch:

(1) Is M∗ ∈ R(N)? If the answer to this question is negative, we know that

it is not possible to synthesize well-typed code using the components we

have available.

(2) If M∗ ∈ R(N), to synthesize candidate program sketches, we must identify

exactly those runs of N that end in M∗.

To answer these questions, we must overcome two difficulties: First,

because our Petri nets are not k-safe, the state space R(N) is unbounded.

While there are existing methods for answering question (1) for unsafe Petri

nets [62, 32], they cannot be used for answering question (2). Second, because

the number of available components may be very large, we must develop

effective heuristics for pruning the search space. In the rest of this section, we

describe a practical algorithm for finding reachable paths for the class of Petri

nets described in Section 2.5.

At a high level, there are three key insights underlying our reachability

algorithm. The first insight is that we can bound the search space without

losing completeness in our context. That is, even though R(N) is unbounded,

exploring a subset R∗(N) of R(N) is sufficient for identifying all accepting runs

of N (see Section 2.6.2). The second key insight is to use an over-approximation
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α(N) of N to avoid exploring states that are irrelevant for reaching the target

configuration M∗ (see Section 2.6.3). Finally, rather than explicitly constructing

R∗(N), we encode it symbolically and lazily enumerate the “most-promising”

accepting runs of N by solving an optimization problem (see Section 2.6.4).

2.6.1 Basic Reachability Algorithm

Our algorithm for constructing the reachability graph R∗(N) is presented

as pseudo-code in Algorithm 2.2. We first consider a basic version of the

algorithm without lines 12–15, which is roughly equivalent to the standard

algorithm for constructing R(N). The additional lines 12–15 correspond to our

customization, and allow us to construct R∗(N) instead of R(N).

The procedure ReachGraph shown in Algorithm 2.2 takes as input a

Petri net N with initial marking M0 and the return type τ of the method we

would like to synthesize, and returns a reachability graph R∗. The nodes of R∗

correspond to markings of N, and a (directed) edge 〈M,T,M ′〉 indicates that

we can reach marking M ′ from M by firing transition T of N. We denote nodes

of R∗ using labels of the form 〈k1, . . . , kn〉, which indicates that there are ki

tokens at place Pi. For example, the marking of the Petri net from Figure 2.4

corresponds to the node label 〈2, 0, 0〉, whereas the marking from Figure 2.5 is

given by 〈1, 1, 0〉.

The loop in lines 7–19 of Algorithm 2.2 iteratively constructs R∗ starting

from initial marking M0. In particular, the worklist Φ contains all reachable

markings that have not yet been processed. Initially, the only reachable marking
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Algorithm 2.2 Algorithm to construct reachability graph

1: procedure ReachGraph(N, τ)

2: Input: Petri net N, desired output type τ
3: Output: Reachability graph R∗

4: assume N = (P, T,E,W,M0)
5: R∗ := ({M0}, ∅,M0) . Initialize

6: Φ := {M0} . Initialize worklist Φ

7: while Φ 6= ∅ do

8: choose M ∈ Φ . Process next in Φ

9: Φ := Φ− {M}
10: for all T ∈ enabled(M) do

11: (M ′, p) := fire(M,T ) . Add successors

12: if ∀e ∈ out(p). M ′[p] > W [e] + 1 then
13: continue

14: if ¬ PathExists(p, τ, α(N)) then
15: continue

16: if M ′ 6∈ Nodes(R∗) then
17: Nodes(R∗).insert(M ′)
18: Φ := Φ ∪ {M ′}
19: Edges(R∗).insert(〈M,T,M ′〉)
20: return R∗

is M0; hence we initialize Φ to the singleton set {M0} at line 6. In each iteration

of the loop, we compute the successor states of some marking M in Φ by firing

its enabled transitions. Specifically, the procedure fire used at line 11 takes a

marking M and a transition T and returns the resulting marking M ′, as well

as the output place p of transition T .6 Now, ignoring lines 12–15, we add the

edge 〈M,T,M ′〉 to our reachability graph R∗ and insert M ′ into the worklist if

6In our context, each transition has exactly one outgoing edge because every component
has exactly one return type.
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T1 T1 T2 T3

Figure 2.7. Reachability graph for Petri net from Figure 2.4

it has not already been processed.

Example 2.3. Figure 2.7 shows the reachability graph for the Petri net from

Figure 2.4. Observe that feasible runs of N correspond to paths starting with M0

in the reachability graph. Hence, using the reachability graph, we immediately

see that T1, T1, T2 is a feasible run, but T1, T2, T3 is not.

2.6.2 Ensuring Termination

As mentioned earlier, the construction outlined in Section 2.5 results

in Petri nets that are not k-safe for any k. In particular, while the clone

transitions κτ are necessary for synthesizing code that reuses the same variable

multiple times, they also cause us to accumulate arbitrarily many tokens at a

given place. For example, we can obtain an unbounded number of tokens at

place Point2D of Figure 2.6 by taking the clone transition κD as many times as

we want. As a result, the size of the reachability graph is unbounded, meaning

that the basic reachability algorithm from Section 2.6.1 will not terminate.

Fortunately, it turns out that we can bound the size of the reachable

state space without losing completeness. In particular, when constructing the

reachability graph for Petri net N, we can safely ignore markings that assign

more than k + 1 tokens to a place p, where k denotes the maximum weight
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of any outgoing edge of p.7 To see why we can ignore such markings, observe

that no transition in N can be disabled due to p as long as we have at least k

tokens at p. Furthermore, no matter what transition we take from the current

marking, p will have at least 1 remaining token. Because our Petri nets contain

clone transitions for every place, we can always produce k tokens at p by taking

the clone transition sufficiently many times, as long as we have at least 1 token

at p.

To formalize this intuition, let “paths[M0,M∗](G)” denote the set of tran-

sition sequences in some reachability graph G that start at initial marking

M0, end at target M∗, and ignore all clone transitions. We can now state the

following theorem:8

Theorem 1. Let R(N) be the reachability graph constructed by the basic

algorithm of Section 2.6.1, and let R∗(N) be the reachability graph constructed

by employing lines 12–15 of Algorithm 2.2. If p ∈ paths[M0,M∗](R(N)), then

p ∈ paths[M0,M∗](R
∗(N)).

Effectively, this theorem states we do not “lose” any valid code sketches

by considering the paths of R∗(N) instead of R(N). Furthermore, because the

size of R∗(N) is bounded by nk+1 where n is the number of places and k is

the maximum edge weight in N, Algorithm 2.2 is guaranteed to terminate.

7For simplicity, we assume that the number of initial tokens at place p is less than or
equal to k + 1. If this assumption is violated, the upper bound is given by the maximum of
k + 1 and the number of initial tokens.

8Proofs of all theorems are given in the extended version of the paper [28].
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However, because places in N correspond to classes defined by a library, the

reachability graph can still be very large. In the next subsection, we describe a

pruning strategy to further reduce the size of the reachability graph.

2.6.3 Pruning using Graph Reachability

Another key idea of our algorithm is to use standard graph reachability

to overapproximate Petri-net reachability. In particular, consider a place τ ′ in

the Petri net that is not backwards reachable from our target type τ . Because

there is no path from τ ′ to τ in N, it is unnecessary to consider markings where

τ ′ contains a non-zero number of tokens. Line 14 in Algorithm 2.2 exploits this

observation to prune redundant nodes of R(N).

To make this discussion more precise, let us define α(N) to be the graph

induced by Petri net N as follows:

Definition 2.2. (Induced graph) Let N = (P, T,E,W,M0) be a Petri net.

The graph induced by N, denoted α(N), is a directed graph (V,E ′) where V = P

and (P, P ′) ∈ E ′ iff there is a transition f ∈ T such that (P, f) ∈ E and

(f, P ′) ∈ E.

In other words, α(N) includes an edge between two places P, P ′ if it is

possible to reach P ′ from P by firing a single transition.

Example 2.4. The graph induced by the Petri net of Figure 2.4 is shown below:

P1 P2 P3
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Theorem 2. Let N be a Petri net with no path from τ ′ to τ in α(N). Let

M∗ be the target marking that assigns one token to target type τ , and let M

be a marking such that M(τ ′) > 0. Then, there is no path from M to M∗ in

R(N).

According to this theorem, if a marking M assigns a non-zero value to

any place τ ′ that is not backwards-reachable from τ in α(N), then there is no

path from M to M∗ in R(N). Hence, we can prune such a marking M without

affecting completeness. Line 14 in Algorithm 2.2 takes advantage of this fact

by only adding M ′ to R∗(N) if p is backwards reachable from τ .

2.6.4 Symbolic Encoding using ILP

So far, our algorithm explicitly constructs R∗(N) and enumerates all

paths of R∗(N). However, because R∗(N) can have many accepting paths, this

strategy is suboptimal. Instead, a better alternative is to encode this problem

symbolically and lazily generate accepting runs of N in order of increasing

cost. Toward this goal, we formulate the problem of finding an accepting

run of N as a 0-1 Integer Linear Programming (ILP) problem and obtain the

“most-promising” path by minimizing a heuristic objective function.

Our lazy symbolic path-enumeration algorithm is presented in Algo-

rithm 2.3. We consider accepting runs of N in increasing order of length,

starting from the minimum bound k (line 6). In particular, if τi is one of the

input types and τ is the desired output type, then any accepting run of N must

contain at least as many transitions as the shortest path between τi and τ in
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Algorithm 2.3 Lazy symbolic path enumeration

1: procedure LazyPathGen(N, τ1, . . . , τn, τ)

2: Input: Petri net N, input types τ1, . . . , τn,
3: output type τ
4: Output: An accepting run t of N if one exists

5: πi := ShortestPath(α(N), τi, τ) . Lower bound
6: k := max(length(π1), . . ., length(πn))

7: while true do

8: φ := Encode(N, k) . Unfolding of length k

9: ψ := true

10: while true do

11: σ := Minimize(Σicixi, φ ∧ ψ)
12: if σ = ⊥ then
13: break

14: if Check(σ) then
15: return Trace(σ)

16: ψ := ψ∧ Block(σ)

17: k := k + 1

18: return ⊥

α(N); hence, we do not need to look for accepting runs below this threshold.

Now, given a target length k, we symbolically encode the k-reachability

problem of N as a propositional formula φ. In particular, formula φ from line

8 is satisfiable if and only if there exists an accepting run of N of length k.

Our symbolic encoding is similar to previous SAT-based encodings of Petri

nets [79, 73, 52], but we make use of the observations from Sections 2.6.2

and 2.6.3. While a full discussion of our symbolic encoding is beyond the scope

of this paper, we refer the interested reader to the extended version of the

paper [28].
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The inner loop in lines 10–16 of Algorithm 2.3 lazily enumerates paths

of length k in order of increasing cost, where the cost is determined by some

heuristic evaluation function. To generate the “most-promising” path, we solve

an ILP problem with objective function Σicixi (line 11). Here, xi is a variable

that is assigned to 1 by our encoding if and only if component Ti is used

in the accepting run and to 0 otherwise. The costs ci used in the objective

function reflect the likelihood of component Ti being used in the synthesized

code—i.e., the smaller the ci, the more likely it is that component Ti is useful.

While there are many possible heuristics for assigning costs to components, our

current implementation uses a similarity metric between the name of the desired

method and the documentation and name of each library component.9 Going

back to our running example from Section 2.2, this methodology assigns a

lower cost to a component called setToRotate compared to another component

called invert because the former component is likely to be more “similar” to

the desired rotate method.

Once we obtain a satisfying assignment σ of φ that minimizes our

heuristic objective function, we ask an “oracle” to confirm or refute it (lines

14–15). In this context, the oracle completes the code sketch given by σ (see

Section 2.7) and runs the test cases. If σ does not correspond to a satisfactory

code sketch, we need to “block” this assignment in future iterations by adding

a blocking clause ψ. In the simplest case, a blocking clause can be obtained

9We refer the interested reader to the extended version of the paper [28] for a more
detailed discussion of our similarity metrics.
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as the negation of σ; however, our algorithm generates a stronger blocking

clause by performing a particular form of partial-order reduction [10, 81] on

the current path p. In particular, if p contains two consecutive calls to methods

f and g that cannot be called with the same arguments, then our algorithm

also blocks variants of this path where calls to f and g have been re-ordered.

2.7 Code Synthesis from Paths

Given an accepting run r of the Petri net described in Section 2.5

and Section 2.6, to synthesize a suitable program from r, we still need to

perform the following tasks:

(a) Use the transitions in r to create a code sketch Σ

(b) Fill the holes in Σ with program variables

Each transition in r corresponds to either an invocation of a method foo
from an API or a special κ transition. When synthesizing code, we ignore clone
transitions and only consider API calls. In particular, if some API method foo
used in r has n input parameters, the code sketch for foo’s invocation looks
like the following:

// if m is a virtual method
T_o out = #1.foo(#2, #3, #4, ..., #n+1)

// if m is a static method or constructor
T_o out = foo(#1, #2, #3, ..., #n)

In general, if trace r is of length l and contains k clone transitions, the

corresponding synthesized program contains l − k + 1 lines, where the first
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l − k lines correspond to API calls and the last line is a return statement of

the form return#m (when the program does not return void).

Now, given sketch Σ, we need to instantiate each hole with a program

variable. To achieve this goal, we generate a propositional formula φ that

encodes well-formedness requirements. In particular, our encoding introduces

Boolean variables h#i
v that are true when program variable v is used to fill hole

#i. To ensure type compatibility, we only introduce Boolean variable h#i
v if the

type of program variable v matches the type of hole #i. Furthermore, because

a program variable cannot be used before it is defined, we only introduce h#i
v

if v is a parameter or the result of an invocation that appears before hole #i.

While our construction of the Boolean variables guarantees that the

holes will be filled in a type-compatible way, we still have to ensure that no

hole remains empty and that all variables are used. Let V be the set of all

program variables and H the set of all holes in Σ. Let getV be a function

that receives V and a hole h and returns V ′ ⊆ V , where V ′ corresponds to

all program variables that can be placed in hole h. Similarly, let getH be a

function that receives H and a variable v ∈ V and returns H ′ ⊆ H, where H ′

corresponds to all holes where v can be placed. Using these definitions, we

generate a formula φ as follows:

(1) Each hole is filled with one program variable:

∀#i∈H∀v∈getV (V,#i)

∑
h#i
v = 1

(2) Each program variable is used at least once:
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∀v∈V∀#i∈getH(H,v)

∑
h#i
v ≥ 1

Example 2.5. Consider the code sketch in Section 2.4. From requirement (1),

we generate the following constraints:

h#1
pt = 1 ; h#2

pt = 1 ; h#3
t = 1 ; h#4

angle + h#4
x + h#4

y = 1

h#5
angle + h#5

x + h#5
y = 1 ; h#6

angle + h#6
x + h#6

y = 1

h#7
obj = 1;h#8

t = 1 ; h#9
obj + h#9

a = 1

Similarly, from requirement (2), we generate the constraints:

h#1
pt ≥ 1 ; h#2

pt ≥ 1 ; h#3
t ≥ 1

h#4
angle + h#5

angle + h#6
angle ≥ 1 ; h#4

x + h#5
x + h#6

x ≥ 1

h#4
y + h#5

y + h#6
y ≥ 1 ; h#7

obj + h#9
obj ≥ 1 ; h#9

a ≥ 1

Because each satisfying assignment σ to φ corresponds to a well-typed

completion of sketch Σ, we can now run the user-provided test cases on Σ[σ]. If

any test fails, we then obtain a different instantiation of the sketch by obtaining

a model of φ ∧ ¬σ in the next iteration.

2.8 Implementation

We have implemented our synthesis algorithm as a new tool called

SyPet, which consists of approximately 10,000 lines of Java code. SyPet

uses the Sat4j [15] tool for solving SAT problem, and can be instantiated with

any Java API (or combinations of APIs) to synthesize straight-line Java code.

35



Lib ID Description
Synthesis
Time
(s)

#Paths #Progs #Tests #Comps #Holes

a
p

a
ch

e
m

a
th

1 Compute the pseudo-inverse of a matrix 6.78 255 509 1 3 4

2
Compute the inner product between two vec-
tors

0.25 1 1 1 3 5

3
Determine the roots of a polynomial equa-
tion

0.64 7 13 1 3 5

4
Compute the singular value decomposition
of a matrix

0.16 1 1 1 3 4

5 Invert a square matrix 0.63 16 31 1 3 4
6 Solve a system of linear equations 28.25 790 1,605 1 6 8

7
Compute the outer product between two vec-
tors

2.12 14 48 1 4 6

8
Predict a value from a sample by linear re-
gression

2.56 25 51 2 5 5

9 Compute the ith eigenvalue of a matrix 164.60 3,197 7,636 2 6 8

g
eo

m
et

ry

10 Scale a rectangle by a given ratio 1.37 78 271 1 4 7

11
Shear a rectangle and get its tight rectangu-
lar bounds

1.76 79 280 1 4 7

12
Rotate a rectangle about the origin by the
specified number of quadrants

0.32 9 21 1 4 6

13
Rotate two dimensional geometry object by
the specified angle about a point

2.01 67 226 2 5 8

14 Perform a translation on a given rectangle 0.72 41 150 1 4 7

15
Compute the intersection of a rectangle and
the rectangular bounds of an ellipse

0.08 1 1 1 3 5

jo
d

a

16
Compute number of days since the specified
date

4.55 78 156 2 3 4

17
Compute the number of days between two
dates considering timezone

174.16 774 4,736 3 4 6

18 Determine if a given year is a leap year 35.32 306 613 3 4 5
19 Return the day of a date string 0.74 1 1 2 3 5

20
Find the number of days of a month in a
date string

35.23 175 531 2 4 6

21 Find the day of the week of a date string 47.27 126 376 2 4 6
22 Compute age given date of birth 7.90 142 288 3 3 4

js
o
u

p
,

d
o
m

,
te

x
t

23
Compute the offset for a specified line in a
document

0.31 3 5 1 3 5

24
Get a paragraph element given its offset in
the a document

1.14 33 65 1 4 6

25
Obtain the title of a webpage specified by a
URL

10.29 277 553 1 3 4

26
Return doctype of XML document gener-
ated by string

0.87 9 17 1 6 7

27 Generate an XML element from a string 0.89 26 51 1 6 7
28 Read XML document from a file 0.11 1 1 1 3 4

29
Generate an XML from file and query it us-
ing XPath

16.33 20 44 1 7 10

30
Read XML document from a file and get the
value of root attribute specified by a string

0.29 3 5 1 5 7

Figure 2.8. Summary of experimental results
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Soot [115] is used to parse the .jar files of the libraries and extract the signatures

of classes and methods, which will be converted to places and transitions in

the Petri-net, respectively.

