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Abstract— This paper presents a reduced order model for a 

permanent magnet and high temperature superconductor (HTSC) 
in an axisymmetric frame.  This model is formulated as a bond-
graph to be used for system models such as lift bearing 
applications, where the nonlinear force-displacement interactions 
are important for stability analysis and control design.  The 
reduced order model is based on the mechanical and 
electromagnetic interaction between a permanent magnet and 
bulk HTSC.  Performance of the proposed reduced order model is 
compared to FEM analysis and experimental tests to confirm the 
static and transient performance. 

 

 
Index Terms—high temperature superconductor, bond graph, 

HTSC bearings 
 

I. INTRODUCTION 
IGH temperature superconducting (HTSC) bearings are 
actively being researched and implemented in levitation 

applications where minimal losses are required, such as 
flywheel energy storage.  Boeing has developed a HTSC thrust 
bearing to suspend a 132 kg rotor for a 5 kWh flywheel [1], 
and the Adelwitz Technologiezentrum has also developed 
bearings for 600 kg rotors [2].  In addition to achieving 
sufficient load carrying capacity, implementation of passive 
PM-HTSC bearing systems must deal with low damping 
characteristics which may limit rotor speeds [3].   
 The principal design for a HTSC bearing utilizes the stable 
levitation of a permanent magnet (PM) above a bulk 
superconductor.  Generally, type II superconductors are used 
for these applications.  These superconductors exhibit a lower 
and upper critical field below a critical temperature.  At low 
magnetic fields, these superconductors exhibit perfect 
diamagnetism and reject all flux [4].  Above this lower critical 
field, type II superconductors enter a mixed state where flux 
lines can penetrate the material and induce circulating currents 
at pinning centers, which flow at a critical current density 
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without resistance [5], [6].  Above the upper critical field, 
superconductivity is lost, and the material becomes resistive.   

Currently there is a lack of resources in the literature for 
developing physics-based, reduced order models which can be 
used by engineers to design and control HTSC bearings.  These 
models should be able to predict the local bearing stiffness and 
dynamic response.  Bean first proposed the critical state model 
in which current flow in a bulk HTSC is either zero or equal to 
the magnitude of the critical current density [7].  The critical 
state model has been used and verified in a finite element 
method (FEM) which utilizes Maxwell’s field equations to 
determine field distribution and resulting forces [8].  Although 
FEM is the best way to model the interaction between a 
permanent magnet and a bulk HTSC, these models are 
computationally intensive and may not be appropriate for 
initial stages of a design process where many iterations may be 
required.  These models are also not applicable for describing 
transient behavior with respect to system level control design. 
There is a need to develop a low order HTSC model to 
describe transient behavior with much less computation 
expense. 

Tests performed by Moon and Hikihara demonstrated a 
force-displacement hysteresis curve and nonlinear drift 
response to vibration in the interaction between a permanent 
magnet and cooled HTSC [9], [10].  These authors also 
presented a non-dimensional, nonlinear dynamic model based 
on friction dynamics [11] rather than on the electrodynamics of 
the system to describe the PM-HTSC interaction. 

Mirror image and advanced mirror image models have been 
developed by Kordyuk [12] and by Hull and Cansiz [13], [14].  
This methodology modeled the permanent magnet as a dipole 
with a stationary image on the other side of the bulk HTSC 
surface, and a diamagnetic image that mirrored the position of 
the permanent magnet.   This technique can be used to 
characterize the stiffness and force relation between a 
permanent magnet and bulk HTSC, but it does not consider the 
energy loss mechanisms that contribute to the dynamics and 
hysteretic behavior of the force-displacement curve [15]. 

Another method presented by Davey et al [16] modeled the 
bulk HTSC as a series of nested superconducting elements or 
rings.  The superconducting elements are modeled in 
accordance to the Critical State model, in which the current 
flowing though the rings is equal either to zero or to the 
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magnitude of the critical current density.  Davey used this 
technique to perform quasi-static solutions which predict 
trapped fields due to flux pumping.   

