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DNA sequencing is the process of determining the identities of the nu-

cleotides that make up a molecule of DNA. The rapid pace of advancements in

sequencing technologies in recent years have made it possible to simultaneously

determine the sequences of hundreds of millions of short DNA fragments. The

ability to perform sequencing with such high throughput has revolutionized

the study of biological systems, but the types of questions that can be an-

swered through sequencing-based experiments can be limited by the presence

of different kinds of noise and biases in these experiments.

One class of applications of high-throughput sequencing involves iden-

tifying genetic variation, such as finding rare mutations in the genomes of

cancerous cells. In these applications, the sensitivity with which rare genetic

variants can be detected is limited by the relatively high rate with which
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current DNA sequencing technologies incorrectly identify nucleotides. In the

first half of this thesis, we present a method for dramatically reducing the

rate at which these incorrect identifications occur. Our method, called circle

sequencing, creates redundant copies of the sequence of each input molecule

of DNA. This is accomplished by circularizing each DNA fragment and per-

forming rolling circle amplification on these circles with a strand-displacing

polymerase. The resulting products consist of several physically linked copies

of the original sequence in each fragment. When these products are sequenced,

this informational redundancy protects against random errors introduced dur-

ing sequencing, allowing for highly accurate recovery of the original sequence

of each input molecule. By eliminating the vast majority of incorrectly iden-

tified nucleotides from the resulting data, our method enables the sensitive

detection of rare variants and opens up exciting new questions involving such

variants to direct measurement by sequencing.

An entirely different application of high-throughput sequencing is to se-

lectively capture and sequence stretches of DNA or RNA that are participating

in a process of interest within a cell. The accuracy of quantitative inferences

made by this type of experiment can be severely impacted, however, by biases

introduced during the experimental manipulations used to isolate biologically

relevant fragments of DNA from cells. Ribosome profiling is an experimental

technique that consists of sequencing short stretches of messenger RNAs that

are protected from nuclease digestion by the presence of a bound ribosome.

The resulting data represents millions of snapshots of the locations of actively
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translating ribosomes. In theory, these snapshots can be used to determine

how long ribosomes take to translate each type of codon by quantifying how

often ribosomes are observed positioned over that codon. In practice, dif-

ferent studies in yeast attempting to do this have reached contradictory and

counterintuitive conclusions. In the second half of this thesis, we perform a

large-scale comparative analysis of data from many different ribosome profil-

ing experiments in order to resolve these contradictions. We identify a previ-

ously unappreciated source of systematic bias in a subset of these experiments.

This bias prevents these experiments from accurately measuring ribosomes in

proportion to how long they spend at each position in vivo. Understanding

this bias provides insight into the true signatures of translation dynamics in

yeast and offers important guidance for the future design and interpretation

of sequencing-based approaches to measuring these dynamics.
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Chapter 1

Introduction

The genetic information of every living organism is stored in the precise

sequence of nucleotide identities in the DNA of its genome. Over the last forty

years, determining the sequence of bases that make up a molecule of DNA

has become one of the fundamental tools of experimental biology. In the last

decade, a rapid series of technological advances have made it possible to carry

out this process massively in parallel in order to sequence incredibly large

numbers of molecules of DNA simultaneously [7, 27, 75, 95]. Thanks to the

advent of these high-throughput sequencing technologies, it is now a matter

of routine to sequence billions of bases from hundreds of millions of short

stretches of DNA.

To leverage this technological progress, a enormous array of clever bio-

chemical methods have been developed for capturing information about biolog-

ical processes in the form of libraries of short DNA fragments [56, 105]. Compu-

tational and mathematical tools can then be used to extract information from

the massive amounts of data generated by sequencing these fragments. Many

interesting questions remain outside the reach of this paradigm, however. The

types of signals that can be accurately measured by high-throughput sequenc-
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ing are limited in many cases by the presence of errors and biases introduced by

both the sequencing technologies themselves and by the biochemical manipu-

lations used to construct DNA fragment libraries. To attack these limitations,

we can take advantage of the fact that the digital nature and enormous scale

of sequencing data are fundamentally different from the diagnostic informa-

tion that has historically been available in molecular biology. Deep analysis of

sequencing data can provide unprecedented mechanistic insight into what is

actually happening during experimental manipulations of DNA. These insights

can then be used to understand and eliminate confounding signals, either by

computationally correcting for sources of noise and bias or by informing the

design of new experimental protocols. The theme of this thesis is to identify

and push back at the limitations of existing high-throughput sequencing tech-

nologies and experimental designs in order to accurately measure new kinds

of biological signals.

Sensitive detection of genetic variants

In the first half of the thesis, we explore methods for dramatically

reducing the base-calling error rate of sequencing in order to allow the sen-

sitive detection of rare genetic variants. Many important open questions in

biomedical research involve determining exactly which nucleotides in one copy

of the genome of an organism are different from those in other nearly-identical

copies. Examples of such questions include measuring how quickly mutations

accumulate in different cells over the course of cell divisions[74], identifying
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the spectrum of mutations present in genetically heterogeneous tumors [15],

cataloging emerging variation in rapidly evolving populations of viruses [1],

identifying the different antibody sequences produced by an adaptive immune

system [103], or quantifying the relationship between the received dosage of

a mutagen such as ionizing radiation and the rate of induced mutations [36].

In theory, high-throughput sequencing could be a powerful tool to search for

rare genetic variants on a genome-wide scale, but the ability to sensitively de-

tect rare variants is hampered by the relatively high base-calling error rate of

current sequencing technologies. Because bases that are misidentified during

sequencing are indistinguishable from any true genetic variants that may be

present, the base-calling error rate imposes a lower bound on the frequency of

variants that can be detected without being overwhelmed by false positives.

The types of base-calling errors made and the rates at which these errors occur

vary considerably between different sequencing technologies [72], but Illumina

sequencing technologies currently offer the lowest rate of substitution errors,

with measured error rates ranging from 0.05% to 1% [55]. For many appli-

cations, variants of interest are expected to be present at frequencies orders

of magnitude lower than this. This means that any naive attempt to use

high-throughput sequencing to search for rare variants is doomed to fail: true

biologically relevant sequence variants will be needles lost in a haystack of

artifactual apparent variants caused by sequencing errors.

In order to enable the use of high-throughput sequencing to answer

questions that involve identifying rare variants, therefore, the effective error

3



rate of base calling therefore needs to be dramatically improved. In chap-

ter 2, we describe the development of a method called circle sequencing for

accomplishing this. Our method takes as input a library of short DNA frag-

ments and encodes the sequence information of each fragment into a simple

error-correcting code by circularizing single-stranded DNA templates and per-

forming rolling circle amplification on each template with a strand-displacing

polymerase. The resulting products consist of concatamers of several physi-

cally linked copies of the original sequence in each input template. After se-

quencing these specially-constructed products, the different redundant copies

of information contained in each sequencing read can be compared to each

other. Random errors introduced by the sequencing process can be identified

and corrected, allowing for highly accurate base calling. Exploiting this re-

dundancy presents several novel computational challenges. In order to identify

the structure of the repeated information in the sequence of each concatamer,

we developed software tools to efficiently compute discrete auto- and cross-

correlations and to perform rotation-insensitive mapping of inferred consensus

sequences to a reference genome. The combination of our experimental design

and computational processing achieves a dramatic reduction in sequencing er-

ror rates and has both theoretical and practical cost-efficiency advantages over

alternative error-correction strategies.

4



Accurate measurement of translation dynamics

In the second half of the thesis, we explore the use of high-throughput

sequencing to accurately measure the dynamics of translation. Translation is

the process by which proteins are assembled based on the instructions provided

by the sequence of codons in a messenger RNA. Ribosomes carry out the

conversion of information from codons into amino acids through the sequential

binding of tRNAs according to the genetic code, the mapping of codons into

amino acids [107]. Because this mapping is not one-to-one, a particular amino

acid may be encoded by one of several synonymous codons. Although the

choice of synonymous codon used to encode an amino acid does not change

the composition of the protein produced, synonymous codons are not used

with equal frequencies in genomes. In many organisms, synonymous codons

corresponding to more abundant tRNAs are known as preferred or optimal

codons because of a tendency for such codons to be used more often in highly

expressed genes [100]. This tendency implies that the use of optimal codons

provides a selective advantage to organisms. A large body of theoretical work

hypothesizes that differences in the speed with which each type of codon is

translated by ribosomes provides the mechanism for this advantage[88], but the

ability to test these hypotheses experimentally has lagged behind the theory.

Chapter 0 serves as a motivating example for why accurate genome-

wide measurements of in vivo translation dynamics are necessary. Recent

theoretical work [13] has observed that pairs of occurrences of the same amino

acid that are nearby each other in a coding sequence tend to use the same codon
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more often than expected given the genome-wide frequencies with which each

codon is individually used. This genomic signature has been interpreted as

evidence that the second amino acid in such a pair of occurrences is trans-

lated more quickly if it uses the same codon as the first because decoding

of second occurrence can be performed by the same tRNA molecule as the

first, a proposed mechanism called tRNA recycling. When we examine the

evidence for this hypothesis more closely, however, we find that these statis-

tical signatures cannot be taken as specific support for this novel proposed

mechanism. Instead, by straightforward mathematical arguments involving

Jensen’s inequality, we show that the apparent excess use of nearby identical

codon pairs is an inevitable consequence of any non-uniformity in codon usage

across a genome. We identify a simple negative control to test if pressure to

exploit tRNA recycling contributes to these signals in excess of the contri-

butions from generic variation in codon preferences. When we compute this

control, we find no evidence for any such contribution, and conclude that the

observed patterns in codon usage do not by themselves support a substantial

role for tRNA recycling in translation dynamics.

This debate is just one of many theoretical questions involving the con-

nection between translation speed and selection on synonymous codon usage

that could be answered if it were possible to measure how long ribosomes

actually spend translating every codon across all of an organism’s coding se-

quences in vivo [88]. A recently developed sequencing-based experimental

technique called ribosome profiling has the potential to produce measurements
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of this kind. Ribosome profiling consists of selectively sequencing short ∼28

nucleotide regions of mRNAs that are protected from nuclease digestion by

the presence of a single bound ribosome. The resulting data consists of mea-

surements the locations of millions of ribosomes at a snapshot in time with

single-nucleotide resolution. This method was initially developed by Ingolia

et al. [46] in 2009 and has been applied to study a wide variety of different

aspects of translation in different organisms by many different groups since

then [44].

Viewed from a high level, ribosome profiling is an example of a large

class of sequencing-based approaches to studying the diverse set of cellular

processes that DNA in a genome and RNA derived from this DNA participate

in. The general form of these experiments is to use a clever series of bio-

chemical manipulations to capture fragments of sequence information that are

participating in a process of interest within cells. Massively parallel sequenc-

ing is used to identify all of the fragments that were captured, and statistical

analysis of how often different sequences appear in the resulting data can then

be used to make quantitative inferences about the process of interest. A vast

array of of experimental schemes of this type have been developed, including

methods for measuring levels of transcription [80], variation in transcript iso-

forms [84], chromatin structure [71], histone occupancy patterns [10], and a

variety of interactions between DNA and proteins [8], amongst many others.

In order for the inferences produced by this paradigm to be accurate,

the number of times each particular sequence fragment makes it through the
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whole experimental pipeline must be representative of how often the sequence

was actually involved in the process being studied. In practice, the experimen-

tal manipulations used can prefer some sequences over others for artifactual

reasons that have nothing to do with the underlying biology, distorting the

number of times each sequence appears in the final data. If these biases are

severe enough and go unrecognized, quantitative inferences made using the

biased data can produce misleading overall pictures of the process being stud-

ied [31, 49, 108]. Identifying these biases is a major challenge for the use of

high-throughput sequencing to produce accurate insights into biological pro-

cesses. Understanding the mechanistic causes of such biases can lead to ways

to overcome them, either by modifying experimental designs to avoid them

[102, 115] or by computationally correcting for their presence [83].

In chapter 4, we explore the ability of ribosome profiling to accurately

measure how long ribosomes spend positioned over each codon during the

process of translation in Saccharomyces cerevisiae. Through a comparative

analysis of publicly available data from a large body of recent studies, as well

as new data produced by our experimental collaborators, we identify a pre-

viously unappreciated source of bias in many ribosome profiling experiments

that interferes with the accuracy of these measurements. Most of these ex-

periments have used a chemical inhibitor of translation called cycloheximide

to attempt to arrest ribosomes in place before measuring their locations. We

present evidence that this process does not irreversibly arrest ribosomes in

their steady-state distribution, but instead has the net effect of redistributing
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ribosomes across coding sequences so that their locations do not reflect how

much time they spend at each position in vivo. The bias that this previously-

unappreciated behavior of cycloheximide introduces is particularly insidious -

roughly speaking, it flips which codons appear to be fast and which appear to

be slow, completely disrupting the general conclusions about translation that

data produced by these experiments appear to support. By uncovering and

characterizing this bias, we provide a principled resolution to the contradic-

tory claims made by experiments performed with and without cycloheximide

and clarify the general principles of elongation speeds in yeast. Understanding

this bias establishes an important principle for the future design and inter-

pretation of sequencing-based experiments that hope to accurately measure

codon-resolution signatures of translation dynamics.
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Chapter 2

High-throughput DNA sequencing errors are

reduced by orders of magnitude using circle

sequencing

2.1 Introduction

One of the simplest conceptual uses of high-throughput sequencing is

to sequence genomic DNA from a population in order to characterize the ge-

netic variation present. Because bases that are misidentified during sequencing

are indistinguishable from true variants, however, the base-calling error rate

of the sequencing technology used represents a lower bound on the frequency

of variants that can be sensitively detected in this way. We describe here

the development and performance characteristics of a new library preparation

strategy called circle sequencing that allows for computational identification

This chapter is based in part on work reported in D. I. Lou*, J.A. Hussmann*,
R. M. McBee, A. Acevedo, R. Andino, W. H. Press, and S. L. Sawyer, “High-throughput
DNA sequencing errors are reduced by orders of magnitude using circle sequencing,” Proceed-
ings of the National Academy of Sciences, 110 (49), 19872–19877, 2013 (* co-first authors).
JAH performed all computational analysis, DIL and RMM performed experiments, and all
authors conceived and designed experiments.
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and correction of sequencing errors. In this strategy, short DNA fragments in

an input library are circularized and then copied multiple times in tandem by

a so-called rolling circle amplification process. The resulting DNA molecules

each consist of several physically linked copies of the original sequence in a

particular input molecule. After sequencing these resulting molecules, we can

computationally decompose each sequencing read produced into the redun-

dant copies of information that it contains and form a consensus out of these

copies. This informational redundancy protects against stochastic errors in-

troduced by the sequencing process and allows for highly accurate recovery of

the sequence of each starting molecule. The fact that copies of information are

physically packaged into the same molecule before delivery to the sequencing

machine gives this strategy important cost-efficiency advantages over alterna-

tive schemes for correcting sequencing errors.

We first give general background on the Illumina sequencing technolo-

gies used by current implementations of our method on and describe other

existing library preparation strategies for correcting errors in high-throughput

sequencing data. We then outline the experimental design of the circle se-

quencing library preparation process and describe the computational strate-

gies used to analyze data produced by this process. To test the method, we

apply it to sequence a nearly-genetically-identical population of yeast cells.

We analyze the performance characteristics of the resulting data in terms of

the error rates achieved and the cost-efficiency of the overall process, and we

compare these characteristics to those of alternative error correction strate-
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gies. After completing this main narrative, we loop back to highlight several

unexpected features of circle sequencing data that revealed interesting and un-

expected properties of the biochemical manipulations involved. We conclude

with a basic proof-of-concept of a possible future direction of improvement to

the experimental design.

2.2 Background

2.2.1 Illumina sequencing technologies

Illumina technologies are the dominant force in the current landscape of

experimental applications of massively parallel sequencing, offering the high-

est throughput of sequencing base calls per machine run and the lowest cost

per base sequenced of all the major sequencing platforms [72]. Because some

features of the experimental designs and data analysis we present in this chap-

ter rely on a detailed understanding of how the Illumina sequencing process

works, we give a brief overview of this process here. For a more thorough

description, see [7].

The mechanics of Illumina sequencing make it possible to sequence a

stretch of bases from both ends of each input fragment of DNA, a process called

paired-end sequencing. To prepare a library of DNA fragments for paired-end

sequencing on an Illumina machine, special adapter sequences are ligated to

each end. Two different identities of adapter sequences are used, each of which

consists of a flow cell attachment sequence followed by a sequencing primer.

The two adapter sequences are designed to share a short stretch of bases in
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common at one of their ends. This means that when single-stranded copies of

one of the sequences and the reverse complement of the other are synthesized

and annealed to each other, the complementary portions will base-pair with

each other, producing a partially-complementary y-shaped construct. When

this construct is ligated on to both sides of double-stranded input fragments,

this ensures that each strand of the fragment receives each of the adapter

identities on exactly one of its ends.

The sequencing machine contain a flow cell surface that is covered in

a lawn of many copies of two different short DNA oligonucleotides anchored

to the surface. These oligonucleotides are complementary to the flow cell at-

tachment portion of the adapter sequences that were ligated on to opposite

ends of each molecule to be sequenced during the library preparation process.

When adapter-ligated input DNA fragments are denatured and washed over

this surface, the adapter sequences on their ends hybridize to the complemen-

tary anchors. A process called bridge amplification is then carried out that

uses polymerases to grow each attached fragment into a cluster of around 1000

double stranded copies of the fragment, each of which is attached to the flow

cell on both ends.

To determine the sequence of the first end of the fragment from which

each cluster was grown, a restriction enzyme is washed over the cell that recog-

nizes and cuts a specific sequence in one of the flow cell attachment sequence

identities. The strand that is no longer anchored to the flow cell because of

this cut is denatured and washed away. The clusters are now ready for the
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first sequencing reaction, called the R1 read. A oligonucleotide complementary

to the R1 sequencing primer region located just downstream of the flow cell

attachment sequence that was cut is annealed. The sequencing process then

consists of resynthesizing the strand that was washed away in controlled, sin-

gle base cycles, starting from the sequencing primer and growing downwards

towards the flow cell. This polymerization is performed in such a way that the

identity of the base incorporated at each cycle can be measured. To do this,

in each cycle, microfluidics are used to flow a mixture of specially modified

forms all four nucleotides over the clusters. The modifications consists of the

addition of reversible terminators with a nucleotide-identity-specific fluores-

cent label. Whichever base identity is complementary to the next base in the

anchored fragments will be incorporated into every fragment by polymerases,

and the terminating modifications to these nucleotide will temporarily block

any further incorporations. The fluorescent labels in each just-incorporated

nucleotide are then excited by lasers, and the fluorescent intensity emitted by

each cluster at frequencies corresponding to each nucleotide-identity-specific

label is captured by optics to determine which base was incorporated. The

fluorescent labels on the set of nucleotides incorporated are theoretically iden-

tical across all copies of a sequence in a cluster, but stochastic over- or under-

incorporation of nucleotides at each fragment inevitably leads the different

copies in each clusters to drift out of phase with each other and fluorescent

signals emitted by each cluster to become less clear-cut. Sophisticated base-

calling software interprets these signals to produce a best guess as to which
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base was incorporated in each cluster as well as a quality score attached to

this base call that quantities how confident the machine is in its identification.

The rate at which the wrong base is identified by this process depends on

many factors, but typical estimates of this rate are around 0.1% [72]. After

reading a single base from all clusters, a chemical is washed over the flow cell

that cleaves the labelled terminators to permit further elongation, and the set

of modified nucleotides are washed over the clusters again. This cycle of steps

is carried out many times, with each repetition of the cycle reading another

base in the sequence of the fragment in every cluster.

Once the targeted number of cycles in the R1 read have been carried

out, the second strand in every fragment that was synthesized by the sequenc-

ing reaction is denatured and washed away. The ends of each fragment are then

reannealed to the lawn of flow cell attachment oligos, and the second strand

is resynthesized from this priming, restoring every fragment in the cluster to

a state in which it is attached at both ends to the flow cell. A restriction

enzyme that recognizes and cuts the opposite flow cell adapter sequence is

then washed over the cell. The net result is that every cluster has been flipped

relative to its orientation during the R1 read. The R2 sequencing primer is

then washed over the clusters and cycles of the sequencing reaction are carried

out to produce the R2 read of the other end of each cluster.

At the time of its initial development, Illumina’s cluster generation and

sequencing-by-synthesis paradigm was severely limited in the length of con-

tinuous reads that it could produce before base-calling accuracy degraded to
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unacceptably low levels. Incremental improvements over time in the engineer-

ing of the polymerases used and the chemistry of the modified nucleotides and

reaction conditions have steadily erased this limitation, however, with read

lengths increasing from 35 bases in 2008 to 300 bases in late 2013.

2.2.2 Existing methods for error-correction in high-throughput se-
quencing

A natural strategy for protecting information when its needs to be

transmitted through a noisy channel is to send multiple redundant copies of

the information and then compare the different copies received to identify

where errors have occurred. High-throughput sequencing technologies can be

viewed as a noisy channel through which we are attempting to transmit in-

formation consisting of the sequence of each input molecule. A closely related

class of methods for creating and sequencing redundant copies of each molecule

in a library of short fragments of DNA have recently been developed by sev-

eral groups [33, 48, 55]. We will collectively call these barcoding methods. The

main idea of these methods is to create a large number of short, artificial

stretches of DNA to be used as identifying barcodes. These barcodes are then

randomly attached to the ends of each molecule in a library of DNA fragments

that is to be sequenced (figure 2.1, step 1A). Polymerase chain reaction (PCR)

is then used to exponentially amplify the randomly labeled library, producing

a large number of physically distinct copies of each labeled starting molecule

(figure 2.1, step 2A). This amplified library is then sequenced. In the set

of sequencing reads produced by this process, reads that represent different
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copies of the same original input molecule creating during the amplification

process can be grouped together by matching the sequences of their random

labels (grey boxes in 2.1, step 4A). We will call such a grouping of reads that

are amplification products of the same starting molecule a ‘read family’. Af-

ter grouping together sequences in this way, the sequences in each member of

a read family represent votes as to what the sequence of the original input

molecule was. Stochastic errors introduced during PCR or sequencing (blue

circles throughout figure 2.1A) are expected to be scattered randomly through-

out sequencing reads (that is, to not align vertically across multiple reads in a

grey box). True genetic variants that were present in an input molecule (red

circles in 2.1A), on the other hand, should be present in each copy.

Schmitt et al.[96] recently developed a clever enhancement to this ba-

sic scheme, called ‘duplex barcoding’. They noticed a useful property of the

fact that Illumina sequencing primers are attached to each side of a double-

stranded DNA molecule in the form of partially-complementary y-adapters.

If the resulting construct is amplified via PCR, the set of double stranded

molecules produced consist of two similar but distinguishable forms. Both

forms have the same sequence in between the primers, but all downstream

products of one of the strands will have the R1 primer on side and the R2

primer on the other, while all products of the other strand will have the place-

ment of these two primers flipped. (See [96] for a diagram of this process.) In

other words, attaching y-adapters and amplifying has the net effect of asym-

metrically labelling PCR products derived from each of the two strands of the
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Figure 2.1: Overview of barcoding methods and circle sequencing.
(A) In barcoding methods, adapters containing randomized nucleotide regions
(barcodes) are ligated to each molecule in the DNA sample (step 1A). The li-
brary is then amplified by PCR (step 2A). Products are sequenced (step 3A),
individual reads containing the same barcode are grouped into read families
(grey boxes), and consensus sequences are derived (step 4A). Errors generated
during PCR amplification (step 2A, blue circles) and during the sequencing
process (step 3A, blue circles) can be computationally identified.
(B) In circle sequencing, DNA is denatured and single-stranded DNA is cir-
cularized (step 1B). Random primers are annealed to circles, and Phi29 poly-
merase is used to perform rolling circle replication (step 2B). Products con-
sisting of tandemly linked copies of the information in the circle are sequenced
(step 3B). Each read (or paired-end read pair) is computationally split into
the individual copies of the original circle (grey box) and used to generate a
consensus sequence (step 4B).
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starting molecule. To take advantage of this fact, Schmitt et al. modified stan-

dard Illumina y-adapters to include a stretch of randomized nucleotides that

serves as a barcode. Performing paired end sequencing on a library prepared

by attaching these adapters to both sides of input molecules and amplifying

allows for the identification of a distinct read family that is independently de-

rived from each strand of a particular input molecule. If read families from

both strands can be recovered, they can be compared to each other, providing

an additional level of informational redundancy. This extra redundancy pro-

tects against errors that could only affect families derived from one of the two

strands at a time, such as single-stranded DNA damage to starting templates.

2.3 Results

2.3.1 Experimental design of circle sequencing

There are two major potential drawbacks to barcoding methods. The

first drawback limits how much useful error-corrected sequence information

can be produced for a given investment of sequencing resources. In order to

correct errors, barcoding methods rely on forming read families by stochasti-

cally sampling multiple amplified copies of a given input molecule from a large

pool of molecules. For both theoretical and practical reasons, this sampling

process is inherently inefficient in the sense that many read families produced

are either larger or smaller than they need to be. This limits the total amount

of useful error-corrected data produced for a given investment of sequencing

resources. (See section 2.3.5 below for a thorough discussion of this point.)
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The second drawback limits how accurately the methods can recover

the sequence information in input molecules. Barcoding methods have the

undesirable property that any base-incorporation errors during the amplifi-

cation process create error-containing fragments that are themselves used as

templates during all future rounds of amplification. If such an error happens

at an early cycle of PCR (a so-called jackpot error), a large fraction of the

copies of a starting molecule can all contain the same incorrect base at the

same position. The use of redundancy to protect sequence information as-

sumes that error events are independent from each other, so that multiple

rare error events are unlikely to strike multiple copies of the same piece of

information. Because a single error event during amplification can change the

base identity reported at the same position in multiple redundant copies of an

input sequence, this represents an error process that redundancy can’t protect

against. (In the interest of completeness, we note that duplex barcoding offers

protection against this second drawback, at the cost of increased vulnerability

to the first.)

