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Abstract 

Modeling Stock Volatility with Stochastic ARCH, GARCH and  

Stochastic Volatility model 

Chang Sun, M.S.Stat. 

The University of Texas at Austin, 2016 

 

Supervisor: Stephen Walker 

 

Modeling volatility within the log stock return is key to the stock price prediction. Despite 

numerous researches that modeled the volatility with conditional heavy-tailed error distributions, 

the unconditional distribution remains unknown. In this report, we use and follow the method 

introduced by Pitt and Walker (2005) by assigning a Student-t distribution for the marginal density 

of log return and constructing three models respectively, with similar structures to Autoregressive 

Conditional Heteroskedasticity (ARCH),  Generalized ARCH (GARCH) and Stochastic Volatility 

model in a Bayesian way. We demonstrate the capability of the three models for stock price 

prediction with S&P 500 index and show that all our models outperform the standard GARCH 

model (Bollerslev, 1986). 
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Introduction 

Stock trading is one of the most common investment activities. Investors and Researchers 

continuously develop various stock analysis methods to help them predict future equity prices. One 

of the common ways to model the equity future price is to analyze the current financial information 

and news (Milosevic, 2016). A number of analysis methods are based on financial balance sheets 

and various ratios which are often used to describe the financial health of the company (Milosevic, 

2016). Experienced analysts could apply some mathematical models to evaluate company’s 

intrinsic value, such as the well-known Graham number or Graham’s criteria (Graham, 1949). 

However, the increased and continuously changing volatility in the current market make it hard to 

find a company that satisfy Graham’s principles on today’s stock exchanges (Milosevic, 2016). 

Uncertainty has become central to much of the modern financial theory (Bollerslev, Chou and 

Kroner, 1992).  For example, most asset pricing theories involve measuring the risk premium. In 

option pricing, the uncertainty associated with the future price of the underlying asset is the most 

important determinant in the pricing function (Bollerslev, Chou and Kroner, 1992).  

It is well recognized that the uncertainty of the speculative prices, as changing through time, is 

measured by its variances and covariance (Bollerslev, Chou and Kroner, 1992). For this report, we 

require our time series to be strictly stationary so we start from modeling the stock return instead 

of the prices directly. Under such condition, one of the most popular models for characterizing the 

changing variances is the Autoregressive Conditional Heteroskedasticity (ARCH) model of Engle 

(1982), which allows the conditional variance to change over time as a function of the past errors. 

Later on, a Generalized Autoregressive Conditional Heteroskedastic (GARCH) model was 

introduced by Bollerslev (1986) to allow for both longer memory and more flexible lag structure. 

Another commonly used model, first introduced by Taylor (1982), is called discrete time stochastic 

volatility model in which the error term has the variance that follows a stochastic process. Since 

then, many extensions to these models were published. One of the interesting and also widely 

recognized problem was that the unconditional or marginal return distributions tend to have flat 

tails rather than the normal distribution. Although the unconditional error in GARCH(p, q) model 

with conditional normal errors given by Bollerslev (1986) show somewhat flatter tails, it couldn’t 

fully account for the leptokurtosis (Bollerslev, Chou and Kroner, 1992). Bollerslev (1987) 

suggested to use the standardized t-distribution as the conditional error distribution in the 

ARCH/GARCH model. Other parametric densities for the conditional distribution in the estimation 
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of ARCH include normal-Poisson mixture distribution in Jorion (1989), the power exponential 

distribution in Baillie and Bollerslev (1989) and the generalized exponential distribution in Nelson 

(1990) (Bollerslev, Chou and Kroner, 1992).  

Despite such appealing constructions, the unconditional density of the stationary process remains 

unknown. In this report, we take an approach introduced by Pitt and Walker (2005) which modeled 

the volatility of the strictly stationary time series with specified marginal density and linear 

expectations. Specifically, Pitt and Walker (2005) specified the stationary marginal density of the 

stock return as a Student t distribution with degree of freedom being estimated through Monte Carlo 

Markov Chain (MCMC) sampling. Three types of models, ARCH(1), GARCH(1,1) and Stochastic 

Volatility model with Student-t marginal density are introduced. By using the auxiliary variables, 

Pitt and Walker (2005) showed that the likelihood estimation becomes very efficient and it is easy 

to obtain linear expectation of the volatility, which make the autocorrelations of the series and the 

point forecasting several steps ahead also possible. In this report, we will show in detail how such 

three types of models are constructed and used for volatility prediction. Pitt and Walker (2005) 

examined their GARCH(1,1) on daily continuously compounded percentage returns of US dollars 

against five currencies and compared the volatility estimation with the standard GARCH(1,1) 

(Bollerslev, 1986). Each of their series consisted of only 1,000 data points. In our report, we will 

examine all three models introduced on S&P 500 index daily closing price from January 1st 2005 

to November 11th 2016, a larger dataset with around 3,000 data points. Given our goal is to predict 

stock prices, the performance of those three models will be evaluated based on accuracy of stock 

price prediction, compared with that from the same benchmark model, standard GARCH(1,1) by 

Bollerslev (1986). 

This article is organized as follows: In section 2, we give the rationale to model the stock return, 

even though our primary interest is the price. We also illustrate the reason for modeling the 

marginal density as a Student t distribution. In section 3, we briefly review the traditional ARCH, 

GARCH and discrete time stochastic volatility model. Then show how our models are different 

from those by incorporating the Student t marginal density with the auxiliary variable and how to 

achieve the parameter estimation and forecast in a Bayesian setting. In section 4, we show the 

results for parameter estimation from MCMC sampling based on real stock return data, then 

perform the model checking and stock price prediction. We also compare our result with that from 



3 

 

 

the traditional GARCH model. In section 5, we give a brief summary to the methods introduced by 

Pitt and Walker (2005) and discuss the model preference regarding to the computation efficiency. 
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Stock return and its marginal density 

There are basically two reasons to model the stock return rather than the prices. Financially 

speaking, the stock market may be considered close to perfectly competitive, so that the size of the 

investment does not affect price changes (Campbell, Lo, and MacKinley 1997, chap. 1). Thus the 

return is a complete and scale-free summary of the investment opportunity (Campbell, Lo, and 

MacKinley 1997, chap. 1). Statistically speaking, returns have more attractive properties than 

prices such as stationarity and ergodicity (Campbell, Lo, and MacKinley 1997, chap. 1). By 

stationarity, we mean the series has finite variation, constant mean and the covariance does not 

depend on time, but only on the time difference.  

DEFINITION OF THE STOCK RETURN 

Given the nice scale-free property, the stock return can be constructed only through the stock prices. 

We follow the definitions given by Campbell, Lo, and MacKinley (1997).  Denote 𝑃𝑡 as the stock 

price at time 𝑡, then the simple net return, 𝑅𝑡 between 𝑡 − 1 and 𝑡 is simply: 

 𝑅𝑡 =  
𝑃𝑡

𝑃𝑡−1
− 1 (1) 

This definition is quite straightforward and serves as a guideline to calculate the annualized 

multiyear returns. However, it is often difficult to manipulate the geometric average involved in 

such calculation, so another notion, continuously compounded return or log return 𝑟𝑡 of an asset is 

introduced in Finance, which is often used in mathematical modeling as rate of return and is defined 

as: 

 𝑟𝑡 ≡ log(1 + 𝑅𝑡) = 𝑙𝑜𝑔
𝑃𝑡

𝑃𝑡−1
= 𝑙𝑜𝑔𝑃𝑡 − 𝑙𝑜𝑔𝑃𝑡−1 (2) 

In this report, we use the log return rather than the simple net return to construct the dataset. We 

denote 𝑦𝑡 = 𝑙𝑜𝑔𝑃𝑡 − 𝑙𝑜𝑔𝑃𝑡−1 instead of using 𝑟𝑡. For prediction purpose, Pt could be written as: 

 𝑃𝑡 = 𝑃𝑡−1𝑒𝑡
𝑦𝑡 (3) 

MARGINAL DENSITY 

The early-stage belief that the stock return could be adequately characterized by the normal 

distribution was rejected by many studies later which have shown the empirical distributions of 
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such returns have more kurtosis (i.e., “flatter tails”) than that predicted by the normal distribution 

(Blattberg and Gonedes, 1974). Various comparisons of the Student t distribution and stable 

distributions were made by Blattberg and Gonedes (1974) who showed that the Student model 

outperformed the symmetric-stable models.  Of course there are plenty of choices on the marginal 

density besides the Student t distribution, such as a discrete mixture of normal distributions (Kon, 

1984) and normal inverse Gaussian distributions (Barndorff-Nielsen, 1997), but using the Student 

t has some nice properties. First, it is fairly simple to use, with only one parameter, that is, the 

degree of freedom to be estimated. Second, the Student model allows the use of well-defined 

density functions, thus, the likelihood function of the Student model can be expressed in closed 

form (Blattberg and Goedes, 1974), then either Bayesian inference or maximum-likelihood 

estimates may be obtained straightforwardly.  

  



6 

 

 

Algorithms 

MODELS OF ARCH (1) TYPE 

The ARCH model proposed by Engle (1982) has all discrete time error term {εt} of the form 

 εt = 𝑧𝑡𝜎𝑡, (4) 

where zt is i, i, d. normal random variable, with E(zt) = 0, Var(zt) = 1, with σt a time-varying, 

positive and measureable function of the time t − 1 information set (Bollerslev, Chou and Kroner, 

1992). By definition, 𝜀𝑡  is serially uncorrelated with mean zero (Bollerslev, Chou and Kroner, 

1992). Usually 𝜀𝑡 corresponds to the innovation in the mean for some stochastic process, but in our 

report, we make 𝜀𝑡 itself observable, that is, 𝜀𝑡 = 𝑦𝑡. 