Because many Java libraries use parametric polymorphism, our im-

plementation also supports generic types. Our handling of polymorphism is

similar to template instantiation in C++. For instance, given a polymorphic

type of the form Foo <?extendsA > and subclasses B, C of A, we generate

three different copies of type Foo, namely FooA, FooB, and FooC, each of which

corresponds to a different place in the Petri net. We also handle polymorphic

methods in a similar way and create different transitions for each instantiation

of a polymorphic API component.

As mentioned in Section 2.6, SyPet uses a symbolic encoding of

the Petri-net-reachability problem, but our implementation differs from Algo-

rithm 2.3 in one small way. Given a Petri net N, recall that Algorithm 2.3

explores all reachable paths of length k before moving on to paths of length

k + 1. While this approach simplifies our presentation, it is not a very good

implementation strategy: Because there can be many paths of length k , we

have found that a better strategy is to explore different path lengths in a

round-robin fashion. In particular, our search strategy is parametrized by two

integers n,m: Given a starting path length k, we first explore m paths of size

k, and then move on to paths of length k + 1. After exploring m paths each of

length k, . . . , k + n, we go back to exploring paths of length k. In our current

implementation, we use the values 2 and 100 for n and m, respectively.

37



2.9 Evaluation

To evaluate SyPet, we performed experiments that were designed to

answer the following questions:

1. How well does SyPet perform on component-based synthesis tasks that

involve Java APIs?

2. How many test cases does the user typically need to supply for SyPet

to succeed?

3. How complex are the programs synthesized by SyPet?

4. How does SyPet’s success rate compare with other tools for component-

based synthesis?

To answer these questions, we collected six widely-used Java APIs: a

math library (apache.commons.math), a geometry library (java.awt.geom), a

time/date library (joda− time), and text and XML-related libraries (jsoup,

w3c.dom and javax.xml). In addition to being widely used, these libraries

are reasonably large, containing 50–1215 classes and 751–9578 methods. The

average number of classes and components in each library is 528 and 4721,

respectively.

For each of these APIs, we collected a set of programming tasks that

require non-trivial interaction between different classes. Our programming

tasks come from two sources—namely, online forums like stackoverflow and
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existing Github repositories. For the former category, we manually curated

common questions that programmers typically ask about the relevant API.

For the latter category, we wrote a script to crawl over Github projects and

filter straight-line methods that use one of the aforementioned APIs. A brief

summary of each programming task is provided under the “Description” column

in Figure 2.8.

2.9.1 SyPet Performance

Setup. To evaluate SyPet on these programming tasks, we provided a

signature of the desired method as well as one or more test cases. We also

specify which libraries are used for each programming task, e.g., joda.time,

apache.commons.math, etc. However, it is easy to configure the tool to use

any set of libraries. For the benchmarks taken from Github, we used the

existing method signature (and test cases if available). For most stackoverflow

benchmarks, method signature and test cases were not available in the forum

discussion, so we wrote them ourselves. For all benchmarks, we initially

provided a single test case and used SyPet to synthesize an implementation

that works on that test case. We then manually inspected the synthesized code

and provided an additional test case if the synthesized code did not perform the

desired functionality. We then repeated this process until the code produced

by SyPet met our expectations.

The results of our evaluation are summarized in Figure 2.8 (For more

detailed results, please refer to the extended version of the paper [28]). All
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experiments are conducted using Oracle HotSpot JVM 1.7.0 75 on an Intel

Xeon(R) computer with an E5-2640 v3 CPU and 32G of memory, running

Ubuntu 14.04.

Performance and statistics. As shown in the “Synthesis Time” column of

Figure 2.8, SyPet can successfully synthesize all benchmarks in an average

of 2.33 seconds.10 Note that the synthesis time neither includes compilation

time nor the overhead of parsing the .jar files with Soot. Compilation has an

average overhead of 53% on the running time and Soot takes an average of

7.00 seconds to parse the Java libraries. The “#Paths” column indicates the

total number of code sketches generated by our tool. Note that this number is

equivalent to the number of explored paths (accepting runs) of the Petri net.

On average, SyPet explores 29 different code sketches before it identifies the

correct sequence of method calls. Furthermore, each iteration of the tool is

quite fast; SyPet finds an accepting run of the Petri net in 0.08 seconds on

average. The column labeled “#Progs” indicates the total number of programs

generated by SyPet before finding the correct program. On average, SyPet

explores 61 programs before generating an implementation that performs the

desired functionality.

While SyPet synthesizes 73% of the benchmarks in < 10 seconds and

93% in < 60 seconds, a few benchmarks (e.g., 9 and 17) take longer. We have

10If there are multiple rounds of user interaction to create additional test cases, we report
statistics for the last one. We calculate averages using geometric mean.
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manually inspected these outliers and found that the user-provided signatures

for these examples match the signature of many API components. Hence,

SyPet ends up exploring hundreds of code sketches before it synthesizes the

intended one.

Usability. In addition to successfully synthesizing the desired code in a

reasonable amount of time, we also see that SyPet does not require many test

cases from the user. In particular, as shown under the “#Tests” column in

Figure 2.8, SyPet requires 1 test case on average, with the maximum number

of test cases being 3.

Synthesized programs. The “#Comps” and “#Holes” columns in Fig-

ure 2.8 provide information about the synthesized programs. In particular,

“#Comps” reports the number of components in the code sketch (in terms of

the length of the accepting run), and “#Holes” indicates the number of holes.

The average synthesized program contains 4 components and 6 holes. These

statistics reinforce our earlier claim that SyPet combines the practicality

of API completion tools with the power of synthesis tools: While programs

synthesized by SyPet are moderately sized, straight-line code fragments,

SyPet can handle two orders of magnitude more components than previous

synthesis tools [57, 44, 43, 83]. On the other hand, while API-completion

tools [68, 47, 49, 34] can handle thousands of components, they can typically
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Figure 2.9. Comparison with other tools

only suggest very small (single-line) code snippets.11

2.9.2 Comparison with Other Tools

To validate our claim that SyPet compares favorably with existing

synthesis tools that do not require logical specifications, we also compare SyPet

with CodeHint and InSynth. CodeHint is a state-of-the-art type-based

synthesis tool, and, similar to SyPet, it takes as input a method signature

and test case. In contrast, InSynth is a type-directed API-completion tool

that can synthesize expressions of a given type.

The results of our comparison are provided in Figure 8, which shows

how many benchmarks were synthesized by each tool within a 30-minute time

limit. For both CodeHint and InSynth, we consider the synthesis task to

be successful if the correct implementation is among any of the suggested code

snippets. While SyPet is able to synthesize all 30 benchmarks, CodeHint

11For instance, 94% of the benchmarks used in evaluating InSynth [49, 47] (a state-of-the-art
completion tool) involve a single API call.
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synthesizes 13 benchmarks and InSynth can synthesize just one of them.

Because InSynth is mainly intended to be used as a single-line code-

completion tool, we also performed a second (simpler) experiment using In-

Synth. Specifically, given the full implementation of each benchmark except

a single line of code, we tried to use InSynth to complete the right-hand-side

of each assignment one at a time. We considered InSynth to be successful

if it was able to complete the right-hand-side of all assignments used in the

implementation. However, even for this easier task, InSynth was only able to

solve 14 out of the 30 benchmarks.

2.10 Summary

In this chapter, we have proposed a new type-directed approach to

component-based program synthesis. Our approach constructs a Petri net from

the signatures of API components and generates a code sketch by identifying

accepting runs of the resulting Petri net. The code sketches are then completed

using SAT-based reasoning and tested on the user-provided examples.

We evaluated SyPet on a collection of programming tasks involving

six widely-used APIs. Our evaluation shows that SyPet can synthesize the

desired program in a practical manner using few test cases. Our tool is publicly

available [5] and can be easily used by programmers to synthesize complex

APIs from test cases.
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Chapter 3

Morpheus 1

Since SyPet uses primitive types as the coarse-grained specifications

to prune ill-typed candidates, it will degrade to naive enumerative search in

some domains which typically consume and produce the same primitive types,

such as string manipulation and data wrangling. To address this disadvantage

in SyPet, this chapter presents a novel component-based synthesis algorithm

that marries the power of type-directed search with lightweight SMT-based

deduction and partial evaluation. Given a set of components together with

their over-approximate first-order specifications, our method first generates a

program sketch over a subset of the components and checks its feasibility using

an SMT solver. Since a program sketch typically represents many concrete

programs, the use of SMT-based deduction greatly increases the scalability

of the algorithm. Once a feasible program sketch is found, our algorithm

completes the sketch in a bottom-up fashion, using partial evaluation to further

increase the power of deduction for rejecting partially-filled program sketches.

We apply the proposed synthesis methodology for automating a large class of

data preparation tasks that commonly arise in data science. We have evaluated

1Parts of this chapter have appeared in [26].

44



Sketch
GenerationExamples

Components

Specs

SMT-based
Deduction

Sketch 
completion
w/ partial 
evaluation

MORPHEUS

Figure 3.1. Overview of our approach

our synthesis algorithm on dozens of data wrangling and consolidation tasks

obtained from on-line forums, and we show that our approach can automatically

solve a large class of problems encountered by R users.

3.1 Overview

A particularly interesting version of automating programming concerns

the synthesis of programs that manipulate tabular data. Such programs are

especially important in an era where data analytics has gained enormous

popularity across a wide range of disciplines, ranging from biology to business

to the social sciences. Since raw data is rarely in a form that is immediately

amenable to an analytics or visualization task, data scientists typically spend

over 80% of their time performing tedious data preparation tasks [20]. Such

tasks include consolidating multiple data sources into a single table, reshaping

data from one format into another, or adding new rows or columns to an

existing table.

While data preparation tasks would seem to be natural targets for

synthesis, many such tasks are too complex to be handled by existing techniques.
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If written in a low-level language, programs implementing these tasks would

be simply too large to be discovered by combinatorial search. One way around

this difficulty is to describe the relevant computations using a set of predefined

library functions, or components, and then synthesize programs that use these

high-level primitives. Another advantage of such a component-based synthesis

approach is its flexibility: Since the reasoning of the synthesizer is not hard-

wired to a fixed set of DSL constructs, the underlying algorithm can generate

more complex programs as new libraries emerge or as more components are

added to its knowledge base.

Unfortunately, a key challenge in developing such a general component-

based synthesis algorithm for automating data preparation tasks is scalability:

Since many languages (e.g., R) provide a large number of components that

are typically used in data preparation, the size of the search space that must

be explored by the underlying synthesis algorithm can be very large. Due

to this difficulty, prior techniques for automating table transformations (e.g.,

[51, 128]) focus on narrowly-defined DSLs, such as subsets of the Excel macro

language [51] or fragments of SQL [128]. Unfortunately, many common data

preparation tasks (e.g., those that involve reshaping tables or require performing

nested table joins) fall outside the scope of these previous approaches.

In this chapter, we propose a general component-based synthesis al-

gorithm for automating a large class of data preparation tasks. Specifically,

our synthesis algorithm is parametrized over a set of components, which can

include both higher-order and first-order combinators. The set of components
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used by the synthesizer can be customized by the user or extended over time

as new libraries emerge.

In order to address the scalability challenges that arise from our more

general formulation of the problem, we propose a new synthesis algorithm

that combines type-directed enumerative search with lightweight SMT-based

deduction and partial evaluation. In our formulation of the synthesis problem,

each component C is equipped with a logical, incomplete specification that over-

approximates C’s behavior. These specifications are utilized by the synthesizer

to perform lightweight SMT-based reasoning, with the goal of rejecting infeasible

partial programs. Furthermore, specifications are provided per component, so

they can be re-used across arbitrarily many synthesis tasks. Since our technique

does not depend on hard-coded component-specific reasoning, our approach

significantly generalizes prior uses of deduction in example-guided synthesis

(e.g., [30]).

Figure 3.1 shows a schematic illustration of our synthesis algorithm,

implemented in a tool called Morpheus. To facilitate effective use of SMT-

based deduction, our algorithm decomposes the synthesis task into two separate

sketch generation and sketch completion phases. In particular, a sketch specifies

the top-level combinators used in the program, but not their corresponding

arguments. Our algorithm uses type-directed enumerative search to lazily

explore the space of all possible program sketches and infers a specification of

each candidate sketch using the specifications of the underlying components.

Hence, once we have a candidate sketch S, we can use an SMT solver to test
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whether S is consistent with the provided input-output examples. Because a

program sketch typically represents many concrete programs, the rejection

of program sketches using SMT-based reasoning dramatically improves the

scalability of the synthesis algorithm.

Once our algorithm finds a feasible program sketch, it then tries to

complete it in a bottom-up, type-directed way. In particular, the synthesizer

evaluates sub-terms of the partial program P to infer a more precise specification

for P and again uses SMT-based reasoning with the goal of refuting the partially-

completed sketch. Hence, the use of partial evaluation further improves the

scalability of the synthesis algorithm by allowing us to refute partial programs

obtained during sketch completion.

While the core ideas underlying our algorithm are generally applicable to

any component-based synthesizer, we have used these ideas to automate table

consolidation and transformation tasks that commonly arise in data science.

Specifically, our implementation, Morpheus, takes as input a set of source

data frames in R, as well as the target data frame that should be generated

using the synthesized program. Additionally, the user can also provide a set

of components (i.e., library methods), optionally with their corresponding

first-order specifications. However, since our implementation already comes

with a built-in set of components that are commonly used in data preparation,

the user does not need to provide any additional components but can do so if

she so desires. Using the ideas outlined above, Morpheus then automatically

synthesizes an R program that can now be applied to other data frames.
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To evaluate our techniques, we have collected a suite of data preparation

tasks for the R programming language, drawn from discussions among R users

in on-line forums such as Stackoverflow. The “components” in our evaluation

are methods provided by two popular R libraries, namely tidyr and dplyr,

for data tidying and manipulation. Our experiments show that Morpheus can

successfully synthesize a diverse class of real-world data preparation programs.

We also evaluate the performance of Morpheus using component specifications

of different granularities and demonstrate that SMT-based deduction and partial

evaluation are crucial for the scalability of our approach.

3.2 Motivating Examples

In this section, we illustrate the diversity of data preparation tasks using

a few examples collected from Stackoverflow.

Example 3.1. An R user has the data frame in Figure 3.2(a), but wants to

transform it to the following format [2]:

id A 2007 B 2007 A 2009 B 2009

1 5 10 5 17

2 3 50 6 17

Even though the user is quite familiar with R libraries for data preparation, she

is still not able to perform the desired task. Given this example, Morpheus

can automatically synthesize the following R program:

df1=gather(input,var,val,id,A,B)
df2=unite(df1,yearvar,var,year)
df3=spread(df2,yearvar,val)
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Observe that this example requires both reshaping the table and appending

contents of some cells to column names.

Example 3.2. Another R user has the data frame from Figure 3.2(b) and

wants to compute, for each source location L, the number and percentage of

flights that go to Seattle (SEA) from L [3]. In particular, the output should be

as follows:

origin n prop

EWR 2 0.6666667

JFK 1 0.3333333

Morpheus can automatically synthesize the following R program to

extract the desired information:

df1=filter(input, dest == "SEA")
df2=summarize(group by(df1, origin), n = n())
df3=mutate(df2, prop = n / sum(n))

Observe that this example involves selecting a subset of the data and

performing some computation on that subset.

Example 3.3. A data analyst has the following raw data about the position of

vehicles for a driving simulator [4]:

Table 1: Table 2:

frame X1 X2 X3

1 0 0 0

2 10 15 0

3 15 10 0

frame X1 X2 X3

1 0 0 0

2 14.53 12.57 0

3 13.90 14.65 0
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Here, Table 1 contains the unique identification number for each vehicle

(e.g., 10, 15), with 0 indicating the absence of a vehicle. The column labeled

“frame” in Table 1 measures the time step, and the columns “X1”, “X2”, “X3”

track which vehicle is closer to the driver. For example, at frame 3, the vehicle

with ID 15 is the closest to the driver. Table 2 has a similar structure as Table

1 but contains the speeds of the vehicles instead of their identification number.

For example, at frame 3, the speed of the vehicle with ID 15 is 13.90 m/s. The

data analyst wants to consolidate these two data frames into a new table with

the following shape:

frame pos carid speed

2 X1 10 14.53

3 X2 10 14.65

2 X2 15 12.57

3 X1 15 13.90

Despite looking into R libraries for data preparation, the analyst still

cannot figure out how to perform this task and asks for help on Stackoverflow.

Morpheus can synthesize the following R program to automate this complex

task:

df1=gather(table1,pos,carid,X1,X2,X3)
df2=gather(table2,pos,speed,X1,X2,X3)
df3=inner join(df1,df2)
df4=filter(df3,carid != 0)
df5=arrange(df4,carid,frame)
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id year A B

1 2007 5 10

2 2009 3 50

1 2007 5 17

2 2009 6 17

flight origin dest

11 EWR SEA

725 JFK BQN

495 JFK SEA

461 LGA ATL

1696 EWR ORD

1670 EWR SEA
(a) (b)

Figure 3.2. (a) Data frame for Example 3.1; (b) for Example 3.2.

3.3 Problem Formulation

In order to precisely describe our synthesis problem, we first present

some definitions that we use throughout this chapter.

Definition 3.1. (Table) A table T is a tuple (r, c, τ, ς) where:

• r, c denote number of rows and columns respectively

• τ : {l1 : τ1, . . . , lc : τc} denotes the type of T. In particular, each li is the

name of a column in T and τi denotes the type of the value stored in T.

We assume that each τi is either num or string.

• ς is a mapping from each cell (i, j) ∈ ([0, r)× [0, c)) to a value v stored

in that cell

Given a table T = (r, c, τ, ς), we write T.row and T.col to denote r and c

respectively. We also write Ti,j as shorthand for ς(i, j) and type(T) to represent

τ . We refer to all record types {l1 : τ1, . . . , lc : τc} as type tbl. In addition,

tables with only one row are referred to as being of type row.
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Definition 3.2. (Component) A component X is a triple (f, τ, φ) where f

is a string denoting X’s name, τ is the type signature (see Figure 3.3), and φ

is a first-order formula that specifies X’s input-output behavior.

Given a component X = (f, τ, φ), the specification φ is over the vo-

cabulary x1, . . . , xn, y, where xi denotes X’s i’th argument and y denotes X’s

return value. Note that specification φ does not need to precisely capture X’s

input-output behavior; it only needs to be an over-approximation. Thus, true

is always a valid specification for any component.

