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In current wireless networks, co-channel interference is the major lim-

iting factor in achieving high spectral efficiency. The effective interference

at receivers can be minimized by using advanced interference management

techniques. Given channel conditions, what is the fundamental limit on max-

imum spectral efficiency we can achieve, and which encoding and decoding

techniques achieve this limi t? These research questions can be addressed as

network information theory problems. In particular, the capacity of Gaussian

interference channels is an important open problem dealing with these funda-

mental questions. Some special cases of the interference channels and their

capacity regions are studied in this dissertation.

For a class of partially connected interference channels, approximate

capacity regions are characterized. The impact of topology, interference align-

ment, and the interplay between interference and noise are discussed. The

results show that for these channels, genie-aided outer bounds are tight to

within a constant gap from capacity. Near-optimal achievable schemes, based

on rate-splitting and lattice alignment, are presented.

vi



The Gaussian X-channel is also an important Gaussian interference

channel model. Lower and upper bounds on the sum-rate capacity are derived

for this channel. The achievable schemes are based on layered lattice coding

and compute-and-forward decoding. For different regimes of channel param-

eters, some combinations of encoding and decoding strategies are designed.

For some range of channel parameters, the approximate sum-rate capacity is

characterized to within a constant gap.
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Chapter 1

Introduction

1.1 Motivation

The capacity of the interference channel remains one of the most chal-

lenging open problems in network information theory. The capacity region

is not known in general, except for a specific range of channel parameters.

For the two-user scalar Gaussian interference channel, where the interference

alignment is not required, the approximate capacity region to within one bit is

known [1]. For the channels where interference alignment is required such as

the K-user Gaussian interference channel [11, 2, 3, 4, 5, 7] and the Gaussian

X-channel [11, 9, 10], a tight characterization of the capacity region is not

known, even for symmetric channel cases.

A tractable approach to the capacity of interference channels is to

consider partial connectivity of interference links and analyze the impact of

topology on the capacity. Topological interference management [8] approach

gives important insights on the degrees-of-freedom (DoF) of partially con-

nected interference channels and their connection to index coding problems

[19, 20, 21, 22, 23, 24, 25, 26]. It is shown that the symmetric DoF of a par-

tially connected interference channel can be found by solving the corresponding

index coding problem.

We consider a class of three-user partially connected interference chan-

nels and characterize approximate capacity regions at finite SNR. We focus on
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the impact of interference topology, interference alignment, and the interplay

between interference and noise. We choose a few representative topologies

where we can achieve clear interference alignment gain. For these topologies,

Z-channel type outer bounds are tight to within a constant gap from the cor-

responding inner bound. For each topology, we present an achievable scheme

based on rate-splitting, lattice alignment, and successive decoding.

The Gaussian X-channel is another challenging open problem, previ-

ously studied in [11, 9, 10]. The channel model has the same 2-by-2 physi-

cal links as those in the two-user Gaussian interference channel. But, there

are four message sets, one for each transmitter-receiver pair. It was shown

in [11] that the degrees-of-freedom (DOF) of 4
3

is achievable for almost all

channel realizations by using real interference alignment. In [9], the general-

ized degrees-of-freedom (GDOF) results are derived by using a deterministic

channel approach and its application to the Gaussian case. In [10], a lower-

triangular deterministic channel approach is developed to show a constant-gap

capacity result for the channel realizations outside an explicit outage set.

1.2 Related Work

Lattice coding based on nested lattices is shown to achieve the capacity

of the single user Gaussian channel in [12, 28]. The idea of lattice-based

interference alignment by decoding the sum of lattice codewords appeared

in the conference version of [4]. This lattice alignment technique is used to

derive capacity bounds for three-user interference channel in [2, 3]. The idea of

decoding the sum of lattice codewords is also used in [13, 14, 15] to derive the

approximate capacity of the two-way relay channel. An extended approach,

compute-and-forward [16, 17] enables to first decode some linear combinations

2



of lattice codewords and then solve the lattice equation to recover the desired

messages. This approach is also used in [7] to characterize approximate sum-

rate capacity of the fully connected K-user interference channel.

The idea of sending multiple copies of the same sub-message at different

signal levels, so-called Zigzag decoding, appeared in [5] where receivers collect

side information and use them for interference cancellation.

The K-user cyclic Gaussian interference channel is considered in [6]

where an approximate capacity for the weak interference regime (SNRk ≥
INRk for all k) and the exact capacity for the strong interference regime

(SNRk ≤ INRk for all k) are derived. Our type 4 and 5 channels are K = 3

cases in mixed interference regimes, which were not considered in [6].

1.3 Organization

In Chapter 2, we explain some preliminaries on lattice coding. In Chap-

ter 3, a class of partially connected interference channels are studied. The

capacity outer bounds are derived in Section 3.2. Lattice coding-based achiev-

able rate regions for each channel type and the corresponding gap analysis are

given in Section 3.3–3.7, respectively. Random coding achievable regions are

given in Section 3.8 and 3.9. In Chapter 4, the symmetric Gaussian X-channel

is studied. In Section 4.4, the sum-rate capacity upper bound is proved. In

Section 4.5, we present achievable schemes based on layered lattice coding,

interference alignment, and layer-by-layer successive decoding, and we prove

the achievability part. In Section 4.6, achievable schemes based on compute-

and-forward decoding is explained. We discuss conclusions in Chapter 5.

3



1.4 Notation

Signal xij is a coded version of message Mij with code rate Rij unless

otherwise stated. The single user capacity at receiver k is denoted by Ck =

1
2

log
(

1 + P
Nk

)
. Let C denote the capacity region of an interference channel.

Also, let Ri and Ro denote the capacity inner bound and the capacity outer

bound, respectively. Thus, Ri ⊂ C ⊂ Ro. Let δk denote the gap on the rate Rk

between Ri and Ro. Let δjk denote the gap on the sum-rate Rj +Rk between

Ri and Ro. For example, if

Ri = {(Rj, Rk) : Rk ≤ Lk, Rj +Rk ≤ Ljk} (1.1)

Ro = {(Rj, Rk) : Rk ≤ Uk, Rj +Rk ≤ Ujk}, (1.2)

then δk = Uk − Lk and δjk = Ujk − Ljk. For side information graph, we use

graph notation of [24]. For example, G1 = {(1|3), (2), (3|1)} means that node

1 has an incoming edge from node 3, that node 2 has no incoming edge, and

that node 3 has an incoming edge from node 1. log(·) is base-2 logarithm.

a ' b means a and b are approximately equal up to a constant.
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Chapter 2

Preliminaries

2.1 Lattice Coding

Lattice Λ is a discrete subgroup of Rn, Λ = {t = Gu : u ∈ Zn}
where G ∈ Rn×n is a real generator matrix. Quantization with respect to

Λ is QΛ(x) = arg minλ∈Λ ‖x − λ‖. Modulo operation with respect to Λ is

MΛ(x) = [x] mod Λ = x − QΛ(x). For convenience, we use both notations

MΛ(·) and [·] mod Λ interchangeably. Fundamental Voronoi region of Λ is

V(Λ) = {x : QΛ(x) = 0}. Volume of the Voronoi region of Λ is V (Λ) =∫
V(Λ)

dx. Normalized second moment of Λ is G(Λ) = σ2(Λ)

V (Λ)2/n
where σ2(Λ) =

1
nV (Λ)

∫
V(Λ)
‖x‖2dx. Lattices Λ1, Λ2 and Λ are said to be nested if Λ ⊆ Λ2 ⊆ Λ1.

For nested lattices Λ2 ⊂ Λ1, Λ1/Λ2 = Λ1 ∩ V(Λ2).

We briefly review the lattice decoding procedure in [12]. We use nested

lattices Λ ⊆ Λt with σ2(Λ) = S, G(Λ) = 1
2πe

, and V (Λ) = (2πeS)
n
2 . The

transmitter sends x = [t+d] mod Λ over the point-to-point Gaussian channel

y = x+z where the codeword t ∈ Λt∩V(Λ), the dither signal d ∼ Unif(V(Λ)),

the transmit power 1
n
‖x‖2 = S and the noise z ∼ N(0, NI). The code rate is

given by R = 1
n

log
(
V (Λ)
V (Λt)

)
.

After linear scaling, dither removal, and mod-Λ operation, we get

y′ = [βy − d] mod Λ = [t + ze] mod Λ (2.1)

where the effective noise is ze = (β − 1)x + βz1 and its variance σ2
e =

5



1
n
E[‖ze‖2] = (β − 1)2S + β2N . With the MMSE scaling factor β = S

S+N

plugged in, we get σ2
e = βN = SN

S+N
. The capacity of the mod-Λ channel [12]

between t and y is

1

n
I (t; y) =

1

n
h (y)− 1

n
h (y|t)

=
1

n
h (y)− 1

n
h (z mod Λ)

≥ 1

n
h (y)− 1

n
h (z)

=
1

n
log V (Λ)− 1

n
h (z)

=
1

2
log

(
S

βN

)
=

1

2
log

(
1 +

S

N

)
= C

where I(·) and h(·) are mutual information and differential entropy, respec-

tively. For reliable decoding of t, we have the code rate constraint R ≤
C. With the choice of lattice parameters, σ2(Λt) ≥ βN , G(Λt) = 1

2πe
and

V (Λt)
n
2 = σ2(Λt)

G(Λt)
≥ 2πeβN ,

R =
1

n
log

(
V (Λ)

V (Λt)

)
≤ 1

n
log

(
(2πeS)

n
2

(2πeβN)
n
2

)
=

1

2
log

(
S

βN

)
.

Thus, the constraint R ≤ C can be satisfied. By lattice decoding [12], we can

recover t, i.e.,

QΛt(y
′) = t, (2.2)

6



with probability 1− Pe where

Pe = Pr[QΛt (y′) 6= t] (2.3)

is the probability of decoding error. If we choose Λ to be Poltyrev-good [28],

then Pe → 0 as n→∞.

Let us consider the case where the transmitter sends a superposition of

L lattice codewords

x =
L∑
l=1

hl−1xl

where xl = [tl+dl] mod Λ with the transmit power S = 1
n
‖x‖2 = 1

n

∑L
l=1 h

2(l−1)‖xl‖2 =∑L
l=1 h

2(l−1)P . If we use layer-by-layer successive decoding, it is straightfor-

ward to show that each layer can achieve

Rl =
1

2
log

(
1 +

h2(l−1)P∑L
m>l h

2(m−1)P +N

)
,

and
∑L

l=1Rl = C.

2.2 Dirichlet’s Theorem and Farey sequence

Theorem 2.1 (Dirichlet (1842)). Let h and Q be real numbers with Q > 1.

Then their exist integers p and q such that 1 ≤ q < Q and |qh− p| ≤ 1
Q

.

Proof. The proof can be found in Schmidt (1980).

Definition 2.2 (Farey sequence). The Farey sequence Fn of order n with

n ≥ 1 is the sequence of rationals in their lowest terms between 0 and 1 with

denominators less than or equal to n, written in ascending order.

7



For example,

F5 =

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
.

Definition 2.3 (Farey decomposition). Given Q, a real number h ∈ [0, 1] can

be decomposed into its quantized part

hQ = argmin
p
q
∈FbQc

|qh− p|

and modulo part ε = h− hQ.

Corollary 2.4. For h ∈ [0, 1], ε = h− hQ is bounded by |ε| ≤ 1
q?Q

where q? is

the denominator of hQ.

Proof. We first show that

1

Q
≥ min

(p,q):q∈[1,Q]
|qh− p| = min

q∈[1,Q]
|qh− bqhe| = min

p
q
∈FbQc

|qh− p|.

The inequality holds due to Dirichlet’s theorem. Now, note that

A = {(p, q) :
p

q
∈ FbQc} ⊆ B = {(bqhe, q) : q ∈ [1, Q]} ⊆ C = {(p, q) : q ∈ [1, Q]} .

We can see that C−B includes only (p, q) with p 6= bqhe, which is suboptimal.

And, B − A includes only rationals not in lowest terms, which are subopti-

mal solutions of the minimization. Thus, restriction to A is without loss of

optimality. Let us define q? = argminq∈[1,Q] |qh− bqhe|. We can express hQ

equivalently by hQ = bq?he
q?

, and then

|ε| =
∣∣∣∣h− bq?heq?

∣∣∣∣ =
1

q?
|q?h− bq?he| ≤ 1

q?Q
.

8



Definition 2.5 (Farey neighbors). If two numbers are successive terms in Fn,

they are said to be Farey neighbors in Fn.

Let us denote by (p
q
, a
b
) a pair of Farey neighbors with p

q
< a

b
. Note

that (p
q
, a
b
) are Farey neighbors in Fmax{q,b} but not necessarily in Fn with

n > max{q, b}. For example, (1
2
, 2

3
) are Farey neighbors in F3 but not in F5.

The following is a well-known property of Farey neighbors.

Theorem 2.6 (Distance between Farey neighbors). If (p
q
, a
b
) are Farey neigh-

bors in Fn, then qa − pb = 1. Equivalently, the distance between them is

a
b
− p

q
= 1

qb
.

Proof. The proof can be found in Schmidt (1980).

The converse is not true. Given two numbers p
q

and a
b

in Fn, the equality

qa − pb = 1 holds even when (p
q
, a
b
) are not Farey neighbors in Fn if they are

Farey neighbors in some Fk with k < n.

Definition 2.7 (Farey umbrella). Given a number p
q

in FQ, the interval[
p
q
− 1

qQ
, p
q

+ 1
qQ

]
is said to be the Farey umbrella of p

q
.

Corollary 2.8. The union of Farey umbrellas of FQ covers the entire interval

[0, 1], i.e.,

[0, 1] ⊂
⋃
p
q
∈FQ

[
p

q
− 1

qQ
,
p

q
+

1

qQ

]
.

Proof. It is sufficient to show that p
q

+ 1
qQ
≥ a

b
− 1

bQ
for every pair (p

q
, a
b
) of

Farey neighbors in FQ. Since a
b

= p
q

+ 1
qb

by the theorem above, it remains to

show that 1
qQ

+ 1
bQ

= q+b
qbQ
≥ 1

qb
. Let us assume otherwise, i.e., q + b < Q, then

p+a
q+b

must be a member of FQ. In this case, since p
q
< p+a

q+b
< a

b
, both (p

q
, p+a
q+b

)

9



and (p+a
q+b

, a
b
) are valid pairs of Farey neighbors in FQ, but (p

q
, a
b
) is not. This

is contradictory.
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Chapter 3

Partially Connected Interference Channels1

3.1 Channel Model and Main Results

We consider five channel types defined in Table 4.2 and described in Fig.

3.1 (a)–(e). Each channel type is a partially connected three-user Gaussian

interference channel. Each transmitter is subject to power constraint E[X2
k ] ≤

Pk = P . Let us denote the noise variance by Nk = E[Z2
k ]. Without loss of

generality, we assume that N1 ≤ N2 ≤ N3.

Definition 3.1 (side information graph). The side information graph repre-

sentation of an interference channel satisfies the following.

� A node represents a transmitter-receiver pair, or equivalently, the message.

� There is a directed edge from node i to node j if transmitter i does not

interfere at receiver j.

The side information graphs for five channel types are described in Fig.

3.1 (f)–(j). We state the main results in the following two theorems, of which

the proofs will be given in the main body of the paper.

1The result in this chapter was presented in part at the IEEE ISIT 2017 [29]. Muryong
Kim as the first author performed the research and generated the main results in theorems.
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Type Channel model

1
Y1 = X1 +X2 + Z1

Y2 = X1 +X2 +X3 + Z2

Y3 = X2 +X3 + Z3

2
Y1 = X1 +X2 +X3 + Z1

Y2 = X1 +X2 + Z2

Y3 = X1 +X3 + Z3

3
Y1 = X1 +X3 + Z1

Y2 = X2 +X3 + Z2

Y3 = X1 +X2 +X3 + Z3

4
Y1 = X1 +X3 + Z1

Y2 = X1 +X2 + Z2

Y3 = X2 +X3 + Z3

5
Y1 = X1 +X2 + Z1

Y2 = X2 +X3 + Z2

Y3 = X1 +X3 + Z3

Table 3.1: Five channel types

Theorem 3.2 (Capacity region outer bound). For the five channel types, if

(R1, R2, R3) is achievable, it must satisfy∑
j∈K

Rj ≤
1

2
log

(
1 +

|K|P
minj∈K{Nj}

)
(3.1)

for every subset K of the nodes {1, 2, 3} that does not include a directed cycle

in the side information graph over the subset.

Theorem 3.3 (Capacity region to within one bit).

For any rate triple (R1, R2, R3) on the boundary of the outer bound region, the

point (R1 − 1, R2 − 1, R3 − 1) is achievable.
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2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

(d) Type 4
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Figure 3.1: Five channel types and their side information graphs.

3.2 Capacity Outer Bounds

We prove the capacity outer bound in Theorem 1 for each channel type.

The result is summarized in Table 3.2. The shape of the outer bound region

is illustrated in Fig. 3.2. For all channel types, we assume P1 = P2 = P3 = P

and N1 ≤ N2 ≤ N3.

3.2.1 Channel Type 1

In this section, we present an outer bound on the capacity region of

Type 1 channel defined by Y1

Y2

Y3

 =

 1 1 0
1 1 1
0 1 1

 X1

X2

X3

+

 Z1

Z2

Z3

 .
We state the outer bound in the following theorem.

Theorem 3.4. The capacity region of Type 1 channel is contained in the

13



following outer bound region:

Rk ≤ Ck, k = 1, 2, 3

R1 +R2 ≤
1

2
log

(
1 +

P

N1

)
+

1

2
log

(
2P +N2

P +N2

)
R2 +R3 ≤

1

2
log

(
1 +

P

N2

)
+

1

2
log

(
2P +N3

P +N3

)
.

Proof. The individual rate bounds are obvious. We proceed to sum-rate

bounds.

n(R1 +R2 − ε)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 )

≤ I(Xn
1 ;Y n

1 |Xn
2 ) + I(Xn

2 ;Y n
2 |Xn

3 )

= h(Y n
1 |Xn

2 )− h(Y n
1 |Xn

1 , X
n
2 ) + h(Y n

2 |Xn
3 )− h(Y n

2 |Xn
2 , X

n
3 )

= h(Xn
1 + Zn

1 )− h(Zn
1 ) + h(Xn

1 +Xn
2 + Zn

2 )− h(Xn
1 + Zn

2 )

≤ n

2
log

(
P +N1

N1

)
+
n

2
log

(
2P +N2

P +N2

)
where the first inequality is by Fano’s inequality, the second inequality due to

the independence of X1, X2, X3. The third inequality holds from the fact that

Gaussian distribution maximizes differential entropy and that h(Xn
1 + Zn

1 ) −
h(Xn

1 + Zn
2 ) is also maximized by Gaussian distribution. Similarly,

n(R2 +R3 − ε)

≤ I(Xn
2 ;Y n

2 ) + I(Xn
3 ;Y n

3 )

≤ I(Xn
2 ;Y n

2 |Xn
1 , X

n
3 ) + I(Xn

3 ;Y n
3 )

= h(Y n
2 |Xn

1 , X
n
3 )− h(Y n

2 |Xn
1 , X

n
2 , X

n
3 ) + h(Y n

3 )− h(Y n
3 |Xn

3 )

= h(Xn
2 + Zn

2 )− h(Zn
2 ) + h(Xn

2 +Xn
3 + Zn

3 )− h(Xn
2 + Zn

3 )

≤ n

2
log

(
P +N2

N2

)
+
n

2
log

(
2P +N3

P +N3

)
.
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3.2.2 Channel Type 2

In this section, we present an outer bound on the capacity region of

Type 2 channel defined by Y1

Y2

Y3

 =

 1 1 1
1 1 0
1 0 1

 X1

X2

X3

+

 Z1

Z2

Z3

 .
We state the outer bound in the following theorem.

Theorem 3.5. The capacity region of Type 2 channel is contained in the

following outer bound region:

Rk ≤ Ck, k = 1, 2, 3

R1 +R2 ≤
1

2
log

(
1 +

P

N1

)
+

1

2
log

(
2P +N2

P +N2

)
R1 +R3 ≤

1

2
log

(
1 +

P

N1

)
+

1

2
log

(
2P +N3

P +N3

)
.

Proof.

n(R1 +R2 − ε)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 )

≤ I(Xn
1 ;Y n

1 |Xn
2 , X

n
3 ) + I(Xn

2 ;Y n
2 )

= h(Y n
1 |Xn

2 , X
n
3 )− h(Y n

1 |Xn
1 , X

n
2 , X

n
3 ) + h(Y n

2 )− h(Y n
2 |Xn

2 )

= h(Xn
1 + Zn

1 )− h(Zn
1 ) + h(Xn

1 +Xn
2 + Zn

2 )− h(Xn
1 + Zn

2 )

≤ n

2
log

(
P +N1

N1

)
+
n

2
log

(
2P +N2

P +N2

)
.
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n(R1 +R3 − ε)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
3 ;Y n

3 )

≤ I(Xn
1 ;Y n

1 |Xn
2 , X

n
3 ) + I(Xn

3 ;Y n
3 )

= h(Y n
1 |Xn

2 , X
n
3 )− h(Y n

1 |Xn
1 , X

n
2 , X

n
3 ) + h(Y n

3 )− h(Y n
3 |Xn

3 )

= h(Xn
1 + Zn

1 )− h(Zn
1 ) + h(Xn

1 +Xn
3 + Zn

3 )− h(Xn
1 + Zn

3 )

≤ n

2
log

(
P +N1

N1

)
+
n

2
log

(
2P +N3

P +N3

)
.

3.2.3 Channel Type 3

In this section, we present an outer bound on the capacity region of

Type 3 channel defined by Y1

Y2

Y3

 =

 1 0 1
0 1 1
1 1 1

 X1

X2

X3

+

 Z1

Z2

Z3

 .
We state the outer bound in the following theorem.