Thus, the ARCH (1) model has the form: 

 yt = 𝑧𝑡𝜎𝑡 (5) 

 𝑤𝑡 = 𝜎𝑡
2 = 𝑎 + 𝑏𝑦𝑡−1

2 ,   𝑎 > 0, 𝑏 ≥ 0, (6) 

Then we have: 

 𝑦𝑡 = √𝑎 + 𝑏𝑦𝑡−1
2 𝑧𝑡 (7) 

with the parameter constraints ensuring that the variance remains positive (Pitt and Walker, 2005). 

The 𝑤𝑡, in our case represents the volatility, which given 𝑦𝑡−1
2  , is deterministic shown in (6). The 

estimation of those parameters can be achieved through maximum likelihood (ML) or Generalized 

Method of Moments (GMM) (Bollerslev, Chou and Kroner, 1992). In this report, we follow the 

method introduced by Pitt and Walker (2005) to incorporate the marginal Student t distribution 

constructed through latent variable in the ARCH (1) type model and use MCMC to derive Bayesian 

inference for the parameters.  

First, we specify a joint density  

 

fY,W(𝑦, 𝑤) = 𝑓𝑌|𝑊(𝑦|𝑤) ∗ 𝑓𝑊(𝑤) 

= N(0, w) ∗ Ig(
ν

2
,
νβ2

2
) (8) 
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By definition, the conditional error distribution is normal yt~𝑁(0, 𝑤𝑡). The reason to use inverse-

gamma distribution for wt, as a latent variable in this case, is to guarantee the marginal density as 

a Student-t distribution. As can be seen from below, when we integrate out wt, yt follows a scaled 

Student-t distribution tν(0, 𝛽2) . The parameters ν  and β2  will be estimated through MCMC 

updates. 

 

fY(𝑦) = ∫ 𝑓𝑌|𝑊(𝑦|𝑤) ∗ 𝑓𝑊(𝑤)𝑑𝑤 

=
1

√𝜈𝛽2𝜋
∗

Γ (
𝜈 + 1

2 )

Γ (
𝜈
2)

(1 +
y2

𝜈𝛽2
)

−
𝜈+1

2

 
(9) 

Remember our goal is to construct a Markov process {yt}. Following the fashion specified by Pitt 

and Walker (2005), we first generate w1 from fW(𝑤) and then y1~𝑓𝑌|𝑊(𝑦|𝑤1). We then generate 

wt~𝑓𝑊|𝑌(𝑤|𝑦𝑡−1) and yt~𝑓𝑌|𝑊(𝑦|𝑤𝑡) for t = 2, 3, 4 …, which gives the dependency structure for 

ARCH(1) model shown in Figure 1 (Pitt and Walker, 2005). 

 

Figure 1: Dependency structure of ARCH(1). 
 

The conditional density fW|Y(𝑤|𝑦) is easy to obtain as: 

 
fW|Y(𝑤|𝑦) ∝ 𝑓(𝑤, 𝑦) 

∝ w−
ν+1

2
−1𝑒

−(
1
2

𝑦2+
𝜈𝛽2

2
)𝑤−1

 
(10) 

which is an inverse-gamma distribution Ig(
ν+1

2
,

1

2
𝑦2 +

𝜈𝛽2

2
). Compared with (6), obviously, the 

𝑤𝑡 in Pitt and Walker (2005)’s model given 𝑦𝑡−1 is a random variable. Thus this ARCH(1) model, 

is actually a stochastic ARCH type model. Based on this conditional density, we are able to write 

the predictive density p(yt|𝑦𝑡−1) explicitly: 
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p(yt|𝑦𝑡−1) = ∫ 𝑓𝑌|𝑊(𝑦𝑡|𝑤𝑡)𝑓(𝑤𝑡|𝑦𝑡−1)𝑑𝑤𝑡 

∝ √
yt−1

2 + 𝜈𝛽2

1 + 𝜈
[
Γ (

𝜈 + 2
2 )

Γ (
𝜈 + 1

2 )
∗

1

√𝜈 + 1
(1 +

𝑆2

𝜈 + 1
)

−
𝜈+2

2

]  
(11) 

where 𝑆2 = (𝜈 + 1)
𝑦𝑡

2

𝑦𝑡−1
2 +𝜈𝛽2. Such predictive density implies that  

 
yt = √

yt−1
2 + 𝜈𝛽2

1 + 𝜈
𝑆𝑣+1 

(12) 

where Sν+1~𝑡𝜈+1, a Student-t variable with ν + 1 degree of freedom. Compared with (7), it is 

obviously that this model is different from the ARCH(1) of Engle (1982), but the likelihood 

function is still able to obtain directly through the predictive density above, which make it fairly 

easy to obtain the posterior of parameters.  

For the choice of priors for parameters, we give an equal probability for 𝜈 from 3 to 20. The degree 

of freedom over 20 would make the Student-t distribution more like a Gaussian distribution while 

below 3 would lead the variance to infinity. The prior for 𝛽2 is given by Gamma(1,1). We leave 

the derivation of the posterior of 𝜈 and 𝛽2 in the Appendix. 

MODELS OF GARCH(1, 1) TYPE 

The extension of the ARCH process to the GARCH process is much similar to the extension of 

standard AR model to the general ARMA process (Bollerslev, 1986). Compared with ARCH(q) 

model, GARCH(p, q) process allows more flexible lag structure and longer memory. The 

GARCH(p, q) proposed by Bollersleve (1986) has the following structure: 

 𝜀𝑡~𝑁(0, 𝜎𝑡
2) (13) 

 𝜎𝑡
2 = 𝑎 + ∑ bi𝜀𝑡−𝑖

2 + ∑ 𝑐𝑖𝜎𝑡−𝑖
2

𝑝

𝑖=1

𝑞

𝑖=1

 (14) 

where p ≥ 0, q > 0; a > 0, bi ≥ 0, 𝑖 = 1, 2, … , 𝑞; 𝑐𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑝. 

To keep the notation consistent with our previous sections, the standard GARCH(1,1) from 

Bollerslev (1986) can be written as: 
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 yt~𝑁(0, 𝑤𝑡) (15) 

 wt = 𝑎 + 𝑏𝑦𝑡−1
2 + 𝑐𝑤𝑡−1 (16) 

where 𝑤𝑡 is still deterministic. Again, the model introduced by Pitt and Walker (2005) differs from 

the structure above because the marginal density of yt and wt are kept fixed and known (Pitt and 

Walker, 2005). To enable a longer dependency, a new auxiliary variable zt is introduced into the 

model, but it does not affect the marginal distribution of y. The joint density has the form: 

 

fY,W,Z(𝑦, 𝑤, 𝑧) = 𝑓𝑌|𝑊(𝑦|𝑤) ∗ 𝑓𝑊(𝑤) ∗ 𝑓𝑍|𝑊(𝑧|𝑤) 

= N(0, w) ∗ Ig (
ν

2
,
νβ2

2
) ∗ 𝐺𝑎(𝛼, 𝑤−1) (17) 

where wt is still an inverse-gamma process and we define zt|𝑤𝑡 follows a Gamma distribution. Our 

goal is to construct a Markov process {yt, 𝑤𝑡} with parameters α, β2and ν being estimated through 

MCMC.  

Similar to the update schema for ARCH(1) model, we first generate w1  from fW(𝑤) and then 

y1~𝑁(0, 𝑤1), 𝑧1~𝐺𝑎(𝛼, 𝑤1
−1).  Then we generate w2  from fW|Y,Z(𝑤𝑡|𝑦𝑡−1, 𝑧𝑡−1), 𝑦𝑡~𝑁(0, 𝑤𝑡) 

and zt~𝐺𝑎(𝛼, 𝑤𝑡
−1) for t = 2, 3, …. Such dependency structure for GARCH(1, 1) model can be 

shown in Figure 2 (Pitt and Walker, 2005) 

 

Figure 2: Dependency structure of GARCH(1,1). 
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The conditional distribution of fW|Y,Z(𝑤|𝑦, 𝑧) can be obtained through: 

 

fW|Y,Z(𝑤|𝑦, 𝑧) ∝ 𝑓𝑊,𝑌,𝑍(𝑤, 𝑦, 𝑧) 

∝ w
−(

1+ν
2

+α)−1
𝑒

−(
𝑦2+𝜈𝛽2

2
+𝑧)𝑤−1

 (18) 

which is an inverge-gamma distribution. Given wt|𝑦𝑡−1, 𝑧𝑡−1~𝐼𝑔(
1+ν

2
+ α,

𝑦𝑡−1
2 +𝜈𝛽2

2
+ 𝑧𝑡−1) as a 

random variable, we know Pitt and Walker (2005)’s model is not the same as Standard GARCH(1,1) 

proposed by Bollerslev (1986), but more like a stochastic GARCH(1,1). Unfortunately, we are 

unable to integrate out zt and obtain the predictive density p(yt|𝑦𝑡−1, 𝑤𝑡−1) explicitly. To make 

prediction for the next data point, we have to use the Markov chain specified above. For example, 

to predict 𝑦𝑡+1 , we first sample 𝑤𝑡+1  from fW|Y,Z(𝑤𝑡+1|𝑦𝑡 , 𝑧𝑡) , then we sample 𝑦𝑡+1 from 

𝑁(0, 𝑤𝑡+1). The likelihood function can be expressed as: 

 Lθ = ∏ 𝑓𝑌|𝑊(𝑦𝑡|𝑤𝑡)𝑓𝑍|𝑊(𝑧𝑡|𝑤𝑡)𝑓𝑊|𝑌,𝑍(𝑤𝑡|𝑦𝑡−1, 𝑧𝑡−1)

𝑛

𝑡=2

 (19) 

where the posterior of parameters and wt  and zt  can be obtained. Here, we only illustrate the 

posterior of wt  to show the longer-range dependence allowed from zt . We denote the set of 

parameters (α, β2, 𝜈) as θ: 

 

Pθ(𝑤𝑡|yt, 𝑦𝑡−1, 𝑧𝑡 , 𝑧𝑡−1) ∝ 𝑓𝑌|𝑊(𝑦𝑡|𝑤𝑡)𝑓𝑍|𝑊(𝑧𝑡|𝑤𝑡)𝑓𝑊|𝑌,𝑍(𝑤𝑡|𝑦𝑡−1, 𝑧𝑡−1) 

∝ 𝑤𝑡

−(
2+𝜈

2
+𝛼)−1

𝑒
−(

𝑦𝑡
2+𝑦𝑡−1

2 +𝜈𝛽2

2
+𝑧𝑡+𝑧𝑡−1)𝑤𝑡

−1

 (20) 

which is an inverge-gamma distribution Ig(
2+𝜈

2
+ 𝛼,

𝑦𝑡
2+𝑦𝑡−1

2 +𝜈𝛽2

2
+ 𝑧𝑡 + 𝑧𝑡−1). Compared with the 

ARCH(1) model dependency structure, wt in GARCH(1, 1) depends not simply on yt, 𝑦𝑡−1, but 

also on zt and zt−1. Since zt and zt−1 are auxiliary variables only related with w, they only contain 

the information set of w. Thus, wt−1 can feed back in predicting wt. 

