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ABSTRACT 

Mixtures of carbon dioxide and some hydrocarbons 

will form liquid-liquid-vapor equilibrium at temperatures 

and pressures considered reservoir conditions. So that 

carbon dioxide miscible flooding may be properly simulated, 

accurate modeling of the phase behavior is necessary. An 

algorithm has been developed which is capable of predicting 

the two-phase and liquid-liquid-vapor equilibrium shown by 

C02-hydrocarbon mixtures. The algorithm conducts phase 

stability analysis calculations in series with flash calcu­

lations using the Peng-Robinson equation of state to model 

fluid behavior of all phases present. 

Example calculations were made of C02 mixtures with 

normal alkanes which show liquid-vapor, liquid-liquid, and 

also liquid-liquid-vapor behavior. An example calculation 

was also made for a mixture of C02 with a reservoir oil. 
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CHAPTER 1 

Introduction 

It has been found [Kl][Sl] that mixtures of carbon 

dioxide with some hydrocarbons will form up to four coexist­

ing phases at equilibrium. This can occur at temperatures 

and pressures considered as reservoir conditions. So that 

carbon dioxide miscible flooding may be properly simulated, 

accurate modeling of the complex phase behavior is neces­

sary. In this study, an algorithm is developed which is 

capable of modeling phase behavior shown by carbondioxide­

hydrocarbon mixtures while at the same time being suitable 

for use in compositional simulators. 

The behavior which must be modeled is the equilib­

rium of phases which may have mass transfer between them. 

For the purpose of this study, it is assumed that the 

species comprising the phases are non-reacting. Hence 

there are no chemical reactions. Also, the phases con­

sidered are non-aqueous. That is, they contain no water. 

Much of the previous work was centered on the 

equilibria between a liquid phase and a vapor phase. One 

of the common methods of phase equilibria calculations 

utilizes an equation of state to model fluid behavior. The 

1 



techniques are iterative and a variety of methods are used 

to find the equilibrium solution. 

2 

One method given by Fussell and Yanosik [Fl] was 

called the Minimum-Variable-Newton-Raphson technique. The 

thermodynamic criterion for phase equilibria provided one 

equation for each component present in the mixture. Then, 

given a fixed temperature, pressure and overall composition, 

the equilibrium phase compositions and relative amounts of 

each phase could be found by solving for nc independent 

variables, where nc is the number of components present in 

the mixture. The term "minimum variable" came about because 

under the above conditions, only nc variables were needed 

to specify the state of the system completely. The Newton­

Raphson method for solution of simultaneous, non-linear 

equations was then applied to find the phase equilibrium 

solution. In their work, Fussell and Yanosik used the 

Redlich-Kwong [R2] equation of state. 

One drawback of the Newton-Raphson method is that 

a Jacobian matrix must be calculated at each iteration. 

A simple alternative is the successive substitution method, 

but this method shows poor convergence near the critical 

point. A method was devised by Nghiem and Aziz [N2] which 

started out using successive substitution. At the point in 

the iteration sequence where a set of criteria were met, a 

switch was made from the successive substitution method to 



Powell's [P3] method, which is a quasi-Newton technique. 

This switching method utilized the simplicity of the suc­

cessive substitution method with the strong convergence 

characteristics of Powell!s method. 

3 

Mehra, Heidemann and Aziz [Ml][M3]also used a 

switching technique, but applied an acceleration of the 

successive substitution method to flash calculations. This 

ACSS [M2] method was a relatively simple modification to 

the successive substitution method yet provided faster con­

vergence overall and vastly improved convergence character­

istics near the critical region. In addition, this method 

was extended to three equilibrium phases. 

Published three-phase flash calculation techniques 

include the above by Mehra et al., an extension of Minimum­

Variable-Newton-Raphson methods by Lynne Fussell [F2], and 

an algorithm developed by Risnes and Dalen [R2]. Like 

Mehra's technique, the method proposed by Risnes is per­

formed in a stepwise fashion. Initially a two-phase flash 

is done. At this point, a check is made to label the types 

of phases present--either liquid or vapor. Next, a droplet 

is formed from one of the phases to verify if the droplet 

will grow to a converged composition or disappear. If the 

droplet does grow, a phase is added and a three-phase flash 

calculation is conducted. 
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One of the difficulties of multi-phase flash calcu­

lations is determining the number of phases which should 

exist at equilibrium. Michelsen [M6][M7] developed a phase 

stability analysis technique which can be used in a step­

wise fashion for multi-phase calculations. This technique 

for multi-phase, multi-component phase equilibria stability 

calculations was used in this study. Nghiem and Li [N3] 

incorporated Michelsen's scheme in their most recent paper 

presented at the Fall SPE meeting just after the completion 

of this study. 

In Chapter 2, several examples of the complexity of 

the phase behavior of carbon dioxide-hydrocarbon mixtures 

are described. Chapter 3 presents the thermodynamic cri­

teria for phase equilibrium along with other equations used 

in the flash calculation. Chapter 4 describes the phase 

stability analysis method as used in the algorithm. A de­

tailed description of the entire algorithm is given in 

Chapter 5 and several results are presented in Chapter 6. 

Finally, Chapter 7 contains conclusions and recommendations 

for further study. 



CHAPTER 2 

Multi-Phase Equilibria of C02-Hydrocarbon Mixtures 

Phase behavior is an important factor in the ef f i­

ciency of oil displacement by carbon dioxide (C02) [MS][Gl]. 

The behavior of C02 with hydrocarbon mixtures can become 

quite complex. Several examples are presented here. 

At higher temperatures, above about 120°F, primarily 

liquid-vapor behavior has been observed for C02-hydrocarbon 

mixtures [03]. However, at lower temperatures, liquid-liquid 

equilibria has been found as we11 as liquid~liquid-vapor 

behavior. In addition, precipitation of a solid has been 

reported [Sl][Gl][S2] for a wide range of temperatures and 

pressures. 

An examination of the phase behavior with hydrocar­

bons begins with binary mixtures of C02 and normal alkanes. 

For the alkanes methane through hexane, only vapor-liquid 

equilibria is found. When the alkane is heptane or higher 

carbon number, liquid-liquid and liquid-liquid-vapor be­

havior have been observed in addition to vapor-liquid equi­

libria depending on the temperature and pressure [03]. Fig­

ure 2.1 illustrates a pressure-temperature diagram for the 

carbon dioxide-normal decane binary mixture, as investigated 

5 
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by Kulkarni, Zarah, Luks, and Kohn [Kl]. The highest tem­

perature reported for liquid-liquid-vapor equilibrium was 

about -12°F, where the three-phase curve ends in a critical 

point. As the alkane increases in carbon number, the maxi­

mum temperature for liquid-liquid-vapor equilibrium also 

increases. This three-phase equilibria may occur at tem­

peratures greater than the critical temperature of carbon 

dioxide when the alkane is C13 or heavier. Experimental 

results of C02-alkane binary phase behavior studies are 

available in the literature for many normal alkanes, includ­

ing some equilibrium phase composition data [P2][0l][Il][S4]. 

Ternary mixtures of carbon dioxide and normal al­

kanes have also been studied. At low pressures, vapor­

liquid equilibrium is found over a wide range of tempera­

tures. At low temperatures, when one of the hydrocarbons 

is heavy enough, liquid-liquid and liquid-liquid-vapor 

equilibrium are observed at higher pressures. Liquid­

liquid behavior often continues to very high pressures. 

Meldrum and Nielsen [M4] presented phase composition 

results for the ternary mixture of carbon dioxide, propane 

and normal-hexadecane (n-C16>· The mixture was examined 

at 60°F and 70°F for several pressures. Liquid-liquid-vapor 

equilibrium was observed and some of their data are shown 

in Figure 2.2. 
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FIGURE 2.2 LOCATION OF TH~HREE-PHASE REGION IN 
THE MIXTURE Of C3H8 AND N-C18. 
EXPERit.£NTAL DATA ROM t.£LDRUM AND 
NIELSEN tM4J. 

C02 

N-C16 °· 05 o. 10 o. 15 0.20 0.25 C.3H8 
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For a ternary diagram such as this, pressure and 

temperature are fixed. The three-phase region is a tri­

angle whose corner points are invariant. That is, when the 

overall composition changes but still remains within the 

three-phase region, only the relative amounts of each phase 

will change. The equilibrium phase compositions do not 

change. The situation is analogous to moving along a tie­

line in two-phase equilibria. 

In Figure 2.2, the three-phase region is shown. 

However, a two-phase region exists adjacent to each side of 

the three-phase triangle which is not shown, since Meldrum 

and Nielsen did not present any additional two-phase data 

for the three-phase cases. Of the three two-phase regions, 

two are liquid-vapor and the third is liquid-liquid. A sche­

matic of this is shown for carbon dioxide,methane and normal 

hexadecane in Figure 2.3. 

In Figure 2.4, the location of the three-phase re­

gion is shown as pressure varies. As the pressure in­

creases, the three-phase region moves toward the co2-n-C16 

side of the ternary diagram. Eventually, the three-phase 

region will disappear when the pressure is high enough. 

This can be contrasted with the ternary system of carbon 

dioxide, methane and normal hexadecane. When pressure is 

increased, the three-phase region moves toward higher 

methane concentrations. 



FIGURE 2.3 SCHEMATIC OF TERNARY DIAGRAM AND THE 
LOCATION OF THE PHASE ENVELOPES FOR 
THE MIXTURE or C02. CH4 AND N-C16 AT 
A FIXED TEMPERATURE AND PRESSURE. 

C02 

N-C16 

10 

CH4 



FIGURE 2.4 LOCATION or THE THREE-PHASE REGION 
WITH CHANGES IN PRESSURE. DATA TAKEN 
FROM MELDRUM AND NIELSEN tM4l AT A 
FIXED TEy:tERATURE or 10°r. 
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The comparison between these two mixtures may be 

seen in another context by making a pressure-overall compo­

sition diagram for each. That is, assume a fixed ratio of 

n-hexadecane to methane or propane; for example, 70:30. 

At a fixed temperature and pressure, carbon dioxide may be 

added to the mixture and the number of phases formed be ob­

served. When these dilution lines are examined for several 

pressures with the temperature fixed and constant, the re­

sults may be plotted on a pressure-overall composition dia­

gram [02]. Note that the regions outlined in the diagram do 

not give equilibrium phase compositions. For an overall 

composition which lies in a particular region for a given 

pressure, the diagram only indicates the number of phases 

that will form at equilibrium. Figures 2.5 and 2.6 are 

schematics for the C02-propane-n-C16 and C02-methane-n-C16 

mixtures, respectively. Here the pressure versus overall 

mole fraction of carbon dioxide is plotted. 

The movement of the three-phase region in the ter­

nary diagram as pressure changes may be seen by the slope 

of the three-phase envelope. As pressure increases, the 

three-phase region of the C02-methane-n-C16 mixture moves 

toward higher concentrations and lower carbon dioxide con­

centrations. Therefore, the three-phase envelope slopes 

downward. The C02-propane-n-C16 mixture behaves in a dif­

ferent manner. As pressure increases, the three-phase 



FIGURE 2.5 SCHEMATIC PRESSURE-OVERALL COW'OSITION 
DIAGRAM FOR THE MIXTURE OF C02. C3H8 
AND N-C18 AT A FIXED TEMPERATURE. 
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FIGURE 2.8 SCHEMATIC PRESSURE-OVERALL COt.FOSITION 
DIAGRAM FOR THE MIXTURE OF C02, CH4 
AND N-C18 AT A FIXED TEt.FERATURE. 
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region moves toward higher C02 concentrations, and as a re­

sult, the three-phase envelope slopes upward. Orr [04] has 

classified the behavior of the C02-C3-n-C16 mixture as 

Type II and the behavior of the C02-C1-n-C16 mixture as 

Type I. C02 and crude oil mixtures also show this behavior. 

Simon [ S2] reported the phase behavior properties of 

two reservoir oils with various amounts of carbon dioxide. 

The experiments were conducted at a temperature of 130°F for 

oil A and 255°F for oil B. Vapor-liquid equilibria was re­

ported, which could be expected at these temperatures con­

sidering the behavior of the C02-alkane mixtures. A solid 

precipitate was also reported for mixtures containing over 

60 mole per cent of C02. A pressure-composition diagram for 

oil A is presented in Figure 2.7. 

Shelton and Yarborough [Sl] found liquid-liquid and 

liquid-vapor phase behavior in their experiments with car­

bon dioxide and a reservoir oil. The test temperature was 

at 94°F. They also reported the formation of a tar-like 

resin precipitate for several mixtures of varying C02 con­

tent. The phase behavior results showed that a liquid­

liquid equilibrium existed for all eight mixtures with C02. 

The lowest C02 content was a mole fraction of .58. For 

some mixtures, the liquid-liquid equilibrium persisted up 

to more than 9000 psia. A pressure-composition diagram is 

shown for C02 with oilB in Figure 2.8 



FICURE 2.7 PRESSURE-COMPOSITION DIAGRAM FOR 
RESERVOIR OIL A WITH C02 AT 130°F, 
TAKEN FROM CS2J. 
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FIGURE 2.1 PRESSURE-COMPOSITION DIAGRAM FOR 
RECOtillINED RESERVOIR OIL B WITH 
C02 AT 94°F. TAKEN FROM CS1J. 
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Finally, Turek, Metcalfe and Fishback [Tl] reported 

phase composition data for carbon dioxide mixtures with 

several reservoir oils. In their study, they found that 

mixtures containing less than about 60 mole per cent carbon 

dioxide show conventional vapor-liquid equilibria. When 

the temperature was below aboutll0°F, a three-phase liquid­

liquid-vapor region was found for mixtures containing high 

concentrations of carbon dioxide. Liquid-liquid-vapor be­

havior was not found above 110°F. Liquid-liquid equilibria 

was observed for mixtures containing more than 70 mole per 

cent C02 at temperatures below ll0°F and at elevated pres­

sures. No liquid-liquid critical point was found up to 

3000 psia. Results from other researchers show a liquid­

liquid critical at much lower pressures, indicating, per­

haps, a strong relationship to oil composition. 

As shown by the behavior of C02 and alkanes, the 

phase behavior is strongly affected by the light components 

present in the reservoir oil. It was found that oils con­

taining less of the light components had a greatly de­

creased pressure range over which three phases were formed. 



CHAPTER 3 

Equations For Multi-Phase Equilibria 

In this chapter the equations useful for calculation 

of multi-phase, multi-component equilibrium will be pre­

sented. In the first section, the equations for the thermo­

dynamic criteria for phase equilibria are given. Also in 

this section, the Peng-Robinson [Pl] equation of state is 

described. In the second section, the equations for the 

material balances as used in the flash calculation are 

stated. In the final section the conditions for a stable 

phase equilibrium solution are discussed. 

3.1 Thermodynamic Description of Phase Equilibria 

For a system capable of undergoing a process in 

which the composition may change and if the temperature 

and pressure are uniform throughout, the condition for 

equilibrium is given by 

for i = 1, 2, •.. , nc (3.1.1) 
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where µi a is the chemical potential of component i in 

phase a, µi b is the chemical potential of component i in 

phase b, etc. This equation states that the system is at 

equilibrium if the chemical potential of a component is 

equal in every phase present at equilibrium. There are 

several ways that the chemical potential may be defined. 

20 

Thus for a process that occurs at constant temperature and 

pressure, the component chemical potential is given by 

= ( a ( nG) ) 
ani T, P, nj 

where nG is the total Gibbs free energy and 

number of component i. 

n· 1 

( 3 • 1 . 2 ) 

is the mole 

A thermodynamic property which is defined in terms 

of the chemical potential is the fugacity, f. The fugacity 

is useful for calculations of phase equilibrium. Fugacity 

and chemical potential are related by 

(3.1.3) 

fi is the fugacity of component i in a mixture and µi is 

the chemical potential of component i in the mixture. Also, 

µiO is the standard state chemical potential and is a func-

tion of temperature and pressure only. 
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It can be shown that a condition for equilibrium 

equivalent to Equation 3.1.1 in terms of component fugaci-

ties is given by 

= f ·b l = = 

For i = 1, 2, ... , nc 

f. m 
l 

( 3 . 1 . 4 ) 

which states that the fugacity of a component must be equal 

in all phases present at equilibrium. Equation 3.1.4 is 

the form of the thermodynamic criterion which will be used 

for phase equilibria calculations. 

One method used for phase equilibria calculations 

is to compute the component fugacities from an equation of 

state. This is done for each phase present regardless of 

whether the phase is a vapor or liquid. For the most part, 

equations of state are unable to describe the volumetric 

properties of condensed phases accurately, that is, liquid, 

solid, etc. Hence an alternative to the above method of 

phase equilibria calculations is of ten used in which an 

equation of state models any vapor phase present whereas 

the liquid phase fugacities are found from calculation of 

the component activity or activity coefficient. For a 

liquid phase, 

= x·y·f·O l l l (3.1.5) 
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where fii is the fugacity of component i in the phase, xi 

is the mole fraction of component i in the phase, Yi is the 

activity coefficient for component i and fiO is called the 

standard state fugacity. Various expressions and simplifi­

cations are then available for calculation of fiO and Yi. 

In this research, an equation of state was used to model 

all phases present at equilibrium. 

For a component in a mixture, the fugacity coeffi-

cient is defined as 

for i = 1, 2, ... , nc 

The fugacity coefficient may be computed from 

RT ln <Pi = JP [( _Qy_) 
0 an1· T,P,nj 

RT] dP 
p 

(3.1.6) 

(3.1.7) 

However, most commonly used equations of state are pressure 

explicit, and, after a change in variables, another more 

convenient expression for the fugacity coefficient of a com-

ponent is given by 

ln <Pi RT ] dv - ln z 
v ( 3 • 1 . 8 ) 
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The equation of state is differentiated and then the expres-

sion in brackets is integrated to arrive at an equation useful 

for calculations. 

The simpler equations of state commonly used for 

phase equilibria calculations are two constant modf ications 

of the van der Waals equation of state. The better known 

are the Redlich-Kwong [R2] equation of state and the Soave 

[83] modification to the Redlich-Kwong equation of state, 

and the Peng-Robinson equation of state which was used in 

this study. 

The Peng Robinson equation of state is given by 

p = -- -RT a(T) (3.1.9) 
v-b v(v+b) + b(v-b) 

Two conditions apply at the critical point. They are that 

(lR) = 0 
ov T,cr 

(3.1.10-a) 

(a2p) = 0 
ov2 T,cr 

(3.1.10-b) 

a and b in Equation 3 .1. 9 can be found by application of 

3.1.10 to 3.1.9 resulting in 



and 

RT 
= 0.07780__£ 

Pc 
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(3.1.11-a) 

(3.1.11-b) 

where Tc and Pc are the critical temperature and pressure, 

respectively, of the substance. It may also be found that 

Zc = 0. 307. The coefficient a is made a function of tern-

perature as follows: 

( 3 .1.12 ) 

where a(Tr,w) is a function of reduced temperature, T/Tc, 

and acentric factor, w. That is, 

( 3 .1.13 ) 

where 

m = 0.37464 + l.54226w - 0.26992w2 ( 3 .1.14 ) 

For mixtures, the following mixing rules are often used. 

nc nc 
a = l l XiX'ai' . 1 . 1 J J J.= J= 

( 3 .1.15 ) 
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ITC 

b = I x· b· . 1 1 1 (3.1.16) 
1= 

where 

aij = (1 - o · ·)a· ~a·~ 1) 1 J 

for i = 1, 2 ' ••• , nc 

and j = 1, 2 ' ••• , nc (3.1.17) 

with oij being a binary interaction parameter. The values 

ai and bi are given by Equation 3.1.12 and 3.1.11 for each 

component in the mixture. Some researchers have used a 

quadratic mixing rule for the b coefficient as well as for 

the a coefficient [Ml]. Along with such a mixing rule is 

used an equation similar to 3.1.17 for the bij value, in­

cluding a second binary interaction parameter. The value 

for this parameter is not the same as the value of the 

parameter used in Equation 3.1.17. 

The compressibility factor, Z, is defined from 

z Pv 
RT 

( 3. 1. 18 ) 

Substitution of this definition in the Peng-Robinson equa-

tion of state results in a cubic equation in Z: 



where 

and 

z3 - (1 - B)z2 + (A - 3B2 - 2B)Z 

A = 

B = bP 
RT 
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(3.1.19) 

(3.1.20) 

( 3 .1. 21 ) 

Using the mixing rules in Equation 3.1.15 and 

3.1.16, and performing the integration in Equation 3.1.8 

of Equation 3.1.9, the fugacity coefficient of a component 

in a mixture is given by 

ln cJ> • ]. 

b· 
= 1 (Z - 1) - ln (Z - B) 

b 

nc 
2L Xk aik 

__ A_ ( ....:..::k,__==-1 __ _ 

2nB a 
bi) ln ( Z + 2. 414 B ) 
b Z- .414B 

for the Peng-Robinson equation of state. 

(3.1.22) 
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3.2 Material Balance Equations 

Duhem's theorem is similar to the Gibbs phase rule, 

but lesser known. This theorem states that the equilibrium 

state of a closed PVT system formed from a specified initial 

amount of each component is completely determined by any two 

properties of the system provided that these two properties 

are independently variable at equilibrium. The variables 

may be either intensive or extensive. Hence pressure and 

temperature are two possible choices. Solving for phase 

compositions and amounts is called a flash calculation. 

Given a fixed temperature, pressure and global, or overall, 

composition, the composition of each phase present at equi-

librium is computed as well as the relative amounts of each 

phase. That is, the state of the system is completely de-

termined. For m phases present at equilibrium, the phase 

compositions are given as mole fractions which must satisfy 

the constraints 

nc 
I x· · = 1 

i=l l. J 

for j = 1, 2, ... , m (3.2.1) 

where Xij is the mole fraction of component i in phase j. 

The phase compositions must satisfy material balance 
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requirements as well. An overall mole balance of the phases 

must be satisfied and is given by 

m 
I Lj = 1 

j=l 
(3.2.2) 

where Lj is the ratio of moles of phase j to total moles. 

In addition, a component balance must be satisfied 

where z· 1 

z· 1 

m 
= I Xij Lj 

j=l 

for 1 = 1, 2, ... , nc (3.2.3) 

is the overall mole fraction of component i. 

In practice, equilibrium ratios are often introduced. 

Here, a reference phase is chosen, and the equilibrium 

ratios are defined from 

K·. lJ = 

for i = 1, 2, ... , nc (3.2.4) 

For j = r the equilibrium ratio is unity for all components. 

Hence it is usually taken that the j index goes from j = 

1, 2, ... , r - 1, r + 1, ... , m. When the reference phase is 
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taken as a vapor, the equilibrium ratio is just the familiar· 

K-value in vapor-liquid equilibrium. 

From Equation 3.2.2, it is clear that only (m - 1) 

of the phase mole numbers are independent. For example, 

if three phases are present at equilibrium and one of the 

phases is selected as the reference phase, then 

= ( 3 • 2 . 5 ) 

Using Equation 3. 2. 5 with 3. 2. 3 and the equilibrium ratios 

from 3.2.4, the relative amounts of each phase may be found 

from 

nc 
gj(L1, L2, ... ' Lm) = L 

i=l 

( 1 z· --1 K·. 
1) 

m 

- 1 ) 

1 + I L . (-1- - 1 ) 
jr!r J Kij 

( 3 . 2 . 6 ) 

There is an equation like 3.2.6 for each phase present at 

equilibrium not including the reference phase, that is, 

j = 1, 2 , ... , r - 1, r + 1 , .•. , m. When there are three 

equilibrium phases for instance, Equation 3.2.6 represents 

two equations for the two unknowns L1 and L2· The equations 
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are nonlinear, and Newton's method works well for finding 

the solution. 

3.3 Conditions for a Stable Phase Equilibrium Solution 

In a previous section a thermodynamic condition of 

equality of component chemical potentials was examined for 

phase equilibrium. The solution must also satisfy the ma-

terial balance constraints outlined above. As pointed out 

by Baker, Pierce, and Luks [Bl], these are necessary but 

not sufficient conditions for a stable phase equilibrium 

solution. This point can best be illustrated by the use of 

the Gibbs free energy of mixing function. 

The difference between the value of the actual 

thermodynamic property and the value of the property at a 

reference state is called the mixing function. For the 

molar Gibbs free energy, 6Gm, it is given by 

= G -
nc 
I x·G·o l 1 1 

i=l 
( 3 . 3 . 1 ) 

where Gio is a reference state value and G is the molar 

Gibbs free energy of the mixture. The reference state is 

usually taken to be that of pure component i at the same 

temperature and pressure as the mixture. 