This paper will develop a dynamic model of the force-
displacement interaction between a permanent magnet and a 
bulk HTSC to describe the system transient behavior.  This 
method will be an extension of the work proposed by Davey in 
which discrete rings are used to model the PM and bulk HTSC. 
This model considers vertical motion in an axisymmetric 
frame, and includes the energy storage and loss mechanisms 
inherent to the system.  A bond graph formulation is presented 
to establish the modeling framework for the bearing system. 
The mathematic formulation of each bond will lead to the 
system dynamic equations. This modulated model can be 
added to a larger system model framework.  Dynamic drop 
testing was then performed to verify model prediction.   

II. MODEL DEVELOPMENT 

A. Description 
The HTSC puck is modeled as discrete, nested, 

superconducting rings shorted on themselves, Fig. 1.  Discrete 
current loops on the surface of the permanent magnet are used 
to represent the equivalent surface currents and resulting 
magnetic fields in free space.  This model assumes the 
permanent magnet puck is concentric to the bulk HTSC, which 
allows the use of an axisymmetric model. 

 
Fig. 1. Schematic layout of permanent magnet and a high temperature 
superconductor 

A bond graph is used here to represent the interaction 
between the permanent magnet and the bulk HTSC.  Bond 
graphs are highly useful for modeling systems across multiple 
energy domains, such as the mechanical and magnetic coupling 
of the PM-HTSC system.  A proposed bond graph for the 
system under study is shown in Fig. 2.   From the far left 1-
junction of the proposed bond graph, the equation of motion of 
the levitated mass in the z-direction can be derived by (1), 
where 𝐹𝑟 represents any mechanical frictional losses that may 

act on the mass, and 𝐹𝑝𝑚 represents the reactive forces 
generated by the magnetic interaction between the PM and 
bulk HTSC.  As will be shown, these reactive forces are a 
function of the PM velocity, 𝑣𝑝𝑚, and vertical position over the 
mass, 𝑧𝑧𝑝𝑚.  The right-hand portion of the bond graph can be 
thought of as a nonlinear mechanical spring, which is 
represented by a capacitive (C) element in bond graph 
terminology.  Within this capacitive element are a series of 
gyrator elements (G) and interconnected 1-junctions which 
represent the flux linkages of the superconducting rings used to 
model the bulk HTSC.   

𝑀
𝑑𝑣𝑝𝑚
𝑑𝑡

= −𝑀𝑔 − 𝐹𝑟(𝑣𝑝𝑚) − 𝐹𝑝𝑚(𝑣𝑝𝑚 , 𝑧𝑧𝑝𝑚) (1) 

 
Fig. 2. Proposed bond graph for modeling vertical motion of a permanent 
magnet over a bulk HSTC 

B. Inductance Modeling 
The superconducting ring is modeled as n discrete 

superconducting sub-rings with current 𝐼𝐼𝑖  and flux linkage 𝜆𝑖.  
The order of the model will equal the number of sub-rings 
used, plus the other mechanical states.  The total flux linkage 
for each sub-ring is a summation of the self induced flux with 
the mutually linked fluxes from the neighboring sub-rings, and 
the external flux linkage from the permanent magnet, (2).  The 
inductance matrix, 𝑳, is symmetric with self inductances on the 
diagonal, and mutual inductance terms on the off-diagonals.  
The external flux linkage from the permanent magnet, 
𝜙𝑖�𝑧𝑧𝑝𝑚, 𝑧𝑧𝑖�, is a function of the axial displacement between the 
permanent magnet, 𝑧𝑧𝑝𝑚, and the superconducting ring, 𝑧𝑧𝑖.   As 
shown by Fig. 2, this relationship between the flux linkages, 
circulating currents, and mutual inductances is represented by 
the multi-port 𝐼𝐼 element [17].   

PM

HTSC

PM Surface 
Source 
Currents

HTSC Divided into discrete 
super-conducting rings 

𝑧𝑧𝑝𝑝𝑝𝑝  
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C. Resistance Modeling 
In addition to the mutual flux linkages represented by the 

multi-port I-element, each ring also includes a nonlinear 
resistive element to model the rapid rise in resistivity once the 
critical current density is exceeded.  Instead of implementing 
the critical state model, a power law, described by Equation 
(3), can be used here to characterize the nonlinear relationship 
between ring current and voltage loss, 𝑒𝑖, [18], [19].  Equation 
(3) has been modified from Grilli to represent the current 
system. In (3),  𝑟𝑟𝑖 is the mean radius of the conducting ring, i, 
𝐴𝑖 is the cross sectional area of the conducting ring, 𝐸𝑐 is the 
threshold electric field, and 𝐽𝑐 is the critical current density.  
The threshold electric field is set at 1 𝜇𝑉 𝑐𝑝𝑝⁄  per Grilli.  The 
exponential factor 𝑛 determines the rate of rise in resistivity 
once the critical current density is exceeded.  Grilli suggests 
values of 𝑛 to range from 5 to 30. 