Both of the drawbacks stem from the fact that the redundant copies

of each starting molecule are produced in physically distinct molecules. This

necessitates inefficiently forming read families by randomly sampling from a

large pool of molecules and allows for the possibility that members of a read

family are copies of an error-containing amplification intermediate rather than

direct copies of the input molecule. One of the dimensions on which sequencing

technologies have made remarkable recent advances, however, is the length of
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sequences that can be continuously read. Motivated by these rapid advances in

read lengths, we reasoned that these drawbacks could be avoided if each set of

copies of sequence information was packaged and delivered to the sequencing

machine as a single molecule. Increased read lengths make this possible by

allowing multiple copies of reasonably sized starting molecules to fit in a single

sequencing read or paired-end read pair. In collaboration with Ashely Acevedo

and Raul Andino, we developed a novel biochemical protocol that we call circle

sequencing [73] for producing such physically linked copies. We provide a high-

level description of the experimental design here; a more detailed technical

description of the biochemical protocol can be found in [73].

Briefly, a library of short double-stranded DNA fragments is produced

by randomly shearing genomic DNA or by producing amplicons with appropri-

ately spaced primers. Fragments of approximately 100 base pairs are typically

targeted. The two strands of each fragment are denatured into single-stranded

DNA, and an enzyme called CircLigase is used to attach the two ends of each

single-stranded DNA molecule to each other to form circular templates (figure

2.1, step 1B). A process called rolling circle amplification (RCA) is then carried

out. Random hexamers of DNA are added that bind to the circular templates

and form a short double-stranded stretch that can prime polymerization by the

phi29 polymerase. The closed circular topology of each template means that

such polymerization will eventually make its way around the circle and run

into the double-stranded stretch of DNA that it recently synthesized. When

it does, this polymerase has a special strand-displacing activity that allows it
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to evict the recently-synthesized second strand to continue its way around the

circle again (figure 2.1, step 2B, top). The net result of many repeated trips by

the polymerase around the circular template is a single-stranded concatamer

consisting of many tandem repeats of the information in the original frag-

ment. Random hexamers can then bind to each single-stranded concatamer

and prime polymerization of these linear templates by the polymerase, filling

in the opposite strand to create double-stranded concatamers (figure 2.1, step

2B, bottom). The resulting products are typically many kilobases long. These

products are then sheared to produce fragments of an appropriate length for

compatibility with paired-end sequencing, typically around 1000 base pairs. Il-

lumina sequencing adapters are ligated to the ends of these sheared fragments

and paired-end sequencing is performed (figure 2.1, step 3B).

2.3.2 Detecting structure in circle sequencing reads

The data produced by paired-end sequencing of a circle-sequencing li-

brary consists of several million pairs of strings of the letters {A, G, T, C, N}

representing the called identities of the bases for a continuous stretch on each

end of a fragment (figure 2.2A). These string are of fixed length for a particular

configuration of the sequencing machine; in our experiments, this length was

either 150 or 250 characters. Each string of base calls is accompanied by a list

of quality scores representing the confidence of the base-calling algorithm in

its assignment of an identity at each position.

For each such read pair, our first goal is to identify the structure of
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the repeats of information within and between the pair of sequences so that

we can decompose the two sequences into the different copies of an original

input molecule that they are made up of (figure 2.2B). Once this is done, we

will be able to compare these different copies to each other to form a best

consensus estimate of what the original sequence was (figure 2.2C and D). In

the schematics of figure 2.2, grey tickmarks are drawn to mark each location in

the read pair that corresponds to the junction of circularization in the original

template, but in reality, no such direct markings of these locations exist. In

the absence of such markings, we can infer the structure of repeats by finding

periodicity in each of the reads and by aligning the two reads to each other.
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Figure 2.2: Processing circle-sequencing read pairs.
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Figure 2.2 (Continued): Processing circle-sequencing read pairs.
A. Data consists of pairs of reads from opposite ends of a double-stranded
DNA fragment of unknown length generated by rolling-circle amplification of
a circular template of unknown length.
B. The length of the original circular template is inferred by computing the
discrete autocorrelation of each read. The offset into a repeat relative to the
first read that the second read begins at is inferred by computing the discrete
cross-correlation of the two reads.
C. These inferences allow the read pair to be decomposed into independent
copies of the sequence information in the circular template. When these copies
are lined up, each column represents a group of interrogations of the identity
of a particular base in the circular template.
D. The set of probabilistic base calls in each column are aggregated into a con-
sensus base call and confidence estimate for each base in the circular template.
E. The location in the resulting consensus sequences at which the circular liga-
tion junction occurred is determined by mapping all rotations of the consensus
sequence to a reference genome.
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If we assume for now that there are no insertions or deletions intro-

duced by the phi29 polymerase as it performs rolling circle amplification, the

structure of repeats in a read pair is completely determined by two parame-

ters: the length of the original circular template, and the offset into this length

that the second read in the read pair begins at relative to the first read. If the

circular template had length P , each sequence in the pair is expected to be

periodic with period length P . The base calls made at every pair of positions

within a read separated by distance P should therefore be identical unless a

sequencing error or phi29 misincorporation has changed one of the bases. In-

ferring the true value of P from the read pair therefore consists of computing

the discrete autocorrelation of each sequence in the read pair - that is, com-

puting the fraction of pairs of base calls in a sequence separated by distance

p that are identical for all values of p from a minimum physically reasonable

circle size up to a detection limit where the number of eligible pairs is too

small to reliably distinguish true periodicity from chance. Conceptually, for

each sequence s, this consists of forming the upper half of a symmetric matrix

M whose (i, j)th entry is 1 if s[i] = s[j] and 0 otherwise (figure 2.3). For each

value of p, the pth upper diagonal of this matrix consists of all comparisons of

pairs of bases in the sequence separated by a distance of exactly p. The sum

of the pth upper diagonal divided by its length is therefore the fraction of such

pairs that are identical.

For a sequence of length n, explicit computation of the autocorrelation

in this way requires O(n2) operations. It could, of course, be done in O(n log n)
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Figure 2.3: Visualizing autocorrelation in circle sequencing reads
For each sequencing read in a read pair of a concatamer, the length of the orig-
inal circular template is inferred by detecting periodicity in the read. Shown
is the binary matrix of comparisons of base identities at positions i (row in-
dex) and j (column index) in such a sequence. A clear line of almost perfect
identity on the 95th upper diagonal indicates that this sequence consists of
repeating units 95 bases long.
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operations with Fourier transforms via the Weiner-Khinchin theorem [91]. In

practice, this does not offer any substantial performance improvements for

the read lengths used so far, particularly since an optimized implementation

of the explicit autocorrelation computation is not a bottleneck in the overall

processing pipeline. The explicit O(n2) formulation is also easier to gener-

alize to consider situations where the rolling circle amplification process has

introduced an insertion or deletion, as discussed below.

In principle, the value of p that has the highest fraction of identical

distance-p-separated pairs should be the inferred period length. In practice,

any sequence that is periodic with period length p is, of course, also periodic

with periodc length np for any integer n, and the chance positioning of se-

quencing errors may cause a multiple of the true circular template length to

have a slightly higher fraction of identical pairs than the true length. To re-

cover the true period length in these cases, all factors of the value of p with

the highest identical fraction are reexamined, and the smallest such factor that

also has a sufficiently high fraction of identical pairs is taken to be the inferred

period length.

More precisely, define

fp =

∑rl−p
i=0 1{s[i]=s[i+p]}

rl − p
. (2.1)

Let

Pmax = argmax
10≤p≤rl−25

fp. (2.2)
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Then the inferred period length is

P = min{p : 10 ≤ p ≤ rl − 25, f(p) > 0.6, Pmax ≡ 0 mod p}. (2.3)

Because the rolling circle amplification product is randomly sheared

before sequencing, the information in the R2 read will begin at a random

offset into the repeat structure relative to the information in the R1 read

(figure 2.2B). Inferring this offset consists of computing the discrete cross-

correlation between the first sequence in the pair and the reverse complement

of the second sequence in the pair. This can also be viewed as aligning the

two members of the pair to each other. To infer this offset, define

fo =

∑rl−p
i=0 1{s2[i]=s1[i+o]}

rl − o
. (2.4)

Let

Omax = argmax
0≤o≤rl−25

fo. (2.5)

Then the inferred offset is

O = Omax mod P. (2.6)

With the structure of repeats in a read pair determined, the base calls

in the read pair can be organized into groups that each consist of multiple

copies of a particular base in the starting template. The information in each

such group can then be aggregated to produce a consensus base call. Each

constituent base call in a group comes with a Phred quality score that repre-

sents the confidence that the sequencing platform assigns to it and therefore, in
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some appropriate sense, the relative weight that should be assigned to it dur-

ing consensus formation. Interpreting each base call/quality score pair (bi, qi)

in a consensus group as independent, probabilistic data about the identity I

of the consensus base in a Bayesian sense, the probability that the consensus

has true identity b given that a member of the consensus group with identity

bi and quality score of qi was observed is proportional to

P[I = b|(bi, qi)] ∝

{
1− 10−

q
10 : b = bi

10−
q
10

3
: b 6= bi

(2.7)

= p(b, bi, qi). (2.8)

Call this expression p(b, bi, qi) for convenience. The posterior distribution of

the consensus identity given the entire consensus group is then

P[I = b|{(bi, qi)}] =

∏
i p(b, bi, qi)∑

b′∈T,C,A,G
∏

i p(b, bi, qi)
. (2.9)

The inferred consensus base call bc is taken to be the value of b with maximum

posterior probability, and the corresponding consensus quality score is

qc = −10 log10(1− P[I = bc|{(bi, qi)}]). (2.10)

For compatibility with downstream processing steps, this value is capped at 93,

the largest encodable value in the standard Phred ASCII encoding. Highest-

confidnce consensus base calls therefore correspond roughly to a consensus

group consisting of three quality-score-30 base calls with unanimous identity.

2.3.3 Mapping circle sequencing data to reference genomes

Because the creation of a rolling circle amplification product is primed

at a random location in a circular template and because rolling circle ampli-
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fication products are randomly sheared to produce a final sequencing library,

the consensus sequence produced by the initial processing outlined above rep-

resents an arbitrary rotation of the original input fragment sequence - that

is, the original sequence with some length removed from the beginning and

appended to the end. Information about the exact location of the junction of

circulation has been irreversibly lost by the process and can only be recovered

by exploiting other knowledge about the expected structure of pre-circularized

sequences. In particular, for pre-circularized sequences that consist of ran-

domly sheared genomic DNA from an organism with known reference genome,

we expect some rotation of a consensus sequence to be similar to a stretch of

this reference genome. The processes of inferring the junction of circulariza-

tion in order to ‘unrotate’ the consensus sequence and mapping the consensus

sequence to the genome are therefore inextricably linked.

Identifying the genomic location that a short sequencing read is derived

from is a well-studied problem. From a computational standpoint, this map-

ping process boils down to repeatedly searching a very large target string of

the characters {A, T, C, G} for substrings matching each of a series of many

short query strings. The target strings being searched, typically the complete

genomes of organisms, can be up to billions of nucleotides long. A single se-

quencing experiment can produce up to hundreds of millions of short query

strings to be mapped. The sheer size of these inputs demands the development

of computational approaches that scale well. As a further complication, inex-

act matches allowing for substitutions, insertions, and deletions are typically
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required in order to accommodate errors introduced by the sequencing process

or the presence of true variants relative to reference genomes. A variety of

algorithms and data structures have been explored for attacking this problem

over the last decade [29]. A common theme of many successful approaches

is to perform a one-time preprocessing of a reference genome to produce an

auxiliary index data structure, potentially much larger than the size of the

unprocessed genome, that permits faster query searches [70, 109]. Such ap-

proaches involve a practical trade-off between the query performance of an

index design and the size of the computed index, and trading time for space

in this way has practical limitations. In particular, the computed index must

be small enough to fit in memory on commodity machines in order to produce

acceptable performance.

The use of the Burroughs-Wheeler transform [12, 28] has emerged as a

particularly effective navigation of this trade-off. It produces indices with small

memory footprints that can be queried quickly and can, with some algorithmic

tweaks, accommodate inexact matching. Two groups independently made the

connection between this somewhat obscure (at the time) algorithmic idea and

the challenges posed by short read mapping, leading to the nearly simultaneous

release of Bowtie [63] and BWA [68] in 2009. Bowtie2 [62] was later developed

to allow for insertions or deletions in mappings by splitting reads into short

segments that are mapped via the BWT machinery to produce seedings of

mappings that are then expanded by a more versatile dynamic programming-

based local alignment process in the neighborhood of a seed.
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The goal of the circle sequencing mapping process is to find all possible

substrings of a reference genome that are close enough in Hamming or Lev-

enshtein distance to some rotation of each consensus sequence. When framed

in this way, a simple brute-force approach is apparent. We can simply form

every possible rotation of each consensus sequence and independently map

each rotation to the reference with Bowtie2, configured to allow up a desired

number of substitutions or indels and to report all possible mappings. The set

of all mappings produced for all rotations of a particular sequence are then

sorted and separated into groups whose leftmost mapped position form con-

nected stretches. Each such group represents a single distinct mapping, up

to possible ambiguity in the assignment of bases to either side of the inferred

circularization junction.

While this is a viable approach that is straightforward to implement

and to reason about the sensitivity of, it is computationally wasteful. Pre-

circularized fragments are typically targeted to be around 100 to 150 bases

long, so this brute force strategy takes on the order of 100 times the compu-

tational effort of mapping an equivalent number of conventionally produced

sequences. Of course, the set of comparisons between query and reference im-

plied by this process contains considerable redundancy that can be exploited.

To do this, we implemented a seed-and-extend strategy in which a small num-

ber of short segments of the consensus sequence are extracted and mapped to

the reference using a BWT-based mapper. Any such segment that doesn’t span

the junction of circularization should in theory represent a continous stretch
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of the reference genome and therefore be mappable. Unrolling the remaining

consensus sequence around the seed provided by this mapping can then be

done via a dynamic programming-based alignment of the remaining consen-

sus sequence to the reference in the vicinity of the seed. For computational

efficiency and convenience, we want to arrange for Bowtie2 do as much of this

work as possible. To accomplish this, each consensus sequence is augmented

by appending a copy of the first half of the sequence onto the end. Because

this guarantees that the augmented string contains every possible rotation of

the original string as a substring, the correct rotation corresponding to the

original orientation of the pre-circularized fragment will be contained some-

where in this augmented string. The augmented string can then be mapped

using Bowtie2’s local mode to handle both the seeding and extension pro-

cesses. Incidentally, using Bowtie2 in this way required fixing an obscure bug

in Bowtie2’s local mode that caused it to erroneously discard multiple local

alignments to the same genomic location from a single read, preventing it from

being used to reliably recover the full original template from the augmented

consensus sequence.

As a final note, one potential pitfall during rotation-insensitive mapping

to be on guard against is underestimation of true mismatch rates in the vicinity

of the circularization junction. A true mismatch adjacent to one side of the

ligation junction could be incorrectly identified as a non-variant on the other

side of the junction if the genomic sequence there happens to agree with the

variant base identity. To rule out this possibility, we exclude a small number
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of bases from either end of each final mapping from all downstream variant

calling.

2.3.4 Error correcting properties of circle sequencing data

To measure the ability of this method to correct sequencing errors, we

sequenced genomic DNA from a Saccharomyces cerervisiae cell culture. While

rare difference between the different cells in such a culture will always exist

due to mutations that occur in cell divisions during the growth of the culture,

such differences are expected to be many orders of magnitude rarer than the

base-calling error rate of conventional Illumina sequencing. There is therefore

plenty of room to demonstrate improvement over conventional sequencing by

comparing the number of apparent such differences that appear in conventional

sequencing data to the number that appear in error-corrected circle sequencing

data under the assumption that any such differences represents an error.

We first needed to determine if there were any locations in the genome

of the specific strain of yeast we were sequencing that were clonally different

than the yeast reference genome. If these population-wide variants are not

identified, consensus base calls that correctly report the input sequence will

disagree with the reference at these positions and be incorrectly flagged as

sequencing errors. To do this, we performed conventional Illumina sequencing

of the strain of yeast to be used, producing approximately 50-fold coverage of

12 megabase yeast genome. We analyzed the resulting data with the GATK

pipeline [21], following the Broad Institutes Best Practice Variant Detection
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with the GATK v4 workflow. This process identified 514 potential variant

sites in our strain. Any bases mapping to these sites were excluded from any

subsequent analysis of error rates. To minimize other potential sources of

artifactual mismatches introduced by the mapping process, reads mapping to

the incompletely assembled rDNA locus (chromosome XII, positions 451,000 to

491,000), nonuniquely mapping reads, and any mappings containing insertions

or deletions were also excluded from analysis of error rates.

With these filters in place, we applied circle sequencing to yeast ge-

nomic DNA. To determine the extent to which the redundant information

created by the circle sequencing process actually corrects errors, we performed

the following proof-of-concept analysis. For each mapped consensus sequence,

we returned to the individual repeats of information that went into creating

the consensus and artificially restricted ourself to the information present in

the first repeat. We computed the fraction of high quality base calls that

differed from the reference genome. We then incrementally incorporated in-

formation from each subsequent repeat, recomputing a consensus base call

and consensus quality score at each position using all the information incor-

porated so far, and computed the fraction of high quality consensus base calls

that differed from the reference genome at each step. As successive repeats

are incorporated, high-confidence but incorrect base calls have a chance to

either have the consensus quality assigned to them degraded (so that they are

no longer confidently wrong) or to have the consensus base identity assigned

to them corrected by subsequent correct base calls. Only positions for which
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the incorrect base is seen repeatedly without any dissenting votes survive this

process to remain errors in the final consensus sequence. Plotting the result-

ing mismatch rate versus number of repeats incorporated shows the extent to

which error detection and correction are happening. High-quality bases in the

first repeat of each sequencing read had an error rate of 5.8 × 104 (Fig. 2A).

As expected, incorporating the subsequent tandem repeats reduced this error

rate, but the effect was surprisingly small, with the error rate asymptotically

converging to around 2.7 × 10−4 with all information used, a substantially

higher overall mismatch rate than expected (figure 2.4A).

This suggested the presence of processes in which a single error event

is able to affect multiple copies of information in a concatamer. One po-

tential such process is single-stranded DNA base damage to starting circular

templates. Such damage could be caused any of a number of the experimen-

tal manipulations used to create short circles out of genomic DNA, including

acoustic energy from the shearing process or something as seemingly innocu-

ous as heat. Single-stranded base damage represents corruption of information

before rolling circle amplification has had a chance to protect it. Certain kinds

of damage to a base are known to cause polymerases to preferentially incorpo-

rate a base other than the standard Watson-Crick pair of the damaged base

when using it as a template. This would result in a change in the identify of

every copy of the base in a concatamer produced from a damaged template,

and therefore in a high confidence incorrect consensus base call.

To explore this possibility, we stratified mismatches by type by asking
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Figure 2.4: Error correction in circle sequencing.
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Figure 2.4 (Continued): Error correction in circle sequencing.
A. Each circle sequencing read consists of several redundant copies of infor-
mation. As a proof of concept that the full set of copies acts as a check for
identifying and correcting errors that occur in any single copy, we calculated
the fraction of inferred high-confidence consensus base identities that differed
from the reference genome if we artificially restricted ourselves to only using
information in the first n copies of information in each read for n = 1, 2, 3,
and 4. For the initial experimental design, decreasing error rate with the in-
corporation of additional information is a demonstration that error correction
is occurring, but this rate asymptotes to an unexpectedly high value.
B. When stratified by type, mismatches in data from the initial experimental
design (blue bars) are dominated by G→A and C→T mismatches, consistent
with induced cytosine deamination in circular templates during the experi-
mental process. Modifying the experimental protocol to treat this damage
mechanism dramatically reduced the rate at which these types of mismatches
occurred (green bars, shown in more detail in zoomed-in inset).
C. Proof-of-concept demonstration as in A for the modified experimental de-
sign. Using all redundant copies of information results in error rates in high-
confidence consensus base calls below 8× 10−6.
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what fraction of the time each reference base identity was called as each other

base identity (figure 2.4B). The spectrum of mismatches in high-quality con-

sensus base of our initial experimental protocol was strikingly dominated by

C→T and G→A mismatches. Such changes are consistent with the sponta-

neous deamination of cytosines in circular templates into uracils [5]. During

rolling-circle amplification, uracils will behave like thymines, base-pairing with

adenine instead of guanine (figure 2.5B, middle). Reads derived from the two

strands of the resulting double-stranded RCA product will therefore incor-

rectly report a C in place of a T or a G in place of an A with high confidence

(figure 2.5B, right).

To test whether cytosine deamination was responsible for the observed

mismatches, we modified our experimental protocol to add uracil DNA gly-

cosolase (UDG) during the rolling circle amplification process. This enzyme

is a part of repair pathways in many organisms that prevent the relatively

high rate of spontaneous cytosine deamination in genomic DNA (particularly

of 5-methylcytosines) from resulting in unsustainable somatic mutation rates

[101]. UDG recognizes uracils attached to a DNA backbone, which should not

be present in genomic DNA, and excises the nucleotide, leaving an abasic site

(figure 2.5C, left). We hypothesized that these abasic sites would not be read

through by the phi29 polymerase (figure 2.5C, middle), effectively removing

templates which had randomly undergone a cytosine deamination event from

the pool of templates that can produce RCA products (figure 2.5C, right).

As a test for the presence of additional types of base damage, we also added
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Figure 2.5: Eliminating artifactual variants created by cytosine deam-
ination.
(A) Undamaged cytosines in circular template base pair with guanine dur-
ing rolling circle amplification, producing double-stranded concatamers with
C opposite G at the corresponding position in every repeat.
(B) Cytosines that become uracil through spontaneous deamination base pair
with adenine during rolling circle amplification, producing double-stranded
concatamers with T opposite A at the corresponding position in every repeat.
(C) Excising uracils from backbones using UDG leaves an abasic site that
prevents rolling circle amplification from producing a concatamer.
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formamidopyrimidine-DNA glycosolase, an enzyme that excises guanines that

have undergone oxidative damage that causes them to preferentially base-pair

with A instead of C [18, 96].

Examining the mismatch spectrum of data produced by this modified

experimental protocol showed a striking reduction in C→T and G→A mis-

matches (figure 2.4B), and a less dramatic but still clear reduction in G→T

and C→A mismatches. This confirms that cytosine deamination was the dom-

inant cause of mismatches in high-confidence consensus bases in data produced

without the repair enzymes, and suggests that the remaining mismatches may

also represent other types of damage to vulnerable single-stranded circular

templates. Performing the same proof-of-concept analysis as above on this

data showed asymptotic convergence to the more impressive overall error rate

of 7.6 × 10−6 (figure 2.4C). The ability of circle sequencing to filter out the

majority of sequencing errors is therefore clear, but this ability is contingent

on preventing templates that have undergone cytosine deamination from pro-

ducing sequencing reads. The rate at which other types of base damage to

single-stranded circular templates occur during library preparation most likely

represents the limiting factor preventing this error rate from being even lower.

2.3.5 Comparisons of efficiency of error-correction schemes

By creating and sequencing redundant copies of information from each

starting molecule, both circle sequencing and barcoding methods inevitably

trade throughput for accuracy. Every time a redundant copy of information is
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sequenced represents a lost opportunity to instead sequence something new.

In order to characterize rarely occurring variants, an experimental method

not only needs to eliminate false positives caused by sequencing errors. It also

needs to produce large enough quantities of error-corrected data to observe

the rarely occurring variants a sufficient number of times.

The amount of useful error-corrected sequence that is produced by se-

quencing redundant depends on the efficiency with which families of redundant

copies are formed. A large variance in the size of families means that raw se-

quencing reads are wasted on families which do not end up with enough copies

to produce high-confidence consensus sequences and on families that are large

enough to exceed the point of diminishing returns of informational redun-

dancy. By producing read families that are packaged into single reads rather

than recovered from an amplified mixture by sampling, circle-sequencing al-

lows tighter control over the size of redundant families produced, offering both

theoretical and practical advantages in efficiency over barcoding methods.

Recall that the central paradigm of barcoding is to amplify uniquely

labeled fragments and then sample a large number of reads from the amplified

mixture. When multiple reads originating from the same fragment are seen,

they can be pooled to form a family from which a consensus sequence can be

derived. The efficiency with which large enough families of reads derived from

the same starting fragment are seen depends on the relative sizes of the pool

of uniquely labeled input fragments (sometimes referred to as the complexity

of the input library) and the pool of reads used to sample from the amplified
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products of these inputs. This is intuitively straightforward to see in extreme

cases. For input libraries containing very few distinct molecules, virtually ev-

ery input molecule will be seen many times. The cost of achieving this is that

the average number of times each molecule is seen is much higher than the

minimum number of times needed to form an accurate consensus sequence.

The excess times provide no new information and represent wasted reads, and

efficiency is low. On the other extreme, for input libraries containing many

more distinct molecules than the number of eventual sequencing reads, it is

rare to happen to see an input molecule multiple times. Most reads are not

seen enough times to form an accurate consensus sequence. The reads spent

on these incomplete families are wasted, and efficiency is low. The theoretical

efficiency expected when moving across the spectrum of input library com-

plexities spectrum from one extreme to the other is dictated by the Poisson

statistics that govern how often the same item is expected to be seen when

sampling repeatedly from a large set of items with replacement.

To model the barcoding process, barcoded fragments are assumed to

be amplified uniformly to a level such that there are many more copies of an

input molecule in the final amplified mixture than are expected to be sampled.

Drawing reads from the population of amplified fragments can therefore be

modeled as sampling uniformly from the input population with replacement.

Let n be the number of distinct double-stranded fragments that receive strand-

asymmetric barcodes. There are therefore 2n distinguishable inputs, but we

will discard information about strand-specificity to reduce this to n inputs,
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labeled 1 through n arbitrarily. Let r be the total number of reads. Let Xi be

the number of times that input i is seen. Xi is binomially distributed with r

trials and success probability 1/n. For large r and n, this is effectively Poisson

distributed with mean r/n. The expected number of inputs seen at least t

times is therefore

E

[
n∑
i=1

1{Xi≥t}

]
=

n∑
i=1

P[Xi ≥ t] (2.11)

≈ ne−
r
n

∞∑
j=t

rt

(n)tt!
. (2.12)

Efficiency is defined to be the expected number of consensus bases produced

per total base calls (equivalently, the number of eligible consensus families per

total reads), which is this expected value divided by r. Every occurrence of n

or r in this expression is then in the linked form n/r - the ratio of the number

of distinct successfully barcoded input molecules to the total number of reads.

