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Abstract: Deconvolution is an important preprocessing 
procedure often needed in the spectral analysis of 
transient exponentially decaying signals. Three 
deconvolution techniques are studied and applied to the 
problem of estimating the parameters of 
multiexponential signals observed in noise. Both the 
conventional and optimal compensated inverse filtering 
approaches produce data which are further analyzed by 
SVD-based autoregressive moving average (ARMA) 
modeling techniques. The third procedure is based on 
homomorphic filtering and it is implemented by fast 
Fourier transform (FFT) technique. A comparative 
study of the performance of the above deconvolution 
techniques in analyzing multicomponent exponential 
signals with varied signal-to-noise ratio (SNR) is 
examined in this paper. The results of simulation studies 
show that the homomorphic deconvolution technique is 
most computationally efficient, however, it produces 
inaccurate estimates of signal parameters even at high 
SNR, especially with closely related exponents. 
Simulation results show that the optimal compensation 
deconvolution technique is indeed a generalized form of 
the conventional inverse filtering and has the potential 
of producing accurate estimates of signal parameters 
from a substantial wide range of SNR data. 

Key words: Exponentially decaying signal, Gardner 
transformation, Optimal and homomorphic 
deconvolution 

1. Introduction 
The analysis of transient signals of exponentially 
decaying nature, arises in many areas of electrical 
engineering, physical sciences and medicine. For 
instance, such signals occur in solving system 
identification or characterization problems in 
communication and control engineering [ 1-31, electronic 
component reliability study [4], deep-level transient 
spectroscopy [5], nuclear magnetic resonance in 
medical diagnosis[6,7], compartment analysis in 
physiology [8], and pharmokinetics [ 9 ] ,  to name just a 

few. 
systems can be expressed as 

S(z)  = 

where M, Ak and h k  represent respectively the number 
of components, amplitude and 'the real-valued decay 
rate; w(z) denotes the additive white noise with variance 
02. The problem is to determine the unknown 
parameters M, Ak, and h k  from the measured data. This 
problem is different from that encountered in spectral 
analysis of sinusoidal signals since h k  is a real constant 
here. 
Many techniques have been suggested in the literature 
for solving the aforementioned problem; however, the 
frequency-domain method is often preferable since the 
desired parameters are obtained directly from the power 
spectral estimates of the signal. In this method the 
parameter estimation problem is posed first as a 
deconvolution problem by using the Gardner 
transformation [7-101 method to convert (1) into a 
discrete convolution model whose input is a train of 
weighted delta function that contains the signal 
parameters to be determined. The impulse response 
function of the model is derived from a known basis 
function p(t) = exp(-t). A set of deconvolved data, 
consisting of complex sinusoids in noise, is generated 
from this model by using discrete Fourier 
transformation and either the conventional 
(uncompensated) or the optimal (compensated) [ 11,121 
deconvolution technique. These data are analyzed by 
using an ARMA model whose parameters are 
determined via the singular value decomposition 
algorithm. Estimates of the decay rates are then 
obtained from the ARMA model spectrum. This 
approach produces high-resolution estimate of the decay 
constants that can be graphically displayed; however, it 
is computationally demanding. Another technique that 
relies on the FFT algorithm is the homomorphic 
filtering [ 131. Though this method is computationally 
efficient, i t  produces mixed results. This paper examines 

In most cases the response S(z) from these 

M 

k = O  
A k  exp{ - d k z ) +  w ( z )  ........ ( 1) 
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the relative performance of the above deconvolution 
techniques in the analysis of both clean and noisy 
multicomponent exponential signals. Results of analysis 
show that the conventional technique is appropriate for 
only high signal-to-noise (SNR) data. Though the 
homomorphic deconvolution procedure is 
computationally efficient, it produces inaccurate results 
even at high SNR, especially with closely related 
exponents. Though the optimal compensation 
deconvolution method involves laborious and complex 
computations, it produces much more accurate results at 
both high and low SNR. 

