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An improved model of VIScous Vorticity Equation (VISVE) in 2-D is

proposed and implemented in this thesis. Based on the original model, non-

orthogonal terms have been included in this model in order to apply to meshes

with skewness. A surface pressure model has been designed in order to predict

the time evolution of pressure and force. Parallelization has been implemented

in the code to shorten the computational time cost.

The proposed method is applied to an impulsive started cylinder, which

is a classic unsteady separated flow in 2-D. New griding has been created in

order to apply to the cylinder geometry. Results are correlated with published

experimental and numerical data. The flow patterns were captured in the

converging solution. Grid independence and sufficiency of the computational

domain are evaluated.
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Chapter 1

Introduction

1.1 Background

Accurately predicting the performance of propellers has being a chal-

lenge in ocean engineering. As panel methods and various models widely

accepted by the community, problems arise as these models fail to predict the

thrust and torque at high loading.

Separating from the leading edge at high angle of attack could be crucial

to the pressure prediction on the blade. The vortex sheet generated from the

leading edge connect to the trailing edge is difficult to simulate using the panel

methods.

A vortex model was therefore developed based on viscous theory, us-

ing a panel method to enforce the boundary condition locally. The vortex

transport equation in the whole fluid field can help us determine complex flow

separation. Considering that the vorticity concentrates in a small range of the

flow field, this viscous vortex model is spacially compact and numerically effi-

cient. Enforcing the non-slip boundary condition on the wall surface, a panel

method is used in the vortex sheet along the boundary, as a local correction

to the viscous model.
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Figure 1.1: Tian (2014) VISVE result of a 2D hydrofoil with AOA = 10◦

comparing with Navier-Stokes model result [26].

1.2 Motivation

A 3D vorticity based method, named VIScous Vortex Equation (VISVE),

was developed by Tian (2014) [26], but has not been fully validated.

In Tian’s work [26] [27], the VISVE results of a hydrofoil were presented

and compared with a Navier-Stokes solver result. In Figure1.1, the two results

are comparable, while the discrepancy is not negligible in the flow field. Both of

the results shows the start up leading edge vortex (LEV) moving downstream

with the flow. It can be observed that VISVE result has more diffusion effect

in the terms of vorticity transportation. Due to that diffusion, the intensity

of the vortex predicted by VISVE is smaller than that from the Navier-Stokes

solver results.

Additionally, a pressure model as introduced in Tian’s work. However,
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this pressure model is not well validated by comparing to other published data.

Therefore, a precise validation and improvement is necessary at this

point for the VISVE model. A model needs to be established and details of the

results need to be compared with published data. Various previous articles and

papers studied cylinder flow and provided both numerical and experimental

results. Impulsively started cylinder flow is a classic, yet challenging, unsteady

separation flow problem, but also a practical application for the current VISVE

model.

1.3 Objective

The objective of this research is to improve the current 2D VISVE

model and validate it using an impulsively started cylinder flow.

The original objective of the VISVE model of Tian’s work [26] [27] was

to predict the leading edge vortex of a hydrofoil and then propeller blade.

Validation of the VISVE 3D as applied to hydrofoils was recently presented

by Wu (2016) [31].

According to the new geometry, the griding and the solver need to be

modified so that it can be applied to a more general flow field. The calculation

domain needs to be efficient while covers all the regions where the vorticities

concentrate. New griding scheme should be available for a more general geom-

etry such like that for a cylinder flow. Most of the grids should be distributed

close to the solid surface, where the vorticity generated. We also require suf-

3



ficient number of cells in the wake region where the vortex shedding patterns

are developed.

A more general VISVE solver is crucial to this research work, since the

original 2D model can only deal with orthogonal or nearly orthogonal mesh.

A new pressure model should also be developed, instead of evaluating the

pressure throughout the flow field. Surface pressure should be evaluated along

the solid boundary.

Long time calculation provide more insight on the classical von Karman

vortex street. The periodic vortex shedding is a crucial feature not only for

impulsive started cylinder, but also for the design of risers used in the offshore

industry as well as for anti-singing propeller blade sections.

1.4 Overview

This thesis is organized into six main chapters:

Chapter 2 reviews the existing vortex methods including the existing

VISVE code. It also provide a close look in the current studies in impulsively

started cylinder flow.

Chapter 3 presents the VISVE method in 2D flow, including the solver

improvement in the accommodation for non-orthogonal mesh and also a new

model of surface pressure.

Chapter 4 provides the details of the application of cylinder flow, in-

troducing the grids and parallel computing of VISVE.
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Chapter 5 presents the results and discussion of the impulsively started

flow. The results from VISVE are compared with experimental data and other

numerical simulations. The effect of grid resolution and the computational

efficiency are also addressed in this chapter.

Chapter 6 summarizes the conclusions of the thesis, and provides some

recommendations for future work.
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Chapter 2

Literature Review

This chapter reviews the literature on two topics: numerical vortex

methods and experimental and computational studies of flow around impul-

sively started cylinder.

2.1 Vortex Methods

Discrete vortex methods are widely used by the researchers to predict

the 2D separate flow. Katz (1981) [11] used a discrete vortex method to

analyze the separated unsteady inviscid flow around a cambered airfoil. A 2D

foil under high angle of attack was simulated using vortex lattice approach

and the periodic shedding vortex and forces were predicted in Katz’s work.

Spalart and Leonard (1981) [25] developed a vortex tracking model, in which

large value of Reynolds number was assumed. This work was followed by

an improvement in the research of Koumoutsakos and Leonard (1995) [14] in

which the model was improved and applied to an impulsively started cylinder

flow. The simulation was conducted under wide range of Reynolds number

(40 < Re < 9500) and closely agreed with experimental data.

Different works were carried on in the separated flow around bluff bodies
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using discrete vortex methods. Clements (1973) [6] and Sarpkaya (1975) [24]

investigated the vortex shedding patterns under inviscid assumption. How-

ever, as discrete vortex methods are well developed in 2D flows, they are still

challenging in extending to 3-D flows.

Boundary Element Method (BEM), or panel method, has been applied

to analyze the unsteady flow around propellers, first introduced to solve 2D

flow around hydrofoils by Giesing (1968) [8]. Kerwin et al (1987) [12] analyzed

2D hydrofoil and ducted propellers confronted by uniform flow using panel

method. They simulated steady potential flow of a duct, hub and propeller.

This paper was followed by improvement in correction of the trailing edge

Kutta condition in Kinnas and Hsin (1994) [13]. Kinnas and Hsin re-evaluated

the 2D hydrofoil simulation and included a local error correction to improve

the performance of the model.

Instead of solving the Navier-Stokes equations, the viscous vorticity

equation is solved using appropriate mesh and by employing a finite difference

method or a finite volume method. In Wu et al’s work (1995) [32] a diver-

gence free velocity-vorticity formulation in 3D was developed and a lid-driven

flow simulation was conducted to test the model. Hansen et al (2003)[10] ap-

plied a finite difference vortex method in a cylindrical coordinate to predict

axisymmetric flow in pipes.