A phase equilibrium solution may be found geometri-

cally using the Gibbs free energy of mixing curve. In 



Figure 3.1 is shown the molar Gibbs free energy of mixing 

normalized by RT versus the mole fraction of component 1 
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in the binary mixture. Pressure is fixed at P and the tem­

perature is also fixed at T1. Since the slope of the curve 

is related to the chemical potential, a straight line tan­

gent to the curve at two or more points will satisfy the 

criteria of equality of chemical potentials. The composi­

tions given at the points of tangency are the compositions 

of the equilibrium phases. For example, in Figure 3.1, if 

the overall composition is chosen to be 0.2 in component 1, 

the mixture will split into two phases with the compositions 

given at A and B. Or, if the overall composition of compo­

nent 1 is fixed at 0.8, the mixture will split into two 

phases with the compositions given at points C and D. How­

ever, if the overall composition of component 1 falls out­

side the intervals A to B and C to D, the mixture will re­

main as a single phase. 

In Figure 3.2 is shown the molar Gibbs free energy 

of mixing curve of the same binary mixture at the same pres­

sure but a slightly lower temperature. There is now a tan­

gent to the curve at three points indicating that at equi­

librium the mixture will split into three phases with the 

phase compositions given at points A, B and C when the over­

all composition lies in the interval AC. Again, if the 
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overall composition lies outside the AC interval, the mix-

ture will be a single phase at equilibrium. 

In Figure 3.3 is the binary mixture at a still 

lower temperature but at the same pressure as before. 

There are three different tangents each indicating two-

phase solutions, A to B, C to D and E to F. In addition 

to the constraint of equal component chemical potentials 

for equilibrium, the equilibrium state is the state in 

which the Gibbs free energy is a minimum with respect to 

all possible changes at the given temperature and pres-

sure. The total Gibbs free energy is the weighted sum 

over all phases present of the Gibbs free energy of each 

phase: 

= 
m 
\ n·G· 
L. J J 

j=l 
( 3 • 3 • 2 ) 

Clearly then, the total Gibbs free energy for phasesE-F 

is less than that of A-B for the same overall composition, 

and similarly for phases C-D. Thus, the stable equi-

librium phase solution is given by E-F. Hence, if the 

overall composition falls anywhere within the interval 

E-F, two phases will exist at equilibrium with the phase 

compositions given at the points E and F rather than at 

A and B or C and D. 
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In summary then, a stable phase equilibrium 

solution must: 

(1) satisfy the condition of equal chemical 

potentials for each component in each 

phase, 

(2) satisfy material balance constraints, and 

(3) satisfy the condition of minimum Gibbs 

free energy for all possible changes at 

fixed temperature and pressure. 
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CHAPTER 4 

Phase Stability Analysis 

Integral to the phase equilibria calculation as 

formulated in this research is the test of phase stability 

using the method developed by Michelsen [M6]. 

One of the difficulties in doing a flash calcula-

tion is that the number of phases present at equilibrium 

is not known beforehand. Thus the number and type of un-

knowns is not known at the outset either. The combination 

of phase stability analysis with a flash calculation in 

series can be used to help solve this problem. An important 

note about the phase stability anaysis is that the result 

does not indicate the number of phases present at equilib-

rium. But it does indicate whether a given mixture compo-

sition is stable as a single phase or not. 

The original mixture composition is stable provided 

that its Gibbs free energy at fixed temperature and pres-

sure is at a global minimum. Starting with this general 

thermodynamic criterion, it may be shown that an equivalent 

stability criterion is given by (see Appendix A): 

nc 
I Yi(µi(y) - µi(Z)) ~ 0 

i=l 

37 

( 4 . 1 ) 
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Here z is the composition of the original mixture and y 

is a trial composition. Notice that the stability analysis 

is done at a fixed temperature and pressure. Hence µi(y) 

and µi(Z) indicate the functional dependence of the chemi-

cal potential on composition. It is necessary only to 

check the minima of the function in Equation 4.1. The sta-

tionary points are located at the zeros of the derivatives 

with respect to the ( nc - 1) independent mole fractions. 

Introducing the fugacity coefficient, the above criterion 

may be transformed into the following set of equations: 

ln Ui + ln ~i(Y) - (ln Zi + ln ~i(Z)) = 0 

for i = 1, 2, .•. , nc ( 4 • 2 ) 

where ~i ( z) is the fugaci ty coefficient of component i in 

the original mixture and ~i(y) is the fugacity coefficient 

of component i at the location of the stationary point. 

The values Ui are the set of independent variables. The 

only constraint is that these variables be non-negative. 

The trial composition y is a function of the independent 

variables and is found from 

Yi = nc 
I Uk 

k=l 
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for i = 1, 2, ••• ~ nc ( 4 ~ 3 ) 

Once a solution is found, that is, the set of Ui 

which satisfy Equation 4.2, stability of the mixt~re may be 

checked. If 

nc 
l ui :£ 1 

i=l 
( 4 . 4 ) 

then the mixture is stable as a single phase. For the sum 

greater than one, the mixture is unstable, and the formation 

of a second phase will reduce the total Gibbs free energy~ 

Equation 4.2 is the form of the equation which is 

used for calculations. The solution U may be found from 

several different solution methods. One technique, as 

Michelsen points out, is the very simple successive substi-

tution method. The updating scheme is given by 

for i = 1, 2, ••• , nc { 4 • 5 ) 

The superscripts n and n+l indicate the iteration level. 

New values for y are then computed from Equation 4. 3. Since 

the overall composition z remains the same throughout the 

iteration process, the terms in Equation 4.2 which depend 

only on z have been combined into a single variable, hi, by 



h· 1 
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for i = 1, 2, ..• , nc ( 4 • 6 ) 

The accelerated successive substitution method 

recommended by-Michelsen was not implemented in this study. 

However, two methods higher in order than successive substi-

tuion were used--Powell's method [P3] and the secant method 

for solution of simultaneous non-linear equations [W2]. 

The set of Equations 4.2 may be rearranged 

for i = 1 , 2 , ... , nc ( 4 • 7 ) 

which is now in a form to which these methods may be ap-

plied. The secant method and Powell's method were used as 

implemented in the International Mathematical and Statisti-

cal Library (IMSL) [I2]. These solution techniques were 

available in subroutines ZSCNT'and ZSPOW, accessible as on-

line routines within the University of Texas CDC computer 

system. 

The stability analysis as implemented uses two dif-

ferent solution estimates to find a single non-trivial solu-

tion. These two solution vectors are carried along through 



the solution procedure. Initially, equilibrium ratios are 

calculated using the correlation [Wl] 

K· l 

Tei T . 
= -p -exp (5. 3 7 (1 + Wi) ( 1 - ~) ) 

T . 
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for i = 1, 2, ... , nc ( 4 • 8 ) 

From the equilibrium ratios, the starting solutions are set 

by 

and 

u·l l 

u·2 l 

= 

= z·/K· l l 

( 4. 9 ) 

4.10) 

corresponding to a dew point and bubble point, respectively. 

Here the superscripts 1 and 2 refer to the solution vectors. 

As a practical matter, the vectors ul and u2 from Equa-

tion 4.9 and 4.10 are normalized before the stability 

analysis procedure is begun. Also, the starting solutions 

are adjusted so that the dominant component in the starting 

vectors are not both greater or both less than that compo-

nent in the original mixure. 

Usually, one of the two solution vectors will con-

verge to a trivial solution, that is, 



42 

for i = 1, 2, ... , nc (4.11) 

while the second solution vector converges to a non-trivial 

solution. By using two different solution vectors, with 

the modification indicated previously, a non-trivial solu­

tion is found, provided one exists. 



CHAPTER 5 

Solution Algorithm 

In this chapter the algorithm for multi-component, 

multi-phase flash calculations as used in this study will 

be described. In the first section, a general overview of 

the logic will be presented. More detail is then given in 

following sections about specific portions of the algorithm. 

5.1 Overall Logic of Algorithm 

The purpose of the algorithm is to predict the num­

ber of phases present at equilibrium, the composition of 

each of the equilibrium phases, and the relative amounts of 

the phases given a fixed temperature, pressure, and overall 

composition. The algorithm is arranged in a step-wise 

fashion. Figure 5.1 presents a flow-chart of the major 

divisions or steps that the algorithm contains. 

Initially, the phase stability analysis is tested 

on the overall composition which checks for the possibility 

of two phases. If the test indicates stability, then the 

mixture is taken to be single-phase and no further calcula­

tions are necessary. 

43 
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Figure 5.1 Overall procedure for multi-phase flash 

algorithm. 
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If the test indicates an instability, initial phase 

composition estimates are set for each of the two phases 

and a two-phase flash calculation is done. 

The third step is to check the stability of one of 

the two phases from the flash calculation. This check of 

phase stability is similar to the initial phase stability 

analysis except that the analysis is done using a phase com­

position rather than the overall composition. 

If the results indicate that the phase is stable, 

the mixture is assumed to be two-phase and no further cal­

culation is necessary. If results indicate an instability, 

then a three-phase flash calculation is carried out. 

Thus the algorithm proceeds in a step-wise fashion 

in which phase stability is analyzed followed by the addi­

tion of a phase, if necessary, up to a maximum of three co­

existing phases. 

5.2 Initial Two-Phase Stability Analysis 

The initial phase stability analysis is the first 

step in the flash calculation. The stability is checked 

using the overall composition which will render a result 

indicating either a single phase mixture at equilibrium or 

that more than one phase should exist. 

Figure 5.2 shows a flow chart for the solution of 

the stability analysis criteria using the successive 



Figure 5.2 Schematic for successive substitution method 
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substitution method. As indicated in Chapter 4, the 

stability analysis makes use of two solution vectors. 

Even though the starting values of each vector are set at 

the same time, the individual solutions may be found 

either in parallel or in series. 

The trial composition is found by normalizing the 

values of the independent variables as in Equation 4.3. 

The fugacity coefficients are calculated using the equation 

of state and updated by Equation 4.5. Iteration proceeds 

until 

nc 2 L ( ln U i + ln <t> i ( y) - hi) :;;; E 

i=l 
( 5 . 2 . 1 ) 

where E is a small value, for example lo-10 or lo-12. 

When calculating the fugacity coefficient from the 

equation of state, Equation 3.1.22, the compressibility 

factor must first be calculated. As shown in Equation 

3.1.19, the Peng-Robinson equation of state is cubic in 

compressibility factor. In this study, the roots were 

found using a direct method. Since the equation is cubic, 

the roots may all be real or it may be that only one real 

root exists with the other two roots being complex. When 

three real roots exist, the compressibility factor is chosen 

so that the Gibbs free energy is minimized. The 
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compressibility factor is commonly chosen such that the 

smallest, non-negative real root corresponds to a liquid 

phase while the largest real root corresponds to a vapor 

phase. Since knowledge of the type of phase is not always 

available, any ambiguities are avoided by using the Gibbs 

free energy for root selection. 

In addition to the successive substitution method, 

the secant method and Powell's method were also implemented 

for solution of the phase stability criteria. Both methods 

were accessible from the IMSL library routines. To use 

either method, a subroutine must be provided by the user 

which calculates the set of equations in a residual form, 

that is, in the form of Equation 4.7. After the initial 

solution estimates are set, the library routines are called 

and the converged solutions are returned. 

Once the solutions are found, the results must be 

interpreted. A trivial solution is a solution which has 

the same composition as the overall mixture. This possi­

bility must be checked. The other possibility is a solu­

tion which has a composition differing from the overall 

mixture composition. When this occurs, the sum of the 

independent variables is found. If the sum is less than or 

equal to one, the mixture is stable as a single phase. A 

sum greater than one indicates that at least two phases 

should exist at equilibrium. In general, one solution 
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results in a non-trivial solution while the other solution 

is trivial, but in some cases, neither solution is trivial. 

When both solutions are trivial, it is assumed that the 

mixture is stable as a single phase. 

5.3 Two-Phase Flash Calculation 

If the results from the stability analysis indicate 

that the mixture is unstable as a single phase, a flash 

calculation constrained to two equilibrium phases is the 

next step. 

5.3.1 Generation of Starting Values 

An important consideration of the flash calculation 

is the initial values of the phase compositions. Since the 

calculation is an iterative process, poor starting values 

may lead to convergence problems. A common starting point 

used in flash calculations is to utilize the correlation of 

Equation 4.8 to compute an equilibrium ratio for each compo­

nent present in the mixture. Using this set of equilibrium 

ratios, the phase distribution, that is, the relative 

amounts of each phase, may be found. With this result and 

the equilibrium ratios, the phase compositions can be set 

and iteration may begin. However, as an alternative, the 

results from the previous stability analysis can be used 

to generate starting phase compositions. 
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When an instability of the original mixture is indi­

cated, two situations involving the types of solutions will 

arise. It may be that neither solution is trivial or it 

may be that one solution is trivial and the other is not. 

To generate the starting values, these two cases are dealt 

with differently. 

For the case in which both solutions are non­

trivial, a check must be made so that they do not represent 

the same solution. If they do, one of the solutions is 

treated as a trivial solution and considered with the 

second case. If the two solutions are different, their 

values are normalized and then used as the starting phase 

compositions. The phase distribution is found by solution 

of the following equation for any component: 

Zi - Xi2 
= ( 5 . 3 . 1 ) 

Xil - Xi2 

Since L2 = 1 - L1, a complete solution estimate is set and 

iteration may begin. 

The second case has a trivial solution and a non­

trivial solution. Here, the non-trivial solution is normal­

ized and used as the starting composition of one phase. The 

composition of the second phase is easily calculated once 

the phase distribution is set. 
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Consider a mixture which has two equilibrium phases 

for a specified temperature and pressure. If the overall 

composition is close to the composition of one of the equi­

librium phases, then a non-trivial solution, when normal­

ized, will give a composition which is close to the compo-

sition of the other equilibrium phase. This is the reason 

that the non-trivial solutions were used for starting values 

as described above. However, it is not known beforehand how 

close the overall composition is to a phase composition. 

But L1 or L2 must be set. 

It was found that as the overall composition moves 

from one phase composition toward the other, the sum of the 

independent variables, Equation 4.4, gets larger and then 

decreases as the other phase composition is approached. If 

the phase for which the composition has been set is called 

phase 1, and the other phase 2, the phase mole number of 

phase 2, L2, is set equal to the inverse of the sum. Since 

the choice of L2 is somewhat arbitrary, this method has the 

benefit of being very simple. Also, since the sum is 

clearly greater than one, the inverse is always between 

zero and one, which is the interval in which L2 must lie. 

Although there is no strict relationship, the phase distri­

bution is loosely connected with the stability analysis. 

Finally, once L1 and L2 are set, the composition of 

the second phase may be calculated and iteration begun. 
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5.3.2 Solution Methods of Flash Equations 

In this study, three methods were used for solution 

of the flash equations. They are the accelerated succes­

sive substitution method, Powell's method, and the secant 

method for simultaneous non-linear equations. 

The condition for phase equilibrium may be written 

as 

for i = 1, 2, ... , nc ( 5 . 3 . 2 ) 

For the two-phase case, there are nc equations of this type 

which may be solved for nc independent variables. The ac­

celerated successive substitution (ACSS) method will be 

discussed separately from Powell's method and the secant 

method, the two of which are accessed from the IMSL Library. 

The Accelerated Successive Substitution Method 

The ACSS method is a combination of the pure succes­

sive substitution method presented by Nghiem and Aziz [N2] 

and an acceleration scheme developed by Mehra, Heidemann, 

and Aziz [M2] for phase behavior calculations. A reference 

phase is selected and the set of equilibrium ratios are com­

puted. The equilibrium phase compositions are treated as 
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dependent variables. Then, Equation 5.3.2 is solved for the 

equilibrium ratios, and with Equations 3.2.4 and 3.2.6, 

the dependent variables may be computed. 

Figure 5.3 illustrates the iterative procedure for 

the ACSS method. The first step is to compute the phase 

distribution for the given set of equilibrium ratios. 

Applying Equation 3.2.6 to the two-phase case, the phase 

distribution is found by solving for L1: 

nc 
= I 

i=l 1 

1 
2 i(j(7 - 1) 

l = 0 (5.3.3) 

This equation is non-linear for L1 and may be solved using 

Newton's method. 

Once the phase distribution is set, the phase compo-

sitions are calculated from 

= ( 5 • 3 • 4 ) 

Xil = (5.3.5) 

for i = 1 , 2 , ... , nc 

After the phase compositions have been computed, 

the component fugacity coefficients are calculated for each 
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Figure 5.3 Flowchart for accelerated successive sub-

stitution method 

Start 

Set L1, L2 using equilibrium 

ratios 

Set phase compositions 

Compute component fugacity 

coefficients for each phase 

Update equilibrium ratios: 

n+l n n+l) Ki = Ki exp(-Agi 

N 
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phase using the equation of state. The equilibrium ratios 

are then updated. 

For pure successive substitution, the updating 

scheme is given by 

= 

for i = 1, 2, ••. , nc 

In terms of the fugacity coefficients, 

= <Pil 

<Pir 

for i = 1, 2, .•. , nc 

Thecacceleration scheme is given by 

K·n+l 
l. = 

for i=l, 2, ••• , nc 

where Lis an acceleration~pararneter, found from 

( 5 . 3 . 6 ) 

( 5 • 3 • 7 ) 

(5.3.8) 
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nc 
,n .I [g·nJ2 
I\ i=l l. (5.3.9) 

= 

with Al = 1 where 

= (5.3.10) 

For the first iteration, n = 1 and the equilibrium ratios 

are updated by successive substitution. 

After the equilibrium ratios are updated, conver~ 

gence is checked. In this study, the following criteria 

were used [Tl]: 

nc 
I (5.3.11) 

i=l 

where £ is a small value, usually between lo-15 and lo-20. 

If convergence has not been achieved, the phase distribution 

is set using the updated equilibrium ratios and iteration 

is continued. After the convergence criteria are met, the 

algorithm proceeds with another phase stability analysis. 



Powell's Method 

As implemented, the component mole numbers were 

selected as the independent variables for which Equation 

5.3.2 is solved, that is, the set of variables nij where 

n·. lJ = L ·x· · J lJ 
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for i = 1, 2, ... , nc (5.3.12) 

Here j is a specified phase and is chosen to be that phase 

which has the smallest number of moles present. To use the 

IMSL routine, a subroutine which computes the functions in 

the form of Equation 5.3.2 must be provided. The mole num-

bers are used along with the overall composition to set the 

phase mole fractions before the fugacity coefficients may 

be calculated. Both the Powell's method and the secant 

method use the same subroutines. 

5.4 Stability Analysis Test for an Additional Phase 

The purpose of the stability analysis after the 

two-phase flash is to test for an instability of the equi-

librium phases just calculated. If the results indicate 

that the phases are unstable, a third phase will be added and 

another flash calculation will be done. In this way, the 

algorithm checks for possible three-phase equilibrium. 
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The procedure of the stability analysis at this 

point in the algorithm is very similar to that of the ini­

tial stability analysis. There are three major differences. 

First, the composition tested is a phase composition calcu­

lated by the two-phase flash as opposed to the overall com­

position. The second difference is that there are two pos­

sible trivial solutions, which are the equilibrium phase 

compositions. Thirdly, four solution vectors are used in­

stead of two. 

One solution estimate is set to be nearly pure in 

the heaviest hydrocarbon component present, and a second 

solution estimate is set to be nearly pure in the lightest 

hydrocarbon component, or a non-hydrocarbon if present in 

the mixture. The third solution is set to be an average 

between the two phase compositions from the flash calcula­

tion. The fourth and final solution estimate is found from 

for i = 1, 2, ... , nc ( 5 . 4 . 1 ) 

where hi is a function of the composition being tested. 

The meaning of the final solutions is the same as 

that in the initial phase stability analysis. If all four 

solutions indicate that the phase is stable, then the mix­

ture is considered to have only two phases present at 
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equilibrium and no further calculations are necessary. How­

ever, if any of the stability results indicate the phase is 

unstable, another phase is added and a three-phase flash 

calculation is started. 

5.5 Three-Phase Flash Calculation 

As noted before, if the phase equilibrium solution 

from the two-phase flash calculation is found to be un­

stable, an additional phase is assumed to exist at equilib­

rium. A three-phase flash calculation is done to find the 

compositions and relative amounts of the phases. This is 

the last step in the algorithm. 

5.5.l Starting Values 

Unlike the two-phase vapor-liquid case, there is 

no empirical relationship with which either equilibrium 

ratios or phase compositions may be estimated for three co­

existing phases. As in the two-phase flash, the results 

of the stability analysis may be used to formulate initial 

phase compositions. The phase composition estimates which 

may be used are the two phase compositions from the preced­

ing flash calculation and the estimate found from the phase 

stability analysis. However, these values do not satisfy 

the material balance constraints necessary for the three­

phase flash calculation. 
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The method developed in this study uses these three 

composition vectors indirectly to set the starting values. 

The first step is normalize the solution from the stability 

analysis to a mole fraction form. The three sets of values 

are used as ratios to find the component mole numbers for 

each phase. If the three composition vectors above are 

called Wij, for i = 1, 2, ... , nc and j = 1, 2, 3, the mole 

numbers are found from 

for 

nij = 
w· ·z· 1] 1 

nc 
I Wik 

k=l 

i = 1, 2, • • • I 

and j = 1, 2, 3 

nc 

(5.5.1) 

These component mole numbers are added for each phase to set 

the initial phase distribution. This method is very simple, 

but yields initial estimates which satisfy the material 

balance constraints without making ambiguous restrictions 

on the compositions and phase distributions. 

5.5.2 Three-Phase Flash 

For the three-phase case, the condition for phase 

equilibrium, like Equation 5.3.2, is given by 
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for i = 1, 2, ... , nc 

and j = 1, 2 (5.5.2) 

There are (2nc) equations of this form which are solved for 

( 2 nc) independent variables. 

The methods of solution for the three-phase flash 

are the same as for the two-phase flash. The equations used 

are extensions of the two-phase flash equations described 

earlier. 

Like the two-phase flash, for the accelerated sue-

cessive substitution method, one phase is selected as a 

reference phase. From this, two sets of equilibrium ratios 

may be defined. Equation 3.2.6 in the three-phase case 

forms a set of two simultaneous equations in the two un-

knowns L1 and L2· Again, this system of equations may be 

solved using Newton's method. 

The equilibrium ratios are updated by 

K .. n+l 
lJ = 

for 

n K·. lJ ( ,n+l n+l) 
exp -/\ gij 

i = 1, 2, . . . , nc 

and j = 1, 2 

where the acceleration factor is calculated from 

( 5 • 5 • 3 ) 



= 

where 

2 nc 
I I 

j=l i=l 

for 

[gij 

= 

2 nc 
1...n 

·I1 ill 

n+l n 
gij ] -

ln ( fir ) 
f .. 

1. J 

i = 1, 2, . . . , 
and j = 1,2 

62 

2 n 
[gij ] 

2 nc 
I I n 2 

[gij ] 
j=l i=l 

(5.5.4) 

nc 

(5.5.5) 

Again, for the first iteration, n = 1 and Al = 1, which is a 

pure successive substitution step. 

Iteration is continued until the following condition 

is satisfied: 

2 nc 
I I 

j=l i=l 

( K· .n+l - K· .n)2 
l.J l.J 

K .. n+lK n 
1. J i j 

which is an extension of the two-phase case given in 

Equation 5.3.11. 

( 5 • 5 • 6 ) 



For Powell's method and the secant method, the 

independent variables consist of the component mole num­

bers of two of the three phases. The solution procedure 

is nearly identical to that of the two-phase case with 

the exception of having an additional nc independent 

variables. 
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CHAPTER 6 

Results 

In this chapter, several examples of phase equilib­

ria calculations are presented. Mixtures showing two- and 

three-phase behavior are examined. In addition, a compari­

son is made of the various solution methods for the phase 

stability analysis equations under various conditions. The 

Peng-Robinson equation of state has been used for all phase 

equilibria calculations presented here. 

6.1 C02-n-Butane Binary Mixture 

In Figure 6.1 is shown a pressure-composition dia­

gram for the binary mixture of carbon dioxide and normal 

butane at several temperatures. This and subsequent calcu­

lations were made using Powell's method for solution of the 

phase stability equations and the accelerated successive 

substitution method for solution of the flash equations. 

The tolerance used for the phase stability analysis was set 

so that the computed root was accurate to eight digits 

according to IMSL documentation [I2]. For the ACSS method 

the value of E in Equation 5.3.11 was set to lo-18 for the 

three-phase calculation where the convergence criterion is 
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given by Equation 5.5.6. To find the phase distribution, 

Newton's method was used. In this calculation, iteration 

was stopped when 
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(6.1.1) 

where g(L1) is given by Equation 5.3.3 for the two-phase 

flash and for the three-phase flash, 

(6.1.2) 

where gj(L1,L2) are given by Equation 3.2.6. 