The posteriors for the parameters β2 and ν are derived from the log-likelihood function, with the 

same prior as those in ARCH(1). The new parameter α is updated in the similar way as β2 and ν. 

We also give it Gamma(1, 1) as the prior. In fact, the choice of priors for our three models turns 

out to be not important at all, since the prior contribution to the posterior estimation is extremely 
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small compared with the likelihood given the large dataset we will use. Their posterior derivations 

are given in Appendix. 

STOCHASTIC VOLATILITY MODEL 

Stochastic volatility (SV) models are motivated economically by the mixture-of-distribution 

hypothesis (MDH) proposed by Clark (1973) that the asset returns follow a mixture of normal 

distributions with a mixing process depending on unobserved information arrival process (Hautsch 

and Ou, 2008). The basic idea behind this type of model is that the return volatility follows its own 

stochastic process updated by some unobserved innovations, with no influence from the asset return 

itself. Such structure, therefore, is different from GARCH and ARCH type models.   

The standard SV model by Taylor (1982) models the log return 𝑦𝑡 as: 

 yt = e
ht
2 𝑢𝑡 (21) 

 ht = 𝜇 + 𝜙(ℎ𝑡−1 − 𝜇) + 𝜂𝑡 (22) 

where ut~𝑁(0, 1), 𝜂𝑡~𝑁(0, 𝜎𝜂
2), |𝜙| < 1, and ht is the log volatility assumed to follow a AR(1) 

process. The unconditional distribution of ℎ𝑡 is: 

 ℎ𝑡~𝑁(𝜇, 𝜎ℎ
2) (23) 

 
𝜎ℎ

2 =
𝜎𝜂

2

1 − 𝜙2
 (24) 

Such SV model, like ARCH and GARCH type models, is able to model the typical volatility for 

most financial and time series, but the model implied kurtosis is often far too small because of the 

inflexible normal-log normal mixture structure (Hautsch and Ou, 2008). Chib, Nardari and 

Shephard (2002) introduced an extension of Taylor (1982)’s model, which assumes, 𝜇𝑡follows a 

standardized t distribution with degree of freedom 𝜈: 𝜇𝑡~𝑡𝜈. Thus, the conditional density 𝑦𝑡|ℎ𝑡is 

a Student-t distribution, but the marginal density of 𝑦𝑡, of course, is not.  

The SV type model introduced by Pitt and Walker (2005), different from models above, is very 

similar to their GARCH(1, 1) model except that 𝑦 does not form the evolution of the volatility 𝑤. 

The volatility 𝑤 is updated only through the auxiliary variable 𝑧, rather than the return 𝑦: 
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𝑓𝑊|𝑍(𝑤|𝑧) ∝ 𝑓𝑍|𝑊(𝑧|𝑤)𝑓𝑊(𝑤) 

∝ 𝐺𝑎(𝛼, 𝑤−1)𝐼𝑔 (
𝜈

2
,
𝜈𝛽2

2
) 

∝ 𝑤
−(

𝜈
2

+𝛼)−1
𝑒

−(𝑧+
𝜈𝛽2

2
)𝑤−1

 (25) 

Therefore, 𝑤𝑡|𝑧𝑡−1 follows an inverse-gamma distribution 𝐼𝑔(
𝜈

2
+ 𝛼, 𝑧𝑡−1 +

𝜈𝛽2

2
). Our goal is still 

to construct a Markov process {yt, 𝑤𝑡} with parameters α, β2and ν being estimated through MCMC. 

Similar to the update schema for GARCH(1, 1) model, we first generate w1 from fW(𝑤) and then 

y1~𝑁(0, 𝑤1), 𝑧1~𝐺𝑎(𝛼, 𝑤1
−1). Now we generate w2  from fW|Y,Z(𝑤𝑡|𝑧𝑡−1), update 𝑦𝑡~𝑁(0, 𝑤𝑡) 

and zt~𝐺𝑎(𝛼, 𝑤𝑡
−1) for t = 2, 3, …. Such dependency structure for our SV model can be shown in 

Figure 3 (Pitt and Walker, 2005): 

 

Figure 3: Dependency structure of SV model. 
 

Similar to GARCH(1, 1), we are unable to obtain the predictive density f(yt|𝑦𝑡−1, 𝑤𝑡−1) explicitly. 

So to make prediction for the next data point, we use the above SV model Markov chain. The 

likelihood function can be expressed as: 

 Lθ = ∏ 𝑓𝑌|𝑊(𝑦𝑡|𝑤𝑡)𝑓𝑍|𝑊(𝑧𝑡|𝑤𝑡)𝑓𝑊|𝑌,𝑍(𝑤𝑡|𝑧𝑡−1)

𝑛

𝑡=2

 (26) 
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The exact formula for the likelihood function can be found in Appendix. From the likelihood 

function, we could derive the posterior of 𝑤𝑡 as: 

 

Pθ(𝑤𝑡|yt, 𝑧𝑡 , 𝑧𝑡−1) ∝ 𝑓𝑌|𝑊(𝑦𝑡|𝑤𝑡)𝑓𝑍|𝑊(𝑧𝑡|𝑤𝑡)𝑓𝑊|𝑌,𝑍(𝑤𝑡|𝑧𝑡−1) 

∝ 𝑤𝑡

−(
1+𝜈

2
+2𝛼)−1

𝑒
−(

𝑦𝑡
2+𝜈𝛽2

2
+𝑧𝑡+𝑧𝑡−1)𝑤𝑡

−1

 (27) 

which is an inverse-gamma distribution 𝐼𝑔(
1+𝜈

2
+ 2𝛼,

𝑦𝑡
2+𝜈𝛽2

2
+ 𝑧𝑡 + 𝑧𝑡−1).  

The MCMC updates for parameters and 𝑧𝑡 are very similar to those for GARCH(1, 1) and details 

are given in Appendix.  

  



14 

 

 

Application  

DATA 

We have found that many papers include the S&P 500 index to apply their volatility models. See 

e.g. Bollerslev (1987), Chib, Nardari and Shephard (2002). To make the result comparable, we also 

use the S&P 500 index, specifically, its daily closing prices from Yahoo Finance as our data. To 

access the data, we use an R package called “TTR”, which allow us to fetch the stock data from 

Yahoo Finance website. The “TTR” package is often used to conduct technical trading analysis in 

R and it is enhanced from commonly used R package “quantmod”. To examine the prediction 

performance of our models, we split the data into the training set and test set. The training set 

contains the prices from January 1st, 2005 to December 31st, 2009, intentionally covering the 2008 

financial crisis. We can expect the clusters of very high volatilities in the training set. The test set 

contains the prices from January 1st, 2010 to November 11th, 2016. Figure 4 shows the histograms 

of the log return from training and test dataset, which look pretty similar to Student-t distribution.  

Figure 4:  Histograms of log returns from the training and test set. Histogram on the left plots the 1,258 log 

returns from S&P 500 index from January 1st, 2005 to December 31st, 2009. Histogram on the right plots 

1,728 log returns from S&P 500 index from January 1st, 2010 to November 11th, 2016 

PARAMETER ESTIMATION 

For ARCH(1) model, the parameter update structure is fairly simple. Since the predictive density 

p(yt|𝑦𝑡−1) is explicitly available, the likelihood function does not have 𝑤. Therefore, the posterior 

of 𝜈 and 𝛽2 are directly updated from the data and we do not necessarily update 𝑤 in MCMC. We 

ran the MCMC sampling for 10,000 iterations. For each iteration, we sampled 𝜈 from its posterior 
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first. Next sampled 𝛽2 from its posterior with the updated 𝜈. Then we used the latest 𝛽2 to update 

𝜈 again. After 10,000 iterations, we obtained the posterior mean of 𝛽2 as 6.78e-5 with standard 

deviation 4.58e-6, the mean of 𝜈 samples as 3.004 with standard deviation 0.019997. 

For GARCH(1,1) model, the update of parameter relies on the updates of 𝑤  and 𝑧  since the 

predictive density p(yt|𝑦𝑡−1, 𝑤𝑡−1) is not explicitly available and thus the likelihood function have  

𝑧. Therefore, to update parameters 𝛼, 𝛽2 and 𝜈, we also need to initialize 𝑤 and 𝑧 which is done by 

sampling from 𝑤. We ran the MCMC for 10,000 iterations. For each iteration, we sampled 𝜈 from 

its posterior first. Next sampled 𝛽2 from its posterior with the updated 𝜈. Then we use the latest 𝛽2 

and 𝜈 to update 𝛼. After parameters were updated, we sampled 𝑧 from its posterior and finally 

update 𝑤 given all latest variables. After 10,000 iterations, we obtained the posterior means (and 

standard deviations) of 𝛽2, 𝛼 and ν as 6.69e-5 (4.73e-6), 0.045 (0.0013) and 3 (0).  