The VISVE was developed by Tian (2014) [26] solving the viscous vor-

ticity equation in both 2D and 3D flow field applying the BEM at the solid

boundary in order to satisfied the non-slip boundary condition. Through this
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model, the inviscid model BEM could be applied to predict flow field of a

viscous flow. Tian’s model captures the essential flow features such as lead-

ing edge vortex and tip vortex and the results are comparable to the RANS

solution.

2.2 Impulsively Stared Cylinder Flow

Behind a 2D cylinder, before the 3D effect occurs, two regime of lam-

inar vortex were discovered: at small Reynolds number (Re < 49)the wake

comprises a steady re-circulation region of two symmetrically placed vortices

on each side of the wake. When the Reynolds number goes beyond that, the

re-circulation region develops into instabilities. The vortex oscillations are pe-

riodic in the wake. The two regimes are well studied in the past fifty years as

summarized by Williamson (1996) [29].

Among various studies on cylinder flow, the impulsively started cylinder

problem is studied as a prototype of unsteady separated flows. The Magnus

effect was first observed by Prandlt (1925) [21]. Intensive experimental inves-

tigations on this subject are presented in Bouard and Coutanceau (1980) [4].

In this experiment a specially designed system were used to produce nearly

instantaneous starts. Photos of the streamlines of the flow field were analyzed.

The wake evolution process as well as two important flow structure of rapid

vortex and forwake, i.e. α and β-phenomena at different Reynolds numbers

were observed. However the drag force and pressure measurements were not

presented.
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θ∞

wake region

L

r

Figure 2.1: Flow geometry of a cylinder flow. U∞ is the incoming flow velocity.
In polar system, r is the radial direction and θ is the angular direction. L
denotes the wake length, which is the distance between the stagnation point
in the wake and the tailing edge.

Numerical studies were conducted attempting to generate high-order

simulation of the time evolution of this separated flow. Impulsively started

flows present a challenge especially in the application of boundary condition

and of the initial condition. High-order resolution is required in the numerical

simulation, to resolve accurately the separation process.

A viscous vortex method with finite difference method was realized in

Chang and Chern’s work (1991) [5], in which vortex on the surface were calcu-

lated in order to satisfy the boundary condition. They evaluated the surface

pressure and the time evolution of the drag force. An adaptive numerical La-

grangian vortex method was employed by Koumoutsakos and Leonard (1995)

[14], in which time evolution results of higher resolution were presented. Both

of the articles captured the α and β-phenomena that was first observed by

Bouard and Coutanceau’s experiment [4].
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This well studied topic has been applied to various numerical models in

order to validate and test the efficiency of the numerical methods. In Qian and

Vezza’s work (2001) [22], the vorticity transport equation is solved by using

the cell-centered finite-volume method and both the early stage development

and long term evolution of the impulsively started flow were achieved by their

method. High efficiency was achieved by an adaptive fast summation algo-

rithm. Lattice Boltzmann method were also applied to study this subject by

Niu et al (2003) [19] and Dupuis et al (2008) [7], including a immersed bound-

ary model in the Lattice Boltzmann method. The results in a case with curved

boundary was validated and results with higher resolution were presented.

Besides the static cylinder in impulsively started flow, various topics

such as rotating and oscillating cylinder were discussed. Flow over a rotating

cylinder was studied by Badr and Dennis (1985) [2] as well as Mittal and Ku-

mar (2003) [17]. Oscillating cylinder was presented in the works of Williamson

and Roshko (1988)[30], Guilmineau and Queutey (2002) [9]. These are also

challenging topics in numerical simulation.
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Chapter 3

Improved Model of VISVE

The 2-D Viscous Vorticity Equation (VISVE) method combining with

BEM at boundary was developed by Tian, and was originally only applicable

to nearly orthogonal mesh. See more details in Tian (2014) [26].

3.1 Viscous Vorticity Method

Viscous vorticity methods have been used to model separated flows in

previous research [14] [22] [10].

The vorticity equation can be derived from the governing equation for

an incompressible viscid flow. The Navier-Stokes equations can be written as:

∂q

∂t
+ (q · ∇)q = −∇p

ρ
+ ν∇2q, (3.1)

in which q denotes the velocity vector, p and ρ represent the pressure and

density, respectively, and ν is the viscosity. By simply taking the curl of

equation 3.1, we get vorticity equation

∂ω

∂t
+ (q · ∇)ω = (ω · ∇)q+ ν∇2ω, (3.2)

in which ω denotes the vorticity vector, defined as the curl of the velocity

vector q. This is a general vorticity equation which applies to 3D space with
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vorticity ω being a vector. ∂ω
∂t

denotes the time derivative of vorticity and

(q · ∇)ω is the convective term. The diffusivity of the vorticity is represented

by the term ν∇2ω, while (ω · ∇)q is the vortex stretching term.

In 2D problems, the vortex stretching term vanishes. The vorticity

vector ends up with non-zero value in only one direction, perpendicular to the

flow velocities. Thus, ω is simplified as a scalar:

∂ω

∂t
+ (q · ∇)ω = ν∇2ω. (3.3)

3.2 Finite Volume Method

In order to develop a Finite Volume Method for our governing equation,

we re-write equation 3.3 in conservation form

∂ω

∂t
+ (q · ∇)ω = ∇ · (ν∇ω) . (3.4)

Integrate equation 3.4 over a certain control volume V , i.e. a grid cell’s volume,∫
V

∂ω

∂t
dV +

∫
V

(q · ∇)ωdV =

∫
V

∇ (ν∇ω) dV. (3.5)

One can apply Gauss divergence theorem to equation 3.5, transforming the

volume integral into surface integral,∫
V

∂ω

∂t
dV +

∫
S

qωdS =

∫
S

(ν∇ω) · ndS, (3.6)

in which S is the control surface, n is the unit normal vector that pointing

outside of the control surface S. If we discretize the surface S into a summa-

tion of several faces which are numbered as 1, 2, ..., N, we can discretize the

12



integration as: ∫
V

∂ω

∂t
dV +

N∑
j=1

(qωA)j =
N∑
j=1

(
ν
∂ω

∂nj

A

)
j

, (3.7)

in which, subscript j denoted the values that evaluated on the face j. ∂ω
∂nj

is

the normal derivative of vorticity calculated on the face j. If we represent the

face j ’s area of a 2D grid cell as ∆lj, and discretize the time steps as time at

n and n+ 1 we get

ωn+1 − ωn

∆t
+

N∑
j=1

(qjωj∆lj) =
N∑
j=1

(
ν
∂ω

∂nj

∆lj

)
. (3.8)

In equation 3.8, the convective term qjωj∆lj can be calculated,once we

know the velocity and vorticity on the face j. The diffusive term ν ∂ω
∂nj

∆lj is

detailed in the next section.