The critical constants and acentric factors used 

as input for the equation of state are listed in Table 6.1. 

Values for all components used in the example calculations 

were taken from this table unless indicated otherwise for 

specific examples. Listed in Table 6.2 are binary interac­

tion coefficient values that were used in the phase equi­

libria calculations. The primary literature source was 

Nagy and Shirkovskiy [Nl], but some values were taken from 

Lawal [Ll] as well as Risnes [R4]. 

There is a great deal of variation in the values 

given for binary interaction coefficients in the literature. 

Nagy, for example, lists the C02-CH4 binary interaction co­

efficient as 0.105, Lawal gives a value of 0.097, Risnes 

gives a value of 0.100, and Mehra [Ml] lists the value at 



Table 6.1 

Component critical constants and acentric factors used in example calculations. 

Critical Critical 

Component Tem:eerature ( R) Pressure <:esia) Acentric Factor 

C02 547.58 1071.40 .225 

CH4 343.04 668.05 .010 

C2H6 549.72 708.35 .105 

C3H8 665.82 617.23 .152 

i-C4H10 734.58 529.06 .192 

n-C4H10 765.31 550.66 .201 

i-C5H12 829.80 483.50 .206 

n-C5H12 845.64 489.38 .252 

n-C6H14 914.22 439.41 .290 

n-C10H22 1114.20 305.68 .586 

n-C16H34 1290.60 205.81 .704 

C7+ 1395.90 232.20 .619 

(j\ 

'1 



CH4 

C2H6 

C3H8 

i-C4 

n-C4 

i-C5 

n-C5 

n-C6 

n-C10 

n-C16 

C7+ 

Table 6.2 

Binary interaction parameters used in example calculations. 

C02 CH4 C2H6 C3H8 i-C4 n-C4 i-C5 n-C5 
-- -

.100 0 

.102 .003 0 

.107 .010 .002 0 

.115 .019 .006 .002 0 

.115 .019 .006 .002 0 0 

.118 .028 .011 .005 .001 .001 0 

.118 .028 .011 .005 .001 .001 0 0 

.123 .037 .017 .009 .005 .004 .001 .001 

.115 

.125 0 .053 

.250 .129 .073 .054 .044 .042 .035 .034 

n-C6 

0 

.028 

O"I 
00 
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0.103. The range for the C02-n-decane binary interaction 

coefficient is from 0.110 (Mehra), to 0.190 (Lawal). For 

C02-n-hexadecane, Mehra gives a value of 0.09, Risnes lists 

a value of 0.125, and Lawal gives a value of 0.248. Al­

though these parameters are usually found using correla­

tions fitted from experimental data, a large variation in 

reported values still remains. Adjustment of these values 

for use in calculations is justified based on this varia­

tion, and in many cases, large adjustments can be made while 

still remaining within the range of reported values. 

In Figure 6.1, the mole fraction of C02 in the phase 

is plotted along the x-axis. The highest temperature shown 

is 280°F. The mixture shows typical liquid-vapor behavior. 

All temperatures are higher than the critical temperature 

of carbon dioxide: therefore the liquid and vapor phase 

binodals meet at a critical point. Tie lines which connect 

equilibrium phase compositions are horizontal lines since 

there are only two components in the mixture. As the tem­

perature increases, the size of the two-phase region de­

creases. Once the temperature is above about 305°F, which 

is the critical temperature of pure normal-butane, all mix­

tures will be single phase. 

Figure 6.2 shows a comparison between the calculated 

equilibrium phase compositions and experimental values. 

The experimental data was taken from Olds, Reamer, Sage, 
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and Lacey [01]. Two temperatures are shown, namely 280°F 

and 160°F. Although no adjustment of input data was made, 

a good comparison with the experimental data can be seen. 

The vapor phase compositions are modeled slightly better 

than are the liquid phase compositions at both tempera­

tures. This is more pronounced near the critical point. 
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Figure 6.3 shows calculated phase compositions with 

the experimental data of Poettmann and Katz [P2] at 200°F 

and 120°F. Experimental data are quite sparse. Yet cal­

culated values compare well with the experimental data. 

6.2 C02-n-Decane Binary Mixture 

A molar Gibbs free energy of mixing curve for the 

C02-n-decane binary mixture at 100°F and 1300 psiais shown 

in Figure 6.4. Because the mixing curve is so flat near 

the two-phase region, small variations in the state of the 

system will produce large changes in phase behavior. This 

was apparent in calculations. 

In addition to forming liquid and vapor phases, 

C02 and n-decane mixtures show liquid-liquid-vapor equi­

librium as illustrated in Figure 2.1. An example of 

liquid-liquid phase equilibria on a pressure-composition 

diagram is shown in Figure 6.5 for this binary mixture. 

The temperature is fixed at -13°F and -31°F. The value of 

0.115 was used for the binary interaction coefficient 
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which was taken from Nagy et al. At low pressures, liquid­

vapor equilibrium phases are formed. At the pressure of 

about 170 psia and 239 psia, three equilibrium phases co­

exist. At pressures higher than the three-phase pressure, 

liquid-liquid phase equilibria is found. The composition 

of the two liquid phases stays virtually the same over wide 

changes in pressure. Although no comparison is made of 

calculated equilibrium phase compositions with experimental 

data, the occurrence of the three-phase pressure is rela­

tively close to that indicated in Figure 2.1 for these tem­

peratures. 

In Figure 6.6 is shown the predicted phase behavior 

for C02 and normal-decane at 220°F and 100°F using the 

binary interaction coefficient of 0.115. At 220°F, only 

liquid-vapor equilibrium appeared which is in agreement 

with experimental data. At 100°F, however, liquid-vapor 

and liquid-liquid equilibrium were predicted which is con­

trary to experimental evidence. The ·data of Reamer and 

Sage [Rl] show only liquid-vapor equilibrium. Clearly, 

according to data in Figure 2.1, a three-phase pressure 

should not occur for temperatures above about -10°F. 

In Table 6.3, calculated equilibrium phase composi­

tions for the C02-n-decane binary are listed. The phase 

compositions are compared for two different values of the 

binary interaction coefficient at 220°F and 2300 psia. 
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Table 6.3 

Calculated equilibrium phase compositions for co2 and n-decane at 220°F 
and 2300 psia for two values of the binary interaction coefficient. 

Component 

C02 

n-decane 

A. Binary Interaction Coefficient Oij = 0.115 

Phase Composition 

Vapor Liquid 

.97033 .72197 

.02967 .27803 

B. Binary Interaction Coefficient oij = 0.05 

Phase Composition 

K-value 

1. 3440 

0.10672 

Component Vapor Liquid K-value 

C02 0.95246 0.86828 1.0970 

n-decane 0.04754 0.13172 0.36092 

-...! 
-...! 
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The value of 0.115 for the binary interaction coefficient 

was taken from the literature and the value of 0.05 was 

chosen sufficiently small to assure that only liquid-vapor 

behavior was predicted at higher temperatures. Clearly, 

changing the value of the binary interaction parameter had 

a noticeable effect on the equilibrium phase compositions, 

as well as phase densities, which are listed in Table 6.4 

for these same conditions. At this temperature and pres­

sure, the mixture is approaching the critical point. For 

the smaller binary interaction coefficient, the properties 

of the liquid and vapor phases are closer than for the 

larger value, and, therefore, the predicted critical point 

would occur at a lower pressure. 

A comparison is made between calculated and experi­

mental equilibrium phase compositions for C02 and n-decane 

in the pressure-composition diagram of Figure 6.7 using a 

binary interaction coefficient of 0.05. The experimental 

data are from Reamer and Sage. Although the critical point 

and vapor phase compositions compare quite well with the 

experimental data, the calculated liquid phase compositions 

vary a great deal from the experimental values for both 

temperatures. Note that only liquid-vapor behavior is pre­

dicted at 100°F using 0.05 for the binary interaction co­

efficient. 



Table 6.4 

Calculated phase densities and compressibility factors for co2 and 
n-decane at 220°F and 2300 psia for two values 

Compressibility 

factor 

Phase density 

(lbs/cu ft) 

of the binary interaction coefficient. 

0ij = 0.115 

Vapor Liquid 

0.60420 .56014 

24.49 40.16 

Oij = 0.05 

Vapor Liquid 

.55584 .49368 

27.62 36.38 

....J 
'-0 
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Predictions of C02 and n-decane phase behavior are 

shown in Figure 6.8 for four values of the binary inter­

action coefficient at 100°F to examine the effect of chang­

ing the value of this parameter. Only liquid-vapor behavior 

was predicted for a value of 0.095, while for 0.10, liquid­

liquid behavior was predicted in addition to liquid-vapor 

behavior. The value of 0.095 is slightly lower than litera­

ture values, but given the range of reported binary inter­

action parameters, it is not unreasonable. Figure 6.9 

shows an expanded view of the area around the three-phase 

pressures. As the diagram shows, once a liquid-liquid re­

gion forms, increasing the value of the binary interaction 

coefficient produces an increase in the size of the region. 

Also, the pressure at which the L2-V critical point occurs 

decreases as the binary interaction coefficient increases. 

Several runs were made to examine the effect of 

perturbations in component critical properties on phase 

behavior predictions. As Figures 6.10, 6.11, and 6.12 

illustrate, relatively small changes in input data produced 

large changes in the phase behavior. 

In Figure 6.10, only the acentric factor for n­

decane was changed, from 0.586 to 0.484, using 0.115 for 

the binary interaction coefficient. As shown, the liquid­

liquid region decreases in size. The pressure at which 

the L2-V critical point occurs increases, as was the case 
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FIGURE 1.8 PRESSURE-COMPOSITION DIAGRAM FOR THE 
MIXTURE Of C02 AND N-DECANE AT 100°F. 
CALCULATED PHASE ENVELOPE FOR SEVERAL 
VALUES Of THE BINARY INTERACTION 
COEFFICIENT. 
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FIGURE 1.10 PRESSURE-COIFOSITION DIAGRAM FOR THE 
C02 AND N-OECANE MIXTURE AT 100°F. 
CALCULATED PHASE ENVELOPE FOR TWO 
VALUES OF THE N-OECANE ACENTRIC 
FACTOR. 
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when the binary interaction coefficient decreased in value. 

Altering only the n-decane critical temperature from 

1114. 2 °R to 920. 43 °R resulted in the c,hanges shown in 

Figure 6.11. With the reduced value for the critical tem­

perature, only liquid-vapor equilibria .is predicted. Reduc­

ing the critical pressure of n-decane from 305.68 psia to 

252.52 psia alters the phase behavior somewhat as shown 

in Figure 6.12. However, perturbing the critical pressure 

by the same relative amount has a lesser effect than do 

changes in other input values as shown above. 

6.3 C02-CH4-n-C16 Ternary Mixture 

A ternary mixture of C02, methane, and n-hexadecane 

is capable of forming up to three phases at equilibrium. 

This ternary was examined at 70°F for both two-phase and 

three-phase behavior. Binary interaction coefficients were 

taken from Risnes et al. 

If for a given temperature the overall composition 

is fixed and pressure allowed to vary, the relative amounts 

of each phase, or the phase distribution, change. This 

is shown in Figure 6.13. The temperature is 70°F and the 

overall composition is fixed at 0.9 mole percent C02 with 

equal amounts of CH4 and n-C16· Below about 925 psia, a 

liquid phase exists in equilibrium with a vapor phase. Be­

tween 925 and 1003 psia, three phases coexist--a C02 lean 
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liquid (L1), a C02-rich liquid (L2), and a vapor phase (V). 

Phase compositions and other computed phase properties at 

several pressures in the three-phase region are listed in 

Tables 6.5 to 6.8. The second liquid, L2, grows while the 

vapor shrinks as pressure increases. Above 1003 psia, only 

the two liquids remain. The relative amount of the co2-

lean phase changes only slightly throughout the entire pres­

sure range shown. 

In Figure 6.14 is shown a ternary diagram for this 

mixture at 70°F and 700 psia. At this temperature and pres­

sure, C02 and CH4 are miscible in all proportions. C02 and 

n-c16 have a miscibility gap where a liquid and vapor phase 

are in equilibrium. The CH4 and n-C16 binary also has a 

miscibility gap. For ternary mixtures, a two-phase liquid­

vapor region extends across the diagram. The vapor phase 

contains an extremely small amount of n-C16· 

As the pressure is increased, a three-phase region 

forms. Figure 6.15 shows the ternary diagram at 900 psia. 

Now, the C02-n-C16 binary shows liquid-liquid equilibrium. 

The C02-CH4 binary is no longer miscible in all proportions. 

There is a small miscibility gap at high C02 concentrations, 

where a vapor is in equilibrium with liquid. Table 6.9 

lists the phase compositions and phase densities for this 

binary. In addition to the large liquid-vapor region, a 

small three-phase region forms at high C02 concentrations. 
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Table 6.5 

Phase compositions for Co2, CH4, and n-C16 mixture 
at 70°F and 945 psia. 

Component 

0.6263 

0.0299 

0.3438 

Table 6.6 

Phase Composition 
(mole fraction) 

0.9640 

0.0313 

0.0047 

v 

0.9336 

0.0663 

0.0001 

Phase properties and phase distribution for C02, CH4, 
and n-C16 mixture at 70°F and 945 psia. 

L1 L2 v 

Compressibility factor 0.41169 0.18013 0.49637 

Phase distribution 0.14106 0.31914 0.53980 

Average molecular weight 105.88 43.97 42.17 

density (lbs/cu ft) 42.79 40.61 14.13 
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Table 6.7 

Phase compostions for C02, CH4, and n-C16 mixture 
at 70°F and 1000 psia. 

Phase Composition 
(mole fraction) 

Component L1 L2 v 

C02 0.6191 0.9462 0.9051 

CH4 0.0452 0.0492 0.0948 

n-C16 0.3357 0.0046 0.0001 

Table 6.8 

Phase properties and phase distribution for Co2 1 CH 4 , 
and n-C16 at 70°F and 1000 psia. 

L1 L2 v 

Compressibility factor 0.42886 0.19594 0.47854 

Phase distribution 0.13751 0.83218 0.03031 

Average molecular weight 103.99 43.47 41. 37 

density (lbs/cu ft) 42.69 39.06 15.22 



FIGURE 8.14 CC>aiFUTED TERNARY DIAGRAM FOR THE 
MIXTURE Of' co2. CH4. AND N-C18 AT 
70°F AND 700 PSIA. 
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FIGURE l.1S COMPUTED TERNARY DIAGRAM FOR THE 
MIXTURE OF C02. CH4. AND N-C11 AT 
70°F AND 900 PSIA. 
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Table 6.9 

Phase compositions and densities for the 

C02-CH4 binary mixture at 70°F and 900 psia. 

density (lbs/cu ft) 

Composition 

Liquid Vapor 

0.98585 

0.01415 

41.76 

0.96760 

0.03240 

13.67 

94 
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Between the three-phase region and the C02-n-C16 side of 

the triangle there is a small liquid-liquid region. Notice 

that the composition of the C02-rich liquid is very close 

to the composition of the vapor phase in the three-phase 

region. 

Figures 6.16 and 6.17 show the phase envelopes at 

1000 and 1100 psia, respectively. As pressure increases, 

the three-phase region moves toward higher methane concen­

trations. As this region moves, the liquid-vapor region 

decreases in size while the liquid-liquid region increases. 

Figure 6.18 shows the ternary diagram at 2000 psia. 

At this pressure, there is no three-phase region. C02 and 

CH4 are again miscible in all proportions. The two-phase 

region extends as a band across the entire diagram. 

Tables 6.10 and 6.11 list phase compositions and phase 

densities for equilibrium phases at high C02 concentra­

tions and also at low C02 concentrations. From Table 6.10 

it appears that two liquids are in equilibrium. In fact, 

the C02-lean liquid phase is less dense than is the C02-

rich liquid phase. However, at low C02 concentrations, 

from Table 6.11, it appears as though a liquid is in equi­

librium with a vapor. The C02-rich liquid seemingly trans­

forms into a vapor phase as the C02 concentration decreases 

without going through a critical point or three-phase 

region. 



FIGURE 1.11 COMPUTED TERNARY DIAGRAM FOR THE 
MIXTURE OF co2. CH4. AND N-C1 I AT 
70°F AND 1000 PSIA. 
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FIGURE 1.17 COt.PUTED TERNARY DIAGRAM FOR THE 
MIXTURE Of' co2. CH4. AND N-C11 AT 
70°F AND 1100 PSIA. 
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FIGURE 8.18 COMPUTED TERNARY DIAGRAM FOR THE 
MIXTURE Of C02, CH4 AND N-C11 AT 
70°f AND 2000 PSIA. 
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Table 6.10 

Phase compositions and densities for the C02, 
CH4, and n-C16 ternary at 70°F and 2000 psia. 

Composition 

Component 

0.61322 0.89378 

0.10895 0.09903 

0.27783 0.00719 

Compressibility factor .75149 .32604 

Phase density (lbs/cu ft) 42.93 45.95 

Table 6.11 

Phase compositions and densities for the C02, 
CH4, and n-C16 ternary at 70°F and 2000 psia. 

Composition 

Component L1 L2 

0.09384 0.10510 

0.50889 0.89475 

0.29727 0.00015 

Compressibility factor 0.98852 0.77843 

Average molecular weight 105.13 17.53 

Phase density (lbs/cu ft) 37.44 7.93 
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Figure 6.19 illustrates the movement of the three­

phase region as pressure varies. The composition of the 

C02-lean liquid stays relatively constant, changing mostly 

in an increase in the amount of methane contained in the 

phase. Note that the C02-rich liquid always has a higher 

C02 concentration than does the vapor in the three-phase 

region. 

The effect of pressure on the location of the three­

phase region can be illustrated on a pressure-composition 

diagram. Figure 6.20 shows part of one pressure­

composition diagram for pressures at which three phases 

occur. In this figure, the overall mole fraction of C02 

in the ternary mixture is varied. The ratio of methane to 

n-C16 is fixed at 30:70. Thus, varying the amount of C02 

in the mixture at a fixed pressure is equivalent to moving 

along a dilution line that goes from the 30 percent CH4: 

70 percent n-C16 point on the CH4-n-C16 side of the tri­

angle to the C02 apex. Points where the dilution line 

crosses phase boundaries at a given pressure are cross­

plotted on the P-X diagram. For the C02-CH4-n-C16mixture, 

as pressure increases, the dilution line crosses the three­

phase boundaries at points which are continually higher 

in methane concentration. As the amount of methane in­

creases, the concentration of C02 decreases since the ratio 

of CH4 to n-C16 has been fixed. The movement of the 



FIGURE 1.19 MOVEMENT Of' THE COMPUTED THREE-PHASE 
REGION AS THE PRESSURE VARIES FOR 
THE MIXTURE OF' C02. CH4, AND N-C1 I 
AT 70°F. 
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three-phase region with changes in pressure is therefore 

reflected in the P-X diagram. 

6.4 C02-C3Hs-n-C16 Ternary Mixture 

103 

The ternary mixture of C02, propane, and n-C16 may 

from up to three coexisting equilibrium phases. However, 

the behavior of this mixture differs a great deal from that 

of the C02-CH4-n-C16 mixture. 

Figure 6.21 is a ternary diagram showing a compari­

son between experimental and calculated values of the com­

positions in the three-phase region at several different 

pressures. The calculations were made using the binary in­

teraction coefficients of Risnes et al. for the C02-n-C16 

binary, and those of Lawal for the C3Hs-n-C16 and C02-C3Hs 

binaries. With these values, the computed phase composi­

tions are far from the experimental compositions. No attempt 

was made to adjust input values to match the experimental 

data. Nevertheless, a good qualitative representation was 

provided. 

Figure 6.22 shows the computed ternary diagram for 

the C02-C3Hs-n-C16 mixture at 70°F and 500 psia. C3Hs and 

C02 show a miscibility gap as does the binary C02 and n-C16· 

C3Hs and n-C16 are miscible in all proportions. For ter­

nary mixtures, a two-phase vapor-liquid region forms a band 

across the diagram connecting the C02-n-C16 side with the 



FIGURE 1.21 COMPARISON OF THE EXPERIMENTAL AND 
COMPUTED LOCATION or THE THREE-PHASE 
REGION FOR THE MIXTURE OF C02. C3H8. 
AND N-C11 AT 70°F. 
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FICURE 8.22 COMPUTED TERNARY DIAGRAM FOR THE 
MIXTURE Of C02, C3H8, AND N-C11 AT 
70°f ANO 500 PSI~ . 
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C02-C3Hg side. As in the C02-CH4-n-C16 mixture, the vapor 

phase contains only trace amounts of n-C16· 

Figure 6.23 shows the ternary diagram at a higher 

pressure of 700 psia. At this temperature and pressure, a 

three-phase region appears. The C02-C3Hg binary has a 

liquid-vapor miscibility gap as does the C02-n-C16 binary. 

Phase compositions and densities for the three-phase in­

variant points are given in Table 6.12. Here, the C02-rich 

liquid has a C02 concentration lower than that of the vapor 

phase. This is opposite to the behavior of the C02-CH4-n-C16 

ternary mixture. A liquid-liquid region also exists, with 

the liquid phase binodals ending at a critical point. 

Figure 6.24 shows the ternary diagram at 795 psia. 

The appearance of the diagram is similar to that at 700 

psia. The liquid-vapor regions and the three-phase region 

have decreased in size while the liquid-liquid region has 

gotten larger. 

Figure 6.25 shows the ternary diagram at 1000 psia. 

At this pressure and temperature, the three-phase region 

has disappeared and all that remains is a liquid-liquid 

region. C02 and C3Hg are miscible in all proportions at 

these conditions. 

Figure 6.26 shows the movement of the three-phase 

region as pressure varies. As pressure increases, the com­

positions of the phases increase in C02 concentration, 



FIGURE 1.23 COMPUTED TERNARY DIAGRAM FOR THE 
MIXTURE OF C02, C3H8, AND N-C11 AT 
1o•r AND 700 PSIA. 
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Table 6.12 

Phase compositions and densities for the mixture 
of C02, C3H8, and n-C16 at 70°F and 700 psia. 

Composition 

Component L1 L2 v 

C02 0.60158 0.75827 0.89048 

C3H8 0.23643 0.21802 0.10951 

n-C16 0.16199 0.02371 0.00001 

Compressibility factor 0.21619 0.14823 0.58678 

Average molecular weight 73.57 48.35 44.02 

Density (lbs/cu ft) 41. 94 40.20 9.25 



FIGURE 1.24 COMPUTED TERNARY DIAGRAM FOR THE 
MIXTURE OF C02. C3H&. AND N-C11 AT 
70°F AND 715.0 PSIA. 
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FIGURE 1.25 Co..FUTED TERNARY DIAGRAM FOR THE 
MIXTURE OF C02. C3H8. AND N-C11 AT 
70°F AND 1000.0 PSIA. 
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therefore moving the three-phase region towards the 

C02-n-C16 side of the triangle. This is just opposite to 

the behavior of the C02-CH4-n-C16mixture. As Figure 6.19 

illustrates, the three-phase region moves in the direction 

of lower C02 concentrations. Clearly, changing the light 

hydrocarbon component from CH4 to C3Hs in these ternary 

mixtures alters the phase behavior substantially. 

6.5 C02-Crude Oil Mixture 

The final phase behavior example is a mixture of 

carbon dioxide with a recombined reservoir fluid. An 

analysis of several West Texas reservoir oils is given by 

Turek, Metcalfe, and Fishback [T2]. In their work, reser­

voir fluid samples were mixed with C02 in varying amounts. 

The resulting equilibrium phases were analyzed for composi­

tional data. Several reported examples showed three-phase 

behavior. Recombined oil C2 was selected for this example 

because of its three-phase behavior when mixed with C02 

and also because non-hydrocarbon components such as N2 and 

H2S were present in only trace amounts. The composition 

of oil C2 is given in Table 6.13. 

Although an extended analysis up to C40+ was given 

for the crude oil, a ten component mixture was used in the 

example calculation. The components were C02, the satu­

rated alkanes C1 through C6, and the C7+ fraction which 



Table 6.13 

Fluid composition analysis of recombined reservoir 
oil C2 taken from Turek et al. [T2]. 

Component Composition 

C02 0.0001 

C1 0.1834 

C2 0.0778 

C3 0.0791 

i-C4 0.0065 

n-C4 0.0474 

i-C5 0.0165 

n-C5 0.0178 

C6's 0.0382 

C7+ 0.5332 

C7+ Mol. Wt. 230 

C7+ Sp. Grav. 0.8763 
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was taken as a single component. Isomers of C4 and C5 were 

separate components in the mixture. The alkane n-hexane 

was used in the calculation to represent the C6's component 

since no other information was given regarding its charac-

ter. 