With slight abuse of notation, we sometimes write X(. . .) to mean f(. . .)

whenever X = (f, τ, φ). Also, given a component X and arguments c1, . . . , cn,

we write [[X(c1, . . . , cn)]] to denote the result of evaluating X on arguments

c1, . . . , cn.

Definition 3.3. (Problem specification) The specification for a synthesis

problem is a pair (E,Λ) where:

• E is an input-output example (~Tin,Tout) such that ~Tin denotes a list of

input tables, and Tout is the output table,

• Λ = (ΛT ∪ Λv) is a set of components, where ΛT,Λv denote table trans-

formers and value transformers respectively. We assume that ΛT includes

higher-order functions, but Λv consists of first-order operators.

Given an input-output example E = (~Tin,Tout), we write Ein, Eout to

denote ~Tin, Tout respectively. Also, we classify components Λ into two disjoint
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Cell type γ := num | string
Primitive type β := γ | bool | cols
Table type tbl := {l1 : γ1, ..., ln : γn} (row <: tbl)
Type τ := β | tbl | τ1 → τ2 | τ1 × τ2

Figure 3.3. Types used in components; cols represents a list of strings
where each string is a column name in some table.

classes ΛT and Λv, where ΛT denotes table transformer components that take

at least one table as an argument and return a table. Components of all other

types are value transformers Λv. While table transformers can be higher-order

combinators, value transformers are always first-order. In the rest of the

chapter, we assume that table transformers only take tables and first-order

functions (constructed using constants and components in Λv) as arguments.

Example 3.4. Consider the selection operator σ from relational algebra, which

takes a table and a predicate and returns a table. In our terminology, such a

component is a table transformer. In contrast, an aggregate function such as

sum that takes a list of values and returns their sum is a value transformer.

Similarly, the boolean operator ≥ is also a value transformer.

Definition 3.4. (Synthesis problem) Given specification (E,Λ) where E =

(~Tin,Tout), the synthesis problem is to infer a program λ~x.e such that (a) e is a

well-typed expression over components in Λ, and (b) (λ~x.e)~Tin = Tout.

3.4 Hypotheses as Refinement Trees

Before we can describe our synthesis algorithm, we first introduce

hypotheses that represent partial programs with unknown expressions (i.e.,
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[[(?i : τ)]]∂ =?i [[(?i : τ)@(x,T)]]∂ = T [[(?i : τ)@t]]∂ = t

[[?χi (H1, . . . ,Hn)]]∂ =

{
X([[H1]]∂, . . . , [[Hn]]∂) if ∃i ∈ [1, n]. Partial([[Hi]]∂)
[[X([[H1]]∂, . . . , [[Hn]]∂)]] otherwise

Figure 3.4. Partial evaluation of hypothesis. We write Partial([[H]]∂) if
[[H]]∂ contains at least one question mark.

Term t := const| yi | X(t1, ..., tn) (X ∈ Λv)
Qualifier Q := (x,T) | λy1, . . . yn. t
Hypothesis H := (?i : τ) | (?i : τ)@Q

| ?Xi (H1, ...,Hn) (X ∈ ΛT)

Figure 3.5. Context-free grammar for hypotheses

holes). More formally, hypotheses H are defined by the grammar presented in

Figure 3.5. In the simplest form, a hypothesis (?i : τ) represents an unknown

expression of type τ . More complicated hypotheses are constructed using table

transformation components X ∈ ΛT. In particular, if X = (f, τ, φ) ∈ ΛT, a

hypothesis of the form ?Xi (H1, . . . ,Hn) represents an expression f(e1, . . . , en).

During the course of our synthesis algorithm, we will progressively fill

the holes in the hypothesis with concrete expressions. For this reason, we also

allow hypotheses of the form (?i : τ)@Q where qualifier Q specifies the term that

is used to fill hole ?i. Specifically, if ?i is of type tbl, then its corresponding

qualifier has the form (x,T), which means that ?i is instantiated with input

variable x, which is in turn bound to table T in the input-output example

provided by the user. On the other hand, if ?i is of type (τ1 × . . .× τn)→ τ ,

then the qualifier must be a first-order function λy1, . . . yn.t constructed using
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components Λv.
2

Our synthesis algorithm starts with the most general hypothesis and

progressively makes it more specific. Therefore, we now define what it means

to refine a hypothesis:

Definition 3.5. (Hypothesis refinement) Given two hypotheses H,H′, we

say that H′ is a refinement of H if it can be obtained by replacing some subterm

?i : τ of H by ?Xi (H1, . . . ,Hn) where X = (f, τ ′ → τ, φ) ∈ ΛT.

In other words, a hypothesis H′ refines another hypothesis H if it makes

it more constrained.

Example 3.5. The hypothesis H1 =?σ0(?1 : tbl, ?2 : row → bool) is a

refinement of H0 =?0 : tbl because H1 is more specific than H0. In particular,

H0 represents any arbitrary expression of type tbl, whereas H1 represents

expressions whose top-level construct is a selection.

Since our synthesis algorithm starts with the hypothesis ?0 : tbl and

iteratively refines it, we will represent hypotheses using refinement trees [80].

Effectively, a refinement tree corresponds to the abstract syntax tree (AST) for

the hypotheses from Figure 3.5. In particular, note that internal nodes labeled

?χi of a refinement tree represent hypotheses whose top-level construct is χ. If

an internal node ?χi has children labeled with unknowns ?j, . . . , ?j+n, this means

that hypothesis ?i was refined to χ(?j, . . . , ?j+n). Intuitively, a refinement tree

2We view constants as a special case of first-order functions.
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?π0 : tbl

?σ1 : tbl

?3 : tbl ?4 : row→ bool

?2 : cols

Figure 3.6. Representing hypotheses as refinement trees

?π0 : tbl

?1 : tbl@(x1,T) ?2 : cols

?π0 : tbl

?1 : tbl@
(x1,T)

?2 : cols@
[name, year]

Figure 3.7. A sketch (left) and a complete program (right)

captures the history of refinements that occur as we search for the desired

program.

Example 3.6. Consider the refinement tree from Figure 3.6, and suppose that

π, σ denote the standard projection and selection operators in relational algebra.

This refinement tree represents the partial program π(σ(?, ?), ?).The refinement

tree also captures the search history in our synthesis algorithm. Specifically,

it shows that our initial hypothesis was ?0, which then got refined to π(?1, ?2),

which in turn was refined to π(σ(?3, ?4), ?2).

As mentioned in Section 3.1, our approach decomposes the synthesis

task into two separate sketch generation and sketch completion phases. We

define a sketch to be a special kind of hypothesis where there are no unknowns

of type tbl.

Definition 3.6. (Sketch) A sketch is a special form of hypothesis where all

leaf nodes of type tbl have a corresponding qualifier of the form (x,T).
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T1

id name age GPA

1 Alice 8 4.0
2 Bob 18 3.2
3 Tom 12 3.0

T2

id name age GPA

2 Bob 18 3.2
3 Tom 12 3.0

Figure 3.8. Tables for Example 3.8

In other words, a sketch completely specifies the table transformers used

in the target program, but the first-order functions supplied as arguments to

the table transformers are yet to be determined.

Example 3.7. Consider the refinement tree from Figure 3.6. This hypothesis

is not a sketch because there is a leaf node (namely ?3) of type tbl that does

not have a corresponding qualifier. On the other hand, the refinement tree

shown in Figure 3.7 (left) is a sketch and corresponds to the partial program

π(x1, ?) where ? is a list of column names. Furthermore, this sketch states that

variable x1 corresponds to table T from the input-output example.

Definition 3.7. (Complete program) A complete program is a hypothesis

where all leaf nodes are of the form (?i : τ)@Q.

In other words, a complete program fully specifies the expression repre-

sented by each ? in the hypothesis. For instance, a hypothesis that represents

a complete program is shown in Figure 3.7 (right) and represents the relational

algebra term λx1.πname, year(x1).

As mentioned in Section 3.1, our synthesis procedure relies on perform-

ing partial evaluation. Hence, we define a function [[H]]∂, shown in Figure 3.4,
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?π0 : tbl

?σ1 : tbl

?3 : tbl@(x3,T1) age>8

?2 : cols

?π0 : tbl

?1 : tbl@
(x1,T2)

?2 : cols

Figure 3.9. Partial evaluation on hypothesis from Figure 3.6; age>8 stands
for ?4 : row→ bool@λx. (x.age > 8).

for partially evaluating hypothesis H. Observe that, if H is a complete program,

then [[H]]∂ evaluates to a concrete table. Otherwise, [[H]]∂ returns a partially

evaluated hypothesis. We write Partial([[H]]∂) if [[H]]∂ does not evaluate to a

concrete term (i.e., contains question marks).

Example 3.8. Consider hypothesis H on the left-hand side of Figure 3.9,

where T1 is Table 1 from Figure 3.8. The refinement tree on the right-hand-side

of Figure 3.9 shows the result of partially evaluating H, where T2 is Table 2

from Figure 3.8.

3.5 Synthesis Algorithm

In this section, we describe the high-level structure of our synthesis

algorithm, leaving the discussion of SMT-based deduction and sketch completion

to the next two sections.

As illustrated schematically in Figure 3.10, our synthesis algorithm

maintains a priority queue of hypotheses, which are either converted into a

sketch or refined to a more specific hypothesis during each iteration. Specifically,

the synthesis procedure picks the most promising hypothesis H according to
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Hypothesis
Refine-
ment

SMT-
based

Deduction

Sketch
Com-

pletion
Program

3
3

7

sketch

candidate
sketch

7

Figure 3.10. Illustration of the top-level synthesis algorithm

some heuristic cost metric (explained in Section 3.8) and asks the deduction

engine if H can be successfully converted into a sketch. If the deduction engine

refutes this conjecture, we then discard H but add all possible (one-level)

refinements of H into the worklist. Otherwise, we convert hypothesis H into a

sketch S and try to complete it using the sketch completion engine.

Algorithm 3.1 describes our top-level synthesis algorithm in more detail.

Given an example E and a set of components Λ, Synthesize either returns a

complete program that satisfies E or yields ⊥, meaning that no such program

exists.

Internally, the Synthesize procedure maintains a priority queue W

of all hypotheses. Initially, the only hypothesis in W is ?0, which represents

any possible program. In each iteration of the while loop (lines 5–18), we

pick a hypothesis H from W and invoke the Deduce procedure (explained

later) to check if H can be directly converted into a sketch by filling holes

of type tbl with the input variables. Note that our deduction procedure is

sound but, in general, not complete: Since component specifications are over-

approximate, the deduction procedure can return > (i.e., true) even though no
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valid completion of the sketch exists. However, Deduce returns ⊥ only when

the current hypothesis requires further refinement. Hence, the use of deduction

does not lead to a loss of completeness in our overall synthesis approach.

If Deduce does not find a conflict, we then convert the current hypoth-

esis H into a set of possible sketches (line 11). The function Sketches used at

line 11 is presented using inference rules in Figure 3.11. Effectively, we convert

hypothesis H into a sketch by replacing each hole of type tbl with one of the

input variables xj, which corresponds to table Tj in the input-output example.

Now, given a candidate sketch S, we try to complete it using the call

to FillSketch at line 12 (explained in Section 3.7). FillSketch returns

a set of complete programs P such that each p ∈ P is valid with respect to

our deduction procedure. However, as our deduction procedure is incomplete,

p may not satisfy the input-output examples. Hence, we only return p as a

solution if p satisfies E (line 14).

Tj ∈ Tin
H = (?i : tbl)

H@(xj,Tj) ∈ Sketches(H, ~Tin)
(1)

H =?i : τi
τi 6= tbl

H ∈ Sketches(H, ~Tin)
(2)

H =?Xi (H1, ...,Hn)

H′i ∈ Sketches(Hi, ~Tin)

?Xi (H′1, ...,H
′
n) ∈ Sketches(H, ~Tin)

(3)

Figure 3.11. Converting a hypothesis into a sketch.
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Algorithm 3.1 Synthesis Algorithm

1: procedure Synthesize(E,Λ)
2: input: Input-output example E and components Λ
3: output: Synthesized program or ⊥ if failure

4: W := {?0:tbl} . Init worklist

5: while W 6= ∅ do
6: choose H ∈ W ;
7: W := W\{H}
8: if Deduce(H,E) = ⊥ then . Contradiction
9: goto refine;

10: . No contradiction
11: for S ∈ Sketches(H,Ein) do
12: P := Fillsketch(S,E)
13: for p ∈ P do
14: if check(p,E) then return p

15: refine: .Hypothesis refinement

16: for X ∈ ΛT, (?i: tbl) ∈ Leaves(H) do
17: H′ := H[?Xj (?j : ~τ)/?i]
18: W := W ∪H′

19: return ⊥

Lines 16-18 of Algorithm 3.1 perform hypothesis refinement. The idea

behind hypothesis refinement is to replace one of the holes of type tbl in H

with a component from ΛT, thereby obtaining a more specific hypothesis. Each

of the refined hypotheses is added to the worklist and possibly converted into

a sketch in future iterations.
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Lib Component Description Specification

ti
d

y
r spread

Spread a key-value pair across
multiple columns.

Tout.row ≤ Tin.row
Tout.col ≥ Tin.col

gather

Takes multiple columns and col-
lapses into key-value pairs, du-
plicating all other columns as
needed.

Tout.row ≥ Tin.row
Tout.col ≤ Tin.col

d
p

ly
r select

Project a subset of columns in a
data frame.

Tout.row = Tin.row
Tout.col < Tin.col

filter
Select a subset of rows in a data
frame.

Tout.row < Tin.row
Tout.col = Tin.col

Table 3.1. Sample specifications of a few components

3.6 SMT-based Deduction

In the previous section, we described the structure of the synthesis

algorithm, but did not yet explain the underlying deductive reasoning engine.

The key idea here is to generate an SMT formula that corresponds to the

specification of the current sketch and to check whether the input-output

example satisfies this specification.

Component specifications. We use the specifications of individual compo-

nents to derive the overall specification for a given hypothesis. As mentioned

earlier, these specifications need not be precise and can, in general, over-

approximate the behavior of the components. For instance, Table 3.1 shows

sample specifications for a subset of methods from two popular R libraries.

Note that these sample specifications do not fully capture the behavior of each

component and only describe the relationship between the number of rows and
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Φ(Hi) = α([[Hi]]∂)[?i/x] if ¬Partial([[Hi]]∂)
Φ(Hi) = > else if Isleaf(Hi)

Φ(?X0 (H1, ...,Hn)) =
∧

1≤i≤n
Φ(Hi) ∧ φχ[?0/y, ~?i/~xi]

Figure 3.12. Constraint generation for hypotheses. ?i denotes the root variable of
Hi and the specification of X is φX. Function α generates an SMT formula describing
its input table.

columns in the input and output tables. 3 For example, consider the filter

function from the dplyr library for selecting a subset of the rows that satisfy

a given predicate in the data frame. The specification of filter, which is

effectively the selection operator σ from relational algebra, is given by:

Tout.row < Tin.row ∧ Tout.col = Tin.col

In other words, this specification expresses that the table obtained after applying

the filter function contains fewer rows but the same number of columns as

the input table. 4

Generating specification for hypothesis. Given a hypothesis H, we need

to generate the specification for H using the specifications of the individual

components used in H. Towards this goal, the function Φ(H) defined in

Figure 3.12 returns the specification of hypothesis H.

In the simplest case, Hi corresponds to a complete program (line 1 of

3The actual specifications used in our implementation are slightly more involved. In
Section 2.9, we compare the performance of Morpheus using two different specifications.

4In principle, the number of rows may be unchanged if the predicate does not match
any row. However, we need not consider this case since there is a simpler program without
filter that satisfies the example.
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Figure 3.12) 5. In this case, we evaluate the hypothesis to a table T and obtain

Φ(Hi) as the “abstraction” of T. In particular, the abstraction function α used in

Figure 3.12 takes as input a concrete table T and returns a constraint describing

that table. In general, the definition of the abstraction function α depends on

the granularity of the component specifications. For instance, if our component

specifications only refer to the number of rows and columns, then a suitable

abstraction function for an m× n table would yield x.row = m ∧ x.col = n. In

general, we assume variable x is used to describe the input table of α.

Let us now consider the second case in Figure 3.12 where Hi is a leaf,

but not a complete program. In this case, since we do not have any information

about what Hi represents, we return > (i.e., true) as the specification.

Finally, let us consider the case where the hypothesis is of the form

?X0 (H1, . . . ,Hn). In this case, we first recursively infer the specifications of

sub-hypotheses H1, . . . ,Hn. Now suppose that the specification of X is given

by φX(~x, y), where ~x and y denote X’s inputs and output respectively. If the

root variable of each hypothesis Hi is given by ?i, then the specification for

the overall hypothesis is obtained as:

∧
1≤i≤n

Φ(Hi) ∧ φχ[?0/y, ~?i/~xi]

Example 3.9. Consider hypothesis H from Figure 3.6, and suppose that the

5Recall that the Deduce procedure will also be used during sketch completion. While
H can never be a complete program when called from line 8 of the Synthesize procedure
(Algorithm 3.1), it can be a complete program when Deduce is invoked through the sketch
completion engine.
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specifications for relational algebra operators π and σ are the same as select

and filter from Table 3.1 respectively. Then, Φ(H) corresponds to the

following Presburger arithmetic formula:

?1.row <?3.row ∧ ?1.col =?3.col ∧
?0.row =?1.row ∧ ?0.col <?1.col

Here, ?3, ?0 denote the input and output tables respectively, and ?1 is the

intermediate table obtained after selection.

Deduction using SMT. Algorithm 3.2 presents our deduction algorithm

using the constraint generation function Φ defined in Figure 3.12. Given a

hypothesis H and input-output example E, Deduce returns ⊥ if H does not

correspond to a valid sketch. In other words, Deduce(H,E) = ⊥ means

that we cannot obtain a program that satisfies the input-output examples by

replacing holes with inputs.

As shown in Algorithm 3.2, the Deduce procedure generates a con-

straint ψ and checks its satisfiability using an SMT solver. If ψ is unsatisfiable,

hypothesis H cannot be unified with the input-output example and can there-

fore be rejected.

Let us now consider the construction of SMT formula ψ in Algorithm 3.2.