3.3 Diffusive Term in Unstructured Mesh

In structured mesh or orthogonal mesh, the diffusive term can be cal-

culated easily since the derivatives can be calculated in the same direction of

the face in x-y coordinates:

ν
∂ω

∂n
∆lf = ν

∂ω

∂x
∆ly = ν

ω1 − ω0

∆x
∆ly, (3.9)

in which, n denotes the direction from centroid of cell 0 to centroid of cell 1.

∆ly is the distance between the two centroids, which is as same as the difference

between the y coordinates of the location. However in non-orthogonal mesh
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C0

C1
e�

e�

Cb

Ca

lf

Figure 3.1: Non-orthogonal mesh. C0 and C1 are the cell centroids. Ca and
Cb are the grid points. lf is the face vector of face f between the two cells. eξ
is unit vectors pointing from C0 to C1. eη is unit vector pointing from Ca to
Cb.

[18], this term should be derived differently as:

ν
∂ω

∂nf

∆lf = −ν lf · lf
lf · eξ

(ωξ)f + ν
lf · lf
lf · eξ

eξ · eη (ωη)f , (3.10)

in which ∂ω
∂n

can no longer be written as ω1−ω0

∆x
as n is not in the direction of

x or y coordinates anymore. Face vector lf has the direction perpendicular to

the face, pointing from cell 0 to cell 1, while its magnitude equals to the face

area lf . Unit vector eξ points from centroid of cell 0 to 1 as unit vector eη from

grid point a to b, as shown in figure 3.1. The derivations can be calculated by

(ωξ)f =
ω1 − ω0

∆ξ
(3.11)

(ωη)f =
ωb − ωa

∆η
. (3.12)

In equation 3.10, the first term with (ωξ)f is called primary term, while

the second term involving with (ωη)f is called secondary term. In orthogonal
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mesh, the secondary term equals to zero. Additionally, equation 3.10 can be

simplified to equation 3.9 in orthogonal mesh.

The vorticity values are stored at cell centroids, providing a convenience

way to calculate primary deviation (ωξ)f . However, to calculate secondary

deviation (ωη)f , we will need to know the values at the grid points Ca and

Cb in order to calculate ωb−ωa

∆η
. Surely we can use interpolations to approach

that. When it comes to 3D problems, it is not easy to define direction η [18].

Thus, gradient is introduced in equation 3.13 to calculate the secondary term

instead of using values on the grid points.

ν
∂ω

∂nj

∆lf = −ν lf · lf
lf · eξ

(ωξ)f + ν∇ω · lf − ν
lf · lf
lf · eξ

∇ω · eξ (3.13)

3.4 Calculation of Gradient

Using least squares method [18], the gradient is calculated using solu-

tions of the neighbor cells. Assuming a linear profile of a quantity ϕ that is

store at the cell centroids, as shown in Figure 3.4. If ϕ is stored at a neigh-

boring cell numbered as j near the center cell numbered as 0, then the value

of ϕ can be written as:

ϕ0 +∇ϕ0 ·∆rj = ϕj, (3.14)

where ∇ϕ0 is the gradient at cell 0, ∆rj denotes the vector from centroid of

cell C0 to centroid of cell Cj. Unfolding the dot product, we write:

∆xj
∂ϕ

∂x

∣∣∣∣
0

+∆yj
∂ϕ

∂y

∣∣∣∣
0

= ϕj − ϕ0 (3.15)

15



This equation can apply to all the neighboring cells around cell C0. For con-

venience, it can be rewritten as:

Md = ∆ϕ, (3.16)

where M is a J × 2 matrix

M =


∆x1 ∆y1

∆x2 ∆y2
...

...

∆xj ∆yj

 , (3.17)

d is a vector of gradient that we a after for

d =

[
∂ϕ
∂x
|0

∂ϕ
∂y
|0

]
, (3.18)

and ∆ϕ denotes the vector of differences of ϕ

∆ϕ =


ϕ1 − ϕ0

ϕ2 − ϕ0

...

ϕj − ϕ0

 . (3.19)

Equation 3.16 represents j equations for all of the j neighbor cells

around cell C0, with only 2 unknowns, components of gradient vector, in j

equations. When j > 2, this is an over-determined system, meaning that

the solution of d can not satisfy all the equations in equation 3.16. The best

possible solution we could obtain is the one that gives the smallest RMS of

the difference between the cells. In other words, the error

Rj = ∆xj
∂ϕ

∂x

∣∣∣∣
0

+∆yj
∂ϕ

∂y

∣∣∣∣
0

− (ϕj − ϕ0) (3.20)
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Figure 3.2: Gradient calculation at the centroid of cell C0.

should be minimized in terms of RMS

R =
∑
j

Rj. (3.21)

This minimized value is achieved when differentiate of R with respect of com-

ponents of gradient vector is 0:

∂R

∂a
= 0

∂R

∂b
= 0

, (3.22)

where a = ∂ϕ
∂x
|0, b = ∂ϕ

∂y
|0. Substitute equation 3.22 in equation 3.16, we have

MTMd = MT∆ϕ, (3.23)

which represents 2 equations with 2 unknowns. From this equation, we can

solve for the gradient of ϕ located at the cell centroid.
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In VISVE, the vorticity gradient is solved using least squares method.

This gradient is then used in the correction of the diffusive term in non-

orthogonal mesh as discussed in the previous section.

3.5 Vorticity-Velocity Solver

The velocity decomposition can be written as

q = U∞ + up + uω, (3.24)

where total velocity field q is decomposed in to three components, incoming

flow velocity U∞, perturbation flow velocity up of the irrotational flow and

the induce velocity uω due to the vorticity field. The perturbation velocity

up = ∇ϕ according to the velocity potential’s definition.

When both the non-slip boundary and non-penetrate boundary are

satisfied, the perturbation potential ϕ vanishes. Therefore we have

q = U∞ + uω. (3.25)

According to the definition of vector stream function ψ:

∇×ψ = q. (3.26)

Write equation 3.26 using vorticity definition:

∇× (∇×ψ) = ω, (3.27)

which leads to

∇2ψ = −ω. (3.28)
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In 2D we have a scalar equation

∇2ψ = −ω. (3.29)

The Poisson equation 3.29 can be solve using Green’s function for

Laplacian infree space:

ψ (xf ) = −
∫
ΩC

ω (x)G (x,xf ) dΩ + ψb, (3.30)

where ΩC is the computational domain; xf is the field point and x is the

dummy variable running over ΩC ; G (x,xf ) = (ln | x− xf |) /2π is the Green’s

function for Laplacian in 2D. ψb = yU∞,x − xU∞,y is the stream function

corresponding to the background flow.

A standard Finite Volume Method (FVM) can also be adopted to solve

equation 3.29. Applying the Stokes theorem over a cell leads to

Aω = −
∑ ∂ψ

∂nj

∆lj, (3.31)

where A is the area of the cell and δlj’s are the enclosing edges of the cell.

More details can be found in Tian (2014) [26].