𝑒𝑖(𝐼𝐼𝑖) = 2𝜋𝑟𝑟𝑖𝐸𝑐 �
|𝐼𝐼𝑖|
𝐴𝑖𝐽𝑐

�
𝑛

𝑠𝑠𝑖𝑖𝑔𝑛(𝐼𝐼𝑖) (3) 

D. Gyrator Modeling 
 Gyrator elements in Fig. 2 are used to represent the Faraday 

induction (4) on the superconducting rings.  The induced 
electromotive force, 𝜀𝑖, on each ring is equal to the time 
varying magnetic flux, 𝜙𝑖, through the ring due to axial 
movement of the PM.  The following procedure will outline a 
methodology to determine the time varying flux in terms of the 
PM position and velocity. 

𝜀𝑖 = −
𝑑𝜙𝑖
𝑑𝑡

 (4) 

As shown by Fig. 1, the magnetic fields produced by the PM 
are represented by discrete current loops located on the surface.  
The goal of this method is to replicate the magnetic field 
generated by the axial position of the permanent magnet.  This 
method does not intend to model the electrodynamics of the 
permanent magnet itself, since the exterior currents are 
assumed as a fixed source.  Fig. 3 shows a schematic 
representation, where there is a fixed source current, 𝐼𝐼𝑠, at axial 
position 𝑧𝑧𝑠 with radius 𝑎𝑎𝑠, which interacts with a passive 
conducting ring at axial position 𝑧𝑧𝑖 and radius 𝑟𝑟𝑖.   

The magnetic flux that links the conducting ring, 𝑖𝑖, at axial 
position 𝑧𝑧𝑖 and radius 𝑟𝑟𝑖 due to the source current at 𝑧𝑧𝑠 can be 
calculated by taking the line integral of the magnetic potential 
at the position of the conducting ring, per Stoke’s Theorem (5).  
Since the problem is axisymmetric, the magnetic potential, 𝐴𝑖, 
is constant around the circumference of the conducting ring.  

𝜙𝑠𝑖 = �𝐴𝑠𝑖  𝑑𝑙𝑖 = 2𝜋𝑟𝑟𝑖𝐴𝑠𝑖 (5) 

The magnetic potential due to circular current loop, as 
shown in Fig. 3, can be calculated by the techniques derived by 
Smythe [20].  The magnetic potential due to current loop 𝐼𝐼𝑠, 
with radius 𝑎𝑎𝑠, at axial location 𝑧𝑧𝑠, can be determined at radius 
𝑟𝑟𝑖 and axial location 𝑧𝑧𝑖 by (6). 

 

𝐴𝑠𝑖 =
𝜇0𝐼𝐼𝑠
𝜋𝑘𝑠𝑖

�
𝑎𝑎𝑠
𝑟𝑟𝑖
�
1
2
��1 −

1
2
𝑘𝑠𝑖2 �𝐾(𝑘𝑠𝑖) − 𝐸(𝑘𝑠𝑖)� (6) 

 

 
Fig. 3. Schematic of a fixed filament current loop at axial position 𝑧𝑧𝑠 with 
constant current 𝐼𝐼𝑠, to a passive conducting ring at axial position 𝑧𝑧𝑖 and radius 
𝑟𝑟𝑖. 

The functions 𝐾(𝑘𝑠𝑖) and 𝐸(𝑘𝑠𝑖) are the complete elliptical 
integrals of the first and second kind with modulus 𝑘𝑠𝑖.  The 
modulus is calculated by (7).   