2. Convolution model 
Analysis of a sum of exponential signals poses some 
difficulties as result of the nonorthogonal nature of the 
exponential function. The problem becomes much more 
difficult as the level of noise in the signal increases. In 
fact the aforementioned factors are amongst the reasons 
for the failure of some of the time-domain techniques 
such as the method of moments [14], the Prony 
technique and its variants [15]. It is therefore necessary 
to apply some preprocessing techniques on S(z) so as to 
alleviate the above-mentioned problems. 
Equation (1) is a particular case of [7] 

M 

k =1 
....................... s(7) Ak p ( i l k z ) +  n(7) (2) 

where the basis function p(z) = exp(-z). This equation 
can be expressed as 

...................... (3) 
0 

where 

and this contains all the signal parameters to be 
determined. 
Multiplying both sides of (3) by T~ and applying the 
nonlinear transformation z = e' and h = e-r results in a 
convolution integral 

m 

y( t )  = Jn(a)h(t - a)da + v(t)  .................... ' ( 5 )  
-cG 

where y(t) = exp(at) s{exp(t)}, x(t) = exp{ (a-l)t}g(e-'), 
h(t) = exp(at)p(e'), and v(t) = exp(at)n(e'). Sampling 
y(t) at a rate of i lht  Hz converts (5) into a discrete-time 
convolution 

.................. y[n] = 2 x[m]h[n - m] + V[TI]  (6 )  
m=-nmln 

where nmin and nmax represent respectively the upper and 
lower data cut-off points. N is the total number of 
samples for both y[nJ and h[n] such that N = nmax- 
nmi,+l. The problems associated with the selection of 
these sampling conditions have been well-highlighted in 
[ 151 and will not be discussed here. 
Equation (6) forms the basis for estimating the signal 
parameters since ideally x(n) can be recovered from the 
observed data by deconvolution. In the frequency 
domain, the convolution term becomes a product of 
H(o) and X(w). Considering noiseless case, it follows 
that x(n) can be recovered by either dividing Y(o) by 
H(o) or subtracting log[H(o)]from log[Y(w)] followed 
by inverse transformation. A brief summary of these 
procedures is consequently discussed. 

3. Inverse Filtering 
Taking the DFT of both sides of (8) yields Y(k) = 
X(k)H(k) + V(k) and on dividing this by H(k) results in 
X'(k) = X(k) + V'(k). This is termed the conventional, 
direct or uncompensated deconvolution method. For 
y(n) with high SNR this approach produces good 
results, however the method suffers from performance 
degradation for decreasing SNR. In fact, at moderately 
low SNR, the number of samples corresponding to the 
good portion of Y(k) are too few for use in any 
subsequent analysis. Using either a single parameter or 
multi parameter optimal compensation deconvolution 
technique can alleviate the above shortcoming. The 
concept of optimal compensation deconvolution [ 111 
has been discussed in some other applications, but its 
use in solving the above parameter estimation problem 
has only been recently investigated. This involves the 
design of a compensating transfer function H,(k) which 
when applied to Y(k) produces the deconvolved data 
X,,(k), where 

L 

and h is an optimizing parameter that is selected 
according to the SNR of the data. Note that a relatively 
small value of h has little effect in the frequency ranges 
where I H(k) 1 is significant, but has a great influence in 
ranges where I H(k) I is very small. Thus the parameter 
h puts limit to the noise amplification because the 
denominator becomes lower-bounded. Through an 
experimental testing, an optimum value of h = hop' is 
sought which can be used in the above deconvolution 
procedure so that reasonable large samples of X,,(k) 
with high SNR are obtained. The main drawback of this 
method is the determination of hopt. Also as highlighted 
in [ 121 that under certain conditions, deconvolution with 
one free parameter does not guarantee a minimum error 
between the actual and estimated data. A multi 
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parameter optimal compensation procedure is suggested 
in improving the performance of the above 
deconvolution techniques. 
The inverse filter from equation (7) is given by 

................................... (8) 
H * W )  H ,  ( k )  = 

lH(k)I2 + A  
If the regularization operator is the second-order 
backward difference operator, the inverse filter is of the 
form 

(9) 
H * W  H ,  ( k )  = I H ( k ) 1 2  + a l L ( k ) 1 2  ...................... 

where 

IL(k)I2 = lhsin4[ 51, 
and L(k) is the DFT of the second order backward 
difference sequence. This same procedure can be used 
to generate any derivative of higher even order that can 
be used to generate high quality deconvolved data. 
Combining (8), (9) and the fourth-order difference 
operator gives an inverse filter of the form [ 121 

H ,  ( k )  = H * ( k )  ..(lo) 
p ( k ) 1 2  +A + a l ~ ( k ) ~ 2  + P I W I ~  

This equation represents, in essence, a generalized 
expression for inverse filtering where the associated 
parameters h, a, and can be used to control the quality 
of the deconvolved data. It follows that the set values of 
these parameters will depend on the SNR of y(n). The 
effects of A, a, p, and sampling conditions on the 
accuracy of estimated signals are discussed under the 
simulation studies. 