For SV model, the estimation procedure for parameters, 𝑤  and 𝑧   are exactly the same as 

GARCH(1,1). After 10,000 iterations, the posterior means (and standard deviations) of 𝛽2, 𝛼 and 

ν were 6.47e-5 (3.66e-6), 0.036 (0.00098) and 3 (0). 

Figure 5 shows the MCMC sampled parameters after it is converged. Compared with ARCH(1) 

parameter updates which mix and converge less than 100 iterations, it usually takes much longer 

time for the parameters in GARCH(1,1) and SV model to converge, depending on the initial values. 

For example, 𝛽2 in GARCH(1,1) given an initial value of 0.0005 took about 3000 iterations to 

converge and in SV model with the same initial value took about 1500 iterations. A larger initial 

value will further slow down the convergence. There are two main reasons for such slow 

convergence. First, we need to update three more variables 𝛼, 𝑤 and 𝑧 in GARCH(1,1) and SV 

model. Second, most of the variables do not have an easy form of posterior to sample from, thus 

Metropolis-Hasting algorithm is often used. The variance of proposal in our case is the key 

adjustment that often decide the variability of sampled parameters, also, the convergence speed.  
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Figure 5: MCMC Sampled parameters after convergence. Plots on the left column are the sampled 𝛽2 from 

its posterior in ARCH(1), GARCH(1,1) and SV model respectively after 5,000 or 6,000 iterations. 

Histograms in the middle are all samples of 𝜈 from its posterior in ARCH(1), GARCH(1,1) and SV model 

respectively. Plots on the right are the sampled 𝛼  from its posterior in GARCH(1,1) and SV models 

respectively after 6,000 iterations. 

MODEL CHECKING 

We use a simple and intuitive way to check whether our models fit the data very well without doing 

any formal tests. The idea is that if our model fully explains the behaviors of the stock log return, 

the future log returns predicted by our models will behave similarly as the original returns from our 

training set, that is, have the same marginal distribution. To eliminate the autocorrelation, we 

looked at the log returns predicted 20 steps ahead for each of our model. Figure 6 shows the 

predicted log returns 20 steps ahead from our three models vs the log returns from the training data. 

The distributions of predicted values looked very similar to the log returns from our training set, 

except that each of our models produced longer tails than the original log returns, but overall, our 

models fit the data very well.  
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Figure 6: the predicted log returns 20 steps ahead from ARCH(1), GARCH(1,1) and SV model vs the log 

returns from the training data. The histograms from three models look extremely similar to the original 

training data, except that they have a much longer tails.  

 

We also examined the volatility modeled in the training set by plotting the confidence intervals of 

the predicted log returns. As can be seen from Figure 7, both ARCH(1) and GARCH(1,1) gave 

large 95% credible intervals for data points that had high volatility, which almost fully covered 

those log returns while SV model only captured part of them and did not trace the data as well as 

the other two.  From this sense, the ARCH(1) and GARCH(1,1) fit the data better than the SV 

model. 
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Figure 7: 95% credible intervals of the log returns from ARCH(1), GARCH(1,1) and SV model. The red line 

represents the values at 97.5% quantile of the predictions. The blue line represents the 2.5% quantile of the 

predictions. As can be seen, most of the true log returns are within the credible intervals generated by 

ARCH(1) and GARCH(1,1). The SV model credible interval does not cover the true data as well as the other 

two models. 
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STOCK PRICE PREDICTION 

We only predicted one step ahead for each data point in the test dataset given the parameters 

estimates from the training set. Theoretically, the parameters should be re-estimated after we see 

each of the test log returns, which requires to rerun the 10,000 iterations for each test data point. 

To save time and computation cost, we fixed the parameter estimates obtained from the training 

set. The prediction procedure for ARCH(1) was as follows: given yt, we sampled 1,000 predicted 

values from p(yt+1|𝑦𝑡) . We then took the average of the exponential values of those 1,000 

predictions as the estimation of the expected price ratio E(
𝑃𝑡+1

𝑃𝑡
). Then the expected price 𝑝𝑡+1 could 

be given by (3). After predicting yt+1, we used the true yt+1 to predict yt+2 in the same fashion. 

The prediction procedures for GARCH(1,1) and SV models were similar to ARCH(1) except that 

the predictive density is not explicitly available, so we had to use the Markov chains shown in 

Figure (2) and (3) to update w and z at the same time, in order to derive yt+1 and the expected price 

ratio.   

Figure 8 shows the predictions from three models vs the original test S&P 500 index. The green 

line represents the expected prices predicted from our models. The blue and red lines are 95% 

credible intervals for the predicted prices. The ARCH(1) and GARCH(1,1) predictions had nearly 

no difference while SV model predictions had larger credible intervals, but overall, all of our three 

models predicted the stock prices fairly well. Notice that for each model, the credible intervals at 

the tails of the time series were wider than that at the beginning, which indicated the necessity of 

re-estimating the parameters. We recorded the mean squared error (MSE) obtained from each 

model and compared them with that from the standard GARCH(1, 1) model which also used one-

step-ahead predictions with fixed parameters from the training set. The result is shown in Table 1. 

It is obvious that our GARCH(1,1) had the lowest MSE, indicating the most accurate prediction.  

All of our three models outperformed the standard GARCH(1,1) with the evidence of smaller MSEs. 

One may argue that such difference was not substantial. However, considering the S&P 500 index 

is a measure of average performance of the stock market, we could expect larger differences in 

many individual stocks, especially those with higher volatility.  
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Figure 8: Predictions of test S&P 500 prices from ARCH(1), GARCH(1,1) and SV model vs the original test 

data. The green line is the expected stock price. The blue line represents the prediction at 97.5% quantile 

while the red line represents the prediction at 2.5% quantile. The ARCH(1) and GARCH(1,1) have very 

similar predictions with smaller credible intervals than that from the SV model. All three models show a 

wider credible interval at the tail. 

 

Models ARCH(1) GARCH(1,1) SV 
Standard 

GARCH(1,1) 

MSE 0.423 0.407 0.576 0.779 

Table 1: Mean squared error obtained from our ARCH(1), GARCH(1,1), SV model and the standard 

GARCH(1,1). As is shown, all of our three models produced smaller MSE than that from the standard 

GARCH(1,1). 
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Discussion 

In this report, we have shown that the methods proposed by Pitt and Walker (2005) could be used 

to model the stock volatility and the predictions from such methods are more accurate than that 

from the standard GARCH model. There are primarily two reasons for the model to be successful. 

First, a fixed marginal Student-t distribution for the log return seems to be a useful assumption 

which can be easily observed from the histograms, and proves to be a correct choice to account for 

the high volatility in the stock market. In fact, many financial time series behave similar as the log 

return when we take their difference at the log scale, in which case the marginal Student-t 

distribution assumption is also applicable. Figure 9 shows the differences of log foreign exchange 

rate between US dollars and Japan Yen, and the differences of log 10-year treasury constant 

maturity rate. All of the series have high peaks and heavy tails. Second, the purpose of introducing 

auxiliary variables 𝑤 (in ARCH) and 𝑧 as latent variables, is used not only to construct the marginal 

density of the log return and allow for longer-range dependence, but also to remain the structure of 

ARCH or GARCH. In our ARCH(1), different from the standard ARCH model of Engle (1982) 

given by (7) though, the structure is still an ARCH type as can be seen from (12), a restricted 

version of the heavy-tailed model by Bollerslev (1987) (Pitt and Walker, 2005). Our GARCH(1,1), 

if we take the expectation of 𝑤𝑡, will have the same structure of the standard GARCH given by 

(16): 

 

𝐸(𝑤𝑡|𝑦𝑡−1, 𝑤𝑡−1) = 𝐸[𝐸(𝑤𝑡|𝑦𝑡−1, 𝑧𝑡−1)] 

=
2

𝜈 + 2𝛼 − 1
[
𝑦𝑡−1

2 + 𝜈𝛽2

2
+ 𝐸(𝑧𝑡−1|𝑤𝑡−1)] 

=
𝑦𝑡−1

2 + 𝜈𝛽2 + 2𝛼𝑤𝑡−1

𝜈 + 2𝛼 − 1
 (28) 

If correspond to (16), we have 𝑎 =
𝜈𝛽2

𝜈+2𝛼−1
, 𝑏 =

1

𝜈+2𝛼−1
 and 𝑐 =

2𝛼

𝜈+2𝛼−1
, a perfect standard 

GARCH structure. That’s probably the reason why we need the latent variable 𝑧 and prefer a 

Gamma distribution for it.  

An interesting finding that Pitt and Walker (2005) does not cover is that their ARCH(1) has almost 

equally good performance as GARCH(1,1) but with substantially lower computation cost compared 

with GARCH(1,1) and SV model. The posterior mean for GARCH(1,1) and SV model often takes 

long time to converge and improvement on it primary relies on manually adjusting the proposal 
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variance in Metropolis-Hasting algorithms for 𝛽2, 𝛼 and 𝑧. To the contrary, the sampling structure 

of ARCH(1,1) is quite simple and the prediction for 𝑦𝑡+1 is only based on the 𝑦𝑡 and parameters, 

since both the predictive density and the likelihood function does not involve the latent variable 𝑤. 

Therefore, for fast and decent prediction, ARCH(1) is highly preferred.  

 

 

Figure 9:  Histogram on the left: differences of log foreign exchange rate between US dollars and Japan Yen 

from 1971-2016. Histogram on the right: differences of log 10-year treasury constant maturity rate from 

1962-2016. Both series resemble the Student-t distribution. 