𝑘𝑠𝑖 = �
4𝑎𝑎𝑠𝑟𝑟𝑖

(𝑎𝑎𝑠 + 𝑟𝑟𝑖)2 + (𝑧𝑧𝑖 − 𝑧𝑧𝑠)2 (7) 

Using (5) through (7), the magnetic flux from the PM 
linking each ring can be calculated.  If multiple source currents 
are used to model the permanent magnet, superposition can be 
used to sum the magnet fluxes linking each ring.  Now that the 
expressions for the magnetic flux have been stated, the next 
step is to determine the time varying magnetic flux as a 
function of the permanent magnet velocity, 𝑣𝑝𝑚.   The time 
varying magnetic flux linking a conducting ring can be 
evaluated by (8), where the axial gradient of the flux is 
multiplied by the axial velocity of the permanent magnet.  Per 
Faraday’s law, the negative of the spatial gradient in the z 
direction of magnetic flux is represented by the gyrator factor 
𝐾𝑖 (9), as shown in the bond graph in Fig. 2. 

𝑑𝜙𝑠𝑖
𝑑𝑡

=
𝑑𝜙𝑠𝑖
𝑑𝑧𝑧𝑠

𝑑𝑧𝑧𝑠
𝑑𝑡

=
𝑑𝜙𝑠𝑖
𝑑𝑧𝑧𝑠

𝑣𝑝𝑚(𝑡) (8) 

Z axis

𝑟𝑟𝑖𝑖  

𝑧𝑧𝑠𝑠  𝑎𝑎𝑠𝑠  

𝐼𝐼𝑠𝑠  

𝑧𝑧𝑖𝑖  
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𝐾𝑖 = −
𝑑𝜙𝑠𝑖
𝑑𝑧𝑧𝑠

 (9) 

The axial gradient of magnetic flux is determined by further 
derivation.  First, take the derivative of (5) with respect to 𝑧𝑧𝑠, 
which yields (10).   

𝑑𝜙𝑠𝑖
𝑑𝑧𝑧𝑠

= 2𝜋𝑟𝑟𝑖
𝑑𝐴𝑠𝑖
𝑑𝑧𝑧𝑠

 (10) 

The gradient of magnetic potential with respect to axial 
position is calculated by (11). 

𝑑𝐴𝑠𝑖
𝑑𝑧𝑧𝑠

=
𝜇0𝐼𝐼𝑠
𝜋𝑘𝑠𝑖

�
𝑎𝑎𝑠
𝑟𝑟𝑖
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1
2
��1 −

1
2
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𝑑𝐾(𝑘𝑠𝑖)
𝑑𝑧𝑧𝑠

−
𝐾(𝑘𝑠𝑖)
𝑘𝑠𝑖

𝑑𝑘𝑠𝑖
𝑑𝑧𝑧𝑠

�

+ �
𝐸(𝑘𝑠𝑖)
𝑘𝑠𝑖

− 𝑘𝑠𝑖𝐾(𝑘𝑠𝑖)�
𝑑𝑘𝑠𝑖
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−
𝑑𝐸(𝑘𝑠𝑖)
𝑑𝑧𝑧𝑠

� 

(11) 

Equation (12) shows the derivative of the elliptical modulus 
with respect to 𝑧𝑧. 

𝑑𝑘𝑠𝑖
𝑑𝑧𝑧𝑠

= −
𝑘𝑠𝑗3 (𝑧𝑧𝑠 − 𝑧𝑧𝑖)

(4𝑎𝑎𝑠𝑟𝑟𝑖)
 (12) 

The derivatives of the elliptical integrals can be found in 
Smythe [20] and calculated by the formulations in (13) and 
(14). 

𝑑𝐾�𝑘𝑠𝑖(𝑧𝑧𝑠)�
𝑑𝑧𝑧𝑠

=
𝑑𝐾
𝑑𝑘𝑠𝑖

𝑑𝑘
𝑑𝑧𝑧𝑠

 

𝑑𝐸�𝑘𝑠𝑖(𝑧𝑧𝑠)�
𝑑𝑧𝑧𝑠

=
𝑑𝐸
𝑑𝑘𝑠𝑖

𝑑𝑘
𝑑𝑧𝑧𝑠

 
(13) 

𝑑𝐾
𝑑𝑘𝑠𝑖

=
𝐸

𝑘𝑠𝑖(1 − 𝑘𝑠𝑖2 )
−
𝐾
𝑘𝑠𝑖

 

𝑑𝐸
𝑑𝑘𝑠𝑖

=
𝐸
𝑘𝑠𝑖

−
𝐾
𝑘𝑠𝑖

 
(14) 

E. One Junction Modeling of Total Force 
Based on the bond graph representation of Fig. 2, the total 

force on the permanent magnet can be calculated by reverse 
summation through the gyrator elements utilizing the gyrator 
factors, 𝐾𝑖 (15). 