4. Homomorphic Deconvolution 
The above procedures are computationally very 
demanding and may not be suitable for real-time 
analysis of multiexponential signals. Considering (4) 
and (6) it appears that homomorphic deconvolution 
technique can also be used to estimate the decay rates. 
Though homomorphic deconvolution is a nonlinear 
processing it requires less complex computation since it 
can be implemented using the FFT algorithm. Cepstral 
analysis is one example of Homomorphic filtering that 
leads to two kinds of cepstra: the real cepstrum and 
complex cepstrum. The real cepstrum is derived from 
the power spectrum of the signal whereas the complex 
cepstrum is obtained from the signal complex spectrum. 
Both cepstra possess some properties that make them 
effective for the analysis of a variety of signals. 
Furthermore the ability of the cepstrum to detect 
periodic structures in logarithmic spectrum makes it 

suitable for use in estimating the exponential constants 
as given in (4). Real cepstrum analysis is used here 
because it requires a much simpler calculation. 
Consider v(n) =O in (6) so that the complex cepstrum, in 
the z-transform domain, is given by 

Taking the inverse z-transform of this equation gives 
l o g Y ( z )  = l o g H ( z ) + l o g X ( z ) .  

y ,  (12)  = h, (n)  + x,  (n). 
It is known that for a minimum-phase sequence the 
amplitude and phase spectra form a Hilbert transform 
pair [17]. Consequently, the real cepstrum, c, of x(n) is 
obtained from the inverse z-transform of log I X(z) I , 
where 

lOglX(z)I = lOglY(z)l- loglH(z)l ............... (1 1) 
Thus, c, is given by 

I c,(n> n=O 
c,(n) = { 2 cp(n) 

I o  N o + l I n  I N - 1  
No is the cepstrum cut-off point. This must be carefully 
selected to get good results. Taking the z-transform of 
c,(n), followed by exponentiation and inverse z- 
transform yields x,(n) with dominant peaks at Idk. 
Both the real and complex cepstra form stable 
sequences and as such the region of convergence in the 
above analysis must contain the unit circle. 
Consequently, the above analysis is implemented by 
DFT via the FFT algorithm and this accounts for the 
computational efficiency of this method. 
There are a lot of problems in the implementation of this 
technique. In many practical cases the measurement will 
be contaminated by noise. As expected the performance 
of this technique deteriorates as the SNR of y(n) 
decreases since In{ l+V(z)/(H(z)X(z)} differs 
significantly from zero. Thus at high SNR the above 
analysis should give reasonably good estimates of the 
decay rates. Another important consideration is the 
choice of the sampling rate since this affects the quality 
of the cepstrum. Furthermore a singularity may occur 
during the implementation of the cepstrum processing. 
Some factors that can lead to this are discussed in [18]. 
This problem is overcome by smoothing the resultant 
spectrum; that is, a small additive perturbation is 
introduced to the spectrum at the singularity points. This 
processing is detrimental to the cepstrum performance. 
The value to be added is selected as the smallest 
possible value whose logarithm does not yield an 
overflow. Some experimental testing is carried out to 
obtain this value. It is noted that the same smoothing 
effect can be achieved when v(n) f 0, but at the expense 
of poor or inaccurate estimates. The detection of the 
peaks may be difficult either as a result of factors stated 
above or whenever the spectrum obtained in (13) is less 
than unity. This latter problem causes oscillation that 

l l n  I N o  
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masks the peaks. A possible solution is to apply either 
an appropriate windowing or a low-pass filtering after 
the nonlinear operation in the cepstrum. The latter 
procedure is used in this paper. Thus, filtering c,(n) in 
the forward and backward directions produces c,,(k). 
That is, for n 2 1 

whereas for n I N, 

w ( N )  = c ( N ) ,  w(n)  = yc (n )  + (1 - y ) w ( n  + 1) 

so that 

.c (n )  = 0.5(q(n) + w(n) )  
X??2 

where y is the filtering coefficient such that 0 < y c 1. 