3.6 Boundary Conditions

3.6.1 Solid Boundary Condition

The non-slip boundary condition is enforced by a Boundary Element

Method (BEM) solver [26]. The numerical treatment at the boundary in shown

in Figure 3.6.1.
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Figure 3.3: Schematic figure of the vorticity creation algorithm, from Tian
(2014) [26].

1. Assume at the start of a time iteration at t, the velocity q and vorticity

ωn
b fields are calculated in the last iteration.

2. When we move on to next time step t+∆t, the VISVE solver solve the

vorticity throughout the flow field using the velocity flow field calculated

from the previous time step. Near the boundary, a vorticity ωn+1∗
b is

assigned to the cell originally from VISVE. Since the vorticity field is

known, the velocity could be evaluated using Biot-Savart law[14][26].

However, the non-slip and non-penetrate condition is not enforced on

the boundary. Both the tangential velocity qs and the normal velocity

qn are not diminished at this point.
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3. A BEM solver is therefore called to enforce the solid boundary condition,

by applying a sheet of concentrated vorticity γb on the boundary cells. γb

induces another normal velocity which cancels out qn so that the normal

velocity diminishes at the boundary.

4. The vorticity sheet is then assign to the boundary cells, averaged by the

panel area A, from which we get the new vorticity as

ωn+1
b = ωn+1∗

b +
γb
A
. (3.32)

The BEM solver locally corrects the non-slip boundary condition.

3.6.2 Outflow Condition

At the far field, the flow should be irrotational with zero vorticity,

consistent with external free stream. Ideally the concentrated vorticity never

reaches the far field boundary so that there’s no induced velocity on the bound-

ary.

However, small vorticity may still penetrate the boundary, especially

in the wake due to diffusion. We use the Neumann condition at the boundary,

which enforces the normal derivative at the boundary to be 0. Still, even if the

Neumann condition is applied, boundary of the computational domain needs

to be far enough in order to obtain a converged solution that is independent

of the size of the domain.

A flow chart is helpful to understand the general procedure of VISVE.

As shown in Figure 3.4, from the vorticity field of previous time step, we
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Figure 3.4: Flow chart of general procedure of VISVE, taken from Tian (2014)
[26].
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calculate velocity by solving Poisson equation 3.29. Then, using the velocity

we calculated, we solve the vorticity transport equation 3.3 in order to obtain

ωn+1∗
b . Applying BEM and assigning the vortex sheet γb to the boundary

vorticity, we obtain the vorticity solution ωn+1
b .

3.7 Calculation of Surface Pressure and Body Forces

The pressure term does not appear explicitly in vorticity transport

equation 3.3. Therefore, pressure calculation is a post-processing of the wor-

ticity solver of VISVE.

An integral method was mentioned by Tian [26]. He define the total

head H as:

H =
q2r
2

+ p− Ω2r2

2
, (3.33)

where Ω is the rotational speed. qr is the velocity in the rotational frame of

reference of the propeller. Using momentum equation in the rotational frame

of reference, the terms in 3.33 can be written in terms of qr and ω:

∇H =
∂qr

∂t
+ qr × ω − ν∇× (∇× ω) . (3.34)

Integrating the RHS of 3.34, gives H, and consequently, the pressure p. Also

there are certain relation between velocity potential ϕ and total head H. More

details are discussed in Tian [26].

Another integration model for pressure was developed in 2D by Wu

[31]. The total head H is defined as:

H =
q2

2
+
p

ρ
. (3.35)
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Using vorticity transport equation, the gradient of total head H can be written

as:

∇H = −∂q
∂t

+ q× ω − ν∇× ω. (3.36)

Using the relationship between total head H and pressure p, pressure through-

out the fluid domain can be solved.

In this work, the pressure model developed by Qian and Vezza (2001)

[22] is used.

In viscous flow, non-slip boundary condition is valid on the cylinder

surface. Therefore, in equation 3.1, the time derivative term ∂q
∂t

and the con-

vection term (q · ∇)q vanish at the surface. The diffusion term ν∇2q can be

written as ν∇ × ω according to the definition of vorticity. Equation 3.1 can

be written as

∇p
ρ

= ν∇× ω. (3.37)

In 2D polar coordinate system, equation 3.37 can be written as

1

r

∂p

∂θ
= −µ∂ω

∂r
. (3.38)

Assuming a local coordinate on the cylinder surface, s as the tangential direc-

tion and n as the normal direction, we have

∂p

∂s
= −µ∂ω

∂n
. (3.39)

For each panel on the cylinder’s surface, we can write equation 3.39 as

pj − pj−1

∆s
= −µ (∇ω) · en, (3.40)
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where vorticity derivative in the n direction ∂ω
∂n

is written in a gradient form.

After the non-slip boundary condition is implemented, the vorticity gradient at

the boundary, i.e. the rate of vorticity generation, can be calculated. Therefore

the surface pressure changes across each panel can be evaluated.

Pressure at the stagnation point at the leading edge of the cylinder

can be easily determined using Bernoulli Equation. The stagnation gauge

pressure, according to Bernoulli Equation, is 1
2
ρU2

∞. After determine the stag-

nation pressure, surface pressure along the boundary can be determined using

equation 3.40.

The viscous sheer stress τ on the surface is usually written as

τ = µ
∂u

∂n
, (3.41)

where u is the tangential velocity parallel to the surface, and n is the unit

normal vector. Although it is a 1D equation, it can also apply to the cells

near the boundary, when the distance to the surface is much smaller than the

radius of curvature of the surface. Using the definition of vorticity ω, equation

3.41 can leads to

τ = µω. (3.42)

Note that the velocity normal to the boundary of the body is zero.

The drag and lift force can be therefore determined using the surface

pressure and shear stress [22]:

D = R

∮
bs

(
µR

∂ω

∂n
− µω

)
sin θdθ (3.43)
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L = R

∮
bs

(
µR

∂ω

∂n
− µω

)
cos θdθ (3.44)

where bs denotes the body surface. Non-dimensional drag and lift coefficients

can be obtained by

Cd =
D

ρU2
∞R

(3.45)

and

Cl =
L

ρU2
∞R

(3.46)

where R is the radius of the cylinder and ρ is the density of the fluid.
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Chapter 4

Application on Flow around Cylinder

4.1 Impulsively started cylinder flow

The impulsively started cylinder flow is an ideal start condition flow

that can’t be created in experiment. A rapid start of flow in experimental

works could be considered as a sufficient simulation.

However, in numerical study, ideally impulsive start is possible. At

t = 0+, the sudden start of the flow is simulated by the potential flow, with

slip condition on the solid surface of the cylinder. The velocity on the boundary

brings a strong shear stress, generating a thin layer of high vorticity in the next

time step. At t = ∆t the first time step, non-slip boundary is enforced by the

vorticity on the surface. Then this vortex sheet becomes vorticity flux and

comes into the fluid field by convection and diffusive process.

The challenges in this separated flow are usually:

1. The time evolution of the flow field. At different Reynolds numbers, the

process of vortex generation and its convection in the wake region are

particularly sensitive to the grid and the numerical scheme.