𝐹𝑝𝑚 = �𝐾𝑖𝐼𝐼𝑖

𝑛

𝑖=1

= �−
𝑑𝜙𝑠𝑖
𝑑𝑧𝑧𝑠

𝐼𝐼𝑖

𝑛

𝑖=1

 (15) 

To verify this relationship, the force on the permanent 
magnet can also be calculated based on the co-energy of the 
magnetic field.  This force can be calculated by taking the 
derivative of the magnetic co-energy, 𝑊𝑚

′ , with respect to axial 

position 𝑧𝑧𝑠𝑖 as shown by (16), with respect to the permanent 
magnet, for equal and opposite forces [21]. 

𝐹𝑝𝑚 = −
𝑑𝑊𝑚

′

𝑑𝑧𝑧𝑠
 (16) 

The magnetic co-energy can be calculated by taking the 
summation integral of the flux linkage given in (1) with respect 
to all the conducting ring currents (17). 

𝑊𝑚
′ = �� ��𝐿𝑖𝑗𝐼𝐼𝑗

𝑛

𝑗=1

� + 𝜙𝑖  𝑑𝐼𝐼𝑖
𝐼𝑖

0

𝑛

𝑖=1

 (17) 

From evaluating the integrals in (17), it is clear that the 
external flux linkage, 𝜙𝑖, is the only variable that is a function 
of the axial position.  Therefore, taking the derivative of the co-
energy with respect to axial position yields the expression in 
(18) which is the same as derived from the bond graph 
formulation. 

𝐹𝑝𝑚 = −
𝑑𝑊𝑚

′

𝑑𝑧𝑧𝑠
= �−

𝑑𝜙𝑠𝑖
𝑑𝑧𝑧𝑠

𝐼𝐼𝑖

𝑛

𝑖=1

 (18) 

F. Modeling Summary 
The complete set of dynamic equations for the levitating PM 

with mass M is given by (19).  The model order is dependent 
on the number of rings used to model the bulk HTSC, thus 
giving 𝑛, current states in addition to the velocity and position 
states of the PM mass.   

 
𝑑𝑧𝑧𝑝𝑚
𝑑𝑡

= 𝑣𝑝𝑚  
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𝑀

+
1
𝑀
�

𝑑𝜙𝑠𝑖
𝑑𝑧𝑧𝑠𝑖

𝐼𝐼𝑖

𝑛

𝑖=1
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⎥
⎥
⎥
⎥
⎤

= −𝑳−1
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⎢
⎢
⎢
⎢
⎢
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𝑒1(𝐼𝐼1)
𝑒2(𝐼𝐼2)
⋮

𝑒𝑛(𝐼𝐼𝑛)

� −
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⎢
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⎢
⎢
⎢
⎢
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𝑑𝜙𝑠1
𝑑𝑧𝑧𝑠
𝑑𝜙𝑠2
𝑑𝑧𝑧𝑠
⋮

𝑑𝜙𝑠𝑛
𝑑𝑧𝑧𝑠 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑣𝑝𝑚

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(19) 

The inductance matrix, 𝑳, is calculated using a thin filament 
assumption for each ring in the bulk HTSC.  The elements of 
the inductance matrix from (2) are calculated by (20) using 
methods outlined by Smythe [20] to determine self and mutual 
inductances.  In (20), 𝑤𝑖  is the width of a filament ring 
conductor in the bulk HTSC.   

𝐿𝑖𝑗 =

⎩
⎪
⎨

⎪
⎧𝑖𝑖 = 𝑗 𝜇0𝑟𝑟𝑖 �ln �

16𝑟𝑟𝑖
𝑤𝑖

− 2� + 0.25�

𝑖𝑖 ≠ 𝑗
𝜇0
𝜋𝑘𝑖𝑗

�
𝑟𝑟𝑖
𝑟𝑟𝑗
�

1
2
��1 −

1
2 𝑘𝑖𝑗

2 � 𝐾�𝑘𝑖𝑗� − 𝐸�𝑘𝑖𝑗��

� (20) 
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III. FEM COMPARISON  
 To initially verify performance of the reduced order 

model, comparisons were made to the finite element method 
(FEM).  The FEM algorithm, as described by Alsono and 
Coombs [8] which utilizes the critical state model, was used for 
this analysis.   