First, given a hypothesis H, the corresponding sketch must map each of the

unknowns of type tbl to one of the arguments. Hence, the constraint ϕin

generated at line 5 indicates that each leaf with label ?j corresponds to some

argument xi. Similarly, ϕout expresses that the root variable of hypothesis H
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Algorithm 3.2 SMT-based Deduction Algorithm

1: procedure Deduce(H,E)

2: input: Hypothesis H, input-output example E

3: output: ⊥ if cannot be unified with E; > otherwise

4: S := {?j | ?j : tbl ∈ leaves(H)}
5: ϕin :=

∧
?j∈S

∨
1≤i≤|Ein|

(?j = xi)

6: ϕout := (y =Rootvar(H))

7: ψ :=

(
Φ(H) ∧ ϕin ∧ ϕout∧∧

Ti∈Ein

(α(Ti)[xi/x]) ∧ α(Tout)[y/x]

)
8: return sat(ψ)

must correspond to the return value y of the synthesized program. Hence, the

constraint Φ(H) ∧ ϕin ∧ ϕout expresses the specification of the sketch in terms

of variables x1, . . . , xn, y.

Now, to check if H is unifiable with example E, we must also generate

constraints that describe each table Tiin in terms of xi and Tout in terms of

y. Recall from earlier that the abstraction function α(T) generates an SMT

formula describing T in terms of variable x. Hence, the constraint

∧
Ti∈Ein

(α(Ti)[xi/x]) ∧ α(Tout)[y/x]

expresses that each Tiin must correspond to xi and Tout must correspond to

variable y. Thus, the unsatisfiability of formula ψ at line 7 indicates that

hypothesis H can be rejected.

Example 3.10. Consider the hypothesis from Figure 3.6, and suppose that

the input and output tables are T1 and T2 from Figure 3.8 respectively. The
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Deduce procedure from Algorithm 3.2 generates the following constraint ψ:

?1.row <?3.row ∧ ?1.col =?3.col ∧?0.row =?1.row
∧ ?0.col <?1.col ∧ x1 =?3 ∧ y =?0 ∧

x1.row = 3 ∧ x1.col = 4 ∧ y.row = 2 ∧ y.col = 4

Observe that Φ(H) ∧ ϕin ∧ ϕout implies y.col < x1.col, indicating that the

output table should have fewer columns than the input table. Since we have

x1.col = y.col, constraint ψ is unsatisfiable, allowing us to reject the hypothesis.

3.7 Sketch Completion

The goal of sketch completion is to fill the remaining holes in the

hypothesis with first-order functions constructed using components in Λv.

For instance, consider the sketch π(σ(x, ?1), ?2) where π, σ are the familiar

projection and selection operators from relational algebra. Now, in order to

fill hole ?1, we need to know the columns in table x. Similarly, in order to fill

hole ?2, we need to know the columns in the intermediate table obtained using

selection.

As this example illustrates, the vocabulary of first-order functions that

can be supplied as arguments to table transformers often depends on the shapes

(i.e., schemas) of the other arguments of type tbl. For this reason, our sketch

completion algorithm synthesizes the program bottom-up, evaluating terms of

type tbl before synthesizing the other arguments. Furthermore, as discussed

in Section 3.1, the completion of program sketches in a bottom-up manner

allows us to perform partial evaluation, which in turn increases the effectiveness

of the deductive reasoning engine.
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type(T) = {l1 : τ1, ..., ln : τn}
c = [li | i ∈ Ci] for Ci ∈ P([1, n])

Γ ` c ∈ Ω(cols,T)
(Cols)

c ∈ T, type(c) = τ
τ ∈ {num, string}

Γ ` c ∈ Ω(τ,T)
(Const)

Γ ` x : τ

Γ ` x ∈ Ω(τ,T)
(Var)

Γ ` t1 ∈ Ω(τ1,T)
Γ ` t2 ∈ Ω(τ2,T)

Γ ` (t1, t2) ∈ Ω(τ1 × τ2,T)
(Tuple)

(f, τ ′ → τ, φ) ∈ Λv
Γ ` t ∈ Ω(τ ′,T)

Γ ` f(t) ∈ Ω(τ,T)
(App)

τ = (τ1 × . . .× τn → τ ′)
Γ′ = Γ ∪ {x1 : τ1, . . . xn : τn}

Γ′ ` t ∈ Ω(τ ′,T)

Γ ` (λx1, . . . , xn. t) ∈ Ω(τ,T)
(Lambda)

Figure 3.13. Table-driven type inhabitation rules.

Table-driven type inhabitation. At a high level, our sketch completion

procedure is type-directed and synthesizes an argument of type τ by enumerat-

ing all inhabitants of τ . However, as argued earlier, the valid inhabitants of type

τ are determined by a particular table. Hence, we consider the table-driven

variant of the standard type inhabitation problem: That is, given a type τ

and a concrete table T, what are all valid inhabitants of τ with respect to the

universe of constants used in T?
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We formalize this variant of the type inhabitation problem using the

inference rules shown in Figure 3.13. Specifically, these rules derive judgments

of the form Γ ` t ∈ Ω(τ,T) where Γ is a type environment mapping variables

to types. The meaning of this judgment is that, under type environment Γ,

term t is a valid inhabitant of type τ with respect to table T. Observe that we

need the type environment Γ due to the presence of function types: That is,

given a function type τ1 → τ2, we need Γ to enumerate valid inhabitants of τ2.

Since the typing rules from Figure 3.13 resemble those for the simply-typed

lambda calculus, we do not explain them in detail. The main difference is that

constants of type cols are drawn from lists of column names from the table

schema, and constants of type num and string are drawn from values in the

table.

Example 3.11. Consider table T1 from Figure 3.8 and the type environment

Γ : {x 7→ string}. Assuming eq : string × string → bool is a

component in Λv, we have eq(x,"Alice") ∈ Ω(bool,T1) using the App,

Const, Var rules. Similarly, λx.eq(x,"Bob") is also a valid inhabitant of

string→ bool with respect to T1.

Sketch completion algorithm. Our sketch completion procedure is de-

scribed using the inference rules shown in Figure 3.14. As mentioned pre-

viously, the algorithm is bottom-up and first synthesizes all arguments of

type tbl before synthesizing other arguments. Given sketch S and example E,
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S = (?i : τi)
t ∈ Ω(τi,T, ∅)

Deduce(Sf [S@t/S],E) 6= ⊥
S@t ∈ Cv(S, Sf ,E,T)

(1)

S = (?i,tbl)@(x,T)

(S,T) ∈ CT(S, Sf ,E)
(2)

S =?Xi (~H : tbl, ~H′ : τ) (τ 6= tbl)
(Pj ,Tj) ∈ CT(Hj , Sf ,E)

P′j ∈ Cv(H
′
j , Sf [~P/~H],E,T1 × . . .× Tn)

Deduce(Sf [~P/~H, ~P′/ ~H′],E) 6= ⊥
P∗ = S[~P/~H, ~P′/ ~H′]

(P∗, [[P∗]]∂) ∈ CT(S, Sf ,E)
(3)

(P,T) ∈ CT(S, S,E)

P ∈ FillSketch(S,E)
(4)

Figure 3.14. Sketch completion rules.

FillSketch(S,E) returns a set of hypotheses representing complete well-typed

programs that are valid with respect to our deduction system.

The first rule in Figure 3.14 corresponds to a base case of the FillS-

ketch procedure and is used for completing hypotheses that are not of type

tbl. Here, S represents a subpart of the sketch that we want to complete, T is

the table that should be used in completing S, and Sf is the full sketch. Since

S represents an unknown expression of type τi, we use the type inhabitation

rules from Figure 3.13 to find a well-typed instantiation t of τi with respect

to table T. Given completion t of ?i, the full sketch now becomes Sf [S@t/S],

and we use the deduction system to check whether the new hypothesis is valid.
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Since our deduction procedure uses partial evaluation, we may now be able

to obtain a concrete table for some part of the sketch, thereby enhancing the

power of deductive reasoning.

The second rule from Figure 3.14 is also a base case of the FillSketch

procedure. Since any leaf ?i of type tbl is already bound to some input

variable x in the sketch, there is nothing to complete; hence, we just return S

itself.

Rule (3) corresponds to the recursive step of the FillSketch procure

and is used to complete a sketch with top-most component χ. Specifically,

consider a sketch of the form ?χi (~H, ~H′) where ~H denotes arguments of type tbl

and ~H′ represents first-order functions. Since the vocabulary of ~H′ depends on

the completion of ~H (as explained earlier), we first recursively synthesize ~H

and obtain a set of complete programs ~P, together with their partial evaluation

T1, . . . ,Tn. Now, observe that each H′j ∈ ~H′ can refer to any of the columns

in T1 × ...× Tn; hence we recursively synthesize the remaining arguments ~H′

using table T1 × ... × Tn. Now, suppose that the hypotheses ~H and ~H′ are

completed using terms ~P and ~P′ respectively, and the new (partially filled)

sketch is now Sf [~P/~H, ~P′/ ~H′]. Since there is an opportunity for rejecting this

partially filled sketch, we again check whether Sf [~P/~H, ~P′/ ~H′] is consistent

with the input-output examples using deduction.

Example 3.12. Consider hypothesis H from Figure 3.6, the input table T1

from Figure 3.8, and the output table T3 from Figure 3.15. We can success-

fully convert this hypothesis into the sketch λx.?π0 (?σ1 (?3@(x,T1), ?4), ?2). Since
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T3

id name age

2 Bob 18
3 Tom 12

T4

id name age GPA

2 Bob 18 3.2

Figure 3.15. Tables for Example 3.12

FillSketch is bottom-up, it first tries to fill hole ?4. In this case, suppose

that we try to instantiate hole ?4 with the predicate age > 12 using rule (1)

from Figure 3.14. However, when we call Deduce on the partially-completed

sketch λx.?π0 (?σ1(?3@(x,T1), age > 12), ?2), ?1 is refined as T4 in Figure 3.15

and we obtain the following constraint:

?1.row <?3.row ∧ ?1.col =?3.col ∧?0.row =?1.row ∧
?0.col <?1.col ∧ x1 =?3 ∧ x1.row = 3 ∧ x1.col = 4 ∧

y =?0 ∧ y.row = 2 ∧ y.col = 3 ∧ ?1.col = 4 ∧ ?1.row = 1

Note that the last two conjuncts (underlined) are obtained using partial evalua-

tion. Since this formula is unsatisfiable, we can reject this hypothesis without

having to fill hole ?2.

3.8 Implementation

We have implemented our synthesis algorithm in a tool called Mor-

pheus, written in C++. Morpheus uses the Z3 SMT solver [21] with the

theory of Linear Integer Arithmetic for checking the satisfiability of constraints

generated by our deduction engine.

Recall from Section 3.5 that Morpheus uses a cost model for picking

the “best” hypothesis from the worklist. Inspired by previous work on code com-

pletion [88], we use a cost model based on a statistical analysis of existing code.

73



Specifically, Morpheus analyzes existing code snippets that use components

from ΛT and represents each snippet as a ‘sentence’ where ‘words’ correspond

to components in ΛT. Given this representation, Morpheus uses the 2-gram

model in SRILM [110] to assign a score to each hypothesis. Specifically, we

train our language model by collecting approximately 15,000 code snippets

from Stackoverflow using the search keywords tidyr and dplyr. For each

code snippet, we ignore its control flow and represent it using a “sentence”

where each “word” corresponds to an API call. Based on this training data,

the hypotheses in the worklist W from Algorithm 3.1 are then ordered using

the scores obtained from the n-gram model.

Following the Occam’s razor principle, Morpheus explores hypotheses

in increasing order of size. However, if the size of the correct hypothesis is

a large number k, Morpheus may end up exploring many programs before

reaching length k. In practice, we have found that a better strategy is to

exploit the inherent parallelism of our algorithm. Specifically, Morpheus uses

multiple threads to search for solutions of different sizes and terminates as soon

as any thread finds a correct solution.

3.9 Evaluation

To evaluate our method, we collected 80 data preparation tasks, all

of which are drawn from discussions among R users on Stackoverflow. The

Morpheus project webpage [1] contains (i) the Stackoverflow post for each

benchmark, (ii) an input-output example, and (iii) the solution synthesized by
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Category Description #
No deduction Spec 1 Spec 2

#Solved Time #Solved Time #Solved Time

C1
Reshaping dataframes from either “long” to
“wide” or “wide” to “long”

4 2 198.14 4 15.48 4 6.70

C2
Arithmetic computations that produce val-
ues not present in the input tables

7 6 5.32 7 1.95 7 0.59

C3
Combination of reshaping and string ma-
nipulation of cell contents

34 28 51.01 31 6.53 34 1.63

C4 Reshaping and arithmetic computations 14 9 162.02 10 90.33 12 15.35

C5
Combination of arithmetic computations
and consolidation of information from mul-
tiple tables into a single table

11 7 8.72 10 3.16 11 3.17

C6
Arithmetic computations and string manip-
ulation tasks

2 1 280.61 2 49.33 2 3.03

C7 Reshaping and consolidation tasks 1 0 7 1 135.32 1 130.92

C8
Combination of reshaping, arithmetic com-
putations and string manipulation

6 1 7 3 198.42 6 38.42

C9
Combination of reshaping, arithmetic com-
putations and consolidation

1 0 7 0 7 1 97.3

Total 80
54

95.53
68

8.57
78

3.59
(67.5%) (85.0%) (97.5%)

Figure 3.16. Summary of experimental results. All times are median in
seconds and 7 indicates a timeout (> 5 minutes).

Morpheus.

Our evaluation aims to answer the following questions:

Q1. Can Morpheus successfully automate real-world data preparation tasks

and what is its running time?

Q2. How big are the benefits of SMT-based deduction and partial evaluation

in the performance of Morpheus?

Q3. How complex are the data preparation tasks that can be successfully

automated using Morpheus?

Q4. Are there existing synthesis tools that can also automate the data prepa-

ration tasks supported by Morpheus?
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To answer these questions, we performed a series of experiments on the

80 data preparation benchmarks, using the input-output examples provided

by the authors of the Stackoverflow posts. In these experiments, we use the

table transformation components provided by two popular table manipulation

libraries, namely tidyr and dplyr. The value transformers we use in our

evaluation include standard comparison operators such as < , > as well as

aggregate functions like MEAN and SUM. In total, our experiments make use of

a total of 20 different components. All experiments are conducted on an Intel

Xeon(R) computer with an E5-2640 v3 CPU and 32G of memory, running the

Ubuntu 16.04 operating system and using a timeout of 5 minutes.

Summary of results. The results of our evaluation are summarized in

Figure 3.16. Here, the “Description” column provides a brief English description

of each category, and the column “#” shows the number of benchmarks in

each category. The “No deduction” column indicates the running time of a

version of Morpheus that uses purely enumerative search without deduction.

(This basic version still uses the statistical analysis described in Section 3.8

to choose the “best” hypothesis.) The columns labeled “Spec 1” and “Spec

2” show variants of Morpheus using two different component specifications.

Specifically, Spec 1 is less precise and only constrains the relationship between

the number of rows and columns, as shown in Table 3.1. On the other hand,

Spec 2 is strictly more precise than Spec 1 and also uses other information,

such as cardinality and number of groups.
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Performance. As shown in Figure 3.16, the full-fledged version of Mor-

pheus (using the more precise component specifications) can successfully

synthesize 78 out of the 80 benchmarks and times out on only 2 problems.

Hence, overall, Morpheus achieves a success rate of 97.5% within a 5-minute

time limit. Morpheus’s median running time on these benchmarks is 3.59

seconds, and 86.3% of the benchmarks can be synthesized within 60 seconds.

However, it is worth noting that running time is actually dominated by the R

interpreter: Morpheus spends roughly 68% of the time in the R interpreter,

while using only 15% of its running time to perform deduction (i.e., solve SMT

formulas). Since the overhead of the R interpreter can be significantly reduced

with sufficient engineering effort, we believe there is considerable room for

improving Morpheus’s running time. However, even in its current form, these

results show that Morpheus is practical enough to automate a diverse class

of data preparation tasks within a reasonable time limit.

Impact of deduction. As Figure 3.16 shows, deduction has a huge positive

impact on the algorithm. The basic version of Morpheus that does not

perform deduction times out on 32.5% of the benchmarks and achieves a

median running time of 95.53 seconds. On the other hand, if we use the coarse

specifications given by Spec 1, we already observe a significant improvement.

Specifically, using Spec 1, Morpheus can successfully solve 68 out of the 80

benchmarks, with a median running time of 8.57 seconds. These results show

that even coarse and easy-to-write specifications can have a significant positive
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Figure 3.17. Cumulative running time of Morpheus

impact on synthesis.

Impact of partial evaluation. Figure 3.17 shows the cumulative running

time of Morpheus with and without partial evaluation. Partial evaluation

significantly improves the performance of Morpheus, both in terms of running

time and the number of benchmarks solved. In particular, without partial

evaluation, Morpheus can only solve 62 benchmarks with median running

time of 34.75 seconds using Spec 1 and 64 benchmarks with median running

time of 17.07 seconds using Spec 2. When using partial evaluation, Morpheus

can prune 72% of the partial programs without having to fill all holes in the

sketch, thereby resulting in significant performance improvement.

Impact of language model. As described in Section 3.8, Morpheus uses

a statistical language model (namely 2-grams) for choosing the most promising

hypothesis in its worklist. Even though the idea of using statistical language
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Figure 3.18. Impact of language model

models is not a contribution of this paper and is inspired by the prior work

of Raychev et al. [88], we nevertheless evaluate its impact on our benchmark

set consisting of various data preparation tasks. Specifically, Figure 3.18

shows the percentage of benchmarks solved by Morpheus with and without a

language model for ordering the hypotheses. As shown in Figure 3.18, the use

of the language model has a significant positive impact on the performance of

Morpheus. Specifically, while Morpheus can solve 97.5% of the benchmarks

using the statistical language model, it is only able to solve 76.25% of the

benchmarks without the 2-gram model. However, it is worth noting that

the statistical language model alone is not sufficient for solving many of our

benchmarks. In particular, if we disable the deductive reasoning capabilities

of Morpheus, we can only solve 67.5% of the benchmarks. Furthermore,

Morpheus can only solve 28.75% of the benchmarks if we disable both

deduction as well as the statistical language model.

Complexity of benchmarks. To evaluate the complexity of tasks that

Morpheus can handle, we conducted a small user study involving 9 partici-
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Figure 3.19. Comparison with SQLSynthesizer

pants. Of the participants, four are senior software engineers at a leading data

analytics company and do data preparation “for a living”. The remaining 5

participants are proficient R programmers at a university and specialize in

statistics, business analytics, and machine learning. We chose 5 representative

examples from our 80 benchmarks and asked the participants to solve as many

of them as possible within one hour. These benchmarks belong to four cate-

gories (C2, C3, C4, C7) and take between 0.22 and 204.83 seconds to be solved

by Morpheus.

In our user study, the average participant completed 3 tasks within the

one-hour time limit; however, only 2 of these tasks were solved correctly on

average. These results suggest that our benchmarks are challenging even for

proficient R programmers and expert data analysts.