The expected efficiency with which consensus families containing at least t = 3

reads are produced as a function of n/r for n = 106 is shown in purple in figure

2.6. In particular, note that while ideal efficiency of 1/3 would be achieved if

every read family contained exactly 3 members, unavoidable variance in the

size of read families due to the sampling process caps efficiency at ∼ 19% even

for an optimally targeted number of input molecules.

Now consider Schmitt et al.’s duplex barcoding scheme. In this set-

ting, information about strand-specificity is retained so that there are 2n dis-

tinguishable inputs. We are interested in the probability of sampling both

members of a particular input pair at least t times. The random vector {Xi}
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is multinomially distributed with r trials and success probabilities {pi = 1/2n}.

The components of this vector are not strictly independent, but for large r and

n and t � n, the events {Xi ≥ t} and {Xj ≥ t} are close to independent for

i 6= j, and the probability of such events is negligible if t is not much smaller

than n. The expected number of strand pairs for which both strands are seen

at least t times is therefore well-approximated by

E

[
n∑
i=1

1{Xi≥t}∩{Xn+i≥t}

]
=

n∑
i=1

P[Xi ≥ t,Xn+i ≥ t] (2.13)

≈
n∑
i=1

P[Xi ≥ t]P[Xn+i ≥ t] (2.14)

≈ n
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e−

r
2n
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j=t

rt

(2n)tt!
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The expected efficiency with which consensus families containing at least 3

reads of both members of a pair are produced as a function of n/r for n = 106

is shown in green in figure 2.6. This efficiency is capped at ∼ 8%. Just a

notable as the peak levels obtained by the green and purple curves in this plot

is the relatively narrow range of input values for which efficiency stays close

to this peak. Any imprecision in the titration of the number of successfully

barcoded input molecules that enter the amplification process of a barcoding

experiment leads to a sharp drop in the amount of useful error-corrected data

that the experiment will produce.

In contrast, because circle sequencing delivers families packaged into

46



Figure 2.6: Dependence of efficiency of error correction schemes on
input library size.
The efficiency of read family formation for an error correction scheme is defined
to be the expected number number of starting molecules for which at least 3
copies (circle sequencing and barcoding) or 3 copies derived from each strand
(duplex barcoding) are recovered divided by the total number of sequencing
reads used. Theoretical efficiency of circle sequencing, standard barcoding,
and duplex barcoding as a function of the number of distinct molecules in
the input library is plotted for a hypothetical experiment producing exactly
one million reads. Because barcoding methods assemble families of redundant
copies of information by sampling randomly from a pool of copies of each
starting molecule, unavoidable variance in the number of times each starting
molecule is sampled limits the maximum efficiency with which groups of suf-
ficient size can be produced. The sampling process also strongly couples the
efficiency of barcoding methods (y-axis) to the ratio of the number of distinct
starting molecules to the total number of sequencing reads (x-axis, since the
hypothetical number of reads is fixed). Because circle sequencing physically
links copies instead of sampling from a pool, its efficiency does not depend on
the number of input molecules used.
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single reads, the expected efficiency of circle sequencing is independent of the

complexity of the input library. Instead, the efficiency of circle sequencing

depends on the size of circular templates relative to the length of sequencing

reads used. In an idealized world in which we could produce very long con-

tinuous reads of fixed length and in which we were only interested in circular

templates that were all exactly one-third the length of our reads, each base

in a circular template would be seen exactly three times in the read of its

rolling circle amplification product and the number of consensus bases pro-

duced would be exactly one-third of the total number of bases read. In reality,

given variability in the lengths of circular templates and the fact that the bases

read are split into two reads which are separated by a uniformly random offset

ranging from 0 to the length of the circular template, the exact way in which

edges line up for a given combination of read length, circular template length,

and offset will cause some bases to be seen more than or less than three times

(figure 2.7A). For a fixed read length and a given circular template length,

averaging this efficiency over all possible offsets gives the expected efficiency

with which that template length will produce consensus bases. This expected

efficiency as a function of pre-circularized fragment length for 2x250 bp read

lengths is shown in figure 2.7B. For applications where the length of the circu-

lar templates is essentially uniform, such as when an input library is created

by amplifying a target region of a genome with primers on either side of it

(so-called amplicon libraries), the overall efficiency can be read directly off the

value of this curve at the length of the amplicon. For applications where the
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distribution of lengths of circular templates is variable, such as when genomic

DNA has been sheared and size selected to produce an input library, the overall

efficiency is this curve integrated with respect to the circular template length

distribution.

To demonstrate these points in practice, we compared data from a

circle sequencing experiment performed on yeast to data from a duplex bar-

coding experiment by Schmitt et al. using genomic DNA from the M13mp2

phage [96]. For each experiment, we computed the ratio of the number of error-

corrected consensus bases produced to the number of raw sequencing base calls

that went in to producing them, excluding temporarily from consideration any

reads that didn’t participate in this process, such as phiX contaminants, non-

periodic reads, or reads without well-formed barcodes. In order to form a

consensus base, we required that at least 3 copies of the base (circle sequenc-

ing and barcoding) or at least 3 copies of the base from each strand (duplex

barcoding) be observed. As discussed above, the maximum possible theoreti-

cal efficiency achievable by the three methods in this case are 26%, 19%, and

8%, respectively. Figure 2.8A gives the actual efficiences achieved in these

experiments. As expected, for circle sequencing, the distribution of lengths

of sheared input templates around the optimal target length leads to a slight

decrease in efficiency to 20.2%, but a reasonably high fraction of the peak

theoretical efficiency is obtained. In constrast, for barcoding and duplex bar-

coding, difficulty in precisely controlling the number of succesfully barcoded

input molecules causes actual efficiencies to be substantially lower than their
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Figure 2.7: Dependence of circle sequencing efficiency on input frag-
ment length.
A. The number of copies of each base in the original template present in paired
end reads of a concatamer (that is, the number of horizontal lines crossed by
a vertical line at any offset in the diagram) is determined by the length of the
circular template, the length of each read in the read pair, and the random
positioning of the offset of the R2 read in the repeat structure relative to the
R1 read.
B. The efficiency of read family formation, defined as the expected number
of bases seen at least three times for read pairs consisting of 250 bases each,
assuming uniformly random R2 offset values, is plotted as a function of circu-
lar template length. Note that the peak value achieved is somewhat less than
1/3.
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theoretical maximums (3.0% and 0.8%, respectively).

To directly demonstrate the impact of the number of input molecules

used on the efficiency of barcoding methods, we then carried out duplex bar-

coding on a series of samples of yeast genomic DNA produced by serial 10-fold

dilutions. For each sample, the same number of sequencing reads was targeted.

The resulting efficiencies of formation of standard barcoding read families or

of duplex barcoding read families from the resulting data are shown in figure

2.8B. Moving down the rows of this table from the highest number of input

molecules to the lowest represents moving from right to left along the theo-

retical model of efficiency as a function of input library size in figure 2.6. As

expected from this model, we see that efficiency is lowest for very high or very

low numbers of input molecules. For the two intermediate input library sizes

that produce the highest efficiencies (40 amol and 4 amol), the efficiencies ob-

tained are still substantially lower than the theoretical maximum. Examining

the distributions of sizes of read families produced for these samples (figure

2.8C) demonstrates why. For 40 amol (blue), there are too many different read

families trying to be sampled, resulting in many read families ending up with

fewer than 3 members. For 4 amol (green), there are not enough different read

families being sampled, resulting in most families having dramatically more

than 3 members.

The theoretical efficiency with which read families can be formed is

an important factor in determining how much error-corrected data will be

produced by an error-correcting sequencing scheme, but it is not the only such
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Figure 2.8: Efficiency of read family formation in actual realizations
of different error-correction strategies.
(A) The table shows the efficiency of read family formation in real data for
three error-correction strategies: circle sequencing, standard barcoding, and
duplex barcoding. Bases in refers to the total number of bases used to build
read families. For barcoding-based approaches, these are bases in well-formed,
uniquely mapping reads. For circle sequencing, these are bases in reads show-
ing clear periodicity. Bases out refers to consensus bases. Consensus bases are
produced from read families with at least three members (at least three mem-
bers derived from each strand for duplex barcoding). Efficiency is calculated
as the number of consensus bases produced divided by the total number of
bases used to produce them. Standard and duplex barcoding values (S super-
script) are reanalysis of a dataset from [96].
(B) Standard barcoding and duplex barcoding were used to sequence yeast
genomic DNA. Tenfold serial dilutions of the input material were made before
amplification. The number of eligible reads refers to the number of reads used
to build read families. Also shown are the number of read families consist-
ing of at least three members (standard barcoding) or at least three members
from each strand (duplex barcoding), and the efficiency of consensus sequence
formation (ratio of read families produced to total eligible reads).
(C) The distribution of sizes of read families (number of reads per read family)
produced by standard barcoding with 40-attomol input (blue) and 4-attomol
input (green).
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factor. The amount of data produced by an actual experiment depends on the

practical difficulty of tuning the relevant parameter (either library complexity

or library fragment size distribution) to the value that will achieve the optimal

theoretical efficiency. Raw sequencing reads will also be wasted on sequencing

products that do not have the desired structure but are an unavoidable by-

product of the library preparation and sequencing process, such as adapter

dimers or phiX spike-ins. Within reads with the appropriate structure, bases

may be wasted forming consensus bases with low consensus quality scores due

to mechanisms such as PCR-mediated recombination or polymerase errors

during barcoding amplification. The fraction of reads that map uniquely to

the reference genome may also differ between schemes due to differences in

consensus read lengths.

A fair comparison of the cost-effectiveness of different error correction

schemes must consider all of these factors together. To make this comparison,

we define the yield of an experiment to be the number of high-quality consensus

bases in uniquely mapped consensus sequences divided by the total raw number

of sequencing base calls. We define the error rate an experiment to be the

fraction of such high-quality uniquely mapped consensus bases that disagree

with the reference. (Of course, this quantity actually represents the sum of the

error rate of the method and the amount of allelic heterogeneity present in the

sample being sequenced.) Figure 2.9 shows how standard barcoding, duplex

barcoding, and circle sequencing navigate the trade-off between error rate and

yield in practice. Circle sequencing achieves error rates equal to or lower than
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all realizations of standard barcoding methods with a consistent yield that is

several times higher than that of any standard barcoding experiment. While

duplex barcoding is able to achieve the lowest error rate of any method because

its ability to filter out all types of single-stranded base damage, this comes at

the cost of a drop in yield of two orders of magnitude compared to circle

sequencing.

2.3.6 Unexpected phenomena in circle sequencing data

Having presented an overall view of circle sequencing and its place in the

current landscape of error-correction strategies, we now circle back to describe

further technical details of the computational analysis of data produced by

the method. Specifically, we will discuss three different unexpected features

of the data that emerged over the course of our analysis. Tracking down

the sources of these features reveals several interesting mechanisms that go

on during the enzymatic manipulations of library preparation and during the

sequencing process. Understanding these features informs the interpretation

of circle sequencing data and, in one case, provides a potential direction for

future improvement to the experimental design.

2.3.6.1 phiX contamination

Each sequence in a read pair of a concatamer should theoretically con-

sist of exact repeats of the sequence of the circular template from which the

pair was generated. As discussed above, there should therefore exist a value
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Figure 2.9: Yield vs. error rate for different error correction strate-
gies.
Yield is defined to be the number of error-corrected bases produced by an
experiment divided by the total number of raw sequencing base calls used
to produce them. Error rate is defined to be the fraction of high-confidence
consensus bases that disagree with the relevant reference genome. An ideal
experiment produces low error rate with high yield and therefore occupies
the upper right corner of this plot. Green dots represent our implementation
of standard barcoding at different input titrations. Grey dots represent our
analysis of Schmitt el al.’s duplex barcoding data, either ignoring strand infor-
mation as if it were standard barcoding or using strand information. Yellow
dots represent different experimental replicates of circle sequencing.
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P (the period length) such that almost every pair of base calls separated by

distance p in each sequence are identical. To determine if this is the case, we

can examine the distribution of fP - the fraction of pairs of base calls in a read

pair separated by distance P that are identical for the value of P that maxi-

mizes this fraction - across all of the read pairs produced by a circle sequencing

experiment. We expect this distribution to be be peaked at or near 1 and drop

off sharply below this. When we first examined the distribution for real data,

however, a substantial fraction of reads exhibited essentially no periodicity in

excess of random expectation - that is, with fP only slightly higher than 0.25.

BLAST search of the NCBI nucleotide collection revealed that the se-

quence of these reads was from the genome of the bacteriophage phiX174. A

spike-in of phiX DNA is typically added to sequencing libraries on Illumina

machines to allow for internal calibration of the base-calling software. Sam-

ples from different libraries are multiplexed on a single run of an Illumina

machine by incorporating a unique six nucleotide index sequence in between

the R2 sequencing primer and the flow cell attachment sequence that follows

this primer. This index is read by a separate sequencing reaction after the R1

read has finished but before clusters have been flipped around to perform the

R2 read. This index read uses a sequencing primer that targets the reverse

complement of part of R2 sequencing primer. The sequencing reads produced

from each cluster can be demultiplexed into the different samples that they

came from based on the identity of the index sequence read. In principle, no

phiX spike-in reads should exist in the demultiplexed data corresponding to
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any indexed sample since Illumina’s PhiX Control V3 library ‘is not indexed’

[42]. In practice, we found that up to 5% of read pairs in our samples mapped

concordantly to the phiX genome. As a matter of general interest, we were

able to determine the mechanism by which this misassignment occurs.

When the insert between the sequencing primers in a sequencing read

is shorter than the read length, the primer sequence on the far end of the insert

is itself sequenced. Although the distribution of lengths of inserts in the phiX

control library is peaked around 350 base pairs, the process by which these

libraries is fragmented and size selected has enough variance that a small

fraction of the inserts are less than 250 base pairs long. To determine the

precise (proprietary) meaning of ‘is not indexed’, we examined the adapter

sequences that were read through when phiX inserts happened to be shorter

than the 250 base pair read length of our data. We found that the adapters on

the R2 end of the phiX V3 library are different than the standard ‘TruSeq’ R2

sequencing primer used to prepare standard Illumina libraries. They instead

use the older so-called ‘PE’ primer. (As an aside, this implies that this older

primer must be mixed in to standard Illumina sequencing primer reagents to

allow R2 reads of the phiX library.) Because the index read sequencing primer

targets the TruSeq R2 sequencing primer, this means that clusters containing

the phiX library have no region complementary to the indexing read primer

and are not expected to fluoresce during the indexing read.

How, then, are index sequences being read at the phiX clusters in or-

der to assign them to an indexed sample during demultiplexing? One possible
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explanation is that bleed-over fluorescence from a nearby indexed cluster is

detected at an otherwise-dark phiX clusters during the index sequencing reac-

tion. Two lines of evidence support this hypothesis. The first is that quality

scores for the supposed index reads at phiX clusters are dramatically lower on

average than those for non-phiX clusters (data not shown). This is expected if

these base calls are based on low levels of fluorescence intensity from a nearby

cluster rather than on direct fluorescence from the phiX cluster itself. The sec-

ond is that phiX reads that have a particular index sequence assigned to them

are systemically closer to another cluster with that index sequence than phiX

reads that correctly have no index sequence assigned to them. To determine

this, we computed the distribution of distances from each indexed phiX clus-

ter to the nearest indexed non-phiX cluster by extracting the locations of each

cluster from the corresponding read names and using a k-d tree for efficient

nearest neighbor searches (figure 2.10A). We compared this to the distribution

of distances from each non-indexed phiX cluster to the nearest indexed non-

phiX cluster. We found that phiX clusters that received index assignments

were on the whole strikingly closer to indexed non-phiX clusters than phiX

clusters that did not receive index assignments (figure 2.10B), supporting the

model of bleed-over index assignment.

The implications of phiX contamination on circle sequencing are minor.

Once their existence is known, they are trivial to filter out, and only have the

effect of slightly reducing the apparent efficiency of experiments by adding

a small amount of useless data to the denominator of the yield calculations
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Figure 2.10: phiX clusters are incorrectly assigned index sequences
when too close to indexed clusters.
(A) Illumina read names contain coordinates of the corresponding cluster on
the surface of the flow cell. To determine if phiX reads that have mysteriously
been assigned a particular index sequence tend to be closer to another clus-
ter with that index sequence than phiX reads that have not, we can compute
the distribution of distances to the nearest indexed non-phiX cluster (green
points) for every indexed phiX cluster (red points) and for every unindexed
phiX cluster (blue points).
(B) Indexed phiX clusters are strikingly closer to indexed non-phiX clusters
(red distribution) than unindexed phiX clusters are (blue distribution), sup-
porting a model in which fluorescence from a nearby indexed cluster during
the index read is misinterpreted as the presence of an index sequence at nearby
phiX clusters.
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described above. For applications involving de novo assembly of a genome or

transcriptome, however, it is useful to be aware that these reads can exist to

avoid incorrectly including a copy of the phiX genome in the resulting assembly

[79].

2.3.6.2 PCR-mediated recombination

Once non-periodic contaminants are filtered out, we expected the pe-

riodicity in remaining reads to be nearly perfect. However, the distribution

of values of fP across the remaining read pairs has a surprisingly heavy tail

of values substantially less than 1 (figure 2.11, blue). Such reads are clearly

still concatamers of some original template sequence - for values of P in the

neighborhood of 100, as in this data, values of fP higher than e.g. 0.5 are

vanishingly unlikely to occur by chance. Deviations from perfect periodicity

in these reads therefore represent a global measure of the fidelity with which

each repeat reflects the original template sequence. The fidelity implied by

the blue distribution in figure 2.11 is worrisome. If deviations are caused by

independent random errors introduced during the propagation of information

from a starting circular template through to the sequencing of a base in a

concatamer, the rate at which they appear to be occurring could limit the

accuracy of consensus base calls. Roughly speaking, the consensus error rate

from n copies of information that are each independently wrong with proba-

bility p can’t be better than pn. The width of the tail in the blue distribution

implies values of p on the order of 5%, potentially placing a lower bound of
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∼ 10−4 on consensus error rates. This 5% value is substantially higher than

the expected error rate of Illumina sequencing or of the phi29 polymerase. We

therefore needed to determine what additional mechanisms were introducing

deviations from perfect peridoicity. If they represented random independent

errors, the overall performance of circle sequencing could be limited by them.

If, on the other hand, the deviations exhibit some predictable structure, we

can account for this structure when assigning confidence to consensus base

calls to avoid being confidently wrong.

One potential source of large deviations from perfect periodicity in a

read pair is an insertion or deletion during RCA or during sequencing. Such

insertions or deletions would represent extended excursions from the upper

diagonal path that a perfectly periodic sequence moves along in figure 2.3 to

the next diagonal up or down. To determine if such events contribute substan-

tially to the tail, we generalized the autocorrelation computations above to a

full dynamic-programming search of alignments of each sequence to itself us-

ing a Cython implementation of the Smith-Watterman algorithm [104]. This

revealed a handful of cases of clear indels, typically occurring in the middle

of long homopolymer stretches, consistent with general lore about sequence

contexts that polymerases tend to slip on [59]. The net contribution of these

instance to the tail, however, was negligible.

A general clue was provided by comparing the distribution of quality

scores assigned to base calls over the length of sequencing reads from con-

catamers to those of conventional (i.e. non-periodic) samples on the same se-

61



Figure 2.11: Recombination explains unexpectedly high rates of dis-
agreement between different copies in sequencing reads of con-
catamers.
For a sequencing read of a concatamer, there should be a period P such that
essentially all pairs of base calls separated by distance P agree. Let fP denote
the fraction of such pairs that are identical for the value of P that maximizes
this fraction for each read. Across all reads in a real dataset, many reads pro-
duce values of fP lower than expected given expected sequencing error rates
(blue). If possible recombination positions are excluded from the numerator
and denominator of this fraction (see text), the distribution shifts dramati-
cally towards one, indicating that recombination is the source of most of these
excess sequencing errors.
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Figure 2.12: Excess drop in quality scores of base calls over the length
of sequencing reads of concatamers.
Distributions of quality scores at each position across all reads in a conven-
tional sample (black) and in a circle sequencing sample (red) from the same
sequencing run. Quality scores degrades substantially more towards the end of
reads in concatamers than in conventional reads, suggesting that some prop-
erty of concatamers presents difficulties for the sequencing process.
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quencing run (figure 2.12). When sequencing any kind of sample, these quality

scores are expected to decay over the length of reads as the different sequences

in a cluster go slightly out of phase with each other. The extent of this drop,

however, was substantially more pronounced in circle sequencing reads then in

conventional reads. This suggests that some property of concatamers interacts

with the sequencing process to make the fluorescent signals presented to the

sequencing machine more ambiguous than normal towards the end of reads.

A serendipitous literature encounter [118] brought such a process to

our attention. The formation of chimeric sequences via PCR-mediated re-

combination (also known as template swapping) is a well-studied phenomenon

[78]. The fundamental principle of PCR is that any molecule that is flanked

by both designed primer sequences will be exponentially amplified. If a poly-

merase incompletely extends a template during a round of PCR, the partial

product produced will lack a primer on one end. No additional copies of the

partial product can be made, and the single copy that exists will represent

a negligible fraction of the final amplified pool of molecules. If, however, the

incompletely extended template ends in a sequence stretch that exists in a dif-

ferent molecule in the pool, the incompletely extended template can hybridize

to this alternative location and act as a primer. When extended, this priming

results in the creation of a chimeric sequence which was not present in the

original input but is flanked by both primers. The presence of both primers

allows this chimeric sequence to be amplified in all subsequent PCR cycles and

to potentially constitute a substantial fraction of the final pool.
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The spatially-localized amplification of a rolling-circle amplification

product consisting of several tandem repeats of long, near-identical sequences

is in theory particularly vulnerable to this effect. If a polymerase incompletely

extends any such template during amplification (figure 2.13A), the premature

end is guaranteed by construction to have several alternative locations to which

it can hybridize. In particular, it can hybridize to any position that differs from

its true position by a multiple of the period length (figure 2.13B). Any such

hybridization primes the creation of a chimeric template which consists of the

original template with some whole number of complete periods added to or

removed from it (figure 2.13C). Instead of a clonal population of copies of the

original template, the final population produced will consist of a heterogeneous

mixture of the original sequence and a modification of the original sequence

that cuts off prematurely and switches to adapter sequence. The proportions

of each sequence in the final mixture will depend on how early in the cycles

the chimera initially forms and the relative efficiency with which the chimera

is amplified compared to the original sequence. If this phenomenon occurs

at appreciable levels during cluster generation on Illumina flow cells, it could

potentially explain the decrease in quality score over the length of concatamer

reads and the elevated levels of deviations from perfect periodicity. Towards

the ends of reads, when recombination has caused a cluster to consist of a

mixture of continued repeats of the original template sequence and premature

adapter sequence, the fluorescence being produced will consists of a mixture

of the ‘true’ base identity and the adapter base. At best, this will cause the
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base-caller to identify the true base but with low quality score because of am-

biguity introduced by the mixed fluorescence. At worst, fluorescence from the

adapter base could outweigh fluorescence from the true base, leading to an

incorrect base call.

The fact that the sequences in a read pair contain implicit information

about the position of the two reads relative to each other in the sequenced

template can be exploited to determine exactly where possible artifactual sig-

natures of PCR mediated recombination could occur in the sequences of the

reads. Specifically, once the period length and offset in a concatamer read

pair have been determined, a sequence in the read pair can potential consist

of a superposition of the real periodic sequence and adapter sequence starting

at positions a = o + lr mod p and at {a + nP : n ∈ N, a + nP < lr} (fig-

ure 2.13D). To diagnose the extent to which recombination is leading to the

appearance of adapter sequence stochastically superimposed on the expected

sequence repeats, we can take successfully mapped consensus sequences and

ask, ‘of all base calls at position a + nP + i in the raw sequence that went

into the creation of this consensus, what fraction had each base identity when

this was not identity of the corresponding mapped reference base?’ Figure

2.14 shows this diagnostic in R1 reads for n = 0 (i.e. the first opportunity in

each read for adapter sequence to appear) and n = 1 (the second such oppor-

tunity) on the top and bottom, respectively. Colored lines show the fraction

of all reads that differ from the mapped reference base at each offset into

the potential adapter region, and the background is shaded according to the
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Figure 2.13: Schematic of PCR-mediated recombination during am-
plification of concatamers.
During amplification of a double stranded sequence (top) consisting of sev-
eral repeats of the same sequence (blue) flanked by primer sequences (purple
and orange), incomplete extension during an amplification cycle (A) leaves
a truncated sequence that can hybridize to the other strand at several other
locations separated by exact multiples of the repeat length (B). Extension of
these hybridizations results in chimeric sequences that have primers on both
ends but have had some number of repeats subtracted (C).
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expected adapter sequence (specifically, the reverse complement of the R2 se-

quencing primer followed by the flow cell attachment sequence). On a separate

scale, the black line shows the average quality score at each aligned position

across all reads. Excess incorrect base calls track perfectly with the expected

adapter sequence (i.e., each colored line spikes up exactly where the back-

ground color predicts it should). Average quality scores drop sharply at the

beginning of the potential adapter region and recover moderately after leaving

it, indicating that clusters are heterogeneous in this region. Finally, each of

these effects is more pronounced at the second opportunity than it was at the

first, indicating that less fragments in a cluster have managed to recombine

enough to remove the additional repeating unit necessary to place the adapter

sequence that much closer. Together, these constitute overwhelming evidence

that PCR-mediated recombination happens during cluster generation.
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Figure 2.14: Mismatch profiles and quality scores at possible recom-
bination sites are consistent with recombination during cluster gen-
eration.
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Figure 2.14 (Continued): Mismatch profiles and quality scores at pos-
sible recombination sites are consistent with recombination during
cluster generation.
Recombination can potentially cause the sequence at a specific set of positions
in each read to consist of a mixture of base calls from the original circular tem-
plate and from adapter sequence. Starting at the first (top) or second (bottom)
such potential adapter sequence location in each R1 sequencing read, we exam-
ined 20 bases upstream and 90 bases downstream. At each offset (x axis), we
plotted the fraction of bases miscalled as each type (A, C, G, and T) (y axis).
Independently, we shaded the background at each distance corresponding to
the sequence of the adapter that could be introduced by recombination. The
fact that the color of the line that is highest at each position perfectly matches
the shaded background color confirms that the signature of mismatches seen
agrees with the signature expected to be produced by PCR-mediated recom-
bination. Black lines plot average quality scores across the same positions.
Quality scores dip in the adapter regions, consistent with heterogeneity in
clusters due to recombination. Both phenomena are more pronounced at the
second opportunity than at the first.
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To confirm that sequencing errors introduced by recombination are the

dominant source of the heavy tail in the distribution of fP in figure 2.11, we

can compute a modified form of this statistic. Recall that fP consists of the

fraction of all pairs of base calls separated by the inferred period length P

that are identical. In each such pair, if either base call is at a position that

could reflect recombination and is reporting the base identify from the adapter

sequence that recombination could place there, we can exclude the comparison

of that pair from both the numerator and denominator of the calculation of

fP . If the heavy tail were caused by errors distributed randomly throughout

reads, excluding this particularly structured set of comparison from the frac-

tion would have no systematic effect on the distribution of fP values. Instead,

we see a striking shift to the right in the distribution of the modified statis-

tic (figure 2.11, green), confirming that for many reads, predictably located

sequencing errors caused by recombination during cluster generation are the

dominant source of deviations from perfect periodicity.