2. The application of the boundary condition at the start of the flow. The

physics of a sudden start indicates that the solid boundary transforms
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Figure 4.1: Two block griding for flow around a hydrofoil [26]. (a) Block I
and Block II cover the front area and wake area, respectively. (b) Expanding
meshes around the foil.

from slip condition into non-slip condition rapidly. Resolving this trans-

formation of boundary condition is especially crucial to our simulation.

4.2 Griding scheme

4.2.1 Body-fitting griding over hydrofoil with small trailing edge
angle

Original VISVE creates a body-fitting mesh around the hydrofoil, which

consists of two parts of mesh blocks as shown Figure 4.1.

The first mesh block covers the region around the surface of the hydro-

foil. It develops according to size of the panels on the foil and expands with

an expansion ratio in the radial direction perpendicular to the panels. At the

trailing edge, since the trailing edge angle τ is small, the angle between the

grid on the upper surface and lower surface π− τ is close to π, leaving a blank
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region in the wake.

The second mesh block covers the region in the wake, connecting con-

tinuously with the first block. Its first layer keeps the size of the mesh at tailing

edge and then expands with an expansion ratio to cover the wake region.

This mesh gives a good resolution closed to the surface of the foil and in

the wake region, which ensures the resolution of the domain where the vorticity

generates and develops. Since the vorticity is zero away from the foil, Block

I provides a good coverage of the thin region around the surface, saving the

computation cost so that finer mesh can be used close to the foil and in the

wake.

The interface of Block I and Block II is not absolutely smooth in the

term of the density of the cells. However this discontinuity is negligible due

to the fact that the trailing edge angle τ is small and the angle between the

Block I’s upper surface and lower surface is close to π. Thus, although the

mesh is unstructured, it can still be treated as structured mesh within some

accuracy requirements.

4.2.2 Griding over cylinder

The griding scheme needs to be modified when applying to a cylinder.

If the same scheme that generates Block I is used, at the trailing edge of

the cylinder, the mesh is perpendicular to the surface panel, leaving no blank

in the wake region. This will result in a polar grid around the cylinder, as

shown in Figure 4.2, covering the region both around the cylinder and in the

29



Figure 4.2: One block griding for cylinder flow. (a) Mesh with expansion in
radial direction. (b) Only one block overs the whole domain.

wake. In this case, since the wake region has already been covered, Block II is

not needed anymore.

This griding scheme is usable: it covers the computational region that

we are interested in. However, in order to resolve the wake region, this polar

grid needs to have a large radius, which means that it should also cover the

same span around the cylinder as the span in the wake. This leads to a

consequence of wasting cell in the region that we are not interested in, where

away from the cylinder in front of the wake, the vorticity is zero everywhere.

Thus, a new griding scheme needs to be created. It should cover a thin

region around the cylinder, providing a good resolution closed to the surface

where the vorticity is generated; At the same time, it should also provide a

extendable grid in the wake, so that we could resolve the vortex shedding

patterns in the downstream.

Therefore, another two-block griding is created, shown in Figure 4.3.
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(a)

(b)

Figure 4.3: Two block griding for cylinder flow. (a) Expanding meshes around
the cylinder. (b) Block I and Block II cover the front area and wake area,
respectively.

The first block still covers a region close to the surface of the cylinder, while an

angle between the mesh on the upper and lower is created, leaving the space

for second block to cover the wake region. The first layer of cells of Block II

keeps the size at the interface with Block I, and expand into the wake with an

expansion region.

Block I consists of two parts: a polar region in front half and a twisted

region in the rear part. In the polar grid, the meshes expand in the radical

direction perpendicular to the panels. In the twisted region, at the top and the

bottom of the cylinder, the mesh expands in the radical direction, but at the

trialing edge, the meshes first developed in 45 degree to the trailing edge panel,

then though an arc line, gradually turn to parallel to the panel, perpendicular

to the horizontal mesh boundary. The inner meshes are generated using coons
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patch scheme, providing a smooth bi-linear blending griding in between.

The new two-blocks griding scheme provides a good coverage both

around the cylinder and in the wake, as well as the flexibility in refining

the grids close to the surface and in the wake area, while not wasting any

unnecessary meshes in the region where the vorticity is zero.

The griding scheme leads to a problem at the interface between Block I

and II, with twisted grids in both blocks. The mesh can no longer be considered

as orthogonal mesh, as the skewness is significant in this body-fitting griding.

Thus the solver needs to be modified in order to include the effect of the

skewness in this griding.

4.3 Parallel computing

The VISVE method can be fully parallelized. Parallelization of the code

can significantly shorten the computational time experienced by end-users.

OpenMP was implemented in the code. The most time consuming step

is the vorticity-velocity solver where the volume integral with the point source

kernel is performed [26], which is parallelized by OpemMP. An efficiency test

has been done, and the results are included in the next chapter.
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Chapter 5

Results and Discussion

In this chapter, the results of impulsively started flow are presented at

different Reynolds number(Re = ρV D
ν

). The time evolution of the flow features

were also analyzed with respect to characteristic time T = Ut/R.

5.1 Grid and Domain Independence

In order to evaluate the influence of the grid domain and the grid

density on the solution, three sets of tests have been calculated for cylinder

flow at Re = 1000.

5.1.1 Sufficiency of Computational Domain

One of the most important advantage of VISVE compared with other

Navier-Stokes (N-S) equations solver is that it uses smaller computational do-

main due to the concentration of the vorticity. The computational domain

boundary of a N-S solver needs to be far away from the object, in some cases

several cylinder diameters away, so that the velocity reaches the far field con-

dition. Solid boundary or far field boundary could be applied in a N-S solver

since the effect of the boundary is small once the domain is sufficiently large.
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Figure 5.1: Computational domain used in domain sufficiency test: (a) Domain
height = 2D, radial cells num = 65.(b) Domain height = 3D, radial cells num
= 80. (c) Domain height = 4D, radial cells num = 90.

U R

R

y1 y2

x

Figure 5.2: The velocity profile location used in the domain and gird indepen-
dence tests. Vertical line y1 lies right behind the cylinder and vertical line y2
lies one radius behind the cylinder.
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ω

Figure 5.3: Domain effect on the vorticity y2 on vertical line one radius behind
the cylinder at T = 5.0.
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However, a vortex method solver only needs the domain to cover the rota-

tional flow. In the cylinder flow, the domain of the rotational flow in VISVE

is significantly smaller than the domain for a N-S solver. Therefore, in order

to know whether the domain is large enough for converged solution, a test on

the sufficiency of the computational domain is necessary for this method.