Comparison with λ2. To demonstrate the advantages of our proposed

approach over previous component-based synthesis techniques, we compared

Morpheus with λ2 [30], which is a general-purpose tool for synthesizing

higher-order functional programs over data structures.
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Since λ2 does not have built-in support for tables, we evaluated λ2 on the

benchmarks from Figure 3.16 by representing each table as a list of lists. Even

though we confirmed that λ2 can synthesize very simple table transformations

involve projection and selection, it was not able to successfully synthesize any

of the benchmarks used in our evaluation. Upon further inspection, we believe

that λ2 fails to synthesize many of our benchmarks for two reasons: First,

hypotheses in λ2 are restricted to be of the form λx. F e x, where F is a higher-

order combinator, e is an expression and x is the input. However, many of

our benchmarks require more general hypotheses of the form λx.F e1 e2 where

e1, e2 are arbitrary expressions. Furthermore, λ2 can only perform deduction

for a built-in set of higher-order combinators for which it is possible to infer

concrete input-output examples for the sub-components. However, many of

the benchmarks used in our evaluation are difficult to express concisely using

the set of combinators supported by λ2.

Comparison with SQLSynthesizer. Since Morpheus is a general tool

that can be used to synthesize many kinds of table transformations, we also com-

pare it against SQLSynthesizer, which is a specialized tool for synthesizing

SQL queries from examples [128]. To compare Morpheus with SQLSyn-

thesizer, we used two different sets of benchmarks. First, we evaluated

SQLSynthesizer on the 80 data preparation benchmarks from Figure 3.16.

Note that some of the data preparation tasks used in our evaluation cannot

be expressed using SQL, and therefore fall beyond the scope of a tool like
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SQLSynthesizer. Among our 80 benchmarks, SQLSynthesizer was only

able to successfully solve one.

To understand how Morpheus compares with SQLSynthesizer on

a narrower set of table transformation tasks, we also evaluated both tools

on the 28 benchmarks used in evaluating SQLSynthesizer [128]. To solve

these benchmarks using Morpheus, we used the same input-output tables

as SQLSynthesizer and used a total of eight higher-order components that

are relevant to SQL. As shown in Figure 3.19, Morpheus also outperforms

SQLSynthesizer on these benchmarks. In particular, Morpheus can solve

96.4% of the SQL benchmarks with a median running time of 1 second whereas

SQLSynthesizer can solve only 71.4% with a median running time of 11

seconds.

3.10 Summary

In this chapter, we have presented a new component-based synthesis

algorithm that combines type-directed enumerative search with lightweight

SMT-based deduction and partial evaluation. Given a set of components

equipped with over-approximate logical specifications, our approach automat-

ically infers logical specifications of partial programs and uses SMT-based

reasoning to prune the search space. Our approach further increases the power

of its deductive reasoning engine by employing partial evaluation. We have

applied the proposed ideas to automate a large class of data preparation tasks

that involve table consolidation and reshaping. As shown in our experimental
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evaluation, our tool, Morpheus, can automate challenging data wrangling

tasks that are difficult even for proficient R programmers. Our tool is publicly

available [1] and will also be released as an RStudio plug-in.
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Chapter 4

Neo 1

While both SyPet and Morpheus incorporate statistical models to

speed up enumerative search and use logical reasoning to prune search space,

none of them can learn from past mistakes. To address this limitation as well

as provide a unified framework that combines statistical models and logical

reasoning in a natural way, in this chapter, we propose a new conflict-driven

program synthesis technique that is capable of learning from past mistakes.

Given a spurious program that violates the desired specification, our synthesis

algorithm identifies the root cause of the conflict and learns new lemmas that

can prevent similar mistakes in the future. Specifically, we introduce the notion

of equivalence modulo conflict and show how this idea can be used to learn

useful lemmas that allow the synthesizer to prune large parts of the search space.

We have implemented a general-purpose CDCL-style program synthesizer called

Neo and evaluate it in two different application domains, namely data wrangling

in R and functional programming over lists. Our experiments demonstrate the

substantial benefits of conflict-driven learning and show that Neo outperforms

two state-of-the-art synthesis tools, Morpheus and DeepCoder, that target

1Parts of this chapter will appear in [25].
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these respective domains.

4.1 Overview

So far we have shown two program synthesizers that can automate a

wide range of tasks. However, a common shortcoming of existing techniques is

that they are not able to learn from past mistakes. To understand what we

mean by this, consider the input-output specification [1, 2, 3] 7→ [1, 2] and a

candidate program of the form λx. map(x, ...). Here, it is easy to see that no

program of this shape can satisfy the given specification, since the output list is

shorter than the input list, but the map combinator yields an output list whose

length is the same as the input list. In fact, we can take this generalization one

step further and deduce that no program of the form λx.f(x, ...) can satisfy

the specification as long as f yields a list whose length is greater than or equal

to that of the input list. This kind of reasoning allows the synthesizer to learn

from past mistakes (in this case, the spurious program λx. map(x, ...)) and rule

out many other erroneous programs (e.g., λx.reverse(x), λx. sort(x)) that

are guaranteed not to satisfy the desired specification.

In this chapter, we present a new conflict-driven synthesis algorithm

that is capable of learning from its past mistakes. Our method is inspired by the

success of conflict-driven learning in automated theorem provers and analyzes

conflicts to learn useful lemmas that guide the search. Furthermore, our method

can synthesize programs over any arbitrary DSL and is not restricted to any

particular application domain.
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Figure 4.1. High-level architecture of our synthesis algorithm

At a high level, the general structure of our synthesis algorithm resembles

the architecture of SAT and SMT solvers based on conflict-driven clause learning

(CDCL). As shown in Figure 4.1, our synthesis algorithm consists of three key

components, namely Decide, Deduce, and AnalyzeConflict :

• Decide: Given a partial program P with holes (representing unknown

program fragments), the Decide component selects which hole to fill and

determines how to fill it using the constructs in the DSL.

• Deduce: Given the current partial program, the Deduce component makes

new inferences based on the syntax and semantics of the DSL as well as a

knowledge base, which keeps track of useful “lemmas” learned during the

execution of the algorithm.

• Analyze Conflict: When the Deduce component detects a conflict (mean-

ing that the partial program is infeasible), the goal of AnalyzeConflict is

to identify the root cause of failure and learn new lemmas that should be

added to the knowledge base. Because the decisions made by the Decide
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component need to be consistent with the knowledge base, these lemmas

prevent the algorithm from making similar bad decisions in the future.

Based on this discussion, the main technical contributions of this chapter

are two-fold: First, we introduce the paradigm of synthesis using conflict

driven learning and propose a CDCL-style architecture for building program

synthesizers. Second, we propose a new technique for analyzing conflicts and

automatically learning useful lemmas that should be added to the knowledge

base. Our learning algorithm is based on the novel notion of equivalence modulo

conflict. In particular, given a spurious partial program P that uses DSL

construct (“component”) c, our conflict analysis procedure automatically infers

other components c1, . . . , cn such that replacing c with any of these ci’s yields

a spurious program P ′ with the same root cause of failure as P . We refer to

such components as being equivalent modulo conflict (EMC) and our conflict

analysis procedure infers a maximal set of EMC components from an infeasible

partial program. Our learning algorithm then uses these equivalence classes

to identify other infeasible partial programs and adds them as lemmas to the

knowledge base. Because the assignments made by Decide must be consistent

with the knowledge base, the lemmas learnt using AnalyzeConflict allow the

synthesizer to prune a large number of programs from the search space.

We have implemented the proposed synthesis technique in a tool called

Neo and evaluate it in two different application domains that have been

explored in prior work: First, we use Neo to perform data wrangling tasks in
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R and compare Neo with Morpheus, a state-of-the-art synthesizer targeting

this domain [26]. Second, we evaluate Neo in the domain of list manipulation

programs and compare it against a re-implementation of DeepCoder, a

state-of-the-art synthesizer based on deep learning [13]. Our experiments

clearly demonstrate the benefits of learning from conflicts and show that our

general-purpose synthesis algorithm outperforms state-of-the-art synthesizers

that target these domains.

4.2 Motivating Example

Suppose that we are given a list containing the scores of different teams

in a soccer league, and our goal is to write a program to compute the total

scores of the best k teams. For instance, if the input list is [49, 62, 82, 54, 76]

and k is specified as 2, then the program should return 158 (i.e., 82 + 76). It is

easy to see that the computeKSum procedure below (written in Haskell-like

syntax) implements the desired functionality:

1 computeKSum : : List −> Int −> Int
2 computeKSum x1 x2 =
3 - - S o r t x 1 i n a s c e n d i n g o r d e r

4 L1 <− sort x1
5 - - L 2 i s x 1 i n d e s c e n d i n g o r d e r

6 L2 <− reverse L1
7 - - T a k e L2 ’ s f i r s t x 2 e n t r i e s

8 L3 <− take L2 x2
9 - - C o m p u t e s u m o f a l l e l e m e n t s i n L 3

10 sum L3

We now explain our key ideas using this simple example and the small

DSL shown in Figure 4.2. In this section (and throughout this chapter), we
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N → 0 | ... | 10 | xi | last(L) | head(L) |sum(L)

| maximum(L) | minimum(L)

L→ take(L,N) | filter(L, T )| sort(L) | reverse(L) | xi
T → geqz | leqz | eqz

Figure 4.2. The grammar of a simple DSL for manipulating lists of integers;
in this grammar, N is the start symbol.

represent programs using their abstract syntax tree (AST) representation. For

instance, the AST shown in Figure 4.3 corresponds to the partial program

head(take(filter(x1,?),?)), where each question mark is a hole (i.e.,

unknown program) yet to be determined. We think of partial programs as

assignments from each AST node to a specific component. For instance, the

AST from Figure 4.3 corresponds to the following partial assignment :

{N0 7→ head, N1 7→ take, N3 7→ filter, N7 7→ x1}

Decide. Given an AST representing a partial program P (initially, a single

unassigned root node), our synthesis algorithm determines how to fill one of the

holes in P . In other words, thinking of partial programs as partial assignments

from AST nodes to DSL constructs, the goal of the Decide component is to

choose an unassigned node N in the AST and determine which DSL construct

to assign to N .

Our technique requires the assignments made by the Decide component

to obey any lemmas that have been added to the knowledge base Ω. In

particular, Ω consists of a set of propositional formulas over variables ci,χ whose
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Component Specification

head x1.size > 1 ∧ y.size = 1 ∧ y.max ≤ x1.max
take y.size < x1.size ∧ y.max ≤ x1.max ∧

x2 > 0 ∧ x1.size > x2

filter y.size < x1.size ∧ y.max ≤ x1.max

Table 4.1. Examples of component specifications. Here, y denotes the output,
and xi denotes the i’th input.

head

take

filter

x1

Figure 4.3. An example partial program

truth value indicates whether AST node with unique identifier i is assigned

to component χ. Thus, making an assignment consistent with the knowledge

base requires checking the satisfiability of a propositional formula. However,

since there are typically many different decisions that are consistent with the

knowledge base, the Decide component additionally consults a statistical model

to predict the most “promising” assignment.

Deduce. After every assignment made by the Decide component, Neo per-

forms deduction to check whether the current partial program is feasible. 2

Our deduction engine utilizes the semantics of the DSL, provided as first-order

specifications of each component. For instance, Table 4.1 shows the specifica-

2Note that SMT-based deduction is not a contribution of this chapter; however, it is a
prerequisite for learning from conflicts.
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tions for three DSL constructs, namely take, head and filter. Here, the

specification for take says that the maximum element and size of the output

list are no larger than those of the input list. The specification for head is

similar and states that the maximum element of the output is no larger than

that of the input. Finally, the specification for filter says that the size (resp.

maximum) of the output is smaller (resp. not larger) than the size of the input

list.

Neo uses the specifications of each component to infer a specification

of the current partial program. In particular, Figure 4.4 shows the inferred

specification ΦP for partial program P from Figure 4.3. Observe that ΦP uses

the specifications of head, take, and filter to infer a specification for each

node in the AST. Our method determines the feasibility of partial program P

by checking the satisfiability of the SMT formula ΦP ∧Φ where Φ represents the

user-provided specification. In this case, the input-output example corresponds

to the specification x1 = [49, 62, 82, 54, 76]∧ y = 158. Observe that the formula

ΦP ∧ Φ is unsatisfiable: Since x1.max = 82, ΦP implies y ≤ 82, contradicting

the fact that y = 158.

Analyzing conflicts. The key novelty of our technique is its ability to

analyze conflicts and learn useful lemmas that prevent similar bad decisions in

the future. In particular, Neo learns new lemmas by identifying components

that are equivalent modulo conflict. That is, given an infeasible partial program

P containing component χ, our method identifies other components χ1, . . . , χn
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ΦP = φN0 ∧ φN1 ∧ φN3 ∧ φN7

φN0 = y ≤ v1.max ∧ v1.size > 1 ∧ y.size = 1

φN1 = v1.max ≤ v3.max ∧ v1.size < v3.size ∧
v4 > 0 ∧ v3.size > v4

φN3 = v3.size < v7.size ∧ v3.max ≤ v7.max

φN7 = x1 = v7

Figure 4.4. Specification of partial program from Figure 4.3, where vi rep-
resents the intermediate value at node Ni and variables x1 and y denote the
input and output, respectively.

such that replacing χ with any χi results in another infeasible program. By

computing these equivalence classes, we can generalize from the current conflict

and learn many other partial programs that are guaranteed to be infeasible.

This information is then encoded as a SAT formula and added to the knowledge

base to avoid similar conflicts in the future.

We now illustrate how Neo learns new lemmas after it detects the

infeasibility of partial program P from Figure 4.3. To identify the root cause

of the conflict, Neo starts by computing a minimal unsatisfiable core (MUC)

of the formula ΦP ∧ Φ. For this example, the MUC includes all underlined

predicates in Figure 4.4. We represent the MUC as a set of triples (ϕi, Ni, χi)

where χi is a component labeling node Ni and each formula ϕi corresponds to

a part of χi’s specification. For our running example, the MUC corresponds to

the following set κ:{
(y ≤ x1.max,N0, head), (y.max ≤ x1.max,N1, take)

(y.max ≤ x1.max,N3, filter), (y = x1, N7, x1)

}
Our learning algorithm infers components that are equivalent modulo
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conflict by analyzing the MUC. In particular, let (ϕ,N, χ) be an element of the

MUC, and let χ′ be another component with specification γ. Now, if γ logically

implies ϕ, we can be sure that replacing the annotation of node N with χ′ in

partial program P will result in an infeasible program with the same MUC

as P . Thus, we can conclude that χ and χ′ are equivalent modulo conflict at

node N .

Going back to our example, the partial program from Figure 4.3 contains

the take component, and the relevant part of its specification that appears

in the MUC is the predicate y.max ≤ x1.max. Since the specification of

sort (see Table 4.1) logically implies y.max ≤ x1.max, we can conclude that

changing the annotation of node N1 to sort will still result in a spurious

program. Using this strategy, we can learn that the following components all

belong to the same equivalence class with respect to the current conflict:

take ≡N1 reverse ≡N1 sort ≡N1 filter

In other words, changing the assignment of node N1 to sort, reverse, or

filter is guaranteed to result in another infeasible program. Using the

same kind of reasoning for other nodes, we can learn a lemma (whose form is

described in Section ??) that allows us to rule out 63 other partial programs

that would have otherwise been explored by the synthesis algorithm. Thus,

learning from conflicts allows us to prune large parts of the search space.
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4.3 Preliminaries

Before describing our algorithm in detail, we first provide some back-

ground that will be used throughout the paper.

4.3.1 Domain-Specific Language & Semantics

Our synthesis algorithm searches the space of programs described by a

given domain-specific language (DSL), which consists of a context-free grammar

G together with the semantics of DSL operators (i.e., “components”).

Syntax. The syntax of the DSL is described by a context-free grammar G.

In particular, G is a tuple (V,Σ, R, S), where V is the set of nonterminals, Σ

represents terminals, R is the set of productions, and S is the start symbol.

The terminals χ ∈ Σ correspond to built-in DSL operators (e.g., +, concat,

map etc), constants, and variables. We assume that G always includes special

terminal symbols x1, ..., xk ∈ Σ denoting the k program inputs. The productions

p ∈ R have the form p = (A → χ(A1...Ak)), where χ ∈ Σ is a DSL operator

and A,A1, ..., Ak ∈ V are nonterminals. We use the notation Σk to denote DSL

operators of arity k, and we write ΣA,A1...Ak
to denote DSL operators χ such

that R contains a production A→ χ(A1...Ak).

Semantics. As mentioned in Section 4.1, our synthesis algorithm uses the

semantics of DSL constructs to make useful deductions and analyze conflicts.

We assume that the DSL semantics are provided as a mapping Ψ from each
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DSL operator χ ∈ Σn to a first-order formula over variables y, x1, . . . , xn where

xi represents the i’th argument of χ and y represents its return value. For

instance, consider a unary function inc that returns its argument incremented

by 1. Then, we have Ψ(inc) = (y = x1 + 1).

4.3.2 Partial Programs

Since the key data structure maintained by our synthesis algorithm is a

partial program, we now introduce some terminology related to this concept.

Definition 4.1. (Partial program) Given a DSL defined by context-free

grammar G = (V,Σ, R, S), a partial program P in this DSL is a string P ∈

(Σ ∪ V )∗ such that S
∗

=⇒ P .

In contrast to a concrete program which only contains symbols from Σ,

a partial program may contain non-terminals. We say that concrete program

P ′ (or just “program” for short) is a completion of P if P
∗

=⇒ P ′.

We represent partial programs as abstract syntax trees (AST). Given

partial program P , we use the notation Nodes(P ), Internal(P ), and Leaves(P )

to denote the set of all nodes, internal nodes, and leaves in P , respectively. We

also write Children(N) to denote the children of internal node N .

In our representation of partial programs, every node N is labeled with

a corresponding grammar symbol AN ∈ V such that N may be expanded using

any production whose left-hand side is AN . Every node N is also optionally

labeled with a symbol χN ∈ Σ indicating that N has been expanded using the
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production AN → χN (. . .). Observe that internal nodes in the AST must have

these χN annotations, but leaf nodes do not. In particular, any leaf node N

without a χN annotation represents an unknown program fragment; thus, we

refer to such nodes as holes. Given partial program P , we write Holes(P ) to

represent the set of all holes in P .

Example 4.1. Consider the partial program from Figure 4.3. Here, we have

the following annotations for each node:

AN0 = N AN1 = L AN3 = L
AN4 = N AN7 = L AN8 = T
χN0 = head χN1 = take χN3 = filter

χN7 = x1

Observe that leaf nodes N4 and N8 correspond to holes in this partial program.