  



Appendix I: Posterior Derivation

1 ARCH(1)

To the contrary of traditional ARCH(1) model, Pitt and Walker (2005) uses the latent
variable wt such that the stock log return yt comes from the marginal distribution: scaled
t distribution.
The joint distribution of y and w:

fY,W (y, w) = N(0, w) ∗ Ig(
ν

2
,
νβ2

2
)

=
1√
2πw

exp(− 1

2w
y2)(

νβ2

2
)
ν
2

1

Γ(nu2 )
w
ν
2
−1 exp(−νβ

2

2w
)

=
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(
νβ2

2
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ν

2
1

Γ(ν2 )
w
ν+1
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+1 exp(
1

2
(y2 + νβ2)w−1) (1)

From (1), we have the marginal distribution of y as:

fY (y) =

∫
fY |W (y|w) ∗ fW (w)dw

=
1√
2π

(
νβ2

2
)

ν

2
1

Γ(ν2 )

∫
w−(

ν
2
+ ν

2
+1) exp(−(
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2
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1

2
νβ2))w−1dw

=
1√
(2π)
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2
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Γ(
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1
2

=
1√
(π)

1√
νβ2

Γ(ν+1
2 )

Γ(ν2 )
[1 +

y2

νβ2
]−

ν+1
2 (2)

which is a scaled Studen-t distribution tν(0, β2).
From (1), we have the conditional distribution fW |Y (w|y) as:

fW |Y (w|y) ∝ fY |W (y|w)fW (w)

∝ 1√
2π

(
νβ2

2
)

ν

2
1

Γ(ν2 )
w
ν+1
2

+1 exp(
1

2
(y2 + νβ2)w−1)

∝ w−
1
2 exp(− 1

2w
y2)w−

ν
2
−1 exp(−νβ

2

2w
)

∝ w−
ν+1
2
−1 exp(−(

1

2
y2 +

νβ2

2
)w−1) (3)
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which is an inverse-gamma distribution Ig(ν+1
2 , 12y

2 + νβ2

2 ).
Given (3), the conditional distribution of p(yt|yt−1) is:

p(yt|yt−1) =

∫
fY |W (yt|wt)fW |Y (wt|yt−1)dwt

=

∫
w−

ν+1
2
−1 exp(−(

1

2
y2t +

1

2
y2t−1 +

νβ2

2
))dw
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Set S2

ν+1 =
y2t

y2t−1+νβ
2 in (4), so we have:

p(yt|yt−1) ∝
Γ(ν+2

2 )

Γ( (ν+1)
2
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1
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Therefore, yt =

√
y2t−1+νβ

2

1+ν Sν+1 where Sν+1 ∼ tν+1, a Student-t random variable with ν+ 1
degree of freedom.
Given (5), the likelihood function can be derived directly from p(yt|yt−1). We leave out
p(y1) since its contribution to the likelihood can be neglected. We denote the set of our
parameters ν and β2 as θ:

Lθ(y1, y2, ..., yt) = p(yt|yt−1)p(yt−1|yt−2)...p(y2|y1)p(y1)

∝ [
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To achieve computation efficiency, we take the log of our likelihood function of (6):

lnLθ(y1, y2, ..., yt) ∝
n∑
t=2
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2
ln(y2t−1 + νβ2)−
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Given (7), we are able to derive the posterior of ν and β2 in log scale. We give a discrete
unifrom prior for ν, that is, ν has equal probability for each integer value from 3 to 20.
Thus the prior of ν is a constant and can be neglected from its posterior:

ln Πn(ν|...) ∝
n∑
t=2

ν + 1

2
ln (y2t−1 + νβ2)−

n∑
t=2

ν + 2

2
ln (y2t + y2t−1 + νβ2)

+ (n− 1)[ln Γ(
ν + 2

2
)− ln Γ(

ν + 1

2
)] (8)

We assign a Gamma(1,1) prior for β2. The posterior of β2 has the form:

ln Πn(β2|...) ∝
n∑
t=2

ν + 1

2
ln (y2t−1 + νβ2)−

n∑
t=2

ν + 2

2
ln (y2t + y2t−1 + νβ2)− β2 (9)

Since it is hard to sample from the posteriors of ν and β2 directly, we use Metropolis-Hasting
algorithm to facilitate the sampling.

2 GARCH(1,1)

Compared with our ARCH(1) model, the GARCH(1,1) introduces an auxiliary variable z
and its predictive density is not explicitly available by integrating out z. Therefore, we not
only need to update the parameters ν, β2 and α in MCMC, but need to update w and z at
the same time.
The joint density is:

fY,W,Z(y, w, z) =
1

sqrt(2π)
√
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From (10), we are able to derive the conditional density fW |Z,Y (w|z, y) as:
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(11)

which is an inverse-gamma distribution Ig(1+ν2 + α,
y2t−1+νβ

2

2 + zt−1).
Denote the set of our parameters ν, β2 and α as θ. Based on (11), the likelihood can be
written as:

Lθ(Y,W,Z) =

n∏
t=2
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We assign a Gamma(1,1) prior to α. The priors of β2 and ν are the same with those in
ARCH(1). Given (12), the posterior of α on the log scale can be derived as:

ln Πn(α|...) ∝ −(n− 1)[ln Γ(α) + ln Γ(
1 + ν

2
)]− 2α

n∑
t=2

lnwt + (α− 1)
n∑
t=2

ln zt+

α

n∑
t=2

ln(
y2t−1 + νβ2

2
+ zt−1)− α (13)

The posterior of β2 on the log scale is:

ln Πn(β2|...) ∝ −νβ
2

2
(
n∑
t=2

w−1t ) + (
1 + ν

2
+ α)

n∑
t=2

ln(
y2t−1 + νβ2

2
+ zt−1)− β2 (14)

The posterior of ν is:

ln Πn(ν|...) ∝ −(n− 1) ln Γ(
1 + ν

2
+ α)− 2 + ν

2

n∑
t=2

lnwt −
νβ2

2

n∑
t=2

w−1t +

(
1 + ν

2
+ α)

n∑
t=2

ln(
y2t−1 + νβ2

2
+ zt−1) (15)

Given (12), we are also able to derive the posterior of wt:

Πn(wt|θ, yt, yt−1, zt, zt−1) ∝ w
−( 2+ν

2
+2α)−1

t e−(
y2t+y

2
t−1+νβ

2

2
+zt+zt−1)w

−1
t (16)

which is a inverse-gamma distribution Ig(2+ν2 + 2α,
y2t+y

2
t−1+νβ

2

2 + zt + zt−1).
The posterior of zt has the form:

Πn(zt|θ, wt, wt+1) ∝ fW |Z(wt+1|zt)fZ|W (zt|wt)

∝ e−(w
−1
t+1+w

−1
t )ztzα−1t (

y2t + νβ2

2
+ zt)

1+ν
2

+α (17)

We use Metropolis-Hasting algorithm to sample ν, β2, α and z from their posteriors.

3 Stochastic Volatility model

The SV model shares a lot of similarities with GARCH(1,1) in the MCMC sampling scheme.
The only difference is that the updates of wt only rely on zt, as is shown in Figure (3).
The joint density is the same with that in GARCH(1,1). So from (10), we can obtain the
conditional density fW |Z(w|z):

fW |Z(w|z) ∝ zα−1e−w
−1
t zw−

ν
2
−1e−

νβ2

2
w−1

∝ w−(
ν
2
+α)−1e−(z+

νβ2

2
)w−1

(18)
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which is a inverse-gamma distribution Ig(ν2 + α, z + νβ2

2 ).
Given (18), the likelihood function can be obtained as:

Lθ(Y,W,Z) =
n∏
t=2

f(yt|wt)f(zt|wt)f(wt|zt−1)

=
n∏
t=2

N(0, wt)Ga(α,w−1)Ig(
ν

2
+ α,

νβ2

2
+ zt−1)

∝ [
1

Γ(α)

1

Γ(ν2 )
]n−1

n∏
t=2

w
−( 1+ν

2
+2α)−1

t e−(
y2t+νβ

2

2
+zt+zt−1)w

−1
t zα−1t (

νβ2

2
+ zt−1)

ν
2
+α

(19)

From (19), we have our log posterior of α as:

ln Πn(α|...) ∝ −(n− 1)[ln Γ(α) + ln Γ(
ν

2
)]− 2α

n∑
t=2

lnwt + (α− 1)
n∑
t=2

ln zt+

α
n∑
t=2

ln(
νβ2

2
+ zt−1)− α (20)

our log posterior of β2 as:

ln Πn(β2|...) ∝ −νβ
2

2
(
n∑
t=2

w−1t ) + (
ν

2
+ α)

n∑
t=2

ln(
νβ2

2
+ zt−1)− β2 (21)

and our log posterior of ν as:

ln Πn(ν|...) ∝ −(n− 1) ln Γ(
ν

2
+ α)− 1 + ν

2

n∑
t=2

lnwt −
νβ2

2

n∑
t=2

w−1t +

(
ν

2
+ α)

n∑
t=2

ln(
νβ2

2
+ zt−1) (22)

Compared with the posterior of wt in GARCH(1,1), the posterior of wt in SV model does
not contain yt−1 :

Πn(wt|θ, yt, zt, zt−1) ∝ w
−( 1+ν

2
+2α)−1

t e−(
y2t+νβ

2

2
+zt+zt−1)w

−1
t (23)

which is still a inverse-gamma distribution Ig(1+ν2 + 2α,
y2t+νβ

2

2 + zt + zt−1). The posterior
of zt in SV model is the same with that in GARCH(1,1), so we leave out its equation here.
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Appendix II: R codes

1 Data

# See documentation for TTR package

library(TTR)

require(xts)

# Load training S&P 500 returns from Yahoo

Sys.setenv(tz = "UTC")

sp500 = getYahooData(’^GSPC’, start = 20050101, end = 20091231, freq = ’daily’)

logp = log(sp500[,4])

y = diff(logp)

y = as.matrix(data.frame(y[-1], row.names = c()))

orig.y = y

n.y = length(y)

# test dataset

test.sp500 = getYahooData(’^GSPC’, start = 20100101, end = 20161111, freq = ’daily’)

logptest = log(test.sp500[,4])

test.y = diff(logptest)

test.y = as.matrix(data.frame(test.y[-1], row.names = c()))

n.y2 = length(test.y)