In order to find a suitable size of the domain, the grid sizes of the first

layer and the expansion ratio are the same for all the cases, while the number

of grids are different. In the first test, 65 cells are used in the radial direction so

we have a domain with a height of 2D. Instead of changing the size of the cells,

more cells are added in the radial direction in the other two tests, so that we

have a domain with a height of 3D and 4D, with 80 and 90 cells in the radial

direction, respectively. Figure 5.3 shows the vorticity on the vertical line y2 in

the wake one radius behind the cylinder with different computational domain

at T = 5.0. The small discrepancy indicates the domain is large enough to

capture all the flow structures for the Reynolds number considered.

5.1.2 Grid Independence

Another set of tests were focus on the effects of density of the panels

on the surface of the cylinder. The number of the cells on the radial direction

is kept as 80 and the number of panels on the surface is 100, 200 and 300,

respectively. In Figure 5.4, the vorticity on the vertical line y1 right behind

the cylinder were ploted at T = 2.5. The small differences between the profiles

indicate that the density of the surface panel is fine enough to resolve the flow
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Figure 5.4: Effects of density of the surface panel to the vorticity on the vertical
line y1 right behind the cylinder at T = 2.5.

37



ω

Figure 5.5: Effects of density of the radial cells to the vorticity on the vertical
line y2 right behind the cylinder at T = 5.0, with different height of the first
layer of the mesh near the surface.

structures for the Re = 1000.

Similarly, a set of tests were conducted to evaluate the effects of density

of the cells in the radial direction. The number of the panels on the cylinder

surface is kept as 200 and the ratio of height of the first layer of cells to the

diameter of the cylinder is 0.001 and 0.0005 respectively. The expansion ratio

on the radial direction is kept as 1.05 in both cases and the total height of the

domain is fixed. In Figure 5.5, the vorticity on the vertical line y2 one radius

behind the cylinder were ploted at T = 5.0. The small differences between the

profiles indicate that the density of the cells in radial direction is fine enough
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π

Figure 5.6: Effects of density of the surface panel on the pressure on the solid
surface at T = 5.

to resolve the flow structures for the Re = 1000.

The new surface pressure model is especially sensitive to the number of

panels on the solid boundary, since it is a post process of the VISVE solver,

and the error accumulates through the integration path. Figure 5.6 presents

the pressure sensitivity to the panel number, as the profile changes while the

density changes. At panel number = 300, the pressure is close to convergence

compared with the other two profiles. More tests need to be done in future

works.
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Figure 5.7: Benchmarking of case of 24,000 mesh with different number of
threads.
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5.2 Computational Efficiency

The computational efficiency are improved by the parallelism of the

code. OpenMP is implemented in the current software so that multiple threads

can be used to calculation. Figure 5.7 presents the bench-marking of paral-

lel code, in which the time of initialization of the code before the time step

iterations, and the time it takes to do 1,000 time steps iterations are both

tested.

The bench-marking were conducted with a 24,000 mesh using 1, 2, 4, 8,

16 threads on one node. It can be observed from the plots that, as the threads

number increases, the time of iteration over time steps reduced exponentially,

while the initialization time doesn’t change much when the number of threads

exceeds 4. This was because of that the memory allocation takes up most of

the initialization process.

The bench-marking was conducted on the server of Texas Advanced

Computing Center (TACC), at the University of Texas at Austin.

5.3 Impulsive Start Results

The impulsive start cylinder flow is simulated with different Reynolds

number (Re = U∞D/ν). In this thesis, Re is selected to be 1000, 3000, and

9500 respectively. In this section, we presents the flow properties of the flow

before Vortex Induced Vibration (VIV). We used 200 × 80 in Block I (200

panels on the cylinder and 80 cells in the radial direction) and 160 in Block
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II (extending 50 cells from the rear interface of Block I). The time step used

this work is 0.0005.

5.3.1 Flow at Re=1000

Figure 5.8 shows the time evolution of the streamline and vorticity

contours at Re = 1000. The α-phenomena can be observed in the simulation.

A pair of primary vortices are formed at T = 1.0 and gradually increase its

span as time increases, while a pair of secondary vortex appears as a thin

layer at first and then grows stronger. However this pair of secondary vortices

remain bounded by the primary vortices and stable beyond T = 5.0, never

reaching the outside irrotational flow.

In figure 5.9, comparison of the vorticity on the cylinder surface is pre-

sented with the numerical data from Qian and Vezza [22]. The results are in

good agreement. In Figure 5.10, vorticity on the surface is presented at differ-

ent time steps. The evolution of the vorticity generation at the thin boundary

layer at the surface can be observed. The vorticity at the front are gradually

diffused and flushed downstream, as the secondary vortices generated from

the inner layer and interact with the primary vortices. The separation point

moves upstream due to the increasing intensity of the secondary vortex.

The radial velocity profiles along the rear centre line of the cylinder at

different time steps are presented in Figure 5.11. The profiles show that the

intensity of the primary vortex increases as time increases, and the stagnation

point moves downstream as the vortex expands.
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Figure 5.8: Instantaneous streamlines (left) and vorticity contours (right) for
Re = 1000 at T = 1.0, 3.0, 5.0, predicted by current method. Notice that even
though there is grid discontinuity at the block interface, the solution is smooth
through the interface.
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Figure 5.9: Surface vorticity distribution for Re = 1000 at T = 1.0, 3.0 (nu-
merical data of Qian and Vezza (2001) [22]).
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Figure 5.10: Time variation of the surface vorticity distribution: Re = 1000

Figure 5.11: Radial velocity distribution along the rear centerline of the cir-
cular cylinder at Re = 1000.
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Figure 5.12: Time variation of the surface pressure coefficient for Re = 1000.

In Figure 5.12, we present the evolution of surface pressure coefficient at

Re = 1000. At T = 1.0 the pressure coefficient has its minimum value around

the midpoint where the maximum velocity appears. As the start-up primary

vortex diffuses and moves to downstream, the pressure coefficient increases.

5.3.2 Flow at Re=3000

Figure 5.13 give the time evolution of the streamline and vorticity con-

tours at Re = 3000. The α-phenomena can also be observed in the simulation.

Noticing that there are only 2 pairs of vortices generated in the flow field and

the secondary vortex never reaches the outflow. We will see a different phe-

nomena at Re = 9500 in the next section.

In Figure 5.14, comparison of the vorticity on the cylinder surface is
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Figure 5.13: Instantaneous streamlines (left) and vorticity contours (right) for
Re = 3000 at T = 1.0, 3.0, 5.0, predicted by the current methods. Notice that
even though there is grid discontinuity at the block interface, the solution is
smooth through the interface.
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Figure 5.14: Surface vorticity distribution for Re = 3000 at T = 1.0, 4.0
(numerical data of Qian and Vezza (2001) [22]).
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Figure 5.15: Time variation of the surface vorticity distribution: Re = 3000

presented with the numerical data from Qian and Vezza (2001) [22]. The

results are in good agreement, except when angel is larger than 0.7π, the

intensity of the surface vorticity is smaller than expected.

In Figure 5.15, vorticity on the surface are presented at different time

steps. The evolution of the vorticity generation at the thin boundary layer at

the surface can be observed. As shown in this figure, when angel is larger than

0.7π, the vorticity changes rapidly from T = 1.0 to T = 2.0. This rapid change

might be sensitive to the size of the time step. More tests are recommended

here.