A plausible argument can be made that recombination is unlikely to

lead to incorrect high-confidence consensus base calls. A high-confidence con-

sensus base call requires at least three high-quality constituent base calls of

the same base identity. In order for recombination to affect more than one

constituent base call in a group, the total population of templates in a cluster

must be distributed across more than two recombined forms. The mixture of

signals from these multiple forms should make high-quality base calls at any

given position unlikely. To confirm this plausibility argument, we artificially
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set the quality of any position consistent with expected adapter sequence to

zero. Explicitly disallowing the formation of high-quality consensus bases at

positions possible affected by recombination had no significant impact on the

overall high-confidence mismatch rate.

While recombination has no measurable impact on the accuracy of

high-confidence consensus base calls, it can negatively impact the error rate

of low-confidence base calls. It can also affect overall efficiency by reducing

the number of positions that are able to achieve high consensus quality score.

It could conceivably also affect the ability of circle-sequencing to efficiently

use longer read lengths or to transfer to non-Illumina platforms. The actual

amount of PCR-mediated recombination that occurs - that is, the distribution

across all clusters of the fraction of each cluster that consists of chimeric prod-

ucts - depends on the number of incompletely extended templates that form,

which in turn depends on the effective processivity of the polymerase used

and on the accessibility of templates to each other in order for undesirable

priming to occur. These factors could vary considerably across the amplifica-

tion schemes used by the different high-throughput sequencing platforms on

the market. Once formed, the extent to which heterogeneous clusters are a

problem depends on the mechanics of the sequencing process used and on the

ability of base calling algorithms to deal with the ambiguous signals that the

heterogeneity will present. The amount of recombination could be potentially

be minimized by optimizing the amplification process for processivity [61].

Alternatively, recombination-aware base calling software could be developed
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that re-evaluates the raw fluorescence intensity data and explicitly models the

heterogeneity, potentially recovering more signal.

2.3.6.3 Duplex circles

Once the repeats in a concatamer have been combined into a consensus

sequence, we expect every such consensus sequence to consist of a rotation

of a region from a single strand of the reference genome that the library was

constructed from. In section 2.3.3 above, we discussed strategies for mapping

rotated consensus sequences to reference genomes to identify to these regions.

In real data, we observed that a small fraction of consensus sequences failed

to map the yeast genome in the expected way - that is, there exist well-formed

concatamers made up of clear repeats of a circular starting template such that

there exists no continuous region in the yeast genome that is a near match to

any rotation of the sequence of this circular template.

Identifying the source of mysterious sequences like these is a common

procedure in the analysis of data from high-throughput sequencing experi-

ments. These experiments typically involve manipulating a starting pool of

fragments of DNA or RNA with various ligations, hybridizations, and reverse

transcriptions in order to produce carefully designed sequencable libraries. If

every stage in these manipulations works as intended, each molecule in the

library will consist of a combination of various payloads of genomic or tran-

scriptomic sequence and various synthetic oligonucleotide sequences laid out

in a particular order. These manipulations are not always perfect, however.
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Unanticipated enzymatic side effects of the manipulations can produce se-

quence constructs that do not have the structures they are expected to. The

ability to diagnose and catalogue these side effects is frequently necessary for

troubleshooting experimental designs in order to increase the rate of produc-

tion of the intended sequence structures. Even when experimental designs

work sufficiently well enough to produce enough useful data, tracking down

anomalies can provide insights into unappreciated enzymatic activities that

can potentially be harnessed.

To facilitate this kind of analysis, we developed a tool to produce text-

based visualizations of the different possible ways each sequencing read can be

decomposed into component pieces consisting of stretches of genomic or tran-

scriptomic sequences or of specific synthetic sequences that were introduced.

By doing so in a way that makes no assumptions about each read’s layout, this

enables detection of novel structures. This can be viewed as the converse of the

process of simultaneously visualizing the mappings of many reads to a single

stretch of a reference genome - instead, the simultaneous alignment of multiple

stretches of a reference genome and of various oligonucleotide sequencs to each

individual sequencing read are visualized. Alternatively, it can be viewed as

a high-throughput and flexible version of the visualizations produced by the

NBCI BLAST web server. For each sequencing read or read pair, the tool

uses Bowtie2 to produce a comprehensive set of local alignments of the read

to genome-scale targets in SAM format. The tool also uses a Cython imple-

mentation of the Smith-Waterman algorithm to produce local alignments of
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the read to smaller sequence targets, such as adapter sequences. These two

sources of alignments are then merged, and text-based representations of each

alignment are laid out around the read for visualization.

We applied this tool to understand the source of the circular templates

that could not be explained by the standard mechanisms of our experimental

protocol. To orient the reader before moving on to these results, we first

demonstrate what we expect circle sequencing concatamer reads to look like

when visualized with the tool (figure 2.15A). Because the data involved consists

of paired-end reads of 250 bases each, printed page dimensions require the

text of alignments across a read pair to be split across two horizontal bands

in this figure. In the actual output, these two bands are joined at the ellipses.

To simultaneously visualize both members of a read pair, R1 and R2 reads

are first offset relative to each other to maximize sequence identity between

them and then printed on consecutive lines. All local alignments to R1 are

then stacked above the aligned read pair, and all local alignments to R2 are

stacked below it. The bounds of each local alignment of a continuous region

from one of the strands of a double-stranded reference genome sequence to

a stretch of a sequencing read are marked by | characters. Text above (for

alignments to R1) or below (for alignments to R2) the line marking these

bounds annotates the name and coordinates of the reference sequence involved,

and the space between the | characters is filled with characters indicating

whether the alignment is to the forward strand (>) or reverse strand (<) of the

reference. Although none are present in this first example, any mismatches,
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insertions, or deletions in these alignments are annotated by replacing these

strand-indicating characters with x, -, or \/. If different alignments overlap

each other, they are vertically offset from each other; otherwise, they are

packed next to each other. In this first example, we see that the read pair

consists of repeating units of the region from coordinates 31,307 to 31,434 on

the forward strand of chromosome III of the yeast genome (figure 2.15A). (The

stretch at the beginning of R1 with no alignment is too short to be detected

by Bowtie2, but by inspection is seen to represent the tail end of a preceding

copy of the same repeating unit.) This means that, as expected, this read

pair represents the result of a single stranded fragment of DNA (figure 2.15B)

that was ligated end-to-end to produce a circular template for rolling-circle

amplification (figure 2.15C).

When we examined the entire set of read pairs, however, a non-trivial

number of read pairs could not be explained as repeats of a single genomic

stretch. Figure 2.16A shows a representative such read pair. The sequence

of the aligned read pairs begins with a stretch from the forward strand of

chromosome XII, ending at position 456,817. The sequence following this,

however, is not a second repeat of the same sequence as is expected. Instead,

it aligns to the opposite strand of the same genomic extent, beginning at the

same coordinate as the end of the forward-strand alignment and extending

back to position 456,731. The end of this reverse-strand alignment is followed

by a second forward-strand alignment that begins just upstream of (and even-

tually overlaps the same extent as) the initial forward strand alignment. The
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Figure 2.15: Expected structures in concatamers
(A) A comprehensive set of local mappings of a read pair of a concatamer
to the yeast genome indicates that each member of the read pair consists of
repeated copies of a region from a single strand of chromosome III.
This means that, as expected according to the canonical activity of CircLi-
gase, the concatamer was produced by a single ligation of the ends of a single-
stranded template (B and C) followed by rolling circle amplification and se-
quencing (D).
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repeating unit in this concatamer therefore consists of end-to-end stretches of

a region from the forward strand and a subset of this region from the reverse

strand. The rare existence of such concatamers reveals a previously unchar-

acterized (to our knowledge) enzymatic activity of CircLigase. In order to

produce this concatamer, CircLigase must have acted on a template consisting

of a mostly double-stranded stretch of genomic DNA that had a short-single

stranded overhang on the 5’ end (figure 2.16B). A circular structure must have

been formed involving two ligations - one between the 5’ end of the forward

strand extent and the 3’ end of the reverse strand extent, and one between the

5’ end of the reverse strand extent and the 3’ end of the forward strand extent

(figure 2.16C).

Because concatamers produced from templates that have been formed

in this way contain multiple copies of sequence information independently

derived from each strand of a double stranded starting molecule, they have

the same potential to detect generic single-stranded damage events offered by

Schmitt et al.’s duplex barcoding method. We set out to systematically ex-

amine the ‘duplex circle sequencing’ data we had accidentally produced for

a proof-of-principle that this kind of duplex error correction was possible.

While the visualization tool described above allowed us to identify that these

structures exist, it is not suitable for systematically identifying them and de-

composing them their constituent pieces. To do this, the defining feature of

concatamers produced by this two-ligation mechanism is that there exist long

stretches of sequence in them that are exact or near-exact reverse complements
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Figure 2.16: Unexpected structures in concatamers
(A) Rarely, read pairs of concatamers whose repeating unit consists of a ge-
nomic region from one strand (in this case, the forward strand of chromosome
XII from positions 456,703 to 456,817) followed by a subset of this region from
the other strand (in this case, the reverse strand of the same chromosome from
positions 456,817 to 456,731) are observed.
This indicates that, unexpectedly, CircLigase can act on a double-stranded
template with a short single-stranded overhang (B), performing two ligations
to produce a circle consisting of the two strands joined end-to-end (C). Rolling
circle amplification of this circle produces the read pair observed (D).
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of each other. The detection of such stretches is conceptually similar to search-

ing for secondary structure in a sequence. Let s be the sequence of a potential

duplex concatamer. If it was produced from a template with the two-ligation

structure described above, it will be made up of four different component se-

quence stretches: c, the sequence of one strand of the center region for which

both strands exist (solid blue line in figure 2.16); c′, the sequence of the other

strand of this center region (red line in figure 2.16B); l, the sequence of the

potential single stranded overhang on the left of the double stranded center

(dotted blue line in figure 2.16B); and r, the sequence of the potential single

stranded overhang on the right (not present in figure 2.16). We will collectively

call l and r the turnaround sequences. Note that either of these can in theory

be of length zero if the corresponding end of the starting template was blunt

(that is, double stranded all the way to its end, as in the right side of figure

2.16). s will consist of repeating units of the form c− r − c′ − l.

The ultimate goal is to identify and group together all copies of c and

of c′. The existence of reverse-complementary copies of c and c′ separated

by a turnaround sequence means that there exists a series of positions in the

sequence that we will call reflection points. These points will have the property

that if we compare the sequence extending backwards from the reflection point

to the complement of the sequence extending forwards from it, there will be a

long stretch of identical bases somewhere in this comparison. More precisely,

in the middle of each turnaround, there be an index Mj such that if t is the

turnaround sequence involved (i.e. one of either l or r), and T is the length of
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t, then if T is even,

s[Mj −
T

2
− i] = scomplement[Mj +

T

2
+ 1 + i],

and if T is odd,

s[Mj −
⌈
T

2

⌉
− i] = scomplement[Mj + dT

2
e+ i]

for all i ∈ {0, . . . , C − 1}, except where single-stranded damage or sequencing

errors have changed the identity of a base call.

To conceptualize this, consider a matrix in which the (i, j)th entry is

1 if the ith base in s is equal to the jth base in the complement of s (figure

2.18). This matrix is symmetric since

s[i] = scomplement[j] if and only if scomplement[i] = s[j], (2.17)

so only the upper triangular region needs to be shown. Around each reflec-

tion point, we expect a stretch of identical bases as we move simultaneously

backwards in the sequence and forwards in the complement of the sequence.

This correspond to moving upwards along an anti-diagonal in the matrix.

The existence of long anti-diagonal stretches in this matrix containing almost

exclusively ones therefore indicates that the sequence being considered rep-

resents a duplex concatamer. The values of the reflection points are given

by the indices of the anti-diagonals that contain these stretches. The offsets

from the main diagonal at which these stretches begin are the lengths of the

turnaround sequences. If we require stretches of perfect identity, we would be
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Figure 2.17: Concatamers from duplex templates contain reflection
points.
In a concatamer produced from the starting template and circle in figure 2.16B
and C, the ligation between the two strands on the right of the starting tem-
plate produces a point M1 with the property that a stretch of the sequence
moving backwards from M1 (purple arrow to the left) will be nearly identical
to the complement of the sequence moving forward from M1 (purple arrow to
the right). The ligation involving the single-stranded overhang on the left of
the starting template produces a point M2 with a similar property, with the
modification that a total distance equal to the length of the overhang (blue
dotted line) must be skipped before sequence identity moving backward from
M2 (green arrow to the left) will be nearly identical to the complement of
sequence moving forward from M2 (green arrow to the right).
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unable to detect any instances of duplex error correction, since base damage

to one strand but not the other will results in a pair of matched bases that

are not Watson-Crick complements of each other in the middle of an otherwise

causal anti-diagonal stretch. We therefore introduce heuristics in which long

enough stretches on either side of such a gap are joined together.

Once the reflection points and turnaround lengths have been identified,

a read pair can be decomposed into the different copies of c, c′, l, and r that

it is made up of, and each set of copies can be aggregated into a consensus

sequence. These consensus sequences can then be mapped to the yeast refer-

ence genome. In contrast to the mapping of normal circle sequencing data,

there is no ambiguity about the location of ligation junctions. By construc-

tion, c should represent an (unrotated) stretch of the reference genome and can

therefore be mapped directly with bowtie2. As a consistency check, we can

then confirm that l and r each map to a strand on either side of the mapped

location of c.

To search for potential instances of duplex concatamers in which one

strand had undergone a base damage event, we applied this processing strategy

to a group of 8 samples of yeast genomic DNA produced using the initial de-

sign of our experimental protocol. Importantly, because this protocol did not

include either of the base-damage excision enzymes (UDG and Fpg) used in

the final protocol during rolling circle amplification, we expect relatively high

levels of single-stranded base damage. If information from both strands can

detect this damage, we can ‘excise’ all such instances of damage informatically
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Figure 2.18: Detecting duplex structures in concatamers.
In the binary matrix of comparisons of base identities between positions in a
concatamer sequence (rows) and positions in the complement of this sequence
(columns), long anti-diagonal stretches indicate that the concatamer contains
long regions that are reverse complements of each other. The presence of such
stretches therefore identifies concatamers from circles produced by two end-
to-end ligations of a double-stranded starting template. The indices of these
anti-diagonal stretches identify reflection points (M1 and M2; see figure 2.17),
and gaps between the main diagonal and these stretches identify the lengths
of any overhang sequences (R/2).
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instead of biochemically, just as is done in Schmitt et al.’s duplex barcoding.

We identified several thousand unambiguous duplex circular structures, pro-

ducing several hundred thousand bases of error-corrected consensus sequences.

We then analyzed the mismatch rates in the consensus sequences from these

structures, first treating each c and c′ sequence as if it were a standard cir-

cle sequencing consensus and counting how often each type of high-confidence

but incorrect identification of a reference sequence base occurred (figure 2.19,

blue). When treated as standard data, the mismatch profile has large peaks

in G→A and C→T mismatches consistent with cytosine deamination, and, to

a lesser extent, G→T and C→A mismatches consistent with oxidative dam-

age. We then took advantage of the consistency check offered by both strands

of information by forming duplex consensus sequences out of each c/c′ pair,

with high-confidence quality scores assigned to a duplex consensus base only

if both c and c′ agree on the identity of the base. Strikingly, every single

high-confidence mismatch disappears after this duplex processing (figure 2.19,

green). That is, each mismatch is correctly flagged as artifactual by the ab-

sence of a corresponding mismatch on the opposite strand of its duplex partner.

Although the total number of duplex consensus bases observed is far too small

to place tight bounds on how low the mismatch rate is, as is seen by the large

error bar around zero in each duplex column, this represents both additional

evidence that single-stranded base damage events are the source of remaining

errors made by circle sequencing and an encouraging proof-of-principle that

duplex concatamers could be used to correct these errors.
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Figure 2.19: Duplex circular sequences correct errors from base dam-
age.
Pairs of consensus sequences representing multiple independently derived
copies of each strand in double-stranded input molecules were mapped to the
yeast genome, and the rates at which each possible type of mismatch between a
consensus base and the corresponding reference base occurred were calculated.
Each column shows mismatches of a particular type, with bars displaying the
mismatch rate (i.e. the fraction of all reference bases of one type misread as
another type) and numbers below showing the absolute number of mismatches.
Each consensus sequence was first treated as normal circle sequencing data,
ignoring strand information (blue). High rates of G→A/C→T mismatches are
observed, consistent with cytosine deamination in single strands previously ob-
served. Consensus sequences from each pair of strands were then combined to
form duplex consensus sequences (green). Every mismatch in an single strand’s
consensus sequence is flagged as artifactual by its strand partner, leaving no
high-quality duplex mismatches (green bars that would be next to each blue
bar if not zero, and green zeros in text below).
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2.3.7 Conclusion

In this chapter, we presented a new library preparation strategy called

circle sequencing for reducing error rates in high-throughput sequencing by

producing and sequencing tandemly linked repeats of every molecule in an

input library. We described the computational strategies used to process and

analyze data produced by this strategy, and benchmarked the performance of

circle sequencing by applying it to sequence genomic DNA from a clonal pop-

ulation of yeast. Circle sequencing achieves a dramatic reduction in sequenc-

ing error rates while offering substantial efficiency advantages over alternative

barcoding-based methods for performing error correction.

By pushing through the floor of sequencing error rates, library prepara-

tion strategies such as circle sequencing and barcoding methods have revealed

that single-stranded damage to input DNA templates represent the next hur-

dle that is preventing even lower error rates from being achieved. Schmitt

et al.’s duplex barcoding scheme overcomes this obstacle, but practical inef-

ficiencies in the scheme make it difficult to reliably produce large amounts of

error-corrected data with it. We presented a basic proof-of-concept that it

may be possible to incorporate Schmitt et al.’s key insight into circle sequenc-

ing by constructing concatamers containing multiple copies of each strand in

double-stranded input molecules. This could improve the error rate of cir-

cle sequencing further by protecting against errors caused by damaged bases

in starting templates while retaining the efficiency advantages that delivering

physically-linked copies of sequence information provides.
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Chapter 3

Local correlations in codon usage do not

support a model of tRNA recycling

3.1 Introduction

It has been proposed that patterns in the usage of synonymous codons

provide evidence that individual tRNA molecules are recycled through the ri-

bosome, translating several occurrences of the same amino acid before diffusing

away. The claimed informatic evidence is based on counting the frequency with

which pairs of synonymous codons are used at nearby occurrences of an amino

acid, as compared to the frequency expected if each codon were chosen inde-

pendently from a single genome-wide distribution. Here, we show that such

statistics simply measure variation in codon preferences across a genome and

do not provide specific evidence for tRNA recycling. An apparently striking

pattern observed in such statistics is a universal excess in pairs of occurrences

This chapter is based in part on work reported in J. A. Hussmann and W. H . Press,
“Local correlations in codon preferences do not support a model of tRNA recycling,” Cell
Reports, 8 (6), 1624–1629, 2014. JAH performed all computational analysis, and all authors
conceived and designed the analysis.
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of the same amino acid encoded by the same codon. We show that this pattern

is, by a straightforward mathematical argument, a necessary consequence of

the existence of any variation in codon preferences across a genome. As a sim-

ple negative control on the contribution of pressure to exploit tRNA recycling

on these signals, we examine local correlations in the usage of pairs of codons

that encode different, rather than identical, amino acids. Such correlations

cannot be caused by selection for tRNA recycling and therefore measure the

extent to which statistics of this kind are shaped by all other mechanisms

affecting codon usage. We find that these negative control signals are statisti-

cally as strong as the claimed evidence. We conclude that there is no specific

informatic evidence that tRNA recycling is a force shaping codon usage.

3.1.1 tRNA recycling hypothesis

Due to degeneracies in the genetic code, sets of synonymous codons

are translated into the same amino acid. Despite the fact that substitutions

between synonymous codons in a coding sequence do not change the amino

acid sequence of the translated protein, synonymous codons are not used with

equal frequencies in the genomes of many organisms, a phenomenon known

as codon usage bias[2, 99]. The extent and directions of codon usage biases

vary between organisms, between genes within an organism’s genome, and

within genes [88]. Many theories have been advanced that invoke the me-

chanics of the complex chain of processes that lead from packaged DNA to

translated protein to explain the observed trends, including, but not limited
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to, mutational bias[11], bias in repair mechanisms[26], selection for enhanced

translational elongation speed or translational accuracy via the coupling of

codon usage frequencies to tRNA abundance differentials [24, 65], selection to

enhance mRNA stability [53] or to minimize mRNA secondary structure in

the neighborhood of binding sites for the translation initiation complex [58],

and selection to maintain control over splicing [14]. The relative importance

of these mechanisms in shaping the structure of codon usage biases remains

poorly understood.

Just as existing biological knowledge can be used to make sense of pat-

terns in codon usage, the detection of patterns in codon usage across and

between genomes can in principle be used to make novel inferences about bio-

logical process. In a recent paper[13], Cannarozzi et al. make such an inference

about the dynamics of translation. They examine all coding sequences of the

genomes of several organisms and measure several related statistics which are

based on counting the frequency with which a given pair of codons is used to

encode pairs of occurrences of the same amino acid that are located close to

each other in a coding sequence. They observe that the same codon is used

for two nearby occurrences more often than would be expected if every codon

choice was drawn independently from a single genome-wide distribution. Fur-

thermore, they observe that nearby pairs consisting of two distinct codons

which occur more often than expected tend to be codons which are translated

by the same isoaccepting tRNA species. They interpret these results as ev-

idence for the intriguing hypothesis that consecutive codon choices are not
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made independently but instead have a tendency to use codons from the same

isoaccepting class in order allow a single tRNA molecule to translate multiple

codons before diffusing away from the ribosome. When making a novel infer-

ence such as this, care must be taken to disentangle other potential sources of

the observed supporting evidence. In particular, it is important to determine

whether the statistical evidence presented by Cannarozzi et al. offers specific

support for their proposed tRNA recycling hypothesis over other previously

established mechanisms influencing codon usage.

3.2 Results

3.2.1 Positive diagonal entries are a generic indicator of nonuni-
form codon preferences

The main line of Cannarozi et al.’s informatic evidence for the tRNA

recycling hypothesis consists of a set of statistics that we will call the local

covariances in codon preference relative to genome-wide preferences. To com-

pute these statistics, an ordered pair of codons translating the same amino acid

is selected. The locations of all occurrences of the amino acid in all coding se-

quences of a genome are extracted, and the number of times that a sequential

pair of occurrences are encoded by the pair of codons of interest is counted

(Figure 3.1A and 3.1B). The count recorded is then compared to the number

expected under a null model in which the codon used at each occurrence of the

amino acid is an independent draw from a genome-wide codon preference dis-

tribution for the amino acid, estimated by the genome-wide frequencies with
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which each codon is used (Figure 3.1C). An amino acid encoded by d synony-

mous codons has d2 possible ordered pairs of codons and therefore produces d2

of these statistics, which can be naturally arranged in a d× d matrix. Terms

on the diagonal of the matrix correspond to pairs consisting of repeated uses of

the same codon, while terms off of the diagonal correspond to pairs consisting

of two distinct codons. Cannarozi et al. compute this set of statistics for sev-

eral amino acids in Saccharomyces cerevisiae and find that diagonal terms are

universally positive, corresponding to more occurrences of pairs of the same

codon than expected under the null model. They interpret this observation as

evidence that successive codon choices are not made independently but instead

preferentially reuse the same codon.

The set of statistics considered do not provide specific support for this

interpretation. The statistics are unable to distinguish between a model of

codon usage in which the choices of codon used at consecutive occurrences of

an amino acid are not independent and a model in which consecutive choices

are conditionally independent given the location of the pair in the genome

but drawn from distributions whose parameters vary across the genome with

any spatial structure at scales longer than the distance between amino acid

occurrences but shorter than the entire genome.