# full dataset

full_y = c(y, test.y)

# rearrange plots

par(mfrow = c(1,2))

hist(y, breaks = 50, main = ’Log return of S&P 500 \nfrom 2005 to 2009’)

hist(test.y, breaks = 35, main = ’Log return of S&P 500 \nfrom 2010 to 2016’)

2 ARCH(1)

# functions

# posterior of v, degree of freedom

post.v = function(yvec, sqbeta, v_vec){
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num = c()

n = length(yvec)

for (v in v_vec){

ix = which(v_vec == v)

a = sum((v+1)/2 * log(yvec[-n]^2 + v*sqbeta))

b = sum((v+2)/2 * log(yvec[2:n]^2 + yvec[1:n-1]^2 + v*sqbeta))

c = (n-1)*(log(gamma((v+2)/2)) - log(gamma((v+1)/2)))

loglikelihood = a-b+c

if (v == 3){

alpha = -loglikelihood

}

num = c(num, exp(alpha + loglikelihood))

}

denominator = sum(num)

print(num)

probs = num/denominator

new_v = sample(v_vec, 1, prob = probs)

return(new_v)

}

# posterior of beta^2

post.sqbeta = function(yvec, sqbeta, v){

n = length(yvec)

a = sum((v+1)/2 * log(yvec[-n]^2 + v*sqbeta))

b = sum((v+2)/2 * log(yvec[2:n]^2 + yvec[1:n-1]^2 + v*sqbeta))

c = - sqbeta

return(a-b+c)

}

# Metropolis-Hasting for beta^2

MH.sqbeta = function(sqbeta, post.sqbeta, v, yvec){

sqbeta2 = rlnorm(1, meanlog = log(sqbeta), sdlog = 0.1)

ratio = post.sqbeta(yvec, sqbeta2, v)+log(dlnorm(sqbeta, log(sqbeta2), 0.1)) -

(post.sqbeta(yvec, sqbeta, v) + log(dlnorm(sqbeta2, log(sqbeta), 0.1)))

ratio = exp(ratio)

u = runif(1, 0, 1)

if (u < min(1, ratio)){

sqbeta = sqbeta2

}

return(sqbeta)

}
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# predictive density

pred.y = function(yvec, sqbeta, v, step){

n = length(yvec)

lasty = yvec[n]

for (k in 1:step){

s = rt(1, v+1)

newy = sqrt((lasty^2 + v*sqbeta)/(1+v))*s

lasty = newy

}

return(newy)

}

#--------------------------------------------------------------

# initial values

# prior for v: descrete values, 3:20

v_vec = c(3:20)

init.sqbeta = 0.001

iter = 10000

# begin sampling

vsamples = rep(0, iter)

sqbetasamples = rep(0, iter)

predict_y = c()

predict_ysq = c()

sqbeta = init.sqbeta

# predictive distribution for each y

ypred.samples = matrix(0, nrow = iter, ncol = n.y)

for (i in 1:iter){

vsamples[i] = post.v(y, sqbeta, v_vec)

print(i)

sqbetasamples[i] = MH.sqbeta(sqbeta, post.sqbeta, vsamples[i], y)

sqbeta = sqbetasamples[i]

# model checking

for (j in 2:n.y){

ypred.samples[i, j] = pred.y(y[1:(j-1)], sqbeta, vsamples[i], step = 1)

}

if (i > iter*0.4){

# predict new y, 20 steps ahead to eliminate dependence

# check if the future value can mimic the past
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ynew = pred.y(y, sqbeta, vsamples[i], step = 20)

predict_y = c(predict_y, ynew)

}

}

# Posterior of beta^2

plot(sqbetasamples[5000:iter], type = ’l’, ylab = bquote(beta^2),

main = expression(paste(beta^2, ’ from ARCH(1)’)))

paste(’The posterior mean of beta^2 is’, mean(sqbetasamples[5000:iter]))

# Posterior of degree of freedom: v

plot(vsamples[2000:iter], type=’l’)

hist(vsamples, breaks = 100, main = expression(paste(nu, ’ from ARCH(1,1)’)))

# Model checking: predictive distribution of y vs original

par(mfrow = c(1,2))

hist(predict_y, breaks = 100, xlab = ’log return’, xlim = c(-0.2, 0.2),

main = ’ARCH(1) histogram of predicted y\n 20 steps ahead’)

hist(orig.y, breaks = 50, xlab = ’log return’, xlim = c(-0.2, 0.2),

main = ’Histogram of y in training set’)

# 95% credible intervals for log return prediction

mean_pred = apply(ypred.samples[2000:iter,], 2, mean)

bounds = apply(ypred.samples, 2, function(z) quantile(z, c(0.025, 0.975)))

plot(orig.y, type = ’l’, main = ’ARCH(1) 95% credible intervals for log return

\nfrom 2005 to 2009’, ylab = ’Log return’, ylim = c(-0.15, 0.15))

lines(bounds[1,], col = ’blue’)

lines(bounds[2,], col = ’red’)

lines(mean_pred, col = ’green’)

# Stock price prediction on test data

meansqbeta = mean(sqbetasamples[7000:iter])

# the majority of v

meanv = 3

test.ypred = rep(0, n.y2)

test.bounds = matrix(0, nrow = 2, ncol = n.y2)

for (k in 1:n.y2){

print(k)

testsamples = rep(0, 1000)

testsamples = sapply(testsamples, function(z) pred.y(full_y[1:(n.y+k-1)],

meansqbeta, meanv, step = 1))
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# expected value

test.ypred[k] = mean(exp(testsamples))

# 95% credible intervals

testbound = quantile(testsamples, c(0.025, 0.975))

test.bounds[1,k] = exp(testbound[1])

test.bounds[2,k] = exp(testbound[2])

}

test.p = test.sp500[-(n.y2+1),4]*test.ypred

test.plower = test.sp500[-(n.y2+1),4]*test.bounds[1,]

test.pupper = test.sp500[-(n.y2+1),4]*test.bounds[2,]

# generate prediction plots

plot(test.sp500[,4], type = ’l’, main = ’ARCH(1) prediction on test S&P 500’)

lines(test.p, cex = 0.3, col = ’green’)

lines(test.plower, col = ’red’)

lines(test.pupper, col = ’blue’)

# MSE of ARCH(1) predictions

mse.arch = mean((test.sp500[,4]-test.p)^2)

3 GARCH(1,1)

# functions

# posterior of alpha

post.alpha = function(yvec, w, z, alpha, v, sqbeta){

# returnn: log of posterior of alpha

# prior for alpha: gamma(1, 1)

w = w[-1]

zt = z[-1]

n = length(yvec)

zt1 = z[-n]

yvec = yvec[-n]

a = -(n-1)*(log(gamma(alpha)) + log(gamma((1+v)/2 + alpha)))

b = -2*alpha*sum(log(w)) + (alpha - 1)*sum(log(zt))

c = alpha*sum(log((yvec^2 + v*sqbeta^2)/2 + zt1)) - alpha

return(a + b + c)

}

# Metropolis-Hasting for alpha

MH.alpha = function(yvec, w, z, alpha, v, sqbeta){

alpha2 = rlnorm(1, meanlog = log(alpha), 0.1)

ratio = post.alpha(yvec, w, z, alpha2, v, sqbeta) + log(dlnorm(alpha,
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log(alpha2), 0.1)) - (post.alpha(yvec, w, z, alpha, v, sqbeta) +

log(dlnorm(alpha2, log(alpha), 0.1)))

ratio = exp(ratio)

u = runif(1, 0, 1)

if (u < min(1, ratio)){

alpha = alpha2

}

# print(alpha)

return(alpha)

}

# posterior of beta^2

post.sqbeta = function(yvec, w, z, alpha, v, sqbeta){

# returnn: log of posterior of sqbeta

# prior for sqbeta: gamma(1, 1)

w = w[-1]

n = length(yvec)

zt1 = z[-n]

yvec = yvec[-n]

a = -v*sqbeta/2 * sum(1/w)

b = ((1+v)/2 + alpha)*sum(log((yvec^2 + v*sqbeta)/2 + zt1)) - sqbeta

return(a + b)

}

# Metropolis-Hasting for beta^2

MH.sqbeta = function(yvec, w, z, alpha, v, sqbeta){

sqbeta2 = rlnorm(1, meanlog = log(sqbeta), 0.1)

ratio = post.sqbeta(yvec, w, z, alpha, v, sqbeta2) + log(dlnorm(sqbeta,

log(sqbeta2), 0.1)) - (post.sqbeta(yvec, w, z, alpha, v, sqbeta) +

log(dlnorm(sqbeta2, log(sqbeta), 0.1)))

ratio = exp(ratio)

u = runif(1, 0, 1)

if (u < min(1, ratio)){

sqbeta = sqbeta2

}

return(sqbeta)

}

# posterior of v

post.v = function(yvec, w, z, alpha, sqbeta, v_vec){

# returnn: log of posterior of sqbeta

# prior for sqbeta: gamma(1, 1)
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w = w[-1]

n = length(yvec)

zt1 = z[-n]

yvec = yvec[-n]

num = c()

for (v in v_vec){

a = -(n-1)*log(gamma((1+v)/2 + alpha))

b = -v/2*sum(log(w)) - v*sqbeta/2*sum(1/w)

c = ((1+v)/2 + alpha)*sum(log((yvec^2 + v*sqbeta)/2 + zt1))

loglikelihood = a + b + c

if (v == 3){

benchmark = -loglikelihood

}

num = c(num, exp(benchmark + loglikelihood))

}

print(num)

denominator = sum(num)

# print(num)

probs = num/denominator

new_v = sample(v_vec, 1, prob = probs)

return(new_v)

}

# posterior of w

post.w = function(yvec, z, alpha, sqbeta, v){

# return: new w sampled from posterior of wt

n = length(yvec)

z_t = z[-1]

z_t1 = z[-n]

y_t = yvec[-1]

y_t1 = yvec[-n]