The radial velocity profiles along the rear centre line of the cylinder at

different time steps are presented in Figure 5.16, compared with experimental

data by Bouard and Coutanceau (1908) [4]. The profiles show that the inten-
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Figure 5.16: Radial velocity distribution along the rear centre line of the cir-
cular cylinder at Re = 3000 (experimental data of Bouard and Coutanceau
(1980) [4]).
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sity of the primary vortex increases as time increases, and the stagnation point

moves downstream as the vortex expand. Discrepancy can be observed. The

VISVE result seem to develop ahead of the time step in the flow visualization.

Again, the vorticity field changes rapidly in the early stage. Secondary vortex

is generated and becomes strong. Large time steps may leads into accumulat-

ing error as time increases.

Figure 5.17 compares the VISVE pressure distribution with results from

Chang and Chern (1991)[5]. In the front part the pressure prediction is close

to Chang and Chern’s result, however when angel is larger than 0.6π, the

intensity of pressure is higher than the published data. As we discussed in the

previous section, the surface pressure model is slowly converging as the panel

number increases, and using 200 panels, the pressure solution is not converged.

This may be also caused by the discontinuity of the grid distribution at the

interface of the two blocks.

In figure 5.18, we present the evolution of surface pressure coefficient

at Re = 3000. At T = 1.0 the pressure coefficient has its minimum value

at around the midpoint where the maximum velocity appears. As the start-

up primary vortex diffuses and moves to downstream, the pressure coefficient

increases and changes rapidly.

5.3.3 Flow at Re=9500

Figure 5.19 give the time evolution of the streamline and vorticity con-

tours at Re = 3000. The β-phenomena can be observed in the simulation.
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Figure 5.17: Time variation of the surface pressure coefficient for Re = 3000
at T = 1.0, 3.0 (numerical data of Chang and Chern (1991) [5]).
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Figure 5.18: Time variation of the surface pressure coefficient for Re = 3000.

β-phenomena was first observed by Bouard and Coutanceau, using flow

visualization, which is cited here in Figures 5.20-5.23. Initially a thin layer of

vorticity (”forewake”) is formed at the surface of cylinder. This forewake

gradually forms the primary vortex and the core starts to separate into two

vortices at T = 1.5 in Figure 5.20. At the same time, the secondary vortex is

generated at the inner layer of the primary vortex.

The small vortex separated from the forewake becomes stronger and

starts to detach from the primary vortex and the cylinder surface at T = 2.0.

As shown in Figure 5.21, the detached vortex penetrates the bound of primary

vortex and reaches the irrotational outer flow.

As the primary and secondary vortices becomes stronger, the angle

between the detached vortices and the surface of the cylinder becomes larger
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Figure 5.19: Instantaneous streamlines (left) and vorticity contours (right) for
Re = 9500 at T = 1.0, 3.0, 5.0, predicted by current method. Notice that even
though there is grid discontinuity at the block interface, the solution is smooth
through the interface.
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Figure 5.20: Comparison of the streamlines and vorticity patterns for Re =
9500 at T = 1.5 (flow visualization by Bouard and Coutanceau (1980) [4]).
Before T = 1.5, the primary vortices are formed in a thin layer (”forewake”).
At T = 1.5, the core of this primary vortex starts to separate.

Figure 5.21: Comparison of the streamlines and vorticity patterns for Re =
9500 at T = 2.0 (flow visualization by Bouard, 1980[4]). At T = 2.0, a small
vortex separated from the primary vortex.
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Figure 5.22: Comparison of the streamlines and vorticity patterns for Re =
9500 at T = 2.5 (flow visualization by Bouard, 1980[4]). At around T = 2.5,
the small vortex separated from the forewake detaches from the surface of the
cylinder and reaches the outflow.

as it flushes into the outer flow. In Figure 5.22, the intensity of the primary

vortices are reduced and stretched by the detached vortices.

As the detached vortices are diffusing and detaching, they gradually

merge into the primary vortices as they go downstream. At T = 3.0, in Figure

5.23, they diminish in the primary vortices, as the secondary vortices growing

stronger but stabilizing at the inner layer of the flow, never reaching the outer

flow.

From Figures 5.20-5.23, we could see the phenomena different from the

α-phenomena in flow at Re = 1000 and Re = 3000, as they agree well with

the experimental flow patterns.

In Figure 5.24, the surface vorticity at T = 1.0, 3.0 are presented. No-

tice that large discrepancy can be observed at T = 3.0, when angel is larger

than 0.7π. Comparing with Figure 5.23, the secondary vortex was becoming
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Figure 5.23: Comparison of the streamlines and vorticity patterns for Re =
9500 at T = 3.0 (flow visualization by Bouard, 1980[4]). At T = 3.0, the
detached vortex merged into the primary vortex.

stronger at that time step and the vortex sheet is very strong and sensitive to

the grid density.

Figure 5.26 presents the time evolution of the wake length, compared

to experimental data. The result seem to be comparable to the experiment

measurements, but somewhat larger than the data after T = 2.5. This might

be caused by insufficiently small time step and the discontinuity in the grids.

In Figure 5.27, we present the evolution of the surface pressure coef-

ficient at Re = 9500. As showed in Figures 5.20-5.23, there are very large

changes of the pressure from time to time, and that indicates the strong in-

teraction of the cylinder with the vortices in the wake region.

5.4 Long Time Solutions

In this section, long time solution are presented. We presents the flow

properties of the flow after a stable Vortex Induced Vibration (VIV) estab-
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Figure 5.24: Surface vorticity distribution for Re = 9500 at T = 3.0 (numerical
data of Qian, 2001[22]).
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Figure 5.25: Time variation of the surface vorticity distribution: Re = 9500

Figure 5.26: Time evolution of the wake length for Re = 9500 (experimental
data of Bouard, 1980[4]).
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Figure 5.27: Time variation of the surface pressure coefficient for Re = 9500.

lished. We used 200 × 80 in Block I (200 panels on the cylinder and 80 cells

in the radial direction) and 160 in Block II (extending 100 cells from the rear

interface of Block I). The time step used this work is 0.0005. Reynolds number

is 1000 in this case.

After a long time evolution, about T > 120, the vortex shedding process

settles down, forming the regular vortex street pattern in the wake. The

vorticities generated from the top and the bottom surface of the cylinder,

periodically shedding in the wake region, and detached from the solid body.

The detached vortices were flushed into the downstream, forming von Karman

vortex street patterns. Figure 5.28 gives two snapshots of vorticity contours,

which show vortices alternately shedding from the rear part of the cylinder.

After the establishing of the stable vortex street pattern, periodic changes can
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Figure 5.28: Long time results predicted by VISVE. Vorticity contours for
Re = 1000 at T = 146.0 (upper) and T = 154.0 (lower).