To see this, consider an arbitrary amino acid translated by d synony-

mous codons and pick one of these codons. Let plocal be the location-specific

probability with which the codon is used. Suppose that plocal varies as a

function of location in the genome on scales longer than the typical distance
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Figure 3.1: Arbitrary codon pairs exhibit comparable local covariance
in usage to same-amino-acid pairs.
Case 1: For codons encoding the same amino acids (the cases considered by
Cannarozzi et al.), all sequential pairs of occurrences of an amino acid (in this
case, serine) are identified (A) and the pairs of codons used to encode each
pair of occurrences are counted (B). The total counts recorded over all coding
sequences are then compared to the counts expected under a null model to
produce fractional deviations of actual counts from expected counts (C).
Case 2: For codons encoding different amino acids, all ordered sequential pairs
of occurrences of an ordered pair of amino acids (in this case, isoleucine and
serine) are identified (D) and the pairs of codons used to encode each pair
of occurrences are counted (E). Fractional deviations of actual counts from
expected counts are produced as in the previous case (F).
Collectively, the first case makes up the block diagonal of Figure 3.3, and
the second case makes up the block off-diagonal portion of Figure 3.3 (G).
Deviations of comparable size are seen in (C) and (F).
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between occurrences of the amino acid, so that the values of plocal at the two

locations which make up a sequential pair of amino acid occurrences can be

viewed as two nearby samples of a locally approximately constant function.

Let ngenome be the number of sequential pairs of occurrences of the amino acid

in the genome, and let Egenome denote taking the expected value across all

such pairs. Then (neglecting edge effects stemming from the fact that the first

and last occurrence of an amino acid in each gene only participate in one pair,

and neglecting terms that become asymptotically negligible as the number of

total occurrences of the amino acid becomes large) a null model of independent

draws from a genome-wide codon preference distribution predicts that

ngenomeEgenome[plocal]2

pairs of the codon will be observed, while the actual number expected is given

by

ngenomeEgenome[p2
local].

The statistic of interest, the deviation of observed counts from the genome-

wide null model prediction, therefore has expected value

ngenome
(
Egenome[p2

local]− Egenome[plocal]2
)

and has a clear interpretation as a measure of the variance across the genome in

the local independent probability with which the codon is used. In particular,

the fact that this expression consists of the difference between the expected

value of the square of a function and the square of the expected value of the
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function means that it is guaranteed (by Jensen’s inequality) to be positive if

plocal is not simply constant across the genome. Intuitively, the application of

Jensen’s inequality tells us that while variation in plocal leads to the accumu-

lation of excess consecutive pairs of the codon in regions where plocal is higher

than its genome-wide average and the depletion of pairs in regions where plocal

is lower than its average, the nonlinearity (more specifically, the strict convex-

ity) of the function of plocal in question (namely, squaring) guarantees that the

gains will always more than offset the losses. The fact that universally positive

values of the statistics are observed on the diagonal of matrices is now seen

to be unremarkable. It is expected under any model of codon usage in which

codon preferences are not uniform across a genome.

Of course, codon preferences are not uniform across genomes. In partic-

ular, the existence of gene-specific codon preferences is a well studied and well

accepted (if not completely well understood) phenomenon [100, 120]. Cannar-

rozi et al. correctly identify the need to control for gene-specific codon prefer-

ences and correctly identify that shuffling the assignments of codon choices to

amino acid occurrences within each gene provides a way to do this. They do

not, however, carry out the computation of the expected numbers of pairs of

sequential occurrences of each amino acid encoded by each pair of codons un-

der such a gene-by-gene shuffle. The striking feature of their controls, which

compare their statistics computed on real data to statistics computed on a

single shuffle of the data, is not that some signal survives the shuffle but that

most of the signal does not.
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Replacing the values expected under a single genome-wide codon pref-

erence distribution null model with these gene-specific expected values in the

construction of the statistics of interest is a necessary first step in disentangling

a potential signature of tRNA recycling from other sources of codon preference

variation; as an immediate side effect, this replacement also allows an assess-

ment of the extent to which the magnitudes of the positive diagonal values

observed by Cannarozzi et al. in Saccharomyces cerevisiae are simply due to

gene-specific variation in codon preferences (Figure 3.2). To compute these

expectations, pick an arbitrary amino acid that is translated by d codons. Let

N be the number of genes in the genome, ng be the number of occurrences

of the amino acid in gene g, and cg,i be the number of occurrences of codon

i in gene g. What is the expected number of consecutive occurrences of the

pair of choices (i, j) in a synthetic assignment of codon choices to occurrences

produced by randomly shuffling the actual set of codon choices within each

gene? First note that for any gene g and pair of amino acid occurrences k and

k + 1,

Pshuffle[occurrence k is codon i and occurrence k + 1 is codon j]

=

{
cg,i
ng

cg,i−1

ng−1
if i = j

cg,i
ng

cg,j
ng−1

if i 6= j
.

(3.1)

Let 1
(i,j)
g,k be 1 if the kth pair of consecutive occurrences of the amino acid in

gene g (that is, occurrences k and k+1) consists of codon choices i and j, zero
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otherwise. Then

Eshuffle[number of pairs i, j] = Eshuffle

[
N∑
g=1

ng−1∑
k=1

1
(i,j)
g,k

]
(3.2)

=
N∑
g=1

ng−1∑
k=1

Eshuffle[1
(i,j)
g,k ] (3.3)

=

{ ∑N
g=1

∑ng−1
k=1

cg,i
ng

cg,i−1

ng−1
if i = j∑N

g=1

∑ng−1
k=1

cg,i
ng

cg,j
ng−1

if i 6= j
(3.4)

=

{ ∑N
g=1

cg,i(cg,i−1)

ng
if i = j∑N

g=1
cg,icg,j
ng

if i 6= j
. (3.5)

At first glance, it might seem like the fact that pairs overlap (that is, that

the identity of the second member of pair k is required to be the same as

the identity of the first member of pair k + 1) would make computing this

expectation more complicated, but the linearity of expectation prevents this

non-independence from being a problem.

With formulas to compute the expected number of pairs given gene-

specific codon preferences in hand, we see that fractional deviations of the

data over a gene-specific null model are substantially less extreme (Figure

3.2A) and less uniformly statistically significant (Figure 3.2B) than deviations

over a genome-wide model. In other words, almost all of the excess in us-

age of the consecutive pairs of the same codon is simply due to the fact that

codons are used with different rates in different genes. Having presented this

control, it should be noted that Cannarozzi et al.’s argument that “if the cor-

relation effect was simply due to the accumulation of frequent codons in genes

with biased codon composition, this effect should also be highest for frequent
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Figure 3.2: Most of Cannarozzi et al.’s signal is due to gene-specific
codon preferences.
(A) Fractional deviations of actual counts of concordant codon pairs (diago-
nal entries in matrices) from expected counts under null models of (i) a single
genome-wide codon preference distribution (magenta) or (ii) gene-by-gene dis-
tributions (green). Most of the strength of the signal present relative to a
genome-wide model disappears relative to a gene-by-gene model.
(B) Fractions of concordant codon pairs with statistically significant devia-
tions from expected counts under null models at Benjamini−Hochberg false
discovery rate of α = 0.05. P-values for each codon pair to input to the
Benjamini−Hochberg prescription were computed as (i) the fraction of 10,000
shuffles of codon assignments to amino acids within the entire genome (ma-
genta) or (ii) fraction of 10,000 shuffles of codon assignments to amino acids
within each gene (green) for which the shuffled term was more extreme rela-
tive to the appropriate expected value than that of the actual data. Much of
the statistical significance present relative to a genome-wide model disappears
relative to a gene-by-gene model.
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codons and not observed for rare codons” misstates the effect that local bias

in codon composition has on correlation effects. The effect will be highest for

codons whose location-specific frequency exhibits the most variation around

its average frequency in the genome, not those whose average frequency is

highest.

3.2.2 Signal that survives gene-by-gene shuffling is also nonspecific

The existence of statistically significant (but substantially reduced)

residual positive diagonal values after replacing Cannarozzi et al.’s genome-

wide null model with a gene-specific null model is no more specific evidence for

tRNA recycling than the original signal was. By repeating the same argument

as above with the phrase “gene-specific” substituted for “genome-wide”, the

expected value of the modified statistic is approximately (up to edge effects)

∑
genes

ngene
(
Egene[p2

local]− Egene[plocal]2
)
,

where ngene is the number of pairs of occurrences in a given gene, and pos-

itive values of the modified statistic are generic evidence for the existence

of structure in codon preferences at scales larger than the distance between

occurrences but smaller than genes.

The existence of intragenic codon preference structure in many organ-

isms is well established [93], and several models of sources for such structure

have been proposed [37, 111]. (See section 3.2.3 below for a demonstration of a

particularly simple source of intragenic structure in human coding sequences.)
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A simple observation allows us to assess the amount of sub-gene-scale structure

in codon preference that is due to sources that are not tRNA recycling. The

set of statistics considered by Cannarozzi et al. can be extended in a natural

way to consider pairs of codons encoding distinct amino acids. To construct

this generalized set of statistics, label the 61 non-stop codons and select an

arbitrary ordered pair (i, j). Let ai be the amino acid translated by the first

codon and aj be the amino acid translated by the second codon. In each cod-

ing sequence in the genome, identify every sequential pair of occurrences of

ai and aj (that is, a pair such that the occurrence of ai is before that of aj

and there are no other occurrences of either amino acid in between the two)

(Figure 3.1D). Record the number of such pairs which are encoded by codons

i and j (Figure 3.1E). The count produced can then be compared to the num-

ber expected under gene-specific shuffling of codon assignments to amino acid

occurrences (Figure 3.1F).

To compute these expected values, consider codons i and j encoding

amino acids ai and aj with ai 6= aj. Let n
(ai)
g be the number of occurrences of

ai, n
(aj)
g be the number of occurrences of aj, let n

(ai,aj)
g be the number of pairs

of occurrences of ai followed at some distance by aj such that there is no other

occurrence of ai or aj between the two in gene g, and let 1
(i,j)
g,k be one if the
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kth such pair in gene g consists of codons i and j and zero otherwise. Then

Eshuffle[number of pairs i, j] = Eshuffle

 N∑
g=1

n
(ai,aj)
g∑
k=1

1
(i,j)
g,k

 (3.6)

=
N∑
g=1

n
(ai,aj)
g∑
k=1

Eshuffle[1
(i,j)
g,k ] (3.7)

=
N∑
g=1

n(ai,aj)
g

cg,i

n
(ai)
g

cg,j

n
(aj)
g

. (3.8)

The statistics produced by comparing the observed counts for all pos-

sible pairs of codons to these expected values can be naturally arranged in a

61 × 61 matrix (Figure 3.1G). If codons are grouped according to the amino

acid they translate, the original subset of codon pairs considered by Cannar-

rozi et al. (the special cases for which ai = aj) occupy blocks on the diagonal.

Significantly non-zero values for pairs of codons that do not encode the same

amino acid cannot be caused by selective pressure for tRNA recycling because

such pairs are neither translated by the same isoaccepting tRNA species nor

forced to offset a potentially disproportionate share of expected counts taken

up a pair that is. Such values are, however, easily explained by models of

location-specific variation in codon preferences. Following a similar framework

to arguments made above, if p
(i)
local and p

(j)
local are the local probabilities with

which codons i and j, respectively, are used as a function of location in the

genome, the (i, j)th entry in the matrix has an expected value approximately
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equal to

∑
genes

n(ai,aj)
gene

(
Egene[p(i)

localp
(j)
local]− Egene[p(i)

local]Egene[p
(j)
local]

)
,

where n
(ai,aj)
gene is the number of sequential pairs of occurrences of ai and aj in a

given gene. The motivation for calling this set of statistics the local covariance

in codon preference is now clear.

Positive values of such an off-diagonal term indicate that regions in

which codon i is used more often than its gene-wide frequency tend to overlap

with regions in which codon j is used more often than its gene-wide frequency.

Of course, this argument is unchanged if codons i and j are distinct but encode

the same amino acid. As Cannarrozi et al. observe, in this case, positive

values tend to be i, j pairs which are translated by the same tRNA species, an

observation that survives the switch to a gene-specific null model. While this

signature could be caused by tRNA recycling, it could also simply indicate that

local codon preferences are coupled, by selection, to the identities of tRNA

species. For example, translation may be locally slowed down in portions

of genes to prevent ribosomal “traffic jams” [111] or to allow time for co-

translational folding of the nascent polypeptide [57] via the usage of codons

translated by scarce tRNA species. Such mechanisms would create positive

covariances in location-specific preferences for codons translated by a given

tRNA.

We now establish the plausibility of the second interpretation. Examin-

ing the strength and significance of local covariances between pairs of codons
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translating distinct amino acids, which can be caused by local independent

codon preference variation but not by tRNA recycling, and comparing these

to pairs translating the same amino acid allows us to determine if tRNA re-

cycling is plausibly a major influence on codon usage. The 61 × 61 matrix

of fractional deviations for all codon pairs in S. cerevisiae shows widespread

structure (Figure 3.3). In particular, the block-diagonal segment correspond-

ing to pairs encoding the same amino acid is not a visually or statistically

distinct subset of the entire matrix. The distributions of fractional deviations

and statistical significances corresponding to terms inside of the block-diagonal

subset but off of the main diagonal and those corresponding to terms outside of

the block-diagonal subset are strikingly qualitatively similar (Figure 3.4A and

3.4B). Comparable fractions of terms from each class are indisputably statis-

tically significant. The largest positive and negative values for pairs encoding

distinct amino acids are as extreme as those for pairs of distinct codons en-

coding the same amino acid. Taken together, these observations suggest that

values in the diagonal blocks can be explained entirely by local preference

structure induced by non-tRNA recycling mechanisms and therefore cannot

be taken as specific evidence that tRNA recycling is a major force shaping

codon choices.
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Figure 3.3: Complete data for the framework shown in Figure 3.1G,
generated according to the process outlined in Figure 3.1.
Fractional deviations of counts of actual usage of codon pairs in all coding
sequences of S. cerevisiae with respect to counts expected under a shuffling of
assignments of codons to amino acids within each gene. The thickly bordered
diagonal blocks contain those pairs of codons that encode the same amino acid.
These diagonal blocks are not a visually distinct subset of the full matrix. (See
Figure 3.4.)
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Figure 3.4: Comparison of signals observed for codon pairs encoding
the same amino acid and codon pairs encoding different amino acids.
(A) Distributions of fractional deviations shown in Figure 3.3 for (i) terms
inside of the block diagonal, representing pairs of codons encoding the same
amino acid (brown) and (ii) terms outside of the block diagonal, representing
pairs of codons encoding different amino acids (cyan). (Overlapping bars show
as darker green.) The distributions of signal strengths for these two classes of
codon pairs are strikingly similar.
(B) Empirical CDFs of p-values for the fractional deviations in Figure 3 for
(i) terms inside of the block diagonal but off of the main diagonal (brown) and
(ii) terms outside of the block diagonal (cyan). P-values for each term were
computed as the fraction of 10,000 shuffles of codon assignments to amino
acids within each gene for which the shuffled term was more extreme relative
to the expected value than that of the actual data.
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3.2.3 Pattern in Homo sapiens coding sequences confirms that
codon preference correlations have a diverse set of causal
mechanisms.

As a postscript to these results, we repeated the same analysis as above

on representative transcript models for every coding sequence in Homo sapi-

ens. We were surprised to see that the local codon preference covariance

matrix for H. sapiens exhibits a distinctive checkerboard-like pattern of al-

ternating red and blue (Figure 3.5). Reexamining Figure 3.3, this pattern

is not present in S. cerevisiae. The source of this puzzling pattern became

clear when we noticed that because the different codons for each amino acid

were ordered lexicographically with a nucleotide order of T-C-A-G along the

rows and columns, the change in codon that happens when moving between

almost any pair of adjacent entries in the matrix involves switching at least

one nucleotide from an A or T to a C or G (or vice versa). In light of this, the

checkerboard pattern indirectly suggests that for any given pair of codons, the

total AT or CG content of each codon in the pair influences whether the pair

covaries positively or negatively with each other.

To test this theory, we permuted the rows and columns of the matrix

in order to group codons together by the total number of Cs and Gs that

they contain, breaking the original grouping of codons together by the amino

acid that they encoded. This new clustering produces a striking block pattern

(Figure 3.6). Blocks in the upper left and lower right corners, which consist

of covariances between codon pairs containing no GCs or consisting entirely

of GCs, respectively, are almost exclusively positive. Blocks in the lower left
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Figure 3.5: Local covariances in codon preferences in H. sapiens with
codons grouped by amino acid
Fractional deviations of counts of actual usage of codon pairs in representative
transcript models of each coding sequence of H. sapiens with respect to counts
expected under a shuffling of assignments of codons to amino acids within
each gene. A distinctive checkerboard pattern of alternating red and blue is
apparent.
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and upper right corner, which contain covariance between codon pairs with

opposite CG contents, are almost exclusively negative. These patterns suggest

that in human coding sequences, covariances in codon usage within genes are

mainly an indirect reflection of patterns in nucleotide composition. Performing

the same regrouping in S. cerevisiae does not exhibit the same block pattern

(data not shown). This provides further evidence that values of covariances

are shaped predominantly by diverse, species-specific mechanisms rather than

by a universal preference for tRNA recycling.

3.3 Conclusion

In this chapter, we presented mathematical arguments and statistical

controls suggesting that observed patterns in the use of synonymous codons at

nearby occurrences of the same amino acid cannot be taken as specific support

for the hypothesis that ribosomes move more quickly along coding sequences

if individual tRNA molecules are recycled through ribosomes multiples times.

This chapter has represented a minor detour from the overall theme of the

thesis, in the sense that there was no high-throughput sequencing data in-

volved in it at all! Instead, it served to introduce the topics of synonymous

codon usage and translation dynamics, and to demonstrate the subtleties that

can arise when attempting to use evidence left behind by evolution in the

form of codon usage patterns to make indirect inferences about the speed of

translation in vivo. In this sense, it can be viewed as an extended motivat-

ing example for why the ability to directly and accurately measure how long
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Figure 3.6: Local covariances in codon preferences in H. sapiens with
codons grouped by GC content
The same covariance values as in Figure 3.5 are shown, but codons are grouped
along each axis by the total number of Gs and Cs they contain, rather than
by amino acid. A general trend of positive covariance between codons with
similar GC content and negative covariance between codons with dissimilar
GC content is observed.
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ribosomes spend translating each codon on transcriptome-wide scales under

natural conditions would be a useful thing to have. The use of sequencing

to directly experimentally explore these topics will be the subject of the next

chapter.
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Chapter 4

Understanding biases in ribosome profiling

experiments reveals signatures of translation

dynamics

4.1 Introduction

Ribosome profiling is an experimental technique in which high-throughput

sequencing is used to produces snapshots of the locations of actively translating

ribosomes on messenger RNAs. These snapshots can be used to make infer-

ences about translation dynamics. Recent ribosome profiling studies in yeast,

however, have reached contradictory conclusions regarding the average trans-

lation rate of each codon. Some experiments have used cycloheximide (CHX)

to stabilize ribosomes before measuring their positions, and these studies all

counterintuitively report a weak negative correlation between the translation

rate of a codon and the abundance of its cognate tRNA. In contrast, some

experiments performed without CHX report strong positive correlations. To

explain this contradiction, we identify unexpected patterns in ribosome den-

sity downstream of each type of codon in experiments that use CHX. These

patterns are evidence that elongation continues to occur in the presence of

CHX but with dramatically altered codon-specific elongation rates. The mea-

sured positions of ribosomes in these experiments therefore do not reflect the
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amounts of time ribosomes spend at each position in vivo. These results sug-

gest that conclusions from experiments using CHX may need reexamination.

In particular, we show that in all such experiments, codons decoded by less

abundant tRNAs were in fact being translated more slowly before the addition

of CHX disrupted these dynamics.

4.1.1 Ribosome profiling

Translation is the process by which the assembly of a protein is di-

rected by the sequence of codons in a messenger RNA. Ribosomes mediate

this conversion of information from codons into amino acids through the se-

quential binding of tRNAs [107]. During the incorporation of each successive

amino acid, there are several stages at which the identity of the codon being

translated may potentially influence the speed with which a ribosome advances

along a coding sequence. When a codon is presented in the A-site of a ribo-

some, an appropriate tRNA must diffuse into the A-site and successfully form

a codon-anticodon base pairing interaction [34, 52]. tRNAs decoding different

codons are expressed at different abundances [22, 111], suggesting that ribo-

somes could spend longer waiting for less abundant tRNAs to arrive [113].

Because translation is accomplished with fewer tRNA identities than there

are codon identities, some codon-anticodon interactions involve non-Watson-

Crick base-pairings [35, 86]. These so-called wobble pairings are thought to

modulate the speed of decoding [51, 67, 106, 119]. Once a tRNA has arrived

and base-paired, the speed of peptide bond formation between the C-terminal
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amino acid in the nascent chain and an incoming amino acid may be influenced

by chemical properties of these amino acids [3]. The relative contributions of

these effects to overall rates of translation remain poorly understood.

Because the genetic code that governs the process of translation maps

61 codon identities to only 20 standard amino acids, multiple synonymous

codons can be used to encode most amino acids. There is a rich body of

theoretical work on the role of translation speed as a selective force shaping

synonymous codon usage [88], but the ability to directly measure the speed

with which each codon is translated in vivo in order to test these theories has

historically been lacking. The recent development of ribosome profiling, the

massively parallel sequencing of footprints that actively translating ribosomes

protect from nuclease digestion on messenger RNAs [43–46], presents excit-

ing opportunities to close this gap. Ideally, the millions of sequencing reads

produced by a ribosome profiling experiment are snapshots of translation rep-

resenting samples drawn from the steady state distribution of ribosomes across

all coding sequences. The statistical properties of these snapshots can in the-

ory be used to measure the relative speed with which each codon position is

translated: the more often ribosomes are observed at a position, the longer

ribosomes are inferred to spend at that position.

In practice, ribosome profiling studies in Saccharomyces cerevisiae us-

ing different experimental protocols have reached contradictory conclusions

about the average decoding times of codon identities. Because yeast rapidly

regulate translation when stressed and ribosomes cannot be instantaneously

113



harvested from cells, the original ribosome profiling protocol of Ingolia et

al. [46] pretreats cells with cycloheximide (CHX) for several minutes to sta-

bilize ribosomes in place before the harvesting process begins. CHX is a

small-molecule translation inhibitor that has been a staple of experimental

approaches to the study of translation for decades. However, the exact mech-

anism of this inhibition is not completely understood, with recent studies sug-

gesting that CHX binds to a ribosome’s E-site along with a deacylated tRNA

to block further translocation [20, 97]. The majority of the rapidly growing

body of ribosome profiling experiments in yeast have followed this original

CHX-pretreatment protocol [3, 4, 9, 25, 32, 64, 77, 81, 121]. Several groups have

applied a variety of conceptually similar computational methods to the data

produced by these experiments to infer the average speed with which each

codon identity is translated. Counterintuitively, these groups have found that,

on the whole, codons decoded by rare tRNAs appear to be translated faster

than those decoded by more abundant tRNAs [16, 92]. Different theories have

been advanced to contextualize these unexpected results, hypothesizing that

the measured elongation rates reflect a co-evolved balance between codon us-

age and tRNA abundances [92], or that translation dynamics are dominated

by interactions involving the nascent chain rather than the actual decoding

process [16].

More recently, however, several groups have produced data using an op-

timized harvesting and flash-freezing protocol that allows CHX pretreatment

to be omitted [30, 31, 39, 64, 81, 89]. This omission was motivated by obser-

114



vations that treatment with CHX affects several high-level characteristics of

footprinting data, including the distribution of lengths of nuclease-protected

fragments in mammalian cells [47] and the amount of enrichment in ribosome

density at the 5’ end of coding sequences in yeast [31]. In contrast to data

produced using CHX pretreatment, several studies using this alternative pro-

tocol have reported that non-optimal codons are in fact translated more slowly

[30, 115]. The source of this discrepancy between the statistical properties of

measured ribosome positions with and without CHX pretreatment has been

unclear, leading to uncertainty as to which measurements correspond to actual

properties of in vivo translation dynamics.

Here, we present analysis of data from a large body of ribosome pro-

filing studies to resolve these contradictory results. We find consistent differ-

ences between experiments performed with and without CHX pretreatment

in how often ribosomes are measured with specific codon identities positioned

in their tRNA binding sites. We also find unexpected patterns in how often

ribosomes are found downstream of specific codon identities in experiments

using CHX pretreatment. Together, these observations suggest that transla-

tion elongation continues for many cycles after the introduction of CHX, but

that the amount of time ribosomes spend translating each codon under these

perturbed conditions is quite different from the unperturbed dynamics.
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4.2 Results

4.2.1 Treatment with cycloheximide consistently changes enrich-
ments of codon identities at ribosomal tRNA binding sites

To characterize differences in the measured positions of ribosomes when

cells are pretreated with CHX and when they are not, we compared the relative

amount of time ribosomes spend at each codon position in data from many

different ribosome profiling experiments. For each experiment, we mapped

footprint sequencing reads to yeast coding sequences and assigned each read

to the codon position in the A-site of the associated ribosome (the sixth codon

from the 5’ end in a canonical 28nt footprint [46]). The raw count of reads

assigned to each codon position is affected by levels of transcription and of

translation initiation as well as the average speed with which the codon po-

sition is translated. As a simple control for these expression level effects, for

each coding sequence, we divided the read count at each codon position by

the average across the coding sequence, producing relative enrichment values

for each codon position. To measure the average relative amount of time a

codon identity spends in the A-site of a ribosome each time it is translated, we

computed the mean of these relative enrichment values at all occurrences of

each codon across all yeast coding sequences (figure 4.2A). If the mean relative

enrichment of a codon is higher than 1, translation of the codon is inferred

to be slower than the average speed of its surroundings. Conversely, a mean

relative enrichment value lower than 1 indicates that translation of a codon is

faster than its surroundings.
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This straightforward computation ignores the potentially confounding

influence of patterns in amino acid composition and synonymous codon usage

across different genes [30, 89]. To evaluate the impact of ignoring these effects,

we considered a more sophisticated process for inferring relative elongation

times that takes the full sequence of codons of each gene into account; see sec-

tion 4.3.4 for details. Mean relative enrichment values for each codon identity

produced by the naive computation agreed almost perfectly with maximum

likelihood estimates of mean relative elongation times from this more princi-

pled inference process (figure 4.1), suggesting that these particular biases are

negligible for our purposes.
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Figure 4.1: Biases introduced by failing to account for the exact codon
composition of each gene are a minor effect in A-site occupancy
estimates.
In data from an experiment by Weinberg [115], maximum likelihood mean
relative elongation times for each codon identity computed using a model that
accounts for the full codon sequence of each gene are virtually identical to
mean relative enrichments at the A-site for each codon identity. Because the
maximum likelihood values are only determined up to an arbitrary scaling
factor, they are scaled so that AAA = 1. For this comparison, mean relative
enrichment values are normalized in the same way.
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Figure 4.2: Experiments with and without CHX report different A-
site occupancies.
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Figure 4.2 (Continued): Experiments with and without CHX report
different A-site occupancies.
(A) To measure how long a ribosome spends on average with each codon
identity in its A-site, footprint sequencing reads are mapped to the yeast tran-
scriptome and assigned to the codon position that the A-site of the ribosome
was positioned over. For each coding sequence, read counts at each position
are divided by the average count across the coding sequence to produce relative
enrichments. The A-site occupancy of each codon identity (in this example,
ACT) is computed by averaging the relative enrichment at all occurrences of
the codon identity across all coding sequences.
(B) Comparisons of measured A-site occupancies of all 61 non-stop codons
between different experiments. A pair of experiments using CHX (upper left)
and a pair of experiments done without CHX (lower right) report A-site oc-
cupancies with strong positive Pearson correlations, but these two internally
consistent sets of values are strikingly different from each other (upper right).
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We compared the mean relative A-site enrichments for all 61 non-stop

codons between the original CHX-pretreatment data of Ingolia [46], an ex-

periment we performed using the same CHX-pretreatment protocol, and data

from experiments without CHX pretreatment by Gerashchenko [31] and by

Weinberg [115] (figure 4.2B). A-site occupancies are strongly positively cor-

related between experiments that use CHX pretreatment (upper left panel)

and between experiments that do not (lower right panel). The two sets of

values reproducibly reported by each experimental protocol are inconsistent

with each other, however, with a moderate negative correlation between them

(upper right panel). To test the generality of these comparisons, we computed

Pearson correlations between the A-site occupancies in representative experi-

ments from many different studies in yeast and performed unsupervised hier-

archical clustering on the resulting matrix of correlation values (figure 4.2B).