The Riazi correlations [R3] were used to character-

ize the C7+ fraction. The correlations have the general 

form 

e = ( 6 . 5 . 1 ) 

where e is the predicted property, TB is the normal boiling 

point, and y is the specific gravity. The constants a, b, 

and c differ for each predicted property and values are 

listed in Table 6.14. The normal boiling point for the C7+ 

fraction was estimated using the correlation for molecular 

weight and the data given in Table 6.13. To estimate the 

critical temperature and pressure, this calculated boiling 

point was used along with the specific gravity in the above 

correlation. These correlations are simple and easy-to-use. 

The acentric factor of the C7+ fraction was esti-

mated using Edmister's [El] equation: 
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Table 6.14 

Constants used in the general property correlation, 
Equation 6.5.1. 

Property a b c 

Molecular weight 4.5763E-5 2.1962 -1.0164 

2.42787E01 0.58848 0.3596 

Pc, psia 3.12281E09 -2.3125 2.3201 
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w = ( 6 • 5 • 2 ) 

Critical values for all components in the mixture are listed 

in Table 6. 1. 

Binary interaction coefficients for C7+ with other 

components were computed using the correlation of Lawal 

[ Ll] : 

0 .. lJ = Ta [ lne ( I Mj - Mi I + 1 ) ] b 
Bi 

( 6 • 5 • 3 ) 

where TBi is the boiling point of the lightest hydrocarbon, 

or non-hydrocarbon, in degrees Kelvin, Mi is the molecular 

weight and a and b are correlation constants. Values of 

a and b are given in Table 6 .15. This correlation was 

also used for i-C4 and i-C5 binary interaction coefficients 

with other components. 

For this mixture, three-phase equilibrium was cal-

culated. However, the highest temperature for which a 

three-phase mixture was found was at about 83°F. Turek 

et al. reported three-phase composition data that was taken 

at 94°F. To match the experimental data, the input data 

would have to be adjusted. Only ten components were used 

for this correlation. Only one component was used to 



Table 6.15 

Constants used in the binary interaction 
coefficient correlation, Equation 6.5.3. 

Interaction a b 

Paraffin/paraffin 1. 688574E-03 5.382733 

C02/paraf fin 1. 378162 2.155123 
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represent the C7+ fraction, which comprised over 50 percent 

of the entire reservoir fluid. Clearly, better selection 

of the pseudo-components is necessary. Representing the 

C7+ fraction by more than one component would be quite use­

ful, especially in this example, where an extended analysis 

is available. 

Figure 6.27 shows a phase distribution versus pres­

sure diagram for a mixture of reservoir fluid with 75 mole 

percent C02 at 83°F. The three-phase region exists over 

a pressure range of about 40 psia. As with the 

C02-CH4-n-C16 mixture, at low pressures, a liquid and vapor 

phase coexist at equilibrium. As pressure increases, a 

second liquid forms creating three-phase equilibrium. As 

pressure continues to increase, the vapor phase shrinks 

and the second liquid phase grows until the vapor phase 

disappears altogether. At that point, only two liquid 

phases remain. 

Table 6.16 lists equilibrium phase compositions 

and phase properties for a three-phase mixture. The tem­

perature is about 83°F and the pressure is 1060 psia. The 

overall composition is for a mixture of the reservoir oil 

with 80 mole percent C02. From the phase compositions, it 

can be seen that the C02-lean liquid contains almost all of 

the c7+ component. It is present in the second liquid in 

only a small amount and in trace amounts in the vapor. 



FIQURE 6.27 COMPUTED PHASE DISTRIBUTION VERSUS 
PRESSURE FOR THE C02-RESERVOIR OIL 
MIXTURE. THE OVERALL C02 MOLE 
FRACTION IS 75%. 
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Table 6.16 

Calculated phase compositions and properties for a co2 
and reservoir oil mixture at 542.5°R and 1060 psia. 

Phase Com:eosition 

Overall 
.com:eonent Com:eosition L1 L2 v 

C02 0.80002 0.30228 0.91058 0.90644 

CH4 0.03668 0.01719 0.03947 0.05158 

C2H6 0.01556 0.01352 0.01596 0.01633 

C3H8 0.01582 0.02018 0.01511 0.01306 

i-C4 0.00130 0.00213 0.00115 0.00089 

n-C4 0.00948 0.01734 0.00801 0.00590 

i-C5 0.00330 0.00734 0.00251 0.00167 

n-C5 0.00356 0.00861 0.00256 0.00162 

c6 0.00764 0.02310 0.00447 0.00248 

C7+ 0.10664 0.58831 0.00018 0.00003 

Phase Properties 

Phase distribution 0.18106 0.71624 0.10270 

Compressibility factor 0.64666 0.26514 0.38700 

Average molecular weight 154.5 43.2 42.6 

Density (lbs/cu ft) 43.50 29.65 20.06 
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The C02-rich liquid, L2, is very similar in composition to 

the vapor phase. This is reflected in the phase densities 

as well. The liquid phase L1 has the highest density, but 

it also has the largest compressibility factor of 0.64666. 

6.6 Comparison of Numerical Methods 

A comparison was made between the three different 

solution techniques available in the algorithm to solve 

the phase stability equations under several different condi­

tions. The three techniques are the successive substitution 

method (SS), the secant method (SEC), and Powell's method 

(POW). The secant method and Powell's method are available 

through the IMSL Library routine which is accessible on 

the University of Texas CDC Dual Cyber computer system. 

Documentation for these two routines is available in the 

IMSL user's manual [I2]. The routine for Powell's method 

is a modification of a MINPACK [M9] subroutine and the 

secant method is an adaptation from Wolfe [W2]. 

Listed in Table 6.17 are iterations to convergence 

and execution times for the ten component, C02-reservoir 

oil mixture. The execution times given are in cpu seconds 

required for the CDC Dual Cyber 170/750 machine. The number 

of iterations required for each of the two solution vectors 

to converge is added together and listed in the table. 



Table 6.17 

Iterations and execution times for solution of phase 

stability equations for a ten component mixture. 

Iterations Execution time (cpu secs) 

Pressure, psia SS SEC POW SS SEC POW -- -- -

500.0 20 36 36 .050 .166 .127 

800.0 23 38 35 .054 .184 .133 

900.0 24 38 35 .060 .185 .138 

1000.0 25 37 35 .061 .174 .135 

1100.0 32 38 37 .077 .183 .144 

1200.0 34 42 38 .083 .222 .150 

1500.0 28 44 39 .069 .267 .155 

f--' 
N 
N 
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At pressures below 1000 psia, vapor exists in equi­

librium with liquid. At 1100 psia and above, there is 

liquid-liquid equilibrium. In all cases, the SS method 

takes fewer iterations and less execution time than do 

either the secant or Powell's method. Powell's method is 

always faster than the secant method. 

However, in some cases, and especially near the 

critical point, Powell's method and the secant method are 

faster than the SS method. Table 6.18 lists some results 

for a ternary mixture of C02, C3Ha, and n-C16 at 70°F and 

1000 psia for several overall compositions, all of which 

are in the liquid-liquid region (see Figure 6.25). As the 

critica~ point is approached, the SS method takes many more 

iterations than do either the secant or Powell's method. 

Very near the critical point, the SS method fails to con­

verge after 3000 iterations. Due to the better convergence 

characteristics near the critical region, Powell's method 

was used for solution of the phase stability equations in 

all of the phase behavior examples presented above. 

In Table 6.19 are given execution times needed for 

the solution of the phase equilibrium problem. These times 

include solution of the phase stability equations and also 

solution of the flash equations. The times listed are not 

for specif~c examples but are representative of execution 

times required under a variety of conditions. Near the 



'J'able 6 .18 

Iterations and execution times for solution of phase 

stability equations for a ternary mixture. 

Iterations Execution time 
Overall 

Composition SS SEC POW SS SEC --

. 9' . 0 5' .05 58 27 24 .051 .051 

. 85' .10, .05 78 30 27 .067 .056 

. 8 0' .15, .05 118 35 28 .102 .067 

.75, . 20' .05 235 34 30 .201 .065 

.65715, .273, DNC* 79 48 -- .137 .06985 

*Did not converge 

(cpu secs) 

POW 

.39 

.046 

.047 

.051 

.087 

I-' 
N 
of::> 



Table 6.19 

Execution times required for a phase equilibria 
solution, including stability analysis. 

Three component mixture 

Ten component mixture 

Execution Times (cpu sec) 

Two-phase 

solution 

0.18 

0.56 

Three-phase 

solution 

0.29 

0.64 
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critical point, for example, will require more time. The 

three-phase solution does not add much more execution time 

than that necessary for the two-phase solution since a 

majority of the time is spent for phase stability calcula­

tions. Both two- and three-phase solutions require about 

the same amount of time doing these calculations. 

6.7 Problems Encountered with this Algorithm 

Below is a brief discussion on various problems 

that were encountered while making the previous phase 

equilibria calculations. 

The use of phase stability analysis as a first step 

in the phase equilibria algorithm worked very well. In 

cases where a mixture was single phase, the stability 

analysis detected the situation immediately without needing 

to make any other calculations. The successive substitu­

tion method failed to converge near critical points but 

worked well otherwise. By using Powell's method {or the 

secant method) in these difficult regions, convergence was 

attained relatively quickly. Phase stability analysis 

worked well even in cases that were very close to phase 

boundaries and also for cases involving liquid-liquid 

equilibria. 

Aside from the above, only one problem was en­

countered using phase stability analysis. As shown in 
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Section 3.3, the flash calculation may converge to an un­

stable two-phase solution, when a stable solution is also 

two-phase. The phase stability analysis was unable to de­

tect the instability of this constrained solution. By ad­

justing the starting solutions, however, this problem may 

be solved quite easily. More work needs to be done in this 

area. When a stable solution was actually three-phase, 

the corresponding constrained two-phase solution was 

readily detected as being unstable. 

The accelerated successive substitution method for 

solution of the flash equations generally worked without 

problem. However, near phase boundaries and very near to 

critical points, the method failed to converge. This prob­

lem was found for all mixtures. The secant and Powell's 

method also had convergence problems in these areas. In 

particular, near the critical point, Powell's method would 

often converge to a trivial solution. 

These difficulties encountered when computing phase 

diagrams could often be circumvented. For example, in a 

two component mixture, if the overall composition was very 

near a phase boundary at a given pressure, by changing the 

overall composition to move away from the boundary, a phase 

equilibrium solution could often be found at this given 

pressure. However, knowledge of the phase behavior at 

slightly lower pressures was necessary in order to determine 



how the overall composition should be changed. In some 

situations, though, changing the overall composition is 

not a viable alternative, and solution of these conver­

gence problems must be made before use of the algorithm 

in a compositional simulator is possible. 
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CHAPTER 7 

Summary and Conclusions 

In the first section of this chapter is a brief 

summary of the work completed in this study. The second 

section outlines several conclusions that have been drawn 

from this research. The third and final section makes 

several recommendations for further research. 

7.1 Summary 

An algorithm for isothermal, multi-component phase 

equilibrium calculations has been developed for mixtures of 

non-reacting species. An equation of state is used to 

model the fluid behavior of each of up to three non-aqueous 

coexisting equilibrium phases. The Peng-Robinson equation 

of state has been used in this study. 

The algorithm consists of a phase stability analy­

sis calculation for prediction of multi-phase behavior at a 

given temperature, pressure, and overall composition. When 

necessary, as indicated by the stability analysis, a phase 

is added. To compute the equilibrium phase compositions 

and the relative amounts of each phase, a flash calculation 

is done. By conducting flash calculations in series with 
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phase stability analysis, the algorithm is capable of pre­

dicting equilibria for up to three coexisting phases. 

Several examples include binary and ternary mix­

tures of C02 with several different normal alkanes, and 

also a mixture of C02 with a recombined reservoir fluid. 

These mixtures show vapor-liquid equilibria, liquid-liquid 

equilibria, and also three-phase liquid-liquid-vapor be­

havior. Several comparisons have been made between calcu­

lated phase compostions and experimental data. 

7.2 Conclusions 

Phase stability analysis as implemented in this 

study was found to be an excellent method to detect multi­

phase behavior. Single-phase mixtures were found with rela­

tively few calculations. The stability analysis method 

worked very well even in difficult to compute areas such as 

near the critical point and close to phase boundaries. 

The successive substitution method failed to con­

verge near the critical region but generally worked well 

otherwise. Therefore, methods higher in order than suc­

cessive substitution are necessary to solve the stability 

equations in the near critical region. 

Phase stability analysis combined with the flash 

calculation was found to be a satisfactory method which is 
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able to predict phase equilibria for up to three equilib­

rium phases. 

The accelerated successive substitution method for 

solution of the flash calculation works well in general and 

has convergence characteristics which are much improved over 

pure successive substitution. Implementation of the method 

is a relatively simple extension of the SS method. This is 

true for both the two-phase and three-phase flash calcula­

tions. Convergence problems were encountered, however, par­

ticularly, near the critical point and also near phase 

boundaries. 

Multi-phase equilibrium calculations have been found 

to be very sensitive to the values used as input for the 

equation of state. Although the Peng-Robinson equation of 

state models experimental two-phase liquid-vapor behavior 

quite well with relatively minor adjustments of the input, 

three-phase behavior may be modeled quantitatively only 

after more substantial adjustments to the input values are 

made. 

7.3 Recommendations 

Further study is needed of the convergence charac­

teristics of the flash calculation near phase boundaries 

and near critical points. The generation of starting values 

for the flash calculation from the results of the phase 
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stability analysis should also be studied further, both 

from the standpoint of better initial estimates for the 

phase compositions, and also for the effect that the start­

ing values have on theconvergenceof the flash calculation. 

An effective method for elimination of extraneous 

·phases must be found. This is crucial in cases where an 

unstable two-phase solution has been found from the flash 

calculation, but the stable solution is also two-phase. 

A study should be made of the relationship between 

variables input into the equation of state and quantitative 

calculations of three-phase equilibria. This includes the 

role and importance of binary interaction coefficients, 

selection of pseudocomponents, both the number and grouping, 

and also the proper characterization of these pseudo­

components. 

The multi-phase flash algorithm should be extended 

to include an aqueous phase in addition to the three non­

aqueous phases already possible. 

The phase-behavior package should then be installed 

in a compositional simulator so that the study of miscible 

gas processes includes the effects of the complex phase be­

havior between carbon dioxide and hydrocarbons. 



b· = l. 

f. = 
l. 

G = 

K·. = 
l. J 

L. = 
J 

M· = l. 

nc = 

n·. = 
l. J 

p = 

R = 

T = 

= 

U· = l. 

v = 

v = 

NOMENCLATURE 

temperature dependent parameter in Peng-Robinson 
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molar Gibbs free energy 

equilibrium ratio for component i in phase j 
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volume 
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APPENDIX A 

Derivation of Phase Stability Criteria 

Following is a derivation of the criterion used in 

the phase stability analysis portion of the phase equilib-

ria calculation given by Equation 4.2. 

Consider an isolated system with a single phase com-

posed of an nc-component mixture. The system is restricted 

such that no chemical reactions occur. Further, assume 

that the temperature, pressure, and component chemical 

potentials are uniform. Finally, let z1, z2, ..• , Znc 

represent the component mole fractions of the overall com-

position. 

The Gibbs free energy of this mixture, G0 , is 

given by 

nc 
Go = N I ziµi(z) 

i=l 
(A. l) 

where N is the total number of moles and µi ( z) is the 

chemical potential of component i in the mixture of 

composition z. 
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Now consider the reconstruction of the large system 

into two smaller systems, one portion containing E moles 

and a second portion containing (N- E) moles. That is, a 

small membrane may be placed within the system such that it 

encloses a finite element E, now distinguishable from the 

rest of the system. The membrane is non-rigid, diathermal. 

and permeable to all components [M8]. Hence, in the origi­

nal state, both the E and (N- E) portions have identical 

properties. 

The Gibbs free energy of this change at constant 

temperature and pressure is given by 

6G = Gr + Grr - Go (A.2) 

where Gr is the Gibbs free energy of the portion (N- E) and 

Grr is the Gibbs free energy of the portion E. 

The Gibbs free energy is a function of temperature, 

pressure, and component mole numbers. But sine~ the pro­

cess is constrained to constant temperature and pressure, 

only the relationship with the mole numbers need be con­

sidered. 

By inserting the membrane, removed from the large 

system is 6ni moles of each component, for i = 1, 2, ... , 

nc, with each 6ni being independent. Thus, remaining 
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outside the membrane are n1 - on1, n2 - on2, and so on, moles 

of each component. Hence, the following may be written: 

(A. 3) 

not considering the dependence on T and P. Since each oni 

is small, Gr may be expanded about Go of the original system 

in a Taylor series of nc independent variables: 

Gr = Go(n1, n2, ... , nnc) - on1(~G) 
n1 nj 

+ ••. 

- onnc(~) 
annc n j 

jf l 

jfnc 

2 Ignoring terms of oni and higher, 

= 
nc a 

Go - I on· (__§__I 
. i a ) 
i=l ni Ilj 

j~i 

(A. 4) 

(A. 5) 

Define now the set of variables (y1, Y2, ... , Ync) which 

represent the mole fraction of each component in the small 

portion £. Namely, 
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on· l oni 
Yi = = nc 

I onk e:: 

k==l 

for i = 1, 2, . . . , nc (A. 6) 

Thus, from Equation A.5, 

= 
nc aG 

e:: I Yi(an-:-) 
i=l l nj 

(A. 7) 

jf i 

Since the Taylor series expansion was about the original 

state, the partial derivatives in Equation A.7 must be 

evaluated at the original composition. That is to say, 

oG ) (-;--n. = 
0 in· 

n~i 
A. 8) 

Next, the Gibbs free energy of the portion e:: is 

given by 

nc 
Grr = e:: I Yiµi(Y) 

i=l 

Substituting Equations A.7 and A.9 into Equation A.2, 

(A. 9) 



nc 
6G = E I Yi(µi(Y) - µi(Z)) 

i=l 
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(A.10) 

Stability of the original mixture requires that the 

Gibbs free energy be at a global minimum, or 

6G = Gr + G11 - Go ~ o 

From Equation A.10, it follows that 

nc 
EI Yi(µi(Y) - µi(z)) ~ O 
i=l 

(A.11) 

(A.12) 

for all compositions y. Since E > 0, a necessary criterion 

for stability as a single phase is that 

nc 
I Yi(µi(Y) - µi(z)) ~ O 

i=l 

for all trial compositions y. 

(A.13) 



APPENDIX B 

Listing of Source Code 

PROGRAM THPF (INPUT,OUTPUT,NOTE,TAPE5=INPUT,TAPE6=0UTPUT, 
1 TAPE7=NOTE) 

COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION OMFR(20), AMF1(20), AMF2(20), AMFR(20), WK1(20) 

CALL RUNDAT 
IFLASH = 1 

10 CALL DATRD (IFLASH,NC,OMFR,IPARM,WKl) 
CALL FLASH (NC,OMFR,AMF1,AMF2,AMFR,NPH,IER) 
IF (IER.EQ.O) CALL PDENS (NPH,NC,OMFR,AMF1,AMF2,AMFR,WK1) 
CALL WRTOUT (NC,IER,NPH,OMFR,AMF1,AMF2,AMFR) 
CALL CONT (IFLASH) 
IF (IFLASH.GE.1) GO TO 10 

STOP 
END 
SUBROUTINE RUNDAT 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /BBBBl/ ICMPN(20), IRUN1(8), IRUN2(8) 

READ (5,900) (IRUNl(I), I= 1, 8) 
READ (5,900) (IRUN2(I), I= 1,8) 
READ (5,*) IEOS, IMODE, ISA, IFC, IPL 

IF (ISA.EQ.l) THEN 

READ (5,*) EPSSA, NITSA 
EPS(l) = EPSSA 

ELSE 

READ (5,*) NDSA, NITSA 
IPARM(7) = NDSA 

ENDIF 

READ (5,*) EPSPD, NITPD, EPSTS, EPSTP 
IF (IFC.EQ.1) THEN 

READ (5,*) EPSEQR, NITEQR 
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EPS(3) = EPSEQR 

ELSE 

READ (5,*) NDEQR, NITEQR, !IV 
IPARM(lO) = NDEQR 
IPARM(ll) =!IV 

ENDIF 

IF (IFC.LT.O) THEN 

READ (5,*) EPSEQR, EPSl, EPS2, EPS3 
EPS(3) = EPSEQR 
EPS(4) = EPSl 
EPS(5) = EPS2 
EPS(6) = EPS3 

ENDIF 

WRITE (6,100) (IRUNl(I), I = 1, 8) 
WRITE (6,110) (IRUN2(I), I= 1, 8) 

IF (IEOS.EQ.l) THEN 
WRITE (6,120) !MODE 

ELSE 
WRITE (6,130) !MODE 

ENDIF 

WRITE (6,140) 
IF (ISA.EQ.1) THEN 

WRITE (6,150) 
WRITE (6,160) EPSSA, NITSA 

ELSE 

IF (ISA.EQ.2) THEN 

WRITE (6,170) 
WRITE (6,180) NDSA, NITSA 

ELSE 

WRITE (6,190) 
WRITE (6,180) NDSA, NITSA 

ENDIF 

ENDIF 
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WRITE (6,200) EPSPD, NITPD 
IF (IFC.LT.O) GO TO 10 

IF (IFC.EQ.1) THEN 

WRITE (6,210) 
WRITE (6,160) EPSEQR, NITEQR 

ELSE 

IF (IFC.EQ.2) THEN 

WRITE (6,170) 

END IF 

GO TO 20 

WRITE (6,180) NDEQR, NITEQR 

ELSE 

WRITE (6, 190) 
WRITE (6,180) NDEQR, NITEQR 

ENDIF 

10 IF (IFC.EQ.-2) THEN 

WRITE (6,220) 
WRITE (6,180) NDEQR, NITEQR 
WRITE (6,240) EPSl, EPS2, EPS3 

ELSE 

WRITE (6,230) 
WRITE (6,180) NDEQR, NITEQR 
WRITE (6,240) EPSl, EPS2, EPS3 

ENDIF 

20 IF (IPL.EQ.O) GO TO 30 
WRITE (7,100) (IRUNl(I), I= 1, 8) 
WRITE (7,110) (IRUN2(I), I= 1, 8) 
IF (IFC.NE.1) THEN 

WRITE (7,910) !IV 
ENDIF 

30 IPARM(l) = IEOS 
IPARM(2) = !MODE 
IPARM(3) = ISA 
IPARM(4) = IFC 
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IPARM(5) = IPL 
IPARM(6) = NITSA 
IPARM(8) = NITPD 
IPARM(9) = NITEQR 
EPS(2) = EPSPD 
EPS(7) = EPSTS 
EPS(8) = EPSTP 

RETURN 

100 FORMAT (1Hl,1X,8A10) 
110 FORMAT (1X,8A10) 
120 FORMAT (/,lX,*MODE OF OPERATION:*,I5,6H PHASE, 

1 /,lX,*CALCULATIONS USING PENG-ROBINSON EOS*) 
130 FORMAT (/,lX,*MODE OF OPERATION:*,I5,6H PHASE, 

1 /,lX,*CALCULATIONS USING SOAVE-REDLICH KWONG EOS*) 
140 FORMAT (/,lX,*PHASE STABILITY ANALYSIS CALCULATION*) 
150 FORMAT (/,6X,*METHOD OF SOLUTION*,15X,2HSS) 
160 FORMAT (6X,*TOLERANCE*,11X,E15.3, 

1 /,6X,*MAXIMUM ITERATIONS*,7X,Il0) 
170 FORMAT (/,6X,*METHOD OF SOLUTION*,11X,6HSECANT) 
180 FORMAT (6X,22HTOLERANCE (SIG DIGITS) ,!13, 

1 /,6X,*MAXIMUM ITERATIONS*,7X,Il0) 
190 FORMAT (/,6X,*METHOD OF SOLUTION*,11X,6HPOWELL) 
200 FORMAT (/,lX,*PHASE MOLE DISTRIBUTION CALCULATION*, 

1 //,6X,*TOLERANCE*,11X,El5.3, 
2 /,6X,*MAXIMUM ITERATIONS*,7X,Il0, 
3 //,lX,*FLASH CALCULATION*) 

210 FORMAT (/,6X,*METHOD OF SOLUTION*,13X,4HACSS) 
220 FORMAT (/,6X,*METHOD OF SOLUTION*,6X,*ACSS/SECANT*) 
230 FORMAT (/,6X,*METHOD OF SOLUTION*,6X,*ACSS/POWELL*) 
240 FORMAT (/,6X,*SWITCHING TOLERANCES*, 