The system used in this study consists of a solid PM 
plunging through an HTSC ring, Fig. 4.  For this simulation, 
the PM is given a known velocity profile and the goal is to  

 
Fig. 4. Schematic layout of PM and HTSC to verify reduced order model 

against FEA analysis 

verify the reaction force between the two methods.  The PM 
has a radius of 4.41 mm and a height of 10 mm.  The magnet 
was modeled as 10 equally spaced current loops of 9,080 A, 
relating to a magnetic coercive strength of 908 kA/m.  The 
HTSC ring has an inner radius of 5 mm, and outer radius of 10 
mm, with a height of 8 mm.  The HTSC ring is 48 equally 
spaced conducting rings, which translates into a 48th order 
model.  For this simulation, the HTSC ring is assumed to be a 
chemically pinned material, with a critical current density of 
6.666e7 A/m2.    A exponential value of 𝑛 = 16 was used for 
the non-linear voltage loss. 

For the simulation, the permanent magnet moves through the 
HTSC ring at a low constant velocity of 0.467 mm/s between 
axial positions of +30 mm to -40 mm, where the HTSC ring is 
centered at 0 mm.  Three full cycles of movement through the 
HTSC ring was performed for this analysis.  Fig. 5 shows a 
comparison of force versus axial displacement results for the 
reduced order dynamic model to a high order FEM method.   

The reduced order model shows good matching of the force-
displacement profile calculated by the FEM analysis.  The 
initial descent of the magnet through the HTSC ring results in 
the highest repulsive force, which turns into an attractive force 
once the magnet passes through the ring.  Fig. 6 plots the 
current density of each conducting ring with respect to axial 
position.  Due to rapidly increasing resistivity, currents saturate 
near the set critical current density, which results in trapped 
magnetic fields by the HTSC ring.   

IV. EXPERIMENTAL VALIDATION 
To verify dynamic performance of the model, a test setup 

was constructed to evaluate the response of the permanent 
magnet falling over a bulk HTSC.  The purpose of this drop 
test is to illicit a dynamic response from the system by means 
of a step input, where the weight of the PM, and any additional 
mass, is quickly transferred to the magnetic interaction 
between the PM and HTSC as described by the proposed 
model.   

A picture of the test setup is shown in Fig. 7.  A high 
strength N45 neodymium magnet, with 38.1 mm OD x 6.4 mm 
ID x 12.7 mm H, is initially positioned over bulk HTSC by a 
spacer bar.  The bulk HTSC is YBa2Cu3O7 and measures 47.5 

 
Fig. 5. Comparison of force displacement profile between reduced order 
dynamic simulation versus high order FEM analysis 

 
Fig. 6. Ring current density versus axial position of permanent magnet 

mm OD x 15 mm H.  A composite-glass G-10 rod runs through 
the center of the PM to ensure that the motion of the PM is in 
the vertical direction over the bulk HTSC, and remains 
centered.  A G-10 plate is also attached to the top of the PM to 
provide a measurement surface for the IDEC MX1A-B12 laser 
displacement sensor.  The permanent magnet with G-10 plate 
had an initial weight of 117.8 g. Two additional blocks of 
beryllium copper were added to the top of the magnet to bring 
the total mass to 520 g.   Although beryllium copper has a 

Permanent 
Magnet

HTSC Ring

𝑧𝑧𝑝𝑝𝑝𝑝  

Initial Pass

HTSC Top 
Surface

HTSC Bottom
Surface
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conductivity of 20-28% IACS [22], the blocks are travelling 
with the permanent magnet and should not experience any 
changing magnetic fields that would induce significant 
currents.   

Spacer rods of varying height, 15mm, 20mm, and 25mm, 
were used to set the initial height of the permanent magnet over 
the bulk HTSC at room temperature.  Once the position was 
set, liquid nitrogen was added to the basin holding the bulk 
HTSC to bring the temperature down to 77 K.  After the HTSC 
was successfully field cooled, the spacer bar initially 
supporting the weight of the permanent magnet was removed  

 
Fig. 7. Dynamic drop test setup 

to allow it to drop over the bulk HTSC.  The IDEC probe 
measured position which was recorded at 1000 Hz rate. 