# when t > 1

a = (2+v)/2 + 2*alpha

b = (y_t^2 + y_t1^2 + v*sqbeta)/2 + z_t + z_t1

w = sapply(b, function(x) rinvgamma(1, a, x))

# when t = 1

w1 = rinvgamma(1, a, (yvec[1]^2 + v*sqbeta)/2 + z[1])

w = c(w1, w)

return(w)
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}

# posterior of z

post.z = function(w, z, alpha, sqbeta, v){

# return: posterior of z

n = length(w)

w_t1 = w[-1]

w_t = w[-n]

z_t = z[-n]

# when t < n

a = exp(-(1/w_t1 + 1/w_t)*z_t)*z_t^(alpha - 1)

b = (v*sqbeta/2 + z_t)^(v/2 + alpha)

zn_1 = a*b

# when t = n

c = exp(-(2/w[n])*z[n])*z[n]^(alpha - 1)

d = (v*sqbeta/2 + z[n])^(v/2 + alpha)

zn = c*d

post_z = c(zn_1, zn)

return(post_z)

}

# Metropolis-Hasting for z

MH.z = function(w, z, alpha, sqbeta, v){

# return: new z sampled from the posterior

n = length(w)

z2 = sapply(z, function(x) rlnorm(1, meanlog = log(x), 0.1))

ratios = post.z(w, z2, alpha, sqbeta, v) * dlnorm(z, log(z2), 0.1)/

(post.z(w, z, alpha, sqbeta, v) * dlnorm(z2, log(z), 0.1))

# ratios = exp(ratios)

u = runif(n, 0, 1)

for (i in 1:n){

if (u[i] < min(1, ratios[i])){

z[i] = z2[i]

}

}

return(z)

}

# predictive density
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pred.y = function(yvec, zvec, alpha, sqbeta, v, step){

# return: predicted y

# yvec is different from above, y with user-defined length

n = length(yvec)

lasty = yvec[n]

lastz = zvec[n]

for (k in 1:step){

new_w = rinvgamma(1, (1+v)/2 + alpha, (lasty^2 + v*sqbeta)/2 + lastz)

newy = rnorm(1, 0, sqrt(new_w))

newz = rgamma(1, alpha, rate = 1/new_w)

lasty = newy

lastz = newz

}

structure(list(pred_y = newy, pred_z = newz))

}

#-------------------------

# initial values

# prior for v: 3:20

v_vec = c(3:20)

init.sqbeta = 0.0005

alpha = 0.05

iter = 10000

w = rinvgamma(n.y, 3/2, 3*init.sqbeta/2)

z = sapply(w, function(x) rgamma(1, alpha, 1/x))

# begin sampling

vsamples = rep(0, iter)

sqbetasamples = rep(0, iter)

alphasamples = rep(0, iter)

predict_y = c()

ypred.samples = matrix(0, nrow = iter, ncol = n.y)

sqbeta = init.sqbeta

last_w = c()

last_z = c()

for (i in 1:iter){

print(i)

# update parameters

vsamples[i] = post.v(y, w, z, alpha, sqbeta, v_vec)

sqbetasamples[i] = MH.sqbeta(y, w, z, alpha, vsamples[i], sqbeta)

alphasamples[i] = MH.alpha(y, w, z, alpha, vsamples[i], sqbetasamples[i])
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# update z

z = MH.z(w, z, alphasamples[i], sqbetasamples[i], vsamples[i])

last_z = c(last_z, z[n.y])

# update w

w = post.w(y, z, alphasamples[i], sqbetasamples[i], vsamples[i])

last_w = c(last_w, w[n.y])

# model checking

for (j in 2:n.y){

ypred.samples[i, j] = pred.y(y[1:(j-1)], z[1:(j-1)], alphasamples[i],

sqbetasamples[i], vsamples[i], step = 1)$pred_y

}

if (i > iter*0.4){

# predict new y, 20 steps ahead to eliminate dependence

# check if the future values can mimic the past

ynew = pred.y(y, z, alphasamples[i], sqbetasamples[i], vsamples[i],

step = 20)$pred_y

predict_y = c(predict_y, ynew)

}

# loop

sqbeta = sqbetasamples[i]

alpha = alphasamples[i]

}

# Posterior of beta^2

plot(sqbetasamples[6000:iter], type = ’l’, ylab = bquote(beta^2),

main = expression(paste(beta^2, ’ from GARCH(1, 1)’)))

paste(’The posterior mean of beta^2 is’, mean(sqbetasamples[6000:iter]))

# Posterior of degree of freedom: v

hist(vsamples, main = ’v from GARCH(1,1)’)

# Posterior of alpha

plot(alphasamples[6000:iter], type=’l’, ylab = bquote(alpha),

main = expression(paste(alpha, ’ from GARCH(1, 1)’)))

paste(’The posterior mean of alpha is’, mean(alphasamples[6000:iter]))

# Model checking: predictive distribution of y vs original

par(mfrow = c(1,2))

hist(predict_y, breaks = 100, xlab = ’log return’, xlim = c(-0.2, 0.2),

main = ’GARCH(1,1) histogram of predicted y \n 20 steps ahead’)
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hist(orig.y, breaks = 50, xlab = ’log return’, xlim = c(-0.2, 0.2),

main = ’Histogram of y in training set’)

# 95% credible intervals for log return prediction

mean_pred = apply(ypred.samples[5000:iter,], 2, mean)

bounds = apply(ypred.samples, 2, function(z) quantile(z, c(0.025, 0.975)))

plot(orig.y, type = ’l’,

main = ’GARCH(1, 1) 95% credible intervals for log return\n from 2005 to 2009’,

ylab = ’Log return’, ylim = c(-0.15, 0.15))

lines(bounds[1,], col = ’blue’)

lines(bounds[2,], col = ’red’)

lines(mean_pred, col = ’green’)

# prediction on test data

meansqbeta = mean(sqbetasamples[5000:iter])

meanalpha = mean(alphasamples[6000:iter])

# the majority of v

meanv = 3

test.ypred = rep(0, n.y2)

trained_z = last_z[9001:iter]

test.bounds = matrix(0, nrow = 2, ncol = n.y2)

for (k in 1:n.y2){

print(k)

testsamples = rep(0, 1000)

for (t in 1:1000){

pred = pred.y(full_y[1:(n.y+k-1)], c(z[1:(n.y+k-2)], trained_z[t]),

alpha = meanalpha, meansqbeta, meanv, step = 1)

testsamples[t] = pred$pred_y

if (t != iter){

trained_z[t+1] = pred$pred_z

}

}

# 95% credible intervals

testbound = quantile(testsamples, c(0.025, 0.975))

test.bounds[1,k] = exp(testbound[1])

test.bounds[2,k] = exp(testbound[2])

# expected value

test.ypred[k] = mean(exp(testsamples))

}

test.p = test.sp500[-(n.y2+1),4]*test.ypred

test.plower = test.sp500[-(n.y2+1),4]*test.bounds[1,]
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test.pupper = test.sp500[-(n.y2+1),4]*test.bounds[2,]

# generate plots of predictions

plot(test.sp500[,4], type = ’l’, main = ’GARCH(1,1) prediction on test S&P 500’)

lines(test.p, col = ’green’)

lines(test.plower, col = ’red’)

lines(test.pupper, col = ’blue’)

# MSE of GARCH(1,1) predictions

mse.garch = mean((test.sp500[,4]-test.p)^2)

4 Stochastic Volatility model

# functions

# posterior of alpha

post.alpha = function(w, z, alpha, v, sqbeta){

# returnn: log of posterior of alpha

# prior for alpha: gamma(1, 1)

wt = w[-1]

zt = z[-1]

n = length(w)

zt1 = z[-n]

a = -(n-1)*(log(gamma(alpha)) + log(gamma(v/2 + alpha)))

b = -2*alpha*sum(log(wt)) + (alpha - 1)*sum(log(zt))

c = alpha*sum(log(v*sqbeta^2/2 + zt1)) - alpha

return(a + b + c)

}

# Metropolis-Hasting for alpha

MH.alpha = function(w, z, alpha, v, sqbeta){

alpha2 = rlnorm(1, meanlog = log(alpha), 0.1)

ratio = post.alpha(w, z, alpha2, v, sqbeta) + log(dlnorm(alpha, log(alpha2), 0.1)) -

(post.alpha(w, z, alpha, v, sqbeta) + log(dlnorm(alpha2, log(alpha), 0.1)))

ratio = exp(ratio)

u = runif(1, 0, 1)

if (u < min(1, ratio)){

alpha = alpha2

}

# print(alpha)

return(alpha)

}

# posterior of beta^2

post.sqbeta = function(w, z, alpha, v, sqbeta){
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# returnn: log of posterior of sqbeta

# prior for sqbeta: gamma(1, 1)

wt = w[-1]

n = length(w)

zt1 = z[-n]

a = -v*sqbeta/2 * sum(1/wt)

b = (v/2 + alpha)*sum(log(v*sqbeta/2 + zt1)) - sqbeta

return(a + b)

}

# Metropolis-Hasting for beta^2

MH.sqbeta = function(w, z, alpha, v, sqbeta){

sqbeta2 = rlnorm(1, meanlog = log(sqbeta), 0.1)

ratio = post.sqbeta(w, z, alpha, v, sqbeta2) +

log(dlnorm(sqbeta, log(sqbeta2), 0.1))-

(post.sqbeta(w, z, alpha, v, sqbeta) +

log(dlnorm(sqbeta2, log(sqbeta), 0.1)))

ratio = exp(ratio)

u = runif(1, 0, 1)

if (u < min(1, ratio)){

sqbeta = sqbeta2

}

return(sqbeta)