1 /,llX,*TOL l*,10X,E15.3,/,11X,*TOL 2*,10X,E15.3, 
2 /,llX,*TOL 3*,10X,El5.3) 

900 FORMAT (8A10) 
910 FORMAT (//,lX,*INDEPENDENT VARIABLE FLAG*,lOX,!5) 

END 
SUBROUTINE DATRD (IFLASH,NC,OMFR,IPARM,ALPHAI) 
COMMON /AAAA3/ TEM, PRS 
COMMON /AAAA4/ TEMC(20), PRSC(20), ACF(20), AMW(20) 
COMMON /AAAA5/ AI(20), BI(20), AIJ(20,20) 
COMMON /BBBBl/ ICMPN(20), IRUN1(8), IRUN2(8) 
COMMON /BBBB4/ API(20), AMI(20), BICM(20,20) 
DIMENSION OMFR(l), IPARM(l), ALPHAI(l) 

IF (!FLASH.GT.I) GO TO 40 
R= 10.732 
IF (IPARM(l).EQ.l) THEN 

CAI = 0.457235529 * R * R 
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CBI = 0.077796074 * R 
CMO = 0.37464 
CMl = 1.54226 
CM2 = 0.26992 

ELSE 

CAI = 0.4274802 * R * R 
CBI = 0.08664035 * R 
CMO = 0.480 
CMl = 1. 574 
CM2 = 0.176 

ENDIF 

READ (5,*) NC 
DO 10, I = 1, NC 

READ (5,900) ICMPN(I), TEMC(I), PRSC(I), ACF(I), AMW(I) 
BI(I) = CBI * TEMC(I) I PRSC(I) 
API(I) = CAI * TEMC(I)**2 I PRSC(I) 
AMI(I) = CMO + ACF(I) * (CMl - CM2 * ACF(I)) 

10 CONTINUE 

READ (5,*) ((BICM(I,J), J = 1, NC), I= 1, NC) 
DO 30, I = 1, NC-1 

DO 20, J = I+l, NC 
BICM(J,I) = BICM(I,J) 

20 CONTINUE 
30 CONTINUE 

40 IF (IFLASH.GT.2) GO TO 80 

READ (5,*) TEM 
DO 50, I = 1, NC 

ALPHAI(I) = (1.0 + AMI(I) * (1.0 - (TEM I TEMC(I))**0.5))**2 
AI(I) = API(I) * ALPHAI(I) 

50 CONTINUE 

DO 70, I = 1, NC 
DO 60, J = I, NC 

AIJ(I,J) = (1.0 - BICM(I,J)) * (AI(I) * AI(J))**0.5 
AIJ(J,I) = AIJ(I,J) 

60 CONTINUE 
70 CONTINUE 
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IF (IFLASH.EQ.2) RETURN 

80 IF (IFLASH.GT.3) GO TO 90 

READ (5,*) PRS 
IF (IFLASH.EQ.3) RETURN 

90 IF (IFLASH.GE.5) CALL DEFLT 

READ (5,*) (OMFR(I), I = l, NC) 

IF (IFLASH.EQ.4) RETURN 

WRITE (6,200) 
WRITE (6,210) (ICMPN(I), TEMC(I), PRSC(I), ACF(I), 

1 AMW(I), I= 1, NC) 

WRITE (6,220) 
DO 100, I = 1, NC 

WRITE (6,230) ICMPN(I), I 
100 CONTINUE 

WRITE (6,240) (I, I= 1, NC) 
DO 110, I = 1, NC 

WRITE (6,250) I, (BICM(I,J), J = 1, NC) 
110 CONTINUE 

WRITE (6,260) 

RETURN 

200 FORMAT (/,14(2H -),*SYSTEM DEFINITION*,14(2H- ), 
1 //,1X,10X,2(7X,8HCRITICAL),7X,8HACENTRIC,6X,9HMOLECULAR, 
2 /,2X,9HCOMPONENT,4X,11HTEMPERATURE,7X,8HPRESSURE, 
3 9X,6HFACTOR,9X,6HWEIGHT,/,19X,7H(DEG R),9X,6H(PSIA), 
4 /,lX,lOH---------- ,4(4X,11H----------- ),/) 

210 FORMAT (1X,Al0,4Fl5.3) 
220 FORMAT (//,lX,*BINARY INTERACTION PARAMETERS*, 

1 //,6X,*DEFINE:*,) 
230 FORMAT (1X,Al0,1X,1H=,I4) 
240 FORMAT (//,3X,3HJ =,20I6,/) 
250 FORMAT (1X,3HI =,I3,20F6.3) 
260 FORMAT (/,14(2H -),*END OF SYSTEM DATA*,14(2H- )) 
900 FORMAT (Al0,4Fl0.3) 

END 
SUBROUTINE PDENS (NPH,NC,OMFR,AMF1,AMF2,AMFR,WK1) 
COMMON /AAAA4/ TEMC(20), PRSC(20), ACF(20), AMW(20) 
COMMON /88882/ FGC1(20), FGC2(20), FGCR(20), Zl, Z2, ZR 
COMMON /88883/ AMWl, AMW2, AMWR, DENI, DEN2, DENR 
DIMENSION OMFR(l), AMFl(l), AMF2(1), AMFR(l), WKl(l) 
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IF (NPH.GE.2) GO TO 10 

CALL FGCF (NC,OMFR,FGCR,WKl,ZR) 
CALL DENS (NC,AMW,OMFR,ZR,AMWR,DENR) 
RETURN 

10 CALL FGCF (NC,AMFl,FGCl,WKl,Zl) 
CALL DENS (NC,AMW,AMFl,Zl,AMWl,DENl) 
CALL FGCF (NC,AMFR,FGCR,WKl,ZR) 
CALL DENS (NC,AMW,AMFR,ZR,AMWR,DENR) 
IF (NPH.EQ.3) GO TO 20 

RETURN 

20 CALL FGCF (NC,AMF2,FGC2,WK1,Z2) 
CALL DENS (NC,AMW,AMF2,Z2,AMW2,DEN2) 

RETURN 
END 
SUBROUTINE DENS (NC,AMW,AMFR,Z,PAMW,DENSP) 
COMMON /AAAA3/ TEM, PRS 
DIMENSION AMW(l), AMFR(l) 

R = 10.73 
PAMW = 0.0 
DO 10, I = 1, NC 

PAMW = PAMW + AMW(I) * AMFR(I) 
10 CONTINUE 

C = PRS I (R * TEM) 
DENSP = PAMW * C I Z 

RETURN 
END 
SUBROUTINE WRTOUT (NC,IER,NPH,OMFR,AMF1,AMF2,AMFR) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA3/ TEM, PRS 
COMMON /AAAA6/ TIME(9) 
COMMON /BBBBl/ ICMPN(20), IRUN1(8), IRUN2(8) 
COMMON /BBBB2/ FGC1(20), FGC2(20), FGCR(20), Zl, Z2, ZR 
COMMON /BBBB3/ AMWl, AMW2, AMWR, DENl, DEN2, DENR 
DIMENSION OMFR(l), AMFl(l), AMF2(1), AMFR(l) 

IF (IER.NE.O) GO TO 30 
WRITE (6,100) 
WRITE (6,110) TEM, PRS 
IF (NPH.GT.l) GO TO 10 

AMOLR = 1.0 
WRITE (6,120) ZR, AMOLR, AMWR, DENR 
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WRITE (6,I30) 
WRITE (6,I40) (ICMPN(I), OMFR(I), FGCR(I), I= I, NC) 
GO TO 20 

IO IF (NPH.EQ.2) THEN 

WRITE (6,I50) 
WRITE (6,I60) ZI, ZR, AMOLI, AMOLR 
WRITE (6,I70) AMWI, AMWR, DENI, DENR 
WRITE (6,I80) 
WRITE (6,I90) (ICMPN(I), OMFR(I), AMFI(I), AMFR(I), 

I FGCI(I), FGCR(I), I= I, NC) 

ELSE 

WRITE (6,200) 
WRITE (6,2IO) ZI, Z2, ZR, AMOLI, AMOL2, AMOLR 
WRITE (6,220) AMWI, AMW2, AMWR, DENI, DEN2, DENR 
WRITE (6,230) 
WRITE (6,240) (ICMPN(I), OMFR(I), AMFI(I), AMF2(I), 

I AMFR(I), FGCI(I), FGC2(I), FGCR(I), I = I, NC) 

ENDIF 

20 WRITE (6,250) 
IF (IPARM(3).EQ.I) THEN 

WRITE (6,260) IPARM(12), IPARM(I3) 
ELSE 

WRITE (6,270) IPARM(I4), IPARM(I5) 
ENDIF 

T = TIME(3) - TIME(2) 
WRITE (6,280) T 

IF (NPH.GE.2) THEN 

WRITE (6,290) 
IF (IPARM(4).LE.I) WRITE (6,300) IPARM(I6) 
IF (IABS(IPARM(4)).GE.2) WRITE (6,3IO) IPARM(I7) 
T = TIME(5) - TIME(4) 
WRITE (6,280) T 

ENDIF 

IF (NPH.EQ.3) THEN 

ITIT = IPARM(I9) + IPARM(20) + IPARM(2I) + IPARM(22) 
T = TIME(7) - TIME(6) 
WRITE (6,320) ITIT 
WRITE (6,280) T 
WRITE (6,330) 
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IF (IPARM(4).LE.1) WRITE (6,300) IPARM(23) 
IF (IABS(IPARM(4)).GE.2) WRITE (6,310) IPARM(24) 
T = TIME(9) - TIME(8) 
WRITE (6,280) T 

ENDIF 

T = TIME(9) - TIME(l) 
WRITE (6,340) T 
IF (NPH.GE.2) WRITE (6,350) IPARM(18), RPARM(3) 
IF (NPH.EQ.3) WRITE (6,360) IPARM(25), RPARM(S) 
IF (IPARM(26).NE.O) WRITE (6,370) IPARM(23) 
GO TO 40 

30 CALL ERROPR (IER) 

.40 WRITE (6,380) 

RETURN 

100 FORMAT (/,13(2H -),*EQUILIBRIUM SOLUTION*,14(2H- )) 
110 FORMAT (//,lX,*SYSTEM TEMPERATURE (DEG R)*,5X,F12.4, 

1 /,lX,*SYSTEM PRESSURE (PSIA)*,9X,F12.4) 
120 FORMAT (//,lX,*SINGLE PHASE SYSTEM*,//,6X,*COMPRESSIBILITY*,/, 

1 15X,6HFACTOR,F15.5,/,1X,*RATIO OF PHASE MOLES*, 
2 /,7X,14HTO TOTAL MOLES,Fl5.5,/,4X,*AVERAGE MOLECULAR*, 
3 /,15X,6HWEIGHT,F15.2,/,9X,*MASS DENSITY*,/, 
4 8X,13H(LBS I CU FT),FlS.2) 

130 FORMAT (//,2X,9HCOMPONENT,7X,13HMOLE FRACTION, 
1 5X,20HFUGACITY COEFFICIENT,/,lX,lOH---------- , 
2 SX,lSH--------------- ,5X,20(1H-),/) 

140 FORMAT (1X,A10,E20.10,E25.10) 
150 FORMAT (/,lX,*TWO PHASE SYSTEM*,//,1X,28X,7HPHASE 1, 

1 8X,7HPHASE 2,/,21X,2(8X,7H------- ),/) 
160 FORMAT (6X,*COMPRESSIBILITY*,/,15X,6HFACTOR,2Fl5.5, 

1 /,lX,*RATIO OF PHASE MOLES*,/,7X,14HTO TOTAL MOLES,2F15.5) 
170 FORMAT (4X,*AVERAGE MOLECULAR*,/,15X,6HWEIGHT,2F15.2, 

1 /,9X,*MASS DENSITY*,/,8X,13H(LBS I CU FT) ,2F15.2) 
180 FORMAT (//,1X,44X,*PHASE COMPOSITION*,/,24X,7HOVERALL,15X, 

1 lSH(MOLE FRACTION),23X,*FUGACITY COEFFICIENT*, 
2 /,27X,4HMOLE,5X,35(1H-),5X,35(1H-),/, 
3 2X,9HCOMPONENT,12X,8HFRACTION,2(13X,7HPHASE l,13X,7HPHASE 2), 
4 /,lX,lOH---------- ,5(5X,15H--------------- ),/) 

190 FORMAT (1X,A10,5E20.10) 
200 FORMAT (/,lX,*THREE PHASE SYSTEM*,//,1X,28X,7HPHASE 1, 

1 8X,7HPHASE 2,8X,7HPHASE 3,/,21X,3(8X,7H------- ),/) 
210 FORMAT (6X,*COMPRESSIBILITY*,/,15X,6HFACTOR,3F15.5, 

1 /,lX,*RATIO OF PHASE MOLES*,/,7X,14HTO TOTAL MOLES,3F15.5) 
220 FORMAT (4X,*AVERAGE MOLECULAR*,/,15X,6HWEIGHT,3F15.2, 

1 /,9X,*MASS DENSITY*,/,8X,13H(LBS I CU FT),3F15.2) 
230 FORMAT (//,1X,42X,*PHASE COMPOSITION*,/,19X,7HOVERALL,18X, 
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1 15H(MOLE FRACTION),27X,*FUGACITY COEFFICIENT*, 
2 /,22X,4HMOLE,5X,40(1H-),5X,40(1H-),/, 
3 2X,9HCOMPONENT,7X,8HFRACTION,2(8X,7HPHASE l,8X,7HPHASE 2, 
4 8X,7HPHASE 3),/,1X,10(1H-),7(5X,10H---------- ),/) 

240 FORMAT (1X,Al0,7E15.8) 
250 FORMAT (//,lX,*PHASE STABILITY ANALYSIS*,/) 
260 FORMAT (6X,*NUMBER OF ITERATIONS*,12X,I3,2H /,13) 
270 FORMAT (6X,*NUMBER OF FUNCTION EVALUATIONS*,2X,I3,2H /,13) 
280 FORMAT (6X,*EXECUTION TIME (CPU SECS)*,5X,F10.4) 
290 FORMAT (/,lX,*TWO PHASE SPLIT CALCULATION*,/) 
300 FORMAT (6X,*NUMBER OF ITERATIONS (ACSS)*,3X,I10) 
310 FORMAT (6X,*NUMBER OF FUNCTION EVALUATIONS*,110) 
320 FORMAT (/,lX,*MULTI-PHASE STABILITY TEST*,/, 

1 6X,*ITERATIONS (FUNCTION EVALUATIONS)*,I7) 
330 FORMAT (/,lX,*THREE PHASE SPLIT CALCULATION*,/) 
340 FORMAT (/,lX,*FLASH COMPUTATION*,//,6X, 

1 *TOTAL EXECUTION TIME (CPU SECS)*,F9.4) 
350 FORMAT (6X,*TOTAL ITERATIONS OF TWO PHASE*,/,llX,*DISTRIBUTION*, 

1 13X,Il0,/,6X,*TWO PHASE VECTOR NORM*,E19.7) 
360 FORMAT (6X,*TOTAL ITERATIONS OF THREE*, 

1 /,llX,*PHASE DISTRIBUTION*,7X,Il0, 
2 /,6X,*THREE PHASE VECTOR NORM*~E17.10) 

370 FORMAT (/,lX,*NOTE: THIRD PHASE ELIMINATED AFTER*, 
1 I5,1X,*ITERATIONS*) 

380 FORMAT (/,14(2H -),*END OF RESULTS*,14(2H- )) 

END 
SUBROUTINE CONT (!FLASH) 

READ (5,*) IFLASH 
IF (IFLASH.LE.O) GO TO 10 
RETURN 

10 WRITE (6,100) 
RETURN 

100 FORMAT (//,lX,*END OF PROGRAM*) 

END 
SUBROUTINE DEFLT 
WRITE (6,100) 
STOP 

100 FORMAT (/,lX,*AN ERROR HAS BEEN MADE IN THE VALUE OF !FLASH*) 
END 
SUBROUTINE ERROPR (IER) 
COMMON /AAAA3/ TEM, PRS 

IF (IER.GT.200) GO TO 10 
IF (IER.EQ.111) WRITE (6,100) 
IF (IER.EQ.112) WRITE (6,110) 
IF (IER.EQ.121) WRITE (6,120) 
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IF (IER.EQ.122) WRITE (6,130) 
IF (IER.EQ.131) WRITE (6,140) 
IF (IER.EQ.132) WRITE (6,150) 
GO TO 40 

10 IF (IER.GT.300) GO TO 30 
IF (IER.EQ.210) WRITE (6,160) 
IF (IER.EQ.220) WRITE (6,170) 
IF (IER.EQ.230) WRITE (6,180) 
GO TO 40 

30 IF (IER.EQ.301) WRITE (6,190) 
IF (IER.EQ.401) WRITE (6,200) 
IF (IER.EQ.402) WRITE (6,210) 
IF (IER.EQ.403) WRITE (6,220) 
IF (IER.EQ.800) WRITE (6,230) 

40 WRITE (6,900) TEM, PRS 

STOP 

100 FORMAT (/,lX,*ERROR IN SS OF SA IN SOL 1*,/) 
110 FORMAT (/,lX,*ERROR IN SS OF SA IN SOL 2*,/) 
120 FORMAT (/,lX,*ERROR IN SECANT OF SA IN SOL l*,/) 
130 FORMAT (/,lX,*ERROR IN SECANT OF SA IN SOL 2*,/) 
140 FORMAT (/,lX,*ERROR IN POWELL OF SA IN SOL l*,/) 
150 FORMAT (/,lX,*ERROR IN POWELL OF SA IN SOL 2*,/) 
160 FORMAT (/,lX,*ERROR IN ACSS OF PHASE SPLIT*,/) 
170 FORMAT (/,lX,*ERROR IN SECANT OF PHASE SPLIT*,/) 
180 FORMAT (/,lX,*ERROR IN POWELL OF PHASE SPLIT*,/) 
190 FORMAT (/,lX,*MOLE NUMBER IS NEGATIVE IN PHASE DIST.*) 
200 FORMAT (/,lX,*NON CON. IN FINDING PHASE DIST.*) 
210 FORMAT (/,lX,*DERIVATIVE IS ZERO IN PHASE DIST.*) 
220 FORMAT (/,lX,*MOLE DISTRIBUTION OUT OF RANGE*) 
230 FORMAT (/,lX,*ALGORITHM UNABLE TO FIND STABLE SOLUTION*) 
900 FORMAT (/,lX,*PROBLEM OCCURRED AT:*,/, . 

1 lX,*SYSTEM TEMPERATURE (DEG R)*,F17.4, 
2 /,lX,*SYSTEM PRESSURE (PSIA)*,F17.4) 

END 
SUBROUTINE FLASH (NC,OMFR,AMF1,AMF2,AMFR,NPH,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA6/ TIME(9) 
DIMENSION OMFR(l), AMFl(l), AMF2(1), AMFR(l) 
DIMENSION WRK1(20), WRK2(20), WK(1420) 

CALL SECOND (TIME(l)) 
DO 10, I = 12, 26 

IPARM(I) = 0 
10 CONTINUE 
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IPL = IPARM(5) 
CALL SECOND(TIME(2)) 
CALL PSA (NC,OMFR,WRKI,AMFI,AMFR,WK,WRK2,IER) 
IF (IER.NE.O) GO TO 60 
CALL SECOND (TIME(3)) 
IF (IPL.GE.I) CALL WRT2 (NC,OMFR,AMFI,AMFR) 
CALL SOLAN (NC,AMFI,AMFR,OMFR,EPS,NPH) 
IF (NPH.EQ.2) GO TO 20 
CALL SECOND (TIME(9)) 
RETURN 

20 CALL SECOND (TIME(4)) 
30 CALL PSPLT (NC,OMFR,AMFI,AMFR,WRKI,WK,IER) 

IF (IER.NE.O) GO TO 60 
CALL SECOND (TIME(5)) 
IF (IPARM(2).EQ.3) GO TO 40 
CALL SECOND (TIME(9)) 
RETURN 

40 CALL WRT5(NC,AMFI,AMFR) 
CALL SECOND (TIME(6)) 
CALL PSATP (NC,AMFI,AMF2,AMFR,WRKI,WK,NPH,IER) 
IF (IER.NE.O) GO TO 60 
CALL SECOND (TIME(?)) 
CALL SECOND (TIME(9)) 
IF ((NPH.EQ.3).AND.(IPARM(26).EQ.O)) GO TO 50 
IF (NPH.EQ.3) IER = 800 
RETURN 

50 CALL SECOND (TIME(8)) 
CALL PSPLT3 (NC,OMFR,AMFI,AMF2,AMFR,WRKI,WRK2,IER) 
IF (IPARM(26).NE.O) GO TO 30 
CALL SECOND (TIME(9)) 

60 RETURN 
END 
SUBROUTINE PSA (NC,OMFR,HG,AMFI,AMF2,WK,WKI,IER) 
COMMON /AAAAI/ IPARM(26), EPS(8), RPARM(6), AMOLI, AMOL2, AMOLR 
DIMENSION OMFR(I), HG(I), AMFI(I), AMF2(I) 
DIMENSION WK(I), WKI(I) 

IPL = IPARM(5) 
!MET = IPARM(3) 

CALL SETH (NC,OMFR,HG,WKI) 
CALL SETY (NC,OMFR,AMFI,AMF2,WKI) 
IF (IPL.GE.I) CALL WRTI (NC,WK1,AMFI,AMF2) 
IF (IMET.GE.2) GO TO IO 
CALL PSASS (NC,HG,AMFI,AMF2,IER) 
GO TO 20 
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10 CALL PSAHOM (NC,OMFR,HG,AMF1,AMF2,WK,WK1,IER) 

20 RETURN 
END 
SUBROUTINE SETH (NC,OMFR,HG,WK) 
DIMENSION OMFR(l), HG(l), WK(l) 

CALL FGCF (NC,OMFR,HG,WK,Z) 
DO 10, I = l, NC 

HG(I) = ALOG(OMFR(I) * HG(I)) 
10 CONTINUE 

RETURN 
END 
SUBROUTINE SETY (NC,OMFR,AMF1,AMF2,EQR) 
COMMON /AAAA2/ IWK, AMN(20), WK2(20), WK3(20), WK4(20), WK5(20) 
COMMON /AAAA3/ TEM, PRS 
COMMON /AAAA4/ TEMC(20), PRSC(20), ACF(20), AMW(20) 
DIMENSION OMFR(l), AMFl(l), AMF2(1), EQR(l) 

DO 10 , I = 1 , NC 

A= 5.37 * (1.0 +ACF(!) - TEMC(I) * (1.0 +ACF(!)) ITEM) 
EQR(I) = PRSC(I) * EXP(A) I PRS 
AMN(I) = EQR(I) * OMFR(I) 

10 CONTINUE 

CALL MFNM (NC,AMN,AMFl) 

DO 20, I = 1, NC 
AMN(I) = OMFR(I) I EQR(I) 

20 CONTINUE 
CALL MFNM (NC,AMN,AMF2) 

ZMl = 0.0 
ZM2 = 0.0 
DO 30, I = 1 , NC 

IF (AMFl(I).GE.ZMl) THEN 

ZMl = AMFl(I) 
Il = I 

ENDIF 

IF (AMF2(I).GE.ZM2) THEN 

ZM2 = AMF2( I) 
12 = I 

152 



ENDIF 

30 CONTINUE 

ICY = 0 
IF (Il.EQ.I2) THEN 

Cl = AMFl(Il) - OMFR(Il) 
C2 = AMF2(I2) - OMFR(I2) 
CSS = Cl * C2 
IF (CSS.GE.0.0) ICY = 1 

ENDIF 

IF (ICY.EQ.O) GO TO 50 

R = OMFR(Il) I (l.O - OMFR(Il)) 
IF (ABS(Cl).GT.ABS(C2)) THEN 

IF (AMFl(Il).LT.OMFR(Il)) R = 1.0 IR 
ADMF = OMFR(Il) - R * Cl 
RMF = (1.0 - ADMF) I FLOAT(NC-1) 
DO 41, I = 1, NC 

AMF2(I) = RMF 
41 CONTINUE 

AMF2(Il) = ADMF 

ELSE 

IF (AMF2(Il).LT.OMFR(Il)) R = 1.0 I R 
ADMF = OMFR(Il) - R * C2 
RMF = (1.0 - ADMF) I FLOAT(NC-1) 
DO 42, I = 1, NC 

AM Fl (I) = RMF 
42 CONTINUE 

AMFl( Il) = ADMF 

ENDIF 

50 RETURN 
END 
SUBROUTINE MFNM (NC,AMN,AMF) 
DIMENSION AMN(l), AMF(l) 

SUM = 0.0 
IM = 0 
ZMAX = 0.0 
DO 10, I = 1, NC 

IF (AMN(I).GE.ZMAX) THEN 
ZMAX = AMN(I) 
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IM = I 
ENDIF 