5. Signal Parameter Estimation 
From the preceding analysis it is observed that both M 
and l d k  are determined directly from the homomorphic 
deconvoiution. However, in the case of inverse filtering, 
further analysis is needed in order to obtain the same 
signal parameters. 
Denoting the deconvolved data by f(k) then 

M 
f ( k )  = z A i e x p { j k A w I n A i } + ~ ( k ) ,  ....... (12) 

i=l 

where AW = 2nAf and the variance of the output noise is 
given by o$=on2/[HI (k)]*. The DFT processing of f(k) 
should theoretically yield its power spectrum with i" 
peak corresponding to l d k ,  However, only limited 
samples of f(k) are available especially at low SNR and 
as such the estimated power spectrum has large 
sidelobes with poor resolution. Consequently, DFT 
processing of the deconvolved data is of limited use 
especially when M is large and l d k  are closely related. 
To overcome the above shortcomings of the DFT 
technique, a signal modeling approach is used in 
estimating the signal parameters. In this method an 
ARMA (p, q)model is fitted to f(k) so that 

k a n f ( k - n )  = k b n E ( k - n ) ; n o  =1, ......... (13) 
n=O n=O 

where a, and b, respectively represent the AR and MA 
coefficients; p and q correspond to the AR and MA 
model order respectively. The power spectral density 
associated with this model is given by - 

, . . .( 14) 

where A(z) and B(z) are the z-transform of a, and b, 
respectively. This expression provides the decay rates 
estimates if SXz) is evaluated on the unit circle z = 
exp{j2nt/NAt}, that is, 

where P,(t) is the power distribution of x(t). 

6. Simulation studies 
The performance of the above deconvolution techniques 
in estimating the decay rates of exponential signals 
observed in noise is examined in this section. To 
achieve this a multicomponent exponential signal, S(z) 
is considered, where 
S(Z) = 0.5e-O.~' + e-' + 2e-2' + 5e-52 

and the number of exponential signals, their amplitudes 
and rate constants are to be determined. The algorithm 
for estimating Ak is given in [19] hence only the 
determination of M and h.k are considered here. In this 
study, the SNR of the data due to the dc offset, & and 
the random noise w(z) is expressed respectively as 
SNRl = 20 loglo{y(z,)/Ao} and SNR2 = 20 
loglo{y(zp)/ow}, where y(zp) is the peak value of the 
transformed data.  
Applying the processing procedures given in section 2 
leads to the convolution expression in (6) from which 
the distribution function 

x ( t )  = 0.56(t + In 2) + S ( t )  + 26(t  - In 2) 

............. + 56(t - 1115) + 106(t - In lo), 

is obtained. The results obtained with cepstrum 
processing, direct inverse filtering and optimal 
compensation deconvolution are denoted as WHOM, 
REDIF, and REOCD respectively and are depicted in 
Table I for various SNR. It should be noted that 
REHOM gives estimates of x(t) whilst both REDIF and 
REOCD are the results of the computation of power 
distribution, P,(t). The results of homomorphic 
deconvolution are least accurate for all the considered 
cases. First only four strong components with biased 
values of l d k  are produced. Secondly, some weak 
components can also be detected and some of these 
produce more accurate estimates of the decay rates. 
Figure 1 shows the estimated input signal x(t) at high 
SNR (125 dB). The effect of cepstrum filtering in 
improving the resolution, especially at the peaks, is 
evident in both Figure 1 and Figure 2. This technique 
suffers from performance degradation as the SNR 
decreases. In fact the resolution becomes so poor at 
SNR = 50 dB that no components can be detected. The 
poor results of the homomorphic deconvolution are 
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probably due to the additive perturbation to avoid 
singularity of the cepstrum. Further work on how to 
improve these results is still under investigation. 
As expected, the performance of the direct inverse 
filtering and optimal compensation deconvolution is 
similar at high SNR, however the latter technique 
produces better and high-resolution estimates of signal 
parameters at both low and high SNR. Here it is shown 
how a, b, and h can be effectively used to derive good 
estimates of both M and lnhk , see Figures 3 and 4. The 
optimal deconvolution technique provides a way of 
identifying the true peak form a false (spurious) one 
since as the values of a, b, and h are changed the 
dynamic range of the peaks increase at the expense of 
the spurious peaks. 

7. Conclusion 
The performance of three deconvolution techniques for 
use in the analysis of multicomponent exponential 
decaying signals has been discussed in this paper. It is 
observed that the homomorphic deconvolution approach 
is easy to implement but produces inaccurate results at 
both high and low SNR. The conventional inverse 
filtering approach is appropriate for analyzing high SNR 
data. Though the optimal compensation approach 
produces accurate estimates of signal parameters, it 
involves laborious computation. 
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