Experiments with and without CHX pretreatment separate into two distinct

clusters, confirming that the two experimental conditions produce two repro-

ducible but different pictures of translation dynamics. We note that somewhat

greater variability is observed between subclusters of the experiments without

CHX. A subset of these experiments correlate weakly positively, rather than

weakly negatively, with the CHX experiments; see discussion in section 4.2.8

below.

The computation of mean relative enrichment at the A-site described

above can be naturally generalized to measure the impact on elongation times

of the codon identity situated in the P- or E-sites of ribosomes. We computed
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Figure 4.3: Hierarchical clustering of A-site occupancies separates ex-
periments by protocol.
Pearson correlations of measured A-site occupancies between representative
experiments from many different studies in yeast, grouped by hierarchical
clustering. Clustering separates experiments using the standard CHX pre-
treatment protocol (labeled in orange) from experiments done without CHX
pretreatment (labeled in purple), confirming the generality of the conclusion in
Figure 4.2B. Darker labels of each color correspond to those samples compared
in (B). Clusterings were computed via UPGMA using Euclidean distances.
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the average P- or E- site occupancies of a codon identity by taking the mean

of the relative enrichment values at all positions one codon (P-site) or two

codons (E-site) downstream of an occurrence of the codon identity (figure 4.4A

and 4.5A). Clustering the same set of experiments by P-site occupancy values

recapitulates the groupings produced by A-site occupancies almost identically

(figure 4.4). Clustering by E-site occupancies also separates experiments with

and without CHX pretreatment, but there is less dynamic range in the E-site

occupancy levels of different codon identities (figure 4.5B) and less consistency

within experimental condition (figure 4.5C) compared to the A- and P-sites.

4.2.2 CHX-induced changes in ribosomal A- and P-site enrich-
ments are concentration dependent

The fact that tRNA binding site enrichment values from experiments

with and without CHX pretreatment separate into two clusters represents two

incompatible claims about how long ribosomes spend translating each codon

identity. To test how well each of these two apparent phenotypes agreed with

intuitive expectations about elongation times, for each experiment, we com-

puted the Spearman rank correlation between each codon identity’s mean rel-

ative A-site enrichment and the inverse of its tRNA adaptation index (tAI)

[23, 111]. The tAI of each codon identity is the weighted sum of the genomic

copy numbers of the different tRNA genes that can decode the codon identity,

with empirically determined weights penalizing wobble base pairings. This

calculation quantifies the expectation that tRNAs expressed at lower abun-

dances or that involve non-standard base pairing in their codon-anticodon
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Figure 4.4: Comparisons of P-site occupancies between experiments.
(A) To measure how frequently ribosomes are observed with a particular codon
identity (in this example, ACT) in the P-site, marginalizing over all other
sequence features, the mean of the relative enrichments at all codon positions
one codon downstream of an occurrence of the codon identity is computed.
Panels (B) and (C) are constructed as in figures 4.2 and 4.3, respectively,
but report P-site enrichments. Clustering by P-site occupancy separates CHX
(orange) from no-CHX (purple) experiments, but there is substantially less
dynamic range in the P-site occupancies of different codon identities in no-
CHX experiments than in CHX experiments. Relative P-site occupancies in
no-CHX experiments are tightly grouped around one, with the sole exception
of CGA, which is consistently a high occupancy outlier.
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Figure 4.5: Comparisons of E-site occupancies between experiments.
(A) To measure how frequently ribosomes are observed with a particular codon
identity in the E-site (in this example, ACT), the mean of the relative enrich-
ments at all codon positions two codons downstream of an occurrence of the
codon identity is computed.
Panels (B) and (C) are constructed as in figures 4.2 and 4.3, respectively, but
report E-site enrichments. E-site occupancies cluster by experimental condi-
tion but have have little dynamic range in either experimental condition and
less coherence within experimental condition compared to the A- and P-sites.
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interaction should require longer to translate. Consistent with previous re-

ports [3, 16, 92, 121], all CHX experiments report weak to moderate negative

correlations (figure 4.3C, orange labels), representing apparent translation dy-

namics in which less abundant tRNAs are actually translated faster. Experi-

ments without CHX, on the other hand, report positive correlations of varying

magnitude (figure 4.3C, 0x Gerashchenko NAR points and purple labels). Ex-

periments by Pop [89], Lareau [64], Nedialkova [81], Guydosh [39] and Gardin

[30] produce weak to moderate correlations, but experiments by Gerashchenko

[31], Jan [50], Williams [117], and Weinberg [115] produce fairly strong and

highly statistically significant correlations.

Serendipitously, a series of experiments by Gerashchenko[31] performed

to measure the effect of CHX concentration on the observed ramp in ribo-

some density at the 5’ end of coding sequences provide a way to confirm that

CHX is directly responsible for these contradictory results. Gerashchenko

produced datasets using pretreatment with a gradient of seven different CHX

concentrations (0x, 1/64x, 1/16x, 1/4x, 1x, 8x, and 100x, expressed in mul-

tiples of the original protocol’s concentration of 100 µg/ml) for two different

cellular conditions (unstressed and oxidatively stressed cells), and using two

different concentrations (0x and 1x) for heat shocked cells. Intriguingly, the

rank correlation of A-site enrichment with 1 / tAI in these experiments moves

smoothly from moderately negative with the highest CHX concentration to

strongly positive with no CHX across each sets of samples (figure 4.3C), with

only one sample (1/16x unstressed) deviating from perfect monotonicity. This
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Figure 4.6: Rank correlation of A-site occupanices with 1 / tAI is
disrupted by CHX.
Spearman rank correlations of codon identities’ A-site occupancies with the
inverse of tRNA adaption index (tAI) in different experiments. A positive
correlation represents translation dynamics in which codons decoded by less
abundant tRNAs take longer to translate, while a negative correlation implies
that codons decoded by less abundant tRNAs are counter-intuitively faster to
translate. Experiments using the standard CHX pretreatment protocol report
a negative correlation, experiments done without CHX pretreatment report a
positive correlation, and three sets of experiments across a gradient of CHX
concentrations produced by Gerashchenko[31] each interpolate between these
two phenotypes.
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concentration-dependence is a strong confirmation that CHX systematically

shifts statistical properties of where ribosomes are measured.

To further explore the effect of CHX on A-site occupancies, we plotted

the movement of the mean relative A-site enrichment of each codon identity

across the concentration gradient. Figure 4.7 shows data from the oxidatively

stressed set of samples and figure 4.8 shows data from all three sets. Strikingly,

a set of the codons with the highest enrichments (that is, the codons that are

slowest to translate) when there is no CHX undergo consistent, gradual deple-

tion with increasing concentration until they become among the fastest. Two

prominent examples are CGA and CGG, codons encoding arginine. Mean rel-

ative enrichment at CGA codons is approximately four with no CHX, but this

steadily decreases to a final value of less than 1/2 at the highest CHX con-

centration. CGA is translated by a tRNA identity with a moderate genomic

copy number. However, its first anti-codon nucleotide is postranscriptionally

modified to an inosine, making it the only codon in yeast that is decoded

exclusively by an I-A wobble pairing [86]. Several studies have demonstrated

that this leads to substantial translational pausing at occurrences of CGAs,

particularly at CGA-CGA dicodons [67, 85, 119]. CGG, which is decoded by

a tRNA with only a single genomic copy and therefore also expected to be

slowly translated, undergoes an even larger shift from apparently slow with

no CHX to apparently fast with high CHX concentration. For both codons, a

CHX-concentration-dependent, and therefore almost certainly CHX-mediated,

mechanism drives measured translation speeds away from their intuitively ex-
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pected values.

We also examined changes in occupancy at the P- and E-sites across

the concentration gradient (figure 4.8). A smaller number of codons undergo

substantial changes in mean relative P-site enrichment, with the dominant

effect being a dramatic reduction in CGA enrichment with increasing CHX

concentration. Compared to the A- and P-sites, there is less concentration-

linked change in occupancy at the E-site.

4.2.3 Experiments using CHX exhibit consistent patterns in ribo-
some density downstream of different codon identities

The tendency for ribosomes to be found at any particular offset up-

stream or downstream of a particular codon identity can be measured by com-

puting the mean of the relative enrichments at all codon positions which are

located exactly that offset away from an occurrence of that codon identity.

The A-, P-, and E-site occupancies discussed above are the special cases of

offsets of 0, +1 and +2 downstream, respectively, but these computations can

be generalized to offsets arbitrarily removed from the codon identity of inter-

est. We computed mean enrichment values for a wide range of offsets around

each codon identity in data from our (CHX pretreatment) experiment. Al-

though there is no a priori biological reason to expect mean enrichments to

deviate substantially from one at offsets that are far removed from tRNA bind-

ing sites, we unexpectedly observed prominent peaks and dips in enrichments

downstream of many codon identities. Figure 4.9B shows enrichment profiles
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Figure 4.7: CHX treatment affects A-site occupancies in a coherent
concentration-dependent manner.
Columns correspond to a series of experiments by Gerashchenko [31] using
a gradient of concentrations of CHX, starting from no CHX on the far left
and increasing to 100 times the standard concentration on the far right. Each
column plots the measured A-site occupancies of all 61 non-stop codons for
that concentration on a log scale. The width of the line connecting each codon
identity across concentrations is scaled by the codon’s net change from no
CHX to 100x CHX. The ten codon identities with the largest net changes
are labeled. Most notably, the codon identities with the highest enrichments
in the experiment with no CHX undergo dramatic, concentration-dependent
depletions over the course of the gradient.
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Figure 4.8: A-, P-, and E-site occupancy changes across CHX con-
centration gradients.
Each panel is constructed as in figure 4.7. Each row reports occupancies of
a different tRNA binding site (top, A-site; middle, P-site; bottom, E-site).
Each column reports occupancies for samples from Gerashchenko [31] under
different conditions (left, unstressed; middle, oxidatively stressed; right, heat
shock).
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around codon identities encoding arginine and figure 4.10 shows enrichment

profiles around codon identities for several other individual amino acids.
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Figure 4.9: Experiments using CHX exhibit patterns in ribosome den-
sity downstream of different codon identities.
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Figure 4.9 (Continued): Experiments using CHX exhibit patterns in
ribosome density downstream of different codon identities.
(A) To measure how frequently ribosomes are observed with their A-site posi-
tioned at a particular offset upstream or downstream of a given codon identity
(for example, 7 codons downstream of ACT, like the boxed footprint sequence
on the top line), relative enrichments at each position are first calculated as
in figure 4.3A. The enrichment values at all positions located exactly 7 codons
downstream of an ACT (such as the bolded value) across all coding sequences
are then averaged.
(B) Profiles of mean relative enrichments at a range of offsets around all
six arginine codons in our CHX-pretreatment experiment. Grey vertical lines
mark the boundaries of a canonical 28 nt footprint, and red, blue, and green
vertical lines (corresponding to offsets of 0, +1, and +2) mark the A-, P-, and
E-sites. Unexpected peaks of enrichment at downstream offsets outside of the
grey lines are observed. The magnitudes of peaks vary substantially between
different codon identities encoding the same amino acid, but the horizontal
extents of peaks are roughly the same across all codon identities.
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After observing these peaks in our data, we examined data from many

other experiments in yeast for evidence of similar peaks. Peaks are ubiquitous

in data from experiments using CHX pretreatment (blue, green, and purple

lines in Figures 4.11 and 4.14), but are almost entirely absent in data from

experiments that do not use CHX pretreatment (Figure 4.13, and red lines

in Figures 4.11 and 4.14, but see discussion of Pop et al. data below). For

data from a particular experiment, the peaks corresponding to different codon

identities occupy roughly the same range of offsets downstream (Figures 4.9B

and 4.10), but across experiments carried out by different groups, the locations

and shapes of the set of peaks change considerably (figure 4.11). The centers

of peaks vary from as close as ∼10 codons downstream in our data to as far

away as ∼50 codons downstream in data from McManus [77], with other CHX

experiments densely populating the range of offsets between these observed

extremes. Peaks become broader in width and smaller in maximum magnitude

the further downstream they are located.

To test if CHX treatment had a concentration-dependent effect on the

locations and shapes of these peaks, we again turned to data from the CHX

concentration gradient experiments of Gerashchenko. Figure 4.14 shows en-

richment profiles downstream of CGA in the oxidatively stressed series of sam-

ples. Peaks were absent in the samples with no CHX and minimal in the

samples with concentrations below 1/4x the standard concentration (with the

notable exception of unstressed 1/16x, which is also a clear outlier in figures

4.3C and 4.8). For samples with concentrations greater than or equal to 1x,
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Figure 4.10: Enrichment profiles around codons for different amino
acids in our CHX-pretreatment experiment.
Each panel is constructed as in figure 4.9B but shows codons encoding a dif-
ferent amino acid. Several amino acids show substantial variation in the mag-
nitude and direction of downstream peaks between different codons.
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Figure 4.11: Locations of downstream waves vary between experi-
ments from different studies.
Profiles of mean relative enrichments around a single codon identity (CGA)
in experiments from different studies. There is no downstream peak in the
no-CHX experiment of Weinberg et al. (red), but downstream peaks are ubiq-
uitous in experiments using CHX (all other colors). Peaks are centered at a
wide range of different offsets in CHX experiments by different groups and
become broader and lower when located farther downstream.
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Figure 4.12: Downstream peaks in representative experiments using
CHX pretreatment from additional studies.
Each panel shows enrichment profiles around all 61 non-stop codons for an
experiment using CHX pretreatment from a different study, with CGA high-
lighted in red. Data sources are given in 4.24. Additional experiments confirm
that clear downstream peaks are a ubiquitous feature of CHX-pretreatment,
but that the exact range of offsets occupied by the peaks varies considerably
between experiments.
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Figure 4.13: Downstream peaks for representative samples from ad-
ditional no-CHX experiments.
Figure is constructed as in figure 4.12 but panels shows experiments performed
without CHX pretreatment from different studies. There are no appreciable
downstream peaks in any such experiment. In the two experiments shown
here that correspond to rows in Figure 4.3 that correlate less stongly with
the main cluster of no-CHX experiments (Gerashchenko NAR unstressed and
Lareau), however, a slight downstream shift in the CGA profiles can be seen.
See section 4.2.8 below for a discussion of this point.
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for which clear peaks were observed, peaks are located less far downstream

and become narrower and taller as CHX concentration increases (figure 4.14).

Other studies[16, 17] have hypothesized that interactions between re-

cently incorporated amino acids and the ribosome exit tunnel lead to slower

ribosome movement downstream of occurrences of certain amino acids. There

are two lines of evidence that the downstream peaks observed here are not sim-

ply the result of these effects. First, within a single sample, the magnitudes

of peaks vary substantially between different codons encoding the same amino

acid. As examples, the peak downstream of CGA in our experiment is sub-

stantially higher than the peaks downstream of other codons encoding arginine

(figure 4.9B), and GCG is the only codon encoding alanine for which there is

an appreciable downstream peak (figure 4.10). If these peaks were caused by

interactions involving an amino acid in the nascent polypeptide chain, they

should be agnostic to the codon identity used to encode the amino acid. Sec-

ond, the facts that the locations of peaks change in response to changes in

CHX concentration and that peaks disappear in the absence of CHX strongly

suggest that the peaks are a consequence of CHX treatment rather than a

genuine feature of translation.

4.2.4 Disrupting steady-state elongation rates causes downstream
peaks in analytical and simulation models

Having observed large shifts in tRNA binding site occupancies between

experiments with and without CHX and the appearance of downstream peaks
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Figure 4.14: Locations of downstream waves move coherently in re-
sponse to CHX concentration.
Profiles of mean relative enrichments around a single codon identity (CGA)
in experiments by Gerashchenko[31] using different concentrations of CHX.
With no CHX (red), there is a strong enrichment at the A- and P-sites and no
downstream peak. With CHX (all other colors), there are depletions at the A-
and P-sites and downstream peaks that become closer, narrower, and higher
with increasing concentration.
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in CHX experiments, we sought a model for how CHX treatment disrupts

the measured positions of ribosomes that could parsimoniously explain both

phenomena. To test potential models, we developed a software simulation of

the movement of ribosomes along the repertoire of yeast coding sequences;

see section 4.3.3 for simulation details. By incorporating different possible

mechanistic effects of the introduction of CHX into these simulations, we could

evaluate the ability of different models to explain the observed features of the

experimental data.

A natural first hypothesis is that each ribosome waits an exponentially

distributed amount of time until a CHX molecule diffuses into the ribosome’s

E-site and irreversibly arrests it, with the timescale of this exponential varying

inversely with CHX concentration. If ribosomes continue to spend the same

relative amounts of time on each codon identity while waiting for CHX to

arrive, however, the position of each ribosome at the random instant of CHX

arrival samples from the same steady state distribution that ribosomes occu-

pied before CHX was introduced. We confirmed by simulation that this poten-

tial mechanism produces neither downstream peaks nor substantial changes in

A-site occupancies.

Next, we noticed that the codon identities that undergo the largest

changes in measured A- and P-site occupancies between no-CHX and CHX

experiments consistently tend to be the same codon identities that exhibit the

largest downstream peaks. The most obvious example is CGA, which has the

largest downstream peak in virtually all CHX experiments and also has both
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one of the largest decreases in A-site occupancy and by far the largest de-

crease in P-site occupancy over the increasing CHX concentration gradients.

This potential link between binding site changes and downstream peak size

suggested a model in which elongation continues in the presence of CHX but

with codon-specific relative elongation rates that are substantially changed

from their pre-CHX treatment values. To model this possible behavior, we

evolved a mechanistic simulation of translation to steady state with the mean

relative elongation time of each codon identity set to its mean relative A-site

enrichment in the no-CHX experiment of Weinberg [115]. We then instanta-

neously switched the relative elongation time of each codon identity to its mean

relative A-site enrichment in our CHX-pretreatment experiment and allowed

translation to proceed under these new elongation rates for a short period of

time. At the end of this short period of continued elongation, we recorded the

positions of all ribosomes and processed the resulting simulated ribosome foot-

prints identically to the real experimental datasets. Interestingly, the resulting

simulated enrichment profiles qualitatively reproduce both major phenomenon

observed in data from CHX experiments (figure 4.15A).
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Figure 4.15: A sudden change in the relative elongation rates of codon
identities produces downstream waves in simulation and analytical
models.
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Figure 4.15 (Continued): A sudden change in the relative elongation
rates of codon identities produces downstream waves in simulation
and analytical models.
(A) In a simulation of the translation of yeast coding sequences, the average
relative elongation time of each codon identity was suddenly changed from the
codon’s A-site enrichment in a no-CHX experiment to its A-site enrichment in
a CHX experiment. Elongation was allowed to proceed for a short time after
this change, then enrichments in the positions of ribosomes were analyzed as
in figure 4.9A. The resulting profiles of simulated mean enrichments qualita-
tively reproduce the downstream peaks in data from experiments using CHX.
(B) A continuous-time Markov chain model of the translation of a hypothetical
coding sequence consisting of a single slow codon surrounded by long stretches
of identically faster codons on either side was analyzed. At t = 0, the relative
speed of the slow codon was suddenly changed to be faster than its surround-
ings. Ribosome density at offsets around the formerly-slow codon is plotted at
several time points after this change. Immediately after the change, there is a
temporary excess of ribosomes positioned at the formerly-slow codon relative
to the eventual steady state of the new dynamics. As these excess ribosomes
advance along the coding sequence, a transient wave of increased ribosome
density moves downstream and spreads out over time.
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To better understand why changing relative elongation rates shortly be-

fore measuring ribosome positions produces these patterns, we constructed a

simple analytical continuous-time Markov chain model of the process of trans-

lation. See section 4.3.4 below for a more detailed description of this model.

In this idealized model, ribosomes wait an exponentially distributed amount

of time at each codon position before moving on to the next, with the rate

parameter of this exponential distribution depending only on the codon iden-

tity in the A-site of the ribosome. Across many copies of a particular coding

sequence being translated by many ribosomes, the instantaneous rate of flow

of ribosome density from codon position i to codon position i+ 1 is therefore

equal to the current ribosome density at position i times the elongation rate of

the codon identity at position i. This implies that the steady-state distribution

of ribosome density at each position is proportional to the mean elongation

time of the position; see section 4.3.4 for details.

In this analytical model, we considered a hypothetical coding sequence

consisting of one codon that is translated slowly surrounded on either side

by many identical copies of a codon identity that is translated faster. We

numerically evolved the density of ribosomes on many copies of this coding

sequence under these elongation dynamics to their steady state distribution.

Then, at t = 0, we instantaneously changed the relative elongation rates of the

two codon identities so that the previously slow codon was now faster than

its surroundings. We plotted the evolution in ribosome density across the

hypothetical coding sequence over time following this change (figure 4.15B). A
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sufficiently long time after the change, the system will have reached the steady

state distribution of the new elongation dynamics, in which ribosome density

is lower at the now-faster codon than its uniform level at all of the surrounding

codons. Immediately after the rates are changed, however, ribosomes are still

distributed at the steady state densities implied by the relative speeds before

the change and are therefore out of equilibrium under the new dynamics. There

is a temporary excess of ribosomes at the formerly-slow codon. The process of

relaxing from the old steady state to the new steady state manifests as these

excess ribosomes advancing along the coding sequence over time. Stochastic

variation in the exponential wait times of each individual ribosome at each

subsequent codon position causes the excess to gradually spread out as it

advances. Hypothetical measurements of the positions of all ribosomes at a

series of increasing times after the change to the new dynamics would therefore

produces patterns that look like an advancing wave of enrichment, as is seen

around e.g. several arginine codons in real (figure 4.9B) and simulated (figure

4.15) data. Importantly, as this wave advances downstream, density at the

formerly slow codon itself quickly equilibrates to its new steady state level.

We also considered a hypothetical coding sequence in which a single

special codon undergoes an instantaneous increase, rather than decrease, in

mean relative elongation time compared to stretches of identical codons on

either side (figure 4.16). In this case, the time period immediately following the

change in dynamics is spent filling the formerly-faster codon position up to its

newly increased steady state density. During this time, there are temporarily

147



less ribosomes being promoted onward to downstream positions than there

were before the change. This results in a transient wave of depletion, rather

than enrichment, that advances away from the formerly-faster codon position

and spreads out over time (figure 4.16A). This is qualitatively consistent with

the profile of depletions downstream of e.g. two isoleucine codons in real (figure

4.10) and simulated (figure 4.16B) data.

4.2.5 Magnitudes of downstream peaks are quantitatively consis-
tent with predictions made by wave hypothesis

The hypothesis that changes in measured tRNA binding site occupan-

cies and the appearance of downstream peaks are both caused by continued

elongation with disrupted dynamics in the presence of CHX makes a testable

prediction about the quantitative link between these two phenomenon. If

downstream peaks are transient waves moving downstream after a change

in the relative amounts of time ribosomes spend positioned over each codon

identity, the total CHX-induced excess or deficit in enrichment downstream

of each codon identity should exactly offset the total CHX-induced change in

enrichments at the tRNA binding sites. To test whether experimental data

agreed with this prediction, we analyzed several matched pair of experiments

performed with and without CHX by Jan [50] (figure 4.17), Williams [117],

and Gerashchenko [31]. For each codon identity, we compared the sum of

the differences in enrichment between the experiments at the A-, P-, and E-

sites (green area in insets) to the sum of the difference in enrichment across

the range of downstream offsets occupied by the putative waves (red area in
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Figure 4.16: Decreasing the relative elongation rate of a codon creates
downstream waves of depletion.
(A) In a simulation of translation, the average relative elongation time of each
codon identity was changed from its A-site enrichment in the no-CHX exper-
iment of Weinberg to its A-site enrichment in our CHX experiment. Allowing
translation to proceed for a brief period of time under these new dynamics re-
sults in a negative peak of depletion downstream of those codons that become
relatively slower in the new dynamics, such as ATT and ATC.
(B) In an analytical model of the translation of a single special codon sur-
rounded by long stretches of codons that are identically slightly faster than
it, suddenly changing the dynamics so that the special codon is even slower
causes a transient wave of depletion in ribosome density to move downstream
from the special codon over time.
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insets). In all matched pairs of experiments, the area of each codon iden-

tity’s downstream peak is strongly predicted by its tRNA binding site changes

(r2 = 0.85 to 0.93, slope of best fit line β = −1.00 to −1.20). Insets in figure

4.17 and 4.18 demonstrate the full dynamic range of the agreement between

the two phenomenon. CGA, which undergoes comparably large decreases in

enrichment at both the A- and P-sites, produces a downstream wave with

approximately twice the area of CCG, which undergoes a large decrease in

enrichment at the A-site but not the P-site. Codons with similar enrichments

at all three tRNA binding sites between the two experiments, such as ACT,

produce no appreciable downstream waves, while several codons that undergo

modest increases in enrichment at the binding sites, such as TTG, produces

proportionally modest net deficits of enrichment downstream. This close cor-

respondence strongly suggests that the downstream peaks are in fact transient

waves, and therefore that tRNA binding site enrichments in CHX experiments

do not reflect natural translation dynamics.