SUM= SUM+ AMN(I) 

10 CONTINUE 

SUMF = 0.0 
DO 20, I = 1, NC 

IF (I.EQ.IM) GO TO 20 
AMF(I) = AMN(I) I SUM 
SUMF = SUMF + AMF(I) 

20 CONTINUE 

AMF(IM) = 1.0 - SUMF 

RETURN 
END 
SUBROUTINE PSASS (NC,HG,AMF1,AMF2,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA2/ IWK, FGC(20), AMF(20), WK3(20), WK4(20), WK5(20) 
DIMENSION HG(l), AMFl(l), AMF2(1) 

EPSSA = EPS(l) 
MAXIT = IPARM(6) 

DO 10, I = 1, MAXIT 

NIT = I 
CALL MFNM (NC,AMFl,AMF) 
CALL FGCF (NC,AMF,FGC,WK3,Z) 
CALL CCKSA (NC,AMFl,FGC,HG,FNl) 
IF (FNl.LE.EPSSA) GO TO 20 
CALL UPD (NC,FGC,HG,AMFl) 

10 CONTINUE 
IER = 111 
GO TO 40 

20 IPARM(12) = NIT 
RPARM(l) = FNl 
DO 30, I = 1, MAXIT 

NIT = I 
CALL MFNM (NC,AMF2,AMF) 
CALL FGCF (NC,AMF,FGC,WK3,Z) 
CALL CCKSA (NC,AMF2,FGC,HG,FN2) 
IF (FN2.LE.EPSSA) GO TO 50 
CALL UPD (NC,FGC,HG,AMF2) 
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30 CONTINUE 
IER = 112 

40 RETURN 

50 IPARM(l3) = NIT 
RPARM( 2) = FN2 
IER = 0 

RETURN 
END 
SUBROUTINE UPD (NC,FGC,HG,AMF) 
DIMENSION FGC(l), HG(l), AMF(l) 

DO 10, I = 1, NC 
AMF(I) = EXP(HG(I) - ALOG(FGC(I))) 

10 CONTINUE 

RETURN 
END 
SUBROUTINE CCKSA (NC,AMF,FGC,HG,FN) 
DIMENSION AMF(l), FGC(l), HG(l) 

SUM = 0.0 
DO 10, I = 1, NC 

HOY= ALOG(AMF(I) * FGC(I)) - HG(I) 
SUM = SUM + HOY**2 

10 CONTINUE 

FN = SQRT(SUM) 
RETURN 
END 
SUBROUTINE PSAHOM (NC,OMFR,HG,AMF1,AMF2,WK,AIV,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA2/ NFE, WK1(20), WK2(20), WK3(20), WK4(20), WK5(20) 
DIMENSION OMFR(l), HG(l), AMFl(l), AMF2(1), WK(l), AIV(l) 
EXTERNAL HFCN 

MAXIT = IPARM(6) - IPARM(l2) 
NSIG = IPARM(7) 
NFE = 0 

DO 10 , I = 1 , NC 
AIV(I) = ALOG(AMFl(I)) 

10 CONTINUE 

IF (IABS(IPARM(3)).EQ.2) THEN 

CALL ZSCNT (HFCN,NSIG,NC,MAXIT,HG,AIV,FNl,WK,IER) 
IF (IER.EQ.130) CALL SOPROB (NC,OMFR,AIV,IER) 
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IF (IER.NE.O) !ER= 121 

ELSE 

CALL ZSPOW (HFCN,NSIG,NC,MAXIT,HG,AIV,FNl,WK,IER) 
IF (IER.EQ.131) CALL SOPROB (NC,OMFR,AIV,IER) 
IF (IER.NE.O) IER = 131 

ENDIF 
IF (IER.NE.O) GO TO 40 

DO 20, I = 1, NC 

AMFl(I) = EXP(AIV(I)) 
AIV(I) = ALOG(AMF2(I)) 

20 CONTINUE 

IPARM(14) = NFE 
MAXIT = IPARM(6) - IPARM(13) 
IF (IABS(IPARM(3)).EQ.2) THEN 

CALL ZSCNT (HFCN,NSIG,NC,MAXIT,HG,AIV,FN2,WK,IER) 
IF (IER.EQ.130) CALL SOPROB (NC,OMFR,AIV,IER) 
IF (IER.NE.O) IER = 122 

ELSE 

CALL ZSPOW (HFCN,NSIG,NC,MAXIT,HG,AIV,FN2,WK,IER) 
IF (IER.EQ.131) CALL SOPROB (NC,OMFR,AIV,IER) 
IF (IER.NE.O) !ER= 132 

ENDIF 
IF (IER.NE.O) GO TO 40 

DO 30, I = 1, NC 
AMF2(I) = EXP(AIV(I)) 

30 CONTINUE 

IPARM(15) = NFE - IPARM(14) 
RPARM(l) = FNl 
RPARM(2) = FN2 

40 RETURN 
END 
SUBROUTINE HFCN (AIV,HOY,NC,HG) 
COMMON /AAAA2/ NFE, AMF(20), FGC(20), AMN(20), WK4(20), WK5(20) 
DIMENSION AIV(l), HOY(l), HG(l) 

DO 10, I = 1 , NC 
AMN(I) = EXP(AIV(I)) 
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10 CONTINUE 

CALL MFNM (NC,AMN,AMF) 
CALL FGCF (NC,AMF,FGC,WK4,Z) 

DO 20, I = 1, NC 
HOY(I) = AIV(I) + ALOG(FGC(I)) - HG(I) 

20 CONTINUE 

NFE = NFE + 1 

RETURN 
END 
SUBROUTINE SOPROB (NC,OMFR,AIV,IER) 
DIMENSION OMFR(l), AIV(l) 

DO 10, I = 1, NC 
AIV(I) = ALOG(OMFR(I)) 

10 CONTINUE 

IER = 0 

RETURN 
END 
SUBROUTINE SOLAN (NC,AMF1,AMF2,0MFR,EPS,NPH) 
COMMON /AAAA2/ !WK, AMF(20), AOF(20), WK3(20), WK4(20), WK5(20) 
DIMENSION AMFl(l), AMF2(1), OMFR(l), EPS(7) 

NPH = 1 
NPHl = 1 
NPH2 = 1 
SUMl = 0.0 
SUM2 = 0.0 
DO 10, I = 1, NC 

SUMl = SUMl + AMFl(I) 
SUM2 = SUM2 + AMF2(I) 

10 CONTINUE 

VAR = l.OE-10 
IF (SUMl.GT.1.0+VAR) THEN 

CALL MFNM (NC,AMFl,AMF) 
DIFF = 0.0 
DO 20, I = 1, NC 

DIFF = DIFF + ABS(OMFR(I) - AMF(I)) 
20 CONTINUE 

DIFF = DIFF I FLOAT(NC) 
IF (DIFF.GT.EPS(7)) NPHl = 2 
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ENDIF 

IF (SUM2.GT.I.O+VAR) THEN 

CALL MFNM (NC,AMF2,AOF) 
DIFF = 0.0 
DO 30, I = I, NC 

DIFF = DIFF + ABS(OMFR(I) - AOF(I)) 
30 CONTINUE 

DIFF = DIFF I FLOAT(NC) 
IF (DIFF.GT.EPS(7)) NPH2 = 2 

END IF 

IF ((NPHI.EQ.2).0R.(NPH2.EQ.2)) NPH = 2 

RETURN 
END 
SUBROUTINE PSPLT (NC,OMFR,AMFI,AMFR,AIV,WK,IER) 
COMMON /AAAAI/ IPARM(26), EPS(8), RPARM(6), AMOLI, AMOL2, AMOLR 
DIMENSION OMFR(I), AMFI(I), AMFR(I), AIV(I), WK(I) 

IF (IPARM(26).NE.O) GO TO IO 
IPL = IPARM(S) 
!MET = IPARM(4) 

CALL EQSOLI (NC,OMFR,AMFI,AMFR) 
IF (IPL.GE.I) CALL WRT3 (NC,AMFI,AMFR) 
IF (IMET.GE.2) GO TO 20 

IO CALL PSPACSS (NC,OMFR,AMFI,AMFR,AIV,ISW,IER) 
IF (ISW.EQ.I) GO TO 20 
GO TO 30 

20 CALL PSPHOM (NC,OMFR,AMFI,AMFR,AIV,WK,IER) 

30 RETURN 
END 
SUBROUTINE EQSOLI (NC,OMFR,AMFI,AMFR) 
COMMON /AAAAI/ IPARM(26), EPS(8), RPARM(6), AMOLI, AMOL2, AMOLR 
COMMON /AAAA2/ !WK, AMNI(20), AMNR(20), WK3(20), 

I WK4(20), WK5(20) 
DIMENSION OMFR(l), AMFl(I), AMFR(l) 

SUMI = 0.0 
SUM2 = 0.0 
DO IO, I = I, NC 

SUMI = SUMI + AMFI(I) 
SUM2 = SUM2 + AMFR(I) 
AMNI(I) = AMFI(I) 
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AMNR(I) = AMFR(I) 

10 CONTINUE 

CALL MFNM (NC,AMNl,AMFl) 
CALL MFNM (NC,AMNR,AMFR) 
IF (SUMl.LT.1.0) CALL MFNM (NC,OMFR,AMFl) 
IF (SUM2.LT.1.0) CALL MFNM (NC,OMFR,AMFR) 

DIFFl = 0.0 
DIFF2 = 0.0 
DO 20, I = 1, NC 

DIFFl = DIFFl + ABS(OMFR(I) - AMFl(I)) 
DIFF2 = DIFF2 + ABS(OMFR(I) - AMFR(I)) 

20 CONTINUE 

DIFFl = DIFFl I FLOAT(NC) 
DIFF2 = DIFF2 I FLOAT(NC) 

IF ((DI FFl. GT. EPS(7)) .AND. (DI FF2. GT. EPS(7))) GO TO 50 
IF (SUM1.GT.SUM2) THEN 

AMOLR = 1.0 I SUMl 
VAL= 1.0 - AMOLR 
IF (VAL.LT.l.OE-6) AMOLR = 0.49 
AMOLl = 1.0 - AMOLR. 
DO 30, I = 1, NC 

AMFR(I) = (OMFR(I) - AMOLl * AMFl(I)) I AMOLR 
30 CONTINUE 

ELSE 

AMOLl = 1.0 I SUM2 
VAL= 1.0 - AMOLl 
IF (VAL.LT.1.0E-6) AMOLl = 0.49 
AMOLR = 1.0 - AMOLl 
DO 40 , I = 1 , NC 

AMFl(I) = (OMFR(I) - AMOLR * AMFR(I)) I AMOLl 
40 CONTINUE 

ENDIF 

GO TO 120 

50 DIFFl = 0.0 
DO 60, I = 1 , NC 

DIFFl = DIFFl + ABS(AMFl(I) - AMFR(I)) 
60 CONTINUE 
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IF (DIFF1.GT.EPS(7)) GO TO 80 
AMOLl = 1.0 I SUMl 
VAL= 1.0 - AMOLl 
IF (VAL.LT.l.OE-6) AMOLl = 0.49 
AMOLR = 1.0 - AMOLl 
DO 70, I = 1, NC 

AMFR{I) = {OMFR(I) - AMOLl * AMFl(I)) I AMOLR 
70 CONTINUE 

GO TO 120 

80 AMOLl = (OMFR(l) - AMFR(l)) I (AMFl(l) - AMFR(l)) 
IF ((AMOLl.LE.O.O).OR.(AMOLl.GE.1.0)) GO TO 90 
AMOLR = 1.0 - AMOLl 
GO TO 120 

90 IF (SUM1.GT.SUM2) THEN 

AMOLR = SUM2 I SUMl 
VAL= 1.0 - AMOLR 
IF (VAL.LT.1.0E-6) AMOLR = 0.49 
AMOLl = 1.0 - AMOLR 
DO 100, I = 1, NC 

AMFR(I) = (OMFR(I) - AMOLl * AMFl(I)) I AMOLR 
100 CONTINUE 

ELSE 

AMOLl = SUMl I SUM2 . 
VAL = 1.0 - AMOLl 
IF (VAL.LT.1.0E-6) AMOLl = 0.49 
AMOLR = 1.0 - AMOLl 
DO 110, I = 1, NC 

AMFl(I) = (OMFR(I) - AMOLR * AMFR(I)) I AMOLl 
110 CONTINUE 

ENDIF 

120 IF (SUM1.GT.SUM2) THEN 

AMIN = 1.0 
DO 130, I = 1, NC 

VAL= OMFR(I) - AMOLl * AMFl(I) 
IF (VAL.LE.AMIN) THEN 

AMIN = VAL 
IMIN = I 

ENDIF 

130 CONTINUE 
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IF (AMIN.LE.O.O) CALL CKSOL (NC,OMFR,AMFl,AMFR, 
1 IMIN,AMOLl,AMOLR) 

ELSE 

AMIN = 1.0 
DO 140, I = l, NC 

VAL= OMFR(I) - AMOLR * AMFR(I) 
IF (VAL.LE.AMIN) THEN 

AMIN = VAL 
IMIN = I 

ENDIF 

140 CONTINUE 
IF (AMIN.LE.O.O) CALL CKSOL (NC,OMFR,AMFR,AMFl, 

1 IMIN,AMOLR,AMOLl) 

ENDIF 

RETURN 
END 
SUBROUTINE PSPACSS (NC,OMFR,AMFl,AMFR,GN,ISW,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA2/ IWK, EQR(20), EQR0(20), FGC1(20), 

1 FGCR(20), WK5(20) 
COMMON /AAAA8/ OMN, SRO 
DIMENSION OMFR(l), AMFl(l), AMFR(l), GN(l) 

MAXIT = IPARM(9) 
IFC = IPARM(4) 
ISW = 0 
DO 10, I = 1, NC 

EQR(I) = AMFR(I) I AMFl(I) 
10 CONTINUE 

DO 30, I = 1, MAXIT 

NIT = I 
CALL PDIST2 (NC,OMFR,EQR,AMFl,AMFR) 
CALL FGCF (NC,AMFl,FGCl,WKS,Z) 
CALL FGCF (NC,AMFR,FGCR,WKS,Z) 
CALL ACCEL (NIT,NC,FGCR,AMFR,FGCl,AMFl,EQR,EQRO,GN,WKS,ACFTN) 
CALL CNVGPS (NC,NIT,EQR,EQRO,AMFl,FGCl,AMFR,FGCR,ICN) 
IF (ICN.EQ.1) GO TO 40 
IF (IFC.LT.O) GO TO 20 
GO TO 30 

20 CALL SWITCH (NC,NIT,AMFl,FGCl,AMFR,FGCR,ISW) 
IF (ISW.EQ.l) GO TO 40 
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30 CONTINUE 
IER = 210 
GO TO 50 

40 IPARM(I6) = NIT 
IER = 0 

50 RETURN 
END 
SUBROUTINE ACCEL (NIT,NC,FGCR,AMFR,FGCI,AMFI,EQR,EQRO,GN, 

I GNPI,ACFTN) 
DIMENSION FGCR(I), AMFR(I), FGCI(I), AMFI(I) 
DIMENSION EQR(I), EQRO(I), GN(I), GNPI(l) 

IF (NIT.GT.I) GO TO 20 

DO 10, I = I , NC 

GN(I) = ALOG(FGCR(I) * AMFR(I) I (FGCI(I) * AMFl(I))) 
EQRO(I) = EQR(I) 
EQR(I) = FGCI(I) I FGCR(I) 

10 CONTINUE 

ACFTN = 1. 0 
RETURN 

20 DO 30, I = I, NC 
GNPI(I) = ALOG(FGCR(I) * AMFR(I) I (FGCI(I) * AMFI(I))) 

30 CONTINUE 

SUMI = 0.0 
SUM2 = 0.0 
DO 40, I = I , NC 

SUMI = SUMI + GN(I)**2 
SUM2 = SUM2 + GN(I) * GNPI(I) 

40 CONTINUE 

ON = SUM2 - SUMI 
IF (DN.EQ.O.O) ON= SUMI * ACFTN 
ACFT = ABS(SUMI * ACFTN I ON) 

DO 50, I = I , NC 

CL= ABS(GNPI(I)) 
FACT = ACFT * CL 
IF (FACT.GT.6.0) ACFT = 6.0 I CL 

50 CONTINUE 
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IF (ACFT.LT.1.0) ACFT = 1.0 

DO 60, I = 1, NC 

EQRO(I) = EQR(I) 
EQR(I) = EQRO(I) * EXP(-ACFT * GNPl(I)) 
GN(I) = GNPl(I) 

60 CONTINUE 

ACFTN = ACFT 

RETURN 
END 
SUBROUTINE CNVGPS (NC,NIT,EQR,EQRO,AMFl,FGCl,AMFR,FGCR,ICN) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION EQR(l), EQRO(l), AMFl(l) 
DIMENSION FGCl(l), AMFR(l), FGCR(l) 

FNM = 0.0 
CHNG = 0.0 
DO 10, I = 1, NC 

CHNG = CHNG + (EQR(I) - EQRO(I))**2 I (EQR(I) * EQRO(I)) 
VAL= ALOG(FGCl(I) * AMFl(I)) - ALOG(FGCR(I) * AMFR(I)) 
FNM = FNM + VAL**2 

10 CONTINUE 

IF ((CHNG.GT.EPS(3)).ANO.(FNM.GT.EPS(3))) GO TO 20 
IF (NIT.LT.2) GO TO 20 
ICN = 1 
RPARM( 3) = FNM 
RETURN 

20 ICN = 0 
RETURN 
END 
SUBROUTINE SWITCH (NC,NIT,AMFl,FGCl,AMFR,FGCR,ISW) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA8/ OMN, SRO 
DIMENSION AMFl(l), FGCl(l), AMFR(l), FGCR(l) 

ISW = 0 
IF (NIT.GT.I) GO TO 20 

OMN = AMOLR 
SRO = 0.0 
DO 10, I = 1, NC 
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10 CONTINUE 
RETURN 

20 IC = 0 
IF (AMOLR.GE.AMOLl) THEN 

RTN = ABS(AMOLR - OMN) I OMN 

ELSE 

ON = 1. 0 - OMN 
RTN = ABS(AMOLl - ON) I DN 

ENDIF 

IF (RTN.LE.EPS(4)) IC= IC+ 1 
SRN = 0.0 
DO 30, I = 1 , NC 
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SRN = SRN + (FGCl(I) * AMFl(I) I (FGCR(I) * AMFR(I)) - 1.0)**2 
30 CONTINUE 

IF (SRN.LE.EPS(5)) IC= IC + 1 
RT = SRN I SRO 
IF (IPARM(4).GE.2) WRITE (7,100) NIT, RTN, SRN, RT 
IF (RT.LE.EPS(6)) IC= IC + 1 
IF (IC.EQ.3) GO TO 40 
SRO = SRN 
OMN = AMOLR 
RETURN 

40 ISW = 1 
RETURN 

100 FORMAT (1X,3HNIT,I4,5X,3HRTN,E15.5,5X,3HSRN,El5.5, 
1 5X,2HRT,El5.5) 

END 
SUBROUTINE PSPHOM (NC,OMFR,AMFl,AMFR,AIV,WK,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA2/ NFE, WK1(20), WK2(20), WK3(20), WK4(20), WK5(20) 
DIMENSION OMFR(l), AMFl(l), AMFR(l) 
DIMENSION AIV(l), WK(l) 
EXTERNAL GFCN, FFCN 

MAXIT = IPARM(9) - IPARM(l6) 
NSIG = IPARM(lO) 
ISM = I PARM( 11) 
NFE = 0 
IF (ISM.EQ.2) GO TO 40 

IF (AMOLl.LE.AMOLR) THEN 



DO 10 , I = 1 , NC 
AIV(I) = AMOLl * AMFl(I) 

10 CONTINUE 

ELSE 

DO 20, I = 1, NC 
AIV(I) = AMOLR * AMFR(I) 

20 CONTINUE 

END IF 

IF (IABS(IPARM(4)).EQ.2) THEN 

CALL ZSCNT (GFCN,NSIG,NC,MAXIT,OMFR,AIV,FNM,WK,IER) 
IF (IER.NE.O) IER = 220 

ELSE 

CALL ZSPOW (GFCN,NSIG,NC,MAXIT,OMFR,AIV,FNM,WK,IER) 
IF (IER.NE.O) IER = 230 

END IF 

IF (IER.NE.O) GO TO 80 

CALL MFNM (NC,AIV,AMFl) 
AMOLl = 0. 0 
DO 30, I = 1, NC 

AMOLl = AMOLl + AIV(I) 
AIV(I) = OMFR(I) - AIV(I) 

30 CONTINUE 
CALL MFNM (NC,AIV,AMFR) 
AMOLR = 1.0 - AMOLl 

GO TO 70 

40 DO 50, I = 1, NC 
AIV(I) = ALOG(AMFR(I) I AMFl(I)) 

50 CONTINUE 

IF (IABS(IPARM(4)).EQ.2) THEN 

CALL ZSCNT (FFCN,NSIG,NC,MAXIT,OMFR,AIV,FNM,WK,IER) 
IF (IER.NE.O) IER = 220 

ELSE 

CALL ZSPOW (FFCN,NSIG,NC,MAXIT,OMFR,AIV,FNM,WK,IER) 
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IF (IER.NE.O) IER = 230 

ENDIF 

IF (IER.NE.O) GO TO 80 

DO 60, I = 1 , NC 
AIV(I) = EXP(AIV(I)) 

60 CONTINUE 

CALL PDIST2 (NC,OMFR,AIV,AMFl,AMFR) 

70 IPARM(l7) = NFE 
RPARM(3) = FNM 

80 RETURN 
END 
SUBROUTINE GFCN (AIV,GON,NC,OMFR) 
COMMON /AAAA2/ NFE, AMF1(20), FGC1(20), AMF2(20), 

1 FGC2(20), AMN(20) 
DIMENSION AIV(l), GON(l), OMFR(l) 

CALL CKMN (NC,AIV,OMFR) 
CALL MFNM (NC,AIV,AMFl) 
CALL FGCF (NC,AMFl,FGCl,AMN,Z) 

DO 10, I = 1, NC 
AMN(I) = OMFR(I) - AIV(I) 

10 CONTINUE 

CALL MFNM (NC,AMN,AMF2) 
CALL FGCF (NC,AMF2,FGC2,AMN,Z) 

DO 20, I = 1, NC 
GON(I) = ALOG(AMF2(I) * FGC2(I)) - ALOG(AMFl(I) * FGCl(I)) 

20 CONTINUE 

NFE = NFE + 1 
RETURN 
END 
SUBROUTINE FFCN (AIV,FOK,NC,OMFR) 
COMMON /AAAA2/ NFE, AMF1(20), FGC1(20), AMF2(20), 

1 FGC2(20), EQR(20) 
DIMENSION AIV(l), FOK(l), OMFR(l) 

DO 10, I = 1, NC 
EQR(I) = EXP(AIV(I)) 

10 CONTINUE 

CALL PDIST2 (NC,OMFR,EQR,AMF1,AMF2) 
CALL FGCF (NC,AMFl,FGCl,EQR,Z) 
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CALL FGCF (NC,AMF2,FGC2,EQR,Z) 

DO 20, I = 1 , NC 
FOK(!) = ALOG(AMFl(I) * FGCl(I)) - ALOG(AMF2(I) * FGC2(I)) 

20 CONTINUE 

NFE = NFE + 1 
RETURN 
END 
SUBROUTINE CKMN (NC,AMN,OMFR) 
DIMENSION AMN(l), OMFR(l) 

DO 10, I = 1 , NC 

IF (AMN(I).LE.0.0) GO TO 20 
DIFF = OMFR(I) - AMN(I) 
IF (DIFF.LE.O.O) GO TO 20 

10 CONTINUE 
RETURN 

20 !ER = 301 
CALL ERROPR (IER) 

RETURN 
END 
SUBROUTINE PDIST2 (NC,OMFR,EQR,AMFl,AMFR) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION OMFR(l), EQR(l), AMFl(l), AMFR(l) 

MAXIT = IPARM(8) 
EPSPD = EPS(2) 
IF (AMOLR.GT.AMOLl) GO TO 60 

APV = AMOLR 
DO 20, I = 1, MAXIT 

NIT = I 
FOV = 0.0 
FPOV = 0.0 
DO 10, J = 1, NC 

CKMl = EQR(J) - 1.0 
DN = 1.0 + APV * CKMl 
FOV = FOV + OMFR(J) * CKMl I DN 
FPOV = FPOV - OMFR(J) * CKM1**2 I (DN * DN) 