Table 5.1: Average drag coefficient and Strouhal number at Re = 1000

present Fluent Blackburn Qian Roshko

et al[3] et al [22] [23]
Cd 1.55 1.39 1.51 1.52 1.20
St 0.264 0.22 - 0.240 0.21

be observed in the behavior of drag and lift coefficient.

A laminar case at Re = 1000 was run using Fluent 15.0 [1]. 100,000

meshes were used in the Fluent run, covering a domain of 40D × 100D. D is

the diameter of the cylinder.

From the vortex shedding pattern, the Strouhal number St = f ·D
U

is

about 0.264 and the average drag coefficient Cd is 1.55. As shown in Table

5.4, both results are in good agreement with published numerical data and

61



Table 5.2: Amplitude of unsteady Cd and Cl at Re = 1000

present Fluent (Laminar) Qian et al[22]

Cd 0.13 0.13 0.23
Cl 1.19 1.17 1.41

experiment measurements. Both Strouhal number and average drag coefficient

are slightly higher than the other data.

Figure 5.29 shows the Cd and Cl predicted by current method at Re =

1000. Comparing to Figure 5.29, the present method predicted somewhat

higher average Cd. As shown in Table 5.4, the amplitudes of Cd and Cl are in

good agreement with results from Fluent. We should note here, that a filter

was applied to Cd and Cl predicted by our model. There were high frequency

oscillations in the history of Cd and Cl, which were directly caused by the

prediction of the surface pressure. As mentioned earlier in this thesis, the

pressure solution has not converged yet at the current mesh resolution. This

is an issue when integrating the surface pressure in order to get pressure drag

on the cylinder.

In Figure 5.29, we can also see that at T < 1.0, Cd predicted by VISVE

is huge. However in Qian and Vezza’s work, they have a finite value (smaller

than 1.0) at the beginning. This indicates that our pressure model may not

be valid during the transition from potential flow to viscous flow.

In Figure 5.30, results predicted by the current VISVE model and Flu-
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(c)

Figure 5.29: Cd and Cl predicted by current methods at Re = 1000, comparing
with results from Fluent and numerical simulation from Qian and Vezza. (a)
Predicted by current method at Re = 1000. (b) Predicted by Fluent using
100,000 meshes. (c) Numerical Simulation by Qian and Vezza (2001) [22].
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(a) VISVE T = 131.0 (b) Fluent T = 296.3

(c) VISVE T = 132.0 (d) Fluent T = 297.3

(e) VISVE T = 133.0 (f) Fluent T = 298.3

Figure 5.30: Vorticity contour predicted by VISVE and Fluent laminar model,
with ∆t = 1.
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ent laminar flow model are compared. Since the Fluent case was not initiated

using impulsively started flow, the results are compared at a later stage, after

stable vortex patterns have been established. The flow patterns have small dis-

crepancies. The over-diffusion observed in the VISVE results could be resolved

with finer grid in the wake.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions and Contributions

The main contributions of this thesis are:

1. Applied 2D Viscous Vorticity Equation (VISVE) solver to non-orthogonal

mesh in order to simulate the flow around cylinder. New griding scheme

was developed according to the cylinder flow geometry. The skewness

of the grid was considered in the flow solver and the gradient of the

vorticity was evaluated using the least squares method.

2. The flow field results are comparable to published experimental and nu-

merical data. These various comparisons indicate that the simulation

is sufficiently accurate and reliable. Therefore, this work quantitatively

validates the 2D VISVE method.

3. A new method to predict the surface pressure was developed, in which

only surface pressure were evaluated instead of calculating the pressure

throughout the flow field. The new model provides comparable pressure

and forces results to published data or results from other methods, as

well as results from the commercial code ANSYS Fluent.
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4. Taking advantage of the spatial concentration of the vorticity, the method

uses much smaller computational domain than a N-S solver. The effect

of grid resolution is carefully evaluated to ensure the convergence of the

solution.

5. Improved computational efficiency by implementing parallel computing

in the code.

6.2 Recommendations for Future Work

The original version of the VISVE model has been improved and val-

idated for laminar flow in this thesis. However, the following improvements

can be implemented in the future.

6.2.1 Pressure and Force Calculation

The solution of pressure at very early stage of the flow is vary inaccu-

rate. The model of surface pressure is not valid for the very early stage of a

potential inviscid flow. From potential flow to viscous flow, it may take some

time for vorticity to diffuse to the whole fluid field, during which the gradi-

ent of vorticity at the solid surface might be off from the theoretical values.

A correction may be included in the model in the early stage. Tests on the

sensitivity of the solution with respect to the time step should be conducted

in future works.

The noises of Cd and Cl profile are filtered in this thesis. Cd and Cl are
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integrated from the surface pressure and shear stress. Viscous drag and lift are

smooth during the time frame, but pressure drag and lift has noises, although

at a certain time step, the pressure profile is smooth along the surface. More

investigation needs to be done in finding the reason of the noises.

The integration model for pressure developed by Wu [31] is also prac-

tical. This model was tested in VISVE 2D model, but the pressure prediction

has large discrepancy comparing with other numerical data, especially at an-

gle larger than 0.6π. The Cd and Cl profiles predicted by this integration

method also have the noises within the time frame. More works need to be

done evaluating this integration model.

6.2.2 Effects of Turbulence

The current model includes only the laminar flow model. A turbulent

model with a model of eddy viscosity could be developed in order to predict

turbulent flow at high Reynolds number. Mixing length model[20] could be

one of the simplest options, however there might be difficulties in:

1. Definition of the mixing length. Mixing length is an 1-D RANS model,

thus to extend it in a 2-D or 3-D problem could be difficult. Close to the

boundary within the boundary layer, mixing length could be defined as

the distance to the wall, while outside of the boundary layer new model

need to be determined for mixing length.

2. At the early stage of an impulsively start flow, the shear effect near the
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solid surface may end up with large eddy viscosity if evaluated using

mixing length model. Therefore, the physics of this process needs to be

carefully designed when potential flow transforms into viscid flow with

a sudden start.

Other than the simple mixing length model, a Large Eddy Simulation

(LES) with Smagorinsky Model could be included in the subfilter scale(SFS)

[20]. Mansfield et al (1998)[16] presented an application of a dynamic eddy dif-

fusivity model within a viscous vorticity transport solver. More investigations

need to be done in the eddy diffusivity model implemented near the boundary

within our method.

6.2.3 Extension to alternating flow around cylinder

An alternating flow around the cylinder is also a challenging subject

that could be simulated by current VISVE solver. Wang (2015) [28] and

Li (2016) [15] simulated an oscillating flow around cylinder using commercial

CFD software ANSYS Fluent. The VISVE solver can be applied to alternating

flow around cylinder. The current griding scheme needs to be improved to

resolve the wake on both sides of the cylinder.

When vortices are generated during the previous period, they will be

convected back and hit the cylinder, and these vortices will travel upstream

of the cylinder. Thus, investigation in the size of the computational domain

should be conducted.
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