4.4 Synthesis Algorithm

In this section, we describe the architecture of our conflict-driven synthe-

sis algorithm and explain each of its components in detail. However, because

conflict analysis is one of the main contributions of this paper, we defer a

detailed discussion of AnalyzeConflict to Section 4.5.

4.4.1 Overview

Algorithm 4.1 shows the high-level structure of our synthesis algorithm,

which takes as input a specification Φ that must be satisfied by the synthesized

program as well as a domain-specific language with syntax G and semantics

Ψ. We assume that specification Φ is an SMT formula over variables ~x, y,
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Algorithm 4.1 Given DSL with syntax G and semantics Ψ as well as a
specification Φ, Synthesize either returns a DSL program P such that P |= Φ
or ⊥ if no such program exists.

1: procedure Synthesize(G, Ψ, Φ)
2: P ← Root(S)
3: Ω← ∅
4: while true do
5: (H, p)← Decide(P, G, Φ, Ω)
6: P ← Propagate(P, G, (H, p), Ω)
7: κ← CheckConflict(P, Ψ, Φ)
8: if κ 6= ∅ then
9: Ω← Ω ∪ AnalyzeConflict(P, G, Ψ, κ)

10: P ← Backtrack(P, Ω)

11: if UNSAT(
∧
φ∈Ω φ) then

12: return ⊥
13: else if IsConcrete(P ) then
14: return P

which represent the inputs and output of the program respectively. The output

of the Synthesize procedure is either a concrete program P in the DSL

or ⊥, meaning that there is no DSL program that satisfies Φ. As we will

prove later, our synthesis algorithm is both sound and complete with respect

to the provided DSL semantics. In particular, the program P returned by

Synthesize is guaranteed to satisfy Φ with respect to Ψ, and Synthesize

returns ⊥ only if there is indeed no DSL program that satisfies Φ.

Internally, our synthesis algorithm maintains two data structures, namely

a partial program P and a knowledge base Ω. The knowledge base Ω is a set of

learnt lemmas derived from the input specification Φ with respect to Ψ, where

each lemma is represented as a propositional (SAT) formula. The Synthesize
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procedure initializes P to contain a single root node labeled with the start

symbol S (line 3); thus, P initially represents any syntactically legal DSL

program. The knowledge base Ω is initialized to the empty set (line 4), but

will be updated by the algorithm as it learns new lemmas from each conflict.

The key part of the synthesis procedure is the conflict-driven learning

loop in lines 4–14. Given a partial program P containing holes, the Decide

procedure selects a hole H in P as well as a candidate production p with which

to fill H. The decision (H, p) returned by Decide should be consistent with the

knowledge base in order to prevent the algorithm from making wrong choices

as early as possible. In other words, filling hole H according to production p

should yield a partial program P ′ that does not violate the lemmas in Ω. The

Decide procedure is further described in Section 4.4.3.

After choosing a hole H to be filled using production p, the synthe-

sis algorithm performs two kinds of deduction, represented by the calls to

Propagate and CheckConflict in lines 6 and 7 respectively. In particular,

Propagate is analogous to Boolean Constraint Propagation (BCP) in SAT

solvers 3 and infers new assignments that are implied by the knowledge base

as a result of filling hole H with production p. In contrast, the CheckCon-

flict procedure uses the semantics of the DSL constructs to determine if

there exists a completion of P that can satisfy Φ. If P cannot be completed

in a way that satisfies Φ, we have detected a conflict (i.e., P is spurious),

3Recall that BCP in SAT solvers exhaustively applies unit propagation by finding all
literals that are implied by the current assignment.
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and CheckConflict returns the root cause of the conflict. As explained

in Section 4.2, we represent the root cause of each conflict as a minimal

unsatisfiable core (MUC) κ of the SMT formula representing the specification

of P . If κ = ∅, this means that CheckConflict did not find any conflicts, so

the algorithm goes back to making new decisions if there are any remaining

holes in P . The Propagate and CheckConflict procedures are further

described in Sections 4.4.4 and 4.4.5, respectively.

As mentioned earlier, the key innovation underlying our synthesis algo-

rithm is its ability to make generalizations from conflicts. Given a non-empty

MUC returned by CheckConflict, the AnalyzeConflict procedure (line

9) analyzes the unsatisfiable core κ to identify other spurious partial programs

that have the same root cause of failure as P . Thus, the lemmas returned by

AnalyzeConflict prevent the Decide component from generating partial

programs that will eventually result in a similar conflict as P . The algorithm

adds these new lemmas to the knowledge base and backtracks by undoing the

assignments made by Decide and Propagate during the last iteration.

Algorithm 4.1 has two possible termination conditions that are checked

after each iteration: If the conjunction of lemmas in the knowledge base Ω

has become unsatisfiable, this means that there is no DSL program that can

satisfy Φ; thus, the algorithm returns ⊥. On the other hand, if P is a concrete

program without holes, it must satisfy Φ with respect to the provided semantics

Ψ; thus, the algorithm returns P as a possible solution.
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Discussion. The soundness of the Synthesize procedure from Algorithm 4.1

is with respect to the provided semantics Ψ of the DSL. Thus, if Ψ defines

a complete semantics of each DSL construct, then the synthesized program

is indeed guaranteed to satisfy Φ. However, if Ψ over-approximates (i.e.,

under-specifies) the true semantics of the DSL, then the synthesized program

is not guaranteed to satisfy Φ. For programming-by-example applications

where the specification Φ represents concrete input-output examples, we believe

that a sensible design choice is to use over-approximate specifications of the

DSL constructs and then check whether P actually satisfies Φ by executing

P on these examples. The benefit of over-approximate specifications is two-

fold: First, for some operators, it may be infeasible to precisely encode their

functionality using a first-order theory supported by SMT solvers. Second, the

use of over-approximate specifications allows us to control the tradeoff between

effectiveness of deduction/learning and overhead of SMT solving.

4.4.2 Knowledge Base and SAT Encoding of Programs

Before we can explain each of the subroutines used in Algorithm 4.1,

we first describe the knowledge base Ω maintained by the synthesis algorithm.

As mentioned earlier, Ω is a set of learnt lemmas, where each lemma φ is a

SAT formula over encoding variables csN ,p. Here, sN corresponds to the unique

index associated with an AST node N and p is a production in the grammar.

Thus, the encoding variable csN ,p indicates whether N is labeled with (i.e.,

assigned to) production p.
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In order to ensure that the choices made by the algorithm are consistent

with the knowledge base, it is convenient to represent partial programs in terms

of a SAT formula over encoding variables. Towards this goal, we introduce the

following SAT encoding of partial programs:

Definition 4.2. (SAT encoding of program) Let P be the AST represen-

tation of a partial program, as explained in Section 4.3.2. We use the notation

πP to denote the following SAT encoding of P :

πP =
∧

N∈Nodes(P )

csN ,χN

where sN denotes the unique index of node N and χN is the component labeling

node N .

Example 4.2. The partial program in Figure 4.3 can be denoted using the

following SAT encoding πP :

c0,head ∧ c1,take ∧ c3,filter ∧ c7,x1.

Definition 4.3. (Consistency with KB) We say that a partial program P

is consistent with knowledge base Ω, denoted P ∼ Ω, if the formula πP ∧
∧
φ∈Ω φ

is satisfiable.

Definition 4.4. (Consistency with spec) We say that a partial program

P is consistent with specification Φ, denoted P ∼ Φ, if there exists some

completion of P that satisfies Φ.

Definition 4.5. (Correctness of KB) The knowledge base Ω is correct with

respect to specification Φ if, for any partial program P , P ∼ Φ implies P ∼ Ω.
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Algorithm 4.2 Outline of Decide

procedure Decide(P, G, Φ, Ω)
V ← {(H, p) | H ∈ Holes(P ), p = AH → χ(A1...Ak)}
V ′ ← {(H, p) ∈ V | Fill(P,H, p) ∼ Ω}
return arg max(H,p)∈V ′ Lθ(Fill(P,H, p) | Φ)

Thus, given a correct knowledge base Ω, the synthesis algorithm can

safely prune any partial program P that is inconsistent with Ω. In particular,

if P is inconsistent with Ω, the correctness of the knowledge base guarantees

that there is no completion of P that satisfies specification Φ.

4.4.3 The Decide Subroutine

We will now explain each of the auxiliary procedures used in Algo-

rithm 4.1, starting with the Decide component. The high-level idea underlying

our Decide procedure is to fill one of the holes in P such that (a) the resulting

partial program P ′ is consistent with the knowledge base, and (b) P ′ is the

most likely completion of P with respect to a probabilistic model. Thus, our

Decide procedure combines logical constraints with statistical information in

a unified framework.

Algorithm 4.2 shows the high-level structure of our Decide component

and makes use of a procedure Fill(P,H, p) which fills hole H in partial program

P with a production p = (AH → χ(A1...Ak)). Specifically, Fill generates a new

partial program P ′ that is the same as P except that node H is now labeled

with DSL operator χ and has k new children labeled A1, . . . , Ak. Thus, if

P ′ = Fill(P,H, p) and we think of P and P ′ as strings in (Σ ∪ V )∗, then we
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have P ⇒ P ′.

Algorithm 4.2 proceeds in three steps: First, it constructs the set V of

all pairs (H, p), where H is a hole in the partial program P , and p = (AH →

χ(A1...Ak)) is a grammar production that can be used to fill H. Second,

it restricts this set to pairs (H, p) such that the program P ′ = Fill(P,H, p)

satisfies the knowledge base Ω. Finally, it assumes access to a probabilistic

model Lθ (parametrized by θ ∈ Rd) that can be used to score partial programs

conditioned on the specification Φ, i.e.,

Lθ(P
′ | Φ, P ) = Pr[P ′ | Φ, P, θ].

Based on this model, Decide returns the pair (H, p) resulting in the most

likely partial program P ′ = Fill(P,H, p) according to this model. 4

4.4.4 The Propagate Subroutine

After each invocation of Decide, the synthesis algorithm infers addi-

tional assignments that are implied by the current decision. Such inferences

are made by the Propagate procedure summarized in Algorithm 4.3.

Given a decision (H, p), Propagate first fills hole H with production

p; it then checks whether this decision implies additional assignments. It does

4We do not fix a particular statistical model because different models may be suitable
for different applications. Section ?? describes two different statistical models used in our
implementation.
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Algorithm 4.3 Outline of Propagate

procedure Propagate(P, G, (H, p), Ω)
P ← Fill(P,H, p)
S ← Holes(P )× Productions(G)
S ′ ← {(N, p) | (N, p) ∈ S ∧ p = (AN → χ(. . .))}
for all (Hi, pi) ∈ S ′ do

R← {p | p ∈ Productions(G) ∧ p = (AHi
→ . . .)}

if (
∧
φ∈Ω φ ∧

∨
pj∈R csHi

,pj ∧ πP )⇒ csHi
,pi then

P ← Propagate(P, G, (Hi, pi),Ω)

return P

so by querying whether the following implication is valid:

( ∧
φ∈Ω

φ ∧
∨
pj∈R

csHi
,pj ∧ πP

)
⇒ csHi

,pi

where R is the set of all productions that can be used to fill hole Hi. Intuitively,

we check if Ω and πP imply that the only feasible choice for hole Hi is to fill it

using production pi. If this is the case, the Propagate procedure recursively

calls itself to further propagate this assignment. 5

Remark. The Propagate procedure is a necessary ingredient of our al-

gorithm rather than a mere optimization because it enforces the consistency

of the current assignment with the constraints stored in Ω. In particular, if

Propagate was not invoked after each decision, then the Decide procedure

could continously choose the same decision (H, p).

5In general, Propagate can discover conflicts if the decision (H, p) will lead to a hole Hi

that cannot be filled with any production pj . In this case, the algorithm will backtrack and
pick another decision. For simplicity, we omit this case from the Propagate subroutine
and the main synthesis algorithm.

104



Algorithm 4.4 Outline of CheckConflict

1: procedure CheckConflict(P, Ψ, Φ)
2: ΦP ← InferSpec(P )
3: ψ ← SMTSolve(ΦP ∧ Φ)
4: κ← {(φ,N, χN) | φ ∈ ψ ∧ N = Node(φ)}
5: κ′ ← {(φ′,N, χN) | φ′ = Rename(φ) ∧ (φ,N, χN) ∈ κ}
6: return κ′

Example 4.3. Suppose that the current partial program consists of a single

hole (i.e., AST with only node N0) and the knowledge base Ω contains the

following two lemmas:

{
¬c0,filter ∨ ¬c2,eqz, ¬c0,filter ∨ ¬c2,leqz

}
If Decide makes the assignment N0 7→ filter, Propagate will result in the

following partial program:

geqz

filter

In particular, observe that Fill(P,N0,filter) results in two new nodes N1, N2

where AN1 = L and AN2 = T . Furthermore, since the knowledge base Ω and

the assignment N0 7→ filter together imply that N2 cannot be assigned to

leqz or eqz, Propagate infers that N2 must be assigned to geqz.

4.4.5 The CheckConflict Subroutine

In addition to identifying assignments implied by the current decision,

our synthesis procedure performs a different form of deduction to prune partial
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ΦP = ΦR[y/vsR ] where R = Root(P )
ΦN = ΨN ∧

∧
Ni∈Children(N) ΦNi

ΨN =


true if N ∈ Holes(P )
Ψ(χN)[vsN/y] else if N ∈ Leaves(P )
Ψ(χN)[C(N)/~x, vsN/y] otherwise

C(N) = [vsN1
, . . . , vsNk

] where [N1, . . . , Nk] = Children(N)

Figure 4.5. Rules defining InferSpec(P )

programs that do not satisfy the specification. This form of deduction is

performed by the CheckConflict procedure outlined in Algorithm 4.4.

The core part of CheckConflict is the InferSpec procedure, described

as inference rules in Figure 4.5. Given a partial program P , InferSpec generates

an SMT formula ΦP that serves as a specification of P . This formula ΦP is

constructed recursively by traversing the AST bottom-up and uses a variable

vsN to denote the return value of the sub-program rooted at node N . The

specification ΦN of node N is obtained by conjoining the specifications of the

children of N with the (suitable renamed) specification ΨN of the component

labeling N . Observe that the final SMT formula ΦP is over variables ~x, y

describing P ’s inputs and outputs respectively as well as auxiliary variables ~v

denoting intermediate values of P ’s sub-expressions.

Example 4.4. Figure 4.4 shows the result of calling InferSpec on the partial

program from Figure 4.3.

The following theorem states the correctness of the InferSpec procedure
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presented in Figure 4.5:

Theorem 4.1. Assuming Ψ provides a sound semantics of the DSL and P ∼ Φ,

then ΦP ∧ Φ is satisfiable.

According to this theorem, if ΦP ∧ Φ is unsatisfiable, then there is in

fact no completion of P that can satisfy Φ, meaning that P is infeasible. Thus,

CheckConflict invokes the SMTSolve procedure to check the satisfiability

of ΦP ∧Φ (line 3 of Algorithm 4.4). If this formula is unsatisfiable, Theorem 4.1

allows us to prune partial program P from the search space.

Since our learning algorithm makes use of a minimal unsatisfiable core

(MUC), we represent the return value of the SMTSolve procedure as a set of

clauses ψ representing the MUC. 6 In particular, the MUC ψ is a set of SMT

formulas {φ1, . . . , φn} such that:

1.
∧
i φi |= false,

2. Each φi either corresponds to a clause (conjunct) of Φ or a clause of Ψ(χ)

for some component χ (modulo renaming)

3. ψ is minimal, i.e., for any φi ∈ ψ,
∧
φj∈ψ\{φi} φj 6|= false

Because our AnalyzeConflict procedure requires the MUC to be

represented in a special form, lines 4–6 of CheckConflict post-process ψ

6If ΦP ∧ Φ is satisfiable, then ψ is simply the empty set.
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to generate an MUC consisting of triples (φi, N, χi) where χi is a component

labeling node N and φi is a clause in χi’s specification. In particular, line 4

identifies, for each φi ∈ ψ, the AST node N = Node(φi) that is associated

with φi and attaches to φi the component χN labeling N . Finally, since each

φi ∈ ψ refers to auxiliary variables associated with nodes in the AST, lines 5

converts each φi to a “normal form” over variables ~x, y rather than variables ~v

used in ΦP . Observe that clauses of the MUC that come from Φ are dropped

during this post-processing step.

Example 4.5. Consider the formula ΦP ∧ x1.max = 82 ∧ y = 158 where ΦP

is the formula from Figure 4.4. This formula is unsatisfiable and its MUC ψ

consists of the following clauses:{
x1.max = 82, y = 158, y ≤ v1.max,

v1.max ≤ v3.max, v3.max ≤ v7.max, x1 = v7

}
Since the first two clauses come from the specification Φ, they are dropped

during post-processing. The clause y ≤ v1.max is generated from the root

node N0 from Figure 4.3; thus, the set representation κ of the MUC contains

(y ≤ x1.max,N0, head). The clause v1.max ≤ v3.max is generated from node

N1 with annotation take; thus, κ also contains (y.max ≤ x1.max,N1, take).

Using similar reasoning for the other clauses in ψ, we obtain the following set

representation κ of the MUC:{
(y ≤ x1.max,N0, head), (y.max ≤ x1.max,N1, take)

(y.max ≤ x1.max,N3, filter), (y = x1, N7, x1)

}
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4.5 Analyzing Conflicts

In this section, we turn our attention to the conflict analysis procedure

for learning new lemmas to add to the knowledge base. To the best of our

knowledge, our approach is the first synthesis technique that can rule out

unrelated partial programs by analyzing the root cause of the conflict.

The key idea underlying our learning algorithm is to identify DSL

operators that are equivalent modulo conflict :

Definition 4.6. Let P be a partial program that is inconsistent with specifi-

cation Φ, and let χ be a DSL operator labeling node N of P . We say that

components χ, χ′ are equivalent modulo conflict at node N , denoted χ ≡Nχ
′

if replacing label χ of node N with χ′ results in a program P ′ that is also

inconsistent with Φ.7

To see why the notion of equivalence modulo conflict (EMC) is useful

for synthesis, let P be a spurious partial program containing n assigned nodes,

and suppose that, for each node N , we have m different components that are

equivalent modulo conflict to χN . Using this information, we can learn mn

other partial programs that are all infeasible with respect to specification Φ.

By encoding these partial programs as lemmas in our knowledge base, we can

potentially prune a large number of programs from the search space.

7Note that equivalence modulo conflict also depends on the partial program P ; we omit
this information to simplify our notation.
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As illustrated by this discussion, we would like to find as many compo-

nents as possible that are equivalent to each component used in P . Specifically,

the bigger the size of each equivalence class (i.e., m), the more programs we

can prune.