10 CONTINUE 
IF (ABS(FOV).LE.EPSPD) GO TO 40 
IF (FPOV.EQ.0.0) GO TO 130 
DELV = FOV I FPOV 
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IF (ABS(DELV).LE.EPSPD) GO TO 30 
APV = APV - DELV 

20 CONTINUE 
IER = 401 
GO TO 150 

30 APV = APV - DELV 
40 IF ((APV.LT.0.0).0R.(APV.GT.l.O)) GO TO 140 

AMOLR = APV 
AMOLl = 1.0 - AMOLR 
DO 50, I = 1 , NC 

AMFl(I) = OMFR(I) I (1.0 + AMOLR * (EQR(I) - 1.0)) 
AMFR(I) = EQR(I) * AMFl(I) 

50 CONTINUE 
GO TO 120 

60 APV = AMOLl 
DO 80, I = 1, MAXIT 

NIT = I 
FOV = 0.0 
FPOV = 0.0 
DO 70, J = 1 , NC 

CKMl = 1.0 I EQR(J) ~ 1.0 
ON = 1.0 + APV * CKMl 
FOV = FOV - OMFR(J) * CKMl I ON 
FPOV = FPOV + OMFR(J) * CKM1**2 I (ON * ON) 

70 CONTINUE 
IF (ABS(FOV).LE.EPSPD) GO TO 100 
IF (FPOV.EQ.0.0) GO TO 130 
DELV = FOV I FPOV 
IF (ABS(DELV).LE.EPSPD) GO TO 90 
APV = APV - DELV 

80 CONTINUE 
IER = 401 
GO TO 150 

90 APV = APV - DELV 
100 IF ((APV.LT.0.0).0R.(APV.GT.l.O)) GO TO 140 

AMOLl = APV 
AMOLR = 1.0 - AMOLl 
DO 110, I = 1, NC 

AMFR(I) = OMFR(I) I (1.0 + AMOLl * (1.0 I EQR(I) - 1.0)) 
AMFl(I) = AMFR(I) I EQR(I) 
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110 CONTINUE 

I20 IPARM(I8) = IPARM(I8) + NIT 
RPARM( 4) = FOV 
RETURN 

130 IER = 402 
GO TO I50 

I40 IER = 403 
I50 CALL ERROPR (IER) 

RETURN 
END 
SUBROUTINE WRTI (NC,EQR,AMFI,AMF2) 
DIMENSION EQR(I), AMFI(I), AMF2(I) 

WRITE (7,100) 
WRITE (7,IIO) (I, EQR(I), AMFI(I), AMF2(I), I= I, NC) 

RETURN 
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IOO FORMAT (//,IX,*STARTING INFORMATION FOR PHASE STABILITY ANALYSIS*, 
I //,2X,9HCOMPONENT,9X,IIHEQUILIBRIUM,2(7X,I3HMOLE FRACTION), 
2 /,6X,5HINDEX,I5X,5HRATIO,IOX,IOHSOLUTION I,IOX, 
3 IOHSOLUTION 2,/,IX,IOH----------,3(5X,I5H---------------),/) 

IIO FORMAT (IX,II0,3E20.7) 

END 
SUBROUTINE WRT2 (NC,OMFR,AMFI,AMF2) 
DIMENSION OMFR(I), AMFI(I), AMF2(I) 

WRITE (7I100) 

SUMI = 0.0 
SUM2 = 0.0 
DO IO, I = I, NC 

WRITE(7,IIO) I, OMFR(I), AMFI(I), AMF2(I) 
SUMI = SUMI + AMFI(I) 
SUM2 = SUM2 + AMF2(I) 

10 CONTINUE 

WRITE (7,I20) SUMI, SUM2 

RETURN 

IOO FORMAT (//,IX,*PHASE STABILITY ANALYSIS RESULTS:*, 
I //,2X,9HCOMPONENT,I4X,6HGLOBAL,IOX,IOHSOLUTION I, 



2 lOX,lOHSOLUTION 2,/,6X,5HINDEX,3(9X,11HCOMPOSITION ), 
3 /,lX,lOH---------- ,3(5X,15H--------------- ),/) 

110 FORMAT (1X,Il0,3E20.12) 
120 FORMAT (/,lX,*MOLE FRACTION SUM*,13X,2E20.12, 

1 /,lX,*(AFTER CONVERGENCE)*) 

END 
SUBROUTINE WRT3 (NC,AMFl,AMFR) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION AMFl(l), AMFR(l) 

WRITE (7,100) 
WRITE (7,110) AMOLl, AMOLR 
WRITE (7,120) 
WRITE (7,130) (I, AMFl(I), AMFR(I), I= 1, NC) 

RETURN 
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100 FORMAT (//,lX,*STARTING INFORMATION FOR PHASE SPLIT CALCULATION*) 
110 FORMAT (/,lX,*PHASE MOLES, l*,5X,E20.10, 

1 /,lX,*PHASE MOLES, R*,5X,E20.10) 
120 FORMAT (/,2X,9HCOMPONENT,13X,7HPHASE l,13X,7HPHASE R, 

1 /,6X,5HlNDEX,2(9X,llHCOMPOSITION),/,lX,lOH---------- , 
2 2(5X,15H--------------- ),/) 

130 FORMAT (1X,I10,2E20.12) 

END 
SUBROUTINE FGCF (N,AMFR,FUGC,WK,Z) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA3/ TEM, PRS 
COMMON /AAAAS/ AI(20), BI(20), AIJ(20,20) 
DIMENSION AMFR(l), FUGC(l), WK(l) 

IEOS = IPARM(l) 
A= 0.0 
B = 0.0 
DO 20, I = 1, N 

B = B + AMFR(I) * BI(I) 
DO 10, J = 1, N 

A= A+ AMFR(I) * AMFR(J) * AIJ(I,J) 

10 CONTINUE 

20 CONTINUE 

R = 10.732 
BB = B * PRS I (TEM * R) 
AA = A * PRS I (TEM * R)**2 

IF (IEOS.EQ.1) THEN 



A2 = BB - 1.0 
Al =AA - BB * (3.0 * BB + 2.0) 
AO= BB * (BB* (BB+ 1.0) - AA) 

ELSE 

A2 = -1. 0 
Al =AA - BB * (1.0 + BB) 
AO = -AA * BB 

ENDIF 

CALL ZCALC (A2,Al,AO,Zl,Z2,Z3,IJZ) 

IF (IJZ.LT.O) GO TO 90 
IF (IJZ.EQ.3) GO TO 30 
IF (Zl.LE.0.0) GO TO 70 
IF (Z2.LE.O.O) GO TO 70 
ZL = AMIN1(Zl,Z2) 
ZH = AMAXl(Zl,Z2) 
GO TO 40 

30 ZH = AMAXl (Zl,Z2,Z3) 
ZL = ZH 
IF ((Zl.GT.0.0).AND.(Zl.LE.ZL)) ZL = Zl 
IF ((Z2.GT.O.O).AND.(Z2.LE.ZL)) ZL = Z2 
IF ((Z3.GT.O.O).AND.(Z3.LE.ZL)) ZL = Z3 

40 CALL SUBPHI (AA,BB,N,IEOS,ZH,AMFR,FUGC,A,B) 
CALL SUBPHI (AA,BB,N,IEOS,ZL,AMFR,WK,A,B) 

SUM= 0.0 
DO 50, I = 1, N 

SUM= SUM + AMFR(I) * (FUGC(I) - WK(!)) 
50 CONTINUE 

IF (SUM.LT.0.0) THEN 

Z = ZH 
DO 61, I = 1, N 

FUGC(I) = EXP(FUGC(I)) 
61 CONTINUE 

ELSE 

Z = ZL 
DO 62, I = 1, N 

FUGC(I) = EXP(WK(I)) 
62 CONTINUE 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ENDIF 

RETURN 

70 Z = AMAXl(Zl,Z2) 
CALL SUBPHI (AA,BB,N,IEOS,Z,AMFR,FUGC,A,B) 
DO 80, I = l, N 

FUGC(I) = EXP(FUGC(I)) 
80 CONTINUE 

RETURN 

90 CALL SUBPHI (AA,BB,N,IEOS,Zl,AMFR,FUGC,A,B) 
z = Zl 
DO 100 , I = 1 , N 

FUGC(I) = EXP(FUGC(I)) 
100 CONTINUE 

RETURN 

END 
SUBROUTINE ZCALC (A2,Al,AO,Zl,Z2,Z3,IJZ) 

THIS SUBROUTINE CALCULATES Zl, Z2 AND Z3 WHICH ARE ROOTS TO 
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THE EQUATION OF STATE WHEN WRITTEN IN TERMS OF Z. THE EQUATION 
RESULTS IN A CUBIC IN Z. IN THIS PROGRAM, THE VALUES OF THE COEF­
FICIENTS ARE PASSED TO THIS SUBROUTINE. HERE Zl, Z2 AND Z3 ARE 
COMPUTED ANALYTICALLY BY USING CARDANO'S METHOD, IN WHICH THE 
ORIGINAL CUBIC IS REDUCED TO THE FORM: 

Y**3 + PY + Q = 0, Z = Y - A2 I 3 

THERE ARE THREE POSSIBLE SITUATIONS FOR THE THREE ROOTS. THEY ARE 
EXPLAINED BELOW. 

P3 =Al I 3.0 - A2 * A2 I 9.0 
Y = A2 I 3.0 
Q2 = Y**3 - Al * A2 I 6.0 + AO I 2.0 
Q = Q2 * Q2 + P3**3 

C THE SCENARIO OF THE ROOTS DEPENDS ON Q. 

IF (Q.GT.0.0) THEN 

U = (ABS(Q**0.5 - Q2))**(1.0 I 3.0) 
IF (Q**0.5.LT.Q2) U = - U 
Zl = U - (P3 I U + Y) 
Z2 = 0.0 
Z3 = 0.0 
IJZ = -1 

C HERE, IF Q>O, THERE IS ONE REAL ROOT AND A PAIR OF COMPLEX 
C ROOTS WHICH ARE ESSENTIALLY DISCARDED BY BEING SET = 0. 



ELSE 
IF (ABS(Q).LT.l.OE-11) THEN 

Zl = 2.0 * Q2 I P3 - Y 
Z2 = Q2 * P3 -Y 
Z3 = 0.0 
IJZ = 2 

C IN THIS CASE, Q=O, AND THERE ARE THREE REAL ROOTS, TWO 
C OF WHICH ARE EQUAL. THE SECOND IS DISCARDED. 

ELSE 

C IT IS NO LONGER EXPEDIENT TO CALCULATE THE LAST CASE IN 
C WHICH THERE ARE THREE DIFFERENT, REAL ROOTS BY THE ABOVE 
C PROCEDURES. INSTEAD A TRIGONOMETRIC SOLUTION IS USED. 

RETURN 
END 

PI3 = ACOS(-1.0) I 3.0 
ARAD = SQRT(- (P3**3)) 
ALPHCS = - Q2 I ARAD 
ALPHA = ACOS(ALPHCS) 
RADL = SQRT(- P3) 
Zl = 2.0 * RADL * COS(ALPHA I 3.0) - Y 
Z2 = -2.0*RADL*COS(ALPHA/3.0 + PI3) - Y 
Z3 = -2.0*RADL*COS(ALPHA/3.0 - PI3) - Y 
IJZ = 3 

ENDIF 
ENDIF 

SUBROUTINE SUBPHI (AA,BB,N,IEOS,Z,AMFI,ALNPHI,A,B) 
COMMON /AAAAS/ AI(20), BI(20), AIJ(20,20) 
DIMENSION AMFI(l), ALNPHI(l) 

AH = ALOG (Z - BB) 
IF (IEOS.EQ.l) THEN 

AJ = AA I (2.0 * BB * SQRT(2.0)) 
Cl = 1.0 + SQRT(2.0) 
C2 = 1.0 - SQRT(2.0) 
AK = (Z + Cl * BB) I (Z + C2 * BB) 

ELSE 

AJ = AA I BB 
AK = (Z + BB) I Z 

ENDIF 

DO 60, I = 1, N 
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SM = 0.0 
DO 50, J = 1, N 

SM= SM+ AMFI(J) * AIJ(J,I) 
50 CONTINUE 

SUMAIK = 2.0 * SM 
AL= AJ * (SUMAIK I A - BI(I) I B) * ALOG (AK) 
ALNPHI(I) = BI(I) * (Z - 1.0) I B - (AH + AL) 

60 CONTINUE 

RETURN 
END 
SUBROUTINE CKSOL (NC,OMFR,AMFI,AMFD,IMIN,AMOLI,AMOLD) 
DIMENSION OMFR(l), AMFI(l), AMFD(l) 

AMOLI = 0.99 * OMFR(IMIN) I AMFI(IMIN) 
AMOLD = 1.0 - AMOLI 
DO 10, I = 1, NC 

AMFD(I) = (OMFR(I) - AMOLI * AMFI(I)) I AMOLD 
10 CONTINUE 

RETURN 
END 
SUBROUTINE PSATP (NC,AMF1,AMF2,AMFR,HG,WK,NPH,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA7/ SOL1(20), SOL2(20), WK1(20) 
DIMENSION AMFl(l), AMF2(1), AMFR(l), HG(l), WK(l) 

IS = 12 
IF (IPARM(3).GT.1) IS= 14 
!Tl = IPARM(IS) 
IT2 = IPARM(IS+l) 
IPL = IPARM(5) 
!MET = IPARM(3) 

CALL SETH (NC,AMFl,HG,WKl) 
CALL SETVl (NC,SOL1,SOL2) 
IF (IMET.GE.2) GO TO 10 
CALL PSASS (NC,HG,SOL1,SOL2,IER) 
GO TO 20 

10 CALL PSAHOM (NC,AMF1,HG,SOL1,SOL2,WK,WK1,IER) 
20 IF (IER.NE.O) GO TO 90 

CALL SOLAN2 (NC,AMF1,AMFR,EPS,SOL1,SOL2,WK1,ITP,ISOLI) 
IPARM(l9) = IPARM(IS) 
IPARM(20) = IPARM(IS+l) 
IF (IPL.GE.I) CALL WRT2 (NC,AMF1,SOL1,SOL2) 
IF (ITP.EQ.1) GO TO 50 

CALL SETV2 (NC,AMF1,AMFR,HG,SOL1,SOL2,WK1) 
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IF (IMET.GE.2) GO TO 30 
CALL PSASS (NC,HG,SOL1,SOL2,IER) 
GO TO 40 

30 CALL PSAHOM (NC,AMF1,HG,SOL1,SOL2,WK,WK1,IER) 
40 IF (IER.NE.O) GO TO 90 

CALL SOLAN2 (NC,AMFl,AMFR,EPS,SOLl,SOL2,WKl,ITP,ISOLI) 
IPARM(21) = IPARM(IS) 
IPARM(22) = IPARM(IS+l) 
IPARM(IS) = ITl 
IPARM(IS+l) = IT2 
IF (IPL.GE.I) CALL WRT2 (NC,AMF1,SOL1,SOL2) 
IF (ITP.EQ.O) GO TO 80 

50 IF (ISOLI.EQ.l) THEN 

DO 60, I = 1 , NC 
AMF2(I) = SOLl(I) 

60 CONTINUE 

ELSE 

DO 70, I = 1, NC 
AMF2(I) = SOL2(I) 

70 CONTINUE 

END IF 

NPH = 3 
RETURN 

80 NPH = 2 
90 RETURN 

END 
SUBROUTINE SETVl (NC,SOL1,SOL2) 
DIMENSION SOLI(l), SOL2(1) 

FR= (1.0 - .999) I FLOAT(NC-1) 
DO 10, I = 1, NC 

SOLl(I) = FR 
SOL2(I) = FR 

10 CONTINUE 

SOLl(l) = 1.0 - FR * FLOAT(NC-1) 
SOL2(NC) = 1.0 - FR * FLOAT(NC-1) 

RETURN 
END 
SUBROUTINE SETV2 (NC,AMFl,AMFR,HG,SOLl,SOL2,WKl) 
DIMENSION AMFl(l), AMFR(l), HG(l), SOLl(l), SOL2(1), WKl(l) 
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DO 10, I = 1 , NC 
WKl(I) = EXP(HG(I)) 

10 CONTINUE 

CALL MFNM (NC,WKl,SOLl) 

DO 20, I = 1 , NC 
WKl(I) = 0.5 * (AMFl(I) + AMFR(I)) 

20 CONTINUE 

CALL MFNM (NC,WK1,SOL2) 

RETURN 
END 
SUBROUTINE SOLAN2 (NC,AMF1,AMFR,EPS,SOL1,SOL2,AMF,ITP,ISI) 
DIMENSION AMFl(l), AMFR(l), SOLl(l) 
DIMENSION SOL2(1), EPS(8), AMF(l) 

ITP = 0 
SUMl = 0.0 
SUM2 = 0.0 
DO 10, I = 1, NC 

SUMl = SUMl + SOLl(I) 
SUM2 = SUM2 + SOL2(I) 

10 CONTINUE 

IF (SUMl.GT.1.0) THEN 

CALL MFNM (NC,SOLl,AMF) 
DIFFl = 0.0 
DIFF2 = 0.0 
DO 20, I = 1, NC 

DIFFl = DIFFl + ABS(AMFl(I) - AMF(I)) 
DIFF2 = DIFF2 + ABS(AMFR(I) - AMF(I)) 

20 CONTINUE 
DIFFl = DIFFl I FLOAT(NC) 
DIFF2 = DIFF2 I FLOAT(NC) 
IF ((DIFF1.GT.EPS(7)).AND.(DIFF2.GT.EPS(8))) ITP = 1 

ENDIF 

IF (ITP.NE.O) GO TO 40 

IF (SUM2.GT.l.O) THEN 

CALL MFNM (NC,SOL2,AMF) 
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DIFFl = 0.0 
DIFF2 = 0.0 
DO 30, I = 1, NC 

DIFFl = DIFFl + ABS(AMFl(I) - AMF(I)) 
DIFF2 = DIFF2 + ABS(AMFR(I) - AMF(I)) 

30 CONTINUE 
DIFFl = DIFFl I FLOAT(NC) 
DIFF2 = DIFF2 I FLOAT(NC) 
IF ((DIFF1.GT.EPS(7)).AND.(DIFF2.GT.EPS(8))) ITP = 1 

ENDIF 

IF (ITP.NE.O) GO TO 50 
RETURN 

40 ISI = 1 
RETURN 

50 ISI = 2 
RETURN 
END 
SUBROUTINE PSPLT3 (NC,OMFR,AMF1,AMF2,AMFR,WRK1,WRK2,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION OMFR(l), AMFl(l), AMF2(1), AMFR(l) 
DIMENSION WRKl(l), WRK2(1) 

IPL = IPARM(5) 
IMET = IPARM(4) 

CALL EQSOL3 (NC,OMFR,AMF1,AMF2,AMFR,WRK1,WRK2) 
IF (IPL.GE.1) CALL WRT4 (NC,AMF1,AMF2,AMFR) 
IF (IMET.GE.2) GO TO 20 
CALL PSPASS3 (NC,OMFR,AMF1,AMF2,AMFR,WRK1,WRK2,ISW,IER) 
IF (ISW.EQ.1) GO TO 10 
GO TO 20 

10 CALL PSPHOM3 (NC,OMFR,AMF1,AMF2,AMFR,IER) 
20 RETURN 

END 
SUBROUTINE PSPASS3 (NC,OMFR,AMF1,AMF2,AMFR,GN1,GN2,ISW,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA2/ IWK, EQR1(20), EQR2(20), FGC1(20), FGC2(20), 

1 FGCR(20) 
COMMON /AAAA7/ EQR1N(20), EQR2N(20), WRK(20) 
COMMON /AAAlO/ IPCFC, RESN, PFGC(20) 
DIMENSION OMFR(l), AMFl(l), AMF2(1), AMFR(l) 
DIMENSION GNl(l), GN2(1) 

MAXIT = IPARM(9) 
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IFC = IPARM(4) 
ISW = 0 

DO 10, I = l, NC 

EQRl(I) = AMFR(I) I AMFl(I) 
EQR2(I) = AMFR(I) I AMF2(I) 

10 CONTINUE 

DO 30, I = 1, MAXIT 

NIT = I 
CALL PDIST3 (NC,OMFR,EQR1,EQR2) 
CALL MSSCN (NC,OMFR,EQR1,EQR2,AMF1,AMF2,AMFR) 
CALL FGCF (NC,AMFl,FGCl,WRK,Z) 
CALL FGCF (NC,AMF2,FGC2,WRK,Z) 
CALL FGCF (NC,AMFR,FGCR,WRK,Z) 
CALL ACCEL3 (NC,NIT,AMF1,AMF2,AMFR,FGC1,FGC2,FGCR,EQR1,EQR2, 

1 EQR1N,EQR2N,GN1,GN2,ACFTN) 
CALL CNVG3 (NC,NIT,EQR1,EQR2,AMF1,AMF2,AMFR,FGC1,FGC2,FGCR, 

1 EQR1N,EQR2N,ICN) 
IF (ICN.EQ.l) GO TO 40 
IF (ICN.LT.O) GO TO 50 
IF (IFC.LT.O) GO TO 20 
GO TO 30 

20 CALL SWITCH3 (NC,NIT,AMF1,AMF2,AMFR,FGC1,FGC2,FGCR,ISW) 
IF (ISW.EQ.l) GO TO 40 

30 CONTINUE 
IER = 210 
GO TO 60 

40 IPARM(23) = NIT 
IER = 0 
GO TO 60 

50 IPARM(23) = NIT 
IPARM(26) = 1 

60 RETURN 
END 
SUBROUTINE EQSOL3 (NC,OMFR,AMF1,AMF2,AMFR,AMN,SUM) 
COMMON /AAAAl/ IPARM(26), RPARM(6), EPS(8), AMOLl, AMOL2, AMOLR 
DIMENSION OMFR(l), AMFl(l), AMF2(1), AMFR(l) 
DIMENSION AMN(l), SUM(l) 

DO 10, I = 1, NC 
AMN(I) = AMF2( I) 

10 CONTINUE 
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CALL MFNM (NC,AMN,AMF2) 

DO 20, I = I, NC 
SUM(!) = AMFI(I) + AMF2(I) + AMFR(I) 

20 CONTINUE 

AMI = 0.0 
AM2 = 0.0 
DO 30, I = I, NC 

SUMMF = SUM(I) 
AMN(I) = AMFI(I) * OMFR(I) I SUMMF 
SUM(!) = AMF2(I) * OMFR(I) I SUMMF 
AMI =AMI + AMN(I) 
AM2 = AM2 + SUM(I) 

30 CONTINUE 

CALL MFNM (NC,AMN,AMFI) 
CALL MFNM (NC,SUM,AMF2) 

AMR= I.O - (AMI + AM2) 
DO 40, I = I, NC 

AMFR(I) = (OMFR(I) - AMI * AMFI(I) - AM2 * AMF2(I)) I AMR 
40 CONTINUE 

AMOLl = AMl 
AMOL2 = AM2 
AMOLR = AMR 

RETURN 
END 
SUBROUTINE SWITCH3 (NC,NIT,AMFI,AMF2,AMFR,FGCI,FGC2,FGCR,ISW) 
COMMON /AAAAI/ IPARM(26), EPS(8), RPARM(6), AMOLI, AMOL2, AMOLR 
COMMON /AAAA9/ SRO, OMNI, OMN2, OMNR 
DIMENSION AMFl(I), AMF2(I), AMFR(I) 
DIMENSION FGCl(I), FGC2(1), FGCR(l) 

!SW = 0 
IF (NIT.GT.1) GO TO 20 

OMNI = AMOLl 
OMN2 = AMOL2 
OMNR = AMOLR 
SRO = 0.0 
DO 10, I = I, NC 

VALl = (FGCI(I) * AMFl(I) I (FGCR(I) * AMFR(I)) - 1.0)**2 
VAL2 = (FGC2(I) * AMF2(I) I (FGCR(I) * AMFR(I)) - 1.0)**2 
SRO = SRO + VALl + VAL2 
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10 CONTINUE 
RETURN 

20 IC = 0 
RTl = ABS(AMOLl - OMNI) I OMNI 
RT2 = ABS(AMOL2 - OMN2) I OMN2 
RTR = ABS(AMOLR - OMNR) I OMNR 
RT= AMAX! (RT1,RT2) 
RTMAX =AMAX! (RT,RTR) 

IF (RTMAX.LE.EPS(4)) IC= IC + 1 

SRN = 0.0 
DO 30, I = 1, NC 

VALl = (FGCl(I) * AMFl(I) I (FGCR(I) * AMFR(I)) - 1.0)**2 
VAL2 = (FGC2(I) * AMF2(I) I (FGCR(I) * AMFR(I)) - 1.0)**2 
SRN = SRN + VALl + VAL2 