4.2.6 Disrupted elongation in the presence of CHX explains coun-
terintuitive results in CHX experiments

The fact that net changes in tRNA binding site enrichments between

each pair of experiments with and without CHX match the net areas of down-

stream waves in the CHX experiment suggests that the areas of downstream

waves can be used to recover indirect information about translation dynam-

ics in each CHX experiment before these dynamics were disrupted by CHX.

Specifically, given data from a CHX experiment, we can produce a reasonable

150



Figure 4.17: Changes in tRNA binding site enrichments between a
pair of experiments with and without CHX are matched by areas of
downstream waves in the CHX experiment.
For a pair of experiments with and without CHX by Jan [50], the sum of each
codon identity’s changes in mean relative enrichment at the A-, P-, and E-sites
between the two experiments (green area in insets) is plotted against the total
excess or deficit of enrichment in the CHX experiment from 6 to 65 codons
downstream (red area in insets). The area of each codon identity’s downstream
peak is strongly predicted by changes in enrichment at the tRNA binding sites,
consistent with the hypothesis that downstream peaks are transient waves
caused by continued elongation with disrupted dynamics in the presence of
CHX.
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Figure 4.18: Zoomed-in view of Figure 4.17, excluding CGA, CGG,
and CCG.
Figure is identical to 4.17 but excludes CGA, CGG, and CCG from the regres-
sion. Insets highlight examples of codons with no substantial change (ACT)
or a moderate increase (TTG) in net tRNA binding site enrichments in the
presence of CHX. The correlation between net tRNA binding site changes and
downstream area remains strong (r2 = 0.84) even after excluding the three
codons that participate most in these phenomena.
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Figure 4.19: Downstream waves recover positive correlations of esti-
mated elongation times with 1 / tAI.
In experiments using CHX, the combined enrichment of each codon identity
at the A-, P-, and E-sites before the introduction of CHX can be indirectly
estimated by adding the net area of the codon’s downstream wave back to the
total remaining enrichments at the three tRNA binding sites. This sum corre-
lates positively with 1 / tAI in all CHX experiments (purple dots), recovering
the positive correlations counterintutively absent at the tRNA binding sites
alone in these experiments (green dots). Positive correlations are statistically
significant (p < 0.05, one-tailed) in all but two experiments. This suggests that
non-optimal codons were being translated less quickly than optimal codons in
CHX experiments before the introduction of CHX disrupted these dynamics.
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estimate of what the sum of the enrichments at the A-, P-, and E-sites was for

each codon identity before the introduction of CHX by adding the net area of

the wave that moved downstream during elongation in the presence of CHX

back to the sum of the enrichments that remain at the binding sites. We will

call this quantity the corrected aggregate enrichment of each codon. It can

be interpreted as the average relative amount of time that a ribosome took

to decode each occurrence of a codon before CHX was introduced, from when

the codon was presented in the A-site to when it left the E-site. While we

would of course prefer to recover how long each codon spent in each individual

tRNA binding site in these experiments, this single-codon-resolution informa-

tion has been irreversibly lost. As the CGA and CCG insets in figure 4.17

demonstrate, changes in enrichment at the A-site or at the P-site result in

downstream waves that occupy the same large range of downstream offsets, so

the area in each wave cannot be unambiguously assigned back to a particular

tRNA binding site.

To test if codons decoded by less abundant or wobble-paired tRNAs

tended to be translated more slowly than more abundant tRNAs in CHX

experiments before the introduction of CHX, we computed the Spearman rank

correlation between the corrected aggregate enrichment of each codon identity

and 1 / tAI. Corrected aggregate enrichment correlates positively with 1 / tAI

for every CHX experiment analyzed (figure 4.19, purple dots), recovering an

intuitively expected signature of translation dynamics that is absent in CHX

experiments if the total elongation time is estimated by the sum of the tRNA
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binding sites enrichments alone (figure 4.19, green dots).

Continued elongation with disrupted dynamics after the introduction of

CHX also offers a potential explanation for counterintuitive results in a set of

experiments by Zinshteyn et al. [121]. Zinshteyn performed ribosome profiling

on yeast strains that lacked different genes required to post-transcriptionally

add mcm5s2 groups to a uridine in the anticodons of tRNAs that decode codons

ending in AA and AG. These anticodon modifications are thought to enhance

codon-anticodon recognition and speed up translation of these codons [94].

Surprisingly, Zinsheyn found that measured changes in tRNA binding site oc-

cupancies between deletion strains and the wild type were much smaller than

expected given the phenotypic consequences of lacking these modifications.

These experiments followed the standard CHX pretreatment protocol, how-

ever, and we observe clear downstream waves in enrichment in all of them (data

not shown). According to our model, therefore, tRNA binding site occupancy

levels in these experiments reflect properties of elongation in the presence of

CHX rather than of in vivo dynamics. To test if CHX-disrupted elongation

was masking the true impact of the absence of anticodon modification in these

experiments, we compared the profiles of mean enrichment around all codon

identities decoded by the modification-deficit tRNA species between the dele-

tion strains and the wild type. Intriguingly, the profiles of mean enrichment

around AAA showed consistently increased downstream wave areas in all of

the deletion strains compared to wild type (figure 4.20A). To quantify this

increase, we computed the corrected aggregate enrichment of each codon iden-
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Figure 4.20: Downstream waves recover the expected effects of lack-
ing tRNA modifications.
(A) Profiles of mean relative enrichments around AAA in two wild type ex-
periments (black lines) and six experiments with different components of the
mcm5s2U-pathway deleted (red lines) from Zinshteyn [121]. All mcm5s2U dele-
tion strains produce clearly increased waves downstream of AAA compared to
wild type. Darker lines correspond to the experiments compared in (B).
(B) Histograms of the net change in enrichment for each codon identity be-
tween uba4∆ and wild type at the A-, P-, and E-sites (green) or at the A- P,
and E-sites plus 7 to 90 codons downstream (purple). AAA shows a modest
increase in net enrichment at the tRNA binding sites, but a dramatically larger
increase in net enrichment if the area of downstream waves is also taken into
account. This suggests that AAA does take substantially longer to decode in
vivo in uba4∆ than in wild type, but that most of this difference disappears
during continued elongation in the presence of CHX.
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tity as above by adding the downstream wave area to the sum of the binding

site enrichments. We then computed the change in corrected aggregate en-

richment for each codon identity between each of the deletion strains and the

wild type (figures 4.20B). In each of the deletion strains, but not in a replicate

of the wild type, AAA undergoes a dramatically larger increase in aggregate

tRNA binding site enrichment when corrected to include downstream wave

area (purple) than if wave area is not included (green). This argues that AAA

does in fact take substantially longer to decode in vivo in cells lacking the

ability to modify its tRNA, but that most of this difference disappears during

continued elongation in the presence of CHX.

4.2.7 Mechanism of continued elongation in the presence of CHX

Although the exact mechanistic details of how disrupted elongation in

the presence of CHX occurs remains unclear, there are several key features

of observed patterns in the data and of known properties of CHX that any

potential mechanism must accommodate. The first is that the disruption in

dynamics is concentration-dependent. The second is that relative elongation

rates in the new dynamics are still coupled to codon identities. Mean relative

A- and P-site enrichments do not simply collapse towards being uniform in

CHX experiments, but instead reproducibly take on a wide dynamic range

of codon-specific values. The third is that absolute elongation rates must

be dramatically slower in the presence of standard concentrations of CHX.

Any model implying the contrary is not plausible; CHX has been successfully
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used as a translation inhibitor for decades. We suggest that this inhibition

is accomplished by a large reduction in the rate of elongation rather than a

complete halt.

A possible mechanism with all three of these properties is that CHX

repeatedly binds and unbinds to ribosomes, preventing advancement when

bound but allowing elongation to proceed when unbound. In this model, the

global rate of CHX binding to all ribosomes increases with increasing CHX con-

centration, leading to a decrease in the amount of time each ribosome spends

unbound and therefore globally decreasing the rate of continued elongation.

This accounts for the fact that downstream peaks move less far downstream

in the same amount of time with increasing CHX concentration. Because

the distance that peaks have moved downstream is the product of the total

duration of disrupted elongation and the CHX-concentration-dependent aver-

age rate of this elongation, the magnitude of the reduction in elongation rate

can be roughly estimated. Although there is broad agreement between down-

stream peak offset and annotated pretreatment time in experiments using the

standard CHX concentration, with the longest pretreatment time (5 minutes

in McManus[77]) corresponding to the farthest peaks and the shortest pre-

treatment time (1 minute in Lareau [64] and Nedialkova [81]) corresponding

to the closest peaks, we note that a range of different peak locations are ob-

served across experiments using the standard 2 minute pretreatment. These

differences could conceivably reflect variation in the duration of harvesting or

in effective CHX concentrations. Conservatively assuming that no elongation
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occurs during harvesting, the range of peak centers with standard CHX con-

centration and 2 minutes of pretreatment implies absolute elongation rates

of 0.1 to 0.3 aa/s. Because natural elongation rates in yeast are 7 to 9 aa/s

[60], this represents an approximately 20- to 90-fold reduction in the speed of

elongation.

To explain the reproducible range of codon identity-specific elongation

rates in the presence of CHX, changes in the conformation of the ribosome

as a result of differences in the geometry or base-pairing interactions of the

tRNAs occupying the A- and P-sites could modulate the rates of CHX binding

and unbinding. Conformational changes in the ribosome as a result of codon-

anticodon interactions are known to be an integral part of the elongation cycle

[107]. Given the unique presence of I-A wobble pairing in the decoding of

CGA codons, the outsize role that CGA plays in these phenomenon suggests

that base-pairing interactions could play a major role in determining CHX

affinity. This offers an elegant potential explanation for the negative correla-

tion between A-site enrichments with and without CHX: codon identities that

produce unusual ribosome conformations tend to slow down elongation when

tRNA binding is rate-limiting, but tend to speed up elongation when CHX

disassociation is rate-limiting. In this model, the concentration-dependent in-

terpolation between these two regimes observed in figure 4.7 reflects the fact

that as CHX concentration decreases, each ribosome spends an increasing

fraction of time unbound by CHX and therefore elongating according to the

unperturbed dynamics.
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4.2.8 Heterogeneity in experiments without CHX pretreatment

Heterogeneity in measured A- and P-site enrichment values between

experiments that avoid CHX pretreatment presents complications for this

model. Except for a single experiment by Guydosh [39], however, all such

experiments still include CHX in the lysis buffer into which cells are har-

vested. The exact point in the harvesting process at which the elongation

factors and charged tRNAs required for elongation are no longer accessible to

ribosomes is unclear. One explanation for the observed heterogeneity could

be that, under some conditions, the same continued elongation with disrupted

dynamics that occurs during CHX pretreatment could also occur during the

harvesting process once ribosomes have been exposed to CHX in the lysis

buffer. The A- and P-site occupancies in the non-pretreated experiments by

Pop[89], Lareau[64], Gardin[30], and Nedialkova[81] can be interpreted as an

intermediate phenotype halfway in between the two tighter clusters consisting

of CHX-pretreatment experiments and of the no-pretreatment experiments by

Gerashchenko, Weinberg, Jan, and Williams in figure 4.3B, potentially reflect-

ing a small amount of CHX-mediated elongation in these intermediate exper-

iments. Consistent with this interpretation, enrichment profiles around CGA

appear to be shifted slightly downstream in these intermediate-phenotype no-

CHX experiments (figures 4.13 and 4.22).

The complete set of five non-pretreated experiments produced by Pop

et al.[89] are particularly heterogeneous. Three of these experiments (WT-

URA footprint, AGG-OE footprint, and AGG-QC footprint) report A-site oc-
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cupancies strikingly similar to values reported by CHX pretreatment experi-

ments and less similar to the other non-pretreated experiments (figure 4.21).

These same three experiments also have distinct peaks located approximately

20 codon positions downstream in the enrichment profiles around each codon

identity that are absent in the other two experiments from the study (fig-

ure 4.22). These are the only non-pretreated experiments we examined for

which clear downstream peaks are observed. Such extreme heterogeneity be-

tween non-pretreated experiments is difficult to account for in our model, but

suggests that a wide range of different amounts of elongation after exposure

to the lysis buffer are possible across different implementations of harvesting

protocols.

One of the experiments performed by Pop et al. consisted of overex-

pressing the tRNA decoding AGG in order to test if increased availability

of these tRNAs reduces the average elongation time of occurrences of AGG.

They found a surprisingly small change in the relative frequency with which

AGG was located in the A-site of footprints in the AGG-overexpression (OE)

strain compared to the wild type. Given the strong evidence that substantial

CHX-disrupted elongation occurred in these experiments, we wondered if this

continued elongation was obscuring the true impact of tRNA overexpression.

Waves downstream of AGG in the wild-type and AGG-OE experiments are

too noisy to provide clear visual evidence of a difference in wave magnitudes

between the two strains (figure 4.23A). When we summed the downstream

wave areas of each codon and added these sums to the active-site enrichments
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Figure 4.21: A-site enrichments in some experiments from Pop [89]
cluster with CHX-pretreatment experiments.
Figure is constructed as in figure 4.3 but includes additional experiments from
each study. Three no-CHX-pretreatment experiments from Pop [89] are more
similar to CHX-pretreatment experiments (orange text) than they are to all
other no-CHX-pretreatment experiments (purple text).
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Figure 4.22: Downstream peaks in experiments from Pop [89].
Figure is constructed as in figure 4.12 but shows five experiments from Pop [89].
Although these experiments were not performed with CHX pretreatment, WT-
URA footprint, AGG OE footprint, and AGG-QC footprint (right column)
all show clear peaks ∼20 codons downstream, and WT footprint and ACA-
K footprint (left column) have profiles of enrichment around CGA shifted
slightly downstream compared to non-pretreated experiments from other stud-
ies.
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to produce corrected aggregate enrichments for each codon, however, AGG

is a clear outlier to the left in the distribution of these corrected values. In

other words, there is substantially less net area in the wave downstream of

AGG in the AGG-OE experiment than the wild-type, arguing that overex-

pression did in fact cause a substantial speed-up in the translation of AGG in

the pre-disruption dynamics.

4.3 Methods

In this section, we provide further technical details of the analyses de-

scribed above.

4.3.1 Details of initial processing and mapping of footprinting data

All ribosome profiling experiments analyzed involve attaching a known

sequence to the 3′ end of RNA footprints to which a reverse transcription

primer can be annealed. Some experiments use polyA tailing for this purpose,

while others attach an oligonucleotide linker sequence. For experiments using

polyA tailing, reads were trimmed from the end back to the first base that

wasn’t an A or an N. For experiments using linker sequences, linkers were lo-

cated in reads by local alignment with the expected sequence and trimmed.

Trimmed reads were first mapped to yeast rRNA sequences with bowtie2[62],

and any reads that mapped were filtered out. Remaining reads were mapped

with tophat2[54] to the yeast genome (version EF4) and spliced transcrip-

tome (using transcript models from the Saccharomyces Genome Database’s
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Figure 4.23: Downstream waves recover the expected effects of over-
expressing a tRNA.
(A) Profiles of mean relative enrichments around AGG in a wild type experi-
ment (black lines) and an experiment in which the tRNA decoding AGG was
overexpressed on a plasmid from Pop [89].
(B) Histograms of the net change in enrichment for each codon identity be-
tween AGG-OE and wild type at the A-, P-, and E-sites (green) or at the A-
P, and E-sites plus 7 to 90 codons downstream (purple). AGG shows a mod-
est decrease in net enrichment at the tRNA binding sites, but a dramatically
larger decrease in net enrichment if the area of downstream waves is also taken
into account.
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Figure 4.24: Data sources.
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.gff dated Fri Apr 11 19:50:03 2014). Unmapped reads had any terminal

stretches of A trimmed and were put through tophat2 again to recover poten-

tial mappings overlapping transcript polyA tails, although this has minimal

impact on the analysis presented here. The reverse transcription process used

to convert footprints to DNA can add untemplated bases to the end of in-

termediate anti-sense DNA products, which ultimately end up located at the

beginning of sequencing reads [45]. We observed that the rate at which this

happens varies considerably between different experiments. To prevent these

untemplated bases from potentially shifting the codon positions that reads

end up assigned to, bases that mismatch the reference sequence are trimmed

from the beginning of all mappings up to the first matching base. For every

annotated coding sequence, uniquely mapped reads of length 28 or 29 were as-

signed to the in-frame codon closest to the nucleotide at (0-based) offset +15

from the 5′ end of the read; reads of length 30 were assigned to the in-from

codon closest to offset +16.

This work involves data from a large number of studies deposited in the

GEO and SRA databases. Manual acquisition of data for many experiments

via the GEO web interface can be a tedious and error-prone process. To

automate this process, we developed a software tool that takes as input a GSE

accession number. The tool scrapes and parses XML from the NCBI website

to determine URLs for data from the different samples associated with that

accession number, then downloads these samples via ascp and dumps fastqs

from the resulting .sra files using the sra-toolkit. This tool is available at
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github.com/jeffhussmann.

Other software tools used to process or visualize data include IPython [87],

pysam/samtools [69], numpy [112], scipy [82], matplotlib [41], cython [6], pan-

das [76], and seaborn [114].

4.3.2 Computing stratified mean enrichments

After assigning mapped read counts to the codon position in the A-site

as described above, the goal is to estimate the impact that the presence of

a particular codon identity at a particular offset from the A-site has on the

relative frequency with which ribosomes are measured, marginalizing over all

other nearby sequence features. To do this, uniquely mapped read counts were

normalized by dividing all counts for each coding sequence by the mean across

that coding sequence to control for the total number of ribosomes observed on

the coding sequence, which is informative about mRNA levels and translation

initiation levels but not about relative elongation times. The set of all codon

positions across all coding sequences is then stratified to select those positions

that are located at the offset of interest from an occurrence of the codon iden-

tity of interest. The mean of the relative enrichment values at all positions

in this stratified set is then computed. To exclude the influence of poorly-

understood structure in measured ribosome density at the 5′ end of coding

sequence, we excluded 90 codons at the beginning and end of each coding

sequence from all stratified mean enrichment computations. For all calcula-

tions of downstream wave areas, we increased the number of codons excluded
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from the edges of genes from 90 to 200. For some experiments, excluding

this wider range substantially improves the agreement between CHX-induced

tRNA binding site changes and downstream wave areas. This suggests that

patterns in codon composition, which are particularly pronounced at the be-

ginning of genes [111], may introduce small confounding biases that aggregate

when adding relative enrichments over a wide range of offsets to calculate

downstream wave areas.

More formally, let g be an index over genes. Let lg be the length in

codons of gene g’s coding sequene. Let cg,i be the codon identity at position

i in gene g, Let rg,i be the count of uniquely mapped reads assigned to this

codon position. Let d be the number of codons to be exclude from the edge

of each gene. For each gene consisting of at least 2d+ 1 codons, so that there

is something left after excluding d from the beginning and the end, compute

the mean read count over all eligible positions in a gene

Mg =

lg−d∑
i=d

rg,i

lg − 2d
(4.1)

and define the relative enrichment at each positions as

eg,i =
rg,i
Mg

. (4.2)

For a given codon identity I and offset F , the stratified set of all eligible

positions located exactly that offset downstream of an occurrence of that codon

identity is

sI,F = {(g, i) : d < i < lg − d, cg,i−F = I}. (4.3)
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The mean relative enrichment at the stratified set of such positions is therefore∑
(g,i)∈sI,F

eg,i

|sI,F |
. (4.4)

When a gene has a small number of reads mapped to it, the denomina-

tor in the expression for eg,i is small and the values produced by this expression

are noisy. Maximizing signal-to-noise in mean relative enrichments is there-

fore a balancing act between including as many genes as possible in order to

maximize the number of codon positions being averaged over while minimiz-

ing the effect of noisy relative enrichment values from lowly-expressed genes.

This issue is particularly pronounced in the mean relative enrichment profiles

around non-optimal codons (e.g. CGA), for which a disproportionate share of

occurrences of the codon identity are in lowly-expressed genes. To navigate

this balance, for each experiment, we excluded genes for which Mg < 0.1 -

that is, genes with an average read density of less than 1 read per 10 codons

across the eligible region of the gene. Because the number of useful sequencing

reads produced by each experiment varies considerably due to differences in

the number of raw reads produced and in the efficiency with which uninterest-

ing rRNA contaminants are removed, the exact set of genes passing this filter

varies from experiment to experiment. Profiles of mean relative enrichments

in all experiments are qualitatively unchanged but noisier if we instead include

every gene with a nonzero number of mapped reads in each experiment.
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4.3.3 Simulation details

In order to evaluate the ability of different models of CHX activity

to produce patterns observed in experimental data, we developed a simple

event-driven simulator of the movement of ribosomes along coding sequences.

We made several simplifying assumptions about translation in this simulation.

First, we assume the elongation time at each position depends only on the

codon identity in the A-site of a ribosome. Second, we assume that the rate of

initiation for each mRNA is a constant (but potentially gene-specific) value -

that is, we do not model competition for a pool of ribosomes between different

mRNAs. Third, we measured time in arbitrary units not grounded in any

absolute measurements.

The central object in the simulation is a representation of a single copy

of a particular mRNA copy of a coding sequence. For each such mRNA object,

multiple ribosomes are tracked as they simultaneous advance along the coding

sequence. A priority queue of future events indexed by the time at which each

event is scheduled to occur is maintained to determine the ordering of events.

Evolution of the system is carried out by popping events off off the priority

queue, processing the events, and then inserting any consequent events into

the queue.

Simulation for each mRNA object begins with an immediate initiation

event at t = 0. After each initiation event, the time interval until the next

attempted initiation is drawn from an exponential distribution with the rate

parameter set to a user specified, potentially gene-specific value. Although we
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carried out simulations in which the initiation rate of each gene is proportional

to the ratio of footprint RPKM to mRNA-seq RPKM from matched experi-

ments (the so-called translational efficiency of the gene [46]), the simulation

results shown in the main text have the initiation rate of every gene set uni-

formly to 0.01. Ribosomes are always assigned to the single codon identity

in their A-site, but each ribosome occludes 5 codon positions upstream and

4 codon positions downstream of this. After initiation, the amount of time a

ribosome waits at each codon position before attempting to advance is expo-

nentially distributed with a rate parameter determined by the codon identity

in the A-site. Ribosomes are prevented from advancing if doing so would cause

its A-site to be within 4 codons of the next downstream ribosome’s left edge.

If this occurs, a new waiting time is drawn, after which the ribosome will

attempt to advance again. To efficiently evolve a single instance of a coding

sequence to steady state, events are processed until the first ribosome hits the

stop codon. If trunoff is the point in time at which this happens, a stopping time

is chosen uniformly at random from the interval [trunoff, 2trunoff]. This stopping

time is added to the priority queue as an event, and events are processed until

this event is reached.

After steady state is reached, different potential CHX mechanisms can

be introduced. Two such mechanisms are considered here. In the first, at the

instant CHX is introduced to the system, each ribosome is assigned an amount

of time to wait until a CHX molecule first arrives at it and irreversibly halts it.

The mean of this waiting time distribution is the mechanistic knob that is as-
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sumed to change with CHX concentration. Every ribosome that initiates after

CHX is introduced is also assigned a waiting time in the same way. The sys-

tem is evolved until every ribosome has been arrested and the initiation site is

occluded by an arrested ribosome so that no further initiation is possible. The

resulting positions of ribosomes are then recorded as simulated read counts.

The only way in which this model of CHX action produces sampled positions

that differ from the pre-CHX steady state is when stochastic differences in the

arrival times of CHX at sequential ribosomes cause the upstream ribosome

to be halted by running into the arrested ribosome in front of it instead of

by the arrival of CHX. The average spacing between ribosomes is determined

by the ratio between the rate of initiation and elongation rates. The extent

to which stalling occurs can be tuned by controlling the ratio between this

average spacing and the mean time until CHX arrival. If this ratio is small,

pairs of sequential ribosomes frequently experience a large enough difference

in CHX arrival times for the trailing ribosome to close the gap between them.

This results in spikes in mean enrichment at offsets that are multiples of 10

upstream (i.e. at negative offsets in the profiles of mean enrichment plotted

throughout the text) and broad, low-level enrichment downstream of any slow

codon identity but no coherent downstream peaks. Mean enrichments at the

A-site experience a contraction towards one, reflecting the fact that the codon

identity in the A-site of a ribosome that was stopped by running into the ri-

bosome ahead of it is essentially drawn uniformly from the codon identities

in a coding sequence, rather than being drawn in proportion to the elonga-
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tion times of codon identities. We are unable to find any region of parameter

space for which this mechanism produces behavior that qualitatively hints at

the changes in active site occupancies and appearance of downstream peaks

present in real data.

In the second potential mechanism, at the instant of CHX arrival, the

means of the exponential distributions from which the elongation waiting time

of ribosomes at each codon identity are changed. Every ribosome with a

pending elongation event in the priority queue has this event discarded and

redrawn from the new distributions. After this shift in codon-identity-specific

elongation rates, a user-specified interval of time is allowed to proceed before

the locations of all ribosomes are measured. As discussed in the main text, a

potential mechanistic basis for this behavior is the CHX molecules repeatedly

bind and unbind from each ribosome, so that the mean time a ribosome spends

at a position reflects the influence of the codons located in the tRNA binding

sites of the ribosome on the rates of CHX association and dissociation.