The most straightforward way to identify components that are equivalent

modulo conflict is to check whether their specifications are logically equivalent.

While this approach would clearly be sound, it would not work well in practice

because different DSL constructs rarely share the same specification. Thus, the

size of each equivalence class would be very small, meaning that the synthesizer

cannot rule out many programs as a result of a conflict.

The core idea underlying our learning algorithm is to infer equivalence

classes by analyzing the root cause of the infeasibility of a given partial program

P . In particular, the idea is to extract the root cause of P ’s infeasibility by

obtaining a minimal unsatisfiable core of the formula ΦP ∧ Φ, where ΦP

represents the specification of P . Now, because each clause in the MUC refers

to a small subset of the clauses in component specifications, we can identify

maximal equivalence classes by utilizing precisely those clauses that appear in

the MUC. The following theorem makes this discussion more precise.

Theorem 4.2. Let P a partial program inconsistent with specification Φ, and

let κ be the MUC returned by Algorithm 4.4. We have χ ≡Nχ
′ if Ψ(χ′)⇒ φ,

where (φ,N, χ) ∈ κ.

Intuitively, if Ψ(χ′) logically implies φ, then the specification Ψ(χ′) for
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Algorithm 4.5 Algorithm for learning lemmas

1: procedure AnalyzeConflict(P, G, Ψ, κ)
2: ϕ← false

3: for (φ,N, χN) ∈ κ do

4: (A1, . . . , Ak)← (ANi
| Ni ∈ Children(N))

5: ΣN ← {χ | χ ∈ ΣAN ,A1,...,Ak
∧ Ψ(χ)⇒ φ}

6: ϕ← ϕ ∨
∧
χ∈ΣN

¬csN ,χ
7: return ϕ

χ′ is more restrictive than the specification Ψ(χ) for χ, considering only the

subformula φ of Ψ(χ) contained in the MUC. Thus, changing the annotation

of node N from χ to χ′ in P is guaranteed to result in an another infeasible

partial program, meaning that χ and χ′ are equivalent modulo conflict at node

N .

Example 4.6. Consider the element (y.max ≤ x1.max,N1, take) in the MUC

from Example 4.5. Also, recall from Table 4.1 that the specification of sort is

y.size = x1.size ∧ y.max = x1.max. Since the formula

(y.size = x1.size ∧ y.max = x1.max)⇒ y.max ≤ x1.max

is logically valid, we have sort ≡N1
take.

We now discuss how the AnalyzeConflict procedure from Algo-

rithm 4.5 leverages Theorem 4.2 to learn new lemmas to add to the knowledge

base. As shown in Algorithm 4.5, the AnalyzeConflict procedure takes as

input the partial program P , the syntax G and semantics Ψ of the DSL, as well

as the MUC κ representing the root cause of infeasibility of P . The output of

the algorithm is a lemma ϕ that can be added to the knowledge base.
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The AnalyzeConflict procedure iterates over all elements (φ,N, χN )

in the MUC κ and uses Theorem 4.2 to compute a set ΣN such that ΣN

contains all components χ′ that are equivalent to χ modulo conflict at node N .

It then generates the following lemma to add to the knowledge base:

∨
N∈κ

∧
χ∈ΣN

¬csN ,χ

Here, the outer disjunct states that we must change the assignment for at least

one of the nodes N that appear in the proof of infeasibility of the current

partial program P . The inner conjunct says that node N cannot be assigned

to any of the χ’s that appear in ΣN because Theorem 4.2 guarantees that

changing the assignment of N to χ must result in another infeasible program.

The following theorem states the correctness of the lemmas returned by

AnalyzeConflict:

Theorem 4.3. Let ϕ be a lemma returned by AnalyzeConflict. If P ∼ Φ,

then the formula πP ∧ ϕ is satisfiable.

Since πP is the SAT encoding of P , this theorem says that the learnt lemma ϕ

must be consistent with πP for it to be the case that P ∼ Φ. Thus, we have:

Corollary 1. The knowledge base Ω maintained by Algorithm 4.1 is correct

with respect to specification Φ.

Finally, the soundness and completeness of our algorithm follow from Theo-

rem 4.1 and Corollary 1:
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Theorem 4.4. (Soundness) If Algorithm 4.1 returns P as a solution to the

synthesis problem defined by G,Ψ,Φ, then P satisfies specification Φ with respect

to DSL semantics Ψ.

Theorem 4.5. (Completeness) If Algorithm 4.1 returns ⊥ as a solution to

the synthesis problem defined by G,Ψ,Φ, then there is no DSL program that

satisfies Φ with respect to DSL semantics Ψ.

4.6 Implementation

We have implemented our conflict-driven synthesis framework in a tool

called Neo, written in Java. Neo uses the SAT4J [15] SAT solver to implement

Decide and Propagate and employs the Z3 [21] SMT solver to check for

conflicts.

Decide. As explained in Section 4.4.3, Neo uses a combination of logical and

statistical reasoning to identify which hole to fill and how to fill it. However,

our implementation of Decide differs from Algorithm 4.2 in that we do not

issue a full SAT query to determine whether the decision is consistent with

the knowledge base. Since checking satisfiability for each combination of holes

and components is potentially very expensive, our implementation of Decide

over-approximates satisfiability through unit propagation. 8 In particular,

8Unit propagation (also known as boolean constraint propagation) applies unit resolution
to a fixed point. In particular, unit resolution derives the clause {x1, . . . , xn} from the unit
clause {l} and another clause {¬l, x1, . . . , xn}.
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we consider an assignment to be feasible if applying unit propagation to the

corresponding SAT formula does not result in a contradiction. Note that

replacing a full SAT query with unit propagation does not affect the soundness

or completeness of our approach. In particular, the algorithm may end up

detecting conflicts later than if it were using a full SAT query, but it also reduces

overhead without affecting any soundness and completeness guarantees.

Since there are many possible assignments that do not contradict the

knowledge base, Neo uses a statistical model to identify the “most promising”

one. Our current implementation supports two different statistical models,

namely a 2-gram model (as used in Morpheus [26]) as well as a deep neural

network model (as described in DeepCoder [13]). While the 2-gram model

only considers the current partial program to make predictions, the deep neural

network model considers both the specification and the current partial program.

Propagate. As described in Section 4.4.4, the goal of propagation is to

identify additional assignments implied by the knowledge base. We identify

such assignments by performing unit propagation on the corresponding SAT

formula.

CheckConflict. Our implementation of CheckConflict follows Algo-

rithm 4.4 and uses Z3 to query the satisfiability of the corresponding SMT

formula [21]. Given an unsatisfiable formula φ, we also use Z3 to obtain an

unsatisfiable core and post-process it as described in Section 4.4.5. The un-

114



satisfiable core returned by Z3 is not guaranteed to be minimal. We do not

minimize the unsatisfiable core since this procedure can be time consuming,

but in practice we have observed that the unsatisfiable cores returned by Z3

are often minimal.

Our implementation of CheckConflict performs an additional opti-

mization over Algorithm 4.4: Since different partial programs may share the

same SMT specification, Algorithm 4.4 ends up querying the satisfiability of

the same SMT formula multiple times. Thus, our implementation memoizes

the result of each SMT call to avoid redundant Z3 queries.

AnalyzeConflict. Our implementation of AnalyzeConflict performs two

additional optimizations over the algorithm presented in Section 4.5. First,

our implementation does not keep all learnt lemmas in the knowledge base.

In particular, since the efficiency of Decide and Propagate is sensitive to

the size of the knowledge base, our implementation uses heuristics to identify

likely-not-useful lemmas and periodically removes them from the knowledge

base. Second, our implementation performs an optimization to facilitate the

computation of components that are equivalent modulo conflict. Specifically,

we maintain a mapping from each subformula ϕ occurring in a component

specification to all components χ1, . . . , χn such that Ψ(χi)⇒ ϕ. This off-line

computation allows us to replace an SMT query with a map lookup in most

cases.
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Backtracking. Similar to CDCL-based SAT solvers, Neo can perform non-

chronological backtracking by analyzing the lemma obtained from Analyze-

Conflict. Specifically, suppose that the learnt lemma refers to components

χ1, . . . , χn, where each χi was chosen at decision level di. Our implementation

adopts the standard SAT solver heuristic of backtracking to the second highest

decision level among all di’s. This strategy often results in non-chronological

backtracking and causes the algorithm to undo multiple assignments at the

same time.

Instantiating Neo in new domains. As a general synthesis framework,

Neo can be instantiated in new domains by providing a suitable DSL and

the corresponding specifications of each DSL construct. As mentioned pre-

viously, these specifications need not be precise and typically under-specify

the constructs’ functionality to achieve a good trade-off between performance

overhead and pruning of the search space. We have currently implemented

two instantiations of Neo, one of which targets data wrangling tasks in R and

the other of which targets list manipulations in a functional paradigm. For

both domains, our specifications are expressed in quantifier-free Presburger

arithmetic. More specifically, for the data wrangling domain, we use the same

DSL and the same specifications considered in prior work [26]. For the list

manipulation domain, we use the same DSL as in prior work [13] but write our

own specification since they are not available in the DeepCoder setting [13]. In

particular, our specifications capture the size of the list, the values of its first
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and last elements, and the minimum and maximum elements of the list.

4.7 Evaluation

We evaluated Neo by conducting three experiments that are designed

to answer the following questions:

Q1. How does Neo compare against state-of-the-art synthesis tools?

Q2. How significant is the benefit of conflict-driven learning in program

synthesis?

To answer these questions, we instantiated Neo on two different domains

explored in prior work, namely (i) data wrangling in R and (ii) functional

programming over lists. Specifically, to compare Neo against existing tools,

we adopted the DSL used in Morpheus [26] for domain (i) and the language

used in DeepCoder [13] for (ii). 9 All of the experiments discussed in this

section are conducted on an Intel Xeon(R) computer with an E5-2640 v3 CPU

and 32G of memory, running the Ubuntu 16.04 operating system and using a

timeout of 5 minutes.

4.7.1 Comparison against Morpheus

In our first experiment, we compare Neo against Morpheus [26],

a state-of-the-art synthesis tool that automates data wrangling tasks in R.

9The interested reader can find both DSLs and their specifications under supplementary
materials.
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While Neo is similar to Morpheus in that both techniques use deduction to

prune the search space, Morpheus uses several domain-specific heuristics that

specifically target table transformations (e.g., “table-driven type inhabitation”).

In contrast, Neo does not use any such domain-specific heuristics and directly

applies the general-purpose synthesis algorithm presented in Section 4.4. To

allow a fair comparison between the tools, we instantiate Neo with the same

set of R library methods used by Morpheus as well as the same component

specifications. Furthermore, since Morpheus uses a 2-gram model to prioritize

its search, we also use the same statistical model in Neo’s Decide component.

As in Morpheus, we train the 2-gram model on 15,000 code snippets collected

from Stackoverflow.

Benchmark selection. We compare Neo against Morpheus on a data set

consisting of 50 challenging data wrangling tasks. Out of these 50 benchmarks,

30 correspond to the most difficult benchmarks used for evaluating Morpheus,

where difficulty is measured in terms of synthesis time. 10 We also include

20 additional benchmarks collected from Stackoverflow posts. To ensure that

these benchmarks are sufficiently challenging, we consider only those posts

where (a) the desired program is included in an answer, and (b) this program

contains more than 12 AST nodes and at least four higher-order components.

10The performance of Neo and Morpheus is very similar on the 20 easy benchmarks
from the Morpheus data set. Specifically, both tools can synthesize all of these benchmarks
in under 4 seconds.
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Results. The results of our first experiment are summarized in Figure 4.6,

which plots cumulative synthesis time (the y-axis) against the number of bench-

marks solved (the x-axis). As we can see from this figure, Neo significantly

outperforms Morpheus both in terms of synthesis time as well as the number

of benchmarks solved within the 5 minute time limit. In particular, Neo can

solve 90% of these benchmarks with an average running time of 19 seconds,

whereas Morpheus solves 64% with an average running time of 68 seconds.

These results indicate that our proposed synthesis methodology is able to out-

perform a domain-specific synthesis tool that specifically targets data wrangling

tasks.

Impact of different components. Figure 4.7 evaluates the impact of dif-

ferent components in Neo on the data wrangling benchmarks. In particular, we

compare the number of benchmarks solved by Neo with four variants: “base-

line”, “ml”, “deduce” and “learn”. The “baseline” variant uses a depth-first
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search with a random decider and only solves 10% of the benchmarks. The

“ml” variant uses as decider the 2-gram model from Morpheus, which further

improves the number of solved benchmarks to 20%. The “deduce” variant

significantly improves the number of solved benchmarks from 20% to 70% by

combining statistical reasoning and deduction. Finally, Neo achieves its best

performance and can solve 90% of the benchmarks by combining all of these

ingredients.

4.7.2 Comparison against DeepCoder

In our second experiment, we compare Neo against a re-implementation

of DeepCoder, which is a state-of-the-art synthesis tool that uses deep learning

to guide search [13]. 11 Because DeepCoder specializes in functional programs

that manipulate lists, we instantiated Neo on the same domain, using the same

11We implemented our own version of DeepCoder since the tool is not publicly available.
Our re-implementation is faithful to the description in [13] as well as e-mail communications
with the developers of DeepCoder.
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DSL constructs as DeepCoder. However, since DeepCoder does not utilize

component specifications to prune the search space, we additionally wrote

first-order specifications for each DSL construct. To allow a fair comparison

between the tools, we also use the same deep neural network model used in

DeepCoder. In particular, DeepCoder predicts the likelihood that χ is

the right DSL operator based on the given input-output example. As in [13],

we trained our deep neural network model on 1,000,000 randomly generated

programs and their corresponding input-output examples.

Benchmark selection. Since the benchmarks used for evaluating Deep-

Coder are also not publicly available, we generate 100 benchmarks following

the same methodology described in [13]. Specifically, we enumerate DSL pro-

grams with at least 5 components and randomly generate inputs and the

corresponding output. This procedure is repeated for a fixed number of times

until we either obtain 5 valid input-output examples or no examples have been
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found within the iteration limit. In the latter case, we restart this process and

randomly search for a different program.

Results. The results of this experiment are summarized in Figure 4.8, which

also plots running time against the number of solved benchmarks. As we can

see from Figure 4.8, Neo outperforms DeepCoder in terms of running time

and the number of benchmarks solved within the 5 minute time limit. In

particular, Neo can solve 71% of these benchmarks with an average running

time of 99 seconds. In contrast, DeepCoder solves 32% of the benchmarks

with an average running time of 205 seconds.

Impact of different components. Figure 4.9 compares the percentage of

benchmarks solved by Neo with four variants (“baseline”, “ml”, “deduce” and

“learn”). The “baseline” variant which uses a depth-first search enumeration

can only solve 22% of the benchmarks. The “ml” variant uses a neural network

decider and increases the percentage of solved benchmarks to 32%. Combining
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statistical model and deduction (“deduce”) further improves the performance

of Neo to solve 56% of the benchmarks. Finally, Neo can solve 71% of the

benchmarks when we combine all of these ingredients.

4.7.3 Benefit of Conflict-driven Learning

In our third experiment, we further evaluate the benefit of conflict-driven

learning by comparing Neo against Neo†, which is a version of Neo that does

not perform conflict analysis. In other words, Neo† is the same as Neo except

that it does not invoke the AnalyzeConflict procedure and does not add

lemmas to the knowledge base (beyond blocking the current assignment). To

ensure that Neo† does not incur unnecessary overhead, we also modify the

CheckConflict procedure to give a yes/no answer rather than producing a

minimal unsatisfiable core.

The results of this experiment are summarized in Figures 4.10 and 4.11.

Specifically, Figure 4.10 compares Neo against Neo† on the data wrangling
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benchmarks from Section 4.7.1, whereas Figure 4.11 shows the same comparison

for the list manipulation benchmarks used in Section 4.7.2. As we can see

from these figures, learning has a very significant positive impact on the overall

performance of Neo. Specifically, in the data wrangling domain, Neo† times

out on 30% of the benchmarks and its average running time is 38 seconds.

On the other hand, Neo only times out on 10% of the benchmarks while

maintaining an average running time of 19 seconds. As shown in Figure 4.11,

the effect of learning is even more substantial in the list manipulation domain.

Specifically, Neo† times out on 44% of the benchmarks and its average running

time is 199 seconds. In contrast, Neo only times out on 29% of the benchmarks

and has an average running time of 99 seconds.

Discussion. To evaluate the impact of conflict-driven learning on scalabil-

ity, we classify our data wrangling tasks into three categories (i.e., “easy”,

“moderate”, and “hard”) depending on the complexity of the target program.
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Benchmark
Neo Speedup

Min Avg Max

Data Wrangling 2.8 5.5 17.6
Lists 1.6 4.0 14.8

Table 4.2. Impact of learning

While Neo is 2.7x faster than Neo† on “easy” benchmarks, Neo outperforms

Neo† by 5.7x on the medium category. For benchmarks in the “hard” category,

Neo is 19.8x faster than Neo† on average. 12 Also, to further evaluate the

impact of learning on hard benchmarks, we conduct an additional experiment

on exactly those problems that are solved by Neo but not by Neo† within

the 5 minute time-limit. For these 25 benchmarks, we re-run Neo† with a

much longer time limit of one hour. Table 4.2 shows the impact of learning on

these harder benchmarks. Specifically, Neo has an average speedup of 5.5x

and 4.0x on the Morpheus and DeepCoder benchmarks respectively. The

maximum speedup is 17.6x for the data wrangling domain and 14.8x for the

list manipulation programs. For example, Neo† takes around 45 minutes to

solve a benchmark that can be solved by Neo in less than 3 minutes.

4.8 Limitations

In this section, we discuss some of the limitations of the proposed

approach. First, because our method does not reason about termination,

Neo does not currently support synthesizing recursive programs. Second, even

12We did not perform the same comparison for the list domain since all benchmarks have
similar complexity.

125



though Neo is a generic framework that can be instantiated in different domains,

it is likely to be more effective when synthesizing functional programs that can

be expressed as a composition of library methods. Third, the effectiveness of

our technique depends on the quality of the specifications. For example, if the

specifications are too detailed, they might significantly increase SMT solving

overhead without providing additional benefit. On the other extreme, if the

specifications are very coarse-grained, Neo may not be able to make useful

deductions and learn from conflicts.

4.9 Summary

We have presented a new synthesis framework based on the idea of

conflict-driven learning. Given a spurious partial program that violates the

specification, the idea is to infer a lemma that can be used to prevent similar

mistakes in the future. Our synthesis algorithm infers these lemmas by identify-

ing DSL constructs that are equivalent modulo conflict, meaning that replacing

one component with the other results in an another infeasible program.