30 CONTINUE 

IF (SRN.LE.EPS(5)) IC= IC+ 1 
RT = SRN I SRO 
IF (RT.LE.EPS(6)) IC= IC+ 1 
IF (IC.EQ.3) GO TO 40 

SRO = SRN 
OMNI = AMOLl 
OMN2 = AMOL2 
OMNR = AMOLR 
RETURN 

40 ISW = 1 
RETURN 
END 
SUBROUTINE PDIST3 (NC,OMFR,EQR1,EQR2) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION OMFR(l), EQRl(l), EQR2(1) 

MAXIT = IPARM(8) 
EPSPD = EPS(2) 
AMI = AMOLl 
AM2 = AMOL2 
DO 20, I = 1, MAXIT 

NIT = I 
Gl = 0.0 
G2 = 0.0 
PGlNl = 0.0 
PG2N2 = 0.0 
PG1N2 = 0.0 
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DO 10, J = 1, NC 

Cl = 1.0 I EQRl(J) - 1.0 
C2 = 1.0 I EQR2(J) - 1.0 
ON= 1.0 +AMI * Cl + AM2 * C2 
Gl = Gl + Cl * OMFR(J) I ON 
G2 = G2 + C2 * OMFR(J) I ON 
PGlNl = PGlNl - C1**2 * OMFR(J) I DN**2 
PG2N2 = PG2N2 - C2**2 * OMFR(J) I DN**2 
PG1N2 = PG1N2 - Cl * C2 * OMFR(J) I DN**2 

10 CONTINUE 

A = G1**2 
8 = G2**2 
ER = SQRT(A+B) 
IF (ER.LE.EPSPD) GO TO 40 
ON = PGlNl * PG2N2 - PG1N2**2 
IF (DN.EQ.0.0) GO TO 50 
A = (Gl * PG2N2 - G2 * PG1N2) I DN 
8 = (G2 * PGlNl - Gl * PG1N2) I ON 
ER = SQRT(A * A + 8 * B) 
IF (ER.LE.EPSPD) GO TO 30 
AMI = AMI - A 
AM2 = AM2 - 8 

20 CONTINUE 
IER = 401 
GO TO 70 

30 AMI = AMI - A 
AM2 = AM2 - B 

40 IF ((AMl.LT.0.0).0R.(AMl.GT.l.O)) GO TO 60 
IF ((AM2.LT.O.O).OR.(AM2.GT.1.0)) GO TO 60 
IF (AM1+AM2.GT.l.O) GO TO 60 

AMOLl = AMI 
AMOL2 = AM2 
AMOLR = 1.0 - (AMOLl + AMOL2) 
IPARM(25) = IPARM(25) + NIT 
RPARM(5) = ER 
RETURN 

50 IER = 402 
GO TO 70 

60 IER = 403 
70 CALL ERROPR (IER) 

RETURN 
END 
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SUBROUTINE MSSCN (NC,OMFR,EQRI,EQR2,AMFI,AMF2,AMFR) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION OMFR(I), EQRI(l), EQR2(I) 
DIMENSION AMFI(I), AMF2(I), AMFR(I) 

DO 10, I = 1, NC 

SUM= AMOLl I EQRl(I) + AMOL2 I EQR2(I) + AMOLR 
Fl = 1.0 I (EQRl(I) * SUM) 
F2 = 1.0 I (EQR2(I) * SUM) 
FR = 1.0 I SUM 
AMFl(I) = Fl * OMFR(I) 
AMF2(I) = F2 * OMFR(I) 
AMFR(I) = FR * OMFR(I) 

10 CONTINUE 

SUMI = 0.0 
SUM2 = 0.0 
SUMR = 0.0 
DO 20, I = 1, NC 

SUMI = SUMI + AMFl(I) 
SUM2 = SUM2 + AMF2(I) 
SUMR = SUMR + AMFR(I) 

20 CONTINUE 

DO 30, I = I, NC 

AMFI(I) = AMFl(I) I SUMI 
AMF2(I) = AMF2(I) I SUM2 
AMFR(I) = AMFR(I) I SUMR 

30 CONTINUE 

RETURN 
END 
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SUBROUTINE ACCEL3 (NC,NIT,AMF1,AMF2,AMFR,FGC1,FGC2,FGCR,EQRI,EQR2, 
1 EQR1N,EQR2N,GN1,GN2,ACFTN) 

DIMENSION AMFl(l), AMF2(I), AMFR(I), FGCI(I), FGC2(I), FGCR(I) 
DIMENSION EQRI(l), EQR2(1), EQRlN(I), EQR2N(l), GNI(l), GN2(1) 

IF (NIT.GT.I) GO TO 20 

DO 10, I = I, NC 

GNl(I) = ALOG(FGCR(I) * AMFR(I)) - ALOG(FGCl(I) * AMFI(I)) 
EQRIN(I) = EQRl(I) 
EQRI(I) = FGCl(I) I FGCR(I) 
GN2(I) = ALOG(FGCR(I) * AMFR(I)) - ALOG(FGC2(I) * AMF2(I)) 



EQR2N(I) = EQR2(I) 
EQR2(I) = FGC2(I) I FGCR(I) 

10 CONTINUE 

ACFTN = 1. 0 
RETURN 

20 DO 30, I = 1, NC 

EQRlN(I) = EQRl(I) 
EQRl(I) = ALOG(FGCR(I) * AMFR(I)) - ALOG(FGCl(I) * AMFl(I)) 
EQR2N(I) = EQR2(I) 
EQR2(I) = ALOG(FGCR(I) * AMFR(I)) - ALOG(FGC2(I) * AMF2(I)) 

30 CONTINUE 

SUMI = 0.0 
SUM2 = 0.0 
DO 40, I = 1 , NC 

SUMI = SUMI + GNl(I)**2 + GN2(I)**2 
SUM2 = SUM2 + GNl(I) * EQRl(I) + GN2(I) * EQR2(I) 

40 CONTINUE 

ON = SUM2 - SUMI 
IF (DN.EQ.O.O) ON = SUMI * ACFTN 
ACFT = ABS(SUMl * ACFTN I ON) 

DO 50, I = 1, NC 

Cl = ABS(EQRl(I)) 
C2 = ABS(EQR2(I)) 
CL= AMAXl (Cl,C2) 
FACT = ACFT * CL 
IF (FACT.GT.6.0) ACFT = 6.0 I CL 

50 CONTINUE 

IF (ACFT.LT.1.0) ACFT = 1.0 

DO 60, I = 1, NC 

GNP = EQRl(I) 
EQRl(I) = EQRlN(I) * EXP(-ACFT * GNP) 
GNl(I) = GNP 
GNP = EQR2(I) 
EQR2(I) = EQR2N(I) * EXP(-ACFT * GNP) 
GN2(I) = GNP 
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60 CONTINUE 

ACFTN = ACFT 

RETURN 
END 
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SUBROUTINE CNVG3 (NC,NIT,EQR1,EQR2,AMF1,AMF2,AMFR,FGC1,FGC2,FGCR, 
1 EQR1N,EQR2N,ICN) 

COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAlO/ IPCFC, RESN, PFGC(20) 
DIMENSION EQRl(l), EQR2(1), AMFl(l), AMF2(1), AMFR(l) 
DIMENSION FGCl(l), FGC2(1), FGCR(l), EQRlN(l), EQR2N(l) 

FNM = 0.0 
CHNG = 0.0 
DO 10, I = 1, NC 

VALl = (EQRl(I) - EQR1N(I))**2 I (EQRl(I) * EQRlN(I)) 
VAL2 = (EQR2(I) - EQR2N(I))**2 I (EQR2(I) * EQR2N(I)) 
CHNG = CHNG + VALl + VAL2 
VALl = ALOG(FGCl(I) * AMFl(I)) - ALOG(FGCR(I) * AMFR(I)) 
VAL2 = ALOG(FGC2(I) * AMF2(I)) - ALOG(FGCR(I) * AMFR(I)) 
FNM = FNM + VAL1**2 + VAL2**2 

10 CONTINUE 

IF ((CHNG.GT.EPS(3)).AND.(FNM.GT.EPS(3))) GO TO 20 
ICN = 1 
RPARM(6) = FNM 
RETURN 

20 IF (NIT.GT.1) GO TO 30 
RESN = SQRT(FNM) 
ICN = 0 
IPCFC = 0 
RETURN 

30 RESNPl = SQRT(FNM) 
IF (RESNPl.GT.RESN) GO TO 40 
RESN = RESNPl 
ICN = 0 
RETURN 

40 CALL EXPHCK (NC,AMF1,AMF2,AMFR,FGC1,FGC2,FGCR,IEP) 
IF (IEP.NE.O) GO TO 50 
ICN = 0 
RESN = RESNPl 
RETURN 

50 ICN = -1 
RETURN 
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END 
SUBROUTINE PSPHOM3 (NC,OMFR,AMF1,AMF2,AMFR,IER) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA2/ NFE, AM1(20), AM2(20), AMR(20), WRK4(20), WRK5(20) 
DIMENSION OMFR(l), AMFl(l), AMF2(1), AMFR(l) 
DIMENSION AIV(40), WK(5248) 
EXTERNAL GFCN3, FFCN3 

NC2 = 2 * NC 
MAXIT = IPARM(9) - IPARM(l6) 
NSIG = IPARM(lO) 
ISM = I PARM( 11) 
IF (ISM.EQ.2) GO TO 60 

IF (AMOLl.LE.AMOLR) THEN 

IF (AMOL2.LE.AMOLR) THEN 

DO 10, I = 1, NC 

ELSE 

AIV(I) = AMOLl * AMFl(I) 
AIV(NC+I) = AMOL2 * AMF2(I) 

CONTINUE 

ELSE 

DO 20, I = 1, NC 

AIV(I) = AMOLl * AMFl(I) 
AIV(NC+I) = AMOLR * AMFR(I) 

CONTINUE 

ENDIF 

IF (AMOL1.LE.AMOL2) THEN 

DO 30, I = 1 , NC 

AIV(I) = AMOLR * AMFR(I) 
AIV(NC+I) = AMOLl * AMFl(I) 

CONTINUE 

ELSE 

DO 40, I = 1, NC 



40 

AIV(I) = AMOLR * AMFR(I) 
AIV(NC+I) = AMOL2 * AMF2(I) 

CONTINUE 

ENDIF 

ENDIF 

IF (IABS(IPARM(4)).EQ.2) THEN 

CALL ZSCNT (GFCN3,NSIG,NC2,MAXIT,OMFR,AIV,FNM,WK,IER) 
IF (IER.NE.O) IER = 220 

ELSE 

CALL ZSPOW (GFCN3,NSIG,NC2,MAXIT,OMFR,AIV,FNM,WK,IER) 
IF (IER.NE.O) IER = 230 

ENDIF 
IF (IER.NE.O) GO TO 100 

AMOLl = 0.0 
AMOL2 = 0.0 
DO 50, I = 1, NC 

AMl(I) = AIV(I) 
AM2(I) = AIV(NC+I) 
AMOLl = AMOLl + AMl(I) 
AMOL2 = AMOL2 + AM2(I) 
AMR(I) = AMl(I) + AM2(I) 

50 CONTINUE 

CALL MFNM (NC,AMl,AMFl) 
CALL MFNM (NC,AM2,AMF2) 
CALL MFNM (NC,AMR,AMFR) 
AMOLR = 1.0 - (AMOLl + AMOL2) 

GO TO 90 

60 DO 70, I = 1, NC 

AIV(I) = ALOG(AMFR(I) I AMFl(I)) 
AIV(NC+I) = ALOG(AMFR(I) I AMF2(I)) 

70 CONTINUE 

IF (IABS(IPARM(4)).EQ.2) THEN 
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CALL ZSCNT (FFCN3,NSIG,NC2,MAXIT,OMFR,AIV,FNM,WK,IER) 
IF (IER.NE.O) IER = 220 

ELSE 

CALL ZSPOW (FFCN3,NSIG,NC2,MAXIT,OMFR,AIV,FNM,WK,IER) 
IF (IER.NE.O) IER = 230 

ENDIF 
IF (IER.NE.O) GO TO 100 

DO 80, I = 1, NC 

AMl(I) = EXP(AIV(I)) 
AM2(I) = EXP(AIV(NC+I)) 

80 CONTINUE 

CALL PDIST3 (NC,OMFR,AM1,AM2) 
CALL MSSCN (NC,OMFR,AM1,AM2,AMF1,AMF2,AMFR) 

90 IPARM(24) = NFE 
RPARM(6) = FNM 

100 RETURN 
END 
SUBROUTINE GFCN3 (AIV,GON,NC2,0MFR) 
COMMON /AAAA2/ NFE, AMN(20), AMF1(20), AMF2(20), AMFR(20), 

1 WRK5(20) 
COMMON /AAAA7/ FGC1(20), FGC2(20), FGCR(20) 
DIMENSION AIV(l), GON(l), OMFR(l) 

NC = NC2 I 2 
CALL CKMN3 (NC,AIV,OMFR) 
DO 10, I = 1, NC 

AMN(I) = AIV(I) 
10 CONTINUE 

CALL MFNM (NC,AMN,AMFl) 
CALL FGCF (NC,AMFl,FGCl,AMN,Z) 
DO 20, I = 1, NC 

AMN(I) = AIV(NC+I) 
20 CONTINUE 

CALL MFNM (NC,AMN,AMF2) 
CALL FGCF (NC,AMF2,FGC2,AMN,Z) 

DO 30, I = 1, NC 
AMN(I) = OMFR(I) - (AIV(I) + AIV(NC+I)) 

30 CONTINUE 
CALL MFNM (NC,AMN,AMFR) 
CALL FGCF (NC,AMFR,FGCR,AMN,Z) 
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DO 40, I= 1, NC 

GON(I) = ALOG(AMFl(I) * FGCl(I)) - ALOG(AMFR(I) * FGCR(I)) 
GON(NC+I) = ALOG(AMF2(I) * FGC2(I)) - ALOG(AMFR(I) * FGCR(I)) 

40 CONTINUE 

NFE = NFE + 1 

RETURN 
END 
SUBROUTINE FFCN3 (AIV,FOK,NC2,0MFR) 
COMMON /AAAA2/ NFE, EQR1(20), EQR2(20), AMF1(20), AMF2(20), 

1 AMFR(20) 
COMMON /AAAA7/ FGC1(20), FGC2(20), FGCR(20) 
DIMENSION AIV(l), FOK(l), OMFR(l) 

NC = NC2 I 2 

DO 10, I = 1, NC 

EQRl(I) = EXP(AIV(I)) 
EQR2(I) = EXP(AIV(NC+I)) 

10 CONTINUE 

CALL PDIST3 (NC,OMFR,EQR1,EQR2) 
CALL MSSCN (NC,OMFR,EQR1,EQR2,AMF1,AMF2,AMFR) 
CALL FGCF (NC,AMFl,FGCl,EQRl,Z) 
CALL FGCF (NC,AMF2,FGC2,EQR1,Z) 
CALL FGCF (NC,AMFR,FGCR,EQRl,Z) 

DO 20, I = l, NC 

FOK(!) = ALOG(AMFl(I) * FGCl(I)) - ALOG(AMFR(I) * FGCR(I)) 
FOK(NC+I) = ALOG(AMF2(I) * FGC2(I)) - ALOG(AMFR(I) * FGCR(I)) 

20 CONTINUE 

NFE = NFE + 1 

RETURN 
END 
SUBROUTINE CKMN3 (NC,AMN,OMFR) 
DIMENSION AMN(l), OMFR(l) 

DO 10, I = 1, NC 

IF (AMN(I).LE.0.0) GO TO 20 
IF (AMN(NC+I).LE.0.0) GO TO 20 
DIFF = OMFR(I) - (AMN(I) + AMN(NC+I)) 
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IF (DIFF.LE.O.O) GO TO 20 

10 CONTINUE 
RETURN 

20 IER = 301 
CALL ERROPR (IER) 

RETURN 
END 
SUBROUTINE WRT4 (NC,AMF1,AMF2,AMFR) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION AMFl(l), AMF2(1), AMFR(l) 

WRITE (7,100) 
WRITE (7,110) AMOLl, AMOL2, AMOLR 
WRITE (7,120) 
WRITE (7,130) (I,AMFl(I),AMF2(I),AMFR(I), I= 1, NC) 

RETURN 

100 FORMAT (//,lX,*STARTING INFORMATION FOR THREE PHASE FLASH*) 
110 FORMAT (/,lX,*PHASE MOLES, l*,E25.10, 

1 /,lX,*PHASE MOLES, 2*,E25.10,/,1X,*PHASE MOLES, R*,E25.10) 
120 FORMAT (/,2X,9HCOMPONENT,13X,7HPHASE l,13X,7HPHASE 2, 

1 13X,7HPHASE R,/,6X,5HINDEX,3(9X,11HCOMPOSITION), 
2 /,lX,lOH---------- ,3(5X,15H---------------),/) 

130 FORMAT (1X,Il0,3E20.12) 

END 
SUBROUTINE WRTS (NC,AMFl,AMFR) 
COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
DIMENSION AMFl(l), AMFR(l) 

WRITE (7,100) 
WRITE (7,110) AMOLl, AMOLR 
WRITE (7,120) 
WRITE (7,130) (I,AMFl(I),AMFR(I), I= 1, NC) 

RETURN 

100 FORMAT (//,lX,*FINAL SOLUTION FROM TWO-PHASE SECTION*) 
110 FORMAT (/,lX,*PHASE MOLES, l*,5X,E20.10, 

1 /,lX,*PHASE MOLES, R*,5X,E20.10) 
120 FORMAT (/,2X,9HCOMPONENT,13X,7HPHASE 1,13X,7HPHASE R, 

1 /,6X,5HINDEX,2(9X,11HCOMPOSITION),/,1X,l0H---------- , 
2 2(5X,15H--------------- ),//) 

130 FORMAT (1X,Il0,2E20.12) 

END 
SUBROUTINE EXPHCK (NC,AMF1,AMF2,AMFR,FGC1,FGC2,FGCR,IEP) 

189 



. -~ .. 

COMMON /AAAAl/ IPARM(26), EPS(8), RPARM(6), AMOLl, AMOL2, AMOLR 
COMMON /AAAA7/ EQR1N(20), EQR2N(20), WK(20) 
COMMON /AAAlO/ IPCFC, RESN, PFGC(20) 
DIMENSION AMFl(l), AMF2(1), AMFR(l) 
DIMENSION FGCl(l), FGC2(1), FGCR(l) 

IEOS = IPARM(l) 

IF (IPCFC.NE.O) GO TO 10 
CALL PCFGC (NC,IEOS,PFGC) 
IPCFC = 1 

10 TFEM3P = 0.0 
DO 20, I = 1 , NC 

DGPl = AMFl(I) * ALOG(AMFl(I) * FGCl(I) I PFGC(I)) 
DGP2 = AMF2(I) * ALOG(AMF2(I) * FGC2(I) I PFGC(I)) 
DGPR = AMFR(I) * ALOG(AMFR(I) * FGCR(I) I PFGC(I)) 
TFEM3P = TFEM3P + AMOLl * DGPl + AMOL2 * DGP2 + AMOLR * DGPR 

20 CONTINUE 

IF ((AMOL2.LT.AMOL1).0R.(AMOL2.LT.AMOLR)) THEN 

DO 30, I = 1, NC 
FGCl(I) = AMF2(I) 

30 CONTINUE 

40 

50 

AMNl = AMOL2 
IF (AMOLl.LT.AMOLR) THEN 

DO 40, I = 1, NC 

FGC2(I) = AMFl(I) 
FGCR(I) = AMFR(I) 

CONTINUE 
AMN2 = AMOLl 
AMN3 = AMOLR 

ELSE 

DO 50, I = 1, NC 

FGC2(I) = AMFR(I) 
FGCR(I) = AMFl(I) 

CONTINUE 
AMN2 = AMOLR 
AMN3 = AMOLl 

ENDIF 
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60 

ELSE 

DO 60, I = l, NC 

FGCl(I) = AMFl(I) 
FGC2(I) = AMFR(I) 
FGCR(I) = AMF2(I) 

CONTINUE 
AMNl = AMOLl 
AMN2 = AMOLR 
AMN3 = AMOL2 

ENDIF 

DO 70, I = 1, NC 

Al = AMNl * FGCl(I) 
A2 = AMN2 * FGC2(I) 
A3 = AMN3 * FGCR(I) 
FGCl(I) =Al +Al * A3 I (Al + A2) 
FGC2(I) = A2 + A2 * A3 I (Al + A2) 

70 CONTINUE 

AMNl = 0.0 
DO 80, I = 1, NC 

AMNl = AMNl + FGCl(I) 
FGCR(I) = FGCl(I) 
WK(I) = FGC2( I) 

80 CONTINUE 

AMN2 = 1.0 - AMNl 
CALL MFNM (NC,FGCR,FGCl) 
CALL MFNM (NC,WK,FGC2) 

CALL FGCF (NC,FGCl,FGCR,WK,Z) 
DGPl = 0.0 
DO 90, I = 1, NC 

DGPl = DGPl + FGCl(I) * ALOG(FGCl(I) * FGCR(I) I PFGC(I)) 
90 CONTINUE 

CALL FGCF(NC,FGC2,FGCR,WK,Z) 
DGP2 = 0.0 
DO 100, I = 1, NC 

DGP2 = DGP2 + FGC2(I) * ALOG(FGC2(I) * FGCR(I) I PFGC(I)) 
100 CONTINUE 
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TFEM2P = AMNl * DGPl + AMN2 * DGP2 
DIFFG = TFEM3P - TFEM2P 
IF (DIFFG.GT.0.0) GO TO 110 
IEP = 0 
RETURN 

110 DO 120, I = 1, NC 

AMFl(I) = FGCl(I) 
AMFR(I) = FGC2(I) 

120 CONTINUE 
AMOLl = AMNl 
AMOLR = AMN2 
IEP = 1 

RETURN 
END 
SUBROUTINE PCFGC (NC,IEOS,PFGC) 
COMMON /AAAA3/ TEM, PRS 
COMMON /AAAAS/ AI(20), BI(20), AIJ(20,20) 
DIMENSION PFGC(l) 

R = 10.732 

DO 40, I = 1, NC 

BB= BI(I) * PRS I (TEM * R) 
AA= AI(I) * PRS I (TEM * R)**2 

IF (IEOS.EQ.l) THEN 

A2 = BB - 1.0 
Al =AA - BB * (3.0 * BB + 2.0) 
AO = BB * (BB * (BB + 1.0) - AA) 

ELSE 

A2 = -1. 0 
Al =AA - BB * (1.0 + BB) 
AO = -AA * BB 

ENDIF 

CALL ZCALC (A2,Al,AO,Zl,Z2,Z3,IJZ) 

IF (IJZ.LT.O) GO TO 30 
IF (IJZ.EQ.3) GO TO 10 
IF (Zl.LE.0.0) GO TO 30 
IF (Z2.LE.O.O) GO TO 30 
ZL = AMINl(Zl,Z2) 
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ZH = AMAX1(Zl,Z2) 
GO TO 20 

10 ZH = AMAX1(Zl,Z2,Z3) 
ZL = ZH 
IF ((Zl.GT.0.0).AND.(Zl.LE.ZL)) ZL = Zl 
IF ((Z2.GT.O.O).AND.(Z2.LE.ZL)) ZL = Z2 
IF ((Z3.GT.O.O).AND.(Z3.LE.ZL)) ZL = Z3 

20 CALL PSUBPHI (AA,BB,IEOS,ZH,PFGCH) 
CALL PSUBPHI (AA,BB,IEOS,ZL,PFGCL) 

DIFF = PFGCH - PFGCL 
IF (DIFF.LT.O.O) THEN 

PFGC(I) = EXP(PFGCH) 
ELSE 

PFGC(I) = EXP(PFGCL) 
ENDIF 

GO TO 40 

30 ZH = AMAXl(Zl,Z2) 
CALL PSUBPHI (AA,BB,IEOS,ZH,PFGCH) 
PFGC(I) = EXP(PFGCH) 

40 CONTINUE 

RETURN 
END 
SUBROUTINE PSUBPHI (A,B,IEOS,Z,FGC) 

IF (IEOS.NE.l) GO TO 10 

Cl = 1.0 + SQRT(2.0) 
C2 = 1.0 - SQRT(2.0) 
AJ =A I (2.0 * B * SQRT(2.0)) 
AK = (Z + Cl * B) I (Z + C2 * B) 
GO TO 20 

10 AJ = A I B 
AK = (Z + B) I Z 

20 FGC = Z - 1.0 - ALOG(Z - 8) - AJ * ALOG(AK) 

RETURN 
END 
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