Theorem 3.6. The capacity region of Type 3 channel is contained in the

following outer bound region:

Rk ≤ Ck, k = 1, 2, 3

R1 +R3 ≤
1

2
log

(
1 +

P

N1

)
+

1

2
log

(
2P +N3

P +N3

)
R2 +R3 ≤

1

2
log

(
1 +

P

N2

)
+

1

2
log

(
2P +N3

P +N3

)
.
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Proof.

n(R1 +R3 − ε)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
3 ;Y n

3 )

≤ I(Xn
1 ;Y n

1 |Xn
3 ) + I(Xn

3 ;Y n
3 |Xn

2 )

= h(Y n
1 |Xn

3 )− h(Y n
1 |Xn

1 , X
n
3 ) + h(Y n

3 |Xn
2 )− h(Y n

3 |Xn
2 , X

n
3 )

= h(Xn
1 + Zn

1 )− h(Zn
1 ) + h(Xn

1 +Xn
3 + Zn

3 )− h(Xn
1 + Zn

3 )

≤ n

2
log

(
P +N1

N1

)
+
n

2
log

(
2P +N3

P +N3

)
.

n(R2 +R3 − ε)

≤ I(Xn
2 ;Y n

2 ) + I(Xn
3 ;Y n

3 )

≤ I(Xn
2 ;Y n

2 |Xn
3 ) + I(Xn

3 ;Y n
3 |Xn

1 )

= h(Y n
2 |Xn

3 )− h(Y n
2 |Xn

2 , X
n
3 ) + h(Y n

3 |Xn
1 )− h(Y n

3 |Xn
1 , X

n
3 )

= h(Xn
2 + Zn

2 )− h(Zn
2 ) + h(Xn

2 +Xn
3 + Zn

3 )− h(Xn
2 + Zn

3 )

≤ n

2
log

(
P +N2

N2

)
+
n

2
log

(
2P +N3

P +N3

)
.

3.2.4 Channel Type 4

In this section, we present an outer bound on the capacity region of

Type 4 channel defined by Y1

Y2

Y3

 =

 1 0 1
1 1 0
0 1 1

 X1

X2

X3

+

 Z1

Z2

Z3

 .
This is a cyclic Gaussian interference channel [6]. We first show that channel

type 4 is in the mixed interference regime. By normalizing the noise variances,

17



(a) Channel type 1 (b) Channel type 2

(c) Channel type 3 (d) Channel type 4

(e) Channel type 5

Figure 3.2: The shape of the outer bound region.
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we get the equivalent channel given by Y ′1
Y ′2
Y ′3

 =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 X1

X2

X3

+

 Z ′1
Z ′2
Z ′3


where Y ′k = 1√

Nk
Yk, Z

′
k = 1√

Nk
Zk, N0 = E[Z ′2k ] = 1, E[X2

k ] ≤ Pk = P and

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 =


1√
N1

0 1√
N1

1√
N2

1√
N2

0

0 1√
N3

1√
N3

 .
With the usual definitions of SNRk =

h2kkPk
N0

and

INRk =
h2jkPk

N0
for j 6= k as in [1, 6],

SNR1 =
P

N1

≥ INR1 =
P

N2

(3.2)

SNR2 =
P

N2

≥ INR2 =
P

N3

(3.3)

SNR3 =
P

N3

≤ INR3 =
P

N1

. (3.4)

We state the outer bound in the following theorem.

Theorem 3.7. The capacity region of Type 4 channel is contained in the

following outer bound region:

Rk ≤ Ck, k = 1, 2, 3

R1 +R2 ≤
1

2
log

(
1 +

P

N1

)
+

1

2
log

(
2P +N2

P +N2

)
R1 +R3 ≤

1

2
log

(
1 +

2P

N1

)
R2 +R3 ≤

1

2
log

(
1 +

P

N2

)
+

1

2
log

(
2P +N3

P +N3

)
.
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Proof.

n(R1 +R2 − ε)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 )

≤ I(Xn
1 ;Y n

1 |Xn
3 ) + I(Xn

2 ;Y n
2 )

= h(Y n
1 |Xn

3 )− h(Y n
1 |Xn

1 , X
n
3 ) + h(Y n

2 )− h(Y n
2 |Xn

2 )

= h(Xn
1 + Zn

1 )− h(Zn
1 ) + h(Xn

1 +Xn
2 + Zn

2 )− h(Xn
1 + Zn

2 )

≤ n

2
log

(
P +N1

N1

)
+
n

2
log

(
2P +N2

P +N2

)
.

n(R2 +R3 − ε)

≤ I(Xn
2 ;Y n

2 ) + I(Xn
3 ;Y n

3 )

≤ I(Xn
2 ;Y n

2 |Xn
1 ) + I(Xn

3 ;Y n
3 )

= h(Y n
2 |Xn

1 )− h(Y n
2 |Xn

1 , X
n
2 ) + h(Y n

3 )− h(Y n
3 |Xn

3 )

= h(Xn
2 + Zn

2 )− h(Zn
2 ) + h(Xn

2 +Xn
3 + Zn

3 )− h(Xn
2 + Zn

3 )

≤ n

2
log

(
P +N2

N2

)
+
n

2
log

(
2P +N3

P +N3

)
.

n(R1 +R3 − ε)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
3 ;Y n

3 )

≤ I(Xn
1 ;Y n

1 ) + I(Xn
3 ;Y n

3 |Xn
2 )

≤ I(Xn
1 ;Y n

1 ) + I(Xn
3 ;Y n

1 |Xn
1 )

≤ I(Xn
1 , X

n
3 ;Y n

1 )

= h(Y n
1 )− h(Y n

1 |Xn
1 , X

n
3 )

= h(Xn
1 +Xn

3 + Zn
1 )− h(Zn

1 )

≤ n

2
log

(
2P +N1

N1

)
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where we used the fact that I(Xn
3 ;Y n

3 |Xn
2 ) = I(Xn

3 ;Xn
3 + Zn

3 ) ≤ I(Xn
3 ;Xn

3 +

Zn
1 ) = I(Xn

3 ;Y n
1 |Xn

1 ).

3.2.5 Channel Type 5

In this section, we present an outer bound on the capacity region of

Type 5 channel defined by Y1

Y2

Y3

 =

 1 1 0
0 1 1
1 0 1

 X1

X2

X3

+

 Z1

Z2

Z3

 .
This is a cyclic Gaussian interference channel [6]. We first show that channel

type 5 is in the mixed interference regime. By normalizing the noise variances,

we get the equivalent channel given by Y ′1
Y ′2
Y ′3

 =


1√
N1

1√
N1

0

0 1√
N2

1√
N2

1√
N3

0 1√
N3


 X1

X2

X3

+

 Z ′1
Z ′2
Z ′3

 .
We can see that

SNR1 =
P

N1

≥ INR1 =
P

N3

(3.5)

SNR2 =
P

N2

≤ INR2 =
P

N1

(3.6)

SNR3 =
P

N3

≤ INR3 =
P

N2

. (3.7)

We state the outer bound in the following theorem.

Theorem 3.8. The capacity region of Type 5 channel is contained in the
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Type Outer bound region Ro

1

Rk ≤ Ck, k = 1, 2, 3

R1 +R2 ≤ 1
2

log
(
P+N1

N1
· 2P+N2

P+N2

)
R2 +R3 ≤ 1

2
log
(
P+N2

N2
· 2P+N3

P+N3

)
2

Rk ≤ Ck, k = 1, 2, 3

R1 +R2 ≤ 1
2

log
(
P+N1

N1
· 2P+N2

P+N2

)
R1 +R3 ≤ 1

2
log
(
P+N1

N1
· 2P+N3

P+N3

)
3

Rk ≤ Ck, k = 1, 2, 3

R1 +R3 ≤ 1
2

log
(
P+N1

N1
· 2P+N3

P+N3

)
R2 +R3 ≤ 1

2
log
(
P+N2

N2
· 2P+N3

P+N3

)

4

Rk ≤ Ck, k = 1, 2, 3

R1 +R2 ≤ 1
2

log
(
P+N1

N1
· 2P+N2

P+N2

)
R1 +R3 ≤ 1

2
log
(

2P+N1

N1

)
R2 +R3 ≤ 1

2
log
(
P+N2

N2
· 2P+N3

P+N3

)

5

Rk ≤ Ck, k = 1, 2, 3

R1 +R2 ≤ 1
2

log
(

2P+N1

N1

)
R2 +R3 ≤ 1

2
log
(

2P+N2

N2

)
R1 +R3 ≤ 1

2
log
(
P+N1

N1
· 2P+N3

P+N3

)
Table 3.2: Capacity outer bounds
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Type Relaxed outer bound region R′o Two-dimensional cross-section of R′o

1

Rk ≤ 1
2

log
(
P
Nk
· 4

3

)
R1 +R2 ≤ 1

2
log
(
P
N1
· 7

3

)
R2 +R3 ≤ 1

2
log
(
P
N2
· 7

3

)
At some R2 ∈ [0, C2],

R1 ≤ min
{

1
2

log
(
P
N1
· 7

3

)
−R2,

1
2

log
(
P
N1
· 4

3

)}
R3 ≤ min

{
1
2

log
(
P
N2
· 7

3

)
−R2,

1
2

log
(
P
N3
· 4

3

)}

2

Rk ≤ 1
2

log
(
P
Nk
· 4

3

)
R1 +R2 ≤ 1

2
log
(
P
N1
· 7

3

)
R1 +R3 ≤ 1

2
log
(
P
N1
· 7

3

)
At some R1 ∈ [0, C1],

R2 ≤ min
{

1
2

log
(
P
N1
· 7

3

)
−R1,

1
2

log
(
P
N2
· 4

3

)}
R3 ≤ min

{
1
2

log
(
P
N1
· 7

3

)
−R1,

1
2

log
(
P
N3
· 4

3

)}

3

Rk ≤ 1
2

log
(
P
Nk
· 4

3

)
R1 +R3 ≤ 1

2
log
(
P
N1
· 7

3

)
R2 +R3 ≤ 1

2
log
(
P
N2
· 7

3

)
At some R3 ∈ [0, C3],

R1 ≤ min
{

1
2

log
(
P
N1
· 7

3

)
−R3,

1
2

log
(
P
N1
· 4

3

)}
R2 ≤ min

{
1
2

log
(
P
N2
· 7

3

)
−R3,

1
2

log
(
P
N2
· 4

3

)}

4

Rk ≤ 1
2

log
(
P
Nk
· 4

3

)
R1 +R2 ≤ 1

2
log
(
P
N1
· 7

3

)
R1 +R3 ≤ 1

2
log
(
P
N1
· 7

3

)
R2 +R3 ≤ 1

2
log
(
P
N2
· 7

3

)
At some R1 ∈ [0, C1],

R2 ≤ min
{

1
2

log
(
P
N1
· 7

3

)
−R1,

1
2

log
(
P
N2
· 4

3

)}
R3 ≤ min

{
1
2

log
(
P
N1
· 7

3

)
−R1,

1
2

log
(
P
N3
· 4

3

)}
R2 +R3 ≤ 1

2
log
(
P
N2
· 7

3

)

5

Rk ≤ 1
2

log
(
P
Nk
· 4

3

)
R1 +R2 ≤ 1

2
log
(
P
N1
· 7

3

)
R2 +R3 ≤ 1

2
log
(
P
N2
· 7

3

)
R1 +R3 ≤ 1

2
log
(
P
N1
· 7

3

)
At some R2 ∈ [0, C2],

R1 ≤ min
{

1
2

log
(
P
N1
· 7

3

)
−R2,

1
2

log
(
P
N1
· 4

3

)}
R3 ≤ min

{
1
2

log
(
P
N2
· 7

3

)
−R2,

1
2

log
(
P
N3
· 4

3

)}
R1 +R3 ≤ 1

2
log
(
P
N1
· 7

3

)
Table 3.3: Relaxed outer bounds
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following outer bound region:

Rk ≤ Ck, k = 1, 2, 3

R1 +R2 ≤
1

2
log

(
1 +

2P

N1

)
R2 +R3 ≤

1

2
log

(
1 +

2P

N2

)
R1 +R3 ≤

1

2
log

(
1 +

P

N1

)
+

1

2
log

(
2P +N3

P +N3

)
.

Proof.

n(R1 +R2 − ε)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 )

≤ I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 |Xn
3 )

≤ I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

1 |Xn
1 )

≤ I(Xn
1 , X

n
2 ;Y n

1 )

= h(Y n
1 )− h(Y n

1 |Xn
1 , X

n
2 )

= h(Xn
1 +Xn

2 + Zn
1 )− h(Zn

1 )

≤ n

2
log

(
2P +N1

N1

)
where we used the fact that I(Xn

2 ;Y n
2 |Xn

3 ) = I(Xn
2 ;Xn

2 + Zn
2 ) ≤ I(Xn

2 ;Xn
2 +
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Zn
1 ) = I(Xn

2 ;Y n
1 |Xn

1 ).

n(R2 +R3 − ε)

≤ I(Xn
2 ;Y n

2 ) + I(Xn
3 ;Y n

3 )

≤ I(Xn
2 ;Y n

2 ) + I(Xn
3 ;Y n

3 |Xn
1 )

≤ I(Xn
2 ;Y n

2 ) + I(Xn
3 ;Y n

2 |Xn
2 )

≤ I(Xn
2 , X

n
3 ;Y n

2 )

= h(Y n
2 )− h(Y n

2 |Xn
2 , X

n
3 )

= h(Xn
2 +Xn

3 + Zn
2 )− h(Zn

2 )

≤ n

2
log

(
2P +N2

N2

)
where we used the fact that I(Xn

3 ;Y n
3 |Xn

1 ) = I(Xn
3 ;Xn

3 + Zn
3 ) ≤ I(Xn

3 ;Xn
3 +

Zn
2 ) = I(Xn

3 ;Y n
2 |Xn

2 ).

n(R1 +R3 − ε)

≤ I(Xn
1 ;Y n

1 ) + I(Xn
3 ;Y n

3 )

≤ I(Xn
1 ;Y n

1 |Xn
2 ) + I(Xn

3 ;Y n
3 )

= h(Y n
1 |Xn

2 )− h(Y n
1 |Xn

1 , X
n
2 ) + h(Y n

3 )− h(Y n
3 |Xn

3 )

= h(Xn
1 + Zn

1 )− h(Zn
1 ) + h(Xn

1 +Xn
3 + Zn

3 )− h(Xn
1 + Zn

3 )

≤ n

2
log

(
P +N1

N1

)
+
n

2
log

(
2P +N3

P +N3

)
.

3.2.6 Relaxed Outer Bounds

For ease of gap calculation, we also derive relaxed outer bounds. First,

we can see that for Nj ≤ Nk,

1

2
log

(
1 +

P

Nj

)
+

1

2
log

(
2P +Nk

P +Nk

)
≤ 1

2
log

(
1 +

2P

Nj

)
.

25



Five outer bound theorems in this section, together with this inequality, give

the sum-rate bound expression in Theorem 1.

Next, we can assume that P ≥ 3Nj for j = 1, 2, 3. Otherwise, showing

one-bit gap capacity is trivial as the capacity region is included in the unit

hypercube, i.e., Rj ≤ 1
2

log
(

1 + P
Nj

)
< 1. For P ≥ 3Nj,

1

2
log

(
1 +

2P

Nj

)
=

1

2
log

(
P

Nj

)
+

1

2
log

(
Nj

P
+ 2

)
≤ 1

2
log

(
P

Nj

)
+

1

2
log

(
7

3

)
1

2
log

(
1 +

P

Nj

)
≤ 1

2
log

(
P

Nj

)
+

1

2
log

(
4

3

)
.

The resulting relaxed outer bounds R′o are summarized in Table 3.2.

3.3 Inner Bound: Channel Type 1

Theorem 3.9. Given α = (α0, α2) ∈ [0, 1]2, the rate region Rα is defined by

R1 ≤
1

2
log+

(
1− α0

2− α0

+
(1− α0)P

(α0 + α2)P +N2

)
+

1

2
log

(
1 +

α0P

N1

)
R2 ≤

1

2
log

(
1 +

α2P

α0P +N2

)
R3 ≤

1

2
log+

(
1

2− α0

+
P

(α0 + α2)P +N3

)
where log+(·) = max{0, log(·)}. And,

R = conv

(⋃
α

Rα

)

is achievable where conv(·) is convex hull operator.
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3.3.1 Achievable Scheme

We present an achievable scheme for the proof of Theorem 8. The

achievable scheme is based on rate-splitting, lattice coding, and interference

alignment. Message M1 ∈ {1, 2, . . . , 2nR1} is split into two parts: M11 ∈
{1, 2, . . . , 2nR11} and M10 ∈ {1, 2, . . . , 2nR10}, so R1 = R11 + R10. Transmitter

1 sends x1 = x11 + x10 where x11 and x10 are coded signals of M11 and M10,

respectively. Transmitters 2 and 3 send x2 and x3, coded signals of M2 ∈
{1, 2, . . . , 2nR2} andM3 ∈ {1, 2, . . . , 2nR3}. In particular, x11 and x3 are lattice-

coded signals.

We use the lattice construction of [14, 15] with the lattice partition

chain Λc/Λ1/Λ3, so Λ3 ⊂ Λ1 ⊂ Λc are nested lattices. Λc is the coding lattice

for both x11 and x3. Λ1 and Λ3 are shaping lattices for x11 and x3, respectively.

The lattice signals are formed by

x11 = [t11 + d11] mod Λ1 (3.8)

x3 = [t3 + d3] mod Λ3 (3.9)

where t11 ∈ Λc ∩ V(Λ1) and t3 ∈ Λc ∩ V(Λ3) are lattice codewords. The

dither signals d11 and d3 are uniformly distributed over V(Λ1) and V(Λ3),

respectively. To satisfy power constraints, we choose E[‖x11‖2] = nσ2(Λ1) =

(1− α1)nP , E[‖x10‖2] = α1nP , E[‖x2‖2] = α2nP , E[‖x3‖2] = nσ2(Λ3) = nP .

With the choice of transmit signals, the received signals are given by

y1 = x11 + x2 + x10 + z1

y2 = [x11 + x3] + x2 + z′2

y3 = x3 + z′3.
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where xf = [x11 + x3] is the sum of interference, and z′2 = x10 + z2 and

z′3 = x2 +z3 are the effective Gaussian noise. The signal scale diagram at each

receiver is shown in Fig. 3.3 (a).

At the receivers, successive decoding is performed in the following order:

x11 → x2 → x10 at receiver 1, xf → x2 at receiver 2, and receiver 3 only

decodes x3.

Note that the aligned lattice codewords t11 + t3 ∈ Λc, and tf = [t11 +

t3] mod Λ1 ∈ Λc ∩ V(Λ1). We state the relationship between xf and tf in the

following lemmas.

Lemma 3.10. The following holds.

[xf − df ] mod Λ1 = tf

where df = d11 + d3.

Proof.

[xf − df ] mod Λ1

= [MΛ1(t11 + d11) +MΛ3(t3 + d3)− df ] mod Λ1

= [MΛ1(t11 + d11) +MΛ1(t3 + d3)− df ] mod Λ1

= [t11 + d11 + t3 + d3 − df ] mod Λ1

= [t11 + t3] mod Λ1

= tf .

The second and third equalities are due to distributive law and the identity in

the following lemma.

28



!"#$$%&'()*%'+'

x3

α2P

RX 1 RX 2 RX 3

P

x11 + x3x11

x2x2

α0P

(1− α0)P

x10

x2

x10

RX 1 RX 2 RX 3

P

x x x

x x x
P

RX 1 RX 2 RX 3

P

x

xxx

x x
P

(a) Channel type 1

!"#$$%&'()*%','

RX 1 RX 2 RX 3

P

x1 x1 x1

x2 + x3 x2 x3

α1P

RX 1 RX 2 RX 3

P

x

xxx

x x
P

(b) Channel type 2

RX 1 RX 2 RX 3

P

x1

x3x3x3

x2 x1 + x2

αP

(c) Channel type 3

Figure 3.3: Signal scale diagram.
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Lemma 3.11. For any nested lattices Λ3 ⊂ Λ1 and

any x ∈ Rn, it holds that

[MΛ3(x)] mod Λ1 = [x] mod Λ1.

Proof.

[MΛ3(x)] mod Λ1

= [x− λ3] mod Λ1

= [MΛ1(x)−MΛ1(λ3)] mod Λ1

= [MΛ1(x)− λ3 +QΛ1(λ3)] mod Λ1

= [MΛ1(x)] mod Λ1

= [x] mod Λ1.

where λ3 = QΛ3(x) ∈ Λ1, thus QΛ1(λ3) = λ3.

Lemma 3.12. The following holds.

[tf + df ] mod Λ1 = [xf ] mod Λ1.

Proof.

[tf + df ] mod Λ1

= [MΛ1(t11 + t3) + df ] mod Λ1

= [t11 + t3 + df ] mod Λ1

= [MΛ1(t11 + d11) +MΛ1(t3 + d3)] mod Λ1

= [MΛ1(t11 + d11) +MΛ3(t3 + d3)] mod Λ1

= [x11 + x3] mod Λ1

= [xf ] mod Λ1.
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Receiver 2 does not need to recover the codewords t11 and t3 but the

real sum xf to remove the interference from y2. Since xf = MΛ1(xf )+QΛ1(xf ),

we first recover the modulo part and then the quantized part to cancel out

xf . This idea appeared in [17] as an achievable scheme for the many-to-one

interference channel.

The mod-Λ1 channel between tf and y′2 is given by

y′2 = [β2y2 − df ] mod Λ1 (3.10)

= [xf − df + ze2] mod Λ1 (3.11)

= [tf + ze2] mod Λ1 (3.12)

where the effective noise ze2 = (β2 − 1)xf + β2(x2 + x10 + z2). Note that

E[‖xf‖2] = (ᾱ0 + 1)nP , and the effective noise variance σ2
e2 = 1

n
E[‖ze2‖2] =

(β2 − 1)2(ᾱ0 + 1)P + β2
2Ne2 where Ne2 = (α0 + α2)P + N2. With the MMSE

scaling factor β2 = (ᾱ0+1)P
(ᾱ0+1)P+Ne2

plugged in, we get σ2
e2 = β2Ne2 = (ᾱ0+1)PNe2

(ᾱ0+1)P+Ne2
.

The capacity of the mod-Λ1 channel between tf and y′2 is

1

n
I (tf ; y

′
2)

≥ 1

n
log

(
V (Λ1)

2h(ze2)

)
=

1

2
log

(
ᾱ0P

β2Ne2

)
=

1

2
log

(
ᾱ0(ᾱ0 + 1)P + ᾱ0Ne2

(ᾱ0 + 1)Ne2

)
=

1

2
log

(
ᾱ0

ᾱ0 + 1
+
ᾱ0P

Ne2

)
=

1

2
log

(
ᾱ0

ᾱ0 + 1
+

ᾱ0P

(α0 + α2)P +N2

)
= Cf .
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For reliable decoding of tf at receiver 2, we have the code rate constraint

R11 = 1
n

log
(
V (Λ1)
V (Λc)

)
≤ Cf . This also implies that R3 = 1

n
log
(
V (Λ2)
V (Λc)

)
≤

Cf + 1
n

log
(
V (Λ2)
V (Λ1)

)
= 1

2
log
(

P
β2Ne2

)
= 1

2
log
(

1
ᾱ0+1

+ P
(α0+α2)P+N2

)
. By lattice

decoding, we can recover the modulo sum of interference codewords tf from

y′2. Then, we can recover the real sum xf in the following way.

� Recover MΛ1(xf ) by calculating [tf + df ] mod Λ1 (lemma 3).

� Subtract it from the received signal,

y2 −MΛ1(xf ) = QΛ1(xf ) + z′′2 (3.13)

where z′′2 = x2 + x10 + z2.

� Quantize it to recover QΛ1(xf ),

QΛ1 (QΛ1(xf ) + z′′2) = QΛ1(xf ) (3.14)

with probability 1− Pe where

Pe = Pr[QΛ1 (QΛ1(xf ) + z′′2) 6= QΛ1(xf )] (3.15)

is the probability of decoding error. If we choose Λ1 to be simultaneously

Rogers-good and Poltyrev-good [28] with V (Λ1) ≥ V (Λc), then Pe → 0 as

n→∞.

� Recover xf by adding two vectors,

MΛ1(xf ) +QΛ1(xf ) = xf . (3.16)

We now proceed to decoding x2 from y2−xf = x2 +z′2. Since x2 is a codeword

from an i.i.d. random code for point-to-point channel, we can achieve rate up

to

R2 ≤
1

2
log

(
α2P

α0P +N2

)
. (3.17)
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At receiver 1, we first decode x11 while treating other signals x2+x10+z1

as noise. The effective noise in the mod-Λ1 channel is ze1 = (β1 − 1)2x11 +

β1(x2 +x10 +z1) with variance σ2
e1 = 1

n
E[‖ze1‖2] = (β1−1)2ᾱ0P +β2

1Ne1 where

Ne1 = (α0 + α2)P +N1. For reliable decoding, the rate R11 must satisfy

R11 ≤
1

2
log

(
σ2(Λ1)

β1σ2
e1

)
=

1

2
log

(
1 +

ᾱ0P

(α0 + α2)P +N1

)
where the MMSE scaling parameter β1 = ᾱ0P

ᾱ0P+Ne1
. Similarly, we have the

other rate constraints at receiver 1:

R2 ≤
1

2
log

(
1 +

α2P

α0P +N1

)
(3.18)

R10 ≤
1

2
log

(
1 +

α0P

N1

)
. (3.19)

At receiver 3, the signal x3 is decoded with the effective noise x2 + z3.

For reliable decoding, R3 must satisfy

R3 ≤
1

2
log

(
1 +

P

α2P +N3

)
. (3.20)

In summary,

� x11 decoded at receivers 1 and 2

R11 ≤ T ′11 =
1

2
log

(
1 +

(1− α0)P

(α0 + α2)P +N1

)
R11 ≤ T ′′11 =

1

2
log

(
c11 +

(1− α0)P

(α0 + α2)P +N2

)
where c11 = (1−α0)P

(1−α0)P+P
= 1−α0

2−α0
.

� x10 decoded at receiver 1

R10 ≤ T10 =
1

2
log

(
1 +

α0P

N1

)
(3.21)

33



� x2 decoded at receivers 1 and 2

R2 ≤ T ′2 =
1

2
log

(
1 +

α2P

α0P +N1

)
(3.22)

R2 ≤ T ′′2 =
1

2
log

(
1 +

α2P

α0P +N2

)
(3.23)

� x3 decoded at receivers 2 and 3

R3 ≤ T ′3 =
1

2
log

(
c3 +

P

(α0 + α2)P +N2

)
R3 ≤ T ′′3 =

1

2
log

(
1 +

P

α2P +N3

)
(3.24)

where c3 = P
(1−α0)P+P

= 1
2−α0

.

Note that 0 ≤ c11 ≤ 1
2
, c11 + c3 = 1, and 1

2
≤ c3 ≤ 1. Putting together, we can

see that the following rate region is achievable.

R1 ≤ T1 = min{T ′11, T
′′
11}+ T10 = T ′′11 + T10

R2 ≤ T2 = min{T ′2, T ′′2 } = T ′′2

R3 ≤ T3 = min{T ′3, T ′′3 }

where

T1 =
1

2
log

(
c11 +

(1− α0)P

(α0 + α2)P +N2

)
+

1

2
log

(
1 +

α0P

N1

)
(3.25)

T2 =
1

2
log

(
1 +

α2P

α0P +N2

)
(3.26)

T3 ≥
1

2
log

(
c3 +

P

(α0 + α2)P +N3

)
. (3.27)

Thus, Theorem 8 is proved.
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3.3.2 The Gap

We choose the parameter α0 = N2

P
, which is suboptimal but good

enough to achieve a constant gap. This choice of parameter, inspired by [1],

ensures making efficient use of signal scale difference between N1 and N2 at

receiver 1, while keeping the interference of x10 at the noise level N2 at receiver

2. By substitution, we get

T1 =
1

2
log

(
c11 +

P −N2

α2P + 2N2

)
+

1

2
log

(
1 +

N2

N1

)
(3.28)

T2 =
1

2
log

(
1 +

α2P

2N2

)
(3.29)

T3 ≥
1

2
log

(
c3 +

P

α2P +N2 +N3

)
. (3.30)

Since α0 = N2

P
∈
[
0, 1

3

]
, it follows that c11 = 1−N2/P

2−N2/P
≥ 2

5
, and c3 = 1

2−N2/P
≥ 1

2
.

Starting from Ro from Table 3.2, we can express the two-dimensional

outer bound region at R2 as

R1 ≤ min

{
1

2
log

(
1 +

2P

N1

)
−R2, C1

}
≤ min

{
1

2
log

(
P

N1

· 7

3

)
−R2,

1

2
log

(
P

N1

· 4

3

)}
R3 ≤ min

{
1

2
log

(
1 +

2P

N2

)
−R2, C3

}
≤ min

{
1

2
log

(
P

N2

· 7

3

)
−R2,

1

2
log

(
P

N3

· 4

3

)}
.

Depending on the bottleneck of min{·, ·} expressions, there are three cases:

� R2 ≤ 1
2

log
(

7
4

)
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�
1
2

log
(

7
4

)
≤ R2 ≤ 1

2
log
(
N3

N2
· 7

4

)
� R2 ≥ 1

2
log
(
N3

N2
· 7

4

)
.

At R2 = 1
2

log
(
α2P
N2
· 7

4

)
, the outer bound region is

R1 ≤ min

{
1

2
log

(
P

α2P
· N2

N1

· 4

3

)
,
1

2
log

(
P

N1

· 4

3

)}
R3 ≤ min

{
1

2
log

(
P

α2P
· 4

3

)
,
1

2
log

(
P

N3

· 4

3

)}
.

Depending on the bottleneck of min{·, ·} expressions, we consider the following

three cases:

� α2P ≥ N3

� N2 ≤ α2P ≤ N3

� α2P ≤ N2.

Case i) α2P ≥ N3: The outer bound region at R2 = 1
2

log
(
α2P
N2
· 7

4

)
is

R1 ≤
1

2
log

(
P

α2P
· N2

N1

· 4

3

)
, R3 ≤

1

2
log

(
P

α2P
· 4

3

)
. (3.31)

For comparison, let us take a look at the achievable rate region. The

first term of T1 is lower bounded by

T ′′11 =
1

2
log

(
c11 +

P −N2

α2P + 2N2

)
(3.32)

≥ 1

2
log

(
2

5
+
P − α2P

3α2P

)
(3.33)

>
1

2
log

(
P

3α2P

)
. (3.34)
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We get the lower bounds:

T1 = T ′′11 + T10 (3.35)

>
1

2
log

(
P

3α2P

)
+

1

2
log

(
1 +

N2

N1

)
(3.36)

>
1

2
log

(
P

3α2P
· N2

N1

)
(3.37)

T3 ≥
1

2
log

(
1

2
+

P

α2P +N2 +N3

)
(3.38)

>
1

2
log

(
P

3α2P

)
. (3.39)

For fixed α2 and R2 = 1
2

log
(
α2P
2N2

)
, the two-dimensional achievable rate region

is given by

R1 ≤
1

2
log

(
P

3α2P
· N2

N1

)
, R3 ≤

1

2
log

(
P

3α2P

)
. (3.40)

Case ii)N2 ≤ α2P ≤ N3: The outer bound region atR2 = 1
2

log
(
α2P
N2
· 7

4

)
is

R1 ≤
1

2
log

(
P

α2P
· N2

N1

· 4

3

)
, R3 ≤

1

2
log

(
P

N3

· 4

3

)
. (3.41)

Now, let us take a look at the achievable rate region. We have the lower

bounds:

T1 >
1

2
log

(
P

3α2P
· N2

N1

)
(3.42)

T3 ≥
1

2
log

(
1

2
+

P

α2P +N2 +N3

)
(3.43)

>
1

2
log

(
P

3N3

)
. (3.44)
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For fixed α2 and R2 = 1
2

log
(
α2P
2N2

)
, the two-dimensional achievable rate region

is given by

R1 ≤
1

2
log

(
P

3α2P
· N2

N1

)
, R3 ≤

1

2
log

(
P

3N3

)
. (3.45)

Case iii) α2P ≤ N2: The outer bound region at R2 = 1
2

log
(
α2P
N2
· 7

4

)
is

R1 ≤
1

2
log

(
P

N1

· 4

3

)
, R3 ≤

1

2
log

(
P

N3

· 4

3

)
. (3.46)

For this range of α2, the rateR2 is small, i.e., R2 = 1
2

log
(
α2P
N2
· 7

4

)
≤ 1

2
log
(

7
4

)
<

1
2
, and R1 and R3 are close to single user capacities C1 and C3, respectively.

Let us take a look at the achievable rate region. The first term of T1 is

lower bounded by

T ′′11 =
1

2
log

(
c11 +

P −N2

α2P + 2N2

)
(3.47)

≥ 1

2
log

(
2

5
+
P −N2

3N2

)
(3.48)

>
1

2
log

(
P

3N2

)
. (3.49)

We get the lower bounds:

T1 = T ′′11 + T10 (3.50)

>
1

2
log

(
P

3N2

)
+

1

2
log

(
1 +

N2

N1

)
(3.51)

>
1

2
log

(
P

3N1

)
(3.52)

T3 ≥
1

2
log

(
1

2
+

P

α2P +N2 +N3

)
(3.53)

>
1

2
log

(
P

3N3

)
. (3.54)
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For fixed α2 and R2 = 1
2

log
(
α2P
2N2

)
, the following two-dimensional rate region

is achievable.

R1 ≤
1

2
log

(
P

3N1

)
, R3 ≤

1

2
log

(
P

3N3

)
. (3.55)

In all three cases above, by comparing the inner and outer bound re-

gions, we can see that δ1 ≤ 1
2

log
(
3 · 4

3

)
= 1, δ2 ≤ 1

2
log
(
2 · 7

4

)
= 0.91 and

δ3 ≤ 1
2

log
(
3 · 4

3

)
= 1. Therefore, we can conclude that the gap is to within

one bit per message.

3.4 Inner Bound: Channel Type 2

Theorem 3.13. Given α1 ∈ [0, 1], the region Rα is defined by

R1 ≤
1

2
log

(
1 +

α1P

N1

)
R2 ≤

1

2
log+

(
1

2
+

P

α1P +N2

)
R3 ≤

1

2
log+

(
1

2
+

P

α1P +N3

)
,

and R = conv
(⋃

α1
Rα

)
is achievable.

3.4.1 Achievable Scheme

For this channel type, rate splitting is not necessary. Transmit signal xk

is a coded signal of Mk ∈ {1, 2, . . . , 2nRk}, k = 1, 2, 3. In particular, x2 and x3

are lattice-coded signals using the same pair of coding and shaping lattices. As

a result, the sum x2 + x3 is a dithered lattice codeword. The power allocation

satisfies E[‖x1‖2] = α1nP , E[‖x2‖2] = nP , and E[‖x3‖2] = nP . The received
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signals are

y1 = [x2 + x3] + x1 + z1

y2 = x2 + x1 + z2

y3 = x3 + x1 + z3.

The signal scale diagram at each receiver is shown in Fig. 3.3 (b). Decoding

is performed in the following way.

� At receiver 1, [x2 +x3] is first decoded while treating x1 +z1 as noise. Next,

x1 is decoded from y1− [x2 + x3] = x1 + z1. For reliable decoding, the code

rates should satisfy

R2 ≤ T ′2 =
1

2
log

(
1

2
+

P

α1P +N1

)
(3.56)

R3 ≤ T ′3 =
1

2
log

(
1

2
+

P

α1P +N1

)
(3.57)

R1 ≤ T1 =
1

2
log

(
1 +

α1P

N1

)
. (3.58)

� At receiver 2, x2 is decoded while treating x1 + z2 as noise. Similarly at

receiver 3, x3 is decoded while treating x1+z3 as noise. For reliable decoding,

the code rates should satisfy

R2 ≤ T ′′2 =
1

2
log

(
1 +

P

α1P +N2

)
(3.59)

R3 ≤ T ′′3 =
1

2
log

(
1 +

P

α1P +N3

)
. (3.60)

Putting together, we get

R1 ≤ T1

R2 ≤ T2 = min{T ′2, T ′′2 }

R3 ≤ T3 = min{T ′3, T ′′3 }
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where

T1 =
1

2
log

(
1 +

α1P

N1

)
(3.61)

T2 ≥
1

2
log

(
1

2
+

P

α1P +N2

)
(3.62)

≥ 1

2
log

(
1

2
+

P

2 ·max{α1P,N2}

)
(3.63)

T3 ≥
1

2
log

(
1

2
+

P

α1P +N3

)
(3.64)

≥ 1

2
log

(
1

2
+

P

2 ·max{α1P,N3}

)
. (3.65)

3.4.2 The Gap

Starting from Ro from Table 3.2, we can express the two-dimensional

outer bound region at R1 as

R2 ≤ min

{
1

2
log

(
1 +

2P

N1

)
−R1, C2

}
≤ min

{
1

2
log

(
P

N1

· 7

3

)
−R1,

1

2
log

(
P

N2

· 4

3

)}
R3 ≤ min

{
1

2
log

(
1 +

2P

N1

)
−R1, C3

}
≤ min

{
1

2
log

(
P

N1

· 7

3

)
−R1,

1

2
log

(
P

N3

· 4

3

)}
.

Depending on the bottleneck of min{·, ·} expressions, there are three cases:

� R1 ≤ 1
2

log
(
N2

N1
· 7

4

)
�

1
2

log
(
N2

N1
· 7

4

)
≤ R1 ≤ 1

2
log
(
N3

N1
· 7

4

)
� R1 ≥ 1

2
log
(
N3

N1
· 7

4

)
.
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At R1 = 1
2

log
(
α1P
N1
· 7

4

)
, the region can be expressed as

R2 ≤ min

{
1

2
log

(
P

α1P
· 4

3

)
,
1

2
log

(
P

N2

· 4

3

)}
R3 ≤ min

{
1

2
log

(
P

α1P
· 4

3

)
,
1

2
log

(
P

N3

· 4

3

)}
.

Depending on the bottleneck of min{·, ·} expressions, we consider the following

three cases.

Case i) α1P ≥ N3: The two-dimensional outer bound region at R1 =

1
2

log
(
α1P
N1
· 7

4

)
is

R2 ≤
1

2
log

(
P

α1P
· 4

3

)
, R3 ≤

1

2
log

(
P

α1P
· 4

3

)
. (3.66)

For fixed α1 and R1 = 1
2

log
(
α1P
N1

)
, the following two-dimensional region is

achievable.

R2 ≤
1

2
log

(
P

2α1P

)
, R3 ≤

1

2
log

(
P

2α1P

)
. (3.67)

Case ii) N2 ≤ α1P ≤ N3: The two-dimensional outer bound region at

R1 = 1
2

log
(
α1P
N1
· 7

4

)
is

R2 ≤
1

2
log

(
P

α1P
· 4

3

)
, R3 ≤

1

2
log

(
P

N3

· 4

3

)
. (3.68)

For fixed α1 and R1 = 1
2

log
(
α1P
N1

)
, the following two-dimensional region is

achievable.

R2 ≤
1

2
log

(
P

2α1P

)
, R3 ≤

1

2
log

(
P

2N3

)
. (3.69)

Case iii) α1P ≤ N2: The two-dimensional outer bound region at R1 =

1
2

log
(
α1P
N1
· 7

4

)
is

R2 ≤
1

2
log

(
P

N2

· 4

3

)
, R3 ≤

1

2
log

(
P

N3

· 4

3

)
. (3.70)
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For fixed α1 and R1 = 1
2

log
(
α1P
N1

)
, the following two-dimensional region is

achievable.

R2 ≤
1

2
log

(
P

2N2

)
, R3 ≤

1

2
log

(
P

2N3

)
. (3.71)

In all three cases above, by comparing the inner and outer bounds,

we can see that δ1 ≤ 1
2

log
(

7
4

)
< 0.41, δ2 ≤ 1

2
log
(
2 · 4

3

)
< 0.71, and δ3 ≤

1
2

log
(
2 · 4

3

)
< 0.71. We can conclude that the inner and outer bounds are to

within one bit.

3.5 Inner Bound: Channel Type 3

Theorem 3.14. Given α ∈ [0, 1], the region Rα is defined by

R1 ≤
1

2
log

(
1 +

αP

N1

)
R2 ≤

1

2
log

(
1 +

αP

N2

)
R3 ≤

1

2
log

(
1 +

P

2αP +N3

)
,

and R = conv (
⋃
αRα) is achievable.

3.5.1 Achievable Scheme

For this channel type, neither rate splitting nor aligned interference de-

coding is necessary. Transmit signal xk is a coded signal ofMk ∈ {1, 2, . . . , 2nRk}, k =

1, 2, 3. The power allocation satisfies E[‖x1‖2] = αnP , E[‖x2‖2] = αnP , and

E[‖x3‖2] = nP . The received signals are

y1 = x3 + x1 + z1

y2 = x3 + x2 + z2

y3 = x3 + x1 + x2 + z3.
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The signal scale diagram at each receiver is shown in Fig. 3.3 (c). Decoding

is performed in the following way.

� At receiver 1, x3 is first decoded while treating x1 + z1 as noise. Next, x1

is decoded from y1 − x3 = x1 + z1. For reliable decoding, the code rates

should satisfy

R3 ≤ T ′3 =
1

2
log

(
1 +

P

αP +N1

)
(3.72)

R1 ≤ T1 =
1

2
log

(
1 +

αP

N1

)
. (3.73)

� At receiver 2, x3 is first decoded while treating x2 + z2 as noise. Next, x2

is decoded from y2 − x3 = x2 + z2. For reliable decoding, the code rates

should satisfy

R3 ≤ T ′′3 =
1

2
log

(
1 +

P

αP +N2

)
(3.74)

R2 ≤ T2 =
1

2
log

(
1 +

αP

N2

)
. (3.75)

� At receiver 3, x3 is decoded while treating x1 +x2 +z3 as noise. For reliable

decoding, the code rates should satisfy

R3 ≤ T ′′′3 =
1

2
log

(
1 +

P

2αP +N3

)
. (3.76)

Putting together, we get

R1 ≤ T1

R2 ≤ T2

R3 ≤ T3 = min{T ′3, T ′′3 , T ′′′3 }
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where

T1 =
1

2
log

(
1 +

αP

N1

)
(3.77)

T2 =
1

2
log

(
1 +

αP

N2

)
(3.78)

T3 =
1

2
log

(
1 +

P

2αP +N3

)
(3.79)

≥ 1

2
log

(
1 +

P

3 ·max{αP,N3}

)
. (3.80)

3.5.2 The Gap

Starting from Ro from Table 3.2, we can express the two-dimensional

outer bound region at R3 as

R1 ≤ min

{
1

2
log

(
1 +

2P

N1

)
−R3, C1

}
≤ min

{
1

2
log

(
P

N1

· 7

3

)
−R3,

1

2
log

(
P

N1

· 4

3

)}
R2 ≤ min

{
1

2
log

(
1 +

2P

N2

)
−R3, C2

}
≤ min

{
1

2
log

(
P

N2

· 7

3

)
−R3,

1

2
log

(
P

N2

· 4

3

)}
.

Depending on the bottleneck of min{·, ·} expressions, there are two cases: R3 ≤
1
2

log
(

7
4

)
and R3 ≥ 1

2
log
(

7
4

)
. We assume that R3 ≥ 1

2
log
(

7
4

)
, equivalently

α ≤ 4
7
. We also assume that R3 ≤ 1

2
log
(
P
N3

)
, equivalently αP ≥ N3. The

other cases are trivial.

The two-dimensional outer bound region at R3 = 1
2

log
(
P
αP

)
is

R1 ≤ min

{
1

2
log

(
αP

N1

· 7

3

)
,
1

2
log

(
P

N1

· 4

3

)}
R2 ≤ min

{
1

2
log

(
αP

N2

· 7

3

)
,
1

2
log

(
P

N2

· 4

3

)}
.
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R3

R2

(a) Large R1

R3

R2

(b) Small R1

Figure 3.4: The cross-section of the type 4 outer bound region.

For α ≤ 4
7
, the two-dimensional outer bound region is

R1 ≤
1

2
log

(
αP

N1

· 7

3

)
, R2 ≤

1

2
log

(
αP

N2

· 7

3

)
. (3.81)

For αP ≥ N3, the two-dimensional achievable rate region at R3 =

1
2

log
(

P
3αP

)
is

R1 ≤
1

2
log

(
αP

N1

)
, R2 ≤

1

2
log

(
αP

N2

)
. (3.82)

By comparing the inner and outer bounds, we can see that δ1 ≤ 1
2

log
(

7
3

)
<

0.62, δ2 ≤ 1
2

log
(

7
3

)
< 0.62, and δ3 ≤ 1

2
log (3) < 0.8. We can conclude that

the inner and outer bounds are to within one bit.
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3.6 Inner Bound: Channel Type 4

The relaxed outer bound region R′o given by

Rk ≤
1

2
log

(
P

Nk

)
+

1

2
log

(
4

3

)
, k = 1, 2, 3

R1 +R2 ≤
1

2
log

(
P

N1

)
+

1

2
log

(
7

3

)
R1 +R3 ≤

1

2
log

(
P

N1

)
+

1

2
log

(
7

3

)
R2 +R3 ≤

1

2
log

(
P

N2

)
+

1

2
log

(
7

3

)
.

The cross-sectional region at a given R1 is described by

R2 ≤ min

{
1

2
log

(
P

N1

· 7

3

)
−R1,

1

2
log

(
P

N2

· 4

3

)}
R3 ≤ min

{
1

2
log

(
P

N1

· 7

3

)
−R1,

1

2
log

(
P

N3

· 4

3

)}
R2 +R3 ≤

1

2
log

(
P

N2

· 7

3

)
.

Depending on the bottleneck of min{·, ·} expressions, there are three cases:

� R1 ≤ 1
2

log
(
N2

N1
· 7

4

)
�

1
2

log
(
N2

N1
· 7

4

)
≤ R1 ≤ 1

2
log
(
N3

N1
· 7

4

)
� R1 ≥ 1

2
log
(
N3

N1
· 7

4

)
.

In this section, we focus on the third case. The other cases can be proved

similarly. If the sum of the righthand sides of R2 and R3 bounds is smaller

than the righthand side of R2 +R3 bound, i.e.,

log

(
P

N1

· 7

3

)
− 2R1 ≤

1

2
log

(
P

N2

· 7

3

)
, (3.83)
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then the R2+R3 bound is not active at the R1. This condition can be expressed

as a threshold on R1 given by

R1 > R1,th =
1

2
log

(
P

N1

· 7

3

)
− 1

4
log

(
P

N2

· 7

3

)
=

1

4
log

(
P

N1

· 7

3

)
+

1

4
log

(
N2

N1

)
. (3.84)

For this relatively large R1, the cross-sectional region is a rectangle as described

in Fig. 3.4 (a). In contrast, for a relatively small R1, when the threshold

condition does not hold, the cross-sectional region is a MAC-like region as

described in Fig. 3.4 (b). In the rest of the section, we present achievable

schemes for each case.

3.6.1 Achievable Scheme for Relatively Large R1

Theorem 3.15. Given α = (α0, α1, α2) ∈ [0, 1]3, the region Rα is defined by

R1 ≤ min

{
1

2
log+

(
c11 +

(1− α0 − α1 − α2)P

(α0 + α1 + 2α2)P +N2

)
,

1

2
log

(
1 +

α2P

α0P +N1

)}
+

1

2
log

(
1 +

α1P

(α0 + α2)P +N2

)
+

1

2
log

(
1 +

α0P

N1

)
R2 ≤

1

2
log

(
1 +

α2P

α0P +N2

)
R3 ≤

1

2
log+

(
c3 +

P

(α0 + α1 + α2)P +N3

)
where c11 = 1−α0−α1−α2

2−α0−α1−α2
and c3 = 1

2−α0−α1−α2
, and R = conv (

⋃
αRα) is

achievable.
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Figure 3.5: Signal scale diagram.
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We present an achievable scheme for the case of R1 > R1,th. Message

M1 ∈ {1, 2, . . . , 2nR1} is split into three parts: M10 ∈ {1, 2, . . . , 2nR10}, M11 ∈
{1, 2, . . . , 2nR11} and M12 ∈ {1, 2, . . . , 2nR12}, so R1 = R10 + R11 + R12. We

generate the signals in the following way: x11 and x′11 are differently coded

signals of M11, and x10 and x12 are coded signal of M10 and M12, respectively.

The transmit signal is the sum

x1 = x10 + x11 + x12 + x′11.

The power allocation satisfies E[‖x10‖2] = α0nP , E[‖x11‖2] = α2nP , E[‖x12‖2] =

α1nP , and E[‖x′11‖2] = (1− α0 − α1 − α2)nP .

The transmit signals x2 and x3 are coded signals of the messages M2 ∈
{1, 2, . . . , 2nR2} and M3 ∈ {1, 2, . . . , 2nR3}, satisfying E[‖x2‖2] = α2nP and

E[‖x3‖2] = nP .

The signals x′11 and x3 are lattice-coded signals using the same coding

lattice but different shaping lattices. As a result, the sum x′11 +x3 is a dithered

lattice codeword.

The received signals are

y1 = [x′11 + x3] + x12 + x11 + x10 + z1

y2 = x′11 + x12 + x11 + x2 + x10 + z2

y3 = x3 + x2 + z3.

The signal scale diagram at each receiver is shown in Fig. 3.5 (a). Decoding

is performed in the following way.

� At receiver 1, [x′11 + x3] is first decoded while treating other signals as noise

and removed from y1. Next, x12, x11, and x10 are decoded successively. For
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reliable decoding, the code rates should satisfy

R11 ≤ T ′11 =
1

2
log

(
c11 +

(1− α0 − α1 − α2)P

(α0 + α1 + α2)P +N1

)
R3 ≤ T ′3 =

1

2
log

(
c3 +

P

(α0 + α1 + α2)P +N1

)
R12 ≤ T ′12 =

1

2
log

(
1 +

α1P

(α0 + α2)P +N1

)
R11 ≤ T ′′11 =

1

2
log

(
1 +

α2P

α0P +N1

)
R10 ≤ T10 =

1

2
log

(
1 +

α0P

N1

)
where c11 = (1−α0−α1−α2)P

(1−α0−α1−α2)P+P
= 1−α0−α1−α2

2−α0−α1−α2
and c3 = P

(1−α0−α1−α2)P+P
=

1
2−α0−α1−α2

. Note that 0 ≤ c11 ≤ 1
2
, c11 + c3 = 1, and 1

2
≤ c3 ≤ 1.

� At receiver 2, x′11 is first decoded while treating other signals as noise. Hav-

ing successfully recovered M11, receiver 2 can generate x11 and x′11, and

cancel them from y2. Next, x12 is decoded from x12 +x2 +x10 +z2. Finally,

x2 is decoded from x2 +x10 +z2. For reliable decoding, the code rates should

satisfy

R11 ≤ T ′′′11 =
1

2
log

(
1 +

(1− α0 − α1 − α2)P

(α0 + α1 + 2α2)P +N2

)
R12 ≤ T ′′12 =

1

2
log

(
1 +

α1P

(α0 + α2)P +N2

)
R2 ≤ T2 =

1

2
log

(
1 +

α2P

α0P +N2

)
.

� At receiver 3, x3 is decoded while treating x2+z3 as noise. Reliable decoding

is possible if

R3 ≤ T ′′3 =
1

2
log

(
1 +

P

α2P +N3

)
. (3.85)
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Putting together, we can see that given α0, α1, α2 ∈ [0, 1], the following rate

region is achievable.

R1 ≤ T1 = min{T ′11, T
′′
11, T

′′′
11}+ min{T ′12, T

′′
12}+ T10

R2 ≤ T2

R3 ≤ T3 = min{T ′3, T ′′3 }

where

T1 = min{T ′11, T
′′
11, T

′′′
11}+ min{T ′12, T

′′
12}+ T10

= min{min{T ′11, T
′′′
11}, T ′′11}+ T ′′12 + T10

≥ min

{
1

2
log

(
c11 +

(1− α0 − α1 − α2)P

(α0 + α1 + 2α2)P +N2

)
,

1

2
log

(
1 +

α2P

α0P +N1

)}
+

1

2
log

(
1 +

α1P

(α0 + α2)P +N2

)
+

1

2
log

(
1 +

α0P

N1

)
T2 =

1

2
log

(
1 +

α2P

α0P +N2

)
T3 ≥

1

2
log

(
c3 +

P

(α0 + α1 + α2)P +N3

)
.

3.6.2 The Gap for Relatively Large R1

We choose α0, α1 and α2 such that α1 ≤ 3
8
, that α1 ≥ 3(α0 + α2), that

α2P ≥ 3N3, and that α0P = N2. It follows that α0 +α1 +α2 ≤ 4
3
α1 ≤ 1

2
, that

c11 ≥ 1
3
, and that (α0 + α1 + 2α2)P + N2 = 2(α0 + α2)P + α1P ≤ 5

3
α1P . We
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get the lower bounds for each term of T1 expression above.

min{T ′11, T
′′′
11}

≥ 1

2
log

(
c11 +

(1− α0 − α1 − α2)P

(α0 + α1 + 2α2)P +N2

)
≥ 1

2
log

(
1

3
+

(1− (4/3)α1)P

(5/3)α1P

)
=

1

2
log

(
P

(5/3)α1P
− 7

15

)
=

1

2
log

(
P

(5/3)α1P

)
+

1

2
log

(
1− 7

15
· 5

3
α1

)
≥ 1

2
log

(
P

(5/3)α1P

)
+

1

2
log

(
17

24

)
≥ 1

2
log

(
P

α1P
· 17

40

)
and

T ′′11 =
1

2
log

(
1 +

α2P

α0P +N1

)
(3.86)

=
1

2
log

(
(α0 + α2)P +N1

α0P +N1

)
(3.87)

≥ 1

2
log

(
(α0 + α2)P

α0P +N2

)
(3.88)

=
1

2
log

(
(α0 + α2)P

2N2

)
. (3.89)

Since (α0 + α2)P ≥ N2 + 3N3 ≥ 4N2,

T ′′12 =
1

2
log

(
1 +

α1P

(α0 + α2)P +N2

)
(3.90)

≥ 1

2
log

(
α1P

(5/4)(α0 + α2)P

)
. (3.91)

53



Putting together,

T1 ≥ min

{
1

2
log

(
P

α1P
· 17

40

)
,
1

2
log

(
(α0 + α2)P

2N2

)}
+

1

2
log

(
α1P

(5/4)(α0 + α2)P

)
+

1

2
log

(
N2

N1

)
= min

{
1

2
log

(
P

(α0 + α2)P
· N2

N1

· 17

40
· 4

5

)
,
1

2
log

(
α1P

N1

· 1

2
· 4

5

)}
= min

{
1

2
log

(
P

(α0 + α2)P
· N2

N1

· 17

50

)
,
1

2
log

(
α1P

N1

· 2

5

)}
.

Given α1, we choose α2 that satisfies 1
2

log
(

P
α1P
· 17

40

)
= 1

2
log
(

(α0+α2)P
2N2

)
. As a

result, we can write T1 ≥ 1
2

log
(
α1P
N1
· 2

5

)
, and also

T2 =
1

2
log

(
1 +

α2P

α0P +N2

)
(3.92)

≥ 1

2
log

(
(α0 + α2)P

2N2

)
(3.93)

=
1

2
log

(
P

α1P
· 17

40

)
. (3.94)

Since N3 ≤ 1
3
α2P ≤ 1

3
(α0 + α2)P ≤ 1

9
α1P ,

T3 ≥
1

2
log

(
c3 +

P

(α0 + α1 + α2)P +N3

)
≥ 1

2
log

(
1

2
+

P

(4/3)α1P + (1/9)α1P

)
≥ 1

2
log

(
P

(13/9)α1P

)
.

The following rate region is achievable.

R1 ≤
1

2
log

(
α1P

N1

· 2

5

)
(3.95)

R2 ≤
1

2
log

(
P

α1P
· 17

40

)
(3.96)

R3 ≤
1

2
log

(
P

α1P
· 9

13

)
. (3.97)
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For fixed α1 and R1 = 1
2

log
(
α1P
N1
· 2

5

)
, the two-dimensional rate region, given

by

R2 ≤
1

2
log

(
P

α1P
· 17

40

)
, R3 ≤

1

2
log

(
P

α1P
· 9

13

)
is achievable.

In comparison, the two-dimensional outer bound region atR1 = 1
2

log
(
α1P
N1
· 2

5

)
+

1, given by

R2 ≤
1

2
log

(
P

N1

· 7

3

)
− 1

2
log

(
α1P

N1

· 2

5

)
− 1

=
1

2
log

(
P

α1P

)
+

1

2
log

(
7

3
· 5

2
· 1

4

)
R3 ≤

1

2
log

(
P

N1

· 7

3

)
− 1

2
log

(
α1P

N1

· 2

5

)
− 1

=
1

2
log

(
P

α1P

)
+

1

2
log

(
7

3
· 5

2
· 1

4

)
.

As discussed above, the sum-rate bound on R2 +R3 is loose for R1 larger than

the threshold, so the rate region is a rectangle. By comparing the inner and

outer bound rate regions, we can see that δ2 <
1
2

log
(

40
17
· 7

3
· 5

2
· 1

4

)
< 0.89 and

δ3 <
1
2

log
(

13
9
· 7

3
· 5

2
· 1

4

)
< 0.54. Therefore, we can conclude that the gap is to

within one bit per message.
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3.6.3 Achievable Scheme for Relatively Small R1

Theorem 3.16. Given α = (α0, α1, α2) ∈ [0, 1]3, the region Rα is defined by

R1 ≤ min

{
1

2
log+

(
c11 +

(1− α1)P

(α1 + α2)P +N2

)
,

1

2
log

(
1 +

(α1 − α0)P

α0P +N1

)}
+

1

2
log

(
1 +

α0P

N1

)
R2 ≤

1

2
log

(
1 +

α2P

α0P +N2

)
R3 ≤

1

2
log+

(
c3 +

P

max{α1, α2}P +N3

)
where c11 = 1−α1

2−α1
and c3 = 1

2−α1
, and R = conv (

⋃
αRα) is achievable.

For the case of R1 < R1,th, we present the following achievable scheme.

At transmitter 1, we split M1 into M10 and M11, so R1 = R10 + R11. The

transmit signal is the sum

x1 = x10 + x11 + x′11.

The power allocation satisfies E[‖x10‖2] = α0nP , E[‖x11‖2] = (α1 −
α0)nP , and E[‖x′11‖2] = (1−α1)nP at receiver 1, E[‖x2‖2] = α2nP at receiver

2, and E[‖x3‖2] = nP at receiver 3.

The signals x′11 and x3 are lattice codewords using the same coding

lattice but different shaping lattices. As a result, the sum x′11 + x3 is a lattice

codeword.

The received signals are

y1 = [x′11 + x3] + x11 + x10 + z1

y2 = x′11 + x11 + x2 + x10 + z2

y3 = x3 + x2 + z3.
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The signal scale diagram at each receiver is shown in Fig. 3.5 (b). Decoding

is performed in the following way.

� At receiver 1, [x′11 + x3] is first decoded while treating other signals as noise

and removed from y1. Next, x11 and then x10 is decoded successively. For

reliable decoding, the code rates should satisfy

R11 ≤ T ′11 =
1

2
log

(
c11 +

(1− α1)P

α1P +N1

)
R3 ≤ T ′3 =

1

2
log

(
c3 +

P

α1P +N1

)
R11 ≤ T ′′11 =

1

2
log

(
1 +

(α1 − α0)P

α0P +N1

)
R10 ≤ T10 =

1

2
log

(
1 +

α0P

N1

)
where c11 = (1−α1)P

(1−α1)P+P
= 1−α1

2−α1
and c3 = P

(1−α1)P+P
= 1

2−α1
. Note that

0 ≤ c11 ≤ 1
2
, c11 + c3 = 1, and 1

2
≤ c3 ≤ 1.

� At receiver 2, x′11 is first decoded while treating other signals as noise. Hav-

ing successfully recovered M11, receiver 1 can generate x11 and x′11, and

cancel them from y2. Next, x2 is decoded from x2 + x10 + z2. At receiver 2,

x10 is not decoded. For reliable decoding, the code rates should satisfy

R11 ≤ T ′′′11 =
1

2
log

(
1 +

(1− α1)P

(α1 + α2)P +N2

)
R2 ≤ T2 =

1

2
log

(
1 +

α2P

α0P +N2

)
.

� At receiver 3, x3 is decoded while treating x2+z3 as noise. Reliable decoding

is possible if

R3 ≤ T ′′3 =
1

2
log

(
1 +

P

α2P +N3

)
. (3.98)
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1

α2 = α′
1

(a) Channel type 4: small
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2
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2

(b) Channel type 5: small
R2

Figure 3.6: MAC-like region.

Putting together, we can see that given α0, α1α2 ∈ [0, 1], the following

rate region is achievable.

R1 ≤ T1 = min{T ′11, T
′′
11, T

′′′
11}+ T10 (3.99)

R2 ≤ T2 (3.100)

R3 ≤ T3 = min{T ′3, T ′′3 } (3.101)

where

T1 = min{T ′11, T
′′
11, T

′′′
11}+ T10

= min{min{T ′11, T
′′′
11}, T ′′11}+ T10

≥ min

{
1

2
log

(
c11 +

(1− α1)P

(α1 + α2)P +N2

)
,

1

2
log

(
1 +

(α1 − α0)P

α0P +N1

)}
+

1

2
log

(
1 +

α0P

N1

)
T2 =

1

2
log

(
1 +

α2P

α0P +N2

)
T3 ≥

1

2
log

(
c3 +

P

max{α1, α2}P +N3

)
.
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3.6.4 The Gap for Relatively Small R1

We choose α0, α1, and α2 such that α1 ≤ α2 ≤ 1
2
, that α1P ≥ 3N2,

that α2P ≥ 3N3, and that α0P = 4
5
N2. It follows that c11 ≥ 1

3
and that

(α1 + α2)P +N2 ≤ 4
3
α1P + α2P ≤ 7

3
α2P .

min{T ′11, T
′′′
11}

=
1

2
log

(
c11 +

(1− α1)P

(α1 + α2)P +N2

)
≥ 1

2
log

(
1

3
+

(1− α2)P

(7/3)α2P

)
=

1

2
log

(
P

(7/3)α2P
− 2

21

)
=

1

2
log

(
P

(7/3)α2P

)
+

1

2
log

(
1− 2

21
· 7

3
α2

)
≥ 1

2
log

(
P

(7/3)α2P

)
+

1

2
log

(
8

9

)
≥ 1

2
log

(
P

α2P
· 8

21

)
and

T ′′11 =
1

2
log

(
1 +

(α1 − α0)P

α0P +N1

)
(3.102)

=
1

2
log

(
α1P +N1

α0P +N1

)
(3.103)

≥ 1

2
log

(
α1P

α0P +N2

)
(3.104)

=
1

2
log

(
α1P

(9/5)N2

)
. (3.105)

Putting together,

T1 ≥ min

{
1

2
log

(
P

α2P
· 8

21

)
,
1

2
log

(
α1P

(9/5)N2

)}
+

1

2
log

(
N2

N1

· 4

5

)
.
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Let us define α′1 by the equality 1
2

log
(

P
α′1P
· 8

21

)
= 1

2
log
(

α1P
(9/5)N2

)
. If we choose

α2 ≤ α′1, then 1
2

log
(

P
α2P
· 8

21

)
≥ 1

2
log
(

α1P
(9/5)N2

)
, and

T1 ≥
1

2
log

(
α1P

(9/5)N2

· N2

N1

· 4

5

)
=

1

2
log

(
α1P

N1

· 4

9

)
.

We can see that the following rate region is achievable.

R1 ≤
1

2
log

(
α1P

N1

· 4

9

)
(3.106)

R2 ≤
1

2
log

(
α2P

(9/5)N2

)
(3.107)

R3 ≤
1

2
log

(
P

(4/3)α2P

)
. (3.108)

For fixed α2 ∈ [α1, α
′
1] and R1 = 1

2
log
(
α1P
N1
· 4

9

)
, the two-dimensional rate

region Rα, given by

R2 ≤
1

2
log

(
α2P

(9/5)N2

)
(3.109)

R3 ≤
1

2
log

(
P

(4/3)α2P

)
(3.110)

is achievable. The union
⋃
α2∈[α1,α′1] Rα is a MAC-like region, given by

R2 ≤
1

2
log

(
α′1P

(9/5)N2

)
(3.111)

≤ 1

2
log

(
P

α1P
· 8

21

)
(3.112)

R3 ≤
1

2
log

(
P

α1P
· 3

4

)
(3.113)

R2 +R3 ≤
1

2
log

(
α2P

(9/5)N2

· P

(4/3)α2P

)
(3.114)

≤ 1

2
log

(
P

N2

· 15

36

)
. (3.115)
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R1

R3

(a) Large R2

R1

R3

(b) Small R2

Figure 3.7: The cross-section of the type 5 outer bound region.

This region is described in Fig. 3.6 (a).

In comparison, the two-dimensional outer bound region atR1 = 1
2

log
(
α1P
N1
· 4

9

)
+

1, given by

R2 ≤
1

2
log

(
P

N1

· 7

3

)
− 1

2
log

(
α1P

N1

· 4

9

)
− 1

=
1

2
log

(
P

α1P

)
+

1

2
log

(
7

3
· 9

4
· 1

4

)
R3 ≤

1

2
log

(
P

N1

· 7

3

)
− 1

2
log

(
α1P

N1

· 4

9

)
− 1

=
1

2
log

(
P

α1P

)
+

1

2
log

(
7

3
· 9

4
· 1

4

)
R2 +R3 ≤

1

2
log

(
P

N2

)
+

1

2
log

(
7

3

)
.

Since δ2 < 1
2

log
(

21
8
· 7

3
· 9

4
· 1

4

)
< 0.90, δ3 < 1

2
log
(

4
3
· 7

3
· 9

4
· 1

4

)
< 0.41 and

δ23 <
1
2

log
(

36
15
· 7

3

)
< 1.25 <

√
2, we can conclude that the gap is to within

one bit per message.
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3.7 Inner Bound: Channel Type 5

Let us consider the relaxed outer bound region R′o given by

Rk ≤
1

2
log

(
P

Nk

)
+

1

2
log

(
4

3

)
, k = 1, 2, 3

R1 +R2 ≤
1

2
log

(
P

N1

)
+

1

2
log

(
7

3

)
R2 +R3 ≤

1

2
log

(
P

N2

)
+

1

2
log

(
7

3

)
R1 +R3 ≤

1

2
log

(
P

N1

)
+

1

2
log

(
7

3

)
.

The cross-sectional region at a given R2 is described by

R1 ≤ min

{
1

2
log

(
P

N1

· 7

3

)
−R2,

1

2
log

(
P

N1

· 4

3

)}
R3 ≤ min

{
1

2
log

(
P

N2

· 7

3

)
−R2,

1

2
log

(
P

N3

· 4

3

)}
R1 +R3 ≤

1

2
log

(
P

N1

· 7

3

)
.

Depending on the bottleneck of min{·, ·} expressions, there are three cases:

� R2 ≤ 1
2

log
(

7
4

)
�

1
2

log
(

7
4

)
≤ R2 ≤ 1

2
log
(
N3

N2
· 7

4

)
� R2 ≥ 1

2
log
(
N3

N2
· 7

4

)
.

In this section, we focus on the third case. The other cases can be proved

similarly. If the sum of the righthand sides of R1 and R3 bounds is smaller

than the righthand side of R1 +R3 bound, i.e.,

1

2
log

(
P

N1

· 7

3

)
+

1

2
log

(
P

N2

· 7

3

)
− 2R2 ≤

1

2
log

(
P

N1

· 7

3

)
,
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then the R1 +R3 bound is not active at the R2. By rearranging, the threshold

condition is given by

R2 > R2,th =
1

4
log

(
P

N2

· 7

3

)
. (3.116)

Note that R2,th is roughly half of C2. For this relatively large R2, the cross-

sectional region is a rectangle as described in Fig. 3.7 (a). In contrast, for

a relatively small R1, when the threshold condition does not hold, the cross-

sectional region is a MAC-like region as described in Fig. 3.7 (b). In the

following subsections, we present achievable schemes for each case.

3.7.1 Achievable Scheme for Relatively Large R2

Theorem 3.17. Given α = (α1, α2, α
′
2) ∈ [0, 1]3, the region Rα is defined by

R1 ≤
1

2
log

(
1 +

α1P

N1

)
R2 ≤ min

{
1

2
log+

(
c21 +

(1− α2 − α′2)P

(α1 + α2 + α′2)P +N2

)
,

1

2
log

(
1 +

α′2P

N2

)}
+

1

2
log

(
1 +

α2P

α′2P +N2

)
R3 ≤

1

2
log+

(
c3 +

P

max{α1, α2 + α′2}P +N3

)
where c21 =

1−α2−α′2
2−α2−α′2

and c3 = 1
2−α2−α′2

, and R = conv (
⋃
αRα) is achievable.

We present an achievable scheme for the case of R2 > R2,th. Mes-

sage M2 ∈ {1, 2, . . . , 2nR2} for receiver 2 is split into two parts: M21 ∈
{1, 2, . . . , 2nR21} and M22 ∈ {1, 2, . . . , 2nR22}, so R2 = R21 + R22. We gen-

erate the signals in the following way: x21 and x′21 are differently coded signals

of M21, and x22 is a coded signal of M22. The transmit signal is the sum

x2 = x21 + x22 + x′21.

63



The power allocation satisfies E[‖x1‖2] = α1nP , at receiver 1, E[‖x21‖2] =

α′2nP , E[‖x22‖2] = α2nP , and E[‖x′21‖2] = (1 − α2 − α′2)P at receiver 2, and

E[‖x3‖2] = nP at receiver 3.

The signals x′21 and x3 are lattice codewords using the same coding

lattice but different shaping lattices. As a result, the sum x′21 + x3 is a lattice

codeword.

The received signals are

y1 = x′21 + x22 + x21 + x1 + z1

y2 = [x′21 + x3] + x22 + x21 + z2

y3 = x3 + x1 + z3.

The signal scale diagram at each receiver is shown in Fig. 3.8 (a). Decoding

is performed in the following way.

� At receiver 1, x′21 is first decoded while treating other signals as noise. Hav-

ing successfully recovered M21, receiver 1 can generate x21 and x′21, and

cancel them from y1. Next, x22 is decoded from x22 + x1 + z1. Finally, x1 is

decoded from x1 + z1. For reliable decoding, the code rates should satisfy

R21 ≤ T ′21 =
1

2
log

(
1 +

(1− α2 − α′2)P

(α1 + α2 + α′2)P +N1

)
R22 ≤ T ′22 =

1

2
log

(
1 +

α2P

α1P +N1

)
R1 ≤ T1 =

1

2
log

(
1 +

α1P

N1

)
.

� At receiver 2, [x′21+x3] first decoded while treating other signals as noise and

removed from y2. Next, x22 and x21 are decoded successively. For reliable
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decoding, the code rates should satisfy

R21 ≤ T ′′21 =
1

2
log

(
c21 +

(1− α2 − α′2)P

(α2 + α′2)P +N2

)
R3 ≤ T ′3 =

1

2
log

(
c3 +

P

(α2 + α′2)P +N2

)
R22 ≤ T ′′22 =

1

2
log

(
1 +

α2P

α′2P +N2

)
R21 ≤ T ′′′21 =

1

2
log

(
1 +

α′2P

N2

)
where c21 =

(1−α2−α′2)P

(1−α2−α′2)P+P
=

1−α2−α′2
2−α2−α′2

and c3 = P
(1−α2−α′2)P+P

= 1
2−α2−α′2

.

Note that 0 ≤ c21 ≤ 1
2
, c21 + c3 = 1, and 1

2
≤ c3 ≤ 1.

� At receiver 3, x3 is decoded while treating x1+z3 as noise. Reliable decoding

is possible if

R3 ≤ T ′′3 =
1

2
log

(
1 +

P

α1P +N3

)
. (3.117)

Putting together, we can see that given α1, α2, α
′
2 ∈ [0, 1], the following rate

region is achievable.

R1 ≤ T1

R2 ≤ T2 = min{T ′21, T
′′
21, T

′′′
21}+ min{T ′22, T

′′
22}

R3 ≤ T3 = min{T ′3, T ′′3 }
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where

T1 =
1

2
log

(
1 +

α1P

N1

)
T2 = min{T ′21, T

′′
21, T

′′′
21}+ T ′′22

= min{min{T ′21, T
′′
21}, T ′′′21}+ T ′′22

≥ min

{
1

2
log

(
c21 +

(1− α2 − α′2)P

(α1 + α2 + α′2)P +N2

)
,

1

2
log

(
1 +

α′2P

N2

)}
+

1

2
log

(
1 +

α2P

α′2P +N2

)
T3 ≥

1

2
log

(
c3 +

P

max{α1, α2 + α′2}P +N3

)
.

3.7.2 The Gap for Relatively Large R2

We choose α1 and α2 such that α1P ≥ N2, that α2P ≥ N3, that

α1 = α′2 ≤ α2, and that α1 +α2 ≤ 1
2
. It follows that c21 ≥ 1

3
. We get the lower

bounds for each term of T2 expression above.

min{T ′21, T
′′
21} (3.118)

≥ 1

2
log

(
c21 +

(1− α1 − α2)P

(2α1 + α2)P +N2

)
(3.119)

≥ 1

2
log

(
1

3
+

(1− α1 − α2)P

(3α1 + α2)P

)
(3.120)

≥ 1

2
log

(
P

(3α1 + α2)P

)
. (3.121)

The first entry of min{·, ·} in

T2 = min{min{T ′21, T
′′
21}+ T ′′22, T

′′′
21 + T ′′22}
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is lower bounded as follows.

min{T ′21, T
′′
21}+ T ′′22

≥ 1

2
log

(
P

(3α1 + α2)P

)
+

1

2
log

(
(α1 + α2)P +N2

α1P +N2

)
=

1

2
log

(
P

α1P +N2

· (α1 + α2)P +N2

(3α1 + α2)P

)
≥ 1

2
log

(
P

3(α1P +N2)

)
≥ 1

2
log

(
P

6α1P

)
.

The second entry of T2 = min{·, ·} is lower bounded as follows.

T ′′′21 + T ′′22

=
1

2
log

(
1 +

α1P

N2

)
+

1

2
log

(
1 +

α2P

α1P +N2

)
=

1

2
log

(
1 +

(α1 + α2)P

N2

)
≥ 1

2
log

(
α2P

N2

)
.

Putting together, we get the lower bound

T2 ≥ min

{
1

2
log

(
P

6α1P

)
,
1

2
log

(
α2P

N2

)}
.

Given α2, we choose α1 that satisfies 1
2

log
(

P
6α1P

)
= 1

2
log
(
α2P
N2

)
. As a result,

we can write T2 ≥ 1
2

log
(
α2P
N2

)
. We also have

T3 ≥
1

2
log

(
P

(α1 + α2)P +N3

)
≥ 1

2
log

(
P

3α2P

)
.
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Putting together, we can see that the following rate region is achievable.

R1 ≤
1

2
log

(
α1P

N1

)
(3.122)

R2 ≤
1

2
log

(
α2P

N2

)
(3.123)

R3 ≤
1

2
log

(
P

3α2P

)
. (3.124)

For fixed α2 and R2 = 1
2

log
(
α2P
N2

)
, the two-dimensional rate region, given by

R1 ≤
1

2
log

(
α1P

N1

)
(3.125)

=
1

2
log

(
P

6α2P
· N2

N1

)
(3.126)

R3 ≤
1

2
log

(
P

3α2P

)
(3.127)

is achievable.

In comparison, the two-dimensional outer bound region atR2 = 1
2

log
(
α2P
N2

)
+

1 is given by

R1 ≤
1

2
log

(
P

N1

· 7

3

)
− 1

2
log

(
α2P

N2

)
− 1

=
1

2
log

(
P

α2P
· N2

N1

)
+

1

2
log

(
7

3
· 1

4

)
R3 ≤

1

2
log

(
P

N2

· 7

3

)
− 1

2
log

(
α2P

N2

)
− 1

=
1

2
log

(
P

α2P

)
+

1

2
log

(
7

3
· 1

4

)
.

As discussed above, the sum-rate bound on R1 +R3 is loose for R2 larger than

the threshold, so the rate region is a rectangle.

By comparing the inner and outer bound rate regions, we can see that

δ1 <
1
2

log
(
6 · 7

3
· 1

4

)
< 0.91 and δ3 <

1
2

log
(
3 · 7

3
· 1

4

)
< 0.41. Therefore, we can

conclude that the gap is to within one bit per message.
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3.7.3 Achievable Scheme for Relatively Small R2

Theorem 3.18. Given α = (α1, α2) ∈ [0, 1]2, the region Rα is defined by

R1 ≤
1

2
log

(
1 +

α1P

N1

)
R2 ≤ min

{
1

2
log+

(
c21 +

(1− α2)P

(α1 + α2)P +N2

)
,
1

2
log

(
1 +

α2P

N2

)}
R3 ≤

1

2
log+

(
c3 +

P

max{α1, α2}P +N3

)
where c21 = 1−α2

2−α2
and c3 = 1

2−α2
, and R = conv (

⋃
αRα) is achievable.

For the case of R2 < R2,th, we present the following scheme. At trans-

mitter 2, rate splitting is not necessary. The transmit signal is the sum

x2 = x21 + x′21

where x21 and x′21 are differently coded versions of the same message M2 ∈
{1, 2, . . . , 2nR2}.

The power allocation: E[‖x1‖2] = α1nP at receiver 1, E[‖x21‖2] =

α2nP , and E[‖x′21‖2] = (1 − α2)nP at receiver 2, and E[‖x3‖2] = nP at

receiver 3.

The signals x′21 and x3 are lattice codewords using the same coding

lattice but different shaping lattices. As a result, the sum x′21 + x3 is a lattice

codeword.

The received signals are

y1 = x′21 + x21 + x1 + z1

y2 = [x′21 + x3] + x21 + z2

y3 = x3 + x1 + z3.
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The signal scale diagram at each receiver is shown in Fig. 3.8 (b). Decoding

is performed in the following way.

� At receiver 1, x′21 is first decoded while treating other signals as noise. Hav-

ing successfully recovered M21, receiver 1 can generate x21 and x′21, and

cancel them from y1. Next, x1 is decoded from x1 + z1. For reliable decod-

ing, the code rates should satisfy

R21 ≤ T ′21 =
1

2
log

(
1 +

(1− α2)P

(α1 + α2)P +N1

)
R1 ≤ T1 =

1

2
log

(
1 +

α1P

N1

)
.

� At receiver 2, [x′21 + x3] first decoded while treating other signals as noise

and removed from y2. Next, x21 is decoded from x21 + z2. For reliable

decoding, the code rates should satisfy

R21 ≤ T ′′21 =
1

2
log

(
c21 +

(1− α2)P

α2P +N2

)
R3 ≤ T ′3 =

1

2
log

(
c3 +

P

α2P +N2

)
R21 ≤ T ′′′21 =

1

2
log

(
1 +

α2P

N2

)
where c21 = (1−α2)P

(1−α2)P+P
= 1−α2

2−α2
and c3 = P

(1−α2)P+P
= 1

2−α2
. Note that

0 ≤ c21 ≤ 1
2
, c21 + c3 = 1, and 1

2
≤ c3 ≤ 1.

� At receiver 3, x3 is decoded while treating x1+z3 as noise. Reliable decoding

is possible if

R3 ≤ T ′′3 =
1

2
log

(
1 +

P

α1P +N3

)
. (3.128)
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Putting together, we get

R1 ≤ T1 (3.129)

R2 ≤ T2 = min{T ′21, T
′′
21, T

′′′
21} (3.130)

R3 ≤ T3 = min{T ′3, T ′′3 } (3.131)

where

T1 =
1

2
log

(
1 +

α1P

N1

)
T2 = min{T ′21, T

′′
21, T

′′′
21}

= min{min{T ′21, T
′′
21}, T ′′′21}

≥ min

{
1

2
log

(
c21 +

(1− α2)P

(α1 + α2)P +N2

)
,
1

2
log

(
1 +

α2P

N2

)}
T3 ≥

1

2
log

(
c3 +

P

max{α1, α2}P +N3

)
.

3.7.4 The Gap for Relatively Small R2

We choose α1 and α2 such that α1P ≥ N2, that α2P ≥ N3, that

α1 + α2 ≤ 1
2
, and that α1 ≥ α2. It follows that c21 ≥ 1

3
. We get the lower

bound

min{T ′21, T
′′
21} (3.132)

=
1

2
log

(
c21 +

(1− α2)P

(α1 + α2)P +N2

)
(3.133)

≥ 1

2
log

(
1

3
+

(1− α1)P

3α1P

)
(3.134)

=
1

2
log

(
P

3α1P

)
(3.135)

and

T2 ≥ min

{
1

2
log

(
P

3α1P

)
,
1

2
log

(
α2P

N2

)}
.
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Let us define α′2 by the equality 1
2

log
(

P
3α′2P

)
= 1

2
log
(
α2P
N2

)
. If we choose

α1 ≤ α′2, then T2 ≥ 1
2

log
(
α2P
N2

)
. We can see that the following rate region is

achievable.

R1 ≤
1

2
log

(
α1P

N1

)
(3.136)

R2 ≤
1

2
log

(
α2P

N2

)
(3.137)

R3 ≤
1

2
log

(
P

2α1P

)
. (3.138)

For fixed α1 ∈ [α2, α
′
2] and R2 = 1

2
log
(
α2P
N2

)
, the two-dimensional rate

region Rα, given by

R1 ≤
1

2
log

(
α1P

N1

)
(3.139)

R3 ≤
1

2
log

(
P

2α1P

)
(3.140)

is achievable. The union
⋃
α1∈[α2,α′2] Rα is a MAC-like region, given by

R1 ≤
1

2
log

(
α′2P

N1

)
(3.141)

=
1

2
log

(
P

3α2P
· N2

N1

)
(3.142)

R3 ≤
1

2
log

(
P

2α2P

)
(3.143)

R1 +R3 =
1

2
log

(
P

2N1

)
. (3.144)

In comparison, the two-dimensional outer bound region atR2 = 1
2

log
(
α2P
N2

)
+
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1 is given by

R1 ≤
1

2
log

(
P

N1

· 7

3

)
− 1

2
log

(
α2P

N2

)
− 1

=
1

2
log

(
P

α2P
· N2

N1

)
+

1

2
log

(
7

3
· 1

4

)
R3 ≤

1

2
log

(
P

N2

· 7

3

)
− 1

2
log

(
α2P

N2

)
− 1

=
1

2
log

(
P

α2P

)
+

1

2
log

(
7

3
· 1

4

)
R1 +R3 ≤

1

2
log

(
P

N1

· 8

3

)
.

Since δ1 < 1
2

log
(
3 · 7

3
· 1

4

)
< 0.41, δ3 < 1

2
log
(
2 · 7

3
· 1

4

)
< 0.12 and δ13 <

1
2

log
(
2 · 7

3

)
< 1.12 <

√
2, we can conclude that the gap is to within one bit

per message.

3.8 Random Coding Achievability: Channel Type 4

At transmitter 1, message M1 is split into three parts (M12,M11,M10),

and the transmit signal is x1 = x12 +x11 +x10. The signals satisfy E[‖x12‖2] =

n(P −N2 −N3), E[‖x11‖2] = nN3, and E[‖x10‖2] = nN2.

At transmitter 2, message M2 is split into three parts (M21,M20), and

the transmit signal is x2 = x21+x20. The signals satisfy E[‖x21‖2] = n(P−N3)

and E[‖x20‖2] = nN3. Rate-splitting is not performed at transmitter 3, and

E[‖x3‖2] = nP .

The top layer codewords (x12,x21,x3) are from a joint random code-

book for (M12,M21,M3). The mid-layer codewords (x11,x20) are from a joint

random codebook for (M11,M20). The bottom layer codeword x10 is from a

single-user random codebook for M10.
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The received signals are

y1 = (x12 + x3) + x11 + x10 + z1

y2 = (x12 + x21) + (x11 + x20) + x10 + z2

y3 = (x21 + x3) + x20 + z3.

Decoding is performed from the top layer to the bottom layer. At receiver

1, simultaneous decoding of (x12,x3) is performed while treating other signals

as noise. And then, x11 and x10 are decoded successively. At receiver 2,

simultaneous decoding of (x12,x21) is performed while treating other signals as

noise. And then, simultaneous decoding of (x11,x20) is performed. At receiver

3, simultaneous decoding of (x21,x3) is performed while treating other signals

as noise. For reliable decoding, code rates should satisfy

R12 ≤ I1 =
1

2
log

(
1 +

P −N2 −N3

N1 +N2 +N3

)
R3 ≤ I2 =

1

2
log

(
1 +

P

N1 +N2 +N3

)
R12 +R3 ≤ I3 =

1

2
log

(
1 +

2P −N2 −N3

N1 +N2 +N3

)
R11 ≤ I4 =

1

2
log

(
1 +

N3

N1 +N2

)
R10 ≤ I5 =

1

2
log

(
1 +

N2

N1

)
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at receiver 1,

R12 ≤ I6 =
1

2
log

(
1 +

P −N2 −N3

2N2 + 2N3

)
R21 ≤ I7 =

1

2
log

(
1 +

P −N3

2N2 + 2N3

)
R12 +R21 ≤ I8 =

1

2
log

(
1 +

2P −N2 − 2N3

2N2 + 2N3

)
R11 ≤ I9 =

1

2
log

(
1 +

N3

2N2

)
R20 ≤ I10 =

1

2
log

(
1 +

N3

2N2

)
R11 +R20 ≤ I11 =

1

2
log

(
1 +

2N3

2N2

)
at receiver 2,

R21 ≤ I12 =
1

2
log

(
1 +

P −N3

2N3

)
R3 ≤ I13 =

1

2
log

(
1 +

P

2N3

)
R21 +R3 ≤ I14 =

1

2
log

(
1 +

2P −N3

2N3

)
at receiver 3. Putting together,

R12 ≤ T1 = min{I1, I6} = I6

R21 ≤ T2 = min{I7, I12} = I7

R3 ≤ T3 = min{I2, I13}

R12 +R21 ≤ T4 = I8

R12 +R3 ≤ T5 = I3

R21 +R3 ≤ T6 = I14
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at the top layer,

R11 ≤ T7 = min{I4, I9} = I9

R20 ≤ T8 = I10

R11 +R20 ≤ T9 = I11

at the mid-layer,

R10 ≤ T10 = I5

at the bottom layer. Note that the rate variables are not coupled between

layers. We get the achievable rate region

R1 = R12 +R11 +R10 ≤ T1 + T7 + T10

R2 = R21 +R20 ≤ T2 + T8

R3 ≤ T3

R1 +R2 ≤ T4 + T9 + T10

R1 +R3 ≤ T5 + T7 + T10

R2 +R3 ≤ T6 + T8.

This region includes the following region.

R1 ≤
1

2
log

(
2 +

P

N1

)
− 1

R2 ≤
1

2
log

(
3 +

P

N2

)
− 1

R3 ≤
1

2
log

(
3 +

P

N3

)
− 1

2
log(3)

R1 +R2 ≤
1

2
log

(
1 +

2P

N1

)
− 1

2

R1 +R3 ≤
1

2
log

(
1 +

2P

N1

)
− 1

R2 +R3 ≤
1

2
log

(
1 +

2P

N2

)
− 1.

77



Therefore, we can conclude the capacity region to within one bit.

3.9 Random Coding Achievability: Channel Type 5

Transmit signal construction is the same as the one for channel type 4.

The received signals are

y1 = (x12 + x21) + (x11 + x20) + x10 + z1

y2 = (x21 + x3) + x20 + z2

y3 = (x12 + x3) + x11 + x10 + z3.

Decoding is performed from the top layer to the bottom layer. At receiver 1,

simultaneous decoding of (x12,x21) is performed while treating other signals as

noise. And then, simultaneous decoding of x11 and x20 is performed. Lastly,

x10 is decoded. At receiver 2, simultaneous decoding of (x21,x3) is performed

while treating other signals as noise. And then, x20 is decoded. At receiver 3,

simultaneous decoding of (x12,x3) is performed while treating other signals as

noise. And then, x11 and x10 are decoded successively. For reliable decoding,
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code rates should satisfy

R12 ≤ I1 =
1

2
log

(
1 +

P −N2 −N3

N1 +N2 + 2N3

)
R21 ≤ I2 =

1

2
log

(
1 +

P −N3

N1 +N2 + 2N3

)
R12 +R21 ≤ I3 =

1

2
log

(
1 +

2P −N2 − 2N3

N1 +N2 + 2N3

)
R11 ≤ I4 =

1

2
log

(
1 +

N3

N1 +N2

)
R20 ≤ I5 =

1

2
log

(
1 +

N3

N1 +N2

)
R11 +R20 ≤ I6 =

1

2
log

(
1 +

2N3

N1 +N2

)
R10 ≤ I7 =

1

2
log

(
1 +

N2

N1

)
at receiver 1,

R21 ≤ I8 =
1

2
log

(
1 +

P −N3

N2 +N3

)
R3 ≤ I9 =

1

2
log

(
1 +

P

N2 +N3

)
R21 +R3 ≤ I10 =

1

2
log

(
1 +

2P −N3

N2 +N3

)
R20 ≤ I11 =

1

2
log

(
1 +

N3

N2

)
at receiver 2,

R12 ≤ I12 =
1

2
log

(
1 +

P −N2 −N3

N2 + 2N3

)
R3 ≤ I13 =

1

2
log

(
1 +

P

N2 + 2N3

)
R12 +R3 ≤ I14 =

1

2
log

(
1 +

2P −N2 −N3

N2 + 2N3

)
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at receiver 3. Putting together,

R12 ≤ T1 = min{I1, I12} = I1

R21 ≤ T2 = min{I2, I8} = I2

R3 ≤ T3 = min{I9, I13} = I13

R12 +R21 ≤ T4 = I3

R12 +R3 ≤ T5 = I14

R21 +R3 ≤ T6 = I10

at the top layer,

R11 ≤ T7 = I4

R20 ≤ T8 = min{I5, I11} = I5

R11 +R20 ≤ T9 = I6

at the mid-layer,

R10 ≤ T10 = I7

at the bottom layer. Note that the rate variables are not coupled between

layers. We get the achievable rate region

R1 = R12 +R11 +R10 ≤ T1 + T7 + T10

R2 = R21 +R20 ≤ T2 + T8

R3 ≤ T3

R1 +R2 ≤ T4 + T9 + T10

R1 +R3 ≤ T5 + T7 + T10

R2 +R3 ≤ T6 + T8.
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This region includes the following region.

R1 ≤
1

2
log

(
2 +

P

N1

)
− 1

2

R2 ≤
1

2
log

(
2 +

P

N2

)
− 1

R3 ≤
1

2
log

(
3 +

P

N3

)
− 1

2
log(3)

R1 +R2 ≤
1

2
log

(
1 +

2P

N1

)
R1 +R3 ≤

1

2
log

(
1 +

2P

N1

)
− 1

2

R2 +R3 ≤
1

2
log

(
1 +

2P

N2

)
− 1

2
.

Therefore, we can conclude the capacity region to within one bit.
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Chapter 4

The Symmetric Gaussian X-Channel1

4.1 Channel Model

The symmetric Gaussian X channel, denoted by (h, SNR), is defined

by

y1 = x1 + hx2 + z1,

y2 = hx1 + x2 + z2,

where x1,x2,y1,y2, z1, z2 ∈ Rn, the power constraint is ‖xk‖2 ≤ nSNR for

k = 1, 2, and the noise zj ∼ N(0, I) for j = 1, 2. There are four independent

messages for each source-destination pairs: V1 ∈ {1, 2, . . . , 2nRv1} from trans-

mitter 1 to receiver 1, V2 ∈ {1, 2, . . . , 2nRv2} from transmitter 2 to receiver 1,

W1 ∈ {1, 2, . . . , 2nRw1} from transmitter 1 to receiver 2, W2 ∈ {1, 2, . . . , 2nRw2}
from transmitter 2 to receiver 2. We assume that h ∈ R is not varying over

time or frequency and is perfectly known at transmitters and receivers. With-

out loss of generality, we assume that h is positive.

The interference level parameter α ≥ 0 is a function of SNR and h,

defined by

α =
log(h2SNR)

log(SNR)
.

1The result in this chapter was presented in part at the IEEE ISIT 2015 [30]. Muryong
Kim as the first author performed the research and generated the main results in theorems.
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The ranges of α The ranges of h

B1 0 ≤ α < 1
2

SNR−
1
2 ≤ h < SNR−

1
4

B′2
1
2
≤ α < 2

3
SNR−

1
4 ≤ h < SNR−

1
6

B′′2
2
3
≤ α < 3

4
SNR−

1
6 ≤ h < SNR−

1
8

B3
3
4
≤ α < 1 SNR−

1
8 ≤ h < 1

B4 1 < α ≤ 4
3

1 < h ≤ SNR
1
6

B′′5
4
3
< α ≤ 3

2
SNR

1
6 < h ≤ SNR

1
4

B′5
3
2
< α ≤ 2 SNR

1
4 < h ≤ SNR

1
2

B6 α > 2 h > SNR
1
2

Table 4.1: Different regimes of h.

Throughout the paper, we assume SNR > 1 and h2SNR ≥ 1 unless stated

otherwise. We can express h in terms of SNR and α, i.e., h = SNR
α−1
2 . The

GDOF of the symmetric Gaussian X channel is defined by

d(α) = lim
SNR→∞

Csum
1
2

log(SNR)

where

Csum = sup{Rv1 +Rv2 +Rw1 +Rw2 : (Rv1, Rv2, Rw1, Rw2) ∈ C}

is the sum-rate capacity, and the capacity region C is the closure of the set of

achievable rate tuples. Given SNR, we divide the range of h into eight regimes

Bi as described in Table 4.1.

In [9], the GDOF of the symmetric Gaussian X channel is characterized
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Figure 4.1: The X channel.
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Figure 4.2: GDOF of the symmetric Gaussian X channel.
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as

d(α) =



2− 2α, 0 ≤ α < 1
2
, (B1)

2α, 1
2
≤ α < 3

4
, (B2)

2− 2
3
α, 3

4
≤ α < 1, (B3)

1, α = 1,
2α− 2

3
, 1 < α ≤ 4

3
, (B4)

2, 4
3
< α ≤ 2, (B5)

2α− 2, α > 2, (B6)

where B2 = B′2 ∪B′′2 and B5 = B′5 ∪B′′5.

4.2 Näıve Schemes

If both transmitters send to receiver 1 for a fraction of time and to

receiver 2 for the rest of time, i.e., timesharing multiple access channel (MAC),

we can achieve the sum-rate

RMAC =
1

2
log(1 + (1 + h2)SNR).

As the same expression appears in upper bounds, we use RMAC as a shorthand

notation in this paper.

If transmitter 1 sends to one of the receivers with higher channel gain

(greater of 1 and h) for half the time, and transmitter 2 sends to one of the

receivers with higher channel gain for the rest of the time, i.e, time-division

multiplexing (TDM), we can achieve the sum-rate

RTDM =
1

2
log(1 + max{1, h2}(2SNR))

where 2SNR appears in the expression since each transmitter sends for half

the time. Note that RMAC ≤ RTDM for any h and SNR.
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If transmitter 1 sends a single message to receiver 1, transmitter 2 sends

a single message to receiver 2, and each receiver decodes its desired signal while

treating interference as noise (IAN), we can achieve

RIAN = log

(
1 +

SNR

1 + h2SNR

)
for h ≤ 1. For h > 1, transmitters can swap their destination receivers and

achieve

RIAN = log

(
1 +

h2SNR

1 + SNR

)
.

4.3 Main Results

For the regimes B1,B2,B5,B6, we characterize the sum-rate capacity

Csum of the symmetric Gaussian X channel to within two bits.

Theorem 4.1 (Constant gap for B1,B2,B5,B6).

For h ≤ SNR−
1
8 and h ≥ SNR

1
6 ,

RETW − 2 ≤ Csum ≤ RETW

where

RETW =

{
log
(
1 + h2SNR + SNR

1+h2SNR

)
, h ≤ 1,

log
(

1 + SNR + h2SNR
1+SNR

)
, h > 1.

(4.1)

Proof. The proof is given in a later section.

The upper bound RETW was originally derived for the two-user Gaus-

sian interference channel in [1]. In [9], it was shown that this bound can be used

as an upper bound for the symmetric Gaussian X channel. The achievability
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part of the theorem is based on layered lattice coding, interference alignment,

and layer-by-layer successive decoding.

For the regimes B3 and B4 where SNR−
1
8 ≤ h ≤ SNR

1
6 , we develop

achievable schemes based on compute-and-forward framework [16, 7]. We also

derive a new upper bound that is useful for B3 and B4.

Theorem 4.2 (Upper bound). The sum-rate capacity Csum is upper bounded

by

Csum ≤
{

4
3
RMAC + 1

3
log
(
1 + SNR

1+h2SNR

)
, h ≤ 1,

4
3
RMAC + 1

3
log
(

1 + h2SNR
1+SNR

)
, h > 1,

(4.2)

for any h and SNR.

Proof. The proof is given in a later section.

Fig. 4.3 shows the sum-rate capacity upper and lower bounds at SNR =

60 dB. At this SNR, the boundary h = SNR−
1
8 in Theorem 1 corresponds to

h2SNR = 45 dB. Thus, the result in Theorem 1 can be interpreted as the

approximate sum-rate capacity for the case where the direct-link and cross-

link have at least 15 dB gap in received SNR. At SNR = 30 dB, it corresponds

to the case with at least 7.5 dB gap in received SNR.

87



h
10-4 10-2 100 102 104

S
um

-r
at

e

0

5

10

15

20

25

30
SNR = 60 dB

Upper bound
Lower bound
MAC
Gap

(a) No channel steering (g = 1)

h
10-4 10-2 100 102 104

S
um

-r
at

e

0

5

10

15

20

25

30
SNR = 60 dB

Upper bound
Lower bound
MAC
Gap

(b) Channel steering (optimized over g)

Figure 4.3: Sum-rate capacity lower and upper bounds and the gap.
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4.4 Sum-rate Capacity Upper Bound

In this section, we prove the upper bound in Theorem 2. In [9], the

following inequalities were derived.

Rv1 +Rv2 +Rw2 ≤ RMAC +
1

2
log

(
1 +

SNR

1 + h2SNR

)
, (4.3)

Rw1 +Rw2 +Rv1 ≤ RMAC +
1

2
log

(
1 +

SNR

1 + h2SNR

)
, (4.4)

Rv1 +Rv2 +Rw1 ≤ RMAC +
1

2
log

(
1 +

h2SNR

1 + SNR

)
, (4.5)

Rw1 +Rw2 +Rv2 ≤ RMAC +
1

2
log

(
1 +

h2SNR

1 + SNR

)
, (4.6)

where Rv1, Rv2, Rw1, Rw2 are the code rates for the messages V1, V2, W1, W2,

respectively, and

RMAC =
1

2
log(1 + (1 + h2)SNR).

By adding the four inequalities, we get the upper bound

Rsum ≤ 4

3
RMAC +

1

3
log

(
1 +

h2SNR

1 + SNR

)
+

1

3
log

(
1 +

SNR

1 + h2SNR

)
for any h and SNR. Here, Rsum = Rv1 + Rv2 + Rw1 + Rw2. We improve the

bound by tightening (4.3) and (4.4) for h > 1 and by tightening (4.5) and

(4.6) for h ≤ 1.

4.4.1 The case of h > 1

We tighten (4.3) and (4.4) to

Rv1 +Rv2 +Rw2 ≤ RMAC , (4.7)

Rw1 +Rw2 +Rv1 ≤ RMAC . (4.8)
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By combining these two inequalities with (4.5) and (4.6), we get

Rsum ≤ 4

3
RMAC +

1

3
log

(
1 +

h2SNR

1 + SNR

)
. (4.9)

In the following, we show the derivation of (4.7), and the derivation

of (4.8) is similar due to symmetry of the channel. Let Xn denote a length-

n sequence of random variables (X1, X2, · · · , Xn). The following inequalities

hold.

n(Rv1 +Rv2 +Rw2 − εn)

≤ I(V1, V2;Y n
1 ) + I(W2;Y n

2 ) (4.10)

≤ I(V1, V2;Y n
1 ,W1) + I(W2;Y n

2 , V1, V2,W1) (4.11)

= I(V1, V2;Y n
1 |W1) + I(W2;Y n

2 |V1, V2,W1) (4.12)

≤ I(V1, V2;Y n
1 |W1) + I(W2;Y n

1 |V1, V2,W1) (4.13)

= I(V1, V2,W2;Y n
1 |W1) (4.14)

= H(Y n
1 |W1)−H(Y n

1 |V1,W1, V2,W2) (4.15)

= H(Y n
1 |W1)−H(Y n

1 |X1, X2, V1,W1, V2,W2) (4.16)

= H(Y n
1 |W1)−H(Zn

1 ) (4.17)

≤ H(Y n
1 )−H(Zn

1 ) (4.18)

≤ nH(Y1)− nH(Z1) (4.19)

≤ nH(Y1G)− nH(Z1) (4.20)

=
n

2
log(1 + (1 + h2)SNR) (4.21)
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V1 → Xn
1

V2W2 → Xn
2

Y n
1 → V̂1V̂2

Y n
2 → Ŵ2

1

h

1

Figure 4.4: The upper-bound Z channel for Eq. (4.7).

V1 → Xn
1

V2W2 → Xn
2

Y n
1 → V̂1V̂2Ŵ2

1

h

Figure 4.5: The upper-bound MAC for Eq. (4.7).

4.4.2 The case of h ≤ 1

We tighten (4.5) and (4.6) to

Rv1 +Rv2 +Rw1 ≤ RMAC , (4.22)

Rw1 +Rw2 +Rv2 ≤ RMAC . (4.23)

By combining these two inequalities with (4.3) and (4.4), we get

Rsum ≤ 4

3
RMAC +

1

3
log

(
1 +

SNR

1 + h2SNR

)
. (4.24)

In the following, we show the derivation of (4.22), and the derivation

of (4.23) is similar due to symmetry of the channel. By the Fano’s inequality,

we get

n(Rv1 +Rv2 +Rw1 − εn) ≤ I(V1, V2;Y n
1 |W2) + I(W1;Y n

2 |W2) (4.25)

Note that (4.25) is an upper bound on the sum-rate capacity of the Z channel

where the communication link between transmitter 2 and receiver 2 is removed
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as shown in Fig. 4.6. By the chain rule of mutual information,

I(V1, V2;Y n
1 |W2) = I(V1, V2,W1;Y n

1 |W2)− I(W1;Y n
1 |V1, V2,W2).

In what follows, we show that

n(Rv1 +Rv2 +Rw1 − εn) ≤ I(V1, V2,W1;Y n
1 |W2) (4.26)

by showing that

I(W1;Y n
2 |W2) ≤ I(W1;Y n

1 |V1, V2,W2). (4.27)

We start by upper bounding the left-hand side,

I(W1;Y n
2 |W2) ≤ I(W1;Y n

2 |V1, V2,W2) (4.28)

where the inequality is due to the fact that conditioning reduces entropy. By

using stochastic degradedness argument similar to the one used for h > 1 case,

we further upper bound (4.28) by

I(W1;Y n
2 |V1, V2,W2) ≤ I(W1;Y n

1 |V1, V2,W2).

Here, Y n
2 is a degraded version of Y n

1 since h ≤ 1. From this inequality and

(4.28), we conclude that the inequality (4.27) holds. We proceed from (4.26)

to

n(Rv1 +Rv2 +Rw1 − εn) ≤ I(V1, V2,W1;Y n
1 |W2)

≤ n

2
log(1 + (1 + h2)SNR)

Thus, we conclude that the inequality in (4.22). The derivation of (4.23) is

almost identical, thus omitted. This completes the proof of the theorem.
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Figure 4.6: The upper-bound Z channel for Eq. (4.22).
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Figure 4.7: The upper-bound MAC for Eq. (4.22).

4.5 Layered Lattice Coding

Encoding and decoding strategies vary for different regimes of h. The

choices of different transmit signals for different regimes and the resulting

received signals are given in Table 4.2 where v-signals carry desired messages

for receiver 1 and w-signals for receiver 2. The parameter g is the channel

steering parameter, we refer to the g = 1 case as no channel steering and

to the g 6= 1 cases as channel steering. In this section, we focus on the no

channel steering case. We give high-level description of encoding and decoding

strategies for different regimes as follows.

� B1 (single layer transmission with single-user decoding): Each transmitter

sends a single message. Receiver 1 decodes vp while treating wp as noise.

Receiver 2 decodes wp while treating vp as noise. This scheme is often called

treating interference as noise (IAN) in the literature.

� B2 (multi-layer transmission with successive decoding): Each transmitter

93



sends three independent messages. Transmitter 1 splits v-signal into two

parts: vd to be decoded at both receivers and vp to be decoded only at

receiver 1. Transmitter 2 splits w-signal into two parts in the same way.

Receiver 1 decodes successively in the order vd → wf → vc → vp while

treating remaining signals as noise in each step where wf = wd + wc is

aligned interference. Receiver 2 decodes in the order wd → vf → wc → wp

where vf = vd + vc.

� B3 (multi-layer transmission with compute-and-forward decoding): Trans-

mit signals are similar to those for B2 with slight change in the coefficients

for vp and wp. Receiver 1 decodes in the order (vd,wf ,vc)→ vp, i.e., first

decode three integer linear combinations of vd, vc, wf by compute-and-

forward while treating vp and wp signals as noise. After removing vd, vc,

wf , receiver decodes vp while treating wp as noise. Receiver 2 performs

decoding in the order (wd,vf ,wc)→ wp in the same way.

� B4 (multi-layer transmission with compute-and-forward decoding): Each

transmitter sends three independent messages. Transmitter 1 splits w-signal

into two parts: wc to be decoded at both receivers and wp to be decoded

only at receiver 2. Transmitter 2 splits v-signal into two parts in the same

way. Decoding procedure is the same as the one for B3.

� B5 (multi-layer transmission with successive decoding): Transmit signals

are similar to those for B4 with slight change in the coefficients for vp and

wp. Receiver 1 decodes successively in the order vc → wf → vd → vp while

treating remaining signals as noise in each step. Receiver 2 decodes in the

order wc → vf → wd → wp in the same way.
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Transmit signals xj Received signals ȳj = yj − zj σ2(Λ) = P

B1
x1 = vp
x2 = wp

ȳ1 = vp + hwp

ȳ2 = wp + hvp
SNR

B2
x1 = vd + hwc + h3vp
x2 = wd + hvc + h3wp

ȳ1 = vd + hwf + h2vc + h3vp + h4wp

ȳ2 = wd + hvf + h2wc + h3wp + h4vp
SNR

1+h2+h6

B3

x1 = vd + hwc + 1√
h2P

vp
x2 = wd + hvc + 1√

h2P
wp

ȳ1 = vd + hwf + h2vc + 1√
h2P

vp + 1√
P

wp

ȳ2 = wd + hvf + h2wc + 1√
h2P

wp + 1√
P

vp
SNR−h−2

1+h2

B4

x1 = wc + h−1vd + 1√
P

wp

x2 = vc + h−1wd + 1√
P

vp

ȳ1 = hvc + wf + h−1vd + h√
P

vp + 1√
P

wp

ȳ2 = hwc + vf + h−1wd + h√
P

wp + 1√
P

vp
SNR−1
1+h−2

B5
x1 = wc + h−1vd + h−3wp

x2 = vc + h−1wd + h−3vp

ȳ1 = hvc + wf + h−1vd + h−2vp + h−3wp

ȳ2 = hwc + vf + h−1wd + h−2wp + h−3vp
SNR

1+h−2+h−6

B6
x1 = wp

x2 = vp

ȳ1 = hvp + wp

ȳ2 = hwp + vp
SNR

Table 4.2: Transmit and received signals for each regime.

� B6 (single layer transmission with single-user decoding): Each transmitter

sends a single message. The achievable scheme is similar to the one for B1,

but the roles of direct link and cross link are reversed.

We explain the structure of lattice signals that we use for lattice inter-

ference alignment. The following standard definitions [12] are used.

4.5.1 Lattice Signaling for Interference Alignment

Lattice signals are defined as follows.

� Shaping lattice Λ with σ2(Λ) = P and G(Λ) = 1
2πe

, thus V (Λ) = (2πeP )
n
2 ,
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� Lattice codewords

v̄d ∈ Λvd ∩ V(Λ), w̄d ∈ Λwd ∩ V(Λ),

v̄c ∈ Λvc ∩ V(Λ), w̄c ∈ Λwc ∩ V(Λ),

v̄p ∈ Λvp ∩ V(Λ), w̄p ∈ Λwp ∩ V(Λ),

� Dither signals

dvd,dvc,dvp,dwd,dwc,dwp ∼ Unif(V(Λ))

and dithered codewords

vd = [v̄d + dvd] mod Λ, wd = [w̄d + dwd] mod Λ,

vc = [v̄c + dvc] mod Λ, wc = [w̄c + dwc] mod Λ,

vp = [v̄p + dvp] mod Λ, wp = [w̄p + dwp] mod Λ,

where 1
n
‖vd‖2 = 1

n
‖vc‖2 = 1

n
‖vp‖2 = 1

n
‖wd‖2 = 1

n
‖wc‖2 = 1

n
‖wp‖2 = P .

� Code rates

Rj =
1

n
log

(
V (Λ)

V (Λj)

)
for j ∈ {vd, vc, vp, wd, wc, wp}.

If the transmitters send

x1 = vd + hwc,

x2 = wd + hvc, (4.29)

with transmit power 1
n
‖xj‖2 = (1 + h2)P = SNR, each receiver observes an

equivalent three-user MAC,

y1 = vd + hwf + h2vc + z1,

y2 = wd + hvf + h2wc + z2,
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where vf = vc + vd and wf = wc + wd are the aligned interference signals.

Note that 1
n
‖wf‖2 = 1

n
‖wc‖2 + 1

n
‖wd‖2 = 2P and also 1

n
‖vf‖2 = 2P . The

dithered and undithered signals are related by

[vf − dvd − dvc] mod Λ = v̄f mod Λ. (4.30)

where v̄f = v̄c+v̄d. If we choose nested lattices Λ ⊆ Λvc ⊆ Λvd, then v̄f ∈ Λvd.

In contrast, if Λ ⊆ Λvd ⊆ Λvc, then v̄f ∈ Λvc.

4.5.2 Successive Decoding for B2

For B2, the transmit signals are formed by LLC

x1 = vd + hwc + h3vp,

x2 = wd + hvc + h3wp, (4.31)

with transmit power 1
n
‖xj‖2 = (1 + h2 + h6)P = SNR.

The received signal at receiver 1 is

y1 = vd + hwf + h2vc + h3vp + h4wp + z1.

Successive decoding is performed in four steps with the decoding order vd →
wf → vc → vp. Decoding of desired signals vd, vc, vp are similar to the lattice

decoding in [12] while decoding of aligned interference signals wf = wc + wd

is similar to the decoding at the relay in [13, 14].

In the first step of successive decoding, we decode v̄d from the mod-Λ

channel y
(1)
1 . After linear scaling, dither removal, and mod-Λ operation, we

get

y
(1)
1 = [βy1 − dvd] mod Λ =

[
v̄d + z

(1)
1

]
mod Λ (4.32)
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where the effective noise is

z
(1)
1 = (β − 1)vd + β(hwf + h2vc + h3vp + h4wp + z1)

and its variance

σ2
e =

1

n
E
[∥∥∥z(1)

1

∥∥∥2
]

= (β − 1)2P + β2Ne

where Ne = (2h2+h4+h6+h8)P+1. With the MMSE scaling factor β = P
P+Ne

plugged in, we get σ2
e = βNe = PNe

P+Ne
. The capacity of the mod-Λ channel [12]

between v̄d and y
(1)
1 is

1

n
I
(
v̄d; y

(1)
1

)
≥ 1

2
log

(
P

βNe

)
=

1

2
log

(
1 +

P

Ne

)
=

1

2
log

(
1 +

P

(2h2 + h4 + h6 + h8)P + 1

)
=

1

2
log

(
1 +

SNR

σ2
vd

)
= Cvd

where σ2
vd = (2h2 + h4 + h6 + h8)SNR + 1 + h2 + h6. For reliable decoding of

v̄d at receiver 1, we have the code rate constraint Rvd ≤ Cvd.

In the second step of successive decoding, we decode the aligned inter-

ference w̄f in the same way as we did in the first step. After canceling vd, the

mod-Λ channel is given by

y
(2)
1 = [βh−1(y1 − vd)− dwf ] mod Λ

= [β(wf + hvc + h2vp + h3wp + h−1z1)− dwf ] mod Λ

=
[
w̄f + z

(2)
1

]
mod Λ
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where

z
(2)
1 = (β − 1)wf + β(hvc + h2vp + h3wp + h−1z1)

and the effective noise variance

σ2
e =

1

n
E
[∥∥∥z(2)

1

∥∥∥2
]

= (β − 1)2(2P ) + β2Ne

where Ne = (h2 + h4 + h6)P + h−2. Note that for simplicity, we use the

same notations β, σ2
e and Ne in every decoding step although their values are

different in different steps. With the MMSE scaling factor β = 2P
2P+Ne

plugged

in, we get σ2
e = βNe = 2PNe

2P+Ne
. The capacity of the mod-Λ channel between

w̄f and y
(2)
1 is

1

n
I
(
w̄f ; y

(2)
1

)
≥ 1

2
log

(
P

βNe

)
=

1

2
log

(
2P +Ne

2Ne

)
=

1

2
log

(
1

2
+

P

Ne

)
=

1

2
log

(
1

2
+

P

(h2 + h4 + h6)P + h−2

)
=

1

2
log

(
1

2
+

SNR

σ2
wf

)
= Cwf

where σ2
wf = (h2 +h4 +h6)SNR+h−2(1+h2 +h6). For reliable decoding of w̄f

at receiver 1, we have the code rate constraint Rwf = max{Rwc, Rwd} ≤ Cwf .

By lattice decoding, we can recover the modulo sum of interference codewords

[w̄f ] mod Λ = [w̄c + w̄d] mod Λ from y
(2)
1 . Then, we can recover the real sum

wf = wc + wd in the following way [17].
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� Recover [wf ] mod Λ by adding back dither signals,

[[w̄f ] mod Λ + dwc + dwd] mod Λ

= [w̄c + w̄d + dwc + dwd] mod Λ

= [wc + wd] mod Λ

= [wf ] mod Λ

� Subtract it from the received signal,

h−1(y1 − vd)− [wf ] mod Λ

= wf − [wf ] mod Λ + hvc + h2vp + h3wp + h−1z1

= QΛ(wf ) + z′1

where z′1 = hvc + h2vp + h3wp + h−1z1.

� Quantize it on the shaping lattice Λ to recover QΛ(wf ),

QΛ (QΛ(wf ) + z′1) = QΛ(wf )

with probability 1− Pe where

Pe = Pr[QΛ (QΛ(wf ) + z′1) 6= QΛ(wf )]

is the probability of decoding error. Since we chose Λ to be simultaneously

Rogers-good and Poltyrev-good, and V (Λ) ≥ V (Λf ), Pe → 0 as n→∞.

� Recover wf by adding two vectors,

[wf ] mod Λ +QΛ(wf ) = wf .
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Figure 4.8: The LLC code rate constraints Cd, Cf , Cc, Cp for B2 and B5.
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Now, we proceed to the third step where we decode vc from

y
(3)
1 = [βh−2(y1 − vd − hwf )− dvc] mod Λ

= [β(vc + hvp + h2wp + h−2z1)− dvc] mod Λ

=
[
v̄c + z

(3)
1

]
mod Λ

where

z
(3)
1 = (β − 1)vc + β(hvp + h2wp + h−2z1)

and the effective noise variance

σ2
e =

1

n
E
[∥∥∥z(3)

1

∥∥∥2
]

= (β − 1)2P + β2Ne

where Ne = (h2 + h4)P + h−4. With the MMSE scaling factor β = P
P+Ne

plugged in, we get σ2
e = βNe = PNe

P+Ne
. The capacity of the mod-Λ channel

between v̄c and y
(3)
1 is

1

n
I
(
v̄c; y

(3)
1

)
≥ 1

2
log

(
P

βNe

)
=

1

2
log

(
P +Ne

Ne

)
=

1

2
log

(
1 +

P

Ne

)
=

1

2
log

(
1 +

P

(h2 + h4)P + h−4

)
=

1

2
log

(
1 +

SNR

σ2
vc

)
= Cvc

where σ2
vc = (h2 + h4)SNR + h−4(1 + h2 + h6). For reliable decoding of v̄c at

receiver 1, we have the code rate constraint Rvc ≤ Cvc.
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In the fourth step, we decode vp from

y
(4)
1 = [βh−3(y1 − vd − hwf − h2vc)− dvp] mod Λ

= [β(vp + hwp + h−3z1)− dvp] mod Λ

=
[
v̄p + z

(4)
1

]
mod Λ

where

z
(4)
1 = (β − 1)vp + β(hwp + h−3z1)

and the effective noise variance

σ2
e =

1

n
E
[∥∥∥z(4)

1

∥∥∥2
]

= (β − 1)2P + β2Ne

where Ne = h2P + h−6. With the MMSE scaling factor β = P
P+Ne

plugged in,

we get σ2
e = βNe = PNe

P+Ne
. The capacity of the mod-Λ channel between v̄p and

y
(4)
1 is

1

n
I
(
v̄p; y

(4)
1

)
≥ 1

2
log

(
P

βNe

)
=

1

2
log

(
P +Ne

Ne

)
=

1

2
log

(
1 +

P

Ne

)
=

1

2
log

(
1 +

P

h2P + h−6

)
=

1

2
log

(
1 +

SNR

σ2
vp

)
= Cvp

where σ2
vp = h2SNR + h−6(1 + h2 + h6). For reliable decoding of v̄p at receiver

1, we have the code rate constraint Rvp ≤ Cvp.
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Since received signal y2 has the equivalent signal structure,

y2 = wd + hvf + h2wc + h3wp + h4vp + z2,

we can see that Cwd = Cvd, Cvf = Cwf , Cwc = Cvc, Cwp = Cvp. In summary,

we have the following set of code rate constraints for reliable decoding at the

receivers:

Rvd ≤ Cvd at receiver 1,

Rvc ≤ Cvc at receiver 1,

max{Rvd, Rvc} ≤ Cvf , at receiver 2,

Rwd ≤ Cwd at receiver 2,

Rwc ≤ Cwc at receiver 2,

max{Rwd, Rwc} ≤ Cwf at receiver 1,

Rvp ≤ Cvp at receiver 1,

Rwp ≤ Cwp at receiver 2.

After rearranging, we get

Rvd ≤ min{Cd, Cf},

Rvc ≤ min{Cc, Cf},

Rwc ≤ min{Cc, Cf},

Rwd ≤ min{Cd, Cf},

Rvp ≤ Cp,

Rwp ≤ Cp,
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where

Cd = Cvd = Cwd =
1

2
log

(
1 +

SNR

σ2
d

)
,

Cf = Cvf = Cwf =
1

2
log

(
1

2
+

SNR

σ2
f

)
,

Cc = Cvc = Cwc =
1

2
log

(
1 +

SNR

σ2
c

)
,

Cp = Cvp = Cwp =
1

2
log

(
1 +

SNR

σ2
p

)
,

and

σ2
d = (2h2 + h4 + h6 + h8)SNR + 1 + h2 + h6,

σ2
f = (h2 + h4 + h6)SNR + h−2 + 1 + h4,

σ2
c = (h2 + h4)SNR + h−4 + h−2 + h2,

σ2
p = h2SNR + h−6 + h−4 + 1.

Fig. 4.8 shows the curves of Cd, Cf , Cc, Cp for B2 at SNR = 156 and at

SNR = 106.

The sum-rate achievable by layered lattice coding (LLC) is given by

RLLC = Rvd +Rvc +Rvp +Rwd +Rwc +Rwp

= 2 · (min{Cd, Cf}+ min{Cc, Cf}+ Cp) .

It can be check that the case Cf < Cd happens when h is close to the left-

boundry of B2 where TDM outperforms LLC (see Fig. 4.8 for example). Thus,

we only consider the case Cd ≤ Cf . The bottleneck of min{Cc, Cf} depends

on SNR and h. The LLC sum-rate can be expressed as

RLLC = min{Rdcp, Rdfp}
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where

Rdcp = 2 (Cd + Cc + Cp) ,

Rdfp = 2 (Cd + Cf + Cp) .

To get some intuition about RLLC , let us first calculate an approxima-

tion of RLLC up to a constant, but not with a specified constant. In B2, h2SNR

is the largest term in σ2
d, σ

2
f , σ

2
c , and h−6 is the largest term in σ2

p. We can see

that σ2
d ' h2SNR, σ2

f ' h2SNR, σ2
c ' h2SNR, and σ2

p ' h−6. Therefore,

Cd '
1

2
log
(
h−2
)

=
1

2
log
(
SNR1−α) ,

Cf '
1

2
log
(
h−2
)

=
1

2
log
(
SNR1−α) ,

Cc '
1

2
log
(
h−2
)

=
1

2
log
(
SNR1−α) ,

Cp '
1

2
log
(
h6SNR

)
=

1

2
log
(
SNR3α−2

)
,

and

RLLC = 2 · (min{Cd, Cf}+ min{Cc, Cf}+ Cp)

' 2(1− α) log (SNR) + (3α− 2) log (SNR)

= α log (SNR)

for any SNR > 1 as long as 1
2
≤ α ≤ 3

4
. In B2,

RETW = log

(
1 + SNRα +

SNR

1 + SNRα

)
≤ log

(
1 + SNRα + SNR1−α)

≤ log (3SNRα) (4.33)

where the last inequality follows since SNRα ≥ SNR1−α > 1. Thus, we can

see that RLLC ' RETW in B2 for any SNR where the approximation is up to

a constant. Now, let us show tight constant-gap characterization for B2.
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4.5.3 Constant Gap for B′2

We characterize the gap

∆ = RETW −RLLC = RETW −min{Rdcp, Rdfp}.

In sufficiently low SNR, TDM achieves the sum-rate capacity to within con-

stant bits. Excluding such low SNR cases can simplify the LLC constant-gap

achievability proof. We use the following lemmas.

Lemma 4.3. For B′2 and SNR ≤ 156, TDM achieves the sum-rate capacity

to within one bit, i.e., RETW − RTDM < 1. For B′′2 and SNR ≤ 875, TDM

achieves the sum-rate capacity to within two bits, i.e., RETW −RTDM < 2.

Proof. The proof is straightforward, thus omitted.

Thus, we need to consider LLC only for SNR > 156. We show that for

B′2,

∆ = max{∆dcp,∆dfp} ≤ 1

where ∆dcp = RETW − Rdcp and ∆dfp = RETW − Rdfp. We first arrange ∆dcp

in the form

∆dcp = RETW −Rdcp

= log

(
N(h, SNR)

D(h, SNR)

)
= log

(
2 +

N(h, SNR)− 2D(h, SNR)

D(h, SNR)

)
where N(h, SNR) and D(h, SNR) are some positive polynomials. And, we

show that ∆dcp ≤ 1 by showing that N(h, SNR) − 2D(h, SNR) ≤ 0. Here,

we repeatedly use the fact that SNR < h−6 in B′2 to upper bound positive
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terms in N(h, SNR) − 2D(h, SNR). We then cancel out positive terms with

negative terms. As a result, only negative terms remain, thus N(h, SNR) −
2D(h, SNR) ≤ 0 and ∆dcp ≤ 1.

We repeat similar steps for ∆dfp. In the last step, we use the fact that

h < SNR−
1
6 < 156−

1
6 < 1

2
to upper bound the remaining positive terms to a

constant, 5.11. Thus N(h, SNR) − 2D(h, SNR) ≤ 0 and ∆dfp ≤ 1, and the

constant gap for B′2 is proved.

4.5.4 Constant Gap for B′′2

Due to Lemma 1, we need to consider LLC only for SNR > 875. We

show that for B′′2,

∆ = max{∆dcp,∆dfp} ≤ 2.

We first arrange ∆dcp in the form

∆dcp = RETW −Rdcp

= log

(
N(h, SNR)

D(h, SNR)

)
= log

(
4 +

N(h, SNR)− 4D(h, SNR)

D(h, SNR)

)
And, we show that ∆dcp ≤ 2 by showing that N(h, SNR) − 4D(h, SNR) ≤
0. Here, we use the fact that SNR < h−8 in B′′2 to upper bound positive

terms in N(h, SNR) − 4D(h, SNR). We then cancel out positive terms with

negative terms. As a result, only negative terms remain, thus N(h, SNR) −
4D(h, SNR) ≤ 0, and ∆dcp ≤ 2.

We repeat similar steps for ∆dfp. In the last step, we use the fact that

h < 1 to upper bound the remaining positive terms and cancel them out with
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negative terms. Thus, N(h, SNR) − 4D(h, SNR) ≤ 0 and ∆dcp ≤ 2, and the

constant gap for B′′2 is proved.

4.5.5 Successive Decoding for B5

The achievable sum-rate derivations and constant-gap proof for B5 are

almost identical to those for B2. As pointed out in [9], any achievable sum-rate

for channel (h, SNR) is also achievable for channel (h′, SNR′) = (h−1, h2SNR)

by simply switching the roles of receivers. Thus, sum-rate expressions derived

for h < 1 can be translated to sum-rate expressions for h > 1 by replacing h

with h−1 and then replacing SNR with h2SNR, i.e.,

Rsum(h, SNR) = Rsum(h−1, h2SNR).

This is also true for upper bound expressions. Any upper bound for h < 1 can

be translated to a valid upper bound for h > 1 by replacing h with h−1 and

then replacing SNR with h2SNR.

The sum-rate achievable by layered lattice coding is given by

RLLC = 2 · (min{Cd, Cf}+ min{Cc, Cf}+ Cp)

where

Cc =
1

2
log

(
1 +

SNR

σ2
c

)
, Cf =

1

2
log

(
1

2
+

SNR

σ2
f

)
,

Cd =
1

2
log

(
1 +

SNR

σ2
d

)
, Cp =

1

2
log

(
1 +

SNR

σ2
p

)
,
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and

σ2
c = (2h−2 + h−4 + h−6 + h−8)SNR + h−2 + h−4 + h−8,

σ2
f = (h−2 + h−4 + h−6)SNR + 1 + h−2 + h−6,

σ2
d = (h−2 + h−4)SNR + h2 + 1 + h−4,

σ2
p = h−2SNR + h4 + h2 + h−2.

The expressions for Cc, Cf , Cd, Cp and RLLC are identical to those for B2,

but the expressions for σ2
c , σ

2
f , σ

2
d, σ

2
p are changed. For completeness, the full

derivations are given below.

For B5, the transmit signals are formed by layered lattice coding

x1 = wc + h−1vd + h−3wp,

x2 = vc + h−1wd + h−3vp, (4.34)

with transmit power 1
n
‖xj‖2 = (1 + h−2 + h−6)P = SNR.

The received signal at receiver 1 is

y1 = hvc + wf + h−1vd + h−2vp + h−3wp + z1.

Successive decoding is performed in four steps with the decoding order vc →
wf → vd → vp.

In the first step of successive decoding, we decode v̄d from the mod-Λ

channel y
(1)
1 . After linear scaling, dither removal, and mod-Λ operation, we

get

y
(1)
1 = [βh−1y1 − dvc] mod Λ =

[
v̄c + z

(1)
1

]
mod Λ (4.35)

where the effective noise is

z
(1)
1 = (β − 1)vc + β(h−1wf + h−2vc + h−3vp + h−4wp + h−1z1)
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and its variance

σ2
e =

1

n
E
[∥∥∥z(1)

1

∥∥∥2
]

= (β − 1)2P + β2Ne

where Ne = (2h−2 + h−4 + h−6 + h−8)P + h−2. With the MMSE scaling factor

β = P
P+Ne

plugged in, we get σ2
e = βNe = PNe

P+Ne
. The capacity of the mod-Λ

channel between v̄c and y
(1)
1 is

1

n
I
(
v̄c; y

(1)
1

)
≥ 1

2
log

(
P

βNe

)
=

1

2
log

(
1 +

P

Ne

)
=

1

2
log

(
1 +

P

(2h−2 + h−4 + h−6 + h−8)P + h−2

)
=

1

2
log

(
1 +

SNR

σ2
vc

)
= Cvc

where σ2
vc = (2h−2 + h−4 + h−6 + h−8)SNR + h−2(1 + h−2 + h−6). For reliable

decoding of v̄c at receiver 1, we have a code rate constraint Rvc ≤ Cvc.

In the second step of successive decoding, we decode the aligned inter-

ference w̄f . After canceling vc, the mod-Λ channel is given by

y
(2)
1 = [β(y1 − hvc)− dwf ] mod Λ

= [β(wf + h−1vd + h−2vp + h−3wp + z1)− dwf ] mod Λ

=
[
w̄f + z

(2)
1

]
mod Λ

where

z
(2)
1 = (β − 1)wf + β(h−1vd + h−2vp + h−3wp + z1)
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and the effective noise variance

σ2
e =

1

n
E
[∥∥∥z(2)

1

∥∥∥2
]

= (β − 1)2(2P ) + β2Ne

where Ne = (h−2 +h−4 +h−6)P +1. With the MMSE scaling factor β = 2P
2P+Ne

plugged in, we get σ2
e = βNe = 2PNe

2P+Ne
. The capacity of the mod-Λ channel

between w̄f and y
(2)
1 is

1

n
I
(
w̄f ; y

(2)
1

)
≥ 1

2
log

(
P

βNe

)
=

1

2
log

(
2P +Ne

2Ne

)
=

1

2
log

(
1

2
+

P

Ne

)
=

1

2
log

(
1

2
+

P

(h−2 + h−4 + h−6)P + 1

)
=

1

2
log

(
1

2
+

SNR

σ2
wf

)
= Cwf

where σ2
wf = (h−2 +h−4 +h−6)SNR+1+h−2 +h−6. For reliable decoding of w̄f

at receiver 1, we have the code rate constraint Rwf = max{Rwc, Rwd} ≤ Cwf .

In the third step, we decode vd from

y
(3)
1 = [βh(y1 − hvc −wf )− dvd] mod Λ

= [β(vd + h−1vp + h−2wp + hz1)− dvd] mod Λ

=
[
v̄d + z

(3)
1

]
mod Λ

where

z
(3)
1 = (β − 1)vd + β(h−1vp + h−2wp + hz1)
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and the effective noise variance

σ2
e =

1

n
E
[∥∥∥z(3)

1

∥∥∥2
]

= (β − 1)2P + β2Ne

where Ne = (h−2 + h−4)P + h2. With the MMSE scaling factor β = P
P+Ne

plugged in, we get σ2
e = βNe = PNe

P+Ne
. The capacity of the mod-Λ channel

between v̄d and y
(3)
1 is

1

n
I
(
v̄d; y

(3)
1

)
≥ 1

2
log

(
P

βNe

)
=

1

2
log

(
P +Ne

Ne

)
=

1

2
log

(
1 +

P

Ne

)
=

1

2
log

(
1 +

P

(h−2 + h−4)P + h2

)
=

1

2
log

(
1 +

SNR

σ2
vd

)
= Cvd

where σ2
vd = (h−2 + h−4)SNR + h2(1 + h−2 + h−6). For reliable decoding of v̄d

at receiver 1, we have the code rate constraint Rvd ≤ Cvd.

In the fourth step, we decode vp from

y
(4)
1 = [βh2(y1 − hvc −wf − h−1vd)− dvp] mod Λ

= [β(vp + h−1wp + h2z1)− dvp] mod Λ

=
[
v̄p + z

(4)
1

]
mod Λ

where

z
(4)
1 = (β − 1)vp + β(h−1wp + h2z1)
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and the effective noise variance

σ2
e =

1

n
E
[∥∥∥z(4)

1

∥∥∥2
]

= (β − 1)2P + β2Ne

where Ne = h−2P + h4. With the MMSE scaling factor β = P
P+Ne

plugged in,

we get σ2
e = βNe = PNe

P+Ne
. The capacity of the mod-Λ channel between v̄p and

y
(4)
1 is

1

n
I
(
v̄p; y

(4)
1

)
≥ 1

2
log

(
P

βNe

)
=

1

2
log

(
P +Ne

Ne

)
=

1

2
log

(
1 +

P

Ne

)
=

1

2
log

(
1 +

P

h−2P + h4

)
=

1

2
log

(
1 +

SNR

σ2
vp

)
= Cvp

where σ2
vp = h−2SNR + h4(1 + h−2 + h−6). For reliable decoding of v̄p at

receiver 1, we have the code rate constraint Rvp ≤ Cvp.

Since received signal y2 has an equivalent signal structure,

y2 = hwc + vf + h−1wd + h−2wp + h−3vp + z2,

we can see that Cwd = Cvd, Cvf = Cwf , Cwc = Cvc, Cwp = Cvp. In summary,

we have the following set of code rate constraints for reliable decoding at the
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receivers:

Rvd ≤ min{Cd, Cf},

Rvc ≤ min{Cc, Cf},

Rwc ≤ min{Cc, Cf},

Rwd ≤ min{Cd, Cf},

Rvp ≤ Cp,

Rwp ≤ Cp,

where

Cc = Cvc = Cwc =
1

2
log

(
1 +

SNR

σ2
c

)
,

Cf = Cvf = Cwf =
1

2
log

(
1

2
+

SNR

σ2
f

)
,

Cd = Cvd = Cwd =
1

2
log

(
1 +

SNR

σ2
d

)
,

Cp = Cvp = Cwp =
1

2
log

(
1 +

SNR

σ2
p

)
,

and

σ2
c = (2h−2 + h−4 + h−6 + h−8)SNR + h−2 + h−4 + h−8,

σ2
f = (h−2 + h−4 + h−6)SNR + 1 + h−2 + h−6,

σ2
d = (h−2 + h−4)SNR + h2 + 1 + h−4,

σ2
p = h−2SNR + h4 + h2 + h−2.

4.5.6 Constant Gap for B1 and B6

As pointed out in [9], in these regimes, the capacity of the symmet-

ric Gaussian X channel is not significantly different from the capacity of the
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symmetric two-user Gaussian interference channel, and the GDOF is identical

for the two channels. In these regimes, ETW upper bound is tight, and IAN

achieves the sum-rate capacity to within one bit. Note that in near the bound-

ary between B1 and B2 and the boundary between B5 and B6, either TDM or

timesharing between IAN and TDM slightly outperforms IAN, especially for

lower SNR.

4.5.7 Limitation of Successive Decoding in B3 and B4

For h ≤ 1, the number of layers above noise level is L = d 1
1−αe. Thus,

given SNR, L grows unbounded as h approaches 1. This motivates us to apply

compute-and-forward decoding in these regimes while keeping the number of

layers to be small.

4.6 Compute-and-forward decoding

Although applicable to any regime, compute-and-forward decoding is

useful for regimes B3 and B4 where h is relatively close to 1. At each receiver,

we first decode three integer linear combinations of lattice codewords with

linearly independent coefficient vectors. We refer to lattice equations as a set of

integer linear combinations of lattice codewords. Upon successful decoding, we

can solve the lattice equations for individual codewords: two desired codewords

and one aligned interference codeword.

We start by explaining compute-and-forward decoding for B3. Decod-
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Figure 4.9: Computaion rates at SNR = 40 dB.
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ing procedures for other regimes are similar. The transmit signals are

x1 = vd + hwc +
1√
h2P

vp,

x2 = wd + hvc +
1√
h2P

wp, (4.36)

with transmit power 1
n
‖xj‖2 = (1 + h2)P + h−2 = SNR. The received signals

are

y1 = vd + hwf + h2vc +
1√
h2P

vp +
1√
P

wp + z1,

y2 = wd + hvf + h2wc +
1√
h2P

wp +
1√
P

vp + z2.

At receiver 1, decoding is performed in the following two steps:

� Decode pdv̄d +pfw̄f +pcv̄c three times with linearly independent coefficient

vectors a,b, c while treating

z′1 =
1√
h2P

vp +
1√
P

wp + z1

as noise. Solve lattice equations to recover individual codewords: v̄d, w̄f ,

v̄c and remove the effect of vd + hwf + h2vc from y1.

� Decode vp from
√
h2Pz′1 = vp + hwp +

√
h2Pz1 while treating the other

signal as noise. It is straightforward to show that

Rp =
1

2
log

(
1 +

P

2h2P

)
=

1

2
log

(
1 +

1

2h2

)
is achievable.

In the first step, after normalized by the noise variance 1
n
E[‖z′1‖2] = h−2 + 2,

the equivalent channel can be expressed as

y
(1)
1 =

y1√
h−2 + 2

= hT

 vd
wf

vc

+ z
(1)
1
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where the effective channel vector

h =
1√

h−2 + 2
[1 h h2]T

and 1
n
E[‖z(1)

1 ‖2] = 1. After linear scaling, dither removal, and mod-Λ opera-

tion, we get

[βy′1 − pddvd − pf (dwc + dwd)− pcdvc] mod Λ

= [pdv̄d + pfw̄f + pcv̄c + z1e] mod Λ (4.37)

where the effective noise is

z1e =

(
β√

h−2 + 2
− pd

)
vd +

(
βh√
h−2 + 2

− pf
)

wf

+

(
βh2

√
h−2 + 2

− pc
)

vc + βz
(1)
1 .

The effective noise variance is given by

σ2
e(h,M,p, β) =

1

n
E[‖z1e‖2] = ‖M (βh− p)‖2 P + β2

where p = [pd pf pc]
T , M = diag(1,

√
2, 1), and the MMSE scaling parameter

β = PhTM2p
1+PhTM2h

. With the optimal β plugged in, we get

σ2
e(h,M,p) = P

(
pTM2p− P (hTM2p)2

1 + PhTM2h

)
= pT

(
P−1M−2 + hhT

)−1
p

and the computation rate [7, 16] is defined by

Rcomp(h,M,p) =
1

2
log+

(
P

σ2
e(h,M,p)

)
(4.38)

where log+(x) = max{x, 0}. The optimization problem

min
p∈Z3\{0}

σ2
e(h,M,p)
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P h Rp

B1 ∪B2
SNR

1+h2+h6
1√

h6P+h8P+1
[1 h h2]T 1

2
log
(

1 + h6P
h8P+1

)
B3

SNR−h−2

1+h2
1√

h−2+2
[1 h h2]T 1

2
log
(
1 + 1

2h2

)
B4

SNR−1
1+h−2

1√
h2+2

[h 1 h−1]T 1
2

log
(

1 + h2

2

)
B5 ∪B6

SNR
1+h−2+h−2

1√
h−4P+h−6P+1

[h 1 h−1]T 1
2

log
(

1 + h−4P
h−6P+1

)
Table 4.3: The effective channel vectors for compute-and-forward

is equivalent to a shortest lattice vector (SLV) problem and can be solved

by using well-known algorithms such as the LLL algorithm. See also [18] for

recent results.

The optimal integer vectors a, b, c are such that they are non-zero,

linearly independent, and

Rcomp,1 ≥ Rcomp,2 ≥ Rcomp,3

where

Rcomp,1 = Rcomp(h,M, a),

Rcomp,2 = Rcomp(h,M,b),

Rcomp,3 = Rcomp(h,M, c),

are the highest computation rates. We can always find such vectors, and they

are not unique.

The expressions of Rp and the parameters P and h to calculate com-

putation rates Rcomp,j vary in different regimes and are given in Table 4.3. M

is the same for every regime. Fig. 4.9 shows the computation rates as well as

Rp at SNR = 104.
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In [7], based on Minkowski’s successive minima theorem, it was shown

that the sum of K highest computation rates for the effective K-user MAC is

within constant gap from the sum-rate capacity, i.e.,

K∑
k=1

Rcomp,k ≥
1

2
log(1 + ‖h‖2P )− 1

2
log(det M2)− K

2
log(K) (4.39)

where h, M, P , K depend on the lattice alignment scenario as well as the

underlying physical channel.

4.6.1 Compute-and-forward achievable sum-rate

Let us denote the integer matrix by A = [a b c]T or

A =

 ad af ac
bd bf bc
cd cf cc

 .
Since integer vectors a, b, c are linearly independent, A is full rank. Although

we can always find a full rank A, it is not guaranteed that all three computation

rates are strictly positive. Due to symmetry of the channel, two receivers

observe the same channel vector:

y
(1)
1 = hT

 vd
wf

vc

+ z
(1)
1 , y

(1)
2 = hT

 wd

vf
wc

+ z
(1)
2 . (4.40)

Therefore, the optimal integer vectors a, b, c at receiver 1 are the same as

those at receiver 2. We use algebraic successive cancellation (ASC) [7] with

the following two different cancellation orders:

� ASC order I: v̄d → w̄f at receiver 1 and w̄d → v̄f at receiver 2. We get the

effective coefficient matrices

A1 =

 ad af ac
0 b′f b′c
0 0 c′′c

 , A2 =

 ad af ac
0 b′f b′c
0 0 c′′c

 (4.41)
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Figure 4.10: ASC feasibility pattern.

at receiver 1 and 2, respectively. The matrices have zeros for the canceled

variables.

� ASC order II: v̄d → v̄c at receiver 1 and v̄f → w̄c at receiver 2. The

resulting coefficient matrices are

A1 =

 ad af ac
0 b′f b′c
0 c′′f 0

 , A2 =

 ad af ac
b′d 0 b′c
c′′d 0 0

 . (4.42)

Depending on h and SNR, the ASC orders can be feasible or infeasible. For

each ASC order to be feasible, the matrix A must satisfy a set of conditions.

We state the feasibility conditions in the following lemma.

Lemma 4.4. (ASC feasibility conditions)
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� ASC order I is feasible if ad, af , ac 6= 0 and adbf 6= afbd.

� ASC order II is feasible if ad, af , ac 6= 0, adbc 6= acbd, and afbc 6= acbf .

Proof. ASC order I: If the conditions are satisfied, A can be pseudo-triangularized

(up to column permutation) in the following way.

A →

 aT

b′T

c′T

 =

 aT

bT − bd
ad

aT

cT − cd
ad

aT

 =

 ad af ac
0 bf − bd

ad
af bc − bd

ad
ac

0 cf − cd
ad
af cc − cd

ad
ac


→

 aT

b′T

c′′T

 =

 aT

bT − bd
ad

aT

c′T − cf−(cd/ad)af
bf−(bd/ad)af

b′T


=

 aT

bT − bd
ad

aT

cT − cd
ad

aT − cf−(cd/ad)af
bf−(bd/ad)af

(bT − bd
ad

aT )


=

 ad af ac
0 b′f b′c
0 0 c′′c

 = A1 = A2.

ASC order II: If the conditions are satisfied, A can be pseudo-triangularized
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in the following two distinct forms:

A →

 aT

b′T

c′T

 =

 aT

bT − bd
ad

aT

cT − cd
ad

aT

 =

 ad af ac
0 bf − bd

ad
af bc − bd

ad
ac

0 cf − cd
ad
af cc − cd

ad
ac


→

 aT

b′T

c′′T

 =

 aT

bT − bd
ad

aT

c′T − cc−(cd/ad)ac
bc−(bd/ad)ac

b′T


=

 aT

bT − bd
ad

aT

cT − cd
ad

aT − cc−(cd/ad)ac
bc−(bd/ad)ac

(bT − bd
ad

aT )


=

 ad af ac
0 b′f b′c
0 c′′f 0

 = A1,

and

A →

 aT

b′T

c′T

 =

 aT

bT − bf
af

aT

cT − cf
af

aT

 =

 ad af ac
bd − bf

af
ad 0 bc − bf

af
ac

cd − cf
af
ad 0 cc − cf

af
ac


→

 aT

b′T

c′′T

 =

 aT

bT − bf
af

aT

c′T − cc−(cf/af )ac
bc−(bf/af )ac

b′T

 (4.43)

=

 aT

bT − bf
af

aT

cT − cf
af

aT − cc−(cf/af )ac
bc−(bf/af )ac

(bT − bf
af

aT )


=

 ad af ac
b′d 0 b′c
c′′d 0 0

 = A2.

Depending on h and the resulting matrix A, we can achieve different

combinations of computation rates. Fig. 4.10 shows ASC feasibility pattern
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over h. Based on compute-and-forward decoding and ASC feasibility, we state

the following achievability.

Theorem 4.5 (Compute-and-forward achievable sum-rate). The theorem is

stated in three parts:

� If A satisfy ASC order I feasibility condition,

Rcomp,2323 = 2Rcomp,2 + 2Rcomp,3 + 2Rp

is achievable.

� If A satisfy ASC order II feasibility condition,

Rcomp,1233 = Rcomp,1 +Rcomp,2 + 2Rcomp,3 + 2Rp

is achievable.

� For the other cases,

Rcomp,3333 = 4Rcomp,3 + 2Rp

is achievable.

The expressions of Rp and the parameters P and h for computation rates are

given in Table 4.3.

Proof. If ASC order I is feasible, the code rate constraints are

Rvd ≤ min{Rcomp,1, Rcomp,2} = Rcomp,2,

Rvc ≤ min{Rcomp,1, Rcomp,2, Rcomp,3} = Rcomp,3

Rwc ≤ min{Rcomp,1, Rcomp,2, Rcomp,3} = Rcomp,3

Rwd ≤ min{Rcomp,1, Rcomp,2} = Rcomp,2

since

125



� v̄d is involved in equation a at receiver 1 and in equations a, b at receiver

2 via v̄f ,

� v̄c is involved in equations a, b, c at receiver 1 and in equations a, b at

receiver 2 via v̄f ,

� w̄c is involved in equations a, b at receiver 1 via w̄f and in equations a, b

at receiver 2,

� w̄d is involved in equations a, b at receiver 1 via w̄f and in equations a at

receiver 2.

Thus, the sum-rate

RLLC = Rvd +Rvc +Rvp +Rwd +Rwc +Rwp

≤ 2Rcomp,2 + 2Rcomp,3 + 2Rp

is achievable.

If ASC order II is feasible, the code rate constraints are

Rvd ≤ Rcomp,1,

Rvc ≤ min{Rcomp,1, Rcomp,2} = Rcomp,2

Rwc ≤ min{Rcomp,1, Rcomp,2, Rcomp,3} = Rcomp,3

Rwd ≤ min{Rcomp,1, Rcomp,2, Rcomp,3} = Rcomp,3

since

� v̄d is involved in equation a at receiver 1 and in equation a at receiver 2 via

v̄f ,
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� v̄c is involved in equations a, b at receiver 1 and in equation a at receiver 2

via v̄f ,

� w̄c is involved in equations a, b, c at receiver 1 via w̄f and in equations a

and b at receiver 2,

� w̄d is involved in equations a, b, c at receiver 1 via w̄f and in equations a,

b, c at receiver 2.

Thus, the sum-rate

RLLC = Rvd +Rvc +Rvp +Rwd +Rwc +Rwp

≤ Rcomp,1 +Rcomp,2 + 2Rcomp,3 + 2Rp

is achievable.

For the other cases, the achievability of

RLLC = Rvd +Rvc +Rvp +Rwd +Rwc +Rwp

≤ 4Rcomp,3 + 2Rp

is straightforward.

If we apply (4.39) to our case, we get

Rcomp,1 +Rcomp,2 +Rcomp,3 ≥ RMAC,e −
c

2
(4.44)

where RMAC,e = 1
2

log (1 + ‖h‖2P ) and c = 1 + 3 log 3. Rcomp,j and RMAC,e

can be calculated with the parameters P and h in Table 4.3.

If ASC order II is feasible, we derive the following lower bound on the

sum-rate.
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Lemma 4.6 (Sum of computation rates for ASC order II). The sum of com-

putation rates Rcomp,1233 is lower bounded by

Rsum,1233 ≥ 2(RMAC,e −Rcomp,1) + 2Rp − c

where RMAC,e = 1
2

log (1 + ‖h‖2P ) and c = 1 + 3 log 3. The expressions of

Rp are given in Table 4.3, and Rcomp,1 and RMAC,e can be calculated with the

parameters P and h in the table.

Proof. Due to (4.44),

Rsum,1233 ≥ RMAC,e +Rcomp,3 + 2Rp −
c

2
. (4.45)

By rearranging (4.44), we can lower bound Rcomp,3 in terms of Rcomp,1,

Rcomp,3 ≥ RMAC,e −Rcomp,1 −Rcomp,2 −
c

2

≥ RMAC,e − 2Rcomp,1 −
c

2
. (4.46)

By combining (4.45) and (4.46), we get the lower bound in the lemma state-

ment.

This lemma result can be useful since it depends on Rcomp,1 but not on

Rcomp,2 and Rcomp,3.

It is obvious that Rcomp,1 is in the range,

1

3

(
RMAC,e −

c

2

)
≤ Rcomp,1 ≤ RMAC,e

since Rcomp,1 ≥ Rcomp,2 ≥ Rcomp,3, and any code sent over a MAC cannot be

reliably decoded if its code rate is greater than the sum-rate capacity of the

MAC. For ease of discussion, let us use the following definition of an outage

event.
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Definition 4.7 (Outage event). Given P and M, an effective MAC with h is

said to be in k-outage if

Rcomp,1 = Rcomp(h,M, a) >
1

3
RMAC,e + k,

for some constant k, and let Sk denote the k-outage set, the set of such h in

k-outage.

If h /∈ Sk, it follows that

Rcomp,2 +Rcomp,3 ≥ RMAC,e −Rcomp,1 −
c

2

≥ 2

3
RMAC,e − k −

c

2
, (4.47)

and

Rsum,1233 ≥ 2(RMAC,e −Rcomp,1) + 2Rp − c

≥ 4

3
RMAC,e + 2Rp − 2k − c, (4.48)

and

Rsum,2323 ≥
4

3
RMAC,e + 2Rp − 2k − c. (4.49)

4.6.2 Channel steering

Channel steering is a method to reduce the sensitivity of computation

rates to the variation of h. In the following explanation, for simplicity, we do

not consider the signals vp and wp but only focus on the messages vd,vc,wc,wd

that are involved in compute-and-forward decoding. For B3, the transmitters

send the signals,

x1 = vd + ghwc,

x2 = gwd + hvc, (4.50)
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Transmit signals xj

B1 ∪B2
x1 = vd + ghwc + h3vp
x2 = gwd + hvc + h3wp

B3
x1 = vd + ghwc + (h2P )−

1
2 vp

x2 = gwd + hvc + (h2P )−
1
2 wp

B4
x1 = wc + g−1h−1vd + P−

1
2 wp

x2 = g−1vc + h−1wd + P−
1
2 vp

B5 ∪B6
x1 = wc + g−1h−1vd + h−3wp

x2 = g−1vc + h−1wd + h−3vp

Table 4.4: Transmit signals.

Received signals ȳj = yj − zj

B1 ∪B2
ȳ1 = vd + ghwf + h2vc + h3vp + h4wp

ȳ2 = gwd + hvf + gh2wc + h3wp + h4vp

B3
ȳ1 = vd + ghwf + h2vc + (h2P )−

1
2 vp + P−

1
2 wp

ȳ2 = gwd + hvf + gh2wc + (h2P )−
1
2 wp + P−

1
2 vp

B4
ȳ1 = g−1hvc + wf + g−1h−1vd + hP−

1
2 vp + P−

1
2 wp

ȳ2 = hwc + g−1vf + h−1wd + hP−
1
2 wp + P−

1
2 vp

B5 ∪B6
ȳ1 = g−1hvc + wf + g−1h−1vd + h−2vp + h−3wp

ȳ2 = hwc + g−1vf + h−1wd + h−2wp + h−3vp

Table 4.5: Received signals.

P1 P2

B1 ∪B2
SNR

1+g2h2+h6
SNR

g2+h2+h6

B3
SNR−h−2

1+g2h2
SNR−h−2

g2+h2

B4
SNR−1

1+g−2h−2
SNR−1
g−2+h−2

B5 ∪B6
SNR

1+g−2h−2+h−6
SNR

g−2+h−2+h−6

Table 4.6: Signal power and the effective channel vectors
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h1 h2

B1 ∪B2
1√

h6P+h8P+1
[1 gh h2]T 1√

h6P+h8P+1
[g h gh2]T

B3
1√

h−2+2
[1 gh h2]T 1√

h−2+2
[g h gh2]T

B4
1√
h2+2

[g−1h 1 g−1h−1]T 1√
h2+2

[h g−1 h−1]T

B5 ∪B6
1√

h−4P+h−6P+1
[g−1h 1 g−1h−1]T 1√

h−4P+h−6P+1
[h g−1 h−1]T

Table 4.7: Signal power and the effective channel vectors

with the shaping lattice Λ with σ2(Λ) = min{P1, P2}, and the transmit power

(1+g2h2)P1 = SNR and (g2 +h2)P2 = SNR, respectively. The received signals

are

y1 = vd + ghwf + h2vc + z1,

y2 = gwd + hvf + gh2wc + z2. (4.51)

Roughly speaking, the sum-rate of the four messages, Rsum = Rvd + Rvc +

Rwc +Rwd becomes close to 4
3
RMAC,e when

Rcomp,1 ≈ Rcomp,2 ≈ Rcomp,3 ≈
1

3
RMAC,e.

Channel steering helps achieve this as close as possible by introducing asym-

metry between effective channel vectors that each receiver observes. Since

the receivers observe slightly different channel vectors h1 = [1 gh h2]T and

h2 = [g h gh2]T , their best three integer coefficient vectors may become dif-

ferent: a1,b1, c1 for receiver 1, and a2,b2, c2 for receiver 2. If ASC order II is

feasible, the code rates have to satisfy

Rvd ≤ min{Rcomp(h1,M, a1), Rcomp(h2,M, a2)}

Rvc ≤ min{Rcomp(h1,M,b1), Rcomp(h2,M, a2)}

Rwc ≤ min{Rcomp(h1,M, c1), Rcomp(h2,M,b2))}

Rwd ≤ min{Rcomp(h1,M, c1), Rcomp(h2,M, c2))}
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The achievable sum-rate can be optimized over g > 0, i.e.,

Rsum = max
g

(Rvd +Rvc +Rwc +Rwd). (4.52)

Note that we can optimize over the set of g that results in A satisfying the

ASC order feasibility condition. Fig. 4.3 shows the numerical evaluations of

lower and upper bounds with and without channel steering.
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Chapter 5

Conclusions

We presented approximate capacity region of some important special

cases of partially connected interference channels. The outer bounds based on

Z-channel type argument are derived. Achievable schemes are developed and

shown to approximately achieve the capacity to within a constant bit. For

future work, the channels with fully general coefficients may be considered. In

this dissertation, we presented different schemes for each channel type although

they share some principle. A universal scheme is to be developed for unified

capacity characterization of all possible topologies. The connection between

interference channel and index coding problems is much to explore.

We also developed achievable sum rate expressions for the Gaussian X-

channel at finite SNR using layered lattice coding with interference alignment.

For different regimes of channel parameter h, different decoding strategies in-

cluding successive decoding and compute-and-forward decoding were used. For

some regimes of h, we characterized the sum-rate capacity to within constant

bits by using successive decoding. For a set of h that satisfy certain feasibil-

ity conditions, we showed that compute-and-forward decoding outperforms a

timesharing MAC-based lower bound. The systematic methods for channel

steering to reduce the sensitivity of achievable rates to channel gains are to be

studied in the future.
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