We have implemented these ideas in a synthesis framework called Neo

and instantiated Neo for two different application domains, namely data

wrangling and list manipulation. Our evaluation shows that Neo outperforms

state-of-the art synthesis tools, namely Morpheus and DeepCoder, that

specialize in these two domains respectively. Our experiments also demonstrate

that conflict-driven learning substantially improves the capabilities of the

synthesizer. Neo is publicly available [24] and can be easily instantiated in
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different synthesis tasks.
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Chapter 5

Related Work

Program synthesis is an active research topic that has found many

applications, including string processing [38, 96] bit-vector manipulations [58],

data wrangling [26, 120], query synthesis [119, 125, 129], API completion [27,

69, 49], functional programming [84, 30, 80], and data processing [100, 123].

In what follows, we discuss prior work that is most closely related to this

dissertation.

5.1 Component-based synthesis

Component-based synthesis refers to generating (straight-line) programs

from a set of components, such as methods provided by an API [43, 57, 68, 59, 27,

100]. Some of these efforts [57, 43] use an SMT-solver to search for a composition

of components. In contrast, our approaches in Neo and Morpheus use an

SMT-solver as a pruning tool in enumerative search and does not require precise

specifications of components. On the other hand, SyPet [27] searches for

well-typed programs using a Petri net representation. Similar to Neo, SyPet

can also work with any set of components and decomposes synthesis into two

separate sketch generation and sketch completion phases. However, both the
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application domains (Java APIs vs. table transformations) and the underlying

techniques (Petri net reachability vs. SMT-based deduction) are very different.

Finally, another related approach is Bigλ [100], which can synthesize non-trivial

data-parallel programs using a set of pre-defined components. However, unlike

Neo and Morpheus, Bigλ does not incorporate deductive reasoning to prune

the search space.

5.2 Applications

In this section, we discuss applications that are related to this disserta-

tion.

5.2.1 Table transformations

This dissertation is related to a line of work on programming-by-example

(PBE) [39, 51, 14, 83, 63, 6, 30, 80, 67, 124, 85]. Of particular relevance are

PBE techniques that focus on table transformations [51, 128, 67, 14]. Among

these techniques, FlashExtract and FlashRelate address the specific

problem of extracting structured data from spreadsheets and do not consider

a general class of table transformations. More closely related are Harris and

Gulwani’s work on synthesis of spreadsheet transformations [51] and Zhang et

al.’s work on synthesizing SQL queries [128]. Our approach is more general than

these methods in that they use DSLs with a fixed set of primitive operations

(components), whereas our approach takes a set of components as a parameter.

For instance, Zhang et al. cannot synthesize programs that perform table
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reshaping while Harris et al. supports data reshaping, but not computation

or consolidation. Hence, these approaches cannot automate many of the data

preparation tasks that we consider.

5.2.2 Data wrangling

Another term for data preparation is “data wrangling”, and prior work

has considered methods to facilitate such tasks. For instance, Wrangler

is an interactive visual system that aims to simplify data wrangling [61, 45].

OpenRefine is a general framework that helps users perform data transfor-

mations and clean messy data. Tools such as Wrangler and OpenRefine

facilitate a larger class of data wrangling tasks than Morpheus, but they do

not automatically synthesize table transformations from examples.

5.2.3 API completion

Code completion refers to the generation of small code snippets in-

volving API calls [47, 49, 68, 112, 94, 54, 82, 91, 46, 126]. While the line

between component-based synthesis and API completion is rather blurry, code-

completion tools typically expect a partial program and provide a ranked list of

(single-line) completions. Hence, code snippets generated by API completion

tools are typically much simpler compared to synthesis tools.

InSynth is a recent API-completion tool that uses theorem proving to

compute type inhabitants [47, 49]. While InSynth handles higher-order func-

tions and polymorphism quite elegantly, it cannot synthesize multi-statement
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code snippets that involve impure functions. As discussed in Section 2.9, In-

Synth can only synthesize one example out of the 30 benchmarks used in our

evaluation.

Another recent code-completion tool is slang [91] which predicts prob-

abilities of API calls using statistical methods. Because slang is based on

machine learning, it requires training data and is therefore only applicable

when the target API has a significant number of clients. However, we believe

that the slang approach is complementary to ours. In particular, we could

use a slang-like approach to prioritize some reachable paths in the Petri net

over others.

Our approach is also related to type-directed completion, in which

users issue queries using partial expressions [82]. An example of such a partial

expression is ?(img, size), which queries for API components that are likely

to use variables img and size. While extremely useful in IDEs, this approach

can only synthesize single-line code snippets rather than entire methods.

Another tool that is related to automated API completion is Match-

Maker, which synthesizes “glue code” to allow framework classes to interact

with each other [126]. Unlike SyPet where the query is a method signature,

MatchMaker queries are of the form “How can I get type A and type B to

interact with each other?” Because MatchMaker uses dynamic traces, the

techniques underlying this tool are very different from SyPet.
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5.3 Search strategies

In this section, we discuss common search strategies that are widely

adopted by mainstream synthesizers.

5.3.1 Type-directed search

Our approach in SyPet also resembles prior work that has framed syn-

thesis as type inhabitation [48, 80, 33, 84]. Of these approaches, InSynth [48]

is type-directed rather than example-directed. Myth [80] and its successors [33]

cast type- and example-directed synthesis as type inhabitation in a refinement

type system. In contrast to these techniques, our approach only enumerates

type inhabitants in the context of sketch completion and uses table contents to

finitize the universe of constants.

Another work that is closely related to SyPet is Synquid [84], which

takes advantage of recent advances in polymorphic refinement types [93, 116].

Similar to our approach, Synquid also adopts a type-directed SMT-based

deduction system to prune its search space. However, unlike our system which

can work with any incomplete (over-approximate) specification, Synquid

requires precise specifications of the underlying components. In other words,

Synquid fails to synthesize the desired program if the component specifications

are over-approximate. Since it is difficult to write precise specifications of

many library methods, we believe that SyPet’s ability to perform lightweight

deduction using incomplete specifications can be useful in many different

contexts.

132



5.3.2 Machine learning for synthesis

The work combining machine learning with program synthesis has

roughly followed two paths. The first approach uses neural networks (or

“neural programmers”) to directly generate programs [77, 76]. This line of work

is inspired by sequence-to-sequence models in machine translation, where one

neural network (the “encoder”) encodes an input phrase in the source language

(e.g., English) into a vector, and a second neural network (the “decoder”)

decodes this vector into a phrase in the target language (e.g., French) [111]. The

neural programmer follows the same paradigm, where the “source language” is

the specification (e.g., examples or natural language), and the “target language”

is the programming language (e.g., SQL).

The second approach, which is the one we adopt, incorporates statis-

tical knowledge to guide a symbolic program synthesizer. These approaches

train a statistical model to predict the most promising program to explore

next. For instance, Menon et al. use a log-linear model to predict the most

likely DSL operator based on features of the input-output example [74], and

DeepCoder uses a deep neural network to learn features that can be used to

make such predictions [13]. Alternatively, Raychev et el. use an n-gram model,

trained on a large database of code, to predict the most likely completion of

a hole based on its ancestors in the AST [89]. Later work by Raychev et al.

extends this approach to the case of program synthesis with noisy input-output

examples [86], and Feng et al. use a similar n-gram model for synthesizing

table transformations [26]. Similar to all of these techniques, Neo also uses
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a statistical model to predict the most likely completion of a hole during its

Decide step but also takes into account the “hard constraints” encoded in its

knowledge base.

5.4 Pruning techniques

In this section, we elaborate recent techniques that are used to prune

search space.

5.4.1 Logical reasoning.

The technique proposed in Neo leverages logical specifications of DSL

constructs to enable conflict-driven learning. While we are not aware of prior

work that learns useful lemmas from conflicts, there are many prior techniques

that leverage logical specifications to aid synthesis. In particular, synthesis

algorithms that use specifications can be grouped along two axes: (a) whether

they require exact vs. approximate specifications, and (b) whether they use

specifications to guide search or completely reduce synthesis to constraint

solving.

There are several techniques that formulate synthesis as a constraint

solving problem [42, 58, 37, 113]. For example, Brahma [58] uses component

specifications to generate an ∃∀ formula such that any satisfying assignment to

this formula is a solution to the synthesis problem. More recent work such as

Synudic [37] also reduces synthesis to constraint solving, but uses the abstract

semantics of components to simplify the resulting constraint-solving problem.
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An alternative approach is to formulate synthesis as a search –rather

than constraint-solving– problem and use logical specifications to prune the

search space [30, 84, 26]. For example, Synquid uses liquid type specifications

to avoid the exploration of some program terms. Other tools, such as λ2 [30]

and Morpheus [26], similarly use logical reasoning to prune the search space

but allow these specifications to be over-approximate. Neo differs from all

prior techniques in that it leverages logical specifications to infer useful lemmas

that prevent the exploration of spurious programs that are semantically similar

to previously encountered ones.

Another work that is closely related to Neo is Blaze [121], which

performs program synthesis using counterexample-guided abstraction refinement.

Similar to our approach, Blaze prunes its search space also by using a form

of deductive reasoning. However, a key difference is that Blaze uses abstract

interpretation to enumerate only those programs that satisfy the specification

with respect to a given abstract semantics. In contrast, Neo uses automated

theorem proving (i.e., SAT and SMT) to prune partial programs that have no

feasible completion. Furthermore, while both approaches perform some form

of learning, Blaze learns a new abstract domain during refinement, whereas

Neo directly learns infeasible partial programs. We believe that Neo has two

main advantages over Blaze: First, Neo does not require a domain expert to

provide an abstract domain in the form of predicate templates. Second, Neo

can handle higher-order constructs more naturally and efficiently compared to

Blaze.
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5.4.2 Connections to Theorem Prover

5.4.2.1 CEGIS

Counterexample-guided inductive synthesis (CEGIS) is a popular frame-

work for synthesizing programs that satisfy a given specification Φ [9, 103, 102].

The key idea underlying CEGIS is to decompose the problem into separate

synthesis and verification steps. Specifically, the synthesizer proposes a can-

didate program P that is consistent with a given set of examples, and the

verifier checks whether P actually satisfies Φ. If this is not the case, then the

verifier provides the synthesizer with a counterexample. Our baseline synthesis

algorithm (i.e., without learning) can be roughly formulated in the CEGIS

framework. At each step, the synthesizer (i.e., Decide) proposes a partial

program P . Then, the verifier (i.e., Deduce) checks whether there is any

completion of P that can satisfy Φ. If not, it provides counterexample (i.e.,

an UNSAT core τ). Thus, our work in Neo can be thought of as extending

CEGIS to incorporate learning. In particular, the baseline algorithm does not

learn any additional information from a counter-example τ reported by the

verifier (other than the trivial fact that τ is unsatisfiable). In contrast, given a

MUC reported by our verifier, AnalyzeConflict learns new lemmas that

typically rule out many additional programs.

5.4.2.2 Conflict-driven learning

Our synthesis framework in Neo is directly inspired by the success of

CDCL-style SAT and SMT solvers [72, 127, 18, 36]. Given a partial assignment
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that results in a conflict, the idea is to learn a so-called conflict clause that

prevents similar conflicts in the future. While the architecture of our synthesis

algorithm is (intentionally) very similar to CDCL-style SAT solvers, the mech-

anisms used for learning these conflict clauses are very different. In particular,

SAT solvers typically learn a conflict clause by constructing an implication

graph that describes which assignments lead to which other assignments as a

result of unit propagation. Given such an implication graph, a conflict clause

is inferred by performing resolution between clauses that contribute to the

conflict. In contrast, Neo learns “conflict clauses” (i.e., lemmas) by identifying

DSL constructs that are equivalent modulo conflict. Our method also differs

from CDCL-style constraint solvers in the way it makes decisions and performs

deduction. In particular, we use a statistical model to make assignments and

detect conflicts by issuing an SMT query.
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Chapter 6

Conclusion and Future Work

Program synthesis is a well-known technique to automate complex

APIs usage, and it provides powerful search algorithms to look for executable

programs that satisfy a given specification (input-output examples, partial

programs, formal specs, etc). However, the biggest barrier to a practical syn-

thesizer is the size of search space, which increases strikingly fast with the

complexity of the programs and the number of building blocks (i.e., methods

of an API). In this dissertation, we address the space explosion by combining

the power of statistical models and logical reasoning. Specifically, we first

developed a type-directed graph reachability algorithm in SyPet, a synthesizer

for assembling programs from complex APIs. We also introduced Morpheus,

a lightweight constraint-based synthesizer for automating real-world data wran-

gling tasks from examples. Finally, we generalized previous approaches and

developed a novel conflict-driven algorithm in a system called Neo, which can

learn from past mistakes and seamless incorporate state-of-the-art statistical

models.

We systematically evaluated our tools on non-trivial benchmarks col-

lected from online forums such as Stackoverflow and other publicly available

138



data sources (e.g. Github, DeepCoder). Our results demonstrated that our

systems can efficiently synthesize programs that automate real-world complex

tasks.

Moving forward, we believe here are some future directions to improve

the systems presented in this dissertation.

Overfitting. While input-output examples are easy to specify for users,

the quality of the examples affect the performance and output of the synthesizer.

Since this form of specification is very under-constrained, the synthesizer may

generate a solution that is consistent with the examples but is not the desired

solution. One naive approach is to keep asking the user for more examples until

the system converges, but a more interesting direction would be to achieve

consensus with minimal number of examples using Generative adversarial

networks (GAN).

Specification inference. To prune the search space, existing synthesizers

rely heavily on the granularity of the specifications for the underlying compo-

nents (i.e., API methods). Typically, these specifications require a substantial

amount of manual effort to write, and the difficulty only increases as the num-

ber and complexity of components grows. Another direction is to investigate

techniques that can automatically discover specifications for complex APIs.

Scalability. There are many directions for further improving the scala-

bility of existing synthesizers. One approach is to design synthesis algorithms

that are friendly to parallelism. Inspired by the success of modular verification
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in program analysis, devising modular synthesis algorithm that can break a

complex task into multiple subtasks will also be a compelling direction.
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Appendix A

Proofs of Theorems

A.1 SyPet

A.1.1 Proof of Theorem 1.

Proof. Let M ′ be a configuration (marking) such that M ′(p) > k + 1 for some

place p, and suppose that t′ = T1, T2, . . . , Tn is a sequence of transitions that

can be fired starting from M ′. Now, let M be another configuration such that

M(p) = k + 1 and for all other p′, M ′(p) = M(p). We will show that trace

t = T1, κ
c1 , T2, . . . , κ

cn , Tn can be fired from M , where each ci is the number of

p tokens consumed by Ti and κ denotes a generic clone transition. Because we

consider these two paths t, t′ to be equivalent, this property implies any trace

that can be generated from M ′ can also be generated from M .

We will prove this claim using induction, using the following (strength-

ened) inductive hypothesis. If T1, . . . , Ti is reachable from M ′ then we can

conclude that: (i) T1, κ
c1 , . . . , Ti, κ

ci is reachable from M and (ii) Mi(p) = k+ 1

and Mi(p
′) = M ′

i(p
′) for all p′ 6= p. (Here, we use Mi to denote the marking

right before transition Ti+1.)

For the base case, we have i = 1. Because T1 is reachable from M ′ in

one step, we can fire T1 in M ′. Now let p1, . . . , pm be the predecessors of T1
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with edge weights w1, . . . , wm. For any pi 6= p, M has the same number of

tokens as M ′. Furthermore, if pi = p, then wi ≤ k. Hence, T1 is also enabled at

M . Furthermore, we have at least 1 token left at p after taking transition T1,

so the clone transition remains enabled after T1. Because the clone transition

does not decrease the number of tokens, it remains enabled, so we can execute

it as many times as we want. Hence if T1 is reachable from M ′, then T1, κ
c1 is

reachable from M .

Now, we’ll prove property (ii) for the base case. Suppose transition t

consumed c1 number of p tokens. Right before T2, we still have k + 1 tokens

at p because we fired c1 clone transitions. Furthermore, for all other places p′,

the number of tokens remains the same because they were the same in M,M ′

and we took the same transition T1 in both traces.

For the inductive step, we show the property for i+ 1. Suppose we take

transition Ti+1 in t′. By the inductive hypothesis, we know:

1. T1, κ
c1 , . . . , Ti, κ

ci is a prefix of t and

2. M ′
i(p
′) = Mi(p

′) for p′ 6= p and Mi(p) = k + 1

Observe that if Ti+1 is enabled at M ′
i , then it must also be enabled at Mi

using (2) and the same reasoning as in the base case. Furthermore, we will have

at least one p token left after executing Ti+1, so the clone transition is again

enabled. Now, we execute as many clones as Ti+1 consumed p tokens, so Mi+1(p)

will remain k + 1. For all other places p′, we still have Mi+1(p
′) = M ′

i+1(p
′)
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because they were initially the same, and Ti+1 consumed an equal number of

tokens.

Proof of Theorem 2.

Proof. Let p be any path that starts at marking M and ends at M ′ in R(N).

We will prove that M ′(τ ∗) > 0 for some place τ ∗ 6= void that is reachable from

τ ′ in α(R(N)). Because τ ∗ is reachable from τ ′ in α(R(N)), we have τ ′ 6= τ .

Furthermore, because M∗ must assign 0 to τ ∗, this property implies that no

path starting at M can end in M∗.

The proof is by induction on the length of path p. For the base case,

we have length(p) = 0 (i.e., M ′ = M). Because M(τ ′) > 0 and because τ ′ is

reachable from itself, the property holds in the base case.

For the inductive step, let us consider a path p of length k+ 1 that ends

in M ′′, and let p′ be the prefix of p of length k. By the inductive hypothesis,

p′ ends in a marking such that M ′(τ ∗) > 0 for some place τ ∗ reachable from

τ ′ in α(R(N)). There are two possibilities: We either fire a transition f that

(i) has τ ∗ as its predecessor or (ii) does not have τ ∗ as its predecessor. In the

latter case, M ′′(τ ′) > 0 because we did not consume any tokens of τ ∗, so the

property holds. For case (i), f consumes at least one token of τ ∗ but produces

at least one token at some other place τ ′′, so we have M ′(τ ′′) > 0. Because

τ ′′ is reachable from τ ∗, it is also reachable from τ ′ in α(R(N)). Furthermore,

τ ′′ cannot be void; otherwise, this would imply that τ is reachable from τ ′
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in α(N) because every type is reachable from void. Because we have shown

that M ′(τ ′′) > 0 for some τ ′′ 6= void, the property also holds in the inductive

step.
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