}

# posterior of v

post.v = function(w, z, alpha, sqbeta, v_vec){

# returnn: log of posterior of sqbeta

# prior for sqbeta: gamma(1, 1)

n = length(w)

wt = w[-1]

zt1 = z[-n]

num = c()

for (v in v_vec){

a = -(n-1)*log(gamma(v/2 + alpha))

b = -v/2*sum(log(wt)) - v*sqbeta/2*sum(1/wt)

c = (v/2 + alpha)*sum(log(v*sqbeta/2 + zt1))

loglikelihood = a + b + c

if (v == 3){

benchmark = -loglikelihood

}
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num = c(num, exp(benchmark + loglikelihood))

}

print(num)

denominator = sum(num)

# print(num)

probs = num/denominator

new_v = sample(v_vec, 1, prob = probs)

return(new_v)

}

# posterior of w

post.w = function(yvec, z, alpha, sqbeta, v){

# return: new w sampled from posterior of wt

n = length(yvec)

z_t = z[-1]

z_t1 = z[-n]

y_t = yvec[-1]

y_t1 = yvec[-n]

# when t > 1

a = (1+v)/2 + 2*alpha

b = (y_t^2 + v*sqbeta)/2 + z_t + z_t1

w = sapply(b, function(x) rinvgamma(1, a, x))

# when t = 1

w1 = rinvgamma(1, a, (yvec[1]^2 + v*sqbeta)/2 + z[1])

w = c(w1, w)

return(w)

}

# posterior of z

post.z = function(w, z, alpha, sqbeta, v){

# return: posterior of z

n = length(w)

w_t1 = w[-1]

w_t = w[-n]

z_t = z[-n]

# when t < n

a = exp(-(1/w_t1 + 1/w_t)*z_t)*z_t^(alpha - 1)

b = (v*sqbeta/2 + z_t)^(v/2 + alpha)

zn_1 = a*b
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# when t = n

c = exp(-(1/w[n])*z[n])*z[n]^(alpha - 1)

d = (v*sqbeta/2 + z[n])^(v/2 + alpha)

zn = c*d

post_z = c(zn_1, zn)

return(post_z)

}

# Metropolis-Hasting for z

MH.z = function(w, z, alpha, sqbeta, v){

# return: new z sampled from the posterior

n = length(w)

z2 = sapply(z, function(x) rlnorm(1, meanlog = log(x), 0.1))

ratios = post.z(w, z2, alpha, sqbeta, v) * dlnorm(z, log(z2), 0.1)/

(post.z(w, z, alpha, sqbeta, v) * dlnorm(z2, log(z), 0.1))

u = runif(n, 0, 1)

for (i in 1:n){

if (u[i] < min(1, ratios[i])){

z[i] = z2[i]

}

}

return(z)

}

# predictive density

pred.y = function(zvec, alpha, sqbeta, v, step){

# return: predicted y and z

# zvec is different from above, z with user-defined length

n = length(zvec)

lastz = zvec[n]

for (k in 1:step){

new_w = rinvgamma(1, v/2 + alpha, v*sqbeta/2 + lastz)

newy = rnorm(1, 0, sqrt(new_w))

newz = rgamma(1, alpha, rate = 1/new_w)

lastz = newz

}

structure(list(pred_y = newy, pred_z = newz))

}

#------------------------------

v_vec = c(3:20)

init.sqbeta = 0.0001
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alpha = 0.05

iter = 10000

w = rinvgamma(n.y, 3/2, 3*init.sqbeta/2)

z = sapply(w, function(x) rgamma(1, alpha, 1/x))

# begin sampling

vsamples = rep(0, iter)

sqbetasamples = rep(0, iter)

alphasamples = rep(0, iter)

predict_y = c()

ypred.samples = matrix(0, nrow = iter, ncol = n.y)

sqbeta = init.sqbeta

last_w = c()

last_z = c()

for (i in 1:iter){

print(i)

# update parameters

vsamples[i] = post.v(w, z, alpha, sqbeta, v_vec)

sqbetasamples[i] = MH.sqbeta(w, z, alpha, vsamples[i], sqbeta)

alphasamples[i] = MH.alpha(w, z, alpha, vsamples[i], sqbetasamples[i])

# update z

z = MH.z(w, z, alphasamples[i], sqbetasamples[i], vsamples[i])

last_z = c(last_z, z[n.y])

# update w

w = post.w(y, z, alphasamples[i], sqbetasamples[i], vsamples[i])

last_w = c(last_w, w[n.y])

# model checking

for (j in 2:n.y){

ypred.samples[i, j] = pred.y(z[1:(j-1)], alphasamples[i],

sqbetasamples[i], vsamples[i], step = 1)$pred_y

}

if (i > iter*0.4){

# predict new y, 20 steps ahead to eliminate dependence

# check if the future can mimic the past

ynew = pred.y(z, alphasamples[i], sqbetasamples[i], vsamples[i],

step = 20)$pred_y

predict_y = c(predict_y, ynew)

}
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# loop

sqbeta = sqbetasamples[i]

alpha = alphasamples[i]

}

# Posterior of beta^2

plot(sqbetasamples[5000:iter], type = ’l’, ylab = bquote(beta^2),

main = expression(paste(beta^2, ’ from SV’)))

paste(’The posterior mean of beta^2 is’, mean(sqbetasamples[5000:iter]))

# Posterior of degree of freedom: v

hist(vsamples, breaks = 100, main = ’Degree of freedom v’)

# Posterior of alpha

plot(alphasamples[6000:iter], type=’l’, ylab = bquote(alpha),

main = expression(paste(alpha, ’ from SV’)))

paste(’The posterior mean of alpha is’, mean(alphasamples[6000:iter]))

# Model checking: predictive distribution of y vs original

par(mfrow = c(1,2))

hist(predict_y, breaks = 100, xlab = ’log return’, xlim = c(-0.2, 0.2),

main = ’SV histogram of predicted y \n20 steps ahead’)

hist(orig.y, breaks = 50, xlab = ’log return’, xlim = c(-0.2, 0.2),

main = ’Histogram of y in training set’)

# 95% credible intervals for training log return prediction

mean_pred = apply(ypred.samples[5000:iter,], 2, mean)

bounds = apply(ypred.samples, 2, function(z) quantile(z, c(0.025, 0.975)))

plot(orig.y, type = ’l’, main = ’SV 95% credible intervals for log return\n from

2005 to 2009’, ylab = ’Log return’, ylim = c(-0.12, 0.12))

lines(bounds[1,], col = ’blue’)

lines(bounds[2,], col = ’red’)

lines(mean_pred, col = ’green’)

# Stock price prediction on test data

meansqbeta = mean(sqbetasamples[5000:iter])

meanalpha = mean(alphasamples[6000:iter])

# the majority of v

meanv = 3

test.ypred = rep(0, n.y2)

trained_z = last_z[9001:iter]

test.bounds = matrix(0, nrow = 2, ncol = n.y2)
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for (k in 1:n.y2){

print(k)

testsamples = rep(0, 1000)

for (t in 1:1000){

pred = pred.y(c(z[1:(n.y+k-2)], trained_z[t]), alpha = meanalpha,

meansqbeta, meanv, step = 1)

testsamples[t] = pred$pred_y

if (t != iter){

trained_z[t+1] = pred$pred_z

}

}

# 95% credible intervals of the prediction

testbound = quantile(testsamples, c(0.025, 0.975))

test.bounds[1,k] = exp(testbound[1])

test.bounds[2,k] = exp(testbound[2])

# expected value

test.ypred[k] = mean(exp(testsamples))

}

test.p = test.sp500[-(n.y2+1),4]*test.ypred

test.plower = test.sp500[-(n.y2+1),4]*test.bounds[1,]

test.pupper = test.sp500[-(n.y2+1),4]*test.bounds[2,]

# generate plots of predictions

plot(test.sp500[,4], type = ’l’, main = ’SV prediction on test S&P 500’)

lines(test.p, col = ’green’)

lines(test.plower, col = ’red’)

lines(test.pupper, col = ’blue’)

# MSE of predictions from SV model

mse.sv = mean((test.sp500[,4]-test.p)^2)

5 Standard GARCH(1,1)

# compare with standard GARCH(1,1)

library(fGarch)

garchpred = rep(0, n.y2)

garchbounds = matrix(0, nrow = 2, ncol = n.y2)

m = garchFit(formula = ~garch(1,1), data = y)

coeff = coef(m)

lasth = m@h.t[n.y]

lastu = m@residuals[n.y]

45



# the model is:

# y_t = mu + u_t

# u_t = sqrt(h_t)v_t

# h_t = omega + alpha*u_{t-1}^2 + beta*h_{t-1}

# One-step ahead prediction with fixed parameters from training data

for (k in 1:n.y2){

h_t = coeff[’omega’] + coeff[’alpha1’]*lastu^2 + coeff[’beta1’]*lasth

u_t = sqrt(h_t)*rnorm(1000)

# expected value

garchpred[k] = mean(exp(coeff[’mu’] + u_t))

# 95% credible intervals of the prediction

bounds = quantile(exp(coeff[’mu’] + u_t), c(0.025, 0.975))

garchbounds[1,k] = bounds[1]

garchbounds[2,k] = bounds[2]

lasth = h_t

lastu = full_y[n.y+k] - coeff[’mu’]

}

test.pgarch = test.sp500[-(n.y2+1),4]*garchpred

test.pgarch.lower = test.sp500[-(n.y2+1),4]*garchbounds[1,]

test.pgarch.upper = test.sp500[-(n.y2+1),4]*garchbounds[2,]

# generate plots of predictions

plot(test.sp500[,4], type = ’l’, main = ’GARCH prediction on test stock prices’)

lines(test.pgarch, cex = 0.1, col = ’green’)

lines(test.pgarch.lower, cex = 0.1, col = ’blue’)

lines(test.pgarch.upper, cex = 0.1, col = ’red’)

# MSE of predictions from standard GARCH(1,1)

mse.garch2 = mean((test.sp500[,4]-test.pgarch)^2)
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