For either model of CHX action, a template (real) experiment is used

to guide the number of simulated reads produced for each gene in order to

accurately reflect the dynamic range of expression in the yeast transcriptome.

To do this, for each gene, copies of the coding sequence are evolved to steady

state and put through simulated CHX treatment before recording simulated

read positions until the total number of reads produced for the gene just

exceeds the count of reads mapped to that gene in the template experiment.
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4.3.4 Inferring codon-specific elongation rates accounting for gene-
specific codon usage biases

In this section, we describe the continuous time Markov chain model

of translation that was used above to determine the influence of gene-specific

codon usage patterns on elongation rate estimates and to analyze transient

behavior of ribosome density patterns following a change in codon-specific

relative elongation rates.

Using mean relative enrichment as a measure of the average time spent

decoding a particular codon identity has the benefit of simplicity but could

in theory be biased by the presence of covariation in the usage of codons

between different genes. To intuitively motivate this concern, if codon A and

codon B tend to be used more frequently than their genome-wide averages

in the same genes and codon B is extremely slow, codon A will appear to

be slightly faster than it really is. To evaluate the size of this effect, we

computed the mean elongation time of each codon identity in a way that

takes the codon composition of each gene into account. For this calculation,

our model of translation is that the amount of time a ribosome spends at

a particular position depends only on the identity of the codon positioned

at the A-site of the ribosome and that these time intervals are independent

and exponentially distributed with a codon-identity specific rate parameter.

We assume that rates of initiation are small enough relative to elongation

rates that collisions between ribosomes can be ignored. In order to determine

exactly what a set of observations of ribosomes at particular positions tells

175



us in the Bayesian sense about these codon-identity specific rate parameters,

we need to compute the posterior distribution of these parameters given the

data. In order to do this, we need to be able to compute the likelihood of a set

of observed positions given a particular set of 61 values for the codon-specific

rate parameters.

Suppose that the translated portion of an organism’s transcriptome

consists of nc coding sequences. Each coding sequence is an ordered sequence of

the 61 non-stop codons. Suppose that a particular coding sequence g consists of

n codons with identities {ci} for i = 1, . . . , n. Then the life cycle of a ribosome

with respect to this coding sequence can be modelled as a simple continuous-

time Markov chain with a dummy state 0 that represents the ribosome doing

anything but translating this particular coding sequence. Transition from this

state into the act of translating the first codon occurs at some coding-sequence

specific initiation rate λinit that is a nuisance parameter for the purposes of this

calculation. After this, the ribosome transitions from each codon to the next

at a rate determined by the identity of the codon it is currently translating.

Assuming that the cell is in a steady state condition, the probability that a

random point in time sampled from the lifetime of a ribosome will find it in the

act of translating a particular codon, given that it was observed somewhere

on this coding sequence, is given by the stationary distribution of this Markov

chain, conditional on not being in state 0.
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The infinitesimal generator matrix of this Markov chain is

Λ =


−λinit λinit 0 0 . . . 0

0 −λc1 λc1 0 . . . 0
0 0 −λc2 λc2 . . . 0
...

...
...

...
. . .

...
λcn 0 0 0 . . . −λcn

 . (4.5)

Because this Markov chain is irreducible, it has a unique stationary distribution

p =
[
p0 p1 . . . pn

]
. (4.6)

The stationary distribution will satisfy the probability mass-balance equation

pΛ = 0T (4.7)

and the normalization condition

n∑
j=0

pj = 1. (4.8)

It is straightforward to verify that

p0 =
1
λ0∑

k∈{0,c1,...,cn}
1
λk

(4.9)

and

pj =

1
λcj∑

k∈{0,c1,...,cn}
1
λk

(4.10)

for j = 1, . . . , n satisfy these equations. To produce the conditional station-

ary distribution given that not being in the dummy state, simply divide the

other components by their sum. The net effect of this is to remove the term

corresponding to the dummy state from the denominator, giving

pj =

1
λcj∑n
k=1

1
λck

. (4.11)
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For convenience, let βi = 1/λi. Let cg,i be the number of occurrences

of codon identity i in coding sequence g. Then given that a ribosome was

observed on coding sequence g, the probability that is was observed at a specific

occurrence of codon identity i is

βi∑61
j=1 cg,jβj

. (4.12)

For an entire data set, let rg,i be the number of observations of a ribosome

at any occurrence of codon identity i in coding sequence g. Then, making an

independence assumption, the overall likelihood of the data given values of

{βi} is

L =
∏
g

61∏
i=1

β
rg,i
i(∑61

j=1 cg,jβj

)rg ,i . (4.13)

We can then explore the posterior distribution of the rates given the

data under this model via MCMC (Figure 4.25).
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Figure 4.25: Inferring codon-specific elongation rates via MCMC.
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Figure 4.25 (Continued): Inferring codon-specific elongation rates via
MCMC.
(A) Exploration of the 61-dimensional posterior distribution of codon-identity
specific elongation rates given the data from Weinberg [115] according to the
forward statistical model in equation 4.13 via MCMC. Colored curves and
right axis show movement of each component through the parameter space
over the first 25,000 steps of a particular MCMC instantiation. The black
curve and left axis shows the log-likelihood of the proposed parameter vector
at each step, which climbs steadily during a burn-in period before leveling off.
(B) Marginal posterior distributions for the reciprocals of the elongation rates
of the six codons that encode arginine as determined by the values visited in
the subsequent 50,000 steps. Because rates are only determined up to a global
multiplicative constant, the elongation rate of codon AAA is set to 1 as a
arbitrary normalization.
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Evaluation of the likelihood function is somewhat computationally ex-

pensive but can be parallelized with a simple message passing scheme in which

the list of genes is split up between processes running on different cores of a

single machine. A proposed sets of rates at which the likelihood is to be evalu-

ated is passed to each process, and the contributions of each set of genes’ data

to the overall likelihood are collected from the processes and combined to give

the overall likelihood. In practice, we observe that numerically maximizing the

likelihood function using Powell’s method converges to sets of rates that agree

with the MAP values produced via MCMC within a few thousand evaluations

of the likelihood function.

4.3.5 Transient behavior after changes in relative elongation rates

In the continuous time Markov model of translation presented above,

if the probability distribution over states at t = 0 is given by p(0), then the

evolution of the system of ordinary differential equations governing the flow of

probability density between states over time is given by the matrix exponential

of the generator matrix:

p(t) = p(0)etΛ. (4.14)

Consider a coding sequence consisting of 100 copies of codon A, followed

by a single copy of codon B, followed by 100 copies of codon A. Suppose

that the two codon identities are translated with mean relative elongation

times βA and βB,before. Let Λbefore be the infinitesimal generator matrix of the
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Markov chain with these rates, and let pbefore be the steady state distribution

under Λbefore. Suppose that the system is at steady state and then at time 0

the dynamics of translation are instantaneously changed so that the relative

elongation rates of the two codon identities become βA and βB,after. Let Λafter

and pafter be the generator matrix and steady state distribution, respectively,

under these new relative elongation rates. Then

p(t) = pbeforee
tΛafter . (4.15)

To understand the transient behavior as the system relaxes to the new

steady state, decompose pbefore into

pbefore = pafter + (pbefore − pafter), (4.16)

giving

p(t) = paftere
tΛafter + (pbefore − pafter)e

tΛafter . (4.17)

By construction, pafter is in the left null space of Λ and is therefore a

left eigenvector of etΛafter with eigenvalue 1 for any t, so this becomes

p(t)− pafter = (pbefore − pafter)e
tΛafter . (4.18)

The left side of this equation represents how much the distribution at

time t still differs from the eventual steady state. Except for slight differences

in normalization, pbefore−pafter is essentially an impulse at the location of the

single occurrence of codon B, scaled by λB,before − λB,after. For a particular
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offset downstream of the occurrence of codon B and a particular value of t,

therefore, the linearity of the expression on the right hand side implies that

the transient change in magnitude of the downstream wave is proportional to

λB,before − λB,after.

Figure 4.15 and 4.16 plot evaluations of this solution at a range of

positions around codon B for series of increasing time points for the cases

where codon B changes from being slower than codon A to being faster than

codon A at t = 0 (that is, βB,after < βA < βB,before) and where codon B

is slightly slower than codon A before t = 0 but then becomes even slower

(that is, βA < βB,before < βB,after), respectively. In a window around codon

B of length l on either side of codon B, the instantaneous rate of change in

net ribosome density in the entire window is equal to the rate of flow into

the leftmost codon position in the window minus the rate of flow out of the

rightmost codon position. Until the downstream wave reaches this rightmost

position (or any wave of global change in density caused by a relative change

in elongation rates compared to the rate of initiation reaches the leftmost

position), these two terms remain equal to each other. This implies that the

net density across the window remains unchanged, so the net excess or deficit

in the downstream wave must be equal in magnitude but opposite in sign to

the change at codon B.

This ‘conservation of ribosome density’ argument motivates the expec-

tation in figures 4.17 and 4.18 that the downstream wave areas for each codon

identity should exactly offset tRNA binding site changes, and the closely re-
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lated argument that aggregate tRNA binding site enrichments before a CHX-

induced change in dynamics can be recovered by adding downstream wave

areas back to the binding site enrichments in the presence of CHX. Apply-

ing this correction recovers the positive correlations with 1 / tAI expected if

codons decoded by less abundant or wobble base-paired tRNAs are on the

whole translated slower than average, although a somewhat wide range of

positive correlation values are observed across different experiments in figure

4.19. While this could represent genuine differences in translation dynamics

between the experiments, it seems likely that technical biases could account

for much of the variation. When downstream waves have only moved a few

codons downstream (as in our experiment), enrichments are affected by bi-

ases in how efficiently footprints with different nucleotides at the 5’ edge are

converted into sequenceable DNA [3]. When waves have moved far enough

downstream that large ranges of offsets need to be summed to capture all of

their area, patterns in codon usage could lead to small biases in enrichments

around different codon identities that aggregate when large ranges of offsets

are summed.

4.4 Conclusion

We have seen that ribosome profiling experiments conducted with and

without CHX pretreatment make incompatible claims about the average amounts

of time ribosomes spend with each codon identity in their tRNA binding sites

during elongation. We have reported the existence of unexpected structure
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in measured ribosomes density downstream of each codon identity in exper-

iments using CHX. The most parsimonious model to explain both of these

phenomenon is that elongation continues for many cycles after the introduc-

tion of CHX, but that during this continued elongation, the amount of time

each ribosome takes to advance from codon to codon has a different quanti-

tative dependence on the codons positioned in the tRNA binding sites of the

ribosome than it did before the introduction of CHX.

The ability of a particular ribosome profiling experiment to produce

accurate quantitative inferences about translation dynamics is contingent on

ribosomes being measured at each codon position in proportion to how long

they spend occupying that position in vivo. The interpretation of experiments

using CHX to stabilize ribosomes has assumed that this stabilization occurs

by a mechanism that leaves ribosomes positioned according to their steady

state in vivo distribution, e.g. by irreversibly arresting the further elongation

of each ribosome upon binding to it. The patterns we observe argue that

this assumption does not hold. Instead, many cycles of continued elongation

with disrupted dynamics leave ribosomes distributed in a way that does not

directly reflect natural translation dynamics, although telltale signs of the pre-

disruption dynamics can be indirectly discerned. Given the impact of CHX

treatment on ribosome positioning, future ribosome profiling experiments aim-

ing to directly measure the amount of time ribosomes spend at each position

in vivo should therefore entirely avoid the use of CHX.

In light of our model, several counterintuitive results from previous ri-
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bosome profiling studies in yeast take on new interpretations. Most notably, we

offer an explanation for contradictory claims about whether so-called optimal

codons corresponding to more abundant tRNAs are translated more rapidly.

In many organisms, optimal codons are used with greater frequency in highly

expressed genes, and a large body of theoretical work assumes that increased

elongation speed drives this tendency [88]. If optimal codons are decoded

faster, this tendency could lead directly to increased expression by increasing

the rate of production of protein from each message or by avoiding mRNA-

decay pathways linked to ribosome pausing [90]. Alternatively, if translation

initiation is typically rate-limiting, using faster codons reduces the amount of

time ribosomes spend sequestered on highly transcribed mRNAs, freeing up

ribosomes to translate other messages and leading to more efficient system-

wide translation [98]. If A-site enrichments measured in CHX pretreatment

experiments reflected natural translation dynamics, however, optimal codons

would not be elongated more quickly, and these theories fall apart. By offer-

ing a model for why the measured positions of ribosomes in CHX experiments

appear to report that non-optimal codons are the fastest to be translated, and

by showing evidence that optimal codons were in fact being translated more

quickly before the introduction of CHX, we enable a principled resolution to

this controversy. Earlier studies in this area have hypothesized that the A-site

enrichments reported by CHX experiments could reflect an optimal balance

between codon usage and tRNA abundance [92], or that potential heterogene-

ity in elongation times at different occurrences of the same codon identity
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could conspire to produce these A-site enrichments [19]. By showing that the

A-site occupancies fed into these models almost certainly do not represent the

actual in vivo dynamics, our results argue against both of these conclusions.

The existence of continued but slower elongation after the introduction

of CHX also sheds light on the observed ramps of increased ribosome density

at the 5’ end of coding sequences. These ramps were first noticed by Ingolia et

al. [46], and a theoretical model was later advanced to explain why the initial

period of slower translation implied by theses ramps could alleviate potential

traffic jams of ribosomes further along coding sequences [111]. More recently,

however, Gerashchenko showed that ramps extend over a smaller extent of

the 5’ end of coding sequences when higher concentrations of CHX are used

[31], suggesting that at least some fraction of the apparent elevated ribosome

density in the ramp structures is an artifact of CHX treatment. Gerashchenko

hypothesized that this concentration ramp could reflect differences in the time

necessary for different concentrations of CHX to permeate cells. Our model

suggest an alternative explanation: if translation initiation continues at simi-

lar rates after the introduction of CHX while elongation is dramatically slowed

but not halted, this would produce a transient, gradually spreading 5’ ramp.

In our model, therefore, the fact that the range of positions occupied by ramps

decreases with increasing CHX concentration reflects the inverse relationship

between CHX concentration and the global rate of continued elongation. Al-

though a complete accounting for the source of ramps is complicated by in-

complete understanding of the rate of continued initiation over the course of
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experimental protocols, our model offers further support for Gerashchenko’s

hypothesis that a substantial fraction of the 5’ ramp in density does not re-

flect an actual tendency toward slower translation at the beginning of coding

sequences.

Finally, our model offers an explanation for the small apparent impacts

of several experimental attempts to modify tRNA repertoires on measured rela-

tive elongation rates. CHX-pretreatment experiments by Zinshteyn et al. [121]

on mcm5s2U-pathway deletion strains show surprisingly small changes in tRNA

binding site occupancies at codons decoded by the modification-deficient tR-

NAs. Our observation that all of the deletion strains have substantially in-

creased waves of enrichment downstream of AAA, one such codon identity,

compared to wild type suggests that binding site occupancy changes in the

presence of CHX dramatically underestimate the actual in vivo increase in the

decoding time of AAA in the deletion strains. Pop et al. [89] evaluated the im-

pact of overexpressing, deleting, or modifying the body sequence of tRNAs and

also found surprisingly small changes in the rates at which the corresponding

codon identities were translated. As discussed above, the experiments of Pop

et al. did not pretreat with CHX, but a subset of these experiments show both

clear downstream peaks and A-site occupancies shifted towards values reported

by CHX pretreatment experiments. This suggests that enough CHX-disrupted

elongation occurred in these experiments during the harvesting process that

the resulting A-site occupancies may not be able to measure any potential

effects of the tRNA repertoire modifications. Repeating these experiments
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without any CHX in order to accurately sample from in vivo dynamics could

clarify the consequences of these tRNA manipulations.
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Chapter 5

Conclusions and future directions

5.1 Improving high-throughput sequencing error rates

In the first half of this thesis, we presented circle sequencing, a method

for detecting and correcting sequencing errors by creating physically linked

copies of the sequence of input DNA fragments. We described computational

strategies for analyzing data produced by this method. We demonstrated

that circle sequencing is capable of detecting and filtering out the vast major-

ity of sequencing errors by applying it to sequence yeast genomic DNA. We

also demonstrated that it accomplishes this reduction in error rates with sub-

stantially higher cost-efficiency than alternatively barcoding-based strategies

for correcting errors. A specialized form of barcoding recently developed by

Schmitt et al. [96] called duplex barcoding is able to achieve even lower error

rates by protecting against errors caused by rare damage events to input DNA

during the library preparation process, but this protection comes at the cost

of a large decrease in cost-efficiency. There are therefore two clear directions

for future development of error correcting sequencing methods: improving the

accuracy of circle sequencing by incorporating the key insight of duplex bar-

coding into it, and improving the efficiency of duplex barcoding in order to

allow it to reliably produce large quantities of error-corrected data.
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In any error-correcting library preparation strategy, redundant copies of

sequence information are powerless to protect against error processes that cor-

rupt this sequence information before the redundant copies are made. Single-

stranded DNA base damage introduced by the experimental manipulations

used to extract and prepare genomic DNA represent one such process. The

unexpectedly high rate at which these damage events occur had previously

been masked by the even higher rate of generic sequencing errors. By reduc-

ing these rates, circle sequencing and barcoding methods have revealed that

protecting information from these damage events represents the next hurdle

to be overcome in order to apply high-throughput sequencing to detect ultra-

rare variants. Schmitt et al. realized that double-stranded DNA represents a

naturally occurring form of protection against such events because every piece

of sequence information is already present in the two redundant copies repre-

sented by the two strands. The accidental discovery in our data of the ability

of CircLigase to form circles out of double-stranded input templates suggests

a way to incorporate this insight into circle sequencing. If circular templates

that consist of end-to-end ligations of information from both strands of a

double-stranded starting molecule can be reliably produced and sequenced,

the resulting concatamers can be decomposed into downstream copies of each

of these strands. Single-stranded base damage suffered by this template will

only affect all copies of the damaged position in one of these two groups of

copies, so that damage-induced artifactual variants can be filtered out by com-

paring the two strand’s consensus sequences to each other. The instances of
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such templates that we found in our data were rare, accidental byproducts of

a library preparation strategy that was not designed to produce them. Delib-

erately creating these templates e.g. by attaching hairpin loops to both ends

of double-stranded input templates as in Pacific Biosciences SMRTbell scheme

[110] could potentially allow for the ultra-high accuracy of duplex barcoding

while retaining the efficiency advantages of circle sequencing.

Although we demonstrated theoretical limits on how efficient any bar-

coding process can be, in practice, most implementations of barcoding do not

come close to achieving this limit. A major obstacle is the practical diffi-

culty in reliably controlling the precise number of successfully barcoded input

molecules that enter the amplification reaction in order to control the average

number of copies of each input molecule that will be produced by sampling

from the amplification products. Conceptually, this consists of titrating the

number of barcoded input molecules to hit the narrow peak in efficiency in

the purple and green curves in figure 2.6. Recent developments in an exper-

imental technique called digital PCR [40] could provide a way to do this. In

theory, this technique provides a way to produce precise absolute counts of

the number of input molecules that have had adapter sequences containing

barcodes successfully ligated to them. To do this, input molecules are spread

out into physically separate compartments, such as wells on a plate or droplets

of oil in an emulsion, under dilute conditions so that each compartment is ex-

pected to receive either zero or one input molecules on average. The number

of compartments that received a well-formed input molecule can then be di-
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rectly counted by performing a PCR amplification within each compartment

using primers corresponding to the adapter sequences and using fluorescent

probes to determine whether amplification products were produced. Although

this technology is still in its infancy and the extent to which it is capable of

producing precise absolute quantifications of diverse input libraries remains

unclear [116], it may be possible to apply digital PCR to control exactly how

many input molecules are being put into the barcoding process and therefore

reliably extract the maximum possible efficiency from the method.

Finally, our characterizations of PCR-mediated recombination during

cluster generation of concatamers and of the unexpected formation of cir-

cles from double-stranded templates represent examples of the qualitatively

new kinds of experimental diagnostics that deep analysis of high-throughput

sequencing data can provide. The sequences produced by high-throughput se-

quencing experiments represent a per-molecule digital record of exactly what is

happening during experimental biochemical manipulations. This digital record

is a much more powerful readout to inform methods development than the

types of diagnostic information that have historically been available in experi-

mental biology. The software we developed for large-scale visualization of the

different component pieces that high-throughput sequencing reads are made up

of should be a broadly useful tool for forming this feedback loop between data

analysis and experimental design, and is available at github.com/jeffhussmann.
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5.2 Accurate measurements of translation dynamics with
high-throughput sequencing

In the second half of the thesis, we explored how to use high-throughput

sequencing to produce accurate measurements of the amount of time ribosomes

spend translating each codon. We first presented purely theoretical work that

examined whether patterns in the use of synonymous codons at nearby occur-

rences of the same amino acid could be interpreted as evidence for the novel

hypothesis that individual tRNA molecules are recycled through ribosomes

multiples times in order to speed up translation. The ambiguities that arise

when trying to make this kind of indirect inference about translation dynamics

served as a motivation for why more direct, transcriptome-scale measurements

of ribosome speeds are necessary.

We then analyzed data from many ribosome profiling experiments to

evaluate whether these experiments were capable of accurately producing these

kinds of measurements. We found strong evidence that an unexpected side-

effect of treatment with the translation inhibitor cycloheximide in some of

these experiments disrupts the ability of these experiments to accurately mea-

sure in vivo translation dynamics. By comparing patterns in ribosome occu-

pancy at and downstream of different codon identities across a large body of

experiments performed both with and without the use of cycloheximide, we

showed that cycloheximide does not irreversibly halt translation upon binding

to ribosomes, as previous interpretations of this data had assumed. Instead,

many cycles of continued elongation occur in the presence of cycloheximide,
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but the relative amount of time ribosomes spend positioned over each type of

codon during this continued elongation is dramatically different than during

unperturbed translation. The reason that experiments performed with and

without cycloheximide reported such dramatically different pictures of trans-

lation dynamics was previously unclear. By characterizing the mechanism that

causes this difference, we resolve this mystery and establish that measurements

produced without CHX more accurately reflect how translation proceeds under

natural conditions.

In light of our results, it is clearly necessary to omit pretreatment of

cells with CHX for long periods of time in order to accurately measure how

long ribosomes spend at each position in vivo, but this may not be sufficient.

We observed substantial heterogeneity in tRNA binding site enrichment lev-

els between different experiments that all omitted CHX pretreatment. The

most parsimonious explanation for this heterogeneity is that even in the ab-

sence of CHX pretreatment, some implementations of protocols for harvesting

ribosomes from cells do so in a way that doesn’t allow any elongation with

disrupted dynamics to occur and that some do not. To consistently pro-

duce accurate measurements of steady-state translation dynamics, it will be

important to identify and eliminate the remaining differences between these

implementations. Checking for the existence of any downstream waves in data

produced by future experiments will be a useful diagnostic for determining

whether each experiment has succeeded in capturing steady-state dynamics.

Our work so far has focused on the effects of a single translation in-
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hibitor on measurements produced in a single organism (namely, cycloheximide

and yeast) because this pair represents the large majority of ribosome profiling

experiments that have been performed to date. Searching for downstream wave

patterns in ribosome profiling data using other translation inhibitors and from

other organisms will be necessary to determine the generality of the phenomena

we described. In particular, Lareau et al. [64] have recently demonstrated that

treatment with an alternative inhibitor, anisomycin, preferentially captures ri-

bosomes in an alternative conformation that protects ∼ 21 (as opposed to

∼ 28) nucleotides of mRNA. Data produced after treatment with anisomycin

can therefore potentially be used to study the timing of movements between

different ribosome conformations during each elongation cycle. Understanding

whether anisomycin association and dissociation rates are modulated by codon

identities in the same way as CHX will be necessary in order to correctly inter-

pret this kind of data. Although they have not yet been studied as extensively

as yeast, ribosome profiling data from several higher eukaryotes exists, include

C. elegans [106] and human and mouse cell lines [38, 47, 66]. The interactions

of translation inhibitors with ribosomes may be qualitatively different in these

organisms than in yeast. The relative simplicity of the yeast transcriptome - in

particular, the fact that there is virtually no alternative splicing of yeast coding

sequences - made it an ideal model organism in which to identify patterns in

ribosome density across long distances in coding sequences. In higher eukary-

otes for which substantial amounts of alternative splicing occur, interpreting

aggregate patterns in ribosome density around different codon identities may
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present additional computational challenges.

Finally, the identification of downstream waves in ribosome density af-

ter treatment with CHX was largely made possible by of the unusual nature

of the tRNA decoding CGA in yeast. The I-A wobble pairing in this codon-

anticodon interaction appears to produce a substantial slowdown in translation

when positioned in either the A- or the P-site and to produce a substantial

relative speedup in translation in the presence of CHX, perhaps by increasing

rates of CHX disassociation from ribosomes. Together, these facts combine to

produce the large wave downstream of CGA that is consistently the clearest

evidence for continued elongation in the presence of CHX. Letzring et al. [67]

have demonstrated through alternative experimental methods that introduc-

ing a synthetically modified tRNA that has an exactly matched anticodon to

CGA dramatically reduces translational pausing at CGAs. Given the apparent

ease with which yeast could evolve to eliminate the slow translation of CGAs,

the fact that evolution has avoided doing so suggests that this pausing may

serve a functional role, perhaps by interacting with co-translational mRNA

decay pathways [85, 90] or by providing control over co-translational folding

of nascent polypeptides [81]. It would be interesting to perform ribosome pro-

filing with and without CHX pretreatment on yeast cells in which Letzring’s

modified CGA-decoding tRNA has been introduced. This would serve as a

powerful test of our continued-elongation hypothesis, since our model predicts

that this modified tRNA should eliminate both the wave downstream of CGA

and the depletion of ribosomes with CGA in the A- and P-sites that are other-
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wise ubiquitous in CHX-pretreated data. Transcriptome-wide measurements

of mRNA levels and ribosome locations after alleviating pauses at CGAs could

also potentially provide insights into the functional roles that these pauses play.
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