V. RESULTS AND ANALYSIS 
Comparisons of model predictions and recorded test data 

were made by using the model to simulate the same conditions 
of initial set height and loaded mass as the tests.  Due to the 
friction between the permanent magnet and G-10 guide rod, the 
system had a damped response to the weight transfer.  This 
mechanical friction was added to the model as a combination 
of coulomb and viscous friction with fixed constant 
parameters, 𝐹𝑐 and 𝐵𝑣 (19).  These parameters were roughly 
adjusted to match the time domain dynamic response. 

𝐹𝑟�𝑣𝑝𝑚� = 𝐹𝑐 ∙ sign�𝑣𝑝𝑚� + 𝐵𝑣𝑣𝑝𝑚 (21) 

The bulk HTSC was modeled as 130 discrete 
superconducting rings.  A critical current density for the 
chemically pinned puck of 9.5 kA/cm2 was assumed, which 
was at the low end of the manufacturer’s specifications.  The 
permanent magnet was modeled with 11 discrete current 
elements, each on the ID and OD surfaces, which correspond 
to 1030 kA/m.  The measured peak fields in air of the 
permanent magnet at 0.5mm above the surface was 0.4T, as 
shown in Fig. 8.  These field measurements correspond well to 
an ANSYS Maxwell FEM model of N45 magnetic material, 

and a model of the magnet modeled by surface currents, as 
shown in Fig. 9. 

 
Fig. 8.  Measured magnetic field from 0.5mm above permanent magnet 

 
Fig. 9. Comparisons from ANSYS Maxwell FEM model of N45 PM material 
versus representation of the PM utilizing surface currents.   

Figures 10, 11, and 12 show comparisons between model 
prediction and experimental test for drops at 15mm, 20mm, 
and 25mm heights respectively.  The time-domain response, 
shown in the left pane of these figures, shows the model tracks 
well to experimental results.  The largest errors come from 
inaccurate modeling of the friction between the magnet and 
guide rod, which was only roughly estimated.   A fast Fourier 
transform was also performed to verify oscillation frequency, 
which is shown in the right side of Figs. 10, 11, and 12.  The 
FFT shows that the model presented matches the frequency 
response and local stiffness of the system relatively well.  

This model technique is applicable to any configuration of 
permanent magnets and HTSC in an axisymmetric frame.  The 
effective axial spring rate and levitation forces can be 
characterized with this model to determine bearing lift forces 
for a thrust and journal bearing configurations. Although this 
modeling technique is currently limited to vertical motion, this 
technique is applicable to analysis of permanent magnets and 
bulk HTSC for thrust bearing design.  Due to tight clearances 
between rotor and stator components, large excursions in the 
radial direction would not be expected.   

PM and 
mass

HTSC

IDEC 
Position 
Probe

Guide 
Rod
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Fig. 10. Model and test comparison at set height of 15mm above HTSC.  Model and test both show frequency response of 11.23 Hz 

 
Fig. 11. Model and test comparison at set height of 20mm above HTSC.  Model and test both show frequency response of 8.79 Hz 

 

 
Fig. 12. Model and test comparison at set height of 25mm above HTSC.  Model and test both show frequency response of 7.81 Hz 

 

VI. CONCLUSION 
This paper presents the methodology for modeling the 

dynamic interaction between a permanent magnet and HTSC in 
an axisymmetric frame and the subsystem model is formulated 
using a bond graph.  This approach promotes the use of the 
model as part of a more complex bearing system, and the 
methodology significantly reduces computational time and 
model-order over FEM techniques.  The model captures the 
stiffness and dynamic behaviors that are important for system 
control design.   

The proposed reduced order model was tested against FEM 
analysis and experimental data.  This model showed good 

matching of the force-displacement profile to FEM 
predications for a novel combination of PM and HTSC ring.  In 
addition, model predictions are given to compare performance 
to results from an experimental drop test designed to elicit 
system dynamic response. The results show that the proposed 
model is in agreement with experimental test results of the 
dynamic interaction between a permanent magnet and bulk 
HTSC.   

This model allows designers to have the first ever capability 
to quickly calculate vertical lifting capacity and dynamic 
response for a potential thrust bearing design.  The model also 
enables a control design for the bearing system since it 
accurately predicts the transient behavior of a PM-HTSC 
bearing system with a low-order